Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9730389

Copyright 1997 by
Zhu, Zhijian

All rights reserved.

UMI Microform 9730389
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ON DOCUMENT FILING BASED UPON PREDICATES

by
Zhijian Zhu

A Dissertation
Submitted to the Faculty of
New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

Department of Computer and Information Science

May 1997

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Copyright © 1997 by Zhijian Zhu
ALL RIGHTS RESERVED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL PAGE

ON DOCUMENT FILING BASED UPON PREDICATES
Zhijian Zhu

Dr. James A. McHugh, Dissertation Advisor Date
Associate Chairperson of CIS Department
Full Professor of Computer Science, NJIT

Chgirperson of CIS De ment

Dr| Peter A. Ng, Disse¥;a:;ion Advisor " Date
Full Professor of Computer Science, NJIT

Dr. Jason T.L. Wang, Dissertation Co-Advisor ' Date
Associate Professor of Computer Sciengé, NJIT

. Michael Biebef, Committee Member Date
Assistant Professor of Computer Science, NJIT

Dr. Qianhong Liu, Committee Member ' " Date
Assistant Professor of Computer Science, NJIT

Dr. Ronald S.’Curtis, Committee Member Date
Assistant Professor of Computer Science,
William Paterson College

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

ON DOCUMENT FILING BASED UPON PREDICATES

by
Zhijian Zhu

This dissertation presents a formal approach to modeling documents in a
personal office environment, proposes a heterogeneous algebraic query language to
manipulating objects (folders) in the document model, and investigates a predicate-
driven document filing system for automatically filing documents.

The document model was initially proposed in [38] which adopts a very natural
view for describing the office documents using the relational and object-oriented
paradigms. The model employs a dual approach to classifying and categorizing office
documents by defining both a document type hierarchy and a folder organization.
This dissertation extends and specifies formally the document model. Documents
are partitioned into different classes, each document class being represented by frame
template which describes the properties of the documents of the class. A particular
office document, summarized from the view point of its frame template, yields a
synopsis of the document which is called frame instances. Frame instances are
grouped into a folder on the basis of user-defined criteria, specified as predicates,
which determine whether a frame instance belongs to a folder. Folders, each of
which is a heterogeneous set of frame instances, can be naturally organized into a
folder organization. The folder organization specifying the document filing view is
then defined using predicates and a directed graph. However, some operators in
the algebraic query language [38] do not support the heterogeneous property. This
dissertation proposes an algebra-based query language that gives full support to this

heterogeneous property.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We investigate the construction problem of a folder organization: does it allow
a user to add a new folder with an arbitrary local predicate? Given a folder organi-
zation, creating a new folder with arbitrarily defined predicate may cause two abnor-
malities: inapplicable edges (filing paths) and redundant folders. To deal such abnor-
malities in the process of constructing a folder organization, the concept of predicate
consistency is discussed and an algorithm is proposed for determining whether the
predicate of a new folder is consistent with the existing folder organization.

The global predicate of a folder governs the content of the folder. However,
the predicates of folders (that is, global predicates) do not uniquely specify a folder
organization. Then, we investigate the reconstruction problem: under what circum-
stance can we uniquely recover the folder organization from its global predicates? The
problem is solved in terms of graph-theoretic concepts such as associated digraphs,
transitive closure, and redundant/non-redundant filing paths. A transitive closure
inversion algorithm is then presented which efficiently recovers a folder organization
digraph from its associated digraph.

After defining a folder organization, we can file a frame instance into the folder
organization. A document filing algorithm describes the procedure of filing a frame
instance. However, the critical issue of the algorithm is how to evaluate whether a
frame instance satisfies the predicate of a folder in a folder organization. In order
to solve this issue, a thesaurus, an association dictionary and a knowledge base are
then introduced. The thesaurus specifies the association relationship among the key
terms that are actually residing in the system and terms that are used by users. An
association dictionary gives the association relationship between an attribute of a
predicate and a frame template defined in a folder organization. A knowledge base

represents background knowledge in a certain application domain.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIOGRAPHICAL SKETCH

Author: Zhijian Zhu
Degree: Doctor of Philosophy
Date: May 1997

Undergraduate and Graduate Education:

e Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, New Jersey, 1997

e Master of Engineering in Mechanical Engineering,
Hefei Polytechnic University, Hefei, Anhui, China, 1987

e Bachelor of Science in Computer Science,
Nanjing University of Aeronautics and Astronautics,
Nanjing, Jiangsu, China, 1984

Major: Computer Science

Publications:

Z. Zhu, J. McHugh, J. Wang, and P. Ng, “A Formal Approach to Modeling Office
Information Systems”, Journal of Systems Integration, Vol. 4, No. 4, Pages:
373-403, December, 1994.

F. Mhlanga, Z. Zhu, J. Wang, and P. Ng, “A New Approach to Modeling Personal
Office Documents”, Data and Knowledge Engineering, Vol. 17, No.2, Pages:
127-158, November, 1995.

Z. Zhu, Q. Liu, J. McHugh, and P. Ng, “A Predicate-Driven Document Filing
System”, Journal of Systems Integration, Vol. 6, No. 3, September, 1996.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This dissertation is dedicated to
my wife
Shanmaio Ma
my son
Alec M. Zhu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENT

The author would like to take great pleasure in acknowledging his advisor,
Professor Peter A. Ng, for his kindly assistance and remarkable contribution to this
dissertation. He spent time and effort to review various drafts of the manuscripts
and provided a lot of helpful comments and crucial feedbacks that influenced the
final manuscript. His guidance and moral support throughout this research are
much appreciated. The author is indebted to his other advisor, Professor James A.
McHugh, who devoted effort and provided encouragement in the phase of formalizing
the document model. His ability to have a solid mathematics professionals signifi-
cantly contributed to the contents and organization of this dissertation. The author
also thanks his co-advisor, Professor Jason T.L. Wang who provided support, encour-
agement and constructive criticism on this research.

Specially, the author wants to thank to Doctor Michael Bieber, Doctor
Qianhong Liu and Doctor Ronald S. Curtis serving as members of the committee.

This dissertation was supported in part by the Separately Budgeted research
grant from New Jersey In_sfitute of Technology and by System Integration Program
grant from the AT&T Foundation.

The author wishes to thank all the moral support given to him by colleagues,
friends, fellow Ph.D. students and all the members of the TEXPROS research group.

The writing of the dissertation was facilitated by the computing resources and
equipments in the Department of Computer and Information Science at New Jersey
Institute of Technology.

Finally, the author gratefully acknowledges his debt to the authors of the works
that are cited in this dissertation and claims full responsibility for any bugs that the

text may contain.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

Chapter Page
1 INTRODUCTION i e e 1
1.1 TEXPROS. i e e e e 1
1.2 Scopeof the Dissertation 6
1.3 Organization of the Dissertation. 8
2 RELATED WORK it iie 9
2.1 Modeling Office Documents 9
2.2 Algebraic Query Language., 10
2.3 Document FilingSystem 11
3 PRELIMINARIES i e 13
3.1 Types, Instancesand Domains 13
3.2 Operations and Predicates 16
4 TEXPROS DOCUMENT MODEL, 19
4.1 Document Type Hierarchy 19
4.2 Folder Organization 0t 22
5 EXTENDED D ALGEBRA 31
5.1 Class 1: Set Theoretic Operatorsccuvuu..on.. 31
5.2 Class 2: Concatenation and Cartesian Product 32
5.3 Class 3: Project Operatoruuiiuneennnenn.. 33
5.4 Class 4: Select Operator 38
5.5 Class 5: Join Operator i iiiennnnnenn 44
5.6 Class 6: Renaming Operatorou.o... 45
5.7 Class 7: Restructuring Operators 47
5.8 Class 8: Aggregate Operators.ovurvirnenenann 50
5.9 Class 9: Highlight Operator 51
vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

(Continued)

Chapter Page
6 THE CONSTRUCTION AND RECONSTRUCTION PROBLEMS. 52
6.1 The Construction Problem. 52
6.2 Consistency of Predicates 54
6.3 The Associated Digraph of a Folder Organization 55
6.4 Reconstructing A Tree Folder Organization 59
6.5 Reconstructing a DAG Folder Organization 65

7 DOCUMENTFILING, e 72
7.1 A Document Filing Algorithm 72
7.1.1 An Object-Oriented Description of a Folder Organization 72

7.1.2 A Filing Algorithm 81

7.2 Predicate Evaluation................. 86
721 CaseStudy: Case 1loviirinrnnennn. 86

722 CaseStudy: Case 2.i i nnennnnn. 89

8§ CONCLUDING REMARKSo, 103
8.1 Document Models and Algebraic Query Languages 103
8.2 Reconstruction of Folder Organizations 105
8.3 Automation of Document Filing 106
8.4 Future Research Directions 106
8.4.1 Specification of Criteria for the Folders 107

8.4.2 Knowledge Discovery and Data Mining 108

8.4.3 Reorganization of a Filing System 108

8.4.4 A Multi-User Environment 109
REFERENCES i e 111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table Page
5.1 Operatorsofthe D Algebra 31
8.1 Differences between D_model and relational models 105

8.2 Differences between TEXPROS Document Filing and Other Systems. .. 108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure Page
1.1 (a) An original document (b) Its frame template (c) Its frame instance . 3
1.2 Overall architecture of TEXPROS 4
4.1 Relationship among office documents, frame templates and frame instances 20
4.2 IS-A relationship among the frame templates 21
4.3 A folder for the Ph.D. student Jobn Smith 23
4.4 A tree folderorganization 25
4.5 An example of DAG folder organization 26
4.6 A DAG folder organization 30
5.1 A partial folder organization 32
5.2 Illustration of the project operation 34
53 Twofoldersfiand fo @ . e 37
5.4 Fivefoldersf3, fs, fs,fsandf;, 37
5.5 Two folders f; and fa e 39
5.6 Four folders fy,fo,f3and fg 43
5.7 Three folders Doe, Assistantshipsand f 44
5.8 A folder f used to illustrate the renaming operator 46
5.9 Anexampletoillustrate v, 47
5.10 An example to illustrate theneedof v* 48
5.11 An example to illustrate unnest operators 50
6.1 An example of inconsistent local predicates 54
6.2 (a) A DAG folder organization G(FO); (b) The associated digraph of
G(FO) . o 59
6.3 Spanning sub-DAGs of the associated digraph in Figure 8(b) 60
6.4 A tree folder organization for which totally hierarchical property fails .. 62
6.5 (a) A digraph. (b) ~ (i) Spanning treesof (a) 63
x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

(Continued)
Figure Page
6.6 (a) The digraph G (b) Spanning tree found by TCI algorithm (c)
Spanning tree found by ordinary BFS 64
6.7 Redundant filingpathsc0itii it ininnnnn.. 67
6.8 Counterexample to Theorem 3.6 if non redundancy condition fails. 69
6.9 (a) A DAG FO (b) Its associated digraph (c) Digraph resulting from
TCIalgorithm.o, 70
7.1 A folder orgamization 73
7.2 Class hierarchy of a folder organization.......... e e 74
7.3 An example of a folder organization 78
7.4 Procedure of forming an evaluated attributelist 83
7.5 A portion of system synonyms in a thesaurus 89
7.6 An example of an association dictionary 90
7.7 An AND/OR rule tree representing a collection of rules 93
78 Anexampleofruletreesttt 95
102

79

Convert a predicate to a disjunctive normal form

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1
INTRODUCTION

In an office environment, information is a resource that is needed to perform office
workers’ jobs. We use information to make decisions and enhance productivity.
Generally, information is exchanged in the form of documents [11, 16]. For document
management and retrieval, there is a lack of information technology (in particular,
customized to individuals in an office environment) for representing and organizing
massive information in the multimedia (such as paper and electronic) environment,
for storing information pertaining significantly to the individuals into information
repositories, and for easily processing and retrieving information when needed (and
thus, the corresponding documents could be referred directly from repositories).
There also is a lack of information access technology that allows an efficient search

of large distributed information repositories [32].

. 1.1 TEXPROS
TEXPROS (TEXt PROcessing System) [32, 52] is a personalized, customized

office information processing system for processing and retrieving office documents.

Basically, it has the following major features:

e Modeling the behaviors of common office activities using the state-of-the-art

document model [32, 38, 39, 40, 51, 57, 59].

e Classifying documents into types based on their structures [19, 20, 21, 53, 54,
55]. Each document type is defined in terms of attributes to form a frame

template.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Extracting the most significant information from an original document to form
a frame instance 19, 20, 21, 53], with respect to the frame template of the

original document. The frame instance is a synopsis of the original document.

o Filing frame instances into folders using a predicate-driven approach [57, 58,

59]. That is, a frame instance is filed in a folder if it satisfies the predicate of

the folder.

e Retrieving information from the folder organization [30, 31, 32, 33, 34]. Users
retrieve documents or information contained in documents on the basis of the

information in their frame instances!.

In TEXPROS document Model, a document type (frame template) is formed
by sampling a stream of office documents, abstracting their general attributes,
and grouping them into a class. The frame template, filled in by the instances
of a particular office document, yields an organized synopsis of the original
document which we call a frame instance. Figure 1.1(a) is an original document
(a memorandum). Figure 1.1(b) shows the frame template Memo which describes
the attributes (or properties) for the class Memo. Each memorandum in this class
has attributes From (or Sender), To (or Receiver), Subject, Date, Content, etc.
The attribute Content represents the non-structured part of the frame template
Memo. The rest of the attributes represent the structured part of Memo. The
frame template is instantiated to form a frame instance by assigning values to the
attributes of the frame template. Figure 1.1(c) shows the corresponding frame
instance for an original memorandum (Figure 1.1(a)) of the type, which is specified
by the frame template Memo (Figure 1.1(b)).

Frame instances of documents can be grouped into folders based on how users

organize their information. The folder organization represents the user’s desired

1We keep the original documents in the storage separately from the frame instances.
Users can retrieve them as needed. It improves the system performance and reduces cost.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

New Jo_fﬂ Institute of Tochnolm

Department of Computer & Information Science
Ext.

MEMORANDUM

FFROM: } [Tobn | [Smith
S0BI:) [CIS Qualifying Examination

N =

It is my pleasure to inform that the CIS Qualifying
Examination Committec has recommented to me that
you have passed the qualifying examinstion which was
held in the Fall semester of 1991 conditionally. It
is contingent upon successful completion of a course
in Real-Time Systems.

(s)

FirstName | 1o ® [| [/ /

Fi
- o LastName | Smith +-H /
FirstName - FirstName | Tom </ / J /
o
LastName LastName | King s [/
FirstName Subject as Qualifyingamfation
LastName Day e /
Date | Month w
Year 1992«
passed the qualifying
examination in the Fall
Content semester of 1991 conditionally
completion of & course
in Real-Time Systems
(®) ©

Figure 1.1 (a) An original document (b) Its frame template (c) Its frame instance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

document filing organization. The document type hierarchy provides a means of
identifying and organizing structural commonalities among documents, in terms of
frame templates, and thus a means of classifying various documents. The overall
architecture of TEXPROS is sketched in Figure 1.2. There are four persistent
storages: (1) Document Sample Base contains sample documents for document classi-
fication; (2) Frame Instance Base stores frame instances in the folder organization;
(3) Model Base has definitions of frame templates, folders?, document type hierarchy
and folder organization; and (4) Knowledge Base consists of system rule base, fact

base, system catalog and association dictionary.

Paper Electronic
Document Document
USER INTERFACE
rmmcmnurmom, l Reorpanizrion Operations
N
! Query wa:fr
Document Information Folder
Encoded Filing Retrieval Reorganization
Document Subsystem Subsystem Subsystem
Document) » A A
CQlassification | Documens Type Hierarchy Foldefs Folder O
Subsystem
I rame Instances Reorgnized Folder Organ{zation
Frame I in a Foler System Casalog
Frame nstances i i Rules, Patterds & Earaction Expecations
d Dictignary, Thesaurus, faces, rilds
Docyment
Samples l

- —— — —
Do Fi Kn
cument ‘rame Model owledge
Sample Instance
Base
Base Base Base

Figure 1.2 Overall architecture of TEXPROS

2Note that each frame instance in the frame instance base has a unique identifier
associated with it. A folder contains a set of frame instance identifiers which satisfies
the criteria of the folder.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Optical Character Recognition (OCR) Subsystem (7, 6, 19, 47, 53]: A paper
document is digitized and thresholded into a binary image by a scanner. In
order to encode information from a mixed-mode document which contains text,
graphics and pictures, the document image is segmented into textual blocks,
graphic blocks and picture blocks. Each block can be further divided into
smaller blocks, and all the blocks are encoded.

e Document Classification Subsystem [19, 20, 21, 53, 54}: An encoded document
is automatically identified as a document class (frame template) by the sample-
base approach. The document type hierarchy is constructed using the concept
of specialization and generalization of frame templates. Furthermore, the
synopsis of the document is extracted to form a frame instance based upon
the structure of the document (i.e. its frame template) and the significant

information pertinent to users.

e Document Filing Subsystem [38, 40, 50, 58, 59]: A set of frame instances can
be grouped into a folder on the basis of user-defined criteria. TEXPROS allows
a user to define a foider organization that mimics his/her filing system. The
folder organization is made up of folders which are linked via filing directions.
An incoming frame instance can be filed into an appropriate folder if it satisfies

the criteria of the folder.

e Information Retrieval Subsystem [30, 31, 33, 34]: This information retrieval
subsystem is capable of processing incomplete, imprecise or vague queries and
providing meaningful responses to a user. It provides a more flexible and

cooperative capability for interpreting and processing queries.

e Folder Reorganization Subsystem [50]: The folder reorganization subsystem
provides a set of operations for reorganizing folder organizations, and changing

the structure of the organization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Scope of the Dissertation
This dissertation mainly focuses on the office information modeling, and the

document filing. The scope of this dissertation covers the following aspects:

e Giving an in-depth study on the TEXPROS document model.

The document model for TEXPROS was proposed in (38, 40, 50, 52, 59).
The model employs a dual approach to classifying and categorizing the office
documents by defining both a document type hierarchy and a folder organization
(or logical filing structure). The document type hierarchy depicts the structural
organization of the document types used in the problem domain. It identifies
and organizes the structural commonalities among documents, and facilitates
classifying various documents. The folder organization represents the user’s
view of the document filing organization. A folder is a heterogeneous set of
frame instances; that is, a folder contains frame instances over different frame
templates. This dissertation gives a formal specification of the TEXPROS
document model®. A frame template (document type) specifies the structure
common to different documents or frame instances (document instances) of the
same kind. The folder organization is defined using predicates and a rooted

DAG for specifying the document filing view.

e Proposing an algebraic query language for heterogeneous environment.

The algebra-based query language in TEXPROS document model, called
D _algebra, was proposed in (38, 39]. We observe that some operators in the
D _algebra do not support heterogeneous property of the TEXPROS document
model. For example,.consider the project operator (7). Assume that there are

two frame instances, fi; = [(Title : A Office Model), (Author : John Smith)]

3The TEXPROS document model successfully couples a precise mathematical definition
with a rooted DAG representation and nested forms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

and fi, = [(Name : John Smith), (Position : Professor), (DegreeObtained :
PhD)], in the John_Smith folder. Since the project operator in [38, 39] only
allows the projected attributes coming from the same frame template, the query
Tl pgere.author.egreeeasned (JONNSMith) = []. This dissertation extends D_algebra
operators to fit heterogeneous environment [40]. Furthermore, D _algebra only
deals with restructuring (nest and unnest) operators for a single attribute. In
the proposed dissertation, two sets of restructuring operators are defined. One
is nest (v) and unnest () operators for a single attribute as in [39]. The other
one is nest (*) and unnest (u*) operators for multi-attributes. The reason of
introducing these two sets of restructuring operators is that » and u are not

the special case of v* and p* in TEXPROS document model, respectively.

e Studying the construction and reconstruction problems of a folder organization.

When a user adds a new folder with arbitrarily defined predicate to a folder
organization, it may cause two abnormalities: inapplicable edges (filing paths)
and redundant folders. This is called the Construction Problem. To resolve this
problem, the concepﬁ of predicate consistency is discussed and an algorithm is
proposed to prevent such abnormalities. The global predicate [59] of a folder
governs the content of the folder. However, the folder level predicates (that
is, global predicate) do not uniquely specify a folder organization. From
this arises the Reconstruction Problem, namely, under what circumstance it
is possible to recover a unique folder organization from its global predicates.
The graph-theoretic concepts including associated digraphs, transitive closure,
and redundant/non-redundant filing paths are used to investigate the Recon-
struction Problem and show how a folder organization digraph can be efficiently

recovered from its associated digraph.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Investigating the predicate-driven document filing.

Document filing is one of the most important components in TEXPROS. Given
a folder organization, in which the folders are specified using predicates, how
the frame instances all deposited in proper folders is based on the predicates.
A filing algorithm is proposed for filing a frame instance in the proper folders.
However, the critical issue of the algorithm is how to evaluate whether a frame
instance satisfies the predicate of a folder in the folder organization. In order to
solve this issue, a thesaurus, an association dictionary and a knowledge base are
introduced. The thesaurus associates the key terms that are actually residing
in the system and terms that are used by the users. An association dictionary
states the association relationship between an attribute of a predicate and a
frame template defined in the document type hierarchy. A knowledge base

represents background knowledge in a certain application domain.

1.3 Organization of the Dissertation
The remainder of the dissertation is organized as follows. Chapter 2 presents the
survey of related work on office document modeling, algebraic query language and
document filing. Chapter 3 introduces the preliminary concepts for defining the
TEXPROS document model. Chapter 4 formally defines the TEXPROS document
model, including frame instances, frame templates, a document type hierarchy,
folders, and a folder organization. Chapter 5 extends the existing D_algebra and
its properties. Chapter 6 discusses a pair of problems for a folder organization: the
construction problem and the reconstruction problem. Chapter 7 investigates the
predicate-driven filing problem, namely, given a folder organization, in which the
folders are defined using predicates, how do the frame instances deposit in proper
folders based on these predicates? Chapter 8 summarizes the dissertation and gives

future research directions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

RELATED WORK

In this chapter, an overview of the subjects related to document modeling, algebraic

query language and document filing is given.

2.1 Modeling Office Documents
Office documents are one of the basic vehicles for making decisions and taking actions
in office work [22]. Office documents exhibit a very broad spectrum of structure,
from standardized forms to free text. Basically, three types of structures can be
distinguished within a document: the layout structure, the logical structure, and
the conceptual structure. The first two structures are referred to as the standard
structures of documents in the Office Document Architecture (ODA) [11, 24, 26].

The layout structure is a standard for editing and formatting documents. The
logical structure describes the logical components of a document (such as title,
section, and paragraphs), and how they are related. The conceptual structure
represents the semantic aspects for the document contents. For example, the author
or the summary of a technical paper, and the sender of a memorandum are referred
to as conceptual components. The aggregation of conceptual components is the
document conceptual structure, and documents with analogous conceptual structures
are grouped in types [5]. The conceptual level of office documents has been considered
widely in the last decade (23, 35, 41, 43, 56, 60].

Modeling is often based on concepts used for semantic data modeling, such
as aggregation, association, and specialization [42]. Sometimes, the conceptual
structure is blended with ODA layout and physical structures, as far as query
formulation is concerned. For example, MULTOS (2, 49] is oriented to multimedia

document management. The conceptual components in a document are stored in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

a database. Documents of the same structure with similar contents are grouped to
form a class.

The Kabiria document model [5, 44] is oriented to the classification and
retrieval of office documents according to their internal structure and operational
meaning. It includes a conceptual document model and a document retrieval model.
The conceptual document model concerns the semantic and logical description of
documents. The document retrieval model enriches the conceptual model with the
explicit description of both the roles of documents in the office and their dependencies
from the laws, regulations and habits of the application domain.

The TEXPROS document model was initially proposed in [38]. It adopts a
very natural view for describing the office documents. Documents are grouped into
classes. Each class is characterized by a frame template, which describes the type
for the class of documents. A frame template is instantiated by providing it with
values to form a frame instance, representing a synopsis of a particular document
associated with the template. Different frame instances can be grouped into a folder
based on user defined criteria. The document model describes documents using dual
hierarchies: a document type hierarchy (depicting the structural organization of the

documents), and a folder organization (representing the user’s logical file structure).

2.2 Algebraic Query Language
Mhlanga et al. [38, 39, 51] proposed an algebraic query language (called D_algebra)
for manipulating objects in the TEXPROS document model. There are three groups
of work that are closely related to the D_algebraic language. The algebra developed
by Guting et al. [18] also deals with documents. Following closely the ODA standard,
documents are described in terms of schemas, instances and layouts. A schema is
represented by an ordered labeled tree, which describes the logical structure and

data values contained in a class of documents. In contrast to Guting’s algebra, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

D_algebra does not assume any particular (logical or layout) order among attributes
of a frame instance. The second group, led by Zdonik of Brown University, developed
the algebra for the ENCORE object-oriented data model [46]. While both of the
D.model and ENCORE make use of attribute types and object type hierarchy, the
former doesn’t support object identity and abstract data types for encapsulation of
behavior and state. Furthermore, the operators in the D_algebra mainly manipulate
heterogeneous objects (i.e., folders) that contain frame instances of different types.
This is in contrast to the operators in ENCORE'’s algebra, whose operands must be
collections of objects of the same type. Su et al. [48] proposed an association
algebra (called A-algebra) using the pattern-based query formulation for object-
oriented databases. The operators of the A-algebra can be used to navigate a network
of interconnected object classes along the path of interest to construct a complex
pattern as the search condition. In contrast, the highlight operator is introduced
in the D_algebra simplifying such navigation. The heterogeneous property of the
operators in [48] is totally different from this dissertation in the sense that classes
defined in (48] are homogeneous and folders are heterogeneous. In other words, a
binary operator is said to be heterogeneous [48] if its two operands are from two
different classes, where the objects in each class have the same property (the same
set of attributes). However, the objects (i.e. frame instances) in an operand (i.e. a

folder) can be over different types (i.e. frame templates) in the D_algebra.

2.3 Document Filing System
A document filing system provides facilities for storing and efficiently retrieving
documents. In the Kabiria [5, 44], the general task of the filing system is the acqui-
sition and classification of documents. The filing process is carried out by three
modules: the Acquisition module (ACQ), the Classifier module (CLASS), and the

Insertion module (INS). ACQ enables the users to define class structures and to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

insert new document instances into the system in order to file them. In fact, the
system can file and then manipulate a document only if it recognizes its conceptual
structure. Therefore, as a new document type appears in the office, the system must
be provided with its description, comprising both the conceptual structure and the
links connecting the document types within the semantic network. The purpose of
CLASS is to identify the class a document instance belongs to. INS files classes and
instances in both the model base and the document base.

MULTOS [2] divides document filing systems into three categories in terms
of retrieval requirements and hardware capabilities: (1) Dynamic document filing
systems are used essentially as buffers allowing local storage of documents being
manipulated. Generally, a dynamic document filing system is accessed by a single
user. (2) Current document filing systems are used for documents that are frequently
accessed and so of current interest to the office. (3) Archive document filing systems
are used for less frequently accessed documents that have reached a stable state
where modification is infrequent. From hardware capacity point of view, archival
systems have the greatest capacity, followed by current document filing systems, and
finally systems for dynamic document filing. The three filing system categories are
also related to the document life cycle. Typically, one would expect a migration from

a dynamic filing system toward an archival system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3
PRELIMINARIES

The TEXPROS document model uses the concepts of type, instance, domain, and

predicate to specify information representations.

3.1 Types, Instances and Domains
The primitive types are integer, real, string, text, and boolean. An enumeration
type is an ordered tuple of finite strings from an alphabet, that is, a finite set of
symbols. The primitive and enumeration types are called basic types. An attribute

name (or attribute) is a finite string of symbols. An attribute has a corresponding

type.

Definition 3.1.1 (Type) Types are defined recursively as follows:

1. A basic type is a type.

2. Let A; be an attribute with its corresponding type 7;, 1 < ¢t < m. T =
[(A; : T}), ..., (Am : Trn)] is a type, called a tuple type. T3, ..., and Ty, are called

the underlying types of T
3. T ={Ty,..,T,} is a type, called a set type. T;, 1 < i < n, is an underlying

type of T m]

Definition 3.1.2 (Instance) Instances are defined recursively as follows:

1. An instance of a basic type is called a basic instance.

2. If Ay, ..., and A, m > 1, are distinct attributes of types T3, ..., T, and Iy, ...,
and I, are instances of T}, ..., and T,,, then I = [(A; : I1), ..., (Am : I;x)] is an

instance, called a tuple tnstance, of the type [(A; : T}), ..., (Am : Tim)]-

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

3. For T = {T1,...,T,}, let I; be an instance of an underlying type T;. Then, a

set instance I of the type T is a set of instances of the types T;. O

Definition 3.1.3 (Equality of Instances) Equality between two instances is recur-

sively defined as follows:

1. Two basic instances are equal if and only if they are the same.

2. Let I,' = [(Ail : I,'J, veny (Aiﬂ : I,’n)], and Ij = [(Ajl : Ijl)’ oy (Aju : Ijn)] be two
tuple instances. I; and [; are equal if and only if their attribute-instance pairs,

(Ai, : I;,) and (A}, : I;,) are equal (i.e. A;, =A;, and I;, = I;,) for every k.
3. Two set instances are equal if and only if they have the same instances. O

A tuple type T = [(A; : TY), ..., (Am : T},)] is called an aggregation hierarchy
[25] if an underlying type T; is a non-basic type. We can use a path-notation, an
attribute followed by a sequence of zero or more attributes, to refer to an instance of
a particular component of an aggregation hierarchy. Let A, By, ..., B, be attributes.

The instance referred to by the path notation A.B;. - - - .B, is defined as follows:

1. If n =0, then the instance of the path notation is the instance of A.

2. If n > 0, then the instance of the path notation is the instance of attribute
B, within the instance of A.B;. - - - .B,—; if A.B;. - - .Bp_; is defined. The path
notation A.B,. - - - .B,_; is defined if there is no set type within A.B;. - - - .B,_2,

and is undefined otherwise.

For example, in order to refer once the instance for the attribute year of the frame
instance in Figure 1.1(c), the path notation is Date.Year, assuming Date is not a

set type.
The set of all possible instances of a type T is called the domain of T. For

example, the domain of integer is the set of integers. We define DOM to be a

function mapping a type T to a domain of T as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15
o If T is a basic type, then DOM(T) is the domain of T.

e If T = [(Al : T]_), veey (Am : Tm)], then DOM(T) = {[(AI : I]_), . (Am : Im)] I
(I € DOM(T)) A ... A (Im € DOM(T,))}-

e If T = {Ty,...,Tp}, then DOM(T) = {U%, L; | i € DOM(T)) V ... V
(Ii € DOM(T,))}.

Let T = [(A; : T1), ..., (Am : Tin)] be a tuple type. Since a tuple instance
consists of attribute-instance pairs, DOM(T) # DOM(T}) x ... x DOM(T,). This

can be shown by the following example. Consider two tuple types:

¢ Employee = [(Name : string), (Age : integer), (Salary : real)]
e Order = [(ProductName : string), (Quantity : integer), (UnitPrice : real)]

Employee and Order are different tuple types. The domain of a tuple type is the
set of all possible attribute-instance pairs. This is not the same as the Cartesian
product of the domains of the underlying types (such as, here, string x integer x

real).
Let T) = [(A; : TV)), ..., and Tin = [(Am : T3)]. The usual Cartesian view of the

domain of T is DOM(T}) x ... x DOM(T,,), which is too restricted, as shown in

the following example. Define the two tuple types:

e Student = [(Name: string), (Major: string),
(SBirthday: [(Date: date), (Month: month), (Year: integer)])]

e Faculty = [(Name: string), (Department: string),

(FBirthday: [(Date: date), (Month: month), (Year: integer)])]

Consider the query: “Find all the students and faculty who have the same birthday”.

Since the type [(SBirthday: [(Date: date), (Month: month), { Year: integer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

)])] and [FBirthday: [(Date: date), (Month: month), (Year: integer)])]
are different, the instances from these two types cannot be compared to each other.
Thus this query cannot be answered using the standard Cartesian product approach.
However, our approach can handle this query since the underlying types of both

SBirthday and FBirthday are the same.

3.2 Operations and Predicates
The intersection and union operations between tuple types (instances) are defined as
follows. Later on we will use these operations to define an IS-A relationship between
frame templates, and algebra operations. Let X = [(A; : X3), ..., (An : X4}, where
A; (1 £1i < n)is an attribute. If X; (1 < i< n)is a type, then X is a tuple type. If
X (1 <1< n)is an instance, then X is a tuple instance. We introduce a predicate
is-a-component-of (denoted by is-a-comp) for tuple types and instances. defined as
follows:
true if 3(A;: X;)in X
is-a-comp((B: Y), X) = such that (B = A;) A (Y = X;)

false otherwise

where B is an attribute and Y is a type (or instance). That is, is-a-comp((B: Y), X)

is true iff X has a component with the same attribute and type (or instance) as
(B:Y).

Definition 3.2.1 (Intersection of Two Tuple Types (Instances)) Let X and X be
two tuple types (instances). The intersection of two tuple types (instances), denoted
by X N X, consists of all the attribute-type (attribute-instance) pairs which are

common components of both X and X. That is,
X N X =[(B; : Xi) | (is-a-comp((B; : X:), X) A is-a-comp((B; : Xi), X))]

where B; is an attribute, and X; is a type (instance). o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

Definition 3.2.2 (Union of Two Tuple Types (Instances)) Let X and X be two
tuple types (instances). The union of two tuple types (instances), denoted by XU X,
consists of all the attribute-type (attribute-instance) pairs which are from either X

or X. That is,
XurX= ((B: : Xi) | (is-a-comp((B; : X;), X) V is-a-comp((B; : X;), X))]
where B; is an attribute, and X; is a type (instance). a

The operators “N®” and “U*” are associative and commutative.

Since the emphasis of the proposed dissertation is on tuple instances, it will be
convenient to introduce the following notation. Let [be a tuple instance and let A
be an attribute or path notation. If the tuple type of I includes A as an attribute or
a path notation, then I[A] denotes the instance of A. If A is not in I, then [[A] is an

empty instance [|. For example, consider the following tuple instance,

I = [(Name: [(FName: John), { LName: Smith)]),
(QEAppl: [(SemesterTaken: [(Semester: Fall), (Year: 1991)]),
(1stChoice: Software Engineering),

(2ndChoice: Compiler)])).

Then, for the attribute Name, /[Name]| = [(FName: John), (LName: Smith)]. Similarly,
for the path notation QEAppl.SemesterTaken.Semester,

I[QEApp1.SemesterTaken.Semester| = Fall.

We define predicates as follows. In the case where I is a tuple instance and I

is an instance, the atomic predicates have the following interpretations:

e Equality Predicate: If [[A] and I are over the same type, then the equality

predicate is [[A] = 1.

e Comparison Predicates: If [A] and I are over ordered types, then [[A] > I,

I[A] > 1, I[A] < I and | [A] £ I are the comparison predicates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

e Component Predicate: If A is an attribute, then is-a-comp((A : I),) is the
component predicate. Note that a component predicate can be represented by

an equality predicate. That is, is-a-comp((A : I}, I) is identical to f A]=1.

e Membership Predicates: If [{A] is of type T and I is of type {T'}, then f[a] € I
is a membership predicate. If I is of type T and I[4] is of type {T?}, then

I € I[A] is a membership predicate.

o Inclusion Predicates: If [[A] and I are of the same set type, then I[A] C I,
I[a) € I, I[a] 5 I and I[A] D I are the inclusion predicates.

o Substring Predicates: If [{A] and I are strings, then /{A] C I and I T I[A] are

substring predicates.

A predicate is then defined as follows: (1) An atomic predicate is a predicate.
(2) If P is a predicate, then (P) and —P are predicates. (3) If P, and P, are

predicates, then P; A P, and P, V P, are predicates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4
TEXPROS DOCUMENT MODEL

The basic elements of the TEXPROS Document Model are frame templates (and
their associated frame instances) and folder organizations (and their constituent
folders). The attributes (or properties) of frame instances are specified as frame
templates. The frame templates form a document type hierarchy whose members are
related by an IS-A relationship. The frame templates, and therefore the document
type hierarchy, are driven by the types of document in the office environment and
are relatively stable over time. Folders are defined by the user as heterogeneous sets
of frame instances of different frame template types. Frame instances may be added
to folders over time. A folder organization is defined by a user corresponding to the

user’s view of the document organization.

4.1 Document Type Hierarchy

Let O denote the set of original documents in a user’s office environment. Consider
these documents of different classes. Each document class is represented by its
attributes to form a frame template. Information on a particular office document is
extracted according to its frame template by filling in attributes with instances, to
form a synopsis of the document which is called a frame instance. The relationship
among office documents, frame templates, and frame instances is shown in Figure 4.1.

In TEXPROS, a classifier creates frame templates for the office documents in
an office environment by sampling a stream of office documents, abstracting their

general attributes, and grouping them into classes. Formally,

Definition 4.1.1 (Frame Template) A frame template F is a tuple type F = [(A; :
Ti), .-y (Am : Ti)|, where A; (1 < i < m) is an attribute over the attribute type T:.

F describes the information structure of a document class in @. O

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

Office Classification . Frame
Documents Templates
Extraction Instantiation
Frame
Instances

Figure 4.1 Relationship among office documents, frame templates and frame
instances

Definition 4.1.2 (Frame Instance) Let a document o € O belong to a document
class F = [(A; : T1), ..., (Am : Tn)], where A; is an attribute, and T; is an attribute
type. Then, a frame instance fi of a document o € O is a tuple instance of F, fi =
((Ay : L), ..., (A : I,)], where I is an instance of attribute type T; extracted from

the document o. o

Given a frame template F = [(A; : T}), ..., (Am : Tm)], the attributes 4, ...,
A, are called the top level-attributes of F. We use < F > to denote all the top level
attributes of F. Let A be a top-level attribute and A.B;.-- - .B; be a path notation for
some attribute Bx. We will simply use attributes to refer to top-level attributes or
path notations when the context is clear. Let T(F) denote all the possible attributes
of F. Let S C T(F). We define the S-instance of a frame instance fi, denoted fi(S),
to be the tuple instance of (A; : I;) where A; € S§. If § € T(F), then fi(S) = [].
For example, let fi be the frame instance shown in Figure 1.1(c) and let S be {From,
To, Subject, Date.Year}. Then fi(S) is the tuple instance [(From: [(FirstName:
“John”), (LastName: “Smith”)]), (To: [(FirstName: “Tom”), (LastName: “King”)}]),
(Subject: “CIS Qualifying Examination”), (Date.Year: “1992”)]. If S consists
of a single attribute, say A, then fi(S) is simply written as fijA]. For example in

Figure 1.1(c), fiDate.Month] = “Jan.”.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

Frame templates are related by specialization and generalization [3, 29]. They

naturally form a hierarchy which helps to classify documents. An illustration of such

a hierarchy is shown in Figure 4.2, where the relationship between frame templates

is specified by an IS-A relationship. Formally,

Definition 4.1.3 (IS-A Relationship) Given two frame templates F; and F,, F,

IS-A F, if and only if the attribute-type pairs of F; are a subset of the attribute-type

pairs of Fy, or equivalently F, N* F; = F,.

O

Publication_Paper
Tide
A FiName
LName
Organization
City
Affiliation State
Address
Country
Zip
Abstnct
From
PP
To
Journal_Article Proceedings_Article
Tide Tide
FName FName
Authocs Authors
LName [Name
Org Organi
City City
Affiliation State Affiliation State
Address Address
Country Country
Zp Zp
Abstract Abstract
From From
PP
To i To
N
ame Days From
Volume Due To
Joumal Number Moath
th Yo
PubDuc [=
Year City
Publisher Place State
Country

Book_Chapter
Title
FName
Authors LName
O |
City
Affiliation Staze
Address Counny
Zp
Abstract
From
P To
BookTite
Editoes
Book PubDate Moath
Year
ISBN
Publisher

Figure 4.2 IS-A relationship among the frame templates

Figure 4.2 shows the IS-A relationships among four frame templates: Paper,

Journal_Article, Proceedings_Article and Book_Chapter. For example,

Journal_Article IS-A (is a specialization of) Paper.

Whereas, Paper can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

be viewed as a generalization of Journal Article, Proceedings_Article and

Book_Chapter.
Theorem 4.1.1 The IS-A relationship among frame templates is a partial order.

Proof: Obviously, the IS-A relationship is reflexive, transitive and antisymmetric.
a
The IS-A relationship is transitive, so it is convenient to define an smmediate-

IS-A relationship as follows.

Definition 4.1.4 (Immediate-IS-A Relationship) Let F; and F; be two frame
templates. Assume F; IS-A F,. We define F, immediately-1S-A F, (denoted :IS-A)
if and only if there exists no frame template F (# F, or F;) such that F; IS-A F
and F IS-A F,. O

Given an ¢I5-A relationship, we define a document type hierarchy DH(V, E) as
follows. Each vertex in V(DH) corresponds to a frame template. The root vertex
F, of DH is the generic document type (i.e., F IS-A F,, VF € V(D#H)). Given two
frame templates F; € V(D#) and F; € V(DH) (i # j), (Fi,F;) € E(DH) if and
only if F; iIS-A F;. If we impose the additional restriction that whenever z iIS-A y

and z 7IS-A z, then y = z, then we obtain a tree document type hierarchy.

4.2 Folder Organization
A folder can be considered as a finite set of frame instances over different frame
templates. That is, the folder can be homogeneous or heterogeneous. Consider frame
instances to be grouped into folders on the basis of user-defined criteria, specified as
predicates, which determine whether a frame instance belongs to a folder. A formal

definition of a folder follows.

Definition 4.2.1 (Folder) Let Q denote the set of all the potential frame instances

for a user’s office environment. A folder f is a set of frame instances in §2 which satisfy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

a given predicate P. That is f = {fi | (fi € Q) A P(fi)}, where P(fi) asserts that the

frame instance fi satisfies the predicate P. We say P is the predicate associated with

the folder f.
/ John_Smith
| fi_l I fi.2
Tide A Data Model for Office Document Systems Sender FName | Peter
FName John LName | Thomas
Authors
LName Smith . FName | John
N " Receiver -
Organization | New Jersey Institute of Technology LName | Smith
City Newark Date 12
Affiliation Ad State New Jersey LetterDate Month March
Country | US.A. Year 1990
Zip 07102 Semester | Fall
SemesterAcpt
Abstract Year 1990
From 16
Days]
To 20 fi_3
Date
Month August FName | Peter
Sender
Year 1993 LName | Thomas
City San Francisco 3 FName | John
Receiver
Place State California LName | Smith
Country US.A. StdID 000-90-1234
Proceedings | 3rd Int. Conference on Office Systems Date 29
Publisher Computer Society Press NoticeDate Month November
P From 124 Year 1991
To 136 Semester | Fall
SemesterTaken
Year 1991
fid Outcome Pass
N FNName John
ame ‘
LName Smith l fi_s
UnivName | NYU Name FName John
UnivAttended | Degree MS LName Smith
Year 1989 Semester | Fall
SemesterTaken
Verbal 500 Year 1991
— QEApp! - -
GRE Quantitative | 800 I1stChoice Software Engineering
Analytical | 660 2ndChoice Compiler
GPA 3.85

N

Figure 4.3 A folder for the Ph.D. student John Smith

(N

Thus a folder is a repository of frame instances which satisfy the folder’s

predicate. For example, in Figure 4.3, five frame instances relevant to John Smith are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

grouped into the John_Smith folder. The predicate associated with the John_Smith

folder might be specified as follows:

P(fi) = (fi[Name] = [(FName : John), (LName : Smith)])
V ([(FName : John), (LName : Smith)] € fi[Authors]
V (fiReceiver| = [(FName : John), (LName : Smith)])

If f contains frame instances over frame template F, then we say f is associated
with F. We use f(F') to represent all the frame instances in f that are over the frame
template F. If there is no frame instance in f that is over F, then f(F) = ¢. We use
<f> to represent all the frame templates associated with f. Consider Figure 4.3, for
instance, <John_Smith> = {Publication, PhDAcceptLetter, PhDQEResult,
UnivTranscript, QEApplication}. Then, John_Smith(Publication) = {fi_1},
John_Smith(PhDA cceptLetter) = { fi_2}, John_Smith(PhDQEResult) = { fi_3},
John_Smith(UnivTranscript) = {fi.4}, and John_Smith(QEApplication}) =
{fi5}.

Folders can be naturally organized into a folder organization, where there is an
edge from folder (vertex) f; to folder (vertex) f; if folder f; is a subfolder of folder
fi (i.e. every frame instance of f; is in f;). For example, Figure 4.4 shows a folder
organization represented as a directed tree with seven folders, where the edges are
directed from a folder to its subfolders. We will assume that the predicate for a
child folder f is obtained by imposing an additional restriction or predicate on the
uniquely defined predicate of its parent folder f. That is, if f; is a child of f;, then
P, = P, Adj, where §; is the additional predicate imposed on f;, over that imposed
on f;, and P, and F; are the predicates associated with f; and f;. We call this
additional predicate d; a local predicate. In contrast, we call the folder predicates F;
and P, the global predicates of folders f; and f;, respectively. Thus a frame instance

is in a folder f; if it satisfies the global predicate for f; while it is also in a child f; of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

f; if it satisfies the additional requirement represented by d;. In set terminology, f; =
{filfie QAPR,(fi)} and f; = {fi | i € QAP (fi)}. Since P, = P, A¢;, then f; C f;.

The paths in a tree folder organization correspond to filing paths. A directed
edge (fi,f;) on a filing path indicates that frame instances in folder f; are filed into
folder f; if, in addition to the global predicate for f;, they also satisfy the local
predicate for f;. The filing path for a folder f; in a tree folder organization is the
unique path from the root of the tree to f;. For example, in Figure 4.4, the filing

path for the folder f4 is f; — f; — f,.

fq

Figure 4.4 A tree folder organization

The child folder f; of a parent folder f; is called a subfolder (or immediate
subfolder) of f;. In the more general situation where there is a nontrivial filing path
from f; to f;, we refer to f; as a remote subfolder of f;. For example, in Figure 4.4,
every folder in the tree is a remote subfolder of the root folder f;.

The tree model for a folder organization generalizes naturally to a DAG
(Directed Acyclic Graph) Folder Organization, where the underlying modeling graph
is a rooted DAG whose vertices correspond to folders specified as usual by global
predicates, and the root folder is the starting point of document filing. In a DAG
folder organization, just like in a tree folder organization, the frame instances

belonging to any folder f are obtained by imposing an additional local predicate,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

associated with f, on the global predicates associated with the immediate prede-
cessor vertices (or folders) of f. However, unlike in the tree organization there may be
more than one immediate predecessor. That is, the global predicate for f is obtained
by imposing an additional requirement, represented by the local predicate for f, on
the global predicate of each immediate predecessor folder of f. Let fi, ..., fi denote
all the immediate predecessor folders of the folder f, and let P; (1 < ¢ < k) be the
global predicates for f;. The global predicate for f is then just § A (P, V ... V P),
where 4 is the local predicate associated with f, or equivalently §(P; + ... + Py).

Example 4.2.1 An example is shown in Figure 4.5, where the local predicates are
Dept = CIS, Status = PhD, Status = Special Lecturer, Name = John Smith, Name

= James Davis, and Name = Kevin Johnson. Thus the frame instances in the James

Davis folder satisfy the global predicate:

(Name=James Davis) A [((Dept=CIS) A (Status=PhD)) Vv
((Dept=CIS) A (Status=Special Lecturer))]

O
CIs
Dept.
PhD Special
Stwdeats Lecturers
John James Kevin
Smith Davis Johnson

Figure 4.5 An example of DAG folder organization

A folder organization may be formally defined as follows.

Definition 4.2.2 (Folder Organization) A folder organization is a two-tuple,

FO(G,A) = [G(V,E), A), where:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

1. G(V, E) (also denoted G(FO)) is a rooted DAG, with every vertex reachable

from the root, and

e Each vertex in V(G) corresponds to a folder; the root vertex denotes the

generic folder of FO.

e A directed edge (f;,f;) € E(G) indicates that frame instances in f; that

additionally satisfy the local predicate for f; also belong to f;.

2.A={&|1<1i<|[V(G)} is a set of local predicates, é; being the local

predicate for f;.]

Thus, a filing path from folder f; to folder f; in a FO is just a path from f; to f;
in G(FO). Note that there may be more than one filing path from folder f; to folder
f;.

Each filing path ¢ of a folder f has an associated predicate p equal to [Tyev(g) dv-
The global predicate P for each folder f € V(G(FO)) can then be represented as:

P= % (II &)

qepaths(f) veV(q)

where paths(f) is the set of all filing paths from the root to f and 4, is the local
predicate of v € V/(g).

If two predicates P, and P, are equivalent, it is denoted by P, ~ P;. The

equivalence of folder organizations, which we will use it to discuss the optimization

problem of folder organizations, is defined as follows.

Definition 4.2.3 (Equivalence of Two Folder Organizations) Give any two folder
organizations FO(G(V, E),A) and FO(G'(V', E'), A"), FO(G, A) is equivalent to
FO(G', A’) if and only if V(G) = V'(G’) and for Vf € V(G), 3’ € V'(G') such that

their global predicates (P, Pr) are equivalent, that is, P ~ Py. O

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

A depends-on relationship between folders was introduced in [52]. Here, we
define a depends-on relationship in terms of a deletion operation Del. Del(FO(G, A),f)
indicates that a folder f is deleted from a folder organization FO(G, A). The folder

deletion operation Del may be defined as follows.

Definition 4.2.4 (Folder Deletion Operation (Del)) Given a folder organization
FO(G,4), Del(FO(G,A),f) = FO(G'(V',E'),A’') where G' is the induced
subgraph [37] on the set of vertices V' C V(G) — {f} which are reachable from
the root of G, and A’ is the set of local predicates for V"'. a

Consider the folder organization FO(G(V, E), A) shown in Figure 4.6, where
V = {fl,fg,f3,f4,f5, fs,f7,f8}. Del(fO(G’, A),fz) = fO(G'(V’, E’), A’) where V' =
{fla f3) va fS}

Various depends-on relationships between different folders may then be defined

as follows.

Definition 4.2.5 (Depends-On Relationships) Let FO = [G(V, E), A] be a folder

organization.

1. A folder f € V(G(FO)) is said to totally depend-on a folder f if ¥ ¢
V(G'(Del(FO(G, A),f))).

2. A folder f € V(G(FQ)) is said to partially depend-on a folder f if some, but
not all the (filing) paths from the root of FO(G, A) to f are disconnected in
Del(FO(G, A), f).

3. A folder f € V(G(FO)) is said to be independent-of a folder f if none of the
filing paths to f' is disconnected in Del(FO(G, A),f). a

We denote these relations as follows: for f totally dependent-on f: f << f; for

f partially dependent-on f: f < f; for f independent-of f: f <> f.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

These relations are complete and mutually exclusive in the sense that for any
pair of folders f and f (f # f), exactly one of the relations (f << f, f < f, f <>~ f)
holds. There are also obvious relationships between these relations. For example, if
f << f, then f <> f, because f << f implies every path from the root to f passes
through f, whence deleting f' from FQ affects no path from the root to f. It is also
true that if f < f, then f <> f, since f < f implies there exists some path to f from
f, whence, by the acyclic nature of G(FO), there exists no path to f from f. We can
similarly establish, for example, transitivity, such as if f, << f; and f; << f3, then
f, << f3, and so on.

There is no partially depends-on relationship in a Tree Folder Organization
because of the uniqueness of paths in a tree. For example, in Figure 4.4, f; << fi,
and f; <> f4, but no folder partially depends-on any other folder. In a DAG folder
organization, however, all the depends-on relationships are possible. For example,
consider Figure 4.6, where f; << f}, fg < f5, and f; <> f4.

We extend the totally-depends-on relationship to a set of folders as follows. Let
F be a set of folders in a DAG folder organization FO(G,A). We say a folder f
totally depends-on the set F (denoted f << F) if f' partially depends-on every folder
f € Fand f ¢ V'(G'(Del(FO(G, A),F))). For example, in Figure 4.6, folder fzg <<
{f2,f;}. The relationship is, of course, not necessarily unique. Thus, in Figure 4.6,

we also have: fg << {fg,fs}, fg << {f3,f5}, and fg << {f5,fs}.

Theorem 4.2.1 IfF = {fi,...,fc} is a set of folders that the folder f totally-depends-

on, then f C UL, (f:).

Proof: By the definition of totally-depends-on a set of folders, every filing path

from the root to f passes through at least one vertex (folder) f; € F. Thus, every

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

Figure 4.6 A DAG folder organization

instance in f must be contained in at least one f;, whence it follows that f itself must

be contained in the union of the fs. (]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5
EXTENDED D_ALGEBRA

Table 5.1 lists the extended D_algebra operators; they are categorized into nine

classes. Each class of operators will be discussed in turn in the following sections.

Table 5.1 Operators of the D_Algebra

Class Operators Type Operands Result
1 u,n,— binary folders folder
2 . binary | fr. instances | fr. instances

X binary folders folder

3 T unary folder folder

4 04 unary folder folder

5 ™ binary folders folder

6 P unary folder folder

7 v, V%, u, p* unary folder folder

8 cont, sum, avg, min, max | unary folder NUM
Yag (O is a subset of the

9 descendant attributes of | unary folder folder
a top-level attribute A)

Figure 5.1 shows a partial folder organization that a departmental chairperson
of a university may use in keeping track of the status of his/her faculty members and
Ph.D. students. We illustrate some of the operators using examples drawn from a

part of the folder organization shown in Figure 5.1.

5.1 Class 1: Set Theoretic Operators
The first class of operators consists of the binary set theoretic operators for folders.

These include the union (U), intersection (N), and difference (-).

Definition 5.1.1 Let f; and f, be two folders.

o The union of f; and f,, denoted f; Uf,, is the set of frame instances that belong

to either f; or f; or both, i.e., i Uf, = {fi|(i € 1) V (fi €)}

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CIS Dept
Faculty Special
Lecturers
Blake Jounes Smith
I Faculty Vitae I Publication
Position Memo - Faculty
Application [~ University Position
- Univensity | Transcript | Application
Transcript - Employment
- Employment Visa
Visa - Usiversity (Robenss Stooe
- Memo Transcript
- Publication I Meeting
> Vitae Memo

Publications
PhDStds
Adams |-~ Hicks
- Research ~ PADQE
Interests Result
|- Updated | Research
Transcript Interests
F PhDQE :
Result :
- PhD - Updated
Accept Transcript
Letter

32

PhD Pgm
QExams
QEApplicant
QEQuestion
Post Teaching
Qualified Assistants

Figure 5.1 A partial folder organization

o The intersection of f; and f;, denoted f; N f3, is the set of frame instances that

are in both f; and fy, i.e., fiNfo = {fi|(fi € fi) A (fi € f2)}.

e The difference of f; and f,, denoted f; — f,, is the set of frame instances that

are in f; but not in f5, i.e.,, f; — f = {f|(fi € f1)) A (f € f2)}.

Theorem 5.1.1 Both the union and the intersection operations are commutative

and assoctative. The difference operation is neither commutative nor associative (i.e.,

there ezist folders f, and f; such that f; —f, # fo — f; and f; — (f2 —f3) # (fi —f2) —f3,

respectively).

5.2 Class 2: Concatenation and Cartesian Product

The second class consists of the concatenation and Cartesian product operators.

Definition 5.2.1 Let fi, and fi, be two frame instances over frame templates F,

and F3, respectively. Then the concatenation of fi; and fi,, denoted fi, ® fi,, is:

(] if 3A € T(Fy) N T(F;) such that fi;[A] # fi,[A]

fiie fiy,=

fi otherwise,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

where fi is a frame instance over F, U* F, and for each (A; : V;) in fi, either (4; : V;)

isin fi, or (A; : Vi) is in fi,.

Definition 5.2.2 Let f; and f, be two folders. Then, the Cartesian product of f;
and f;, denoted f, x fy, is the folder {fi, o fi, | (i, € fi) A (fi, € f2)}.

We define {[|} = ¢. Thus, {[], i} = {[]} U {£} = {fi}. Intuitively, the

Cartesian product of two folders f; and f; is a set of frame instances which are
formed as a result of the concatenation of every frame instance of f; with every

frame instance of f,.

5.3 Class 3: Project Operator
The third class consists of the unary restrictive operator project (w) for folders.
Informally, given a folder f, the projection of f onto a set of attributes S, denoted

74(f), yields a new folder which is a restriction of f to the attributes in S.

Definition 5.3.1 Let f be a folder, and S = {A;,A;,..., A} where 4;,1 < j <k, is

an attribute. The project operation is defined as follows:

Urect> (s (F(F))) if VF €< f >,either § N T(F) = ¢
ms(f) = or§ C YT(F)
Use<t> (s (F(F))) otherwise,
where
¢ if S NT(F) =¢

7s(F(F)) =
{A(S) | A ef(F)} ifS C T(F),

and 7, (F(F)) = {£i(S) | fi € f(F)} where

<f>=J{F}u U ({F;, U Fy, U7 . U® Fy, }),

FeA {Fi) Figo..Fy }€B

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

f=UEE)U U EFy) x f(Fsy) x ... x f(Fy)),

(F"I'F"Q Pi‘ }eB

where A contains all the frame templates F € < f > such that § C T(F) and B

is a collection of sets of frame templates {F;,,F;,,...,F;,} C < f > such that S C

i
m=i, L(Fm)-
Y
/ f o\
il ﬂJl ﬁ_al
Al v Al vio
Al vi
/ £\ F| vis B| va
| ‘ Bl v2 B| v H
fil fi2 A3 c va 4 Vi2
Al Vi Al ve Al vio Cl Vs C| Vs
Bl v2 B| wv1 B| va
cl v3 D| vs H| vI2 fi3 fiJo fill
Al ve Al vio Al vi3
ﬁ_4| ﬁ-5[ﬁ_ﬁl B| v7 B| vsa F| vi4
B| v4 E| v9 Al vi3 D| V8 H| Vvi2 B| V4
cl wvs cl| vs F| vis E] V9 E] V9 cl vs
cl vs c| vs E| vo
(@ ®)

Figure 5.2 Illustration of the project operation

We define 7,(¢) = ¢, for all S. Figure 5.2 gives an example to illustrate how
the project operator works. Initially, we have a set of frame instances in the folder f
(Figure 5.2(a)). That is, f = {fi1, fi2, .3, fi4, fi_5, fi.6}. Each frame instance fi.s,
1 <7 < 6, is over the frame template F;. Let S = {A, B, C}. By the definition, < f>
= {F, F u* Fy, F, U* Fs, F3 U® Fy, F3 U® Fs, Fy U* Fg, Fo Ut F3 U Fy, Fp U°
F3 U* Fs, F, U Fy U% Fs, Fo U2 Fg U Fg, Fo U2 F5 U® Fg, F3 U Fy U F5, F3
u* Fy U® Fg, Fq U* Fs U® Fg, Fy Ut F3 U2 Fy U F5, Fy U F3 U* Fy U® Fg, Fp U
F, U* F5 U* Fg, Fo U* F3 U* F5 U® Fg, F3 U* Fy U® Fs U® Fg, F, U° F3; U® Fy U®
Fs U Fg, ... }. In terms of the definition of Cartesian product, f = {fi.1} U (f(F)
x f(Fs)) U (f(F3) x f(F4)) U (f(F3) x f(Fs5)) U (f(F4) x f(Fs)) U (f(F3) x f(Fq)) x
f(Fs)) U (f(F4) x (f(Fs) x f(Fe)) = {fi-1, -7, A8, fi9, fi-10, fi11} (Figure 5.2(b)).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

Finally, n,(f) = n,(f) = {[(A: V1),(B: V2), (C: V3)], [(A: V13),(B: V4), (C: V5)),
[(A:V10),(B:V4), (C:V5)], [(A: V6),(B: VT), (C: V5)]}.

Example 5.3.1 Consider again the folder Smith in Figure 5.1. Then, the query

T (rsx10aunore pasej (OMith) returns a folder composed of frame instances having attributes
Title,Authors and Date, namely, {[(Title: “D_Model: A Data Model for Office
Documents”), (Authors: “Steve Smith”), (Date : [(Month : “June”), (Year: “1992")])]}.
On the other hand, m{zse1e suthors pegreatbtained} (SMith) = T{rie1e tuthors Degraetbrained} (f),
where f := Smith(Publication) x Smith(FacultyPositionApplication). And the
result would be {[(Title: “D.Model: A Data Model for Office Documents”),

(Authors:“Steve Smith”), (DegreeObtained: “PhD”)]}. !

Theorem 5.3.1 Let f be a folder and S; and S, be two sets of attributes. Suppose
7s, (f) # ¢ and 75, (f) # ¢.

(i) If S = S, then g (7, (F)) = mg, (75 (F))-

(i) If Si # Sa, then my (75, (F)) # 75, (ms, (f)) except where both n; (ws,(f)) and

ey (15, (F)) are empy.

Proof: (i) is straightforward. For (ii), we consider two cases:
Case 1: §; NS, = ¢. Thus, 7, (7 (f)) = 75, (75, () = ¢-
Case 2: 8 NS, # ¢. There are three subcases to examine:
(1) 81 C 8. 73, (14, (1) = 7, (1) # 7, (m, () = 6.
(2) 8 C 81 7y, (76, () = 6 # g, (g, () = s, ().
(3) 81 ¢ &2 a1d & ¢ 1. 7, (m, (1)) = g, (s, (F)) = 6. 0

Let S be a set of attributes. We say two folders f, and f, satisfy the zero-one
condition with respect to S if for all frame templates F € < f; > U < f; >, either §

C Y(F) or S N Y(F) = ¢.

Theorem 5.3.2 Let S be a set of attributes and 8 € {U, N, —}.
(i) For any two folders f; and fa, w (f16f2) = m (f1)0n,(f;) provided that f, and f,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

satisfy the zero-one condition with respect to S.

(it) There ezist two folders f, and f; such that w (fi0f;) # m (f,)0n,(f) where f,

and f, do not satisfy the zero-one condition with respect to S. (i.e., there erists F €

<fi>U<fy> such that S € Y(F) and S N T(F) # ¢).

Proof: (i) It suffices to consider only the frame templatess F € < f, > U < f, >

where § € T(F). Let F contain all such frame templates. We only prove = (f; Uf,)

= 7 (f,) Um,(f;). For the other operators, they can be proved similarly. For any

frame template F € F, there are two cases to be examined:

Casel: F e <f, >N < f; >. Then,
s (f(F) U &(F))

= {fi(5) | fi € (L(F) U f2(F))}

= {f(5) | f € fi(F) V£ € f(F)}

= {fi(5) | fi € fu(F)} U {£i(S) | fi € f2(F)}

= ms(fu(F)) U 75 (f2(F)).
Case 2: F € < f, > — < f; >.! Then,
ms (R(F) UR(F)

= m5(L(F) U 9)

= m5(fL(F)) U 5 (f(F)).

Let f =f; Ufy. Then
mg(fLUf)

= Upecrrucrs (Ts(f(F)))

= Upes (ms(f(F)))

= Uper (ms(fi(F) UF(F)))

= U, (15 (Fi(F)) Umg (F2(F)))

= Uper (s (FL(F))) U Uge, (w5 (F2(F)))

P € <f, > — < f; > is similar to Case 2.

(By Definition 5.3.1)

(By Definition 5.3.1)

(Since F € < f, >, f3(F) = ¢)
(Definition 5.3.1 and 7, (¢) = @)

(By Definition 5.3.1)

(Since UFE((<fl>u<f2>)—.F) (WS (f(F))) = ¢)
(f(F) = fi(F) U £2(F))

(In terms of Case 1 ~ 2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

= Upeays (Ms(i(F)) U Upee,,, (mo(6a(F)))

(By Definition 5.3.1)

= mg(f) Umg(f2).
/i \ S h N\
Name Steve Smith Name Steve Smith DeptName | COE
DeptName CIS DeptName CIS Institution | Rutgers
Institution NIIT Institution NIIT Location | Newark, NJ
Occupstion Professor Occupation Professor
Specialization | Database Specialization | Database DeptName | CS
Institution | Rutgers
Name Jane Jones Name John Black Location | New Brunswick, NJ
Occupation | Instructor Occupation | Asst. Prof.
Specialization | Al Specialization | Expert Sys. Name Jane Jones
Institution Rutgers Iostitution Rutgers Occupation | Instructor
DeptName COE
Institution Rutgers
Location Newark, NJ

Figure 5.3 Two folders f; and f;

(ii) Consider the folders f; and f, given in Figure 5.3, and f3, fy, f5, fs and f; in

Figure 5.4. We examine each operator in turn.

Figure 5.4 Five folders f3, fy, f5, fs and f7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

(a) For the “U” operator, let S = {Name, DeptName, Institution, Occupation,
Specialization}. m,(fyUfs) # m(fi)Umy(f2), since g (fy Uf,) = fy whereas 7 (f;)U
ms(f2) = f3.

(b) For the “N” operator, let S = {Name, DeptName, Institution, Occupation}.
ms(fy Nf2) # w5 (f1) Nmy(F2), since mg (fy N f,) = fs whereas 7, (f;) N7, () = fs.

(c) For the “—" operator, let S = {Name, DeptName, Institution, Occupation,
Specialization}. = (fi — f2) # ms(fi) — m¢(fy), since n (f; — f2) = ¢ whereas

Ts (fl) - s(f2) = f. O

5.4 Class 4: Select Operator
The fourth class consists of the unary restrictive operator select (o) for folders. The

syntax of the selection operation on a folder f is o, (f), where P is a predicate clause.

Definition 5.4.1 Let f be a folder and P be a predicate clause. Let S be the set of

attributes appearing in P. The select operation is defined as follows:
Ure<t> (0, (f(F))) if VF €< f >, either SNT(F) = ¢
op(f) = or S C T(F)
Upect> (02 (F((F))) otherwise,
where

{f (£ ef(F)AP(A))} if §CT(F)

»(f(F)) =
1) ¢ if SN T(F) = ¢,

and o, (f(F)) = { fi | (fi € () A P(i))}, where f and F are the same as those in
Definition 5.3.1.

Let S be the set of attributes appearing in a predicate clause P. If S & T(F),
then we define o, (f(F)) = ¢. Furthermore, o,(¢) = ¢ for any P.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

Example 5.4.1 Consider again the folder organization in Figure 5.1 and the query:
List the PhD students who were accepted in the Fall of 1989 and have passed the
Qualifying Ezamination in or before the Spring of 1991. The algebra expression is
as follows: Result := =, . ., (0.(f) = 7 . ' (0s),

where P := ((SemTaken < [(Season : Spring), (Year : 1991)]) A

(SemAccepted = [(Semester : Fall), (Year : 1989)])), and

f := PhDStds(PhDA cceptLetter) x PhDStds(PhDQEResult). o

In this example, there is no frame template associated with the PhD Students
folder PhDStds that contains both attributes SemTaken and SemAccepted (cf.
Appendix A). The two attributes are contained in the Cartesian product of
PhDStds(PhDAcceptLetter) and PhDStds(PhDQEResult), in which the frame
instances having the same attribute name with different values are eliminated.

The following example shows that selection should usually be performed after

applying the Cartesian product to two folders.

N\ .\

FName | Steve FName | Steve FName | Steve
Name WName St | || [(Name] Smith Neme [Neme| Smith
DegrecObtained | PhD Sex M Sex M
Institution Rutgers Occupation | Professor Occupation | Professor
Specialization | Database Teaching | Dutabase Teaching | Datsbase

FName | Janc FName | Jane Tide A Model for Office Documents
Name Name -

LName | Jones LName | Jones Author Steve Smith
DegrocObtained | MS Sex F Organization | NJIT
Institution NJIT Occupation | Instructor Dae Moath{ Junc
Specialization | Al Teaching | Al Year | 1993

Figure 5.5 Two folders f; and f;

Example 5.4.2 Consider the folders f, and f; in Figure 5.5. Suppose we are
interested in the title, the author of a paper, and the author’s degree in the two
folders. Let S = {Title, Author, DegreeObtained}. If we simply perform the
Cartesian product and projection on f, and fz, we get w(f; x f2) = {[(Title: A

Model for Office Document), (Author: Steve Smith), (DegreeObtained: PhD)],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

[(Title: A Model for Office Document), (Author: Steve Smith), (DegreeObtained:
MS)]}. This would yield wrong results as it shows inconsistent and extraneous
information regarding the degree Smith obtains. To resolve this conflict, we could

apply the select operator before projection as follows.

Let f = al-:((rln-:Steue).(Ll-o:Smilh)](fl X fz).
Then 7, (f) yields {[(Title: A Model for Office Document), (Author: Steve Smith),

(DegreeObtained: PhD)]}. 0

Let P, and P; be two predicate clauses. Let S; and S; be two sets of attributes
appearing in P, and P,, respectively. We say a folder f satisfies the zero-one condition

with respect to P, and P, if for all frame templates F € < f >, either S; C T(F) or

S N T(F) = ¢, Vi e {1,2}.

Theorem 5.4.1 Let P, and P, be two predicate clauses.

(i) For any folder f, o, (0, (f)) = 0y, (0 (f)) provided that f satisfies the zero-one
condition with respect to P, and Ps.

(i) There ezists a folder f such that o,, (0, (f)) # 0,, (0., (f)) where f does not satisfy
the zero-one condition wz:th respect to P, and P, (i.e., there ezists F € < f > such
that S; € T(F) and S; N T(F) # ¢, for some i € {1,2}, where S;, 1 < i < 2,

contains the attributes appearing in P,;).

Proof:

(i) Let &) and S, be the two sets of attributes appearing in P, and P, respec-
tively. First, we prove that o, (0,, (f(F))) = 0,,(0, (f(F))), VF € < f >. There are
three cases to be considered:

Case 1: &1 C T(F) and S; C YT(F). Thus,

01, (@5, (F(F)))
=0, ({fi|fi €f(F)A P(fi)}) (By Definition 5.4.1)
= {f'|f' € {fi| f e f(F) A P(fi)} APL(A)}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

= {f" | f" € {f' | i € f(F) A Pi(fi")} AP(f)}
=a,, ({f'| ' € f(F) A PL(fi")})
= 0p, (75, (F(F))) (By Definition 5.4.1)
Case 2: §; C T(F) and S; N T(F) = ¢, 4,5 € {1, 2} and ¢ # j. There are two
subcases: S, N T(F) = ¢ and S; N T(F) = ¢. By Definition 5.4.1, 0p, (05, (f(F))) =
¢ = 05, (95, (f(F)))-
Subcase 2.1: 5; N Y (F) = 4. So, 0,, (0, (f(F))) = ¢ = 0, (04, (F(F))),
Subcase 2.2: 8, N Y(F) = ¢. So, 0,, (74, (f(F))) = ¢ = 0, (05, (f(F)))

Case 3: S N T(F) = ¢ and S; N T(F) = ¢. Thus,
p, (07, ({(F)) = 6 = 0, (07, (F(E))).

Therefore,

01, (00 (F)
= 0p, (Upears (05, (F(F)))) (By Definition 5.4.1)
= Urears (05, (05, (f(F))))
= Upeers (0,,2 (cr,,,1 (f(F)))) (In terms of Case 1 ~ 3)
= 0p, Upea> (5, (F(F))))
= 0p, (04, () (By Definition 5.4.1)

(ii) Consider the folder f; given in Figure 5.5. Let P, be (Occupation =
Professor) A (DegreeObtained = PhD) and P, be (Specialization = Database).

o5, (05, (f1)) = ¢.

05, (05 (f1)) = {[(Name : [(FName : Steve), (LName : Smith)]), (DegreeObtained :
PhD), (Institution : Rutgers), (Specialization : Database), (Sex : M),
(Occupation : Professor), (Teaching : Database)]}.

Therefore, o,, (05, (f1)) # 0,, (0, (f1))- a

Let P be a predicate clause. Let S be the set of attributes appearing in P.
We say two folders f; and f; satisfy the zero-one condition with respect to P if for all

frame templates F € < f; > U < f; >, either S C T(F) or S N T(F) = ¢.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

Theorem 5.4.2 Let P be a predicate clause. Let 6 € {U, N, —}.

(t) For any two folders f, and f,, o, (f10f) = o,(f1)00,(f;) provided that f, and f,
satisfy the zero-one condition with respect to P.

(#) There ezist two folders f, and f; such that o, (fi0f;) # o, (f)00,.(f;) where f,
and f, do not satisfy the zero-one condition with respect to P (i.e., there ezists F €
< fi >U<fy> such that S € T(F) and S N T(F) # ¢, where S is the set of

attributes appearing in P).

Proof: (i) Let S be the set of attributes appearing in P. It suffices to consider
only the frame templates F €< f; > U < f; > where S C T(F). Let F contain all
such frame templates. We only prove o, (f; — f;) = o,.(f;) — g,(f;). For the other
operators, they can be proved similarly.

Let 6(O) be the set of all frame instances. First, we show o, (f,(F) — f5(F)) =
0, (fi(F)) - 0, (f2(F)), VF € F. There are two cases to be examined:

Case 1: F € < f; >N < fy >. Thus,

op (f1(F) — £;(F))
= {f | fi € (4(F) - £2(F)) A P(R)}
= {fi | (f € fi(F)) A (fi € £2(F)) A P(fi)}
= {fi | (fi € i(F) A P(fi)) A (fi € £2(F)) A P(f))}
= {f | fief(F)AP(f)} N {fi | i & F2(F) A P(fi)}
= o, (fi(F)) N {fi | fi € (6(0) - f(F) A P()}
= 0,(fi(F)) N 0,(6(0) - f2(F))
= 0, (L () - o, (f(F)).

Case2: Fe <f; > — < f; > .2 Thus,

o, (fi(F) ~ f2(F))
= 0, (fi(F) - ¢) (Since F ¢ < f; >, fo(F) = ¢)
= 0, (fi(F)) - 0, (f2(F)). (Since f2(F) = ¢, 0, (f2(F)) =)

’F € < fy > ~ < f; > is similar to Case 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

Let f = f, — f;. Then,

0, (fi —f2)
= Urecnsucys (0 (f(F))) (By Definition 5.4.1)
= Ures (05 (f(F))) (Since Upeicqsuciors (@ (F(F))) = 9)
= Uper (0, (1(F) ~ f2(F))) (F(F) = f,(F) — f,(F))
= Upes (95(fi(F)) - 0, (f2(F))) (In terms of Case 1 ~ 2)

= Uger (0:(fi(F))) - Upe» (05 (f2(F)))

= Upean> (0 (fi(F))) - Upeyy (05 (f2(F)))

=0,(fi) — 0,(f2) (By Definition 5.4.1).
(i) Let P be (A= V1) A (D = V4).

Consider the folders fy, fz, f3 and f; in Figure 5.6. We examine each operator

in turn.
fl fz
Al vi D| va Al VI D Va4
B v2 E Vs B| v2 E v7
C v3 F V6 c|{ v3 F Ve
f; f,

D[v4 Al wvi
D| v4 D V4

E Vs B V2
E| vs F V6

F V6 c| v3

Figure 5.6 Four folders fi, f,, f3 and f4

(a) For the “U” operator, g,(f; Uf3) # 0,(f) U o,(f3), since

op(F2Ufs) = {[(A : V1), (B: V2), (C: V3), (D: V4), (E: V7), (F: V8)],
[(A: V1), (B:V2),(C:V3), (D:V4), (E: V5), (F: V6)]}, whereas

op(f2) Uo,(f3) = {[(A: V1), (B:V2),(C:V3),(D:V4), (E:VT), (F:V8)]}.

(b) For the “N” operator, g, (f; Nfy) # o,(f1) No,(fy), since

o,(fi Nfy) = ¢, whereas

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

o,(fi)No.(f) = {[(A: V1), (B: V2),(C:V3), (D: V4), (E: V5), (F: V6)]}.

(c) For the “—” operator, 0, (f; — f3) # 0,(f;) — 0, (f3), since

0p(f1) - 0,(6) = {[(A: V1), (B: V'2), (C: V3), (D : V4, (E: V), (F: V6)]),
whereas

op(fi — f3) = ¢. O

5.5 Class 5: Join Operator

o S

FName Joha FName | Joha
Nume I Neme |Doc e | hobn el T
Sams | ABD L.Name | Doe Type GA
Univ_Name | NYU| |Sex M Dty CIS ibary
University | Degree_ MS Stroet {2 Bay St Supervisor | Seeve Smith
Aftended iwm Aoy || Newaek FName | James
‘ear 1988 Ste [NJ Sut LName | Jooes
Verbal 500 Zp |one Tyee T~
GRE Quastitstive | 780 GPA 3.5 Duty Teach CIS 431
Anlyial | 680 Supervisor | Steve Smith
~r f \
Name FName John
LName Doc Name FName | John
Status ABD IName | Doe
Ualv_Name | NYU Sex M
University | Degree. . ™S Street | 2 Bay St
Attended | Sougit Address Clty Newark
Year 1988 Stte |NJ
Verbal 500 Zip 07102
GRE Quantitstive | 780 GPA 380
Amlytical | 680 FName | Joha
| Pame_ |lom Suame | eme | Doc
LName Doc Type GA
Type GA Duty CIS Kbeary anseadant
Duty CIS libeary aticnd Supervisor | Seve Smith
Supervisor | Sieve Smith

Figure 5.7 Three folders Doe, Assistantships and f

The join operator, which is applied to two folders, is defined in terms of the Cartesian
product and select operators. Intuitively, the join of folders f; and f, based on a
predicate clause P, denoted f, Xp f,, is the set of frame instances in the Cartesian

product of f; and f, that satisfy P. Formally,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

Definition 5.5.1 Let f; and f; be two folders and let P be a predicate clause. Then

fl NP fg = O'P(ﬂ X fg)

Example 5.5.1 Consider the two folders Doe and Assistantships in Figure 5.7. Then,

Doe ™M, 4o —ve. Assistantships = f. m]

5.6 Class 6: Renaming Operator
An important operation in dealing with self-join [45] is renaming. This operator
helps to avoid the ambiguity when referring to an attribute in the corresponding

frame templates. The syntax and semantics of the operator are given below:

Definition 5.6.1 Let A,,, A,, ..., A, Aj,, Aj,, ..., and A;,, be distinct attributes.
Suppose that for each F €< f >, A,, € T(F), 1 < i < m. Define

plr; L Rl P Y PRTEL Y Ny (f) = FEL<Jf>(plrl hrgebrm —hjy hjp ki (f(F)))’
where
{Purytem ety a B) | fi € (F(B))} if {Ajy, .. Ajn} € T(F)
p‘rl brm A b (f(F)) - Ary 1eeeok Ajpeeeebio it ;

f(F) otherwise,

and for a given fi = [(A; : V1), (A2: V2), .y (Aj; 1 Vi), oy (Rjm 2 Vin)s ooy (Ak i VR)] €

..........

Example 5.6.1 Consider again the folder organization in Figure 5.1 and the query:
List all the PhD students who applied to take the Qualifying Examination in the same
semester that Mary Jones applied. The algebra expression is as follows:

Let P := (StdName2 = [(FName : Mary), (LName : Jones)]).

QEXamS2 := 07, (04, crrme rrantinedsscaene tesatine} (QEXAMS)).

Result := 7 4. (QExams) M _....,(QExams2)). o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

This example illustrates the use of the renaming (p), project (r), and join (X)
operators. We perform a join of the QExams folder with itself. The join is accom-
plished by first generating a folder QExams2 which is a copy of a portion of QExams
containing only Mary Jones’ applications where StdName is renamed to StdName2
and ExamTime is renamed to ExamTime2. Then a join operation is performed on the
two folders QExams and QExams2 to find all the PhD students from QExams whose

ExamTime is the same as ExamTime2 of QExams2.

Memol Personalinfo

Sender Steve Smith SidName Bill Welch
Receiver | John Doe AdmYear Fall, 1991
MemoDate | 01/14/94 AdmCondition| Unconditional|

Figure 5.8 A folder f used to illustrate the renaming operator

The renaming operator also helps to get specific frame instances from a
folder. For example, consider the folder f in Figure 5.8 and the query: “List
all the admission letters in the folder f.” Simply projecting the attributes on the
admission letter does mot work, SINCe Ty .. pucvsver ssarens smcentinten) () = 1[(Sender:
Steve Smith), (Receiver: James Moore), (AdmYear: Fall, 1990), (AdnCondition:
Unconditional)], [(Sender: Steve Smith), (Receiver: John Doe), (AdmYear:
Fall, 1991), (AdmCondition: Unconditional)]}, which produces an extraneous
and incorrect frame instance [(Sender: Steve Smith), (Receiver: John Doe),
(AdmYear: Fall, 1991), (AdmCondition: Unconditional)]. To solve this problem,
we can rename the attributes on admission letters by changing Sender, Receiver,
AdmYear, and AdmCondition to From, To, AdmY, and AdmCond, respectively. Then,
we can get the desired result by projecting onto the renamed attributes, i.e.,

ateur sscontieica () = [(From: Steve Smith),

W('m.‘h.ldn?.m) (p'n-.fo.uﬂ AdaCond 8 Jacaiver,i

(To: James Moore), (AdmY: Fall, 1990), (AdmCond: Unconditional)].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

The renaming operator also helps to establish some implicit relationship
between two folders. Consider, for example, two folders Faculty = {[(Name: Steve
Smith), (Occupation: Professor), (Area: Database)]} and PhDStudent = {[{
Name: John Doe), (Advisor: Steve Smith)]}. Since Faculty x PhDStudent = ¢,
there is no way to know that Steve Smith is the advisor of John Doe. However, such
a relationship can be established by applying the renaming operator. Specifically,
Piarsecs cxeme (FACUILY) X Dp s+ seae (PhDstudent) = {[(StdName: John Doe), (Advisor:
Steve Smith), (Occupation: Professor), (Area: Database)]}, which shows Steve

Smith supervises John Doe.

5.7 Class 7: Restructuring Operators
Intuitively, the nest operator (v) produces frame instances over frame templates
from flatter ones (not necessary flat). Given a frame template and a subset of its
attributes, it aggregates a set type that agrees on those attributes. Before giving
the formal definition, we need some discussion. For simplicity, we only consider a
folder containing frame instances over the same frame template. Suppose the frame
template F = [(A; : T1), ..., (A : Th), (An+1 : Thet)y - (A @ Ti)] associated with
the folder f, where 0 < h < k. v_, .. ,(f) yields a set of frame instances over

the frame template [(A; : T1), ..., (Ax : T), (A : T)], where T = {[(An+1 : The1)s -

(Ak : Ti)]}. As an example, consider Figure 5.9, f' = v, . _icrimemeaese) (F)-

VAR /T N\
Sender Mike Johason Sender Mike Johnson Sender Mike Johnson
Receiver | John Smith Receiver | John Smith Receiver | John Smith
Subject Tutoring Workshop | | Subject Tutoring Wockshop Subfect Tutoring Workzshop
MemoDate | 0272471994 MemoDate | 022471994 MemoDate | 022471994
MigDae | 02/28/1994 MigDate | O/16/1994 MigDay MigDate | 02/28/1994 MigDar | 0V/16/1
MigTime | 2:00 pm MigTime | 3:00 pm MigTime | 2200 pm | MigTime | 3:00 pm
MigPlace | C15 Conf Room MigPlace | CIS Conf Room MigPlace | CIS Conf. Room

Figure 5.9 An example to illustrate v
However, consider Figure 5.10, the folder f, is obtained by applying the operator

v. That is, fo = V.. (eery (f1). The question is “Can we get the folder f3 from f,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

using the nest operator v?' The answer is negative. That is why we introduce two

nest operations (v, v*) as follows.

/ I| ~
Tis A Docemant Modsl Tule A Documt Model
PNamss | Devid MNams | Joha
Laasms | Roblasom Lasms | Smith
Affitistion | New Jarsey lnstituts of Tech. Alfilition | New Sersey lastiomts of Tech.
L hM‘ME M uu«mm
Tide As Algebrs for Offics Docemmats Tids A Caicalug for Offics Docnensats
Pams | Devid Pians | Johs
AN T s Robiasca - LiNomw | Smich
Affilicaciog New Jarsey lnstitwts of Tech. Affilicatiog New Serusy Instioste of Tech.
Nams | lst. Sournal of Information) Nams | Journal of bnformation Sys.
Vol. |6 Vol 10
Na. 4 No. 2
| Year] Decembar, 1992 Your | Apefl. 1993
=4 f,) f,
Tike A Docemmat Modst Tidde A Docasmat Modat
Fass | David I Priams | Joha FNams | Devid | PNoms | Johm
LNems | R LNams | Ssith LNams | Robiascs] LNams | Swich
Alfilistion | New Jarwy fastitwie of Tech. Affilation Nﬂwlfﬂ.
Procesdings | lnt. Cout. of Information Sywscs Tnt. Coaf. of Informstion Systeems
Titls An Algebra for Offics Docsments Tids A Caicalus for Office Docunemts Thie As Algehrs for OfT Tids A Calculus for Offics Documents
FiNams | David Fams | Johm Psms | David Pams [Joha
Asthor
1 Avthor 1 Ao - Awtor I
Affilicatiod New. lostints of Toch. New Jarvey Instiorte of Tech Affillicatiol New Jerscy lnstitote of Tech. Affilicationf New Jarsy lnstituts of Tech.
Nams | Int. Journal of I Nazs | Journal of Information Sys. Nesw | iat. Journel of Naow | Sournal of < Sys.
Vol. [] Vol.] Vol |6 Vol. 10
Journa)
o s Joursal No. 2 Jowmal . e Jownal . 2
Your | Ducember, 1992 Yoar | Apeil, 1993 | You__ | Decaenber. 1992 Your | Apett. 1993

Figure 5.10 An example to illustrate the need of v*

Definition 5.7.1 (Nest Operator (v)) Let f be a folder and A be an attribute. v is
defined as follows:

Vit A,‘)(f) = U (v =(A1.....4,,}(f(F)))v

..... s
where

S if {A,... A} C<F>

f(F) if {A;,...,Ac} Z<F >
where £ = < F > - {A;,..., A}, S={t | VAR € f(F) A t(€) = fi(€) A t[a] =
T ainany Y. 0

Definition 5.7.2 (Nest Operator (v*)) Let f be a folder and A be an attribute. v*

is defined as follows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

v(H)= U &E®),

Fe<f>

where
if {A;,...., Ak} C<F>

f(F) if {Ay,..., A} <F >
where £ = < F > - {A,.., A}, S = {t | (VA)(fi € f(F) A t(6) = fi(e) A t[A] =
{f'(Ar, ..., &) | (VA')(F' € £(F) A £'(8) = t(O)})}- =

v (f(F)) =

The unnest operators x and u* are sort of inverse of v and v*, respectively.

Definition 5.7.3 (Unnest Operator (1)) Let f be a folder and A be an attribute. u

is defined as follows:

.....

Fe<f>

where

f(F) A¢<F>

S otherwise,

where let T' be the type associated with A, and T = [(A; : T, ..., (A : T:)] and ¢ =

<F>- {Al, ey Ak},

{t| (VA)(fi € f(F) At(€) = fi(€) At(Ar, As, -, Ak) € filA])} if T = {T}
{t| (VA)(fi € f(F) At(€) = fi(€) At(Ar, Az, ... Ax) = fi[A])} ifT =T
ad

Definition 5.7.4 (Unnest Operator (u*)) Let f be a folder and A be an attributes.

u* is defined as follows.

m) = U (((F),

Fe<f>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50
where let T be the type associated with the attribute A and £ = < F > — {A},

{t| (VAY(fi e f(F)At(€) = fi(€) At[A] € fi[A]} ifAe<F >
u(F(F)) = and T is a set type

f(F) otherwise

Consider Figure 5.11, f| = fitsNane=(FNane,Liame) (f) aNd f2 = 13 1xane (F)-

/ f AN
FN John | FN Ji FN: J FN Ji
TAName ame | Jo ame un TAName ame | John TAName ame | Jim
LName { Smithj LName | King LName | Smith LName | King
TAAddr 123 John St TAAddr | 123 John St TAAddr | 123 John St
TAOffice ITC 4215 Teaching | PASCAL Teaching | FORTRAN
FName |John FName |Jim FName |John
LName | Smith LName | King LName | Smith
TAAddr | 123 John St TAAddr | 123 John St TAAddr | 123 John St TAAddr | 123 John St
TAOffice| ITC 4215 TAOffice| ITC 4215 Teaching | PASCAL Teaching {| FORTRAN
f.
FName | John FName | Jim FName | John FName |Jim
TAN: TAN TAN: TAN!
ame LName | Smith rame LName | King ame LName | Smith ame LName |} King
TAAddr 123 John St TAAddr | 123 John St TAAddr | 123 John St TAAddr | 123 John St
TAOffice| [TC 4215 TAOffice| ITC4215 Teaching | PASCAL Teaching| FORTRAN

Figure 5.11 An example to illustrate unnest operators

5.8 Class 8: Aggregate Operators
Class 8 includes five aggregate operators: count, sum, avg, min, and max. These
operators take a set of frame instances (a folder) as an argument and produce a

single value as a result. Their syntax and semantics are described below.

Definition 5.8.1 Let f be a folder. The syntax for an aggregate operator op on
an attribute A is op,(f), where A € T(F) for some F € < f >. Let S contain frame

instances in f that have the attribute A. Let | S| represent the cardinality of S. (Recall

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

that fi[A] represents the value V in the pair (A : V) of fi.) The semantics of the five

operators are given below.
1. count,(f) = |S|.
2. sumy(f) = X ¢ fi[A] if |S| > 0, and sum,(f) is undefined if |S| = 0.
3. avgu(f) = (1/IS1) 2., fila] if S| > 0, and avg,(f) is undefined if |S] = 0.
4. max,(f) = maz,fiA] if |S| > 0, and max,(f) is undefined if S| = 0.
5. miny(f) = min, ;fi[A] if |[S| > 0, and min,(f) is undefined if |S| = 0.

In general, one can calculate an aggregate operator independently from the rest

of a query and then replace it by its value.

Example 5.8.1 Consider again the folder organization in Figure 5.1 and the query:
How many times has Samantha Adams taken the Qualifying Examination? The

algebra expression is as follows:

cou ntPhDQERnlult.h:ﬂur (JPI:DQER.lult.ludnr:[(rlno:S amantha),(Lisse:Adamns)] (P h DStdS)) O

This example illustr_ai:es the use of the count aggregate operator. The number of

times Samantha Adams received her own qualifying examination results is returned.

5.9 Class 9: Highlight Operator

A frame template is defined as a tuple type and its underlying types can themselves
be bulk types. When this aggregation hierarchy becomes deep, path-notations may
become tedious. Here we propose a new operator, called highlight (), as an alter-
native to navigate down the hierarchy and take the user to a desired level of aggre-
gation from where the data items can be accessed directly.

Let fi = [(A1, V1), (A2, V), ..., (&, Vi),..., (A;, V)] be a frame instance. Let §
be a subset of the descendant attributes of A;. The minimal cover of 3, denoted by

Bains is defined as a subset of 8 such that:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

1. every element in 8 — ., is a descendant of an element in §_,, and,

min

2. no element of g, is a descendant of any other element in g,

min in®

The 8, is well-defined because there exists a unique subset that satisfies the

conditions 1 and 2 above. The §-value of fi with respect to the top-level attribute
A;, denoted by fi,,(B), is the frame instance {(B;, W;)|B; € 8,..., W; C dom(B;) is

the value of B; in fi[A;],1 < j <|8...1}-

Definition 5.9.1 Let f be a folder and let A be a top level attribute of F € < f >.
Let B contain a subset of the descendant attributes of A. Then,
Fe<f>

where

{fiu(B) | fef(F)} ifAe<F >

%, (F(F)) =
¢ otherwise.

Example 5.9.1 Consider again the folder organization in Figure 5.1 and the query:
Display the Database question which was weighted the most during the Fall 1990
Qualifying Ezamination. The algebra expression is as follows:

D B FgOQ Exa ms := 7r't051¢l (armr=D¢uhleAM1u=[($c-nar:[-‘all) +(Year:1990)) (QExa mS))

T := max (DBF90QExams)

TProbleas {Potate}

RSULE = Tormsas gy (Topa e (DBFIOQEXAMS)) 0

The first selection operation finds the database qualifying exam paper that
was given during the Fall of 1990. Then the attribute Problems is projected. The
max operator returns the maximum value of points for a particular question of this
paper. After selecting the problem which has the maximum points, project it over

the question of the problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

THE CONSTRUCTION AND RECONSTRUCTION PROBLEMS

This chapter will discuss a pair of problems for a folder organization.

e Construction Problem. When a user adds a new folder with an arbitrarily
specified predicate to a folder organization, it may cause two abnormalities:
inapplicable edges (filing paths) and redundant folders. This is called the

construction problem.

e Reconstruction Problem. Given a folder organization FO(G, A), the global
predicate for any folder in FO can be derived. But the global predicates do
not, of course, uniquely specify the folder organization. However, we may ask
under what circumstance can we uniquely recover the folder organization from

its global predicates? We call this problem the reconstruction problem.

6.1 The Construction Problem
Initially, a folder organization FO(G, A) has only one folder f, (called the rooted
folder of FO) with the predicate 6, = true, that is, f,. contains all the filed frame
instances. Then, FO can be constructed by applying repeatly the addition operation
Add. Let the operation Add(FO(G, A), {fk,, .-, fx, }, f) denote that a folder f is added
into the folder organization FO as a child of the folders fy,, ..., fx, (n > 1). Formally,

the folder addition operation Add can be defined as follows.

Definition 6.1.1 (Addition Operation (Add)) Given a folder organization FO(G, A)
with folders f; € V(G) (i € {ky, ..., kn}), and a new folder f with local predicate 4, the
operation Add(FO(G, A), {fi,, - i}, f) = FO(G'(V', E'), A"), where A’ = AU{§},
V'(G") = V(G) U {f}, and E'(G") = E(G) U {(f,,f), .-, (fi.,)} O

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

f, f,
ofl /0 \ / O\
f2 f3
f, f,
@ ®) ©)

Figure 6.1 An example of inconsistent local predicates

The folder addition operation operation can be used to comstruct a folder
organization, in which the global predication for any folder can be derived by ANDing
the local predicates of the folders of a filing path. Then, does it allow a user to add
a new folder with an arbitrary local predicate? It is called construction problem of a

folder organization.

Example 6.1.1 In order to illustrate this construction problem, let us consider
folder organizations shown in Figure 6.1. Figure 6.1(a) shows an initial folder organi-
zation FO(G(V, E), A), where V(G) = {f,f2,f3}, B(G) = {(f,f), (f,f3)}, and
A = {61,02,03}. And their local predicates are:

8; = (Dept = CIS)
d; = ((Status = Faculty) A (WorkYear > 5))

d3 = (Status = Staff)

Then the corresponding global predicates of folders f;, f, and f; are P, = 4,

P, = §; A&y and P; = 6, A 63, respectively. Let us consider the following two cases:

e Let §4 = (WorkYear < §) be the local predicate associated with a folder
fs. The operation Add(FO, {f;,f3}, fy) yields a folder organization shown
in Figure 6.1(b). Then the predicate, §; A P, = ((Dept = CIS) A (status =
Faculty) A (WorkYear > 5) A (WorkYear < 5)) is false. It means that the filing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

edge (f2, f4) is inapplicable since there is no frame instance that can satisfy both

P, (the global predicate of f,) and d; A P.

o Let 05 = (Status = Faculty) be the local predicate associated with a
folder fs. The operation Add(FO,f,,fs) yields a folder organization shown
in Figure 6.1(c). Then d5 A P, is equivalent to P,. That is, f, = f;. The new

added folder f5 is redundant to the existing folder organization. O

6.2 Consistency of Predicates
When a folder with its local predicate is added into a folder organization, it may
create two abnormalities: inapplicable edges and redundant folders. In order to

eliminate such abnormalities, the consistency of a local predicate is defined.

Definition 6.2.1 (Consistency of Local Predicate) Given a folder organization
FO(G(V,FE),A), Py, ..., and P, are global predicates associated with folders f,,
..., and fi_, respectively. The local predicate ¢ of a folder f is consistent with respect

to the folder organization FO if and only if none of the following conditions holds

in Add(FO(G(V, E),), {fir, - i 1, f):
1. 3P; e {Pkn . Pk..}: P; A § is false.
2. 3P, € {Pxy,.-s Pro}, 6 A (P, V ... V P.) is logically equivalent to P;.

Otherwise, it is inconsistent.)

The consistency property of the local predicate of a folder ensures that there
is no redundant folder or inapplicable edge in the folder organization. Furthermore,

the consistency of a global predicate can be defined based on the consistency of the

corresponding local predicates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

Definition 6.2.2 (Consistency of Global Predicate) Given a folder organization
FO(G, A), the global predicate of a folder is consistent with respect to F© if and

only if the corresponding local predicates are consistent. 0

Let O be a folder organization and § be the local predicate of a newly
added folder f. When the operation Add(FO, {fy,, ..., fx, },f) is invoked, the following
procedure can be used to determine whether 4 is consistent with the existing folder

organization. Let paths(f) denote all the possible filing paths from the root folder to

the folder f.

for each f; € {fg,,...,fx, } do
begin
the global predicate P; := false;
for each filing path q € paths(f;) do
begin
p = true;
for each folder f € V(q) do p := p A ég;
P:=PVp;
end;
end;
for each P; € {Py,,...,P,} do
if (6 A P;) is false or (6 A (P, V ...V Py,) is logically equivalent to P; then
return § is inconsistent to FO

return ¢ is consistent to FO.

6.3 The Associated Digraph of a Folder Organization
A folder organization views folders as either subfolders of other folders or restricted
subsets of unions of other folders. We can succinctly summarize the possible inclusion

relationships among folders by defining an appropriate digraph which we will call an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

associated digraph. This section introduces the concept of an associated digraph
and examines some of its properties. The next section uses the associated digraph

to characterize when a folder organization can be uniquely reconstructed from its

predicates.

The associated digraph is defined in terms of a minimal union of folders that

contain a given folder. We require the definition:

Definition 6.3.1 (Minsum) Let f, f;, ..., and f; be folders. f, U ... Uf; is a minsum
of f (denoted by f Crnin fi U...Uf;) ifand only if f C fiU...Ufeand f € f;, U ... UF;,

for any proper subset {f;,,...,f;} of {fy, ..., fx}. =]

Given a folder organization FO(G, A), we define its associated digraph as

follows.

Definition 6.3.2 (Associated Digraph) Let FO(G, A) be a folder organization. The
associated digraph G(V, E) (denoted by G(F®)) is defined as follows:

1. V(G) = V(G).
2. If f Conin f1 U ... Ufy, then (f;,f) € B(G) (1 <i<k). |

Clearly, the associated digraph G of a folder organization FO(G, A) satisfies
that every vertex is reachable from the root f,.,:. Indeed, for any f (# f.o0:) € V(G),
f Crnin froot, Whence (fro0t, f) € E(G). Recall the standard definition:

Definition 6.3.3 (Transitive Closure) Let G(V,E) be a digraph. The digraph
obtained from G by adding an edge (u,v) between any pair of vertices © and v

in V(G) whenever v is reachable from u is called the transitive closure of G. a

The associated digraph of a folder organization may not be the same as the

transitive closure of the folder organization, as the following example shows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

Example 6.3.1 The digraph in Figure 6.2(a), and the local predicates 6;, 1 < i < 4,

associated with the folders f;, define a folder organization.

(

01 = (Status = Employee)
82 = (Salary < 50K) A (Position = Professor)

04 = (Position = Professor)
\

The global predicates P;, 1 < i < 4, associated with the f; are as follows.

(P, = §, = (Status = Employee)
P, = 6; A P, = (Status = Employee) A (Salary < 50K) A (Position = Professor)
) P; = 3 A P, = (Status = Employee) A (Salary > 50K)
Py =64 A (P, V P3) = ((Position = Professor) A (Status = Employee)) A
((salary < 50K) V (Salary > 50K))

= (Position = Professor) A (Status = Employee)

Assume that the atomic predicates (Salary < 50K), (Salary > 50K), and
(Position = Professor) are logically independent. Observe that, trivially, f; Cmin f1,
f3 Comin f1, f4 Comin fi1, and f; Cmin f U f5. Furthermore, fy Coin f4 since P, is also
a restriction of Py: P, = ((Salary < 50K) A Py). Using these minsum relations, we
obtain the associated digraph shown in Figure 6.2(b).

Figure 6.2(b) is not the transitive closure of Figure 6.2(a). For example, in

Figure 6.2(a), f; is not reachable from f; while it is in Figure 6.2(b). 0

Given a tree folder organization FO(G, A), the next section shows that, under
suitable restrictions, G is the only spanning tree of G whose transitive closure equals
G. In general, the spanning sub-DAGs of the associated digraph are related to the
existence of equivalent, alternative folder organizations. Some spanning sub-DAGs
may be equivalent to the original folder organization in the sense that they are

DAGs of folder organizations that have the same global predicates as the original

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

(a) (b)

Figure 6.2 (a) A DAG folder organization G(FO); (b) The associated digraph of
G(F0)

folder organization. The existence of such equivalent folder organizations provides for
the possibility of optimization problems. For example, one might seek an equivalent
folder organization which is a tree, or which has the least maximum degree, or the
minimum height, etc. However, some spanning sub-DAGs may not even correspond
to the DAGs of any folder organization. We may also differentiate among spanning

sub-DAGs according to whether they have redundant edges or not, defined as follows.

Definition 6.3.4 (Reducible/Irreducible Folder Organization) A folder organization
FO(G(V,E), A) is reducible if there exists an edge (f;,f;) € E(G) such that the
contents of each folder in FO(G(V, E),A) are the same as the contents of each
folder in FO(G(V, E - {(f;,f;)}),A). Otherwise, FO(G(V, E), A) is irreducible. O

Example 6.3.2 (Spanning Sub-DAGs of Associated Digraph) The DAGs shown in
Figure 6.3 are all the spanning sub-DAGs of the associated digraph in Figure 6.2(b).
The first three sub-DAGs (a), (b) and (c) are DAGs of folder organizations with
the same global predicates as the FO in Figure 6.2(a), though some have different
local predicates. The DAGs in Figure 6.3(d) through (i) correspond to DAGs of
valid folder organizations, but in each case edges can be omitted without changing

the frame instances in each folder. For example, in Figure 6.3(d), (fs,fs) can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

Irreducible
Spanning
Sub-DAGs

Reducible
Spanning
Sub-DAGs

Spanning Sub-DAGs
with No Corresponding
Folder Organization

Figure 6.3 Spanning sub-DAGs of the associated digraph in Figure 8(b)

omitted. In Figure 6.3(e), (f;,fs) or, alternatively, both (f;,fs) and (f3,fs) can be
omitted. In Figure 6.3(f), (fs,fs) can be omitted. Similarly there are redundant
edges in Figures 6.3(g) through (i). In contrast, the DAGs in Figures 6.3(a), (b), (c)
are irreducible since none of their edges can be omitted without changing the frame
instances that can be in their folders. The last three DAGs (j), (k) and (I) are not
DAGs of any valid folder organizations. For example, in Figure 6.3(j), the global
predicate of f; is not a local predicate based restriction of the global predicate of f3.
Similarly for Figures 6.3(k) and (I). Therefore, these DAGs could not be DAGs of

any folder organization based on the global predicates of Example 6.3.1. m)

6.4 Reconstructing A Tree Folder Organization
The Reconstruction Problem asks: under what circumstance can we uniquely recover

a folder organization from its global predicates? We shall show that the following

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

extremely strong property is required to ensure that we can essentially recover
an original tree folder organization from its global predicates, or equivalently its

associated digraph.

Definition 6.4.1 (Totally Hierarchical Property) A DAG folder organization

FO(G, A) is totally hierarchical if and only if for every f, fi, ..., f¢ in V(G), if f Crin

fiU...Ufy then fy, ..., and f; are ancestors of f in G(FO). o
If FO(G, A) is a totally hierarchical tree folder organization, then f Cp;p fi U

... Uf, implies that £ = 1 and f; is an ancestor of f.

The totally hierarchical property is extremely strong and can easily fail to hold.

The following example shows this.

Example 6.4.1 Take the global predicates

)

P, = (Status = Employee)
P, = (Salary < 50K) A Py
P; = (Salary > 50K) A P;

P; = (Position = Professor) A P,

\

from Example 6.3.1, and the folder organization digraph shown in Figure 6.4 to
specify a new folder organization FO;. However, Py is also identically equal to
04 A (P2 V P3), thus fg Cin fo Ufs. But f; is the child of f4 and f; is the sibling of f,
in FO,. Therefore, the folder organization FQO; in Figure 6.4 does not satisfy the

totally hierarchical property. a

Even more generally, if for any folder (vertex) f € G(FO), P, = ¥ zechitdren(f) Pz»
where P; and P, are the global predicates of = and f respectively, then f C,pin ¢;, U
¢, U...Ug;,, where {c;,, ¢, ..., ¢;, } is some subset of the children of f. Thus, such a
folder organization violates the totally hierarchical requirement that minsums occur

only for unions of ancestors of f, and so such a folder organization is not totally

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

O

Figure 6.4 A tree folder organization for which totally hierarchical property fails

hierarchical. Since the indicated representation for P, could easily hold, for example
when a folder is contained in a union of its descendants, the totally hierarchical
property is clearly very restrictive.

The totally hierarchical property does ensure that the associated digraph of a
folder organization and its transitive closure are the same, as shown by the following

theorem.

Theorem 6.4.1 The associated digraph G(V, E) constructed from a totally
hierarchical tree folder organization FO(G,A) is the transitive closure of G(FO).

Proof: By definition, V(G) = V(G). Let f; and f; be two folders in FO. We consider
two cases:

Case 1: If f; is reachable from f; in G(V, E), then f; is an ancestor of f;, so that,
f; Cmin fi, whence (f;,f;) € E(G).

Case 2: If f; is not reachable from f; in G(V, E), then (f;,f;) ¢ E(G). The
proof is by contradiction. Observe first that if f; is not reachable from f; in G(V, E),
then f; is not an ancestor of f; in G. If at the same time, (f;,f;) € E(C’), then by the
definition of the associated digraph, f; Cmin f;U..., whence, by the totally hierarchical
property, f; must be an ancestor of f; in G, contrary to our observation.

It follows that G(V, E) is identical to the transitive closure of G(V, E). o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

>

©

®

ZIN
R
1N

%%?
D

@

Figure 6.5 (a) A digraph. (b) ~ (i) Spanning trees of (a)

Corollary 6.4.1 The associated digraph G’(V, E) of a totally hierarchical tree folder
organization FO(G, A) is a DAG.

Proof: Suppose G is not a DAG. Then there would be a cycle vy, v, ..., U, v in
G. By Theorem 6.4.1, G is the transitive closure of G. Thus, any two vertices in
{v1,va, ..., ux} are reachable from each other in G by the definition of the transitive
closure of G. This is contrary to the assumption that G is a tree. 0

Consider the digraph in Figure 6.5(a). Figures 6.5(b)~(i) are all the spanning
trees of Figure 6.5(a). However, Figure 6.5(b) is the only one whose transitive closure
is Figure 6.5(a).

If the original tree folder organization is totally hierarchical, then we can recover

this tree from the transitive closure as shown by the following theorem.

Theorem 6.4.2 Let FO = [G(V, E), A] be a totally hierarchical tree folder organi-
zation and let G(FO) be its associated digraph. Then G(FO) is the unique spanning
tree of G(FO) whose transitive closure equals G(FO).

Proof: Suppose some other spanning tree ST of G(FO) also has G(FO) as its
transitive closure, and that ST # G. Then, there exists an edge (u,v) € E(G) such

that (u,v) € E(ST). Since the transitive closures of ST and of G are identical, there

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

must exist a path vo(= u), vy, ..., U, Un41(= v) in ST from u to v, where v;(1 < i < n)
are the internal vertices of the path. Since G is a tree, the only edges in G(FO),
and therefore in ST, are between vertices z and y where z is an ancestor of y in G.
Of course, whenever z is an ancestor of y in G, then there is path from z to y in
G. Thus the path P: v, vy, ...,Un, Un+1 in ST can be expanded into a path Q from
u to v in G. We merely replace each edge (v;,vi4+1) on the path P by the path from
v; to vj3; in G. All these paths are disjoint because the terminal vertex of any path
corresponding to any edge (v, vi4+1) on P is an ancestor of the starting vertex of the
path corresponding to any later edge (v;,v;4+1), where j > 7+ 1, on P. Since there
is a unique path between any pair of connected vertices in a directed tree, the path
@ from u to v in G and the edge (u,v) must be the same. It follows that v, = u, so

that (u,v) € E(ST) contrary to the assumption that (u,v) ¢ E(ST). a

v 7 (c)

Figure 6.6 (a) The digraph G (b) Spanning tree found by TCI algorithm (c)
Spanning tree found by ordinary BFS

Theorem 6.4.2 says that given the transitive closure G of a tree G, we can
uniquely invert G to obtain the original tree G that generated G. The following
algorithm shows how this can be efficiently accomplished using a weighted breadth
first search approach, where a weight of —1 is assigned to every edge of the transitive
closure G. The idea of the algorithm is to identify the unique generating spanning
tree established by the previous theorem by removing edges between vertices of
distance —2 or less apart. An example is shown in Figure 6.6. The weight of each

edge of the digraph in Figure 6.6(a) is —1. After the algorithm is applied, the solid

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

edges remain and the dashed edges are removed, as illustrated in Figure 6.6(b). For
example, Dist(vy,v7) = —3, so the edge (vy, v7) is removed. Observe that an ordinary
unweighted breadth first search would yield the spanning tree shown in Figure 6.6(c).

Let r € V(G) be the root of G(V, E). Assign each edge of G a weight of —1.
The following algorithm constructs a digraph H.

Transitive Closure Inversion (TCI) Algorithm

V(H) = {r}
E(H) = ¢;
create(Q);

enqueue(Q,r);
while not empty(Q) do
begin
v := dequeue(Q);
for each vertez v' € V(G) such that the shortest distance
from v tov' is —1 do
begin _
enqueue(Q,v');
V(H) :=V(H) U {v'};
E(H) := EH) U {(v,v)};
end;

end;
The following theorem shows the correctness of the above algorithm.

Theorem 6.4.3 (Correctness of TCI Algorithm) Let G(V, E) be the associated
digraph of a totally hierarchical tree folder organization. Then the digraph H(V, E)
produced by the TCI algorithm is a spanning tree of G(V,E) and has G as its

transitive closure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

Proof: The TCI algorithm must include, in the digraph H(V, E) that it produces,
all edges (u,v) between vertices u and v in G(V, E) when Dist(u, v) equals —1. For
if such an edge (u,v) € E(H), then the transitive closure of H could not equal G.
Because for the transitive closure of H to equal G, there would then have to be a
nontrivial path in H from u to v, not equal to the edge (u,v). But then Dist(u,v) in
G would be less than —1, contrary to the assumption. Thus edges (u,v) in G with
Dist(u,v) = ~1 must lie in H, and the algorithm clearly includes them. Conversely,
any edge (u,v) with Dist(u,v) < —1 should not be in H. Otherwise, there would be
a nontrivial shortest path ug(= u),uy, ..., Un, Un+1(= v) (with more than one edge)
from u to v in G. Each edge (u;, u;41) on that path is a sub-path of that shortest
path, and so is itself the shortest between its endpoints u; and u;y;. So, every edge
on the path satisfies that Dist(u;, u;;,) = —1. But by our initial argument, the edges
(4, %iy1) must be in H. Thus, if the edge (u,v) (= (up, Un+1)) were also in H, then
H would not be a tree. Thus edges (u,v) such that Dist(u,v) < —1 should not be

in H, and, of course, by design, the algorithm excludes precisely such edges. O

Corollary 6.4.2 Let H(V, E) be the spanning tree produced by the TCI algorithm
from the associated digraph G of a totally hierarchical tree folder organization

FO(G,A). Then H =G.

Proof: In terms of Theorem 6.4.3, H is a spanning tree whose transitive closure
is G. By Theorem 6.4.2, such a spanning tree is unique. By definition, G is the

transitive closure of G. Therefore, H is identical to G. a

6.5 Reconstructing a DAG Folder Organization
This section extends the results of the previous section to a DAG folder organization.
Recall that a vertex u is an ancestor of a vertex v in a DAG G(V, E) if and only

if v is reachable from u in G, while a DAG folder organization FO(G, A) is said

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

to be totally hierarchical if and only if f Cpin f; U ... U fy (where f, fy, ..., fi are in
V(G)) implies fi, ..., and f; are ancestors of f. As the example in Figure 6.2 shows
the associated digraph of a folder organization FO(G, A) may not be the same as
its transitive closure if G(FO) is not totally hierarchical. In order to generalize the
results of the previous section, we need to introduce the concept of a redundant filing

path. Recall that a filing path for a folder f is a path from the root to f. A redundant

filing path is defined as follows.

Definition 6.5.1 (Redundant Filing Path) Let p;(1 < i < m) be the predicates
associated with the filing paths ¢;(1 < 7 < m) of a folder f in a DAG folder organi-
zation FO(G, A) (Thus, the global predicate P for f satisfies: P; = 3., p;). Let S;
= {fi | pi(fi)}, where 1 i <m. If §; C S;, U...US;,, then the filing path for S; is

redundant with respect to the filing paths for S;, ..., S;,. O

A DAG folder organization is non-redundant if there is no redundant filing

path. The concept of a redundant filing path is illustrated by the following example.

Example 6.5.1 The digré,ph G of a DAG folder organization FO(G, A) is shown
in Figure 6.7. Denote the local predicates of the folder f; by §; (1 < 7 < 5). The
predicates pgi) associated with the filing paths qg) for the folder f5 are: pgl) = 81690405,
p&) = 6,656405, and p®) = 616365. Let Séi) ={fi| p?’(ﬁ)}, where 1 < 7 < 3. Clearly,

the filing path q§2’ is redundant with respect to the filing path qéa), since Séz) - S§3),

because, in this example, the local predicate product defining q§3) is a substring of
the local predicate product for q§2). Observe, however, that none of the edges (fi, f3),
(fs, f4) and (fy, fs) on the filing path q§2) can be deleted even though q§2) is redundant.
For example, removing (fy, f5) disconnects the (possibly) non-redundant filing path

gV, Of course, it is even possible that the filing paths qél) and qéa) are also redundant,

but this depends on the local predicates and cannot be determined from the folder

organization digraph alone. a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

fs 3) fs (&)

Figure 6.7 Redundant filing paths

We will show that if a DAG folder organization is both non-redundant and
totally hierarchical, then we can essentially recover the original DAG from the

associated digraph.

Theorem 6.5.1 Let FO(G,A) be a non-redundant and totally hierarchical DAG
folder organization. Then, the associated digraph é(f/, E) is the transitive closure of

G(FO).

Proof: By definition, V(G) = V(G). Let f; and f; be folders in FO. We consider
two cases:

Case 1: If f; is reachable from f; in G(FO), then f; is an ancestor of f;. We
show that for any ancestor f; of f;, f; Crmin fi U f;, U ... U f;,, for some, possibly
empty, set of folders {f;,, ..., fz, }, whence (f;,f;) € E(G).

We first consider the case where there exists an edge (f, f;), where f is the root
of G(FO). In this case, there is no other path Q from f to f;. Otherwise, Q would
be redundant with the (one edge) path (f,f;). Thus the only ancestor f; of f; would
be f, and so trivially f; Cpin fi(=f).

We next consider the case where there is no edge (f,f;). We then argue as
follows. Remove all the paths from f to f; that pass through f; (i.e., Del(G,f;)). If f
is disconnected from f; in the resulting graph Del(G, f;), then trivially f; Cpin fi. If
f is not disconnected from f; in Del(G, f;), then let @ be the set of paths from f to f;,

not passing through f;. Denote by f,- the subset of frame instances in f; that arrive

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

via Q. By the non-redundancy assumption, f,- # f;, since any filing path through f;
contains some frame instances not in any union of other filing paths, and so not in
the union of any filing paths in @, and so not in fj. Observe that ?j cf,U..Ufg,
where {f;,,...,f;,} C V(Q) — {f,f;}, which is non-empty in this case, because by
assumption f; is reachable from f but (f,f;) is not an edge, so there is a nontrivial
disconnecting set between f and f;. Thus, f; C f; Uf;, U ... Uf;,. Sincef; Z f;, U
. U fz, alone, then f; Crnn fi Uy, U ... U fz., . for some subset {f’-'-'n vy f,,.k} of
{fors -y 2, }-

Case 2: If f; is not reachable from f; in G(V, E), then (f;, f;) & E(G). The proof
is identical to the proof of case 2 in Theorem 6.4.1.

It follows that G(V, E) is identical to the transitive closure of G(FO). a

Corollary 6.5.1 Let a DAG folder organization FO(G, A) be non-redundant and
totally hierarchical. Then, its associated digraph G(V, E) is a DAG.

Proof: The proof is similar to the proof of Corollary 6.4.1. O

Example 6.5.2 Figure 6.8 gives a counterexample that shows how the associated
digraph may not be the transitive closure of a DAG if the non-redundancy condition
fails. Let 6;(1 < ¢ < 4) be the local predicates of the folders f; in Figure 6.8(a). Let
S = {fi | p(f)} and ' = {fi | P'(f)}, where p = 610203 and p’' = §183. Clearly,
S C §', so the filing path fi, f,, f; is redundant with respect to the filing path fi, f3.
Thus, f3 Zmin fi U fy. For an appropriate choice of ds, f3 Z f5, so the edge (fo, f3) is
not in the associated digraph. Thus the associated digraph need not even contain
all the edges of the original DAG G, and so certainly need not equal the transitive
closure of G. Incidentally, the minsum relations in Figure 6.8(a) are: f; Cuin fi,
f3 Cmin f1, fs Cmin f1, so edges (fi,f), (fi,f3), and (f;,f;) are in the associated
digraph Figure 6.8(b). On the other hand, while f; C f, U f3, we can not say for

certain that fy Cpin f2 Ufs, though at least one of the edges (fy, fs) or (fs, fs) must be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

(a) An DAG folder organization with redundant filing path (b) Its associated digraph

Figure 6.8 Counterexample to Theorem 3.6 if non redundancy condition fails.

in the associated digraph. The dashed lines in Figure 6.8(b) indicate this uncertainty.
a

Theorem 6.5.2 Let a DAG folder organization FO = [G(V,E),A] be non-
redundant and totally hierarchical and G(FO) be its associated digraph. Then,
G(FO) is the unique non-redundant spanning sub-DAG of G(F©®) whose transitive
closure equals G(FO).

Proof: Suppose some other non-redundant spanning sub-DAG SD of G(FO) also
has G(FO) as its transitive closure, and that SD # G. Then, there exists an edge
(u,v) € E(G) such that (u,v) € E(SD). Since the transitive closure of SD and
G are identical, there must exist a path vy(= u), vy, ..., Un, Vn41(= v) in SD from u
to v, where v;(1 < 7 < n) are the internal vertices of the path. Since G(FO) is
non-redundant, the only edges (z,y) in G(F©) are between vertices z and y where
z is an ancestor of y in G(FO). Of course, whenever z is an ancestor of y in G(FO),
then there is a path from z to y in G(F@). Thus a path P : vy, vy, ...,Un, Un41 iD
SD can be expanded into a path @ from u to v in G. We merely replace each edge
(vi, vi+1) on the path P by the path from v; to vi4, in G(FO). All these paths are
disjoint because the terminal vertex of any path corresponding to any edge (v;, vi+1)
on P is an ancestor of the starting vertex of the path corresponding to any later edge

(vj,v;j41) where 7 > i+ 1 on P. Since there is no redundant filing path in G(FO),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

Figure 6.9 (a) A DAG FO (b) Its associated digraph (c) Digraph resulting from
TCI algorithm
the paths P and @ from u to v must be the same. It then follows that v, = u, so
that (u,v) € E(SD) contrary to the assumption that (u,v) € E(SD).]
Theorem 6.5.2 says that if an associated digraph G is built from a non-
redundant and totally hierarchical DAG folder organization FO(G,A), we can
uniquely invert G to obtain the original DAG G(F®). The TCI algorithm can
also be used to accomplish this inversion. An example is shown in Figure 6.9.
Figure 6.9(a) is a non-redundant totally hierarchical folder organization, provided
there are no logical relations among the local predicates. In terms of Theorem 6.5.2,
its associated digraph shown in Figure 6.9(b) is the transitive closure of Figure 6.9(a).
The weight of each edge of the digraph in Figure 6.9(b) is —1. After the TCI
algorithm is applied, the solid edges remain and the dashed edges are removed, as
illustrated in Figure 6.9(c). Obviously, Figure 6.9(a) and Figure 6.9(c) are identical.
The following theorem shows the TCI algorithm also works for totally hierar-

chical and non-redundant DAG folder organizations.

Theorem 6.5.3 Let G(V, E) be the associated digraph of a totally hierarchical and
non-redundant DAG folder organization. Then the digraph H(V, E) produced by the
TCI algorithm is a non-redundant spanning sub-DAG of G(V, E) and has G(V, E)

as its transitive closure.

Proof: The digraph H(V, E) produced by the TCI algorithm includes exactly all

edges (u,v) between vertices u and v in G(V, E) where Dist(u,v) = —1. If there

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

were such an edge (u,v) € E(H), then the transitive closure of H could not equal to
G(V, E). Because the transitive closure of H is G(V, E), there would be a nontrivial
path in H from u to v. But then Dist(u,v) < ~1 in G(V, E), contrary to the
assumption Dist(u,v) = —1. Thus edges (u,v) € E(G) with Dist(u,v) = ~1 must
be in H, and the algorithm clearly includes them.

On the other hand, any (u,v) € E(G) with Dist(u,v) < —1 should not be in H.
Otherwise, there would be a nontrivial shortest path ug(= u), uy, .., Un, Uns1(= v)
from u to v in G(V, E). Each edge (u;,u:y,) path is a sub-path of that shortest
path, and so itself is the shortest between u; and u;y; (i.e., Dist(u;, ui41) = —1). By
the initial argument, the edges (u;, u;+1) must be in H. Thus, if the edge (u,v)(=
(4o, tn+1)) Were also in H, then H would not be a non-redundant DAG because the
path ug, uy, ..., Un, Un4y is redundant with respect to (u,v). Thus edges (u,v) such
that Dist(u,v) < —1 should not be in H. Of course, the T'CI algorithm excludes

precisely such edges. a

Corollary 6.5.2 Let H(V,E) be the non-redundant spanning sub-DAG produced
by TCI algorithm from the associated digraph G of a totally hierarchical and non-
redundant DAG folder organization FO(G,A). Then H =G.

Proof: The proof is similar to Corollary 6.4.2. a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7
DOCUMENT FILING

A folder organization represents the user’s view of the document filing organization.
Evaluating whether a frame instance satisfies the global predicate of a folder in a
folder organization becomes a central issue of document filing. In this chapter, we

will discuss a document filing algorithm and predicate evaluation.

7.1 A Document Filing Algorithm
In TEXPROS, the document filing is a process of filing a frame instance into proper
folders in a folder organization based upon a user defined predicates. The global
predicate of a folder governs its contents (that is, frame instances in the folder).

For a folder f in a folder organization FO(G(V, E), A), let py, ..., and p, be
the predicates corresponding to n filing paths pa;, ..., and pa, of f, respectively.
Then, P = p; V ... V p, is the global predicate of f. For each filing path ps; (say
firs oo fips), let &y, ..., 05, gnd d be the local predicates corresponding to the folders
fi,» ..., fi, and f, respectively. The predicate associated with the filing path pa; is then
i =0;, A...Ad; A4. A frame instance fi can be deposited in a folder f if fi satisfies
the predicate p; associated with the filing path pa; (1 < i < n).

A frame instance fi can be deposited in a folder f if fi satisfies the predicate,
pi (that is, the local predicates, é;,, ..., d;,, and 8) (1 < i < n), associated with the
filing path pa; (1 <7 < n). For instance, in the folder organization of Figure 7.1, a
frame instance can be deposited into the folder FACULTY if it satisfies the predicates,

Department = CIS, Class = Employee and Status = Faculty.

7.1.1 An Object-Oriented Description of a Folder Organization
We adopt the object-oriented concept to refer to frame instances, folders and a

folder organization as objects. That is, frame instances, folders and a folder organi-

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

ROOT
(true)

cis (Department = CIS)

STUDENT EMPLOYEE

(Class = Student) (Cluss = Employee)
STAFF FACULTY
(Status = Sta:/ w‘: Faculty)
PROFESSOR

SP_LECTURER (Position = Full Professor OR
1P a.n‘ria; = Special Lecturer) Position = Associated Professor OR
Position = Assistant Professor)

s

BS MS PHD
(Program = BS) (Program = MS) (Program = PhD)

Figure 7.1 A folder organization

zation are defined by FrameInstance class, Folder class and FolderOrganization
class, respectively. Each class contains a private data structure (attributes) and
corresponding methods that can be performed on the data structure. Figure 7.2
sketches the class hierarchy of a folder organization !. A box in the figure represents
a class. The top part of a box consists of class name, the middle part is for class
attributes and the bottom part specifies methods. The relationship between the
classes are the containing relationship. That is, the FolderOrganization class
contains Folder class, Thesaurus class, AssoDictionary class and KnowledgeBase
class; and FrameInstance class is contained in a Folder class.

As we discussed in the previous chapter, a folder is a heterogeneous set of
frame instances. By unifying the data structure of frame instances in a folder, we

use a frame instance identifier? rather than a frame instance itself stored in a folder.

!Note that methods of classes are not shown in the figure due to the size of the page.
We will list and discuss methods of each class in the following sections.
2When a frame instance comes in the filing system, it is assigned a unique identifier.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thesaurus

SysSynonyms: Map<KeyTerm, List<SynKeyTerm>>
SysNarrower: Map<KeyTerm, List<NarrKeyTerm>3
SystemAssoc: Map<KeyTerm, List<IndexTerm>>

Corresponding Methods

FolderOrganization
FolderOrg: Map<String, Foldex+*>

AssoDict: AssoDictionary
KB: KnowledgeBase
Corresponding Methods

Folder
Name: String
Vigited: Bool
LFolder: Bool
BvalAttrList: List<Attributes)
Predicate: PredType
FIs: List<Framelnstance>
ChldFolders: List<String>
Corresponding Methods

AssociationDictionary
Dictionary: Map<Attribute, Ligt<FrameTemplateName>p
Corresponding Methods

FramelInstance
ID: String
FTName: String
EvalAttrs: List<Attribute>
Corresponding Methods

Figure 7.2 Class hierarchy of a folder organization

- Dict: Thesaurus o P —

75

KnowledgeBase

FB: FactBase
RB: RuleBage

Corresponding Methods

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

Note that a frame instance is stored in the instance base and can be retrieved by its
identifier.

In FrameInstance class, there is an attribute FTName indicating that a frame
instance is over which frame template. Each frame template consists of a list of
evaluated attributes that are pre-defined for the filing evaluation. The evaluated
attribute list of a frame template is defined when the frame template is constructed.
By default, every attribute of a frame template is used for the filing evaluation. The

following procedure describes a guideline for a user to define the evaluated attribute

list.
e STEP 1: define a frame template (including attributes and types).
e STEP 2: list all the attributes of the frame template.

e STEP 3: ask a user whether he/she uses the default evaluated attribute list or

defines an evaluated attribute list.

e STEP 3.1: if the default is selected, then all the attributes of the frame template

are added to the evaluated attribute list.

e STEP 3.2: else a user selects attributes and adds them into the evaluated

attribute list.

There are three groups of selections 3 for a user to select evaluated attributes.
We will use the frame template Memo, which contains attributes Sender, Receiver,

Date, Subject, Contents and CC, as an example to illustrate it:

e required attributes are attributes that must be included in the evaluation. For

example, Sender and Receiver are the required attributes for the Memo.

SNote that attributes in these three groups are defined by a filing system
designer/expert.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

e recommended attributes are attributes that are most likely to be used in

the evaluation. For example, Date, Subject and CC are the recommended

attributes.

e not recommended attributes are attributes that are less likely to be used in the

evaluation. For example, Contents is not a recommended attribute.
The complete frame instance class (FrameInstance) is defined as follows.

class FramelInstance

{
public:
FrameInstance(); // constructor
“FrameInstance(); // destructor
// set access methods
void id(String ID); // set frame instance identifier
void addFrameTemplate (FrameTemplateName FTName); // add frame template name
void addEvalAttr(Attribute attr); // add attribute in evaluated attribute list
// get access methods -
String id(); // get frame instance identifier
FrameTemplateName getFTName(); // get frame template name
Attribute firstAttr(); // get first evaluated attribute
Attribute nextAttr(Attribute attr); // get next evaluated attribute
private:
// attributes
String ID; // frame instance identifier
FrameTemplateName FTName; // frame template name
List<Attribute> EvalAttrs; // evaluated attribute list
3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

A folder contains a set of frame instances that satisfy the predicate of the folder.
There are two kinds of folders defined in a folder organization: (1) a regular folder,
which contains frame instances, each of which satisfies predicates along a filing path;
and (2) a L-Folder which refers to a local folder, containing frame instances, each of
which satisfies the local predicate of a folder.

The criterion of constructing a folder organization is that L-folders must be
defined as the children of regular folders and a regular folder cannot be a child folder
of a L-folder.

The reason of introducing the L-folder is to allow a user to re-partition frame
instances of a regular folder into various L-folders of frame instances with their
local predicates. Consider an example shown in Figure 7.3. There are six regular
folders (NJIT, CIS, STUDENT, FACULTY, J. Smith and K. Johnson) and two L-folders
(S. Klein* and S. Thomas®). Assume that S. Klein and S. Thomas are not faculty
members of the CIS department at NJIT. Suppose that S. Klein sent a letter (let fi
be the frame instance of the letter) to J. Smith. Since J. Smith is a faculty member
of the CIS department at NJIT, the letter can be filed all the way down to the J.
Smith folder if fi[To] is used for evaluation. If S. Klein* was a regular folder, the letter
would not be deposited in it because the letter does not satisfy the predicates along
the filing path (NJIT — CIS — FACULTY — J. Smith — S. Klein*). In order to file
fiin the folder S. Klein*, fi[From| will be used for evaluation. However, fiFrom] does
not satisfy the global predicate P: (affiliation = NJIT) A (department = CIS)
A (position = faculty) A (name = J. Smith) A (name = S. Klein). After introducing
L-Folder, the letter can be filed into the folder S. Klein* by determining a frame
instance whether satisfies the local predicate of the folder.

A regular folder also has a list of evaluated attributes. An evaluated attribute
list of a regular folder is a list of attributes (of a filed frame instance) that satisfy

the global predicate of the folder. The evaluated attribute list of a regular folder

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

NIJIT (affiliation = NJIT)

CIS (department = CIS)

FACULTY

STUDENT o)
(position = faculty)

(class = student)

J. Smith K. Johnson
(name = J. Smith) (name = K. Johnson)
S. Klein * S. Thomas *

(name = §. Klein) (name = S. Thomas)

Figure 7.3 An example of a folder organization

is transient. That is, it is generated when a frame instance is filed into the folder
and it is removed when another filing begins. A detailed discussion of generating the
evaluated attribute list will be given in the Section 7.1.2. Since a folder organization
is defined as a rooted DAG, the attribute ChldFolders in the class Folder is used
to represent the folder’s children folders. For filing a frame instance, a folder organi-
zation is traversed in such way that the predicate of a folder may be evaluated more
than once, because a folder organization is a DAG. In the class Folder, an attribute
(Visited) is used for indicating whether a folder has been visited. The complete

folder class (Folder) is defined as follows.

class Folder
{
public:
Folder(); // constructor
“Folder(); // destructor
// set access methods
void name(String folderName); // set folder name

void resetVisited(); // reset visited flag

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

void setVisited(); // set visited flag

void setLFolder(); // set L-Folder flag

void makeEvalAttrListEmpty(); // make evaluated attribute list empty

void addEvalAttrs(List<Attribute> attrs); // add evaluated attribute list

void addEvalAttr(Attribute attr); // add evaluated attribute

void predicate(PredTypes pred); // add local predicate

void addFI(FramelInstance fi); // add frame instance

void addChldFolder(String folderName); // add child folder

// get access methods

String name(); // get folder name

Bool getVisited(); // get visited flag

Bool getLFolder(); // get LFolder flag

Attribute firstEvalAttr(); // get first evaluated attribute

Attribute nextEvalAttr(Attribute attr); // get next evaluated attribute

PredType* predicate(); // get local predicate

FrameInstance firstFI(); // get first frame instance

FrameInstance nextFI(FrameInstance fi); // get next frame instance

String firstChildFolder(); // get first child folder

String nextChildFolder(String folderName); // get next child folder
private:

// attributes

String Name; // folder name

Bool Visited; // visited flag

Bool LFolder; // L-Folder flag

List<Attribute> EvalAttrList; // a list of evaluated attributes

PredType Predicate; // local predicate

List<FrameInstance> FIs; // frame instance list

List<String> ChldFolders; // a list of children folders

h

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

In the class FolderOrganization, folders are organized in the associative array
FolderOrg. The associative array FolderQOrg is an array that it is looked up by
strings (i.e., folder names which are keys of folders). Internally, the keys are stored in
a hash table, so lookups are always very fast regardless of how many entries are in the
array. Suppose that there are n folders in a folder organization, a lookup takes O(1)
in average case and O(n) in worst case. Besides access methods, there are another
three methods in the FolderOrganization. Their complete implementations will be

given in the following sections.

e startFiling (public method): initialize a folder organization and start filing

process.

e filing (private method): this is a recursive filing algorithm invoked by the

startFiling method.

e eval (private method): this is an evaluation function that checks whether a

frame instance satisfies the predicate of a folder.

class FolderOrganization

{
public:
FolderOrganization(); // constructor
“FolderOrganization(); // destructor
// set access method
void addFolder(String folderName, Bool LFold,
PredType pred, List<FrameInstance> FIs); // add folder in folder organization
// get accessors
Folder getFolder(String folderName); // get folder

// behavior method

void startFiling(FrameInstance fi); // file frame instance into folder organization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

private:

// methods

void filing(Folder f, Framelnstance fi);
// file frame instance into folder organization with root f

Bool eval(FramelInstance fi, Attribute attr, PredType pred);
// evaluation function

// attributes

Map<String, Folder*> FolderQrg;

Thesaurus Dict;

AssociationDictionary AssoDict;

KnowledgeBase KB;
b

Besides the attribute FolderOrg in the class FolderOrganization, there are

another three attributes:

e Dict is referred to as a thesaurus which describes synonymous relationship

between attributes/values in an application domain;

e AssoDict is referred to as association dictionary which describes the association

relationship between attributes appeared in predicates and in frame templates;

e KB is referred to as a knowledge base which contains facts and rules in an

application domain.

These attributes will be discussed in the later sections.

7.1.2 A Filing Algorithm
There is a special folder, the root folder (ROOT), in a folder organization. The

predicate of ROOT folder is true, that is, it contains all the frame instances in a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

folder organization. It is the root (starting point) of a folder organization and is
pre-defined by the system.

The method FolderOrganization::startFiling(FrameInstance fi) is
invoked when a frame instance fi arrives at the folder organization. The method
resets visited flags of folders in a folder organization, initializes evaluated attribute
lists to be empty, adds evaluated attribute list of fi to the root folder and calls the
method FolderOrganization::filing(Folder f, FrameInstace fi) to file the
frame instance. Suppose that there are n folders in a folder organization and m
evaluated attributes corresponding to the filed frame instance fi. The complexity of

the method FolderOrganization: :startFiling(FrameInstance fi) is O(m+n).

void
FolderOrganization: :startFiling(FrameInstance fi)
{

String fdName = FolderOrg.first();

vhile (fdName != NULL)

{ // initialize folder organization
FolderOrg[fdName]->resetVisite();
FolderOrg[fdName] ->makeEvalAttrListEmpty();
fdName = FolderOrg.next(fdName);

5

Attribute attr = fi.first();

vhile (attr != NULL)

{ // add evaluated attribute list of fi to ROOT folder
FolderOrg["ROOT"]->addEvalAttr(attr);
attr = fi.next(attr);

5

£iling(FoderOrg["ROOT"], £i); // start filing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

As mentioned in Section 7.1.1, both a frame template and a folder have an
evaluated attribute lists. However, an evaluated attribute list of a frame template
is static in the sense that it is pre-defined to determine what attributes in a frame
template will be used for filing evaluation when the frame template is defined. On
the other hand, an evaluated attribute list in a folder is dynamic. It is formed during
the filing depending on a filed frame instance and the predicate of a folder. An
evaluated attribute list of a folder only contains attributes of a frame template that
satisfy the predicate of the folder. Figure 7.4 sketches the procedure of forming

an evaluated attribute list of a folder and the complete procedure is described the

method FolderOrganization::filing().

get the first attribute from
the evaluated attribute list
of the parent folder

y
pass the attribute to
the evaluation function

f

No | the evaluation function
returns true ?

Yes

/

append to
the evaluation attribute list

o

reaches the end of W

Yes
the evaluated attribute list

of the parent folder ?

.

No
y

get the next attribute from
the evaluated attribute list
of the parent folder

Figure 7.4 Procedure of forming an evaluated attribute list

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

The following recursive algorithm describes how a frame instance fi can be
filed into a folder f and its descendant folders using depth first search approach. The
idea of the algorithm is to repeatedly extend a filing path as far as possible (if a
frame instance satisfies a predicate) into a folder organization, retract it, and then

re-extend it in another direction, until all the directions of the folder organization

are traversed.

void
FolderOrganization::filing(Folder f, Framelnstance fi)
{
Folder f£d;
String chldFolder = f.firstChildFolder(); // get left most child
f.addFI(fi); // deposit fi into f
f.setVisited(); // set f visited
while (chldFolder) != NULL)
{ f has child folder
fd = getFolder(chldFolder);
if ((fd.getVisited() == FALSE) && (£fd.getLFolder == FALSE)))
{ // fd is not L-folder
for (Attribute attr = f.firstEvalAttr();
attr != NULL; attr = f.nextEvalAttr(attr))
{ // forming evaluated attribute list
if (eval(fi, attr, fd.predicate()) == TRUE)
fd.addEvalAttr(attr); // add attr to fd’s evaluated attribute list
k
if (fd.firstEvalAttr() !'= NULL)
filing(fd, fi); // recursive filing
} else if (fd.getVisited() == FALSE)
{ // fd is L-folder

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

Bool flag = FALSE;
for (Attribute attr = fi.firstEvalAttr();

attr != NULL; attr = fi.nextEvalAttr(attr))

if (eval(fi, attr, fd.predicate()) == TRUE)

{
flag = TRUE;
break;
&
b
if (flag == TRUE)
filing(fd, £i); // recursive filing
15
chldFolder = f.nextChildFolder(chldFolder); // get right sibling

h

The following theorem shows the correctness of the above algorithm.

Theorem 7.1.1 (Correctness of Filing Algorithm) Let G(V, E) be a folder organi-
zation. Give a frame instance fi, all the folders that fi is already in their parent

folders are visited and their predicates are evaluated by the filing algorithm.

Proof: The proof is by induction. By definition, G(V, E) is a rooted DAG and the
predicate of the root folder is true. Thus, fi is deposited in the root folder. By the
depth first search{37), all the child folders of the root folder will be visited and their
predicates will be evaluated to see whether fi satisfies them. Assume that fi satisfies

the predicate of the folder f € V(G) so that it is deposited in f*. and there are

4Note that in the filing algorithm, the evaluation function is called and returns true if
a frame instance satisfies the predicate and is deposited in the folder, returns false and is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

folders f,,, ..., f,,, such that (f,f,,) € E(G), ..., (f,f,,) € E(G). Suppose that there
is a folder f, , where (f,f,) € E(G), that it is not visited by fi. It is contrary to the
depth first search algorithm. And so the result follows by induction. This completes
the proof of the theorem. a

Suppose that there are n folders in a folder organization, and the predicate
evaluation® takes O(m x k) (where m is number of frame templates in the association
dictionary and k is the max level of root trees in the rule base) for the worst case.

The filing algorithm takes then O(m x k x n) for the worst case.

7.2 Predicate Evaluation

In the filing algorithm FolderOrganization::filing(f, fi), the evaluation
function FolderOrganization: :eval(fi, attr, f.predicate) is true if the frame
instance fi with the attribute attr satisfies the predicate f.predicate. Note that the
evaluated attribute list is transparent to the evaluation function because an evaluated
attribute is passed to the evaluation function by the filing procedure. The evaluation
function takes the attribute, evaluates it and returns true if it satisfies the predicate,
otherwise it returns false. Then, the evaluation problem is how to determine whether
a frame instance fi satisfies the predicate of a folder f?

There are two possible cases to be considered:
e Case 1: all the attributes in a predicate appear in fi.
e Case 2: some attributes in a predicate do not appear in fi.
7.2.1 Case Study: Case 1

For the first case, the evaluation is simpler. For instance, consider the folder

PHD with the predicate Program = PhD. And consider a frame instance, fiy =

not deposited in the folder otherwise. The correctness of the evaluation function will be

discussed in Section 7.2.
SWe will give detail discussion and an algorithm for predicate evaluation in Section 7.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

[(StudentName: Jennifer Wallace), (Program: PhD), (StartDate: 09/04/94)).
Since the attribute Program in the local predicate 6 is appearing in the frame
instance fi;, we instantiate the attribute Program from fi, (i.e. fii[Program| = PhD).
That is, the attribute Program in 4 is replaced by the value PkD. Then, we conclude
that fi; satisfies § because PhD = PhD is true. Let us consider another frame
instance fi; = [(StudentName: John Thompson), (Program: Doctorate), (StartDate:
09/04/95)]. By instantiating the attribute Program from fi;, we get fi,[Program| =
Doctorate which concludes that fi; does not satisfy the local predicate (Program =
PhD) because Doctorate = PhD is false. However, PhD and Doctorate have the same
semantical meaning.

In order to solve the above problem, a thesaurus is consulted. The thesaurus
[32] is defined in the system catalog. It is represented by the three components
SysSynonyms, SysNarrower and SystemAssoc. The thesaurus class (Thesaurus) is

then defined as follows:

class Thesaurus
{
public:
Thesaurus(); // constructor
“Thesaurus(); // destructor
// set access methods
void addKeyTerm(KeyTerm KT); // add key term
void addSynKeyTerm(KeyTerm KT, SynKeyTerm SKT); // add synonym key term
void addNarrKeyTerm(KeyTerm KT, NarrKeyTerm NKT); // add narrow key term
void addIndexTerm(KeyTerm KT, IndexTerm IT); // add index term
void delKeyTerm(KeyTerm KT); // delete key term
void delSynKeyTerm(KeyTerm KT, SynKeyTerm SKT); // delete synonym key term
void delNarrKeyTerm(KeyTerm KT, NarrKeyTerm NKT); // delete narrow key term

void delIndexTerm(KeyTerm KT, IndexTerm IT); // delete index term

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

// get access methods
KeyTerm first(); // first key term in thesaurus
KeyTerm next (KeyTexrm KT); // next key term
KeyTerm findKeyTermEntry(SynKeyTerm SKT); // find key term for given a synonym term
KeyTerm findKeyTermEntry(NarrKeyTerm NKT); // find key term for given a narrow key term
KeyTerm findKeyTermEntry(IndexTerm IT); // find key term for given an index term
List<SynKeyTerm> getIndexTerms(KeyTerm KT);
[/ get a list of synonym terms of a given key term
List<NarrKeyTerm> getIndexTerms (KeyTerm KT);
// get a list of narrow key terms of a given key term
List<IndexTerm> getIndexTerms(KeyTerm KT);
// get a list of index terms of a given key term
private: .
// attributes
Map<KeyTerm, List<SynKeyTerm>> SysSynonyms; // system synonyms
Map<KeyTerm, List <NarrKeyTerm>> SysNarrower; // system narrower

Map<KeyTerm, List<IndexTerm>> SystemAssoc; // system association

In the filing evaluation, the system synonyms of the thesaurus are used. It
contains a key term part and a synonym key term part. They are one-to-many
relationship. That is, a key term may have many synonym key terms and a synonym
key term refers to one and only one key term. A synonym key term can refer to a
key term if they have the same meaning.

Figure 7.5 shows a portion of the system synonyms in a thesaurus. For instance,
the synonym key terms PhD and Doctorate refer to the key term PhD. For the frame
instance fi; = [(StudentName: John Thompson), (Program: Doctorate), (StartDate:
09/04/95)], after consulting the thesaurus, we know that PhD is the key term for

Doctorate. Then, we conclude that fi, satisfies the local predicate Program = PhD.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

synonym
key terms

key terms

PhD \ m
Doctorate PhRD

Figure 7.5 A portion of system synonyms in a thesaurus

Consider another scenario in which we have a folder (DOCTOR) with the predicate
(Program = Doctorate) and we want to file the frame instance fi;. By instantiating
the predicate attribute (Program) and consulting the thesaurus, fi still does not
satisfy the predicate of folder DOCTOR. However, as we discussed above, doctorate
and PhD have the same meaning. To solve the problem, we take the value (Doctorate)
in the predicate to consult the thesaurus. Since the key term for Doctorate is PhD,

the frame instance fi; satisfies the predicate of DOCTOR folder.

7.2.2 Case Study: Case 2

For the second case, since there are some attributes in the predicate which do not
appear in the frame instance, the predicate cannot be directly instantiated by the
attribute values from the frame instance. In order to solve this problem, we need
(1) to establish a relationship between attributes in predicates and frame templates
defined in a folder organization; (2) to have background knowledge in a certain appli-
cation domain. Then, an association dictionary and a knowledge base are introduced

besides a thesaurus which has been discussed in Section 7.2.1.

7.2.2.1 Association Dictionary: The association dictionary describes association

relationships between attributes in predicates defined in the folder organization and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

frame
predicate templates
attributes FT 1
ATTIR /| -
..... F"I:“i
Amj
..... F'[' K
ATTR K [-
FT,

Figure 7.6 An example of an association dictionary

various frame templates. As shown in Figure 7.6, the predicate attribute ATTR,,, for
example, is associated with frame templates FT,, FT; and FT,. In the evaluation
procedure for the Case 2, the association dictionary is first consulted to check
whether a predicate attribute is associated with the frame template of a filed frame
instance. If an association relationship is found in the dictionary, then the further
evaluation will be processed. Otherwise, the evaluation will be terminated and will
return false to the filing program.

In the association dictionary, predicate attributes and frame templates are
many-to-many relationship. That is, a predicate attribute is associated with many
frame templates and a frame template is associated with many predicate attributes.
The complete description of association dictionary class (AssociationDictionary)

is given below.

class AssociationDictionary
{ public:
AssociationDictionary(); // constructor
“AssociationDictionary(); // destructor
// set accessors
void addAttribute(Attribute attr); // add attribute

void addFrameTemplateName (Attribute attr, FrameTemplateName name);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

// add frame template name
void delAttribute(Attribute attr); // delete attribute
void delFrameTemplateName(Attribute attr, FrameTemplateName name);
// delete frame template name
// get accessors
Bool findFrameTemplateName(Attribute attr, FrameTemplateName ftName);
// check whether attribute is associated with frame template name
List<FrameTemplateName> listFrameTemplateName(Attribute attr);
// list frame template names associated with attribute

private:
// attributes

Map<Attribute, List <FrameTemplateName>> Dictionary;

7.2.2.2 Knowledge Base: The knowledge base [17] consists of two parts, a fact
base and a rule base. In the fact base, each object-attribute-value triple represents
the fact that an object ha.é a property which is described by an attribute along with

its value. For instance, the triple

[Jennifer A. Wallace Program PhD)

states that Jennifer A. Wallace is in a PhD program.
Consider a fact that James Israel is a staff of EE department and is also in the

PhD program of CIS department. Such fact can be represented as

[James Israel Role [[[Dept EE] [Status Steff]] [[Dept CIS] [Program PhD]|]]

A fact with a simple value (such as PhD) is called a simple fact. A fact with a
composite value (such as [[[Dept EE| [Status Staff]] [Dept CIS] [Program PhD]]})

is called a composite fact. The formal description of a fact can be defined as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

(Fact) ::= Object (Attribute) (Value)
(Attribute) := (String)
(Value) ::= (SimpleValue)

| (CompositeValue)
(SimpleValue) ::= (Numeric)

| (String)

| (Numeric) {, (Numeric)}*}

| (String) {, (String)}*}
(CompositeValue) ::= [{[[(Attribute) (SimpleValue)]}*]}*]
| [{[[(Attribute) (CompositeValue)]}*]}*]

A rule in the rule base is of the form LHS — RHS, where (1) LHS (also called
IF Condition) is a conjunction of facts, L, ..., L,,, which specifies the conditions of
applying the rule, and (2) RHS (also called Conclusion) is either a conjunction of
facts, Ry, ..., Rn, or a predicate in the folder organization, which is true only if LHS
is true. For instance, the following rule represents the fact that X is a faculty if X is

an assistant professor (where X is a variable).
[X Position Assistant Professor] — [X Status Faculty)

The rules in the rule base can be organized into a set of AND/OR rule trees (or
abbreviated as rule trees). For instance, the following rules can be represented by a

rule tree shown in Figure 7.7. (Notations of NOT and — are used interchangeably)

(0,P—>T
M-0
ﬁ N->O
A,~B—P

\
Each attribute in a knowledge base has a set of legal values. Suppose that the

attribute Program has the set of legal values {BS, MS, PhD}. If there is a fact

[James Thomas Program PhD) in a fact base, then the following rules are true:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

< or < AND Gmr

Figure 7.7 An AND/OR rule tree representing a collection of rules

[James Thomas Program PhD] — NOT [James Thomas Program BS)
[James Thomas Program PhD] — NOT [James Thomas Program MS]

Example 7.2.1 Consider the following rules, which are employed to file frame

instances into the folder organization of Figure 7.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

\

(X Class Employee] — [Class = Employee]

[X Status Staff] — [Status = Staff]

[X Status Faculty] — [Status = Faculty)

[X Status Staff] & [X Class Employee]

[X Status Facuity] — [X Class Employee]

(X Position Special Lecturer] — [X Status Faculty]

[X Position Full Professor] — [X Status Faculty]

[X Position Associate Professor] — [X Status Faculty]

[X Position Assistant Professor] — [X Status Faculty)

(X Department CIS] — [Department = CIS)

[X Program BS| — (Program = BS|

[X Program MS] — [Program = MS)

[X Program PhD] — [Program = PhD)

[X Position Special Lecturer] — [Position = Special Lecturer]

[X Position Assistant Professor] = [Position = Assistant Professor]
(X Position Associate Professor] — [Position = Associate Professor]
[X Position Full Professor] — [Position = Full Professor]

[X Class Student] — [Class = Student)

[X Program BS] — [X Class Student)

(X Program MS] — [X Class Student]

[X Program PhD], NOT([X Position Special Lecturer] — [X Class Student]

95

These rules can be organized into a set of rule trees as shown in Figure 7.8.

The leaf nodes and the immediate nodes of a rule tree are associated with facts, and

the rooted node of a tree is a predicate appeared in the folder organization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a

96

| Status = Faculty ’

X Status Faculty

(x_Position Special Lectorer) (X _Pesition Full Professor) (X Pesition Associste Professor) (X Pesicion Profesact)

()

Clazs = Employee

(x_Position _Special Lectmrer} (X Position Full Professor) (X Position A Professor } (X _Position Assistant Professor)

®)

(Postsion = Speciat Lecures) (Pasition = Full Professar) (Position = A Professor) (Position = Asristant Professor)

(x_Position_Special Lecturer) (x_pesition Full Professr) (x_redtion AsmcisicProtessor) (X Pesition Assistars Professor)

(c) @ (e) [/

Departmen: = CIS (Status = Staff) (Pm‘mn-PhD) Progrom = MS (Pm‘rm-BS)

(X Departmen 15) (X _sitms_surr) (x_Pognm M) (x progm Ms) (X _Prognm b5)

(x Position Special Lecturer)

[}

Figure 7.8 An example of rule trees

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

Knowledge Base class (KnowledgeBase) is defined as follows.

class KnowledgeBase

{

public:
KnowledgeBase(); // constructor
"KnowledgeBase(); // destructor
// set accessors
void addFact(Fact fact); // add fact
void addRule(Rule rule); // add rule
/[get accessors
Rule findRuleTree(PredType pred); // find rule tree with root “pred”
// behavior method
Bool reason(Rule rule); // goal-directed reasoning from “rule”
private:
// attributes
FactBase FB; // fact base
RuleBase RB; // rule base
&

The backward (goal-directed) reasoning [10] is used to execute the rules in
the rule base and can be described by a recognize-reduce cycle [1] where rules are
viewed as laws by which a goal can be reduced to a number of subgoals. In our
system, since the rules are organized as a set of rule trees, we can have the backward
reasoning by traversing these rule trees, each from a rooted node to the leaf nodes,
for determining whether a frame instance satisfies the predicates of the folders in the
folder organization. For example, let the goal be Class = Employee. The inference
engine selects the rule tree in Figure 7.8(b). By traversing the tree (say, breadth
first search (37]), the goal Class = Employee is reduced to another goal [X Class

Employee]. That is, if (X Class Employee| is true, then Class = Employee is true.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

Otherwise, the goal [X Class Employee] is further reduced to two subgoals [X Status
Staff] and [X Status Faculty]. If one of the two subgoals holds, then the goal [X
Class Employee] holds. Therefore, the goal Class = Employee is true. If not, the
system will continue going on. Since [X Status Staff] is a leaf of the rule tree, it
can not be further reduced. On the other hand, the subgoal [X Status Facuity|
is reduced into four sub-subgoals ([X Position Special Lecturer], [X Position Full
Professor], [X Position Associate Professor], and [X Position Assistant Professor]).
If one of them is true, then the goal Class = Employee is true.

The method KnowledgeBase: :reason(Rule rule) is an implementation of

goal-directed reasoning.

Bool

KnowledgeBase: :reason(Rule rule)

{
List<Fact> queue;
queue .make _empty(): // empty the queue
Fact fact = rule.leftMostChild(); get left most child of the root
queue.enqueue(fact); // add the fact to the queue
vhile ((fact = rule.rightSibling(fact)) != NULL)
{ // add children of the root to the queue

queue.enqueue(fact);

5

while ((fact = queue.dequeue()) != NULL)

{

if (FB.findFact(fact) == TRUE) return TRUE; // fact is found in fact base

if (rule.leftMostChild(fact) != NULL)

{

vhile ((fact = rule.rightSibling(fact)) != NULL)

{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

queue.enqueue (fact);
1§
k
b

return FALSE;

7.2.2.3 Evaluation Function: The following method
FolderOrganization::eval(FrameInstance fi, Attribute B, PredType "A 6
V") describes the evaluation procedure for determining whether a frame instance fi

with an attribute B satisfies an atomic predicate A V.

Bool

FolderOrganization::eval(FrameInstance fi, Attribute B, PredType "A 6 V")

{

if (A == B)

{// Casel
if (£fi(B] @ V) return TRUE;
for (each token value v in V)

Vxr.append(Dict .getKeyTerm(v));

if (Dict.getKeyTerm(fi[B]) 6 Vir) return TRUE;
return FALSE;

}

else

{ /] Case 2
if (Dict.getKeyTerm(A) == Dict.getKeyTerm(B))

{
if (fi[Dict.getKeyTerm(B)] 6 V) return TRUE;

for (each token value v in V)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

Vkr.append (Dict .getKeyTerm(v));
if (Dict.getKeyTerm(fi[Dict.getKeyTerm(B)]1) 6 Vxkr) return TRUE;

return FALSE;
else

if (AssoDict.findFrameTemplateName(A, fi.getFTName()) == TRUE)
{ // check if A associates with frame template of fi
Rule rule = KB.findRuleTree("A § V");
if (rule != NULL)
{
if (KB.reason(rule) == TRUE) return TRUE;
return FALSE;
£
rule = KB.findRuleTree("Dict.getKeyTerm(A) @ Vgr");
if (rule != NULL)
{
if (KB.reason(rule) == TRUE) return TRUE;
return FALSE;
b
b
return FALSE;
5
b

The following theorem shows the correctness of the above evaluation function.

Theorem 7.2.1 (Correctness of the evaluation function) Given an atomic predicate

A 0 V (where A is an attribute, V is a value and theta is a comparison operator), the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

above evaluation function determines whether a frame instance fi with an attribute B

satisfies A @ V.

Proof: We will establish the correctness of the evaluation function by considering

the following cases:

e Case 1: the attribute A is an attribute in fi. That is, A and B are the same. For
this case, the function checks whether fi[B] 8 V holds. If yes, it returns true.
Otherwise, it consults the thesaurus to get corresponding key terms fiB]xr and
Vxr for fi[B] and V, respectively. If fi[B]xr 0 Vir holds, it returns true and returns

false otherwise.

e Case 2: the attribute A is not an attribute in fi. There are two sub-cases to be

considered:

— Sub-case 2.1: A and B refer to the same key term in the thesaurus. For

this case, the proof is similar to the Case 1.

~ Sub-case 2.2: A and B refer to different key terms in the thesaurus. For this
case, it checks association dictionary to see if the attribute A associates
with the frame template of the frame instance fi. If there is no such
association relationship, the evaluation function returns false. Otherwise,
the evaluation function searches rule trees as defined in Section 7.2.2.2. If
there is a rule tree with root £i[B] 8 V or fiB]xr 6 Vkr, then the evaluation
function traverses the rule tree using breadth first search. If a subgoal

holds, it returns true. Otherwise, it returns false. O

Suppose that there are k frame templates in the association dictionary and the

deepest levels of rule tree in the rule base is m. The worst case of the evaluation

function takes O(k x m).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

A local predicate § in the form of boolean expression can be transformed into
a disjunctive normal form. That is, § = L; V ... V Ly, where L; (1 < i < k) is the
conjunction of atomic predicates (ie., Li = a;; A ... Aay,, a; (1 < j < m)is an
atomic predicate). The following method can be used to convert a predicate into a

disjunctive normal form.

void

Folder: :transform(PredType &)

{
while (there is a negation sign not immediately before atomic predicate)
{
if (there is a form —(-=S) in §)
{
—~(~8) = S;
h
if (there is a form —~(SAT) in §)
{
(SAT)=-=SV-~T;
k
if (there is a form —(SVT) in §)
{
~(SVT)=-SA-T;
b
&
vhile (there is a form RA(SVT) in §)
{
RA(SVT)=(RAS)V(RAT);
b
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

@

Figure 7.9 Convert a predicate to a disjunctive normal form

Internally, a predicate is represented as an expression tree. Then, tree pattern
matching mechanism can be used to recognize the forms —(—S), ~(SAT), =(SVvT),
and RA(SVT). Figure 7.9 shows the tree representation of these forms. For example,
if the pattern (in the left side of Figure 7.9(c)) is recognized in an expression tree,
then it is replaced by the right side of Figure 7.9(c). That is, =(S A T) is converted
to be =S Vv -T.

If a frame instance satisfies L; (3¢ € {1, ..., k}), then it satisfies §. To determine
whether a frame instance satisfies L;, the system evaluates whether it satisfies each

of atomic predicates, @;,, ..., a;,, using the function FolderOrganization: :eval().

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8

CONCLUDING REMARKS

This chapter will conclude the work of this dissertation and give potential research
directions. Generally, the major contributions of this dissertation include (1) the
extension of an existing document model and an algebraic query language, (2) the

reconstruction of folder organizations, and (3) the automation of document filing.

8.1 Document Models and Algebraic Query Languages
Previously, a folder organization was defined in terms of depend-on relationship [38],
an inclusion relation. That is, a folder f; depends-on a folder f; if and only if f; C f;.
Based upon this definition, a folder organization is a tree structure. This dissertation
extends the folder organization from a tree structure into the rooted DAG structure,
which represents explicitly document filing directions. There are three kinds of
depend-on relationships: totally depend-on, partially depend-on and independent-of.
These relationships are complete and mutually exclusive in the sense that for any
pair of folders in a folder organization, one and only one of the relationships holds.

The algebraic query language (called D_algebra) defined in [38] only handles
homogeneous folders. Whereas, in the reality, a folder can be a heterogeneous set of
frame instances. By observing this limitation, this dissertation extends the D_algebra
operations to support folders of heterogeneous frame instances. The deposit of frame
instances in the folders of a folder organization is governed by the constraints specified
for each folder. The constraints are specified terms of predicates.

Although many of the operators in the D_algebra correspond to operators in the
relational algebra [36], there is one major difference: the D_algebra operators can
manipulate heterogeneous sets (i.e., folders containing frame instances of different

types), whereas the relational algebra operators only deal with homogeneous sets (i.e.,

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

Table 8.1 Differences between D_model and relational models

Components | D_Model | Relational Model
Tuples and sets of tuples (i.e. tables) v v
Frame templates and recursively
defined bulk data types V4 X
Document type hierarchy and is-a
relationship between frame templates v X
Predicate-based folders containing
frame instances of different types v X
Folder organization with depends-on
relationship between folders v X
Path notation and highlight operator v X
Algebraic operators for manipulating
homogeneous sets V4 V4
Algebraic operators for manipulating
heterogeneous sets v x
Normalization and functional dependencies X N4
Keys and foreign keys X v
Referential integrity X v

tables containing tuples of the same type). We have defined a subset of the D_algebra
and proved that the subset is at least as expressive as the relational algebra [40].
Table 8.1 summarizes the 'key differences between the D_model and the relational
model, where “\/” indicates that the component exists in the corresponding model
and “x” indicates that the component does not exist in the corresponding model.
Note that since the D_algebraic operators are all defined on heterogeneous sets, as
opposed to the homogeneous sets handled by the relational algebraic operators, their
semantics are entirely different from those in the relational algebra.

The nest and unnest operators (v, u) are first introduced in algebra for NF?
relational data model. Jaeschke and Schek [28] proposed these two operators only
applied to nesting over single attributes defined over atomic attributes. Fischer
and Thomas [14] extended this to multiple attributes and multiple level of nesting.
However, as we discussed in the previous chapter, if we simply extend the restruc-

turing operators in NF?2 algebra into our document model, it does not fully support

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

our document model. The reason is as follows. In NF? relational data model, a
database schema is a collection of rules of the form R; = (R;,, R),, ..., R;,), where R;
and Rj; (1 < i < n) are relation names. Using this kind of rule, it can not generate
a set of relations. That is, nest and unnest operators in NF? relational algebra can
not express a set of relations. Recall that, in our document model, there is such rule
T = {T} to generate set of sets since T' can be any type. In this sense, our document

algebra is more powerful than NF? relational algebra.

8.2 Reconstruction of Folder Organizations
Folder Organizations are defined in terms of directed graph. Each node is associated
with a folder. For each folder, there is a constraint specifying what should be
contained in it. These constraints are specified in terms of local predicates and
global predicates. A user only specifies local predicates for the folders and the global
predicates of the folders are derived by ANDing the local predicates of folders of a
filing path of the underlying graph of a folder organization. The global predicate
of a folder determines the contents of a folder. A Reconstruction Problem for folder
organizations is then forﬁxulated, viz., under what circumstances it is possible to
reconstruct a folder organization from its folder level global predicates. The Recon-
struction Problem is solved in terms of such graph-theoretic concepts as associated
digraphs, transitive closure, and redundant/non-redundant filing paths. A transitive
closure inversion algorithm is presented which efficiently recovers a folder organi-
zation digraph from its associated digraph. The reconstruction result is as follows.
Given a set of folders with their global predicates, we can construct the associated
digraph G(F®) of a folder organization FO(G, A). If FO(G, A) is a totally hierar-
chical tree folder organization, then the underlying digraph G of FO(G, A) is the
only spanning tree of G(F®) whose transitive closure is equal to the associated

digraph G(F0). If (G, A) is a totally hierarchical and non-redundant DAG folder

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

organization, the underlying digraph G is then non-redundant spanning sub-DAG
of G(F®) whose transitive closure is also equal to the associated digraph G(FO).
Therefore, we can use the Transitive Closure Inversion algorithm to reconstruct the

unique folder organization digraph G from its associated digraph G.

8.3 Automation of Document Filing
A folder organization represents a users’ real world document filing system. For
the existing document filing systems [8, 9, 44, 49], they use the same filing criteria
(type-driven) to organize documents according to their types. That is, homogeneous
documents (of the same document types) are grouped together. This dissertation
provides a heterogeneous environment of organizing documents using predicate-
driven filing criteria. Heterogeneous documents (of different document types) can
be grouped into a folder if they satisfy the predicate of the folder. Table 8.2
summarizes their differences. In the real office environments, office workers organize
their documents in terms of various criteria rather than simply by document
types. For example, a department chairperson wants to create folders for individual
faculty members. Each folder may contain many document types, such as Faculty
Position Application, University Transcript, Memo, Publication, Vita, etc.
The type-driven filing approach fails to support such office environment. However,
as discussed in the previous chapters, the predicate-driven approach can support
such environment by defining a proper predicate for a folder. On the other hand,
the type-driven filing approach is only a a special case of the predicate-driven
filing approach (if a predicate is defined as frame-template = a-document-type,
for example), or we can use the document type hierarchy in TEXPROS document

model to mimic the type-driven approach of organizing and filing documents.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

Table 8.2 Differences between TEXPROS Document Filing and Other Systems

System Filing Model Filing Criteria Organization | Country | Year
MINOS Object-Oriented Type-Driven U. of Waterloo | Canada | 1986
MULTOS Object-Oriented Type-Driven CNR Italy 1988
AIM Nested Relational Type-Driven IBM U.S.A. | 1989
Kabiria Semantic Network Type-Driven Bull HN Italy 1993
TEXPROS | Folder Organization | Predicate-Driven NJIT U.S.A. | 1996

8.4 Future Research Directions
This section presents an overview of some future research directions that emanate

from the work described in the dissertation.

8.4.1 Specification of Criteria for the Folders

In this dissertation, a criterion of a folder is specified by a predicate. An atomic
predicate is defined as (Attribute) (Comparison Operator) (Value). The comparison
operators are pre-defined. A user has to use the restricted specification to specify
predicates of folders. Such restricted specification may make a user difficult to map
his/her criteria to predicates.

Considerable extension of predicate specification is to use a general first order
predicate specification {15, 4]. For example, the predicate (Vz)Journal_Article(z) A
Database(z) can be used to define a folder containing all the frame instances which
are journal articles in the database area. By using such general first order predicate
specification, there are two classes of predicates needed to be supported by the

system.

e Pre-defined predicates. The system provides a set of pre-defined predicates so
that a user can use to define common predicates of folders. The study is needed

to determine what is primary set of pre-defined predicates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

o User-defined predicates. The pre-defined predicates may not meet a user’s need
to specify predicates of folders. A mechanism should be provided so that users

can define additional predicates and their semantics.

8.4.2 Knowledge Discovery and Data Mining

A document filing system gathers and stores a large amount of documents. However,
the documents themselves are of little direct value. What is of value is the knowledge
that can be inferred from documents and put to use. Knowledge discovery in database
(KDD) and data mining {13, 27] have the potential of providing good information
and knowledge management support for a document filing system. The potential

research issues include:

o Understandability of patterns. In office information systems, it is important
to make the discoveries more understandable by humans. Possible solutions
include graphical representations, rule structuring, natural language generation,

and techniques for visualization of data and knowledge.

e Non-structured and multimedia documents. A significant trend is that a
document base contains not just structured documents but large quantities
of non-structured and multimedia documents. Non-structured documents
contain nonstandard data types, such as non-numeric, non-textual, geometric,
and graphical data, as well as non-stationary, temporal, spatial and relational
data. Multimedia documents include free-form multi-lingual text as well as
digitized images, video, speech and audio data. These data types are largely

beyond the scope of current KDD and data mining technology.

8.4.3 Reorganization of a Filing System
A filing system is dynamic and evolving. A user can reorganize his/her filing system

such as add a new folder, delete a folder, merge folders to be one folder, move a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

folder from one spot to the other, etc. As a consequence, some frame instances
must be re-filed. There is an ongoing research using an agent-based architecture to
cope with file reorganization [50]. Each folder is monitored by an agent. Agents
are represented as objects using an object-oriented approach. It encapsulates the
internal representation of folders with the operations that manipulate them, thereby

enhancing re-usability of code and information hiding.

8.4.4 A Multi-User Environment

Currently, TEXPROS document filing system is a personal (single-user) customizable
system. However, for the demand of accessing the shared information, a multi-user
filing system is needed. Consider a department document filing system containing
the departmental information. Suppose the ResearchReport folder contains research
reports of the department and it is shared to anyone. A user then can access and
retrieve the abstracts of reports. In order to support a multi-user environment, the

following considerations need to be made:

e Security issue. Like any other multi-user system, the security is always the
first concern. We may categorize folders in the filing system into three classes:
(1) public folders, (2) restricted folders, and (3) personal folders. A public
folder contains public information that allows any user to access. A restricted
folder only allows certain group of users or a privileged user to access. A
personal folder has pure personal information and only the owner of the folder
can access. A security mechanism needs then to be defined and built on the

top of a multi-user filing system.

e Centralizing the information. Folders in a multi-user filing system may
distributed over the network. For example, Professor John Smith creates his
personal folder (called John_Smith) on his workstation and it is a child folder

of Faculty folder which resides at another machine. In order to keep track

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

111

the network information, a client-server model can be adopted. A machine
is dedicated as a filing server that stores filing system information such as
where are folders in the network, and what are the relationships among them.
Whenever any change occurs, we only update the filing server. A client sends
a request to the filing server to get filing system information. There will be

a need of providing a set of protocols that govern the consistency of a filing

system.

o Internet availability. The World Wide Web has transformed the online world.
Users of the Web have a great deal of choices for selecting and viewing infor-
mation. Java [12] opens up a new degree of interactivity and customizability
of interaction for the Web. The integration of Netscape, Java and TEXPROS
will make TEXPROS filing system available on the internet. A user can use a

Web browser to file documents, and to retrieve documents.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o

10

11

12

13

Reproduced with p

REFERENCES

. H. Adeli, Knowledge Engineering, McGraw-Hill, New York, NY, 1990.

. E. Bertino, F. Rabitti, and S. Gibbs, “Query Processing in a Multimedia
Document System,” ACM Transactions on Office Information Systems,
vol. 6, no. 1, pp. 1-41, January 1988.

. G. Booch, Object Oriented Design with Applications, The Benjiamin/Cummings
Publishing Company, Inc., Redwood City, CA, 1991.

. L.F. Boron, Elements of Mathematical Logic, Addison-Wesley Publishing
Company, Inc., New York, NY, 1964.

. A. Celentano, M. Fugini, and S. Pozzi, “Knowledge-Based Document Retrieval
in Office Environments: The Kabiria System,” ACM Transactions on
Office Information Systems, vol. 13, no. 3, pp. 237-268, July 1995.

. S. Chen, Document Preprocessing and Fuzzy Unsupervised Character Classi-
fication, Ph.D. Dissertation, Department of Computer and Information
Science, New Jersey Institute of Technology, Newark, NJ, May 1995.

. S. Chen, F. Shih, and P. Ng, “A Fuzzy Model for Unsupervised Character
Classification,” Information Science, An International Journal, vol. 2,
no. 2, 1994.

. S. Christodoulakis, M. Theodoridou, F. Ho, M. Papa, and A. Pathria,
“Multimedia Document Presentation, Information Extraction, and
Document Formation in MINOS: A Model and System,” ACM Trans-
actions on Office Information Systems, vol. 4, no. 4, pp. 345-383, October
1986.

. H. Clifton, H. Garcia-Molina, and R. Hagmann, “The Design of a Document
Database,” in Proceedings of the ACM Conference on Document
Processing Systems, pp. 125-134, December 1988.

. W. Clocksin and C. Mellish, Programming in Prolog, Springer-Verlag, New York,
NY, 1981.

. W. Croft and D. Stemple, “Supporting Office Document Architectures with
Constrained Types,” in Proc. of ACM SIGMOD International Conf. on
Management of Data, pp. 504-509, 1987.

. J. December, Presenting Java: An Introduction to Java and Hotjava, Sams.Net,
Indianapolis, IN, 1995.

. U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “The KDD Process for
Extracting Useful Knowledge from Volumes of Data,” Communication
of the ACM, vol. 39, no. 11, 1996.

112

ermission of the copyright owner. Further reproduction prohibited without permission.

14

15

16

17

18

19.

20.

21.

22.

23.

24

25
26

27

113

. P. Fischer and S. Thomas, “Operators for Non-First Normal Form Relations,”
in Proc. of the 7th International Computer Software Applications Conf.,
pp- 464-475, 1983.

. J. Gallier, Logic for Computer Science: Foundations of Automatic Theorem
Proving, Harper & Row, Publishers, Inc., New York, NY, 1986.

. S. Gibbs and D. Tsichritzis, “A Data Modeling Approach for Office Information
Systems,” ACM Transactions on Office Information Systems, vol. 1, no. 4,
pp. 299-319, October 1983.

. U. Gupta, Validating and Verifying Knowledge- Based Systems, IEEE Computer
Society, Los Alamitos, CA, 1991.

. R. Guting, R. Zicari, and D. Choy, “An Algebra for Structured Office
Documents,” ACM Transactions on Information Systems, vol. 7, no. 4,
pp- 123-157, April 1989.

X. Hao, Automatic Office Document Classification and Information Eztraction,
Ph.D. Dissertation, Department of Computer and Information Science,
New Jersey Institute of Technology, Newark, NJ, August 1995.

X. Hao, J. Wang, M. Bieber, and P. Ng, “Heuristic Classification of Office
Documents,” International Journal of Artificial Intelligence Tools, vol. 3,
no. 2, pp. 233-265, 1994.

X. Hao, J. Wang, and P. Ng, “Nested Segmentation: An Approach for Layout
Analysis in Document Classification,” in Proc. of the Second International
Conference on Document Analysis and Recognition, Tsukuba Science
City, Japan, pp. 319-322, October 1993.

C. Hewitt, “Office are Open Systems,” ACM Trans. on Office Information
Systems, vol. 4, no. 3, pp. 271-287, July 1986.

P. Hoepner, “Synchronizing the Presentation of Multimedia Objects - ODA
Extensions,” ACM SIGOIS Bulletin, vol. 12, no. 1, pp. 19-32, July 1991.

. W. Horak, “Office Document Architecture and Office Document Interchange
Formats — A Current Status of International Standardization,” IEEFE
Comgputer, vol. 18, no. 10, pp. 50-60, October 1985.

. J. Hughes, Object Oriented Database, Prentice Hall, New York, NY, 1990.

. R. Hunter, P. Kaijser, and F. Nielsen, “ODA: A Document Architecture for
Open Systems,” Computer Communication, vol. 12, no. 2, pp. 139-151,
1989.

. T. Imielinski and H. Mannila, “A Database Perspective on Knowledge
Discovery,” Communication of the ACM, vol. 39, no. 11, 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

28. G. Jaeschke and H. Schek, “Remarks on the Algebra of Non-First Normal
Form Relations,” in Proc. of the ACM SIGACT-SIGMOD Sysmposium
on PODS, pp. 124-138, 1982.

29. W. Kim and F. Lochousky, Object-Oriented Concepts, Databases, and Appli-
cations, Addison-Wesley Publishing Company, New York, NY, 1989.

30. Q. Liu and P. Ng, “A Browser of Supporting Vague Query Processing in an
Office Document System,” Journal of Systems Integration, vol. 5, no. 1,
pp- 61-82, 1995.

31. Q. Liu and P. Ng, “A Query Generalizer for Providing Cooperative Responses
in an Office Document System (revised version),” Submitted to Data and
Knowledge Engineering Journal, October 1995.

32. Q. Liu and P. Ng, Document Processing and Retrieval: Text Processing, Kluwer
Academic Publishers, Norwell, MS, 1996.

33. Q. Liu, J. Wang, and P. Ng, “An Office Document Retrieval System with the
Capability of Processing Incomplete and Vague Queries,” in Proc. of the
Fifth Intl. Conf. on Software Engineering and Knowledge, San Francisco,
CA, pp. 11-17, June 1993.

34. Q. Liu, J. Wang, and P. Ng, “On Research Issues Regarding Uncertain Query
Processing in An Office Document Retrieval System,” Journal of Systems
Integration, vol. 3, no. 2, pp. 163-194, 1993.

35. E. Lutz, H. Kleist-Retzow, and K. Hoernig, Multi-User Interface and Appli-
cations, ch. MAFIA - an Active Mail-Filter-Agent for An Intel-
ligent Document Processing Support, North Holland: Elsevier Science
Publishers, Amsterdam, S. Gibbs and A.A. Verrijn-Stuart ed., 1990.

36. D. Maier, The Theory of Relational Database, Computer Science Press,
Potomac, MD, 1983.

37. J. McHugh, Algorithmic Graph Theory, Prentice Hall, NJ, 1990.

38. F. Mhlanga, D_Model and D_Algebra: A Data Model and Algebra for Office
Documents, Ph.D. Dissertation, Department of Computer and Infor-
mation Science, New Jersey Institute of Technology, Newark, NJ, May
1993.

39. F. Mhlanga, J. Wang, T. Shiau, and P. Ng, “A Query Algebra for Office
Documents,” in Proc. of the 2nd Intl. Conf. on Systems Integration,
Morristown, NJ, pp. 458-467, June 1992.

40. F. Mhlanga, Z. Zhu, J. Wang, and P. Ng, “A New Approach to Modeling
' Personal Office Documents,” Data and Knowledge Engineering, vol. 17,
no. 2, pp. 127-158, November 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

42.

43.

44.

45

46.

47.

48.

49.

50.

ol.

52.

53.

115

N. Naffah, Integrated Office Systems, North-Holland, Amsterdam, 1980.

J. Peckham and F. Maryanski, “Semantic Data Modles,” ACM Computing
Survey, vol. 20, no. 3, pp. 100-120, 1988.

B. Pernici and A. Verrjin-Stuait, Office Information Systems: The Design
Process, North-Holland, Amsterdam, 1989.

S. Pozzi and A. Celentano, “Knowledge-Based Document Filing,” IEEE Ezpert,
pp. 34-45, October 1993.

D. Shasha and J. Wang, “Optimizing Equijoin Queries in Distributed Databases
Where Relations Are Hash Partitioned,” ACM Transactions on Database
Systems, vol. 16, no. 2, pp. 279-308, June 1991.

G. Shaw and S. Zdonik, “A Query Algebra for Object-Oriented Databases,”
in Proceedings of the Sizth International Conf. on Data Engineering, Los
Angles, CA, pp. 154-162, February 1990.

F. Shih, S. Chen, D. Hung, and P. Ng, “A Document Segmentation, Classi-
fication and Recognition System,” in Proceedings of 2nd International
Conference on Systems Integration, Morristown, NJ, pp. 258-267, June
1992.

S. Su, M. Gou, and H. Lam, “Association Algebra: A Mathematical Foundation
for Object-Oriented Databases,” IEEE Transactions on Knowledge and
Data Engineering, vol. 5, no. 5, pp. 775-798, October 1993.

C. Thanos, Multimedia Office Filing: The MULTOS Approach, North-Holland,
Amsterdam, 1990.

J. Wang, F. Mhlanga, Q. Liu, W. Shang, and P. Ng, “An Intelligent
Documentation Support Environment,” in Proc. of the Fifth Interna-
tional Conference on Software Engineering and Knowledge Engineering,
San Francisco, CA, pp. 429-436, June 1993.

J. Wang, F. Mhlanga, and P. Ng, “A New Approach to Modeling Office
Documents,” ACM SIGOIS Bulletin, vol. 14, no. 2, pp. 46-55, December
1993.

J. Wang and P. Ng, “TEXPROS: An Intelligent Document Processing
System,” International Journal of Software Engineering and Knowledge
Engineering, vol. 15, no. 4, pp. 171-196, April 1992.

C. Wei, Knowledge Discovering for Document Classification Using Tree
Matching in TEXPROS, Ph.D. Dissertation, Department of Computer
and Information Science, New Jersey Institute of Technology, Newark,
NJ, May 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54.

55.

56.

57.

58.

89.

60.

116

C. Wei, Q. Liu, J. Wang, and P. Ng, “Knowledge Discovering for Document
Classification Using Tree Matching in TEXPROS,” Submitted to Infor-
mation Sciences, An International Journal, March 1996.

C. Wei, J. Wang, X. Hao, and P. Ng, “In Deductive Learning and Knowledge
Representation for Document Classification: The TEXPROS Approach,”
in Proceedings of 3rd International Conference on Systems Integration,
Sao Paulo, SP, Brazil, pp. 1166-1175, August 1994.

D. Woelk, W. Kim, and W. Luther, “An Object-Oriented Approach to
Multimedia Databases,” in Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, Washington D.C., pp. 311-
325, May 1986.

Z. Zhu, “Document Filing Based upon Predicates,” Ph.D. Dissertation Proposal,
Department of Computer and Information Science, New Jersey Institute
of Technology, Newark, NJ, October 1994.

Z. Zhy, Q. Liu, J. McHugh, and P. Ng, “A Predicate Driven Document Filing
System,” Journal of Systems Integration, vol. 6, no. 3, pp. 373-403,
September 1996.

Z. Zhu, J. McHugh, J. Wang, and P. Ng, “A Formal Approach to Modeling
Office Information Systems,” Journal of Systems Integration, vol. 4, no. 4,
pp. 373-403, December 1994.

J. Zobel, J. A. Thom, and R. Sacks-Davis, “Efficiency of Nested Relational
Document Database Systems,” in Proc. of the 17th International Conf.
on Very Large Databases, Barcelona, Spain, pp. 91-102, September 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Copyright Page
	Approval Page
	Abstract (1 of 2)
	Abstract (2 of 2)

	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Related Work
	Chapter 3: Preliminaries
	Chapter 4: Texpros Document Model
	Chapter 5: Extended D_Algebra
	Chapter 6: The Construction and Reconstruction Problems
	Chapter 7: Document Filing
	Chapter 8: Concluding Remarks
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

