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ABSTRACT 

USING HEART RATE VARIABILITY TO MEASURE THE 

EFFECTS OF MANUAL MEDICINE ON AUTONOMIC ACTIVITY 

by 

Michael Zullow 

A pilot study was performed to test the theory that manual medicine techniques known as 

the CV4 (compression of fourth cerebral ventricle) maneuver and a sacral hold/iliac bridge 

hold combination increase parasympathetic activity. Manual medicine techniques are 

widely practiced by Doctors of Osteopathy and Chiropractors to treat physical and mental 

health problems. Those who have received manual therapy have reported to experience 

less pain, better mobility, and a greater feeling of relaxation. To help us learn about the 

effects of manual therapy, autonomic activity was measured scientifically rather than 

subjectively in this study by monitoring respiration rate and heart rate, and computing 

heart rate variability. In order to establish a baseline for comparison we measured activity 

during intervals without any contact. These were then compared to intervals where 

interventions took place. In addition to the CV4 and sacral/iliac bridge holds a sham 

technique called the shoulder squeeze was used to test for placebo effects that the patient-

physician contact may have had upon the results. Results indicated an increase in 

parasympathetic influence as a result of the CV4 maneuver and sacral holds. 
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CHAPTER 1 

INTRODUCTION 

1.1 The Skull 

It is often assumed that the skull is a rigid and fixed structure. This is because we often 

tend to think of bones as rigid bodies that do not bend. However, bones when alive do in 

fact have a small degree of elasticity and bend on a millimetric scale when stresses are 

applied to them. In addition, the skull can be mistakenly perceived as a continuous bony 

structure[1,8]. However, the skull is made up of several sections including the cranial and 

facial bones that are interconnected via stiff soft tissue joints known as sutures. (Figure 

1.1) Presently it is known that some movement can occur about the soft tissue sutures 

between plates of the skull. Recent three dimensional motion detection techniques have 

enabled changes in shape and volume of the cranium to be measured. For about eighty 

years Doctors of Osteopathy have acknowledged what they call the cranial rhythmic 

impulse. This is the circulation of the cerebrospinal fluid that they feel causes movement of 

the parietal bones about the sagittal suture of the skull (Figure l.2) at regular cycles[1,9]. 

Recent studies indicate that external pressures can affect compliance of the skull sutures 

and can even affect fluid flow of cerebrospinal fluid. 
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1.2 Craniosacral Manipulation 

Craniosacral manipulation techniques were discovered in the early twentieth century by a 

Doctor of Osteopathy named William Garner Sutherland. During craniosacral 

manipulation the cranium, sacrum and other regions are manipulated to affect the cranial 

rhythmic impulse. The cranial rhythmic impulse refers to the oscillations involved in 

movement of the cerebrospinal fluid and the bones and membranes associated with it. 

Such movement causes an alternation between outward flexion and inward extension of 

the plates in the skull (Figure 1.3) along with its related membranes and bodily regions. 
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It was found by Sutherland that manipulation about certain sutures or joints within the 

skull can reduce the movements of the cranial rhythmic impulse to a state called the still 

point during which movements temporarily stop[1,2,3]. Following the still point a person 

may undergo physiological changes including changes in oscillation rate of cranial 

rhythmic impulses, heart rate, respiration rate, dermal temperatures and autonomic 

activity[1,2,3,4]. 

In the following experiments described by this paper three manual techniques were 

studied over the course of each trial; the sacral/iliac hold, the CV4 hold and the "shoulder 

squeeze", a sham intervention that acted as an object for comparison and a placebo. At 

the beginning and end of the sacral/iliac hold, the CV4 technique and shoulder squeeze 

was a more mild form of each intervention: the sacral hold for the sacral/iliac hold, the 

cranial vault hold for the CV4 technique, and a light touch on the shoulders for the 
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shoulder squeeze. These acted as buffer zones between the rest periods and intervention 

periods to reduce the rate of change and allow the subject's autonomic nervous system to 

stabilize during transitions. 

The cranial vault hold, a mildly intrusive technique, was performed for one minute 

before and after the CV4 hold which lasted for three or four minutes depending on the 

protocol. This involved taking outstretched hands and placing them on either side of the 

skull (Figure l.4) allowing the cranial rhythmic impulse to be monitored and to create a 

buffer zone between rest and the more intrusive CV4 hold. 

The CV4 hold involved cupping the back of one hand in the other while laying the 

thumbs flat against the palm. With the hands in this position the experimenter placed her 

hands underneath the back of a subject's skull while he/she lay flat on an examination table. 
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This was done so that the bottom of both thumbs made contact (Figure 1.5) about the 

occipitomastoid suture, a skull bone joint in the back of the head[3]. (Figure 1.3,1.2) The 

CV4 hold had been chosen for this study because it is often considered to be central to 

craniosacral manipulation, has been associated with vagal regulation, and is used widely by 

osteopathic physicians. The CV4 maneuver is one that evokes a still point by restricting 

flexion but allowing extension.(Figure 1.3) Once the still point is met, restriction upon 

cranial movements are removed and the cycles involved in craniosacral movement are 

monitored. 
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Sutherland believed that compression of the human skull could affect the circulation of 

cerebrospinal fluid within the fourth ventricle of the brain. Within the fourth ventricle, he 

stated, were vital vasomotor control centers that acted as regulators of heart rate. These 

control centers would then accelerate the heart via the sympathetic nervous system and 

slow the heart via the parasympathetic nervous system or vagus nerve. Sutherland claimed 

that compression of the fourth ventricle for a period of minutes or even seconds would 

lead to deepened breathing or sighing, changes in heartrate, more balanced cranial 

movements and a better state of equilibrium for all systems of the body. This could 

include outcomes such as fever reduction and headache relief[1,2,3,4]. As the name 

"craniosacral manipulation" implies it involves more than just regions about the head; 

cerebrospinal fluid also flows through membranes surrounding the spinal cord and 

compression of the sacrum can affect cerebrospinal fluid flow to evoke a still point[3]. 

Sacral mobilization was performed in two forms, a form of lighter touch known as 

the sacral hold, followed by a more restrictive maneuver that included both the sacral and 

iliac bridge holds. The sacral hold was performed by placing a hand with fingers together 

and palm upward, under the sacrum of the subjects as they lay flat on their backs. The 

sacral/iliac bridge hold combination was performed by applying light pressure upon the 

front side of the iliac or hip bone using fingers while simultaneously administering the 

sacral hold. This provided a greater amount of restriction and leverage since the cranial 

rhythmic impulses will move the sacrum about the iliac. 



1.3 Nervous System Physiology 

1.3.1 Neurons 

The basic unit of the nervous system is the nerve cell or neuron. The nerve cells generate 

electrical signals to carry information from one end of the cell to the other and then release 

chemical signals to communicate with adjacent nerve cells. Most neurons contain four 

regions: the cell body, the dendrites, the axon and the axon terminals. (Figure 1.6) 

Figure 1.6 	Illustration of a nerve cell and its regions: cell body, axon, dendrites, and 
axon terminals. (From Vander, A.J., Sherman, J.H. and Luciano, D.S., 
Human Physiology, New York, Applicon & Lange 1993.) 

The cell body contains genetic information and the machinery for protein synthesis. The 

dendrites branch out from the cell body to collect signals from other neurons. The axon, 

also known as the nerve fiber, extends away from the nerve cell and generates propagating 
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electrical signals to branches that release chemical signals to surrounding cells. The axons 

of some neurons are covered by a myelin sheath that helps to insulate and accelerate 

electrical signals. Neurons can be classified as afferent, efferent or interneurons. Afferent 

neurons transmit signals from organs and regions of the body to the central nervous 

system; efferent neurons carry information from the central nervous system to muscle or 

gland cells; the interneurons connect the afferent and efferent neurons to one another 

within the central nervous system[5]. 

1.3.2 The Central Nervous System 

The brain and spinal cord make up the central nervous system. The spinal cord lies within 

the vertebral column while the brain is contained within the skull. Between the soft neural 

tissue and bone containing it are three membranous layers or menanges: the dura mater 

next to the bone, the arachnoid in the middle and pia matter on the outside next to the 

neural tissue. (Figure l.7) A space between the arachnoid space and pia called the 

subarachnoid space contains the cerebrospinal fluid. The spinal cord is a long, thin 

cylinder of soft tissue that carries information to and from other organs or regions within 

the body via the peripheral nerves. The brain is made up of six subdivisions: cerebrum, 

diencephalon, midbrain, pons, medulla oblongata and cerebellum. 
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carry signals from the central nervous system to organs of the body. The efferent division 

of the peripheral nervous system is subdivided into two portions, the somatic nervous 

system and the autonomic nervous system.. The somatic division innervates skeletal 

muscle while the autonomic system innervates smooth and cardiac muscle, glands and 

neurons within the gastrointesinal tract. The heart, glands and smooth muscle are 

innervated by two subdivisions of the autonomic nervous system known as the 

parasympathetic and sympathetic components:  The parasympathetic division prepares the 

activities of organs within the body for less stressful situations while the sympathetic 

nervous system prepares the body for more stressful situations. Sympathetic activity 

increases under conditions of stress and its effects have been referred to as the fight or 

flight response. This describes a situation where an animal would be forced to fight or run 

when attacked. Parasympathetic activity evokes a reduction in the bodily activity and is 

usually prevalent during maintenance functions like digestion. The parasympathetic and 

sympathetic nervous systems work together to regulate the activities of organs throughout 

the body. (Figure 1.10) The two are usually activated so one increases as the other 

decreases. 
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increases activity it will cause the activities to increase much faster than the sympathetic 

nervous system alone. Autonomic functions are usually not controlled consciously, and the 

autonomic nervous system has also been referred to as the involuntary nervous system[5]. 

However, this is not a safe assumption since it has been shown that it can be controlled 

through learned behaviors such as meditation and possibly manual medicine techniques as 

shown here. 

1.3.4 Regulation of Heart Rate 

The activity levels of the heart are regulated by hormonal and chemical signals, 

temperature, and most importantly, autonomic nervous system activity. A balance 

between the simultaneous activities of the parasympathetic and sympathetic nervous 

systems plays an important role in regulating heart rate. The sympathetic nervous system 

works to increase heart rate while the parasympathetic nervous system works to decrease 

activity. Parasympathetic nerve fibers known as the vagus nerves and sympathetic nerve 

fibers end on the sino-atrial node. (Figure 1.11) The sino-atrial node, otherwise known as 

the "pacemaker" of the heart, is a region of the heart that sends signals to other regions of 

the heart to regulate heart-rate. Without any stimulation from nerves or hormones the 

sino-atrial node will cause the heart to beat at about one-hundred beats per minute[5,7]. 
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Depending upon the combined activities of the large number of parasympathetic and 

sympathetic nerve fibers that innervate the sino-atrial node, the heart rate will increase or 

decrease about this rate. 

1.4 Heart Rate Variability 

Heart rate variability is becoming an increasingly important tool for the medical field. It is 

especially useful in the field of cardiology and has been said to be the best means of 

predicting risk of mortality following myocardial infarction. When we exercise our heart 

rate will usually increase as we exert ourselves. This is done to supply more oxygen-

containing blood to areas that must meet the higher energy demands during exercise. At 

rest the heart seems to beat at a steady rate[10]. But with sensitive instruments it can be 
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seen that the heart rate can vary, even during sleep. Heart rate is regulated by a number of 

physiological mechanisms including the autonomic nervous system. The parasympathetic 

nervous system slows the heart rate through the vagus nerve and nerve fibers connected to 

the sino-atrial node. At the same time the sympathetic nervous system sends signals to the 

sino-atrial node speeding up the heart. 

As a result of the roles that the sympathetic and parasympathetic nervous systems 

play in regulating heart-rate, we were able to indirectly monitor their activities using an 

electrocardiogram. Information was obtained from the electrocardiogram by measuring 

the time between ventricular beats using the synch pulse from a Q4000 Monitor (Quinton 

Instrument Co., Seattle, WA). The synch pulse accompanies an electrocardiogram (Figure 

l.12) signal giving a pulse wave each time an R wave within the ECG signal is present. 

(Figure 1.12) The time intervals between these pulse waves were measured and then 

placed consecutively in a time series to generate an inter-beat interval (1BI) signal. (Figure 

1.13) This signal was then interpolated using a backward step function to produce an 

interpolated inter-beat interval signal (IIBI). (Figure 1.13) 
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1.4.1 Power Spectrum Analysis 

After the IIB1 signal was produced, the Fourier Transform was acquired to represent the 

frequency components within the interpolated inter-beat interval signal. The Fourier 

Transform is a signal processing technique that is used to represent a function in the time 

domain as a function within the frequency domain. It does this by representing the 

components of a non-periodic signal as a sum of complex exponentials or sinusoids. The 

equation for the Fourier Transform is as follows: 
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X(ω) represents the time function, x(t) of a signal within the frequency domain and el' 

represents the complex exponentials or sinusoids that make up the signal[20]. Once the 

frequency domain signal is obtained using the Fourier transform we can analyze the 

frequency content of the signal. This can be achieved by plotting the Fourier spectrum 

(Figure l.14) which indicates the relative proportion of different frequencies within a 

signal. These frequency components are measured by comparing magnitudes, a 

measurement proportional to amplitude and frequency of occurrence. 
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With the frequency spectrum we can measure the contribution of sympathetic or 

parasympathetic activity to heart rate variability. The frequency spectrum often contains 

peaks within three different frequency ranges that are associated with different systems 

which control heart rate. 

The low frequency band in the range of 0.05Hz to 0.15Hz is strongly correlated 

with baroreceptor-mediated control, high frequency range of 0.I5Hz to 0.4 Hz is 

associated with respiratory sinus arrhythmia and the very low frequency range, less than 

0.05 Hz, represents the renin-angiotensin system and vasomotor and/or temperature 

control[ 11 (Figure 1.J4) Experiments using parasympathetic blockades have yielded 

frequency spectra with peaks in the high frequency band eliminated and with peaks in the 

low frequency range reduced. Tests using sympathetic blockades have yielded reduction 

in the low frequency ranges. These studies indicate that frequencies in the range of 

0.05Hz to 0.15 Hz represent a mixture of sympathetic and parasympathetic activity and 

those in the range of 0.15 Hz to 0.4 Hz represent parasympathetic activity[ I 1,I2]. These 

frequency ranges are valid under the condition that a subject breathes at the rate of at least 

I0 breaths per minute. This is important because of the interaction between the 

circulatory and respiratory system rates. The high frequency range can be attributed to 

respiratory sinus arrhythmia, which can be described as variation in heart rate that 

accompanies respiratory activity. If respiration rate is less than 0.15 Hz, then the 

respiratory sinus arrhythmia would be affected by both sympathetic and parasympathetic 

activity[7,13,14]. 
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Measurements of high and low frequency activities are measured by taking the area 

under the frequency spectrum between the high and low frequency limits mentioned 

above. This area is in units of power thus giving this form of measurement the name 

power spectrum analysis. A larger amount of power for the high and/or low frequency 

ranges is representative of a greater amount of autonomic activity taking place while a 

smaller amount of power is representative of less activity. 

1.4.2 Time+Frequency Analysis 

Currently, the use of frequency spectrum analysis for the measurement of autonomic 

activity has become commonplace. However, taking such measurements can put the 

experimenter at a disadvantage because a frequency spectrum is obtained that allows only 

one measurement over the course of a time interval, two minutes or longer. The spectral 

analysis of a signal indicates which frequencies are present over a period of time but not 

when those frequencies occur during the course of the time interval. For example, the 

frequency spectrum on the bottom of figure 1.15 indicates which frequencies occurred 

over the time period of 1.4 seconds, but it does not show precisely when each of the 

frequency components were present as does a time-frequency plot. In the time-frequency 

picture at the top of figure 1.15 we can see that during the first 0.6 seconds we have 

frequencies in the range of 175Hz to 260Hz and from 0.6 to 1.4 seconds we have 

frequencies in the range of 260 Hz to 335Hz. Thus it is known when certain frequency 

ranges were present and for what durations. 
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When performing time-frequency analysis the IIBI signal that is used for power 

spectrum analysis is used. When analyzing the IIBI for time-frequency analysis the signal 

is analyzed in portions known as window periods along the length of the signal 

These window periods are portions of the signal centered at time t with their ends at t-A 

and 	so that their durations are equivalent to a fixed time-length 2A. (Figure 1.16) 

[13,14]. Window periods are taken at fixed intervals of time (1.25 seconds in this study) 

so that a result is obtained every l.25 seconds corresponding to the information within 

each window period. 
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When using the Fourier transform to separate the contents of the window periods into its 

frequency components the short-time Fourier transform is used. The equation for the 

short-time Fourier transform is as follows: 

st(ω) represents the short-time Fourier transform [13,14] as a function of frequency and 

represents a set of complex exponential or sinusoidal functions. The function xw(T) 

represents xw(T) multiplied by the window function, h(T) to give a weighted signal with T 

centered about time t. [13,14]. The equation for xw(T) is as follows: 
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When the short-time Fourier transform is used frequency resolution is sacrificed 

for the sake of time resolution. This is because the window periods used are narrow about 

the point of interest giving a wide spectrum as described by the uncertainty principle. 

[13,14,20]. This difficulty was overcome in this paper by using a Matlab program called 

sympar written by Sanjay Fernando which used the Wigner distribution. This produced 

results with superior time-frequency resolution. The Wigner distribution was introduced 

by Wigner in 1932 and later used for signal analysis by Ville in 1948. [13,14]. The 

DW(t,f) represents the Wigner distribution, and e-j2Πft represents a set of sinusoidal or 

complex exponential functions. The original function of time x(t) is written as 

is the envelope or amplitude and Φ(t) signifies the phase. In the above 

equation the signal is shifted to the right by — and then multiplied by the signal when 

- n 
j2  d t represents the Fourier transform) to give us a result for the Wigner 

Distribution. [13,15]. After the Wigner Distribution is performed for each period along the 
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IBI signal the result is partitioned into its high and low frequency components to give us a 

high and low frequency point at each time t. This generates two time series of points 

representing the sum of all signals over time within the designated high and low frequency 

ranges. 

1.5 Scope of Thesis 

The purpose of this study was to test the theory that the sacral/iliac hold and CV4 hold 

evoke an increase in parasympathetic activity. It was important to determine whether or 

not changes in parasympathetic activity actually occurred. To accomplish this task both 

time-frequency analysis and power spectrum analysis were used. Not only was it 

important to determine whether or not changes were taking place, but it was crucial to 

measure when the activities occurred and the dynamics involved. The use of time-

frequency analysis allowed us to collect data within the time domain, whereas employing 

the power spectrum analysis revealed the frequency distribution. One objective of these 

experiments was to establish a means for quantifying the results of the time-frequency 

analysis. This would provide us with concrete measurable information rather than less 

definitive data based on pattern recognition open to human interpretation. Once we 

derived numbers, we then used paired t-tests in making comparisons and drawing 

conclusions from the data. 

A means of determining what effects may have taken place as a result of the 

manual medicine techniques was established by taking measurements for intervals when no 

treatments or mild treatments occurred and comparing them to those intervals when 
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manual techniques were administered. Three distinctly different forms of manual 

treatment were employed in this study. Two techniques were genuine manual medicine 

techniques, (the sacral/iliac and CV4 holds). The third, (the shoulder squeeze,) devised as 

a bogus form of treatment, played an important role in establishing whether or not 

significant changes or effects were truly taking place as a result of the genuine manual 

medicine techniques. It allowed us to test for placebo effects that could have resulted 

from the researcher's physical contact with the subjects. 



CHAPTER 2 

METHODS 

2.1 Data Acquisition Equipment 

Respiration rate and heart rate were monitored to gather the necessary information for 

heart rate variability computations. Respiration rate was monitored by using a Resp I 

(UFI, Morrow Bay CA) impedance pneumatograph while heart rate was monitored using 

a Q4000 Monitor(Quinton Instrument Co., Seattle, WA) ECG machine. ECG adhesive 

silver/silver chloride surface electrodes (Medtronic, Haverhill MA), transferred 

electropotential information from the surface of the skin to the respiration and ECG 

monitors as analog signals. (top of figure 2.1) 

As the lungs expand they fill with air changing the electrical resistance of tissue 

between electrodes. This registers on the Resp I device as a voltage change which 

increases during inhalation and decreases during exhalation. The ECG signal is produced 

as electrical impulses from within the heart create contractions or a heartbeat. The 

different portions of an ECG signal represent particular stages or contractions over the 

course of a heartbeat. The first deflection or P wave represents an atrial depolarization. 

The second, the QRS wave, represents a ventricular contraction. The third and final 

portion of the signal, the T wave represents a ventricular repolarization[5]. (Figure 1.12) 

Four electrodes, one on the left clavicle, one on the right clavicle, one below the 

left underarm and one below the right underarm were used for the ECG monitor while 

three electrodes, one on the right clavicle and two below the left underarm (one ground) 

were used for the respiration impedance pneumograph. (Bottom of figure 2.1) 

27 
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In order to insure proper conductance between the skin and electrodes the skin was 

scrubbed thoroughly with an alcohol pad and then wiped with a paper towel to remove the 
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outer layer of skin. The analog signals from the respiration monitor and ECG machine 

were fed through a DAS-1601 analog-to-digital converter (Keithley MetrByte/Asyst, 

Taunton, MA) into an IBM compatible 286 computer with I Megabyte of RAM and a 

230 Mb of hard drive space via Streamer v3.25 software(Keithley MetraByte/Asyst, 

Natick MA). Before beginning the experiment a program called Primplot(J.F. Andrews) 

was used to graphically insure that the equipment was properly acquiring data. If not, all 

connections and gain settings were checked and then adjusted accordingly. For 

illustrations of the data acquisition setup refer to the top of figure 2.I. For the detailed 

data acquisition procedures used refer to appendix A. 

2.2 Protocol 

The experiment was designed to test if the osteopathic manual medicine techniques called 

the CV4 and sacral/iliac holds evoked a parasympathetic response in healthy subjects. The 

protocol was set up so that rest intervals, during which no manual medicine interventions 

occurred, preceded and followed interventions. In this way measurements taken during 

the manual medicine techniques could be compared to those taken during non-

intervention periods to help test for effects. In addition, carryover and order effects 

between interventions would be reduced and opportunities to measure delayed responses 

would be created. Refer to tables 2.I and 2.2 for examples of the protocols used. 

Three interventions were studied over the course of the experiment; the sacral/iliac 

hold, the CV4 hold and the "shoulder squeeze", a sham intervention that acted as an 



object for comparison and a placebo. At the beginning and end of each intervention 

period, for one minute, a more mild form of the manual medicine techniques and the 

shoulder squeeze was administered: the cranial vault hold for the CV4 technique, the 

sacral hold for the sacral/iliac hold and a light touch on the shoulders for the shoulder 

squeeze. 

Table 2.1 	Example of the 30 minute protocol. The order in which the 
interventions took place was chosen randomly before testing began. 

Time Interval (Min.) Duration(Min.)  Event Intervals Used for Statistics 

0-2 2 Rest 0-2 

2-3 1 Sacral Hold not used 

3-6 3 Sacral/Iliac Hold 3-5 

6-7 1 Sacral Hold not used 

7-9 2 Rest 7-9 

9-10 1 Light Touch not used 

10-13 3 Shoulder Squeeze 10-12 

13-14 1 Light Touch not used 

14-16 2 Rest 14-16 

16-17 1 Cranial Vault Hold not used 

17-20 3 CV4 17-19 

20-21 1 Cranial Vault Hold not used 

21-30 9 Rest 21-23 

30 
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Table 2.2 	Example of the 48 minute protocol. The order in which the 
interventions took place was chosen randomly before testing began. 

Time Interval (Min.) Duration (Min.) Event 	 

Rest 

Intervals Used for Statistics 

1-5, 6-10 0-10 10 

10-11 1 Cranial Vault Hold not used 

11-15 4 CV4 11-15 

15-16 1 Cranial Vault Hold not used 

16-21 5 Rest 17-21 

21-22 1 Light Touch not used 

22-26 4 Shoulder Squeeze 22-26 

26-27 1 Light Touch not used 

27-32 5 Rest 28-32 

32-33 1 Sacral Hold not used 

33-37 4 Sacral/Iliac Hold 33-37 

37-38 1 Sacral Hold not used 

38-48 10 Rest 38-42, 43-47 

These acted as a buffer zones between the rest periods and intervention periods to reduce 

the rate of change and allow the subject's autonomic nervous system to stabilize during 

transitions. This was important since sudden changes would have been more likely to 

evoke an autonomic response that could interfere with the activities of interest. 

The order in which the interventions occurred was randomized to reduce any order 

effects that may have occurred. The protocol used was initially 30 minutes but was later 

changed to 48 minutes with extended rest periods at the beginning and end to allow the 

heart to stabilize and to help look for delayed effects at the beginning and end of the 
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experiments, respectively. During the 30 minute protocol the rest periods were two 

minutes long (except for the last which was 9 minutes) and the intervention intervals were 

5 minutes long. Each 5 minute intervention began and ended with the more mild forms of 

intervention for periods of one minute. (Table 2.I) During the 48 minute protocol all rest 

periods were five minutes long and interventions were 6 minutes long . Each of these 6 

minute interventions began and ended with their more mild forms for periods of one 

minute. Each 48 minute experiment began and ended with two rest periods 5 minutes in 

length. (Table 2.2) 

Before the experiment began the subjects were given the necessary instructions 

and positioned appropriately to help them avoid or adjust to any mental or physical 

stresses that they could experience during the test. This included pacing their breathing 

before the test began, coaching them to lift their hips when signaled to allow placement of 

the experimenter's hand below the sacrum during the sacral hold, and answering any 

questions that they may have had concerning the test to reduce anticipation. During the 

experiments a subject would lay flat on an examination table with a pillow underneath their 

head. Lying on a pillow helped keep the subject comfortable and mimicked the position of 

their skull during the CV4 procedure to reduce any changes in positioning as the CV4 

hold began that could shift their equilibrium. Breathing was paced at ten breaths per 

minute with the aid of a moving light mounted within the subject's field of view to insure 

that the assigned high (0.15Hz to 0.4Hz) and low frequency (.05Hz to .15Hz) ranges 

would correspond to parasympathetic and a mixture of sympathetic and parasympathetic 

activity respectively. (as described in section 1.4.1) 
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As cranial manipulation began the experimenter performed the cranial vault hold 

by cradling the subject's skull with open hands. (Figure 1.3) After a minute of applying the 

cranial vault hold, the CV4 (compression of the fourth ventricle) maneuver was applied. 

This involved taking the back of one hand and placing it in the palm of the other with 

thumbs together and pointing in the direction of the subject's feet. Then the experimenter 

placed her hands, in the manner described, under the base of the subject's skull as the 

subject lay flat on his/her back. This put the lower portion of the experimenter's thumbs 

about the occipitomastoid suture, (Figure 1.I,I.4) a cranial bone joint, so that the flexion 

or outward widening of the skull was restricted and extension, an inward contraction and 

narrowing of the skull, was encouraged. This eventually resulted in a pause of the cranial 

rhythmic impulse known as the still point[1,2,3]. After a number of seconds or minutes 

the cranial rhythmic impulses resumed and were accompanied by a possible increase in 

autonomic activity. This was continued until the allotted time period (three minutes for 

the thirty minute protocol or four minutes for the forty-eight minute protocol) had expired 

whether or not a still point was detected. After the period had ended, the cranial vault 

hold was applied for one minute before the next rest interval began. 

The sacral hold was performed by first placing a hand, fingers together and palm 

upward, under the sacrum of the subject as the subject lay flat on his/her back for the first 

minute of the intervention. The sacrum has been reported to be an alternative site for 

monitoring and regulating cranial rhythmic impulses since activities there are concurrent 

with those in the cranium. Then the investigator performed the iliac bridge hold by lightly 

pressing the front of the subject's iliac bone, often on the left side, with her fingers as she 
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performed the sacral mobilization. This was done for an allotted time period (three 

minutes for the thirty minute protocol and four minutes for the forty-eight minute 

protocol) after which the experimenter's fingers were removed from the subject's iliac so 

that only sacral mobilization was being performed for the last minute. 

During the shoulder squeeze the investigator first placed her fingertips lightly on 

the subject's shoulders for one minute. For the next three or four minutes depending on 

the protocol used, the experimenter placed her hands on the shoulders of the subject and 

gently squeezed them while being careful not to apply pressure to the subject's neck with 

her fingers to avoid a baroreceptor response by the carotid artery. After the period had 

ended the experimenter placed only her finger tips on the subject's shoulder for one 

minute as before. 

2.3 Data Processing 

2.3.1 Time Frequency Analysis vs. Power Spectrum Analysis 

Frequency spectrum and time-frequency analysis were used to measure autonomic activity 

over the course of the experiment. Both are based on heartrate variability measurements 

but frequency spectrum analysis gave us a single measurement for an extended time period 

while time frequency analysis gave us a series of instantaneous measurements over the 

course of a time interval. Although spectral analysis was the more conventional method of 

the two, time frequency analysis could better detect rapid changes in autonomic activity. 

This was important because it was not clear when and in what manner changes took place 

if they did occur. 
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2.3.2 Steps for Power Spectrum and Time Frequency Analysis 

Data were collected from an analog Q4000 Monitor (Quinton Instrument Co., Seattle, 

WA) ECG machine and a Resp I (UFI, Morrow Bay CA) impedance pneumograph 

respiration monitor and fed into a DAS 160I analog-to-digital converter (Keithley 

MetrByte/Asyst, Taunton,MA) into an IBM compatible 286 computer with 1 Megabyte of 

RAM and a 230 Mb of hard drive space via Streamer v3.25 software (Keithley 

MetraByte/Asyst, Natick MA). The files were then transferred to 486 and Pentium based 

personal computers where the analysis and processing of data were performed. 

After the files were transferred they were converted from binary to ASCII format 

using a software named Unpack (Keithley MetraByte/Asyst, Natick MA). These ASCII 

files were then scanned into the software called S-plus (Statistical Sciences, Inc). In 5-

plus a program called pslws (refer to appendix B for the program) was used to calculate 

the time intervals between consecutive R-wave detections (or beats) using the synch pulse, 

a signal provided by the Q4000 monitor which consists of a short pulse signal each time an 

R wave is present. (Figure 2.2) These time intervals were then placed in a time series and 

the resulting inter-beat interval signal was interpolated using a backward step function. 

The Fourier transform was then performed upon the interpolated IBI signal to calculate 

the frequency components present. The results of the Fourier transform were then placed 

in a frequency distribution to illustrate the frequency components and their relative 

contributions. 
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The low frequencies in the range of 0.05Hz to 0.15Hz represented a mixture of 

sympathetic and parasympathetic activity while the high frequencies in the range of 

0.I5Hz to 0.4Hz represented parasympathetic activity. When measuring autonomic 

activity using spectral analysis the area under the frequency spectrum curve between the 

low and high frequency was taken to give us a measurement of autonomic activity. This 

area was in units of power giving this form of spectral analysis the name power spectrum 

analysis 

To perform time-frequency analysis a continuous IIBI signal was fed into a 

software named Matlab(The Mathworks, Inc. Natick, MA). In Matlab (The Mathworks, 

Inc. Natick, MA) a program written by Sanjay Fernando[13] called sympar (see appendix 

B for program) was used to generate the time-frequency data . Sympar utilized the 

Wigner distribution upon the IIBI signal to generate results representing the sum of high 
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and low frequency activities over time. (as described in section 1.4.2) Time frequency 

analysis gave us measurements of magnitude representing the cumulative activity of all 

signals within the high and low frequency ranges over time so that we had two results, a 

high frequency and a low frequency time-frequency curve. These high and low frequency 

results were put into normalized form using a program called symparq I (see appendix B 

for program) to help us get a clearer picture of the activities taking place. These 

normalized values were calculated according to the equations below for each time t. 

Normalized values are relevant forms of information because they represent the fraction of 

parasympathetic and sympathetic activity that often dictates the amount of activity that 

will take place within an innervated organ[5]. The time frequency data was calculated 

and then fed into graphing and statistical softwares called Excel(Microsoft, Seattle, WA) 

and IMP (SAS Institute, Cary, NC). A program called symparpc was used to create files 

that could be exported from Matlab.(see appendix B for program) For a detailed 

description and instructions on the data processing performed, the difficulties encountered 

and their solutions, refer to appendix A. Once the smoothed normalized high frequency 

graphs were generated, reviewed, and analyzed qualitatively the next question was how to 
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quantify the patterns observed in the time-frequency plots. Since a convention for 

quantifying time-frequency analysis results had not been established, a number of different 

experimental measurements were taken. These included the average and maximum values 

of the time intervals chosen for comparison, the slopes of linear regression lines drawn 

through the intervals of interest, the curvatures of polynomial regression lines drawn 

through the intervals of interest, and detrended values of the intervals of interest. (These 

methods will be described in further detail in section 2.3.4) 

2.3.3 Choosing Intervals of Interest 

When extracting information from the analysis results, measurements were taken from the 

same time intervals for both frequency spectrum analysis and time-frequency analysis so 

that we could best compare the two methods. When comparing measurements between 

two different time periods within subjects it was most appropriate to extract information 

from equal periods of time. In order to get equal time periods, intervals were cut from the 

original rest and intervention periods. The last two minutes of the sacral/iliac hold, the 

CV4 maneuver, and the shoulder squeeze, the entire two minute rest periods, and the first 

two minute portion of the final nine minute rest period were used to take measurements 

for the 30 minute protocol. (table 2.l) The last four minutes of each intermediate 5 

minute rest interval, the entire four minutes of the sacral/iliac hold, the CV4 maneuver, 

and the shoulder squeeze, and the last and first 4 minute portions of the first and last pairs 

of 5 minute rest periods respectively were used for the 48 minute protocol. (table 2.2) 

The last 4 minutes of the intermediate rest periods were chosen so that carryover effects 
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from previous intervals would be reduced so that each intervention could be analyzed 

independently. 

2.3.4 Proposed Methods for Evaluation and Measurement 

2.3.4.1 Averages: Averages were calculated for each interval by summing the 

magnitudes of all the high frequency normalized values and dividing by the total number of 

points. Averages were chosen because the normalized values often appeared relatively 

large during interventions, and this(Figure 2.3) could have resulted in higher average 

values relative to the surrounding rest intervals. Averages were also chosen because they 

seemed to be analogous to the power data that was derived from frequency spectra. 

Comparing averages for intervals seemed to be one of the most conclusive measurements 

to take. However, averages did not account for order, carryover, or trending effects that 

may have been caused by a period before an interval of interest. 

2.3.4.2 Maximums: Maximum values were also chosen since it seemed likely that an 

interval that had greater values relative to others would also have a greater maximum 

value. In addition, it was felt that a peak value could represent a turning point for 

significant physiological activity. On the other hand, an outlier that did not properly 

represent the interval as a whole could have been chosen. 
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2.3.4.3 Linear Regression: Linear regression lines were drawn through the intervals of 

interest. (See the bottom of figure 2.3) This was done to check for trends that may have 

occurred as a result of activities during the experiment. A linear regression line can be 

represented by the formula: 

where BO represents the Y intercept of the regression line and B, represents the slopw

 161 The slope is calculated according  to the formula 

with x representing time, I representing average time, y representing the magnitude of a 

time frequency value and m representing the average magnitude of time frequency 

values[I6]. The disadvantage to using linear regression lines is that they do not represent 

some of the more detailed trends present. On the other hand, a linear regression line still 

serves its purpose by dampening oscillations or noise. 

2.3.4.4 Exponential Smoothing and Polynomial Regression: Exponential smoothing 

was used to give a more detailed trending picture than that of straight line 

regression.(Figure 2.3) Exponential smoothing reduces oscillations in a time series to help 
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visualize trends in the data. This is done by projecting values for each point along a time 

series by weighting the current value and the error from the previous forecast to obtain a 

new forecast value. The formula for exponential smoothing is: 

Ft represents is the new forecast value while At-1 represents the current actual figure and 

represents the prior forecast. Thus (Ft-1  — At-1) represents the most recent forecast 

error. The damping factor is represented by a and affects the rate at which forecasted 

values react to changes in trends[17]. A small damping factor will cause the process to 

adjust rapidly to trends while a large damping factor causes forecasts to react more slowly 

thus having a more prominent smoothing effect[I7]. In the experiments described a factor 

of 0.9 was used for the time-frequency data. 

Polynomial regression lines, generated through individual intervals, seemed to be a 

good way to represent the upside-down "U" effect that took place during interventions. 

On the top of figure 2.3 this method is represented on the exponentially smoothed 

normalized high frequency data graph. (discussed in further detail in section 3.2). The 

benefit behind fitting a polynomial to intervals was the fact that the second derivative of a 

polynomial would be a measure of concavity. A positive second derivative would 

represent a curve that is concave up while a negative derivative would represent a curve 

that was concave down. The magnitude of this second derivative is a measure of the rate 

at which the slopes of tangents about the curve change[18]. Therefore a larger magnitude 
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would represent a line with greater curvature. Second order polynomials were fit to the 

different intervals since they would indicate the concavity overall for the entire interval of 

interest. In addition the second derivative of a second order polynomial would always be 

equal to twice the coefficient of the second order term (as seen in equations 2.6 and 2.7 ) 

allowing one to simply take the coefficient of the second order term as a measurement of 

concavity. 

2.3.4.5 Average Minus Regression Line: To help filter out carryover and trending 

effects, the average value of a linear regression line fit through the entire curve was 

calculated during an interval of interest and then subtracted from the average normalized 

high frequency value of that interval. On the bottom of figure 2.3 there is an illustration 

representing a linear regression line for the full experimental length. Reduction of trending 

effects was a useful tool for analyzing data. For example, if a value was taken at the end 

of a time frequency curve on an upward trend it would be higher in magnitude than one 

taken in the beginning. If this upward trend was caused by an intervention that took place 

in the beginning or was due to a change in the subject's equilibrium it would interfere with 

the comparison of intervals that we were interested in. 
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2.3.4.6 Statistics: The measurements above were automatically calculated and placed into 

matrices as ASCII files by modified versions of sympar called sympar302 and sympar482 

(as seen in appendix B) so that they could be imported into statistical software. 

The next step was to draw conclusions from the measurements taken using 

statistics. Initially it made sense to compare time-frequency and frequency spectrum data 

using a standard t-test. But the samples that are compared must be taken from 

populations that are independent of one another. For the experiments done this was not 

the case since measurements were taken from the same time series. Therefore a paired 

two tailed t-test was used to compare sample means. Such a test is based on the idea that 

samples are taken from the same group or groups that are nearly identical[I6]. When 

performing a paired t-test the hypothesis that two means are identical is tested. This is 

done by calculating the probability that the range of differences between two means would 

not include zero in a sample population[I6]. (Figure 2.4) Normally an arbitrary value of 

ninety to ninety-nine percent is chosen as a threshold for statistical significance. The end 

result of a t-test will give a value of one minus this probability, otherwise known as the 

degree of confidence. If the value given exceeds the limit (.10 in our case) then it can be 

said that difference between means is not statistically significant. If it is less, then the 

difference between means is statistically significant. The paired t-test described works 

under the assumption that only one pair is being compared[I6]. But in our set of 

circumstances there were multiple pairwise comparisons. 



This required us to use the Bonferroni method and divide our confidence limit of 

.I0 by the number of pairwise differences and then compare it to our confidence result to 

test for statistical significance[16]. When making pairwise comparisons between the 

interventions and average of all rest intervals the confidence limit is divided by three since 

we are making three pairwise comparisons: CV4 technique vs. rest, sacral/iliac hold vs. 

rest and shoulder squeeze vs. rest. When making comparisons between the interventions 

and adjacent rest intervals the confidence limit is divided by six since we have six 

comparisons being made: CV4 technique vs. rest interval before, CV4 technique vs. rest 
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interval after, sacral/iliac hold vs. rest interval before, sacral/iliac hold vs. rest interval 

after, shoulder squeeze vs. rest interval before and shoulder squeeze vs. rest interval after. 



CHAPTER 3 

RESULTS 

3.1 Observations 

Observations of the power spectrum data indicated that there were no significant 

differences between intervals and no consistent pattern associated with the manual 

medicine techniques. (Refer to appendix C, table one, for the power spectrum data.) 

The normalized time-frequency graphs were more helpful than the raw high 

frequency graphs but trends were masked by oscillations in the normalized time-frequency 

data. To reduce the oscillations and to help detect trends, exponential smoothing was 

used. The exponentially smoothed results indicated an increase in normalized high 

frequency values around the time that manual medicine interventions began, followed by 

values relatively high in magnitude, and then a decrease in normalized high frequency 

values around the time the interventions ended giving the appearance of an upside down 

"U" during interventions. (as seen in figure 2.3) (Refer to appendix C for the remainder of 

the graphs.) Such a pattern illustrates that the parasympathetic effects may be short term 

and most pronounced as the manual treatments are applied. 

Normalized high frequency time-frequency values reached relatively large values 

during still points that occurred as the CV4 and sacral/iliac holds were administered. 

Refer back to figure 2.3 for exponentially smoothed normalized high frequency time-

freqeuncy data for one trial run of the experiment. Note that peak values occur during still 

points as indicated by the graph. (See appendix C for the remaining graphs which 

illustrate this point.) 

47 
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3.2 Statistical Results 

Intervals were compared so that the rest intervals before and after interventions were 

compared to the interventions themselves. In addition, each intervention was compared to 

the average value for all rest intervals. When comparing values between intervals, the 

averages for all subjects were compared. Then the differences between means were 

calculated to test the probability that they were not equal to zero. Such a test would 

indicate whether or not there was a significant difference between means. To do this a 

specialized version of a two-tailed paired t-test introduced by Bonferroni was used. 

[I6,211 This test works by dividing the critical a value by the number of pairwise 

comparisons being made before comparing the calculated a value to it. 

When using a paired t-test to compare the high and low frequency power spectrum 

values of the rest intervals before and after interventions to the interventions themselves, 

no significant increases or decreases were present. This was also the case when the 

average power spectrum value of all rest intervals for all subjects was compared to the 

averages of the interventions for all subjects. See Table 3.l for power spectrum statistical 

results. 

When calculating time-frequency results for the intervals of interest the data was as 

seen in Table 3.2. Each intervention was compared the adjacent rest intervals and the 

average of all rest intervals. When paired t-tests were performed upon time frequency 

analysis results there were no statistically significant increases from rest intervals to 

interventions or significant decreases from interventions to rest intervals. However, the 

probability levels for significant differences were greatest for the average and detrended 
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values for the CV4 and sacral/iliac holds so that the shoulder squeeze had less significant 

differences from the adjacent rest intervals compared to the CV4 and sacral/iliac holds 

(Table 3.2). 

Table 3.1 	Mean differences (+/- standard deviation) between the normalized and 
standard power values for the intervals of interest. In the column next to 
the mean differences are the a (alpha) values for each pairwise 

comparison. None of the differences above are statistically significant. 

STATISTICAL RESULTS 
POWER SPECTRUM DATA 
INTERVENTIONS VS. REST 
INTERVALS BEFORE AND 
AFTER 

NHFPower alpha HFPower alpha LFPower alpha 
CV4 - Rest Before 0.024+/-0.153 0.5960 -0.874+/-46.090 0.9488 5.075+/-57.086 0.7638 
CV4 - Rest After 0.033+/-0.118 0.3581 5.111+/-42.807 0.6871 7.963+/-29.775 0.3747 
Sacral/Iliac - Rest Before 0.048+/-0.164 0.3325 -1.222+/-35.580 0.9074 -7.595+/-17.092 0.1520 
Sacral/Iliac - Rest After 0.042+/-0.207 0.4940 -23.443+/-52.626 0.1511 -24.405+/-33.180 0.0271 
Shoulder Sqz - Rest Before 0.041+/-0.196 0.4841 -9.283+/-41.020 0.4496 -7.102+/-37.300 0.5231 
Shoulder Sqz - Rest After 0.051+/-0.126 0.1855 -9.856+/-32.730 0.3193 -17.216+/-26.461 0.0456 

NHFPower alpha HFPower alpha LFPower alpha 
CV4 - All Rest 0.021+/-0. 103 0.4915 9.768+/-45.704 0.4746 1.593+/-39.020 0.8901 
Sacral/Iliac - All Rest O. 069+/-0. 120 0.0722 0.670+1-17.123 0.8947 -20.251+/-57.529 0.2482 
Shoulder Sqz - All Rest 0.028+/-0.174 0.5894 3.283+/-30.050 0.7123 -8.714+1-18.727 0.1353 

The mean average normalized high frequency value of the sacral/iliac hold was 

significantly greater (98.7% probability) than the mean average normalized high frequency 

value of all rest intervals. Bonferroni's paired t-test results also indicated that the average 

detrended normalized high frequency value for the sacral/iliac hold and CV4 techniques 

were significantly greater (91.6% and 99.7% probabilities respectively) than the average 

detrended value of all rest intervals. 

When performing paired t-tests on the results for all other forms of time-frequency 

measurements including maximum values, "U" effect, and linear regression line slope, no 

significant effects were detected. (See table 3.2) 



Table 3.2 Mean differences (+/- standard deviation) between the average, 
detrended, maximum, slope, and "U" effect values for the normalized 
high frequency time-frequency data. In the column next to the mean 
differences are the a (alpha) values for each pairwise comparison. 
Note that the statistically significant mean differences are in bold print 
and italicized. 
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STATISTICAL RESULTS 

TIME-FREQUENCY DATA 

INTERVENTIONS VS. REST 

INTERVALS BEFORE AND 

AFTER 	   1 
Avg NHF alpha 

Detrended NHF alpha Maximum alpha 
CV4 - Rest Before 	 0.033+1-0.065 10.0886 0.036+1-0.065 0.0732 0.034+/-0.062 0.0749 
CV4 - Rest After 	 10.0294-0.055 0.0830 

0,026+1-0.052 

0.0925 
0.0926 0.017+1-0.055  

-0.002+1-0.015 	10.9318 
0.2775  

Sacral/Iliac - Rest Before 	0.032+/-0.069 0.1183 
-10.050+1-0.090 

0,035+/-0.068 
Sacral/Iliac - Rest After 0.066010.0464-0.084  0.0618 0.026+1-0.097 0.9772 
Shoulder Sqz - Rest Before 0.015+1-0.100 0.5952 0,017+/-0.099 	10.5372 10.0184-0.078 0.4288 
Shoulder Sqz - Rest After 0.012+1-0.063 0.5200 0.009+/-0.070 

r 1 
0.6357 0.003+/-0.069 0.8847 

I I 1 
Slope alpha U effect alpha 	 

CV4 - Rest Before 0.004+/-0.052 10.8110 -0.058+1-0.133 0.1384 1 
CV4 - Rest After 	 1-0.0014-0.054 0.9629_1-0.023+/-0.058 0.1798 1 
Sacral/Iliac - Rest Before 10.023+1-0.049 	10.1214 -0.025+/-0.102 0.39751 
Sacral/Iliac - Rest After 10.0084-0.053 10.6061 -0.011+/-0.117 0.7334 
Shoulder Sqz - Rest Before 10.006+/-0.044 10.64511-0.0124-0.115 0.7014 
Shoulder Sqz - Rest After 0.0084-0.061 10.6269 1-0.0254-0.096 0.3583 

INTERVENTIONS VS. AVG. 

OF ALL REST INTERVALS  

Avg NHF alpha Detrended NHF alpha Maximum 
 
alpha  

CV4 - All Rest 10.038+/-0.068 0.0694 0.032+1-0.046 10.0280 0.019+/-0.073 10.3605 

Sacral/Iliac -All Rest 0.054+1-0.056 0.0044 0.038+1-0.032 10.0010 0.011+/-0.085 	10.6388 

Shoulder Sqz - All Rest 0.025+/-0.071 10.2338 0.021 +/-0.068 10.2792 0.0154-0.068 0.4353 

Slope alpha 1U effect 'alpha 

CV4 - All Rest -0.0184-0.55 0.2727 0.032+1-0.046 0.0280 I 

Sacral/Iliac - All Rest 1-0.0204-0.057 0.2266 -0.007+/-0.054 0.6357 

Shoulder Sqz - All Rest -0.011+/-0.034 0.2719 0.022+/-0.077 10.3333 



CHAPTER 4 

DISCUSSION 

4.1 Interpreting The Time-Frequency Data 

Normalized high frequency values were used to account for the balancing effects between 

parasympathetic and sympathetic activities. These normalized values were calculated by 

dividing the high frequency values by the sum of the high and low frequency values at each 

point in time. After exponentially smoothing the normalized high frequency time-frequency 

data it became apparent that an increase in activity occurred around the time that the CV4 

and sacral/iliac holds began followed by elevated values and then a decrease in activity as 

the manual medicine techniques ended. (As seen in figure 2.3 and Appendix C) 

4.2 Quantifying Patterns 

Time-frequency results were quantified to give a more concrete assessment of the 

phenomena that were taking place. To quantify results, methods of measurement had to be 

developed, because an established process for quantifying time-frequency results had not 

been established. First, the intervals of time that were used to take measurements had to 

be determined. To make comparisons it was important to compare activities during 

manual medicine interventions to that of the adjacent baseline rest intervals and the 

average of all rest intervals. 

Comparing intervals of equal time-length was an important consideration. This 

was because a summation measurement in the form of area was used for power spectrum 

analysis. As time progresses, the sum of autonomic activities accumulated to give a larger 
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area under the frequency spectrum curve. This can present a problem if power was 

compared for two different intervals that cover different lengths of time. As a means of 

compensating it may be tempting to multiply the power accumulated over the course of 

one time interval by the proportion of both time intervals. However this is not acceptable 

because it would be assumed that the activities of the shorter interval would remain 

constant if prolonged. 

When developing some of the techniques for time-frequency measurement an 

objective was to quantify the observed patterns. The proposed measurements taken were 

averages, maximums, detrended values, slopes and curvatures. 

Averages seemed to be a sensible way to quantify an increase or decrease in 

activities between intervals of time. If there was an increase in activity from one interval 

to another, it seemed likely that the average normalized high frequency value would also 

increase. Taking averages seemed sensible for another reason. When looking at the time 

frequency graphs it was hard to say that one interval of time was different from any other. 

This was because the normalized high frequency time-frequency graphs oscillated so that 

the different intervals had many values in common. However, some intervals appeared to 

oscillate about higher values, so logically, it seemed that they would have greater average 

values. Averages also appeared to be analogous to the conventional power value for the 

frequency spectrum analysis. Power is the result of a summation of many measurements 

taken over time and so is an average. 
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Taking the maximum value of a time interval also seemed to have uses. A 

maximum value would give the peak value that occurs during a particular intervention and 

this would be of primary importance for evaluating the physiological effects that a 

technique had. 

Most often the time-frequency data would undergo an upward or downward trend 

over the course of an experiment. This could have been due an increase in baseline 

activities or the effects from interventions. If there are baseline changes or carryover 

effects, then comparisons between intervals are more difficult to make. For example, 

suppose one had a time-frequency graph on an upward trend with the shoulder squeeze as 

the first intervention and the sacral/iliac hold as the third. When comparing the sacral/iliac 

hold to the shoulder squeeze a greater activity measurement for the sacral/iliac hold may 

be present because of trending effects. This called for a measurement that reduced a 

gradual upward or downward trend in the data. A value for every point in time equal to 

each normalized high frequency measurement minus the value of a linear regression line 

drawn through the entire data set was calculated. Then the average detrended value for 

each interval of interest was used to make comparisons. 

Slopes of linear regression lines drawn through the intervals of interest were also 

calculated to help detect the presence or absence of upward or downward trends. 

Polynomial regression lines were also used for the intervals of interest to help quantify 

non-linear trends and the upside-down "U" effect that was apparent for the normalized 

high frequency-time frequency data during manual medicine techniques. This upside- 
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down "U" effect represented the increase that took place as manual medicine techniques 

began followed by relatively high values and then a decrease around the time that manual 

medicine techniques ended. 

4.3 Paired t-test 

Quantifying some of the observed patterns would allow the use of statistics to perform 

effect tests. A two-tailed paired t-test was used to measure the effects of the manual 

medicine techniques. When using a paired t-test the means of two sample sets, taken from 

the same or related populations/individuals, are compared to measure significant 

differences between them. When performing a paired t-test a critical a-value is calculated. 

This critical a value is representative of an assigned probability value that the two 

populations being compared are distinct. For a paired t-test that makes only one pairwise 

comparison an a-value of .10 indicates a probability of 90% that there is a significant 

difference between populations. This is usually the cutoff point for a difference that is 

considered statistically significant. When more than one pairwise comparison is made, 

then Bonferroni's version of the paired t-test is most appropriate. This method is 

performed by dividing the critical a value for statistical significance by the number of 

pairwise comparisons. In the experiments done here there were six (as described in 

section 2.3.6.6) when comparing interventions to their adjacent rest intervals. This gives 

a critical a value of 0.0166 for a 90% probability of difference which is the critical value in 

this paper for statistical significance. When comparing interventions to the average values 

for all rest intervals there were three pairwise comparisons (as described in section 
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2.3.6.6) making the critical α. value 0.033 for a 90% probability of difference. As long as 

the calculated value does not exceed the critical value then we know that the probability of 

a difference is at least a great as the probability assigned to the critical value. In the 

experiments done some subjects were tested more than once and on different days. 

Therefore the statistical values collected were grouped according to subjects before 

performing a t-test. 

4.4 Repeated Measures ANOVA 

Another excellent means of comparison was repeated measures analysis of variance 

(ANOVA) on multiple regression models. Although it was ultimately not used for the 

statistical analysis done here, it can serve as a valuable statistical tool when more data is 

collected and for future experiments. Repeated measures multiple regression accounts for 

the fact that several measurements are taken from each subject and then compared to one 

another. In addition, it assumes that multiple sample sets of data are taken for each 

subject over the course of many trial runs of an experiment[16,19]. This was not done for 

most subjects at the time the preliminary study had ended so repeated measured ANOVA 

was not used. Multiple regression, accompanied by analysis of variance tests, allows the 

effects of more than one independent variable (like intervention, subject, order, etc.) upon 

the dependent variable (like an autonomic activity measurement) to be measured. If a 

standard multiple regression ANOVA test was used to compare the effects for the 

intervals of interest it would tell us that any interval may have been different from any 

other. For example, it would only indicate whether or not the effects of the CV4 
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technique compared to the sacral/iliac hold or the shoulder squeeze or the average rest 

interval would be significantly different. By utilizing contrast tests the desired 

comparisons between intervals can be made. For example, contrast tests could be used to 

measure the effects of the CV4 and sacral/iliac holds and how they measure up against the 

rest intervals only. 

Analysis of variance effect tests measure the effects that independent variables 

have on the variation of dependent variables. It does this by calculating an F value which 

is represented by the degree of variation caused by the known independent variables 

divided by the degree of variation that cannot be accounted for, also known as the noise or 

error term. If the F value exceeds the known critical value dictated by the degree of 

confidence desired, then the effects of the independent variables and their differences 

would be considered significant[161. 

Among the models that could have been generated, had the guidelines for repeated 

measures been met (as described above), are univariate models with normalized high 

frequency time-frequency values as the single dependent variable and intervention, subject, 

etc. as the independent variables. A univariate model can be arranged so that individual 

average values are estimated for the CV, sacral, shoulder and rest periods. By measuring 

values during rest periods we could then compare them to periods during which 

treatments were administered. It could then be seen if effects were taking place as a result 

of manual techniques. Such a model would initially tell us that the average rest period and 

any type of intervention may be different from any other period. To compare particular 

intervals to one another we would then do a contrast test. A benefit to including all time 
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periods in our model as opposed to a select few with each comparison is the large number 

of degrees of freedom that we are working with when making comparisons. A larger 

number of degrees of freedom is beneficial because it could increase the power and 

significance of results. 

The tests described above are not limited to a single dependent variable. In the 

work performed measurements from rest intervals before and after interventions along 

with the interventions themselves were of great importance. This was because the average 

normalized high frequency time-frequency values of interventions would often be greater 

than that of the surrounding rest intervals so that an upside-down "V" shaped plot would 

be formed (Figure 4.1) when lines were drawn between the average normalized values. 

This upside down "V" apparently characterized an activity that took place as a result of 

interventions so it was useful to use all three points when comparing interventions. By 

using three points for each autonomic activity measurement the sample size and degrees of 

freedom could be increased giving the calculation more power and significance. 

4.5 Weeding Out Outlier Samples and Invalid Data 

Much of the data collected had a substantial amount of variation. This led to the question 

as to whether or not some data should be eliminated before it was used to draw 

conclusions. Variation was probably caused by the fact that there was a difference in 

baseline activities between individuals and within individuals on different days. Baseline 

activities are the responses present without any interventions. Depending on the individual 
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they may have different levels of autonomic activity during rest. This can be dictated by 

physiological or psychological factors. In addition to a variety of baseline activities there 

may have been a difference in reactivities. Reactivity is a measure of how a person's 

autonomic nervous system may react to things like olfactory, tactile, audible, pressure and 

chemical stimuli and to what extreme they would react. 
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Although it seemed wise to remove some data from the sample sets it was 

ultimately decided that all data should be included. This was because a large portion of 

the data collected was affected by unavoidable outside influences and a criterion for 

acceptable data had not been established. In addition, the repeated measured ANOVA, if 

used in the future, would help account for the variation due to noise. 



CHAPTER S 

CONCLUSIONS 

5.1 Effects of the CV4 Maneuver and Sacral/llacHold 

Exponentially smoothed normalized high frequency time-frequency results indicated that 

parasympathetic activity increased around the time that the CV4 and sacral/iliac hold 

began followed by an elevated parasympathetic response and then a decrease in activity 

around the time the manual medicine techniques ended. These measurements also reached 

relatively large values for the still points compared to the other values during the CV4 and 

sacral/iliac holds. Bonferroni's paired t-test results showed that the average 

parasympathetic activity levels for the sacral/iliac hold and CV4 technique were 

significantly greater than the average parasympathetic activities for all rest intervals. The 

above results suggest that increased parasympathetic effects are present during the CV4 

technique and sacral/iliac hold and are most pronounced as the manual techniques are 

performed. 

5.2 Suggestions for Future Work 

Average values for time frequency analysis results produced data with statistical 

significance most often while detrended values produced results with statistical 

significance only once. All other forms of experimental measurement including maximum 

values, slopes of linear regression lines, and the coefficients of second order polynomial 

regression lines ("U" effect measurements) did not show any statistically significant results 

in favor of a parasympathetic increase or decrease. This may prompt the idea to further 

investigate the use of these measurements since they generate results that bring the 
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investigator to a similar set of conclusions produced by the power spectral data. On the 

other hand, future investigators may want to continue to use average and detrended values 

since they may be capable of recognizing effects that power spectrum analysis or the other 

proposed time-frequency measurements do not detect. 

As stated earlier, this study was preliminary. Since results indicated an increase in 

parasympathetic activity as a result of the manual techniques it would be worthwhile to 

continue pursuing the effects of manual therapy on autonomic activity using heart-rate 

variability. Future work should also use more subjects to increase the power of the 

statistical results. This may also reduce the amount of variation experienced. When 

testing subjects each individual should be tested more than once. This will enable the use 

of repeated measures ANOVA which is a more powerful statistical method that 

Bonferroni's paired t-test. Also, the development of new programs or software that will 

allow fewer steps should be pursued in order to consuming less time. 

Since this study suggests an increase in parasympathetic activity as a result of 

manual medicine techniques, it would also be worthwhile to pursue its benefits for 

headache and anxiety patients since they experience an imbalance of autonomic activities. 

Testing the effects of other alternative medicine techniques that have been reported to 

evoke relaxation or other health benefits would also be of use. This way it can be verified 

whether or not there is a true physiological response as a result of alternative treatments. 



APPENDIX A 

DATA ANALYSIS AND PROCESSING 

AA Obstacles Encountered and Their Solutions 

During the course of data processing difficulties occurred that created the need for 

investigation and modifications in programs and data processing techniques. When 

converting from binary to ASCII format there were instances when unpack would indicate 

that a bad point occurred in an interval of interest near a particular data point. As a result 

unpack would process only up to the bad data point and not beyond so that the entire 

interval of interest would not be converted to ASCII format. In addition signals would be 

out of synch and not assigned to their proper channels even if attempts were made to 

unpack about the bad points. As a result pslws, one of the S-plus program used, would 

not be able to process the data properly since it expects to see each signal in particular 

channels; the respiration signal in channel one, the synch pulse or the R-wave detection 

signal produced by the ECG machine in channel two, and the ECG signal in channel three. 

To remedy the problem intervals would be unpacked from the originally desired first data 

point to the bad data point location indicated minus two. Then from the bad point 

location minus one to the original number marking the end of the interval minus one. 

Following this interval one is subtracted from the first and last numbers of the next 

intervals that were originally intended to beunpacked. For each additional bad point the 

same procedure as above is performed and an additional point is subtracted from the first 

and last points of the remaining intervals. The first number in the interval must be a 

respiration data point, which is then followed by a synch pulse data point and then an ECG 

data point. (Figure Al) This pattern repeats itself and forms a continuous row of points. 
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The cause of the problem as indicated by a shift in channel assignments is most likely the 

result of a synch pulse point being skipped when converting from binary to ASCII format 

three data points behind the number indicated by unpack. This is what causes all points to 

be shifted back one point from their expected locations. (Figure A.1) 

After a bad point the Unpack program looks for the synch pulse at the next point but 
unknowingly finds the ECG signal. As a result the channels are read improperly (Ch.1 = 
Synch pulse, Ch.2 = ECG, Ch. 3 = Respiration) and are scanned out of synch. 

Figure A.1 	The manner in which Unpack (Keithley MetraRyte/Asyst, Natick, MA) 
scans a binary file when converting it to ASCII format. When a bad 
point is encountered the binary file is scanned so that the channels 
within the ASCII file are out of synch. 

In order to perform time-frequency analysis a continuous inter-beat interval signal 

was needed. Unpack could only process files up to about four minutes in length. In 

addition, the personal computers used could only process files up to five minutes in length 
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within S-plus. This forced the binary data files to be broken into four minute pieces and 

then processed within S-plus to get the inter-beat interval data. Once the inter-beat 

interval data was obtained the four minute segments were rejoined. However, each time a 

binary data file was cut an inter-beat interval was lost at the location where the cut was 

made. This was because the inter-beat interval forming program only detected and saved 

the time intervals between beats. As a result, the portions of the time that came before and 

after the first and last beats of each time interval were not kept. (FigureA.2) 

This made it impossible to preserve all of the inter-beat interval data before pasting the 

segmented inter-beat intervals back together. To remedy this problem the first beat of each 

interval was included in the previous interval as the last and the last beat of each interval 
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was included in the next interval as the first beat. This prevented the loss of inter-beat 

intervals and preserved the full file length of the signal so activities would be charted at the 

proper points in time. Refer to the following pages in Appendix A for a more detailed 

account and instructions on how to perform such functions within S-plus (Statistical 

Sciences, Inc.). 

A.2 Steps for Data Analysis 

A.2.1 Data Collection 

°Refer to figure 2.1 for the equipment setup. 

Within DOS create a file for Streamer das16 (Keithley MetraByte/Asyst, Natick, MA) by 

typing: 

mkfile Xmmddyy.dat #### 

X represents the first initial of the subjects last name. mmddyy represents the month, day 

and year of the experiment,. #### represents the file length in kilobytes. The file length in 

kilobytes is calculated using the following equation: [sampling rate(in my case 

200)*number of seconds(in my case 48*60)*number of channels(in my case 3)*2]/1000. 

°Make sure the signals from each piece of medical equipment are feeding into the 

computer into their appropriate channels by using primplot. Respiration should be in 

channel one, Synch pulse in channel 2 and EKG in channel 3. 

Use Primplot (J.F. Andrews) by typing the following within DOS: 
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Press F5 to analyze and switch between channels. When you are sure that everything is 

connected properly you are ready to use streamer das16 (Keithley MetraByte/Asyst, 

Natick, MA). Hit control c to get out of Primplot (J.F. Andrews) and to the c prompt 

within DOS. 

oUse streamer das16 (Keithley MetraByte/Asyst, Natick, MA) by typing: 

streamer das16 

Fill in the filename, the range of channels you wish to monitor(in my case 1 to 3), and the 

sampling rate [equals ((200 * number of channels)/(1000)) Khz] (in my case it is 0.6) 

When you are ready to start press F 1. When finished press F 10 to quit. 

eAfter the data file has been collected copy the file to your S (network) drive directory by 

typing the following within DOS: 

copy filename.dat, network drive name:\your directory\your subdirectory 

A.2.2 Converting Data File to ASCII Format 

*Make sure that unpack.exe and the binary data file are in the same directory. 

eIN DOS Type: 

unpack filename.dat,filename.ascfirst number in interval of interest-last number in 

interval of interest 

0The spacing must be identical to the above example (in other words there are no spaces 

between characters). It is also important that you follow my examples for spacing in other 

programs for other types of commands. 
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®A desired point in an interval is calculated as the number of seconds*sampling rate(200 in 

my case)*number of channels(3 in my case). The beginning of intervals must be divisible 

by the number of channels to insure that channels are in the desired order. 

If you encounter a bad point you must break the interval into two pieces and then join 

them later in S-plus (Statistical Sciences Inc.). When a bad point is encountered unpack 

from the originally desired first point of the interval to the bad point minus 2. Then unpack 

from bad point minusl to the originally desired last point in the interval minusl. Subtract 

1 from the beginning and ends of all following intervals to insure that channels will remain 

in synch. With each additional bad point you encounter you subtract an additional point 

from the beginning and ends of each of the following intervals. 

A.2.3 Working with Data in S-Plus 

°Attach to the directory containing your data and programs by typing: 

attach("drive containing data:\your directory name\your subdirectory name") 

To convert ASCII files into S-plus (Statistical Sciences Inc.) files type: 

filename_matrix(scan("drive containing data:\your directory\your 

subdirectoryVilename.asc",sep=",",skip=1),ncol=3,byrow=T) 

The ncol command tells S-plus (Statistical Sciences Inc.) how many columns to create to 

accommodate the respective number of channels you have in your data file. 

°You may view your data within S-plus (Statistical Sciences Inc.) and Matlab (The 

Mathworks, Inc., Natick, MA) to insure that the channels are in their proper place. When 
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using the programs for power analysis and time frequency in S-plus (Statistical Sciences 

Inc.) and Matlab (The Mathworks, Inc., Natick, MA) respectively the channels must be as 

follows: ch. I =respiration,ch.2=synch pulse, ch.3=EKG. 

Data can be viewed by typing the following commands: 

win.graph() 	(creates a graphics window) 

plot(yourfilename[beginning of interval:end of interval, channel number] 

Interval limits can be calculated by multiplying sampling rate(200 in my case) by time in 

seconds 

If the signals are not in in their appropriate channels you can transfer them to the correct 

channels using cbind. Example: Let's say we are supposed to have ch. 1=respiration, 

ch.2=synch pulse,ch.3=EKG but we have ch. l=synch pulse, ch.2=EKG, and 

ch.3=respiration. We can assign the signals to their appropriate channels by typing: 

new ‘filename=cbind(filenanie[,3]filename[,3]filename[,2]) 

'To calculate spectral data, including interbeat intervals within S-Plus (Statistical Sciences 

Inc.) type: 

,filename.mpslws2(filename) 

If an error occurs your channels may not be in the appropriate places. Use cbind as 

described above. 

'View the power spectra by typing: 

win.graph() 

stdgraf(filename.m,title="your desired title",sr=20) 
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This will illustrate interbeat intervals, interpolated interbeat intervals, and respiration. Hit 

return and you will then get the power spectrum graph. If you have outliers on your 

interbeat interval graph that appear to be errors you can use the programs called dqrs or 

mqrs to correct the ibi. If outliers are large in magnitude use mqrs, if they are small in 

magnitude use dqrs. 

oTo correct outliers that are small in magnitude type within S-plus (Statistical Sciences 

Inc.): 

filename.d_dqrs(filename before pslws2[,2],filename.m$pk) 

Click on the outliers w/ the left mouse button. When you are done press the right mouse 

button. Next, click on each misdetection line with the left mouse button several times. 

When you are finished hit the right mouse button. 

°To correct outliers that are large in magnitude type: 

fiename.q_mqrs(filename before pslws2[,2]filename.m$pk,pout(diff(psiws 

filename .m$pk))) 

Click to the left and right of each peak not detected with the left mouse button. Then 

click on the right mouse button when finished. You must click on all undetected peaks on 

each screen because you will not be able to go back and will be forced to rerun the 

program. If misdetected or undetected beat errors are not corrected, repeat the above 

again. 

®To prepare data for time frequency analysis you will need a continuous interbeat interval 

sequence. This is done by taking the interbeat interval sequences from consecutive 

intervals and pasting them together. But it is important to preserve interbeat intervals that 
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may be lost each time the total ibi sequence is cut. This is done by overlapping the ends of 

each interval so that an interval includes the last beat of the previous interval and the first 

beat of the next. 

.You can do this by viewing the synch pulse at the ends of an interval. 

Do this by typing: 

plot(filename[0:300,2]) (for the detection of the first beat) 

plot(filename[end of interval - 300:end of interval,2] (for the detection of the last beat) 

If you do not see a beat you should use a number higher than 300 because this represents 

only the first and last l.5 seconds in each interval (if your sampling rate is 200 as it is in 

my case). Keep a record of where the beats are located so that you can recut your data 

file appropriately. In order to recut you can unpack new intervals from your data file or 

add beats from the intervals before and after to the interval you wish to modify. 

When cutting you must make a cut before or after a beat but not within the timeframe that 

the beat detection occurs. This is because it may lead to the misdetection of a beat 

resulting in the loss of an interbeat interval. 

oPaste intervals or portions of intervals together using rbind as follows: 

filename.r_rbind(filename of interval before[pt. just before last beat:last pt. in interval,],filename of 

intervalfilename of interval after[first pt. in interval:pt. just beyond first beat in interval,]) 

Now perform pslws2 on all modified intervals. This will calculate the ibi sequences for 

your intervals. 
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Join ibi's using c (the concatenate funtion) to get a continuous ibi sequence that can be 

used for time frequency analysis in Matlab (The Mathworks, Inc., Natick, MA). 

Connect intervals by typing the following: 

filename.ibi_c(filename of interval] .m$ibifilename of interval 2.m$ibifilename of interval3.m$i 

The .m files are the files created by pslws2. 

°Write the continuous ibi file in S-plus (Statistical Sciences Inc.) form to an ASCII file 

that can be used in Matlab (The Mathworks, Inc., Natick, MA) by typing: 

write(filename.ibi,file="filenamen.ibi",ncol-1) 

This file will probably be stored in an unexpected place so do a search on the filename to 

help yourself find it. 

A.2.4 Time Frequency Analysis in Matlab 

In Matlab (The Mathworks, Inc., Natick, MA) you need to attach to the directory 

containing your ibi file in ASCII format and the time frequency programs for Matlab (The 

Mathworks, Inc., Natick, MA). 

To attach to your directory within Matlab (The Mathworks, Inc., Natick, MA) type: 

cd drive name: 

cd directory name: 

cd subdirectory 110177e: 

If you have a problem entering your directory you may need to type cd .. a few times and 

then enter the above commands. 

Load your file by typing within Matlab (The Mathworks, Inc., Natick, MA): 
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load filenamen.ibi 

*To insure that the file has been loaded and it is the appropriate length type: 

whos 

Divide the file size by 20 to get the length of the file in seconds. 

•You can perform time frequency analysis by typing within Matlab (The Mathworks, Inc., 

Natick, MA): 

sympar(filenamen: desired title) (exclude the .ibi extension) 

Order of your filter is five,sampling rate is 20,low frequency index numbers are 2:8, high 

frequency index numbers are 8:20. 

This program will give you the high and low frequency values. 

*If you are interested in normalized values use symparl instead of sympar. Symparql also 

allows one to select the interval of interest that he/she wishes to view. When running the 

program it will ask what segment of the file needs to be graphed. A response is given by 

typing time frequency point marking the beginning of interval:time-frequency pt marking 

the end of the interval. Since a point is plotted every 1.25 seconds by symparql it is 

necessary to divide time in seconds by 1.25 to calculate the points along the time series 

that will be used. 

If you wish to transfer your data from Matlab (The Mathworks, Inc., Natick, MA): 

to a statistical or graphics software you can modify symparl to save your data to an ascii 

file using the save command. This file can then be imported into outside software. 

Add a line to symparl that goes as follows: 
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save variable name desired f ilename -ascii 

°Other programs written to make data calculation and transfer easier and faster were 

sympc302, and sympc482. These programs generate the time frequency results used for 

statistical analysis and place them into an ASCII file that can be imported into statistical 

software. But, these were written exclusively for the purposes of generating data for the 

manual medicine protocols. Sympc302 was made for the thirty minute protocol and 

sympc482 was designed for the forty-eight minute protocol. 

Before running the program it is neccesary to modify the second to last line within the 

sympc302 or sympc482 program. The line reads: save filename.mat matrix -ascii. The 

filename in this line must be given the appropriate name so the ASCII file created can be 

identified. To run these programs you type within Matlab (The Mathworks, Inc., Natick, 

MA): 

sympcXX2(filenamen.ibi) 

After this program is used one can retrieve the result file and transfer it to statistical 

software. 



APPENDIX B 

PROGRAMS 

B.1 IIBI and Spectrum Programs for S-Plus 

B.1.1 Pslws 

function(x) 
{ 
jks <- 4,2] 
aa<- grep(T, diff(jks) > 400) 
ljs <- Isbp(x, aa) 
'is 

} 
function(x, x.pk, nt = 8192, ns = 6, decimate = 10, tooruff= 0.8, f= 0.I, Id = 10, sd = 10) 

{ 

B.1.2 Lsbp 
mruff <- max(abs(ruff(diff(x.pk)))) 
if(mruff > = tooruf1 
print(paste("ibi's may be too ruff', tooruff, sep = `")) 
x.ecg <- iibi(diff(x.pk)) 
x.iu <- iibi(diff(x.pk)) 
x.i <- x.iu{seq(1, len(x.iu), decimate)] 
x.sq <- sqdt(x.i, f= f Id, sd) 
x.isp <- spect(x.i, nt = nt, ns = ns) 
x.rpd <- x[seq(I, len(x[, I]), 10), l] 
x.rlw <- lowess(1:len(x.rpd), x.rpd, f= 0.3, iter = 2, delta = ceiling((length(x.rpd) * 
0.3)/8))$y 
x.rsp spect(x.rpd x.r1w, nt = nt, ns = ns) 
z list(pk = x.pk, ibi = x.i, ibiu = x.iu, sq = x.sq, rpd = x.rpd, rlw = x.rlw, isp = x.isp, rsp = 
x.rsp, ecg = x.ecg, ) 

z 

B.1.3 Iibi 
function(x, sr = l) 

y <- NA 
for(i in 1:length(x)) 

y <- c(y, rep(x[i], round(x{i]/sr))) 
} 
y <- y{2:length(y)] 

y 
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B.1.4 Sqdt 
function(x, f, ldelta, sdelta) 
{ 

ltr <- lowess(I:length(x), x, f= f, iter = 2, delta = Idelta)$y 
xs <- (1:length(x))[c(F, diff(x) ! = 0)] 
xs <- (xs)[seq(I, length(xs), sdelta)] 
ys <- sqwv(xs, ltr) 
ys 

B.1.5 Spect 
function(z, nt = length(z), taper = 0.2, ns = 20) 
{ 

if(any(is.na(z))) 
stop("NA's not allowed") 

if(taper < 0 I taper > 1) 
stop("taper must be between 0 & l") 

if(nt < length(z)) 
z z[I:nt] 

z <- z - mean(z) 
z <- spec.taper(z, taper) 
print(paste("Windowing length per side is ", nt * taper, sep = 	#z <- 
.Fortran("spcos", 

# 	x = as.double(z), 
# 	y = as.double(z), 

as.integer(length(z)), 
# 	as.double(taper))$y 

if(nt > length(z)) 
z <- c(z, rep(0, nt - length(z))) 

z <- (Mod(fft(z))^2/(2 * pi *nt)) [I:(nt %/% 2+ l)] 
if(ns >0) 

z <- spec.smo(z, span = 7) 	#z <- .Fortran("trsmooth", 
s = as.double(z), 
as. integer(length(z)), 
as.integer(ns))$x 

z <- rev(z) 
z <- spec.smo(z, span = 7) 	#z <- .Fortran("trsmooth", 

x = as.double(z), 
as.integer(length(z)), 
as.integer(ns))$x 

z <- rev(z) }z 
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B.2 Matlab Programs 

B.2.1 Sympar 
function sympar(rawdata,top) 
% SYMPAR(iibi,gtitle) 

% Program calculates the Vagal tone and Sympo-vagal ratio. 
% It is an implementation of time-frequency analysis 
% using the Wigner distribution. 

% iibi is the interpolated interbeat interval calculated 
% by pslwsu, either in Matlab or in S-plus. Gtitle is the 
% title of the output graphs. 

% Written by Sanjay Fernando. 

% last revision: 7/96 by Michael Zullow 

rawdata=rawdata(:); 
order=input('Please enter the order of the lowpass filter. '); 

freq=input('Please enter the cuttoff frequency for LPF. '); 
sample=input('Please enter the sample rate of the data. '); 
nfreq=freq/sample; 

[b,a]=butter(order,nfreq); 
dtrend=filtfilt(b,a,rawdata); 
dtrendata=rawdata-dtrend; 
[row,col]=size(dtrendata); 
I=I :row; 
I=I(:); 

A=(1/sample)/60; 

% This part is for testing Janse Kaiser Wigner calculation 
% algorithm with no window 
fs=1000; 
m=512; 	 % The size of the fft we will be computing. 
skip=25; 	% Number of points we skip to get the next segment. 
p=129; 	% The number of freq vals we will be plotting 
k=fix((row-m)/skip); % the number of spectra we compute 
w=ones(size(1:m)); 	% window specification. Can be changed. 
w=w(:); 
x=hilbert(dtrendata); % Forms the analytic funcion of x 
L=m/2; 
1=-(L-I):(L-l); 
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n=L; 
Z=zeros([p,k]); 

for i=l:k 
% Here I think 0 lag is at the Lth point, hence the first 
% time location is at LT=128*.001 or .128 sec; hmmm. 

g=x(n+1).*conj(x(n+1)); 
g(2*L)=0; 
y=w.*g; % Apply window to g or kernal. 

Y=2/m*abs(fft(y,m)); % evidently because it's analytic 
we only need 2/N 

Z(:,i)=Y(1:p); 
n=n+skip; 

end 

Z1=Z; 
Z=Z( I :30,1:k); 

LFC = input('Please enter the low frequency range in index numbers.); 
symvag=sum(Z(LFC, 1 : k)); 
HFC=input('Please enter the high frequency range in index numbers.'); 
vagal=sum(Z(HFC, 1 : k)); 
symtopar=symvag./vagal; 

% This section is for determining the instantaneous frequency 
% from the Wigner distribution. 

n=128; 	%The number of frequency values. 
[r,c]=size(Z); %Determines the size of the matrix created by wgjka4.m. 
for i=1:c; 	%Repeation based on number of columns. 

W=Z(:,i); 	%W is assigned the values of the column. 
Y=(l:r)';; 	%Y represents the frequencies. 

M=W.*Y; 
S=sum(M); 
F=sum(W); 	%Sum of the Wigner Distribution values. 
E(i)=S/F; 

end 

% Plotting commands 
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J=[ 12. 8+( 1 :k)* 1.25]/60; 

subplot(3, l, 1); 
plot(A,rawdata,'r',A,dtrend,'g'); 
title(top); 
xlabel('time') 
ylabel('amplitude') 

subplot(3,1,2); 
plot(A,dtrendata); 
title('IBI detrended); 
xlabel('time'); 
ylabel('amplitude); 

subplot(3,1,3); 
plot(J,E); 
xlabel('time'); 
ylabel('frequency'); 
title('Instantaneous frequency'); 

print -dwinc -v 

%subplot( 1 , 1, 1 ); 

subplot(2, 1, 1); 
mesh(Z); 
xlabel('time'); 
ylabel('frequency'); 
title(top); 

subplot(2, l,2); 
contour(Z); 
xlabel('time'); 
ylabel('frequency'); 
title('Contour plot of WD'); 

print -dwinc -v 

subplot(3, l, 1 ); 
plot(1,symvag); 
gtext(top); 

title(' Mixture of Sympathetic and Parasympathetic'); 
xlabel('time'); 
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ylabel('amplitude'); 

subplot(3,1,2); 
plot(J,vagal); 
title('Parasympathetic range'); 
xlabel('time'); 
ylabel('amplitude'); 

subplot(3,1,3); 
plot(J,symtopar); 

title('Ratio of Low Frequency to High Frequency') 
xlabel('time'); 

ylabel('amplitude'); 
print -dwinc -v 
end 

B.2.2 Symparpc 
function sympar(rawdata,top) 
% SYMPAR(iibi,gtitle) 

% Program calculates the normalized values and places 
%them in ASCII files to be exported 
% It is an implementation of time-frequency analysis 
% using the Wigner distribution. 

% iibi is the interpolated interbeat interval calculated 
% by pslwsu, either in Matlab or in S-plus. Gtitle is the 
% title of the output graphs. 

% Written by Sanjay Fernando. 

% last revision: 9/22/94 by Christopher King 

rawdata=rawdata(:); 
order=5; 
freq=.03; 
sample=20; 
nfreq=freq/sample; 
[b,a]=butter(order,nfreq); 
dtrend=filtfilt(b,a,rawdata); 
dtrendata=rawdata-dtrend; 
[row,col]=size(dtrendata); 
I=l: row; 
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A=(1/sample)/60; 

% This part is for testing Janse Kaiser Wigner calculation 
% algorithm with no window 
fs=1000; 
m=512; 	 % The size of the fft we will be computing. 
skip=25; 	% Number of points we skip to get the next segment. 
p=129; 	% The number of freq vals we will be plotting 
k=fix((row-m)/skip); % the number of spectra we compute 
w=ones(size(l:m)); % window specification. Can be changed. 

w=w(); 
x=hilbert(dtrendata); % Forms the analytic funcion of x 
L=m/2; 
1=-(L-l):(L-l); 
n=L; 
Z=zeros([p,k]); 
for i=l:k 

% Here I think 0 lag is at the Lth point, hence the first 
% time location is at LT=128*.001 or .128 sec; hmmm. 
g=x(n+1).*conj(x(n-1)); 
g(2*L)=0; 
y=w.*g; % Apply window to g or kernal.  

Y=2/m*abs(fft(y,m)); % evidently because it's analytic 
we only need 2/N 

Z(:,i)=Y(l:p); 
n=n+skip; 

end 

Z1=Z; 
Z=Z(1:30,1:k); 

LFC=2:8; 
symvag=sum(Z(LFC, 1 :k)); 
HFC=8:20; 

vagal=sum(Z(HFC,l:k)); 
symtopar=symvag./vagal; 
%Normalized values are calculated here 
nvlf=symvag./(symvag+vagal); 
nvhf=vagal./(symvag+vagal); 

% This section is for determining the instantaneous frequency 
% from the Wigner distribution. 
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n=128; 
[r,c]=size(Z); 
for i=l :c; 

W=Z(:,i); 
Y=(1: r)'; 
M=W.*Y; 
S=sum(M); 
F=sum(W); 
E(i)=S/F; 

end 

%The number of frequency values. 

%Determines the size of the matrix created by wgjka4.m. 
%Repeation based on number of columns. 

%W is assigned the values of the column. 
%Y represents the frequencies. 

%Sum of the Wigner Distribution values. 
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v=l:k 

J=[12.8+(v)*l.25]/60; 
Min=fix(J); 
Sec=(J - Min).*60; 

nvhf = rot90(nvhf,3); 
nvlf = rot90(nvlf,3); 
J = rot90(J,3); 
Min = rot90(Min,3); 
Sec = rot90(Sec,3); 

save s070 I hf nvhf -ascii 
save s0701lf nvlf -ascii 
save s070ltm J -ascii 
end 

B.2.3 Symparql 
function sympar(rawdata,top) 
% SYMPAR(iibi,gtitle) 
% Program calculates the normalized values for a chosen interval 
% It is an implementation of time-frequency analysis 
% using the Wigner distribution. 

% iibi is the interpolated interbeat interval calculated 
% by pslwsu, either in Matlab or in S-plus 

% Written by Sanjay Fernando. 
% revision: 9/22/94 by Christopher King 
% revision: 7/96 by Michael Zullow 



rawdata=rawdata(:); 
order=5; 
freq=.03; 
sample=20; 
nfreq=freq/sample; 
[b,a]=butter(order,nfreq); 
dtrend=filtfilt(b,a,rawdata); 
dtrendata=rawdata-dtrend; 
[row,col]=size(dtrendata); 
1=1:row; 
I=I(:); 
A=(l/sample)/60; 

% This part is for testing Janse Kaiser Wigner calculation 
% algorithm with no window 
fs=1000; 
m=512; 	 % The size of the fft we will be computing. 
skip=25; 	% Number of points we skip to get the next segmen 
p=129; 	% The number of freq vals we will be plotting 
k=fix((row-m)/skip); % the number of spectra we compute 
w=ones(size(I :m)); % window specification. Can be changed. 
w=w(:); 
x=hilbert(dtrendata); 	% Forms the analytic function of x 
L=m/2; 
l=-(L-l):(L-1); 
n=L; 

Z=zeros([p,k]); 
for i=l:k 

% Here I think 0 lag is at the Lth point, hence the first 
% time location is at LT=128*.001 or .128 sec; hmmm. 
g=x(n+l).*conj(x(n-l)); 
g(2*L)=0; 
y=w.*g; % Apply window to g or kernal. 

Y=2/m*abs(fft(y,m)); % evidently because it's analytic 
% we only need 2/N 

Z(:,i)=Y(1:p); 
n=n+skip; 

end 

Z1=Z; 
Z=Z(1:30,1:k); 

LFC=2:8; 
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symvag=sum(Z(LFC,1 :k)); 
HFC=8:20; 
vagal=sum(Z(HFC, I :k)); 

%The Normalized Values are Calculated Here 
symtopar=symvag./vagal; 
nylf=symvag./(symvag+vagal); 

nvhf=vagal./(symvag+vagal); 

% This section is for determining the instantaneous frequency 
% from the Wigner distribution. 

n=128; 	%The number of frequency values. 
[r,c]=size(Z); %Determines the size of the matrix created by wgjka4.m. 
for i=1:c; 	%Repeation based on number of columns. 

W=Z(:,i); 	%W is assigned the values of the column. 
Y=(l:r)'; 	%Y represents the frequencies. 

M=W.*Y; 
S=sum(M); 
F=sum(W); 	%Sum of the Wigner Distribution values. 
E(i)=S/F; 

end 

v=input('Please enter the points you wish to graph.(?:?) '); 

J=[12 8+(v) 1.25]/60; 

% Plotting commands 
subplot(3,1,l); 
plot(J,vagal(v)); 
gtext(top); 
title('Parasympathetic Range); 
xlabel('time (minutes)'); 
ylabel('amplitude'); 

subplot(3,1,2); 
plot(J,symvag(v)); 
title('Mixture of Sympathetic and Parasympathetic' 
xlabel('time (minutes)'); 
ylabel('amplitude'); 

subplot(3,l,3); 
plot(J,symtopar(v)); 
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title('Ratio of Low Frequency to High Frequency); 
xlabel('time (minutes)'); 

ylabel('amplitude'); 

print -dwinc -v 

subplot(2,l,1); 
plot(J,nvlf(v)); 
gtext(top); 
title('Normalized Value for Low Frequency'); 
xlabel('time (minutes)'); 
ylabelC(If)/(If+hf)'); 

subplot(2,1,2); 

plot(J,nvhf(v)); 
title('Normalized Value for High Frequency); 
xlabel('time (minutes)'); 

ylabel('(hf)/(If+hf)'); 

%Saves Normalized Data to ASCII Files 
save filename nvhf -ascii 
save filename nvlf -asii 
save filename J -ascii 
print -dwinc -v 

end 

B.2.4 Sympc302 
function sympar(rawdata,top) 
% SYMPAR(iibi,gtitle) 

% Program calculates the normalized statistical values for the 30 minute profile. 
% It is an implementation of time-frequency analysis 
% using the Wigner distribution. 

% iibi is the interpolated interbeat interval calculated 
% by pslwsu, either in Matlab or in S-plus. 

% Written by Sanjay Fernando. 
% revision 9/22/94: by Christopher King 
% last revision: 8/96 by Michael Zullow 
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rawdata=rawdata(); 
order=5; 
freq=.03; 
sample=20; 
nfreq=freq/sample; 
[b,a]=butter(order,nfreq); 
dtrend=filtfilt(b,a,rawdata); 
dtrendata=rawdata-dtrend; 
[row,col]=size(dtrendata); 
I=1: row; 
I=1(:); 
A=(I/sample)/60; 

% This part is for testing Janse Kaiser Wigner calculation 
% algorithm with no window 
fs=1000; 
m=512; 	 % The size of the fft we will be computing. 
skip=25; 	% Number of points we skip to get the next segment. 
p=129; 	% The number of freq vals we will be plotting 
k=fix((row-m)/skip); % the number of spectra we compute 
w=ones(size(1:m)); % window specification. Can be changed. 
w=w(:); 
x=hilbert(dtrendata); % Forms the analytic funcion of x 
L=m/2; 
l=-(L-1):(L-1); 
n=L; 
Z=zeros([p,k]); 
for i=1:k 

% Here I think 0 lag is at the Lth point, hence the first 
% time location is at LT=128*.001 or .128 sec; hmmm. 
g=x(n+1).*conj(x(n-1)); 
g(2 *L)=0; 
y=w.*g; % Apply window to g or kernal. 

Y=2/m*abs(fft(y,m)); % evidently because it's analytic 
% we only need 2/N 

Z(:,i)=Y(1:p); 
n=n+skip; 

end 

Zl=Z; 
Z=Z(l:30,l: 

LFC=2:8; 
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symvag=sum(Z(LFC, I :k)); 
HFC=8:20; 
vagal=sum(Z(HFC, I :k)); 

%Calculation of Normalized Values 
symptopar=vagal ./symvag; 
nvlf=symvag./(symvag+vagal); 
nvhf=vagal./(symvag+vagal); 

r 1 =nvhf(1:86); 
il=nvhf(182:278); 
r2=nvhf(326:422); 
i2=nvhf(518:614); 
r3=nvhf(662:758); 
i3=nvhf(854:950); 
r4=nvhf(998: 1094); 
r5=nvhf(1094:1190); 

% Averages 
ar1=mean(r1); 
ar2=mean(r2); 
ar3=mean(r3); 
ar4=mean(r4); 
ar5=mean(r5); 
ail=mean(il); 
ai2=mean(i2); 
ai3=mean(i3); 

%Maximums 
maxr1=max(rl); 
maxil=max(il); 
maxr2=max(r2); 
maxi2=max(i2); 
maxr3=max(r3); 
maxi3=max(i3); 
maxr4=max(r4); 
maxr5=max(r5); 

% This section is for determining the instantaneous frequency 
% from the Wigner distribution. 



for i=l:c; 
	

%Repeation based on number of columns. 
W=Z(:,i); 	%W is assigned the values of the column. 

Y=(1:r)'; 	%Y represents the frequencies. 
M=W.*Y; 
S=sum(M); 
F=sum(W); 	%Sum of the Wigner Distribution values. 
E(i)=S/F; 

end 
v=l:k; 
J=[12.8+(v)*1.25]/60; 

[p,S]=polyfit(J,nvhf,l); 
nvhfit=polyval(p,J); 
[p20,S20]=polyfit(J,nvhf,20); 
nvhfit20=polyval(p20,J); 

Jr1=J(l:86); 
JiI=J(182:278); 
Jr2=J(326:422); 
Ji2=J(518:614); 
Jr3=J(662:758); 
Ji3=J(854:950); 
J1-4=J(998:1094); 

Jr5=J(1094:1190); 

%Linear Regression 
[pr 1 ,Sri ]=polyfit(Jr1,rl, I ); 

[pr2,Sr2]=polyfit(Jr2,r2,l); 
[pi2,Si2]=polyfit(Ji2,i2,l); 
[pr3,Sr3]=polyfit(Jr3,r3,l); 
[pi3,Si3]=polyfit(Ji3,i3,1); 
[pr4,Sr4]=polyfit(Jr4,r4,1); 
[pr5,Sr5]=polyfit(Jr5,r5,1); 

%Second Order Polynomial Regression 
[cpr 1 ,cSrl]=polyfit(Jrl,rl,2); 
[cpr2,cSr2]=polyfit(Jr2,r2,2); 
[cpr3,cSr3]=polyfit(Jr3,r3,2); 
[cpr4,cSr4]=polyfit(Jr4,r4,2); 
[cpr5,cSr5]=polyfit(Jr5,r5,2); 
[cpil,cSi1]=polyfit(Jil,il,2); 
[cpi2,cSi2]=polyfit(Ji2,i2,2); 
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[cpi3,cSi3]=polyfit(.Ji3,i3,2); 

%Average NHF Value Minus Average Linear Regression Line 
nvhfitrl=nvhfit(l:86); 
nvhfiti I =nvhfit(182:278); 
nvhfitr2=nvhfit(326:422); 
nvhfiti2=nvhfit(518:614); 
nvhfitr3=nvhfit(662 :758); 
nvhfiti3=nvhfit(854:950); 
nvhfitr4=nvhfit(998:1094); 
nvhfitr5=nvhfit(1094 : 1190); 
avgfitrl=mean(nvhfitrl); 
avgfitil=mean(nvhfitil); 
avgfitr2=mean(nvhfitr2); 
avgfiti2=mean(nvhfiti2); 
avgfitr3=mean(nvhfitr3); 
avgfiti3=mean(nvhfiti3); 
avgfitr4=mean(nvhfitr4); 
avgfitr5=mean(nvhfitr5); 

drl=(arl-avgfitr I ); 
dil=(ail-avgfiti 1); 
dr2=(ar2-avgfitr2); 
di2=(ai2-avgfiti2); 
dr3=(ar3-avgfitr3); 
di3=(ai3-avgfiti3); 
dr4=(ar4-avgfitr4); 
d r5=(ar5 -avgfitr5); 

%Results Placed In Matrix 
matrix=[cpr1(:,2) cpil(:,2) cpr2(:,2) cpi2(:,2) cpr3(:,2) cpi3(:,2) cpr4(:,2) 
cpr5(:,2);cpr 1 (:,1) cpi I (:,l) cpr2(:, I) cpi2(:, I) cpr3(:,l) cpi3(:,1) cpr4(:,1) 
cpr5(:,l);pr l(:,l) 	I) pr2(:,l) pi2(:,1) pr3(:,l) pi3(:,l) pr4(:,1) pr5(:,1);dr1 di I dr2 di2 
dr3 di3 dr4 dr5;maxr1 maxi 1 maxr2 maxi2 maxr3 maxi3 maxr4 maxr5;ar I a; I ar2 ai2 ar3 
ai3 aro ar5]; 
Matrix = rot90(Matrix,3); 

%Matrix Saved to ASCII File 
save file.mat matrix -ascii 
end 

B.2.5 Sympar482 
function sympar(rawdata,top) 
% SYMPAR(iibi,gtitle) 



% Program calculates the normalized statistical values for the 48 minute profile. 
% It is an implementation of time-frequency analysis 
% using the Wigner distribution. 
% iibi is the interpolated interbeat interval calculated 
% by pslwsu, either in Matlab or in S-plus. 

% Written by Sanjay Fernando. 
% revision: 9/22/94 by Christopher King 
% last revision: 8/96 by Michael Zullow 

rawdata=rawdata(:); 
order=5; 
freq=.03; 
sample=20; 
nfreq=freq/sample; 
[b,a]=butter(order,nfreq); 
dtrend=filtfilt(b,a,rawdata); 
dtrendata=rawdata-dtrend; 
[row,col]=size(dtrendata); 
1=1: row; 
I=I(:); 
A=(l/sample)/60; 

% This part is for testing Janse Kaiser Wigner calculation 
% algorithm with no window 
fs=1000; 
m=512; 	 % The size of the fft we will be computing. 
skip=25; 	% Number of points we skip to get the next segment. 
p=129; 	% The number of freq vals we will be plotting 
k=fix((row-m)/skip); % the number of spectra we compute 
w=ones(size(l:m)); % window specification. Can be changed. 
w=w(:); 
x=hilbert(dtrendata); % Forms the analytic funcion of x 
L=m/2; 
1=-(L-1):(L-l); 
n=L; 
Z=zeros([p,k]); 
for i=1:k 

% Here I think 0 lag is at the Lth point, hence the first 
% time location is at LT=I28*.001 or .128 sec; hmmm. 
g=x(n+l).*conj(x(n-I)); 
g(2*L)=0; 

% Apply window to g or kernal. 
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Y=2/m*abs(fft(y,m)); % evidently because it's analytic 
we only need 2/N 

Z(:,i)=Y(1:p); 
n=n+skip; 

end 

Z I =Z; 
Z=Z(l :30,J :k); 

LFC=2 :8; 
symvag=sum(Z(LFC,l: k)); 

HF C=8 :20; 
vagal=sum(Z(HFC, I :k)); 
%The normalized values are calculated here 
symptopar=vagal./symvag; 
nvlf=symvag./(symvag+vagal); 
nvhf=vagal./(symvag+vagal); 

r0=nvhf(86:278); 
r1=nvhf(278:470); 
il=nvhf(518 :710); 
r2=nvhf(806 :998); 
i2=nvhf(1046: 1238); 
r3=nvhf(1334: 1526); 
i3=nvhf(1574: 1766); 
r4=nvhf(1862:2054); 
r5=nvhf(2054 :2246); 

%Averages 
ar0=mean(r0); ar1=mean(r1); 

ar2=mean(r2); 
ar3=mean(r3); 
ar4=mean(r4); 
ar5=mean(r5); 
ail=mean(il); 
ai2=mean(i2); 
ai3=mean(i3); 

%Maximums 
maxr0=max(r0); 
maxr1=max(rl); 
maxil=max(il); 
maxr2=max(r2); 

90 



maxi2=max(i2); 
maxr3=max(r3); 
maxi3=max(i3); 
maxr4=max(r4); 
maxr5=max(r5); 

% This section is for determining the instantaneous frequency 
% from the Wigner distribution. 
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n=128; 
[r,c]=size(Z); 
for i=1:c; 

W=Z(:,i); 
Y=(l: r)'; 
M=W. *Y; 
S=sum(M); 
F=sum(W); 
E(i)=S/F; 

end 

%The number of frequency values. 
%Determines the size of the matrix created by wgjka4.m. 

%Repeation based on number of columns. 
%W is assigned the values of the column. 

%Y represents the frequencies. 

%Sum of the Wigner Distribution values. 

v=1:k; 
J=[12.8+(v)*1.25]/60; 

[p,S]=polyfit(J,nvhf,1); 
nvhfit=polyval(p,J); 
[p20,S20]=polyfit(J,nvhf,20); 
nvhfit20=polyval(p20,J); 

Jr0=J(86:278); 
Jrl=J(278:470); 
Jil=J(518 :710); 
Jr2=J(806 :998); 
Ji2=J(1046 : 1238); 
Jr3=J(1334:1526); 
Ji3=J(1574 :1766); 
Jr4=J(1862:2054); 
Jr5=J(2054:2246); 

%Linear Regression 
[pr0,Sr0]=polyfit(lr0,r0, I ); 
[pr I ,Srl]=polyfit(Jr I ,rl,1); 



[pil,Sil]=polyfit(Ji1,i1,1); 
[pr2,Sr2]=polyfit(Jr2,r2,1); 
[pi2,Si2]=polyfit(Ji2,i2,1); 

[pr3,Sr3]=polyfit(Jr3,r3,l); 
[pi3,Si3]=polyfit(J13,i3,l); 
[pr4,Sr4]=polyfit(Jr4,r4,1); 
[pr5,Sr5]=polyfit(Jr5,r5,1); 

%Second Order Polynomial Regression 
[cpr0,cSr0]=polyfit(Jr0,r0,2); 
[cprl,cSr 1 ]=polyfit(Jr1,r1,2); 
[cpr2,cSr2]=polyfit(Jr2,r2,2); 
[cpr3,cSr3]=polyfit(Jr3,r3,2); 
[cpr4,cSr4]=polyfit(Jr4,r4,2); 
[cpr5,cSr5]=polyfit(Jr5,r5,2); 

[cpi1,cSi1]=polyfit(Jil,il,2); 
[cpi2,cSi2]=polyfit(Ji2,i2,2); 

[cpi3,cSi3]=polyfit(Ji3,i3,2); 

%Average NHF Value Minus Average Linear Regression Line Value 
nvhfitr0=nvhfit(86 :278); 
nvhfitrl=nvhfit(278:470); 
nvhfitil=nvhfit(518:710); 
nvhfitr2=nvhfit(806:998); 
nvhfiti2=nvhfit(1046:1238); 
nvhfitr3=nvhfit(1334:1526); 
nvhfiti3=nvhfit(1574:1766); 
nvhfitr4=nvhfit(1862:2054); 
nvhfitr5=nvhfit(2054 :2246); 

avgfitr0=mean(nvhfitr0); 
avgfitrl=mean(nvhfitr1); 
avgfiti1=mean(nvhfiti 1); 
avgfitr2=mean(nvhfitr2); 
avgfiti2=mean(nvhfiti2); 
avgfitr3=mean(nvhfitr3); 
avgfiti3=mean(nvhfiti3); 
avgfitr4=mean(nvhfitr4); 
avgfitr5=mean(nvhfitr5); 

dr0=(ar0-avgfitr0); 
drl=(ar 1 -avgfitrl); 
di I =(ail-avgfiti 1); 
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dr2=(ar2-avgfitr2); 
di2=(ai2-avgfiti2); 
dr3=(ar3-avgfitr3); 
di3=(ai3-avgfiti3); 
dr4=(ar4-avgfitr4); 
dr5=(ar5-avgfitr5); 

%Placing Results Into Matrix 

Matrix=[cpr0(:,2) cpr 1 (:,2) cpi 1(:,2) cpr2(:,2) cpi2(:2) cpr3(:,2) cpi3(:,2) cpr4(:,2) 

cpr5(:,2);cpr0(:, 1) cpr 1(:, l) cpil(:, 1 ) cpr2(:,1) cpi2(:,l) cpr3 (:, 1) cpi3(:,1) cpr4(:,l) 
cpr5(:, 1 );pr0(:, 1) pr 1 (:, 1) pi 1 (:,1) pr2(:, 1) pi2(:, I) pr3(:, l) pi3(:, l) pr4(:, 1) pr5(:, 1 );dr0 
dr 1 dil dr2 di2 dr3 di3 dr4 dr5;maxr0 maxr 1 maxi I inaxr2 maxi2 maxr3 maxi3 maxr4 
maxr5;ar0 art ail ar2 ai2 ar3 ai3 ar4 ar5]; 
Matrix = rot90(Matrix,3); 

%Saving Matrix to an ASCII File 
save file. mat Matrix -ascii 

end 
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APPENDIX C 

TIME-FREQUENCY DATA 

The following abbreviations represent the following intervals: R=rest, LT=light touch, 
SS=shoulder squeeze, CV=cranial vault hold, CV4=CV4 maneuver, S=sacral hold, 
SI=sacral/iliac hold. Shaded regions represent still points. 
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