
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

IMPROVING THE RUN TIME OF THE DECOMPOSITION ALGORITHM
FOR FAULT TOLERANT CLOS INTERCONNECTION NETWORKS

THROUGH SWAP RE-ORDERING

by
Andrea Laura McMakin

Clos interconnection networks, used in data networks and computing systems, can

contain extra switches to be used in faulty conditions. The speed of such fault tolerant

Clos interconnection networks is improved through the use these switches in no-fault

situations. The network can be represented by a matrix, which is then decomposed using

an algorithm, and the switch settings are thus assigned.

The original decomposition algorithm consisted of four element swaps in the

following order: wild swap, simple swap, next simple swap, and successive swap.

However, by re-arranging these swaps with the simple swap first, followed by the next

simple and successive swaps with the wild swap coming either before or after the next

simple, the number of total swaps needed to fully decompose the matrix is significantly

reduced.



IMPROVING THE RUN TIME OF THE DECOMPOSITION ALGORITHM
FOR FAULT TOLERANT CLOS INTERCONNECTION NETWORKS

THROUGH SWAP RE-ORDERING

by
Andrea Laura McMakin

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

Department of Electrical and Computer Engineering

August 1998



APPROVAL PAGE

IMPROVING THE RUN TIME OF THE DECOMPOSITION ALGORITHM
FOR FAULT TOLERANT CLOS INTERCONNECTION NETWORKS

THROUGH SWAP RE-ORDERING

Andrea Laura McMakin

Dr. John D. Carpinelli, Thesis Advisor 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. MengChu Zhou, Committee Member	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Edwin Hou, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT



BIOGRAPHICAL SKETCH

Author:	 Andrea Laura McMakin

Degree:	 Master of Science in Computer Engineering

Date:	 August 1998

Undergraduate and Graduate Education:

• Master of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 1998

• Bachelor of Science in Mathematics,
University of Notre Dame, Notre Dame, IN, 1996

Major:	 Computer Engineering



This thesis is dedicated to
Irene Morrah and Edna Kate Ingold

Thanks for making the past 8 months interesting!



ACKNOWLEDGMENT

The author wishes to express her gratitude to her advisor, Dr. John Carpinelli, for

his guidance and topic suggestion and to Dr. Edwin Hou and Dr. MengChu Zhou for

serving on the defense committee.

Special thanks to the author's parents, for obvious reasons.

The author must also recognize Lex Spoon for listening to countless rants and for

reading seemingly endless e-mails on the subject of swaps. Also, without Lex's superior

knowledge of C, the author could never have made it through CSE 232, Introduction to

Programming.

vi



TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	  1

1.1 Clos Interconnection Networks 	  1

1.1.1 Importance of Clos Networks 	  1

1.1.2 Basic Design 	

1.1.3 Making the Design Fault Tolerant 	  4

1.1.4 How Fault Tolerance Might Improve Network Performance 	  5

1.2 Outline 	  5

2 THE MATRIX DECOMPOSITION ALGORITHM 	  6

2.1 The Specification Matrix 	  6

2.1.1 Permutations 	  6

2.1.2 The S Matrix 	  7

2.1.3 The Algorithm's Effect on the S Matrix 	  7

2.2 Fault Tolerance 	  7

2.2.1 Hardware and Matrix Expansion 	  7

2.2.2 Algorithm Expansion 	  8

2.2.3 Fault Checking 	  9

2.3 The Decomposition Algorithm 	  9

2.3.1 Preprocessing 	  9

2.3.2 Steps of the Algorithm 	  10

vii



TABLE OF CONTENTS
(Continued)

Chapter	 Page

2.3.3 An Example 	  11

3 PROGRAMMING AND EXECUTING THE ALGORITHM 	  17

3.1 The Program 	  17

3.1.1 Program Structure 	  17

3.1.2 Special Cases for a and p 	  18

3.2 Program Structure 	  18

3.2.1 Input File 	  18

3.2.2 Testing Cardinality 	  19

3.2.3 Creating the Data File 	  19

4 RE-ORDERING THE SWAPS 	  22

4.1 Adjustments to the closed Program 	  22

4.1.1 Rewriting the Swapping Algorithm 	  22

4.1.2 Executing the Adjusted Programs 	  26

4.2 Results of the Swap Re-Ordering 	  26

4.2.1 Discussion of Results 	  26

4.2.2 Graphical Representation of the Results 	  28

	

5 CONCLUSION    66

APPENDIX 	  67

REFERENCES 	  92

viii



LIST OF TABLES

Table	 Page

1 Dimensions of the Test Matrices 	  21

2 Number of Swaps in Each Case for n = 5, r = 6, x 0, and y = 0 	  28

3 Number of Swaps in Each Case for n = 5, r = 6, x = 1, and y = 1 	  29

4 Number of Swaps in Each Case for n = 5, r = 6, x = 2, and y = 2 	  30

5 Number of Swaps in Each Case for n = 5, r = 6, x = 2, and y = 3 	  31

6 Number of Swaps in Each Case for n = 5, r = 6, x = 2, and y = 4 	  32

7 Number of Swaps in Each Case for n = 3, r = 4, x = 0, and y = 0 	  33

8 Number of Swaps in Each Case for n = 3, r = 4, x = 1, and y = 1 	  34

9 Number of Swaps in Each Case for n = 3, r = 4, x = 2, and y = 3 	  35

10 Number of Swaps in Each Case for n = 3, r = 4, x = 1, and y = 4 	  36

11 Number of Swaps in Each Case for n = 3, r = 4, x = 2, and y = 2 	  37

12 Number of Swaps in Each Case for n = 6, r = 5, x = 0, and y = 0 	  38

13 Number of Swaps in Each Case for n = 6, r = 5, x = 3, and y = 2 	  39

14 Number of Swaps in Each Case for n = 6, r = 5, x 1, and y = 1 	  40

15 Number of Swaps in Each Case for n = 6, r = 5, x = 2, and y = 4 	  41

16 Number of Swaps in Each Case for n = 6, r = 5, x = 2, and y = 2 	  42

17 Number of Swaps in Each Case for n 5, r = 3, x 0, and y = 0 	  43

18 Number of Swaps in Each Case for n = 5, r = 3, x = 1, and y = 1 	  44

19 Number of Swaps in Each Case for n = 5, r = 3, x = 2, and y = 3 	  45

20 Number of Swaps in Each Case for n 5, r = 3, x = 4, and y 1 	  46

ix



LIST OF TABLES
(Continued)

Table	 Page

21 Number of Swaps in Each Case for n= 5, r = 3, x = 2, and y = 2 	  47

22 Number of Swaps in Each Case for n = 2, r = 5, x = 0, and y = 0 	  48

23 Number of Swaps in Each Case for n = 2, r = 5, x = 3, and y 1 	  49

24 Number of Swaps in Each Case for n 2, r = 5, x = 2, and y = 2 	  50

25 Number of Swaps in Each Case for n = 2, r 5, x = 1, and y 4 	  51

26 Number of Swaps in Each Case for n = 2, r = 5, x = 1, and y = 1 	  52

27 Number of Swaps in Each Case for n = 4, r = 4, x = 0, and y 0 	  53

28 Number of Swaps in Each Case for n = 4, r = 4, x 1, and y = 1 	  54

29 Number of Swaps in Each Case for n = 4, r = 4, x = 2, and y = 2 	  55

30 Number of Swaps in Each Case for n= 4, r = 4, x = 3, and y =2 	  56

31 Number of Swaps in Each Case for n= 4, r = 4, x = 1, and y = 4 	  57

32 Number of Swaps in Each Case for n = 6, r = 4, x = 0, and y = 0 	  58

33 Number of Swaps in Each Case for n = 6,r = 4, x = 1, and y = 1 	  59

34 Number of Swaps in Each Case for n = 6,r = 4, x = 2, and y 2 	  60

35 Number of Swaps in Each Case for n = 6, r = 4, x = 4, and y = 1 	  61

36 Number of Swaps in Each Case for n = 8, r = 3, x 0, and y = 0 	  62

37 Number of Swaps in Each Case for n = 8, r = 3, x= 1, and y = 1 	  63

38 Number of Swaps in Each Case for n = 8, r = 3, x = 1, and y = 4 	  64

39 Number of Swaps in Each Case for n = 8, r = 3, x = 2, and y = 2 	  65



LIST OF FIGURES

Figure	 Page

1 A Three Stage General Ordinary Clos Network 	  2

2 A Fault-Tolerant 9 x 9 Clos Network with One Extra Switch in Each Stage 	  3

3 Comparison of Actual Matrix and Computer Representation 	  19

4 Number of Swaps in Each Case 	  28

5 Number of Swaps in Each Case 	  29

6 Number of Swaps in Each Case 	  30

7 Number of Swaps in Each Case 	  31

8 Number of Swaps in Each Case 	  32

9 Number of Swaps in Each Case 	  33

10 Number of Swaps in Each Case 	  34

11 Number of Swaps in Each Case 	  35

12 Number of Swaps in Each Case     36

13 Number of Swaps in Each Case 	  37

14 Number of Swaps in Each Case 	  38

15 Number of Swaps in Each Case 	  39

16 Number of Swaps in Each Case 	  40

17 Number of Swaps in Each Case 	  41

18 Number of Swaps in Each Case 	  42

19 Number of Swaps in Each Case 	  43

20 Number of Swaps in Each Case 	  44

xi



LIST OF FIGURES
(Continued)

Figure	 Page

21 Number of Swaps in Each Case 	  45

22 Number of Swaps in Each Case 	  46

23 Number of Swaps in Each Case 	  47

24 Number of Swaps in Each Case 	  48

25 Number of Swaps in Each Case 	  49

26 Number of Swaps in Each Case 	  50

27 Number of Swaps in Each Case 	  51

28 Number of Swaps in Each Case 	  52

29 Number of Swaps in Each Case 	  53

30 Number of Swaps in Each Case 	  54

31 Number of Swaps in Each Case 	  55

32 Number of Swaps in Each Case 	  56

33 Number of Swaps in Each Case 	  57

34 Number of Swaps in Each Case 	  58

35 Number of Swaps in Each Case 	  59

36 Number of Swaps in Each Case 	  60

37 Number of Swaps in Each Case 	  61

38 Number of Swaps in Each Case 	  62

39 Number of Swaps in Each Case 	  63

xii



LIST OF FIGURES
(Continued)

Figure	 Page

40 Number of Swaps in Each Case 	  64

41 Number of Swaps in Each Case 	  65



CHAPTER 1

INTRODUCTION

1.1 Clos Interconnection Networks

1.1.1 Importance of Clos Networks

Clos interconnection networks are important because of their potential uses in data

networks and computing systems (Lee, Hwang, and Carpinelli 1996, 1572). These

networks have also been receiving attention because of their simple structures,

rearrangeability, and nonblocking properties (Wang 1997, 1). The concept of the Clos

network was first developed by C. Clos and reported in the Bell Systems Technical

Journal (1953).

1.1.2 Basic Design

A general ordinary Clos network is shown in Figure 1. This three stage network has two

symmetrical outer stages of rectangular switches and an inner stage of square switches.

The first stage contains r switches, each with n inputs and m outputs. Each switch is a

simple crossbar switch that can realize any mapping of its inputs onto its outputs on a one.

to-one basis. The second stage contains m switches, each with r inputs and r outputs.

Each switch receives exactly one input from each first stage switch and sends exactly one

output to each third stage switch. The third, or output, stage contains r switches, each

with in inputs and n outputs. Each output stage switch receives exactly one input from

each second stage switch. Since there are r first stage switches, each with n inputs, the

total number of inputs to this network is N = nr (Lee, Hwang, and Carpinelli 1996, 1572)

1



Figure 1 A Three Stage General Ordinary Clos Network
(Wang 1997, 1)

2



Figure 2 A Fault-Tolerant 9 x 9 Clos Network with One Extra Switch in Each Stage
(Wang 1997, 3)

3



4

1.1.3 Making the Design Fault Tolerant

This general ordinary Clos network can be expanded to make it fault tolerant. This is

important, as a single fault in the interconnection network can cause a severe degradation

in performance unless such fault tolerant measures are provided. The fault tolerant Clos

(FTC) network was developed by Hamed Nassar (Nassar and Carpinelli, 1995) and is

created by adding extra switches in each stage of the Clos network, as shown in Figure 2.

The Clos network was made fault tolerant by adding the extra switches in each

stage, as well as multiplexers/demultiplexers before the first stage and after the output

stage. For these FTC networks, the following fault model is assumed:

1)Any switch can fail.

2) Any interstage link can fail.

3) The failure rate of multiplexers, demultiplexers, and external links is negligible

(Lee, Hwang, and Carpinelli 1996, 1575).

All faults are assumed to occur independently, and faulty components are unuseable. Fault

tolerance is achieved in the FTC network by redirecting inputs to multiplexers,

demultiplexers, and extra switches in the outer stages when there is a fault in the outer

stage switches. Should the fault occur in a middle stage switch, inputs heading for the

faulty switch are redirected to one of the extra switches in the middle stage. FTC networks

with y extra switches in each outer stage and x extra switches in the center stage can

tolerate up to 2y + x switch failures, provided that no stage has more faulty switches that

it has spare switches (Carpinelli and Wang 1997, 3).



5

1.1.4 How Fault Tolerance Might Improve Network Performance

Lee and Carpinelli have given an algorithm for routing FTC networks, and have also

shown that using these extra switches even when the system displays few or no faults can

significantly improve the algorithm run time in fault tolerant Clos networks (Lee, Hwang,

and Carpinelli 1996, 1572-3). It will be shown that by changing the order of the swaps in

the Lee and Carpinelli algorithm, the FTC network's performance can be maximized.

1.2 Outline

The rest of this thesis is organized as follows. In Chapter 2, the matrix decomposition

algorithm is discussed. It is shown how the specification matrix is formed and how

expansion to include fault tolerance affects both the matrix and the network hardware. The

algorithm itself is then presented in detail. In Chapter 3, it is explained how the algorithm

is programmed and how input and output data files are created. In Chapter 4, the order of

swaps is changed and a comparison is made between three cases of the matrix

decomposition algorithm. Conclusions are presented in Chapter 5.



CHAPTER 2

THE MATRIX DECOMPOSITION ALGORITHM

2.1 The Specification Matrix

2.1.1 Permutations

As shown in the diagram of Clos networks, the connections involve every input and

every output, making them representable by a permutation of the formro 	 N- 1
P = ic(0) 7U(l) 	 TC(i) 	 TC(N- 1)

This matrix shows that an input i is connected to an output Tc(i), with the condition that

0 	 N-1, where N = nr, as shown earlier (Lee, Hwang, and Carpinelli 1996, 1573).

Now suppose that, for a network where r = 4 and n = 3,

	

0 1 2 3 4 5 6 7 8 9 	 10 11
	P= 2 10 3 5 6 11 7 1 9 4 	 0 	 8

Since each switch is nonblocking, the permutation can be transformed to

0 0 0 1 	 1 	 1 2 2 2 3 3 3
P* = 0 3 1	 1 2 3 2 0 3 1 0 2

(Lee, Hwang, and Carpinelli 1996, 1573).

This is done by substituting the input numbers in the first row with the number of the

switch that particular input enters in the first stage, which will always be between 0 and

r - 1. Then, the numbers in the second row are replaced by the number of the third switch

that leads to that desired output.

6



7

2.1.2 The S Matrix

The specification matrix, S = (sy), as developed by J. Gordon and S. Srikanthan (1990), is

now introduced. This is an r x n matrix where the rows are indexed by input switches and

columns by center switches, while the entries represent output switches. This means that

s ij = e implies that a connection from the ith input switch to the eh output switch is sent

through theft' center stage switch (Carpinelli and Wang 1997, 5). As an example, for the

P* given before, the S matrix would be:

2.1.3 The Algorithm's Effect on the S Matrix

In this way, the S matrix is a convenient way to express a routing configuration, but this

routing is only feasible if and only if S is complete, that is, if each column contains each

output exactly once (Lee, Hwang, and Carpinelli 1996, 1573). If the initial S is not

complete, the routing algorithm will find a complete S through a series of element swaps.

2.2 Fault Tolerance

2.2.1 Hardware and Matrix Expansion

As mentioned before, when the Clos network is made fault tolerant, y is the number of

extra switches in each outer stage and x represents the number of extra switches in the

center stage. In cases where x and/or y are not equal to 0, the extra y switches add an

additional y rows to the S matrix, providing ny spare elements denoted as a, and the extra



8

x switches add x extra columns to the S matrix, giving rx extra spare elements represented

as 13 (Carpinelli and Wang 1997, 5). To illustrate, the S matrix for the earlier permutation

with x = y = 1 would be:

S= 2 0 3

3	 1

a aa

1	 2 3

1	 0 2

2.2.2 Algorithm Expansion

The a spares correspond with paths created by the multiplexers/demultiplexers and extra

switches in the outer stages. These spares may swap with any element in the same column

except for 13 spares (Carpinelli and Wang 1997, 6). By exchanging with another element in

the same column, the input switch will change, but the center switch remains constant.

The P spares correspond with paths generated by extra switches in the second stage and

may swap with any element in the same row except for a spares (Carpinelli and Wang

1997, 6). By exchanging with another element in the same row, the center switch will

change, but the input switch remains constant. Also, the a and 13 spares can only be

swapped if the resulting number of a spares in each column remains the same. Any

violation of these rules would represent physically changing the connections and switch

locations in the FTC network.

13



9

2.2.3 Fault Checking

Fault checking would usually be performed prior to the execution of the decomposition

algorithm. If a non-spare switch is found to be faulty, any spare switch in that stage would

be assigned as a replacement (Lee, Hwang, and Carpinelli 1996, 1576). However, in this

paper, it is assumed that there are no faults in the system, as network performance using

the spare switches under this no-fault condition is being explored.

23 The Decomposition Algorithm

2.3.1 Preprocessing

Recall that the Lee and Carpinelli decomposition algorithm provides a way to rearrange

the specification matrix S to make it complete, meaning each column contains each output

e exactly once. To achieve this balance, up to four kinds of swaps are performed on S, as

shown below. However, before the algorithm can be executed, some preprocessing must

be done and the following sets constructed from S:

1) 0(e), e = 0, 1, ..., r-1, is the set of columns {/} such that Si does not contain e.

This is the set of all e-deficient columns.

2) 2(e), e = 0, 1, ..., r-1, is the set of columns {j} such that Si contains e at least twice.

This is the set of all e-excessive columns.

3) (j, e), j = 0, 1,	 n-1, e = 0, 1, ..., r-1, is the set of rows {i} such that Su = e.

(Carpinelli and Wang 1997, 5).



10

2.3.2 Steps of the Algorithm

These sets are used in the FTC network algorithm stated below.

Initialize by setting e = 0.

Step 1) If 2(e) is empty, i.e., 12(e)1 = 0, set e = e 1. Stop if e = r, otherwise

repeat Step 1.

Step 2) If 2(e) is not empty, i.e., 12(e)1 > 0, take its first element]. Also, take the

first element k of 0(e).

Step 3) (Wild Swap) Set i to be the first element of (I, e). If u is an element of (j,

a), i.e., u E (j, ci), and u	 swap su with sv. Remove i from (j, e), u from

(j, a) and add i to (I, a), u to (j, e). For any i E (v, m, and i < r,v	 swap

su with s,„. Remove i from (j, e) and (v, ,® and add i to (j,	 and (v, e). If

x, remove] from 0(A. If 	 = x + 1, add/ to 2(6). If (v,	 =

x - 1, add v to 0(C1). If 1(v,	 = x, remove v from 2(8). Remove v from

0(e). If 1(f e) * = 1 in any of the two cases, remove j from 2(e). Go to Step

1. If no spares are available, go to Step 4.

Step 4) (Simple Swap) Set i to be the first element of (j, e). If e < sa, or sth = )3,

swap su with s1k. Suppose sek e'. Remove i from (j, e) and (k, e'), and add

i to (j, e') and (k, e). If 1(1, e)I* = 1, remove] from 2(e). If s th = 13, do { If

=x, remove j from 0(A. If 1(j, f3)1= x + 1, add j to 2(3). If 1(k, f3)1 =

x - 1, add k to 0(,3). If (k,	 = x, remove k from 2(f3). } else do { If 1(f,

e')1* = 1, remove] from 0(e'). If 1(j, e')1* = 2, add] to 2(e'). If 1(k, e')1* =

0, add k to 0(e'). If I(k, e')I* = 1, remove k from 2(e'). } Remove k from



11

0(e) and go to Step 1.

Step 5) (Next Simple Swap) If e> sa, repeat Step 4 on the second element i' of (I,

e). If e> 5 7, or s,,k = a, go to Step 6.

Step 6) (Successive Swap) Divide into substeps:

A) Set u = e. Remove k from 0(u). If I(j, u) * = 2, remove j from 2(u).

B) Set v sjk. Swap sy with s,k. Remove i from u) and (k, v), and add i

to (f, v) and (k, u).

C) Suppose e < v or v = p or I(j, v)I* — 1. If v 	 do { If I(k, 	 x - 1,

add k to 066). Ifl(f, 	 = x, remove k from 266). If 1(j, 	 = x, remove j

from 0(,6). If 1(j, 	 x + 1, add j to 20). } else do { If I(k, v)I* = 0,

add k to 0(v). If 1(k, v)I* = 1, remove k from 2(v). Ifl(j, v)I* = 1,

remove j from 0(v). If i(j, v)1* = 2, add j to 2(v). } Go to Step 1.

D) Suppose e> v or v a. Set u = v. Take i from (i, v) and go to Step 6B.

Annotation: 	 1(f, e) is the cardinality of (j, e).

e)1* is the number of entries which are less than r in the set (j, e)

(Carpinelli and Wang 1997, 6-7).

2.3.3 An Example

The following is an example of how this algorithm works:

Consider a Clos network with r = 5 and n = 3, that is, a network with five 3 x 3

switches in the outer stages and three 5 x 5 switches in the center stage. A sample

permutation for such a network could be:



12

8 9 10 11 12 13 	 14—
0 7 13 2 9 4 	 10

2 3 3 3 4 4 4
0 2 4 0 3 1 3

P =

which is then transformed

0 	 1 	 2 	 3 	 4
6 	 11 	 3 	 8 	 5

into:

5
12

6
1

7
14

0 	 0 	 1 	 1 1 2 2
P* 2	 3 	 1 	 2 	 1 4 0 4

The specification matrix S is thus:

2 3 1
2 1 4

S= 0 4 0
2 4 0
3 1 3

Extending this network to a FTC network with x = 1 and y = 2, S becomes:

2 3 1
2 1 4
0 4 0*

S= 2 4 0
3 1 3
a a a*
cc a a

Now the three types of sets can be constructed as follows:

13
13
13
(3

0(0) = 1, 3 1
0(1) 	 { 0, 3 }
0(2) = 1, 2, 3
0(3) = { 3 }
0(4) = 0, 3 }
0(a) = { 3 }
o(p) = { 0, 1, 2

2(0)
2(1)

= {
=

2 }
1 }

} 2(2) = { 0 }
2(3) = { }
2(4) = 1 }
2(a) = { }

} 2((3) = 3 }



13

(0,3)={4}
(0, 4) = { }
(0,a)={5,6}
(0 , 	 = { }

}
4}
}

(1,3)=101
(1, 4) 	 { 2, 3 }
(1,a)={5,6}
(1,3)= { 	 }

(2, 0) = 2, 3}
(2, 1) = { 0 }
(2, 2) = 	 }
(2,3)={4}
(2, 4) = 1 }
(2, a) = { 5, 6 }
(2,P)= { }

(3, 0) = { }
(3, 1) = }
(3, 2) = { }
(3 , 3 ) ----
(3, 4) = { }
(3 , a) = { }

(3,13)={0,1,2,3,4}

(0,
(0,
(0,

0)
1)
2)

=
=
=

{ 2 }
11

{0,1,3}

(1,
(1,
(1,

0)
1)
2)

= {
=
=

1,

Now the swapping can begin.

1) Wild Swap, e=0,j= 2. One alpha swap is performed.

2 3 1 p
2 1* 4 p
o 4 	 a i3

S= 2 4 0 p
3 	 1 	 3 	 p
a a* 0
a a a

0(0) = 1, 3 }
0(1) = 0, 3 1
0(2) = { 1, 2, 3 }
0(3) = { 3 }
0(4) = 0, 3 1
0(a) = { 3 }
0(13) = { 0, 1, 2 }

(0, 0) = { 2 }
(0, 1) = 	 }
(0, 2) = {0,1,3}
(0,3)={4}
(0, 4) =
(0, a) = {5, 6}
(0 , 13 ) = { 	 }

}
4}
}

(1,3)={0}
(1, 4) = {2, 3}
(1, a) = {5, 6}
( 1 , P) ={ }

2(0) = { }
2(1) = { 1 }
2(2) = { 0 }
2(3) = }
2(4) = { 1 }
2(a) = }
203 ) = { 3 }

(2, 0) = {3, 5}
(2,1)=101
(2,2)= { }
(2, 3) = { 4 }
(2, 4) = { 1 }
(2, a) = {2, 6}
(2,P)= { }

(3, 0) = 	 }
(3, 1) = 	 }
(3, 2) = { }
(3 , 3 ) =
(3, 4) = 	 }
(3 , a)= { }

(3,13)={0,1,2,3,4}

(1, 0) = {
(1, 1)= { 1,
(1, 2) = {



14

2) Wild Swap: e =1,j = 1. One alpha swap is performed.

2* 3 1
2* a 4 p*
0 4 a 13

S 	 2 4 0 13
3 	 1 3 p
a* 1 0
a a a

0(0) = { 1, 3 }
0(1) = { 0, 3 }
0(2) = 1 1, 2, 3 }
0(3) = 1 3 }
0(4) = { 0, 3 }
0(a) = { 3 }
0((3) = 1 0, 1, 2 1

2(0) = 	 }
2(1) = { }
2(2) = 1 0 1
2(3) = }
2(4) = { 1 }
2(a) = }
2((3) = 3 }

(0,0)=121 (1, 0) = 	 } (2, 0) = {3, 5} (3, 0) = 1 	 }
(0, 1) = 1 	 } (1, 1) = {4, 5} (2,1)={0} (3, 1) = { 	 }
(0, 2) = {0,1,3 } (1, 2) = 	 } (2, 2) = 	 } (3, 2) = { 	 }
(0,3)={4} (1,3)={0} (2, 3) = { 4 } (3 , 3 ) 	 }
(0, 4) = 	 } (1,4)- 12, 31 (2, 4) = { 1 } (3, 4) = 	 }
(0, a) 	 {5, 6} (1, a) = {1, 6} (2, a) = {2, 6} (3 , a) ={ 	 }
(0,p)= { 	 } ( 1 , 13 ) = (2 , 13) = (3,(3)={0,1,2,3,4}

3)Wild Swap: e 2,j = 0. One alpha swap and one beta swap are performed.

3 1 13
13 a 4 2
0 4* a 13

S= 2 4 0 (3
3 1 3 13
2 1 0
a a* a

0(0) = 1, 3 } 2(0) = }
0(1) { 0, 3 } 2(1) = }
0(2) = 1, 2 1 2(2) = { }
0(3) { 3 } 2(3) =
0(4) = 0, 3 } 2(4) = 1 )
0(a) { 3 } 2(a) = }
0((3) = { 1, 2 } 2((3) = 3 }



15

(0, 0) = {1, 3}
(0, 1) = 10, 31
(0, 2) = {3,5,6}
(0,3)={4}
(0, 4) = { }
(0, a) = { 0 }
(0, p) = 1 }

(1, 0) = 	 1
(1, 1) = {4, 5}
(1, 2) = }
(1,3)={0}
(1, 4) = {2, 3}
(1, a) = {1, 6}
(1 , 13)= { 	 }

(2, 0) = {3, 5}
(2,1)=101
(2, 2) = }
(2,3)={4}
(2, 4) = { 1 }
(2, a) = {2, 6}
(2, P) = { }

(3, 0) = 	 }
(3, 1) { }
(3, 2) = { 1 )
(3 , 3) { }
(3, 4) = 	 }
(3 , a) 	 { 	 }

(3,13)= {0,2,3,4}

4) 2(3) is empty. Therefore, no swaps are performed when e = 3.

Let e = e + 1.

5) Wild Swap: e 4,j = 1. One alpha swap is performed.

a
p

3
a

1
4

p
2

0 a a flr-
S= 2 4 0 13

3 1 3 p
2 1 0
a 4 a

0(0) = 1, 3 } 2(0) = }
0(1) = 0, 3 1 2(1) = { }
0(2) = { 1, 2 } 2(2) = }
0(3) = { 3 } 2(3) = }
0(4) = 0, 3 } 2(4) = }
0(a) = { 3 } 2(a) = }
0(13) = 1, 2 } 2(P) = 3 }

(0, 0) = { 2 } (1, 0) = { } (2, 0) = {3, 5}
(0, 1) = 	 } (1, 1) = {4, 5} (2,1)={0}
(0, 2) = {3,5,6} (1, 2) = { } (2, 2) = { 	 }
(0,3)={4} (1,3)={0} (2,3)={4}
(0, 4) 	 { 	 } (1, 4) 	 {3, 6} (2, 4) = 	 1 }
(0, a) = { 0 } (1, a) = {1, 2} (2, a) = {2, 6}
(0, 13) = 	 1 } ( 1 , 	 {

} (2 , P) 	 { 	 }

(3, 0) 	 {	 }

(3 , 1) 	 }

(3, 2) = { 1 }
(3 , 3) ={ }
(3, 4)
(3 , a) 	 }
(3,I3)= {0,2,3,4}



Total number of alpha swaps: 4.

Total number of beta swaps: 1.

Total number of simple/next simple swaps: 0.

Total number of successive swaps: 0.

Total number of swaps: 5.

16



CHAPTER 3

PROGRAMMING AND EXECUTING THE ALGORITHM

3.1 The Program

3.1.1 Program Structure

The program clos.c was written to implement this version of the Lee and Carpinelli matrix

decomposition algorithm. This program was coded using the C programming language

and arrays were used to represent matrix S and the sets 0(e), 2(e), and (j, e) as described

below.

The matrix S is implemented as a two dimensional array. Element S[i] [1] of the

array would represent element su of the S matrix with i designating the row and j the

column.

Set 0(e) is implemented as a two dimensional array Zero [i][j], where i represents e

and j is a counting index. For example, if 0(4) = 10, 1, 31, then Zero [4] [0] = 0,

Zero[4][1] = 1, and Zero[4][2] 3.

Set 2(e) is implemented in the same way. As an example, if 2(2) = { 1, 4}, then

Two[2][0] = 1 and Two[2][1] = 4.

Set (j, e) is implemented as a three dimensional array JE[x][y][z] where x = j, y e

and z is the counting index. For example, if (j , e) = (2, 3) — {0, 4}, then JE[2][3][0] = 0

and JE[2][3][1] 4.

All of the above arrays are initialized to -1, which was chosen rather than 0

because 0 is a valid entry in the arrays.

17



18

3.1.2 Special Cases for a and

Special cases of the arrays were created for a and 3, as in 0(e) and 2(e), e = i must be

between 0 and r. For (I, e), x = j must be between 0 and n + x and y = e is between 0 and

r. The numerical representations of a and 3 are 65 and 66 (corresponding to the integer

values the C language assigns to characters 'A' and `B'), which are outside the above

intervals. The set 0(a) = { 1, 4} is represented by the array Zero[65][0] = 1 and

Zero[65][1] = 4 and is created with a special part of the function outside the regular loop

that looks for values of 'A' = 65 in the matrix.

3.2 Program Structure

3.2.1 Input File

The input file for closed is straightforward and in the following form:

4 3 1 1

2 1 2 1

0 2 2 1

1 0 0 0

The first number given is n, the second is r, the third is x, and the fourth is y. The

remaining lines give the original input matrix S. The program then sends this input matrix

to a function that adds the appropriate number of rows of a's (or 65's) and [3's (or 66's) as

specified by y and x, respectively. For the elements located where the rows of a's and

columns of (3's intersect, the value 120 (the number the C programming language assigns

to the character "x") is inserted. This value, essentially a placeholder, lets the program



Actual S Matrix	 Computer Representation

Figure 3 Comparison of Actual Matrix and Computer Representation

After the matrix is created, 0(e), 2(e), and , e) are found and the swapping begins, as

detailed in the earlier algorithm.

3.2.2 Testing Cardinality

When the swapping function checks to see if 2(e) is empty, it simply tests if Two [e][0]=

-1. Since these arrays were initialized to -1, this value at the top of the array would

indicate that the array is empty. To find the cardinality of an array, the program checks

each element until it finds one of value -1. Then, if JEN [e][x-1] is the first element equal

to -1, the cardinality of (j, e) = 	 e)1= x - 1.

3.2.3 Creating the Data File

The original algorithm as presented above was then run on 38 input sets of 499 randomly

generated matrices to create a baseline set of data for the number of swaps needed to

decompose each type of matrix on average. The program keeps track of the total number



20

of each kind of swap and sends that information to a file called output upon completion.

The dimensions of the test matrices are given in Tablel.

A separate program called matrix.c created the input file of 499 matrices using a

random number generator. A copy of this program can be found in the appendix. After

clos.c ran on this input file and wrote the results to file "output", one last manipulation had

to be performed to convert this raw data into an average. Another program called

average.c, which can also be found in the appendix, added up the number of each swap

type, divided that by the total number (which in this case was 499), and gave the result

correct to four decimal places. The results for each particular matrix dimension can be

found on pages 28 - 65.



21



CHAPTER 4

RE-ORDERING THE SWAPS

4.1 Adjustments to the clos.c Program

4.1.1 Rewriting the Swapping Algorithm

After running the original algorithm, the order of swaps was then changed in an effort to

reduce the total number necessary to completely decompose the matrix and, thus,

configure the fault tolerant Clos network to most efficiently use the extra switches in a no-

fault case. The original order of swaps was as follows:

(Case 1) 1) Wild Swap, 2) Simple Swap, 3) Next Simple Swap, 4) Successive Swap.

The algorithm for this order of swaps is detailed in Chapter 2.

Now the swapping function in clos.c was modified to reflect the following:

(Case 2) 1) Simple Swap, 2) Wild Swap, 3) Next Simple Swap, 4) Successive Swap

The algorithm now becomes:

Initialize by setting e = 0.

Step 1) If 2(e) is empty, i.e., 12(e) = 0, set e = e + 1. Stop if e = r, otherwise

repeat Step I.

Step 2) If 2(e) is not empty, i.e., 12(e)1 > 0, take its first element/. Also, take the

first element k of O(e).

Step 3) (Simple Swap) Set i to be the first element of (j, e). If e < s,k, or s,k =

swap su with s ik. Suppose sd, = e'. Remove i from e) and (k, e'), and add

i to (j, e') and (k, e). If 1(j,	 = 1, remove,/ from 2(e). If s & = A do { If

1(j,	 = x, remove ./ from 0(/5). If 1(j,	 = x + 1, add j to 203). If i(k,	 =

22



23

x - 1, add k to 0(/3). If 1(k, AI 	 remove k from 20C3). } else do { If (j,

e')1* = 1, remove] from 0(e'). If 1(j, e')I* = 2, add j to 2(e'). If 1(k, e')1* =

0, add k to 0(e'). If (k, e')I* = 1, remove k from 2(e'). } Remove k from

0(e) and go to Step 1.

Step 4) (Wild Swap) Set i to be the first element of (I, e). If u is an element of (f,

a), i.e., u E (j, a), and u	 swap sv with suf. Remove ifrom(j, e), u from

(j, ex) and add i to (I, a), u to (j, e). For any i E (v, A, and i < r, v	 swap

sv with sn,. Remove i from (I, e) and (v, A and add i to (j, /3) and (v, e). If

V, /3)1 = x, remove j from 0(/3). If Ki, 	 = x + 1, add j to 206). If 1(v, /3)1	 =

x 1, add v to 003). If 1(v, Al =x, remove v from 2(/j). Remove v from

0(e). If 1(j, e)I* = 1 in any of the two cases, remove j from 2(e). Go to Step

1. If no spares are available, go to Step 5.

Step 5) (Next Simple Swap) If e > s ,k, repeat Step 3 on the second element i' of

(j, e). If e> so, or s,,k = a, go to Step 6.

Step 6) (Successive Swap) Divide into substeps:

A) Set u = e. Remove k from 0(u). If 1(j, u) * = 2, remove j from 2(u).

B) Set v = sa. Swap su with sa. Remove i from (j, u) and (k, v), and add i

to (j, v) and (k, u) .

C) Suppose e < v or v = or 1(j, v)1* = 1. If v = A do { If IR, 	 =x 1,

add k to 006). If (1, 13)1 = x, remove k from 2(/3). If 1(f, /3)1 = x, remove j

from 0(P). If V, f =x+ 1, add j to 2(j5). } else do { If (k, v)l* = 0,

add k to 0(v). If 1(k, v)1* = 1, remove k from 2(v). If 1(j, v) * = 1,



24

remove] from 0(v). If 1(j, v) * 2, add j to 2(v). } Go to Step 1.

D) Suppose e > v or v = a. Set u = v. Take i from (j, v) and go to Step 6B.

Annotation:	 1(j, e) is the cardinality of (I, e).

e)l* is the number of entries which are less than r in the set (j, e).

(Case 3) 1) Simple Swap, 2) Next Simple Swap, 3) Wild Swap, 4) Successive Swap.

The algorithm now becomes:

Initialize by setting e = 0.

Step 1) If 2(e) is empty, i.e., 12(e)! = 0, set e = e + 1. Stop if e = r, otherwise

repeat Step 1.

Step 2) If 2(e) is not empty, i.e., 12(e)1 > 0, take its first element]. Also, take the

first element k of 0(e).

Step 3) (Simple Swap) Set i to be the first element of (j, e). If e < 	 or sik = /3,

swap sy with s,k. Suppose s ,k = e' . Remove i from (j, e) and (k, e'), and add

i to (j, e') and (k, e). If 1(i, e)1* = 1, remove] from 2(e). If 	 /3, do { If

f(j, /3)1 = x, remove] from 0(P). If 1(j,	 x + 1, add] to 2(5). If j(k,

x - I, add k to 0(A. If 1(k, Al= x, remove k from 2(A. else do { If

e')1* = 1, remove j from 0(e'). Ifj(j, e')1* = 2, add j to 2(e'). If 1(k, e')( * =

0, add k to 0(e'). If (k, e')I* = 1, remove k from 2(e'). } Remove k from

0(e) and go to Step 1.

Step 4) (Next Simple Swap) If e > s ik, repeat Step 3 on the second element i' of

e). If e> sik or so, = a, go to Step 6.



25

Step 5) (Wild Swap) Set i to be the first element of (j, e). If u is an element of (j, a), i.e., u

E (j, oe), and u , swap sy with suf. Remove i from (1, e), u from (j, a) and add i to

(f, a), u to (j, e). For any i E (v, /3), and i < r, v zn, swap s y with sh,. Remove i

from (j, e) and (v, /3) and add i to (f, /3) and (v, e). If	 x, remove] from

0(6). If 1(j, Al =x + 1, add j to 2(f). If 	 = x - 1, add v to 066). If 	 =x,

remove v from 20). Remove v from 0(e). If (j, e)1* = I in any of the two cases,

remove/ from 2(e). Go to Step 1. If no spares are available, go to Step 6.

Step 6) (Successive Swap) Divide into substeps:

A) Set u e. Remove k from 0(u). If 1(j, u)1* = 2, remove] from 2(u).

B) Set v sdc. Swap s u with s ik. Remove i from (f, u) and (k, v), and add i to (f, v)

and (k, u).

C) Suppose e < v or v = /3 or 1(j, v)1* = 1. If v = j3, do { If 1(k,	 = x - 1, add k to

0(11). If 1(/ , A1= x, remove k from 2( 13). If 1(j,	 = x, remove j from c(f3). If 1(j,

AI = x + 1, add] to 2(/3). else do { If 1(k, v)j* = 0, add k to 0(v). If (k, v)I* =

1, remove k from 2(v). If 1(j, v)j* = 1, remove] from 0(v). If 1(j, v)1* = 2, add]

to 2(v). I Go to Step 1.

D) Suppose e > v or v a. Set u = v. Take i from (j, v) and go to Step 6B.

Annotation:	 1(j, e)1 is the cardinality of (j, e).

((j, e)1* is the number of entries which are less than r in the set (f, e).

The new swapping functions for Cases 2 and 3 written in the C programming

language can be found in the appendix.



26

4.1.2 Executing the Adjusted Programs

In order for a valid comparison to be made of the number of swaps needed to decompose

the S matrix using each of the three cases, it was very important that the same set of 500

input matrices were used when running each case. Therefore, the matrix.c program was

executed only once, and the sample matrices that were produced using the input

dimensions detailed in Table 1 were used as inputs for each case. By keeping the inputs

and the rest of the clos.c program constant, it was assured that any variation in the results

was due to the adjustments made in the swapping function. Once the raw data was

produced by the closed program, the same average.c program was run to produce a

meaningful data file. The full results from running each of the three cases can be found on

pages 28 - 65.

4.2 Results of the Swap Re-Ordering

4.2.1 Discussion of Results

Regardless of which swap order is used, the results when x = y = 0 are identical. This is

because the only type of swap whose place is changed is the wild swap, and when x = y =

0, there are no extra switches in the network. Thus, no wild swaps take place. In all three

cases, if the wild swap is ignored, the simple swap comes first, followed by the next simple

swap and successive swap. However, when x and y are not 0, there are extra switches in

the network and wild swaps take place, causing the number of necessary swaps to vary

from case to case.



27

As can be seen in the following figures and tables, the number of total swaps in

Cases 2 and 3 are nearly the same in the fault tolerant cases. Thus, it can be concluded that

once the simple swap is performed at the beginning of the swapping algorithm, the number

of additional swaps needed to finish decomposing the S matrix remains fairly constant.

Neither Case 2 nor Case 3 required any successive swaps in the decomposition. After

completing the simple swaps, Case 2 relied almost entirely on alpha swaps, with a nearly

insignificant number of beta swaps. Case 3 used almost an identical number of alpha and

next simple swaps (again with a nearly insignificant number of beta swaps) after the simple

swaps to finish decomposing the S matrix. Another interesting note about Cases 2 and 3 is

that the number of each type of swap remains fairly uniform when n and r are held

constant. Varying x and y had little effect on the amount of swaps required for

decomposition of matrices with extra switches.

It can also be seen from the following graphs that the total number of swaps

needed for decomposition is greater for Case 1 than for the other two cases in almost

every data set. Case 1 decomposition relies heavily on alpha swaps, with a few beta swaps

Very few simple or next simple swaps occur in the fault tolerant data sets (when x and y

are not 0), and successive swaps are virtually never seen.



alpha 0 0 0

beta 0 0 0

simple 3.2456 3.2456 3.2456

next simple .2343 .2343 .2343

successive 0 0 0

total  3.4798 3.4798 3.4798



12

a10

co 8
6

la 4
E

2

0

n = 5, r = 6, x = 1, and y =

alpha beta simple next succ total
Types of Swaps

Case 1 El Case 2 M Case 3

Figure 5 Number of Swaps in Each Case

Table 3
Number of Swaps in Each Case for n = 5, r = 6, x 1, and y = 1

Type of Swap Case 1 Case 2 Case 3

alpha 4.9587 .3922 .2263

beta 4.6924 .044 .0263

simple 1.7018 3.2499 3.2403

next simple .0133 0 .2323

successive .0077 0 0

total 11.3739 3.6861 3.7251

29



'n



31



n=5,r=6,x=2,andy=4
7

o6

5
(I) 4

0E 2

1

alpha beta simple next succ total
Types of Swaps

• Case 'I 10 Case 2 Case 3

Figure 8 Number of Swaps in Each Case

Table 6
Number of Swaps in Each Case for n = 5, r = 6, x = 2, and y = 4

Type of Swap Case 1 Case 2 Case 3

alpha 6.6285 .4872 .2596

beta .2116 .0273 .0027

simple 0 3.2502 3.2403

next simple 0 0 .2323

successive  0 0 0

total 6.8401 3.7647 3.7348

32



33



34



35



36



n=3,r=4,x=2,andy=2

alpha beta simple next succ total
Types of Swaps

r Case 1 %, Case 2 M Case 3

Figure 13 Number of Swaps in Each Case

Table 11
Number of Swaps in Each Case for n = 3, r = 4, x = 2, and y = 2

Type of Swap Case 1 Case 2 Case 3

alpha 2.1156 .1103 .06

beta .0247 .002 0

simple 0 1.068 1.0666

next simple 0 0 .06

successive 0 0 0

total 2.1403 1.1803 1.1866

37



38



39



40



n = 6, r = 5, x = 2, and y = 4

alpha beta simple next succ total
Types of Swaps

II Case 1 	 Case 2 ffl Case 3

Figure 17 Number of Swaps in Each Case

Table 15
Number of Swaps in Each Case for n = 6, r = 5, x ------ 2, and y = 4

Type of Swap Case 1 Case 2 Case 3

alpha 10.3324 3.04 2.2341

beta 1.198 .1486 .018

simple 0 4.69 4.512

next simple 0 0 1.1518

successive 0 0 0

total 11.534 7.8786 7.9159

41



/,



43



Via IMINN C 	 ikp MINN #11 	 ‘,/,' ..... .1 	 ....„ .......11 11 I MEE Of

44



45



46



47



1.2

alpha beta simple next succ
Types of Swaps

total

u) 	 1

0.8

46 0.6

2'2 0.4

z 0.2

0

n=20. =5,x=0,andy=0

MiCase 1 "f, Case 2 E Case 3

Figure 24 Number of Swaps in Each Case

Table 22
Number of Swaps in Each Case for n = 2, r = 5, x = 0, and y 0

Type of Swap Case 1 Case 2 Case 3

alpha 0 0 0

beta 0 0 0

simple .1699
-

.1699
_

.1699

next simple .887 .887 .887

successive 0 0 0

total 1.057 1.057 1.057

48



Agl



en

Type of Swap Case 1 Case 2 Case 3

alpha 2.0073 1.7667 .887

beta 0 0 0

simple 0 .1693 .1699

next simple 0 0 .887

successive 0 0 0

total 2.0073 1.936 1.944



2.5

I. 2

1.5
4. 5

1
0

z 0.5

0

n=2 5 r=5 1 x=1 5 andy=4

alpha beta simple next succ total
Types of Swaps

RI Case 1 n Case 2 	 Case 3

Figure 27 Number of Swaps in Each Case

Table 25
Number of Swaps In Each Case For n = 2, r = 5, x = 1, and y = 4

Type of Swap Case 1 Case 2 Case 3

alpha 2.0073 1.7667 .887

beta 0 0 0

simple 0 .1693 .1699

next simple 0 0 .887

successive 0 0 0

total 2.0073 1.936 1.944

51



2.5

(I)c2. 2

0.5z
0

O'E
/-/a

1= r-1111L—,-i-jaM

alpha beta simple next succ
Types of Swaps

total

n = 2, r = 5, x = 1, and y = 1

Case 1 Kez Case 2 	 Case 3

Figure 28 Number of Swaps in Each Case

Table 26
Number of Swaps In Each Case For n = 2, r = 5, x = 1, and y =1

Type of Swap Case 1 Case 2 Case 3

alpha 1.946 1.7661 .8847

beta .0613 .0007 .0023

simple 0 .1693 .1699

next simple 0 0 .887

successive 0 0 0

total 2.0073 1.936 1.944

52



3

a 2. 5
a)

2
cr)
It 1.5

..0 	 1
E

O. 5

total
-1--112551:2

alpha beta simple next succ
Types of Swaps

0

n=4 3 r=4,x=0 andy=0

Case 1 ' Case 2 E Case 3

Figure 29 Number of Swaps in Each Case

Table 27
Number of Swaps In Each Case For n = 4, r = 4, x = 0, and y = 0

Type of Swap Case 1 Case 2 Case 3

alpha 0 0 0

beta 0 0 0

simple 2.8654 2.8654 2.8654

next simple .0796 .0796 .0796

successive 0 0 0

total 2.945 2.945 2.945

53



54



55



56



57



58



59



n = 6, r = 4, x = 2, and y = 2

alpha beta simple next succ total
Types of Swaps

MICase 1 n Case 2 M Case 3

Figure 36 Number of Swaps in Each Case

Table 34
Number of Swaps In Each Case For n = 6, r = 4, x = 2, and y = 2

Type of Swap Case 1 Case 2 Case 3

alpha 4.3945 .2209 .1253

beta .107 .0027 0

simple 0 3.088 3.08

next simple 0 0 .118

successive 0 0 0

total 4.5015 3.3116 3.3232

60



61



62



63



64



65



CHAPTER 5

CONCLUSION

Previous research by Lee and Carpinelli has shown that using the extra switches in a fault

tolerant Clos (FTC) network under no-fault conditions can significantly speed up the

network's performance. They also introduced an algorithm to be used when extending the

network to utilize these switches (Lee, Hwang, and Carpinelli 1996, 1572-3).

However, by using the C language to program the algorithm and run a network

simulation, the order of the swaps in this algorithm, given as wild swap, simple swap, next

simple swap, and successive swap, was shown to be the least efficient of three possible

cases. Re-arranging these swaps with the simple swap first, followed by the next simple

and successive swaps, regardless of the placement of the wild swap, will noticeably

decrease the number of swaps needed to decompose the matrix which assigns the switch

settings in the FTC network.

66



APPENDIX

matrix.c

/* This program will input n, r, x, and y and then generate 500 matrices with
that data set, to be used in the Clos swapping program. */

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#define NUMBER 500

FILE *matrices;

int rand range (int, int);

int
main (void)
{

int n, r, x, y, mainl, main2, maintemp, maincount;
matrices = fopen ("matrices", "a");
printf ("What is n\?\n");
scanf (" %d", &n);
fprintf (matrices, "%d ", n);
printf ("What is r\?\n");
scarf (" %d", &r);
fprintf (matrices, "%d r);
printf ("What is x\?\n");
scanf (" %d", &x);
fprintf (matrices, "%d ", x);
printf ("What is y\?\n");
scanf ("" %d", &y);
fprintf (matrices, "%d\n", y);

for (maincount = 0; maincount < NUMBER; maincount++)
{

for (mainl = 1; mainl <= r; mainl ++)
{

for (main2 = 1; main2	 n; main2++)
{

/*
* Pick a random number between 0 and n for each
* element

67



‘0



69



scanf (" %d", &n);
printf ("What is r\?\n");
scant' (" %d", &r);
printf ("What is 0\n");
scarf (" %d", &x);
printf ("What is y\?\n");
scarf (" %d", &y);

/* n is the number of columns in S (without the extra switches), while r is
the number of rows. x is the number of extra switches in the outer stages,
and y is the number of extra center switches. */

createS ();
showS 0;
zeroleroTwo ();
findZeroTwo 0;
zeroJE 0;
findJE 0;
printZero 0;
printf ("\n");
printTwo 0;
printf ("\n");
printJE ();
printf ("Zero[2][1] is %d, Zero[2][2] is %d, Zero[2][3] is %dm", Zero[2][1],

Zero [2] [2], Zero [2] [3]);
swapping 0;
fprintf (output, "%d alpha swaps made\n", alpha);
fprintf (output, "%d beta swaps made\n", beta);
fprintf (output, "%d simple swaps made\n", simp);
fprintf (output, "%d next simple swaps made\n", nextsimp);
fprintf (output, "%d successive swaps made\n", succ);
fprintf (output, "\n");
return (0);

1

void
createS (void)
{
int i, j, input;
printf ("Enter the values of the matrix, beginning with the upper right corner and

continuing across each row.\n");
for (i 0; i < r; i++)

70



71

for (j = 0; j < n; j++)
{

scanf (" %d", &input);
S[i][j] = input;

}

}

/* Now need to add the rows of alphas and columns of betas. *1

for (i = r; i < r + y; i++)
{

for (j = 0; j < n + x; j++)
S[i][j] = 'A';

}

for (j = n; j < n + x; j++)
{

for (i = 0; i < r; i++)
S[i][j] = 'B';

while (i < r + y)
{

S[i][j] = 'x;
i++;

}

}

}

void
showS (void)
{

int i, j;
printf ("This is S:\n");
for (i = 0; i < r + y; i++)

{

/* adds 'x' to intersection of A's and B's */

for (j = 0; j < n + x; j++)
printf ("%4d SWUM

printf ("VI");
}

}

void
findZeroTwo (void)
{

int e, i, j, counter, k, m;
for (e = 0; e < r; e++)



k = 0;
m = 0;
for a = 0; j < n + x; j++)

{

counter = 0;
for (i 0; i < r; i++)

{

/* index in Zero[e][k] array *1
/* index in Two [e] [m] array */
/* which column you're in */

/* keeping track of how many e's in column j */
/* which row you're in */

72

if (S[i] [j]	 e)

	

counter++;	 /* Found an e in column j! Increment! */
}

if (counter == 0)
{

Zero [e][k] j;
k++;

}

if (counter >= 2)
{

Two [e][m] j;
m++;

}

}

/* Add e to Zero [][], as no e found. */

/* Add e to Two [][]; at least two e's found. */

}

* Doing again for e = A and e B. */
e = 'A';
k = 0;
	

/* index in Zero[e][k] array *1
m = 0;
	

/* index in Two [e] [m] array */
for a 0; j < n + x; j++)
	

/* which column you're in */
{

counter = 0;	 /* keeping track of how many e's in column j
for (i = 0; i < r + y 1; i++)	 /* which row you're in */

{

if (S[i][j]	 e)
counter++;

}

if (counter == 0)
{

Zero [e] [k] = j;
k++;

}

if (counter >= 2)
{

Two [e] [m] =
m++;

/* Found an e in column j! Increment! */

/* Add e to Zero[] [], as no e found. */

/* Add e to Two[][]; at least two e's found. */



}

}

e = B';
k = 0;
m = 0;
for (j = 0; j < n + x; j++)

{

/* index in Zero [e][k] array */
/* index in Two [e][m] array *1
/* which column you're in */

73

counter = 0;	 /* keeping track of how many e's in column j */
for (i = 0; i < r + y - 1; i++)	 /* which row you're in */

{
if (S [i] [j]	 e)

counter++;	 /* Found an e in column j! Increment! */
i}

if (counter == 0)
{

Zero [e] [k] = j;
k++;

}

if (counter >= 2)
{

Two [e][m] = j;
m-H-;

}

}

}

void
findSE (void)
{

/* Add e to Zero[][], as no e found. */

/* Add e to Two[][]; at least two e's found. */

int j = 0, e = 0, i = 0, counter, counter2;
for (j = 0; j < n + j++)

{

for (e 0; e < r; e++)
{

counter = 0;
for (i = 0; i < r; i++) /* going across rows looking for a match */

{

if (S[i][j]	 e)
{

JE[j][e][counter] = i;
counter++;



}

/* Now check extra rows for A and B... */
counter = 0;
counter2 = 0;
for (i ---- 0; i < r + y; i++)

{

if (S[i] [j]	 'N)
{

JE [j] ['A'] [counter] i;
counter++;

}

if (S[i][j]	 'B')
{

JE [j]['B'][counter2] = i;
counter2++;

}

}

}

}

/* This function initializes the Zero[][] and Two [] arrays to all -1's. */

void
zeroleroTwo (void)
{

int i, j;
for (i = 0; i < 70; i++)

{

for (j = 0; j < 50; j++)
{

Zero [i] [j] = - 1;
Two [i] [j] = -1;

}

}

}

/* This function does the same for the JEll[][] array. */

void
zeroJE (void)
{

int i, j, k;

74



for (i = 0; i < 70; i++)
{

for (j = 0; j < 70; j-H-)
{

for (k = 0; k < 50; k++)
JE[i][j][k] = -1;

}

}

}

void
printZero (void)
{

int e, k;
for (e = 0; e < r; e++)

{

printf ("0(%d) is: ", e);
for (k = 0; k < 50; k++)

{

if (Zero[e][k] != -1) /* Don't want to print the -1 entries. */
printf ("%d ", Zero [e] [k]);

1

printf ("\n");
}

/* Specially print the entries for A and B: */
printf ("0(A) is: ");
for (k = 0; k < 50; k++)

{

if (Zero ['A'] [k] != -1)	 /* Don't want to print the -1 entries. */
printf ("%d ", Zero[N][k]);

}
printf ("\n");
printf ("0(B) is: ");
for (k = 0; k < 50; k++)

{

if (Zero ['B'] 	 != - 1 )	 /* Don't want to print the -1 entries. */
printf ("%d ", Zero ['B'] [k]);

}
printf ("\n");

}

75

void
printTwo (void)



{

int e, m;
for (e = 0; e < r; e++)

{
printf ("2(%d) is: ", e);
for (m = 0; m < 50; m++)

{

if (Two[e][m] != -1) /* Don't want to print the -1 entries. */
printf ("%d ", Two[e][m]);

}
printf ("\n");

}
/* Specially print the entries for A and B: */

printf ("2(A) is: ");
e = 'A';
for (m = 0; m < 50; m++)

{

if (Two[e][m] != -1) 	 /* Don't want to print the -1 entries. */
printf ("%d", Two [e] [m]);

}
printf ("\n");
printf ("2(B) is: ");
e = 'B';
for (m = 0; m < 50; m++)

{

if (Two[e][m] != -1) 	 /* Don't want to print the -1 entries. */
printf ("%d", Two [e] [m]);

}
printf ("\n");

}5

void
printJE (void)
{
int j, e, c;
for (j = 0; j < n + x; j++)

{
for (e = 0; e < r; e++)

{
printf ("(%d,%d) is: ", j, e);
for (c = 0; c < r; c++)

{

if (Eiji [e] [c] != -1 ) /* Don't print -1 entries. */

76



printf ("%d ", JE[j] [e][c]);
}

printf ("\n");
}

/* Specially print the cases where e = A or B. */
e = 'A';
printf ("(%d,A) is: ", j);
for (c = 0; c < r; c++)

{

if (JEW [e] [c] != -1)
printf ("%d ", JE[j][e][c]);

}

printf ("\n");
e = 'B';
printf ("(%d,B) is: ", j);
for (c = 0; c r; c++)

{

if (JE[j][e][c] != -1)
printf ("%d ", JE[j] [e] [c]);

}

printf ("\n");
}

}

void
removefrom (int a, int b, int c)
{

int counter, keep;
for (counter = 0; counter < 50; counter++)

{

if (JE[b] [c] [counter] == a)
{

keep = counter;
counter = 50;

}

}

for (counter = keep; counter < 49; counter++)
JE[b][c][counter] = JE[b][c][counter + 1];

JE[b][c][49] = -1;
}

void
addto (int a, int b, int c)

77



{

int counter, counter2, temp;
counter = 0;
for (counter2 0; counter2 < 50; counter2++)

{

while (JE[b][c][counter] < a && JE[b][c][counter] != -1)
counter++;

}

temp = counter;
for (counter = 49; counter > temp; counter--)

JE[b][c][counter] = JE[b][c][counter - 1];
JE[b][c][temp] = a;

}

void
addtwo (int a, int b)
{

int counter, temp;
for (counter = 0; counter < 50; counter++)

{

if (Two [b] [counter] > a)
{

temp = counter;
counter = 50;

}

/* end loop */

}

for (counter = 49; counter > temp; counter--)
Two[b][counter] = Two 	 - 1];

Two [b] [temp] = a;
1

void
addzero (int a, int b)
{

int counter, temp;
for (counter 0; counter < 50; counter++)

{

if (Zero [b] [counter] > a)
f

temp = counter;
counter = 50;
	

/* end loop */

78



for (counter = 49; counter > temp; counter--)
Zero [b] [counter] = Zero [b] [counter - 1];

Zero[b][temp] — a;
}

void
removetwo (int a, int b)
{

int counter, temp;
for (counter = 0; counter < 50; counter++)

{

if (Two [b] [counter]	 a)
{

temp = counter;
counter = 50;

}

}

for (counter = temp; counter < 50; counter++)
Two [b] [counter] = Two [b] [counter + 1];

Two[b][49] = -1;
}

void
removezero (int a, int b)
{

int counter, temp;
for (counter = 0; counter < 50; counter++)

{

if (Zero [b] [counter] == a)
{

temp = counter;
counter = 50;

}

}

for (counter = temp; counter < 50; counter++)
Zero[b][counter] = Zero[b][counter + 1];

Zero[b][49] = -1;

void
swapping (void)
{

int i, iprime, j, k, e = 0, flag = 0;

79



while (e < r)
1 

80

if (Two [e] [0] != -1)
{

/* 2(e) isn't empty */ 

j = Two[e][0];
k = Zero [e] [0];
flag = wildswap (e, j);
printf ("Back in swapping and flag is %d\n", flag);
if (flag == 0)

{

i = JE[j][e][0];	 /* i is first element of (j.e) */
if ((e < S[i][k] 1 S[i][k]	 'B') &&	 -1)

simp++;
simple (e, i , j, k);

}

else if (e > S [i] [k])

{

1* Do simple swap */

iprime = JE[j][e][1];
if (e < S [iprime] [k] I S [iprime] [k]	 'B')

{

/* Making sure iprime actually exists */
if (iprime != -1)

{

nextsimp++;
/* Do next simple swap */
simple (e, iprime, j, k);

}

}

else if (e > S [iprime] [k]
successive (e, i, j, k);

}

e = 0;
}

else
e++;

}

}

int
wildswap (int e, int j)

1 S[iprime][k] == 'A')
/* Do successive swap */



41



printJE 0;
}

}

}

* Now want to see if any element i in (j,e) matches an element in (v,B). */
for (counter 0; counter < 50; counter++)

{

if (JEW [e] [counter] < r)
{

i = JEW [e] [counter];
for (v = n; v < n + x; v++)

{

if (JE[v] [11'][0] != -1)
{

for (counter2 = 0; counter2 < 50; counter2++)
{

if (.1E[v][13 1 ][counter2]	 &8c, i != -1)
{

flag = 1;	 /* doing a wild swap */
beta++;
printf ("Doing a beta swap with i = %d, j = %d\n", i, j);
temp2 = S[i][v];
S[i][v]	 S[i][j];
S[i] [j] = temp2;
/* removing i from (j,e) */
removefrom (i, j, e);
/* removing i from (v,B) *1
removefrom (i, v, 'B');
/* Adding i to (j,B) */
addto (i, j, 'B');
/* Adding i to (v,e) */
addto (i, v, e);
if (GIE[j][e][0] < r && JEW[e][1] >= r) II JEW[e][1] == -1)

1 * 1 0,01* = 1 */
{

printf ("Removing in beta\n");
removetwo (j, e);

}

if (JE[j]['B'][x - 1] 	 -1 && JE[j][ 13][x]	 -1)
removezero (j, 'B');

if Mb] [ 1131 [x] != -1 && JE[j][93][x + == -1)

82



addtwo (j, 'B');
if (JE[v]['B'][x - 2] != -1 && JE[v] [1:31[x - 1] == -1)
addzero (v, 'B');

if (JE[v][ 1131[x - 1] != -1 && JE[v][131[x]	 -1)
removetwo (v, 'B');

removezero (v, e);
showS 0;
printZero 0;
printTwo ();
printJE ();
return (flag);

}

}

}

}

return (flag);

}

void
simple (int e, int i, int j, int k)

{

int temp, eprirne;
/***** Simple Swap *****/
/* Performing the swap */
printf("In simple swap with e = %d, eprime %d, i = %d, j = %d, and k =
%d\n",e,S[i][k],i,j,k);

eprime S [i] [k] ;
temp = S[i][j];
S[i][j] = S[i][k];
S[i][k] = temp;

/* Removing i from (j,e) */
removefrom (i, j, e);

/* Removing i from (k,e') */
removefrom (i, k, eprime);
addto (i, j, eprime);
addto (1, k, e);
if (OEM [e][0] < r && JE[j][e][1] >.= II JEW [e][ 1 ] — -1) 1* l(l,e)1* = 1

removetwo (j, e);
if (eprime == 66)

{

printf("In eprime	 B\n");

83



84

if (JE[j] [ 13][x - 1] != -1 && JE[j] ['B'] [x]	 -1)
removezero (j, 'B');

if (JE[j][13][x] != -1 && JE[j]['B'][x + 1] == -1)
addtwo (j, 'B');

if OE/[k][131[x - 2] != -1 && JE[k]['B'][x - 1] — -1)
addzero (k, 'if);

if (JE[k]['B'][x - 1] != -1 && JE[k]['B'][x]	 -1)
removetwo (k, 'if);

}
else

{

printf("In else\n");
if OEM [eprime] [0] < r && JE[j][eprime][1] >= r) 11 JE[j][eprime][1] — -1) 1*

1(j,e')1* = 1 */
removezero (j, eprime);

if ((JE[j][eprime][1] < r && JEW [eprime][2] >= r) 11 JEW [eprime][2] 	 -1) /*
6,01* = 2 */

addtwo (j, eprime);
if (JE[k][eprime][0] >= r 11 JE[k][eprime][0] — -1) /* 1(k,e')1* = 0 */

addzero (k, eprime);
if ((JE[k][eprime][0] < r && JE[k][eprime][1] >= r) 11 JE[k][eprime] [1] == -1) /*

(k,e')1 = 1 */
removetwo (k, eprime);

}

removezero (k, e);
showS 0;
printZero 0;
printTwo 0;
printJE ();
swapping 0;

}

void
successive (int e, int i, int j, 'int k)
{

int u;
if (i != -1)

{

succ++;
u = e;
removezero (k, u);	 /* Remove k from 0(u) */
printf ("In succ swap with e = %d, j %d, k = %d, i = %d, u = %d, and v = Vecl\n",

e, j, k, i, u, S[i][k]);



}

/* 10, 11)1 * = 2 */
if VE[i][u][1] < r && JE[j][u][2] 	 r)

removetwo (j, u);
successb (e, i, j, k, u);

JEW [1,1][2] == -1)

85

}

void
successb (int e, int i, int j, int k, int u)

{

int v, temp;
v S[i][k];
temp = S[i][j];
S[i][j] = S[i][k];
S[i][k] = temp;

/* Remove i from (j, u) */
removefrom (i, j, u);

/* Remove i from (k,v) *1
removefrom (1, k, v);

/* Add i to (j,v) */
addto (i, j, v);

/* Add i to (k,u) */
addto (i, k, u);
if (v	 'B' e v v	 TV (JE[j][v][0] r && JE[j][v][1] >= r) JEW[v][1] == -1)

{

if(v == 'B')

/* I(k,B)I	 x-1 */
if (TE[k][13'][x - 2] != -1 && JE[k]['B'][x - 1] == -1)

addzero (k, 'B');
if (JEW [ 1 13 1][x - 1] != -1 && JE[j][a][x] ==	 /* 1(j,B) = x

{

removetwo (k, 'B');
removezero (j, 'B');

}

if (JE[j][131x] != -1 && JE[j][131[x + 1] == -1) 1* 10,B) = x+1 */
addtwo (j, 'B');

}

else
Z.
if (JE[k][v][0] >= r 11 JE[k][v][0] == -1)

addzero (k, v);
if ((JE[k][v][0] r && JE[k][v][1] >= r) PI JE[k][v][1] = -1)



removetwo (k, v);
if (PEW [v][0] < r && JE[i] [A[ 1 ] >= H JEW[v][1] == -1)
removezero (j, v);

if ((JEW [v] [1] < r && JEW {v][2] >= 	 JELii[v] [2] ---- -1)
addtwo (j, v);

showS 0;
printZero 0;
printTwo 0;
printJE 0;
swapping ();

}

showS 0;
printZero ();
printTwo 0;
printJE 0;

if (e > v I I v	 'A')
{

/* Go to Step 1 */

u v;
/* Take i from (j,v) */

i JEW [v][0];
successb (e, i , j, k, u);

86



87

average.c

/* This program will take the list of outputs and find the average number
of each type of swap, as well as the average number of total swaps for
each data set. */

#include <stdio.h>

hit main (void)

double alpha = 0.0, beta = 0.0, simple = 0.0, next = 0.0, succ = OM, total = 0.0, counter =
0.0;
int i;
double alphav, betav, simpav, nextav, succav, totav;
int tempt, temp2, temp3, temp4, temp5, temp6;

for(i = 0; i <= 3000; i++)
{

scanf(" %d", &tempi);
scanf(" %d", &temp2);
scanf(" %d", &temp3);
scanf(" %d", &temp4);
scanf(" %d", &temp5);
if(templ != 1000)
{

counter++;
alpha = alpha + temp 1;
beta = beta + temp2;
simple = simple + temp3;
next = next + temp4;
succ = succ + temp5;
temp6 = temp 1 + temp2 + temp3 + temp4 + temp5;
total = total + temp6;
}

else
i = 3000;
}

alphav = alpha/counter;
betav = beta/counter;
simpav = simple/counter;
nextav = next/counter;
succav = succ/counter;



totav = total/counter;

printf("Av. number of alpha swaps: %.41En", alphav);
printf("Av. number of beta swaps: %.41f\n", betav);
printf("Av. number of simple swaps: %.41f n", simpav);
printf("Av. number of next simple swaps: %.41f\n", nextav);
printf("Av. number of successive swaps: %.41f\n", succav);
printf("Av. number of total swaps: %.41An", totav);

88



Swapping Function for Case 2

void swapping (void)
{

int i, iprime, j, k, e = 0, flag — 0, flag2 0;
while (e < r)

{

if (Two [e] [0] != -1 && Zero [e] [0] != -1) 	 /* 2(e), 0(e) not empty */
{

j = Two[e][0];
k = Zero [e] [0];
i = JEW [e][0];	 /* i is first element of (j.e) */

flag2 = 0;
flag = 0;

if ((e < S [i] [k] I S [i] [k]	 B') && i != -1)

simp++;
simple (e, i, j, k); /* Do simple swap */

flag2 = 1;

printf("Flag2 is %d\n", flag2);
if (flag2 == 0)

flag = wildswap (e, j);
if (e > S [i][k] && flag == 0)

{

iprime = JE[j][e][1];
if ((e < S [iprime] [k] 11 S [iprime] [k] == 'B') && iprime != -1)

{

nextsimp++;
/* Do next simple swap *1
simple (e, iprime, j, k);

}

else if (e > S [iprime] [k] S [iprime] [k] 	 'A')
successive (e, i , j, k);	 /* Do successive swap */

}

1

e = 0;
}

else
e++;

89



Swapping Function for Case 3

void swapping (void)

int i, iprime, j, k, e = 0, flag = 0, flag2 = 0;
while (e < r)

	if (Two [e] [0] != -1 && Zero [e] [0] != -1) 	 1* 2(e), 0(e) not empty */
{

j = Two[e][0];
k = Zero [e] [0];
i = JE[j][e][0];	 /* i is first element of (Le) *1

flag = 0;
flag2 = 0;

if ((e < S[i][k] S[i][k]	 'B') && i	 -1)

simp++;
simple (e, i , j, k); /* Do simple swap */
flag2 = 1;

}

if (flag2 == 0)
{

if (e > S[i][k])
{

iprime = JE [j] [e] [1];
if ((e < S [iprime] [k] S [iprime] [k] == 'B') && iprime != -1)

nextsimp++;
/* Do next simple swap */
simple (e, iprime, j, k);

}

}

flag = wildswap (e, j);
if (flag == 0)

{

iprime = TE[j][e][1];

	

if ((e > S[iprime][k] S[iprime][k] 	 'A') && iprime != -1)
successive (e, i , j, k);	 /* Do successive swap */

}

}

e = 0;
}

else

90



91

e++;
1
I

}



REFERENCES

1. J.D. Carpinelli and C.B. Wang, "Performance of a New Decomposition Algorithm for
Rearrangeable Fault-tolerant Clos Interconnection Networks under Sub-maximal
and No-fault Conditions," DIMACS paper, Princeton, NJ, July 1997.

2. C. Clos, "A Study of Non-Blocking Switching Networks," Bell Systems Technical
Journal, vol. 32, no. 2, pp. 406-424, March 1953.

3. J. Gordon and S. Srikanthan, "Novel Algorithm for Clos-Type Networks," Electronic
Letters, vol. 26, no. 21, pp. 1772-1774, October 1990.

4. H.Y. Lee, F.K. Hwang, and J.D. Carpinelli, "A New Decomposition Algorithm for
Rearrangeable Clos Interconnection Networks,"IEEE Trans. Commun., vol.
COM-44, no. 11, pp. 1572-1578, November 1996.

5. H. Nassar and J. Carpinelli, "Design and Performance of a Fault Tolerant Clos
Network," Proceedings of the 1995 Conference on Information Sciences and
Systems, Baltimore, MD, pp. 810-815, March 1995.

6. C.B. Wang, "The Simulation of A New Decomposition Algorithm for Rearrangeable
Clos Interconnection Networks," Master Project, New Jersey Institute of
Technology, Newark, NJ, May 1997.

92


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: The Matrix Decomposition Algorithm
	Chapter 3: Programming and Executing The Algorithm
	Chapter 4: Re-Ordering the Swaps
	Chapter 5: Conclusion
	Appendix
	References

	List of Tables (1 of 2)
	List of Tables (2 of 2)

	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)




