

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zed) Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9721272

Copyright 1997 by Younis, Mohamed Farag
All rights reserved.

UMI Microform 9721272
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

SAFE CODE TRANSFORMATIONS FOR SPECULATIVE
EXECUTION IN REAL-TIME SYSTEMS

by
Mohamed F. Younis

Although compiler optimization techniques are standard and successful in non-real-

time systems, if naively applied, they can destroy safety guarantees and deadlines in

hard real-time systems. For this reason, real-time systems developers have tended to

avoid automatic compiler optimization of their code. However, real-time applications

in several areas have been growing substantially in size and complexity in recent

years. This size and complexity makes it impossible for real-time programmers to

write optimal code, and consequently indicates a need for compiler optimization.

Recently researchers have developed or modified analyses and transformations to

improve performance without degrading worst-case execution times. Moreover, these

optimization techniques can sometimes transform programs which may not meet

constraints/deadlines, or which result in timeouts, into deadline-satisfying programs.

One such technique, speculative execution, also used for example in parallel

computing and databases, can enhance performance by executing parts of the code

whose execution may or may not be needed. In some cases, rollback is necessary if the

computation turns out to be invalid. However, speculative execution must be applied

carefully to real-time systems so that the worst-case execution path is not extended.

Deterministic worst-case execution for satisfying hard real-time constraints, and

speculative execution with rollback for improving average-case throughput, appear

to lie on opposite ends of a spectrum of performance requirements and strategies.

Deterministic worst-case execution for satisfying hard real-time constraints,

and speculative execution with rollback for improving average-case throughput,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

appear to lie on opposite ends of a spectrum of performance requirements and

strategies. Nonetheless, this thesis shows that there are situations in which specu

lative execution can improve the performance of a hard real-time system, either by

enhancing average performance while not affecting the worst-case, or by actually

decreasing the worst-case execution time. The thesis proposes a set of compiler

transformation rules to identify opportunities for speculative execution and to

transform the code. Proofs for semantic correctness and timeliness preservation

are provided to verify safety of applying transformation rules to real-time systems.

Moreover, an extensive experiment using simulation of randomly generated real

time programs have been conducted to evaluate applicability and profitability of

speculative execution. The simulation results indicate that speculative execution

improves average execution time and program timeliness. Finally, a prototype imple

mentation is described in which these transformations can be evaluated for realistic

applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SAFE CODE TRANSFORM ATIONS FOR SPECULATIVE
EXECUTION IN REAL-TIME SYSTEM S

by
M ohamed F. Younis

A Dissertation
Subm itted to the Faculty of

New Jersey Institute o f Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Department of Computer and Information Science

January 1997

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Copyright © 1997 by Mohamed F. Younis

ALL RIGHTS RESERVED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL PAGE
(Page 1 of 2)

SAFE CODE TRANSFORMATIONS FOR SPECULATIVE
EXECUTION IN REAL-TIME SYSTEMS

Mohamed F. Younis

	
Dr. Alexander D. Stoyenko, Dissertation Advisor 	Date
Director, Real-Time Computing Laboratory at IT
Associate Professor of Computer and Information Science, NJIT
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Thomas J. Marlowe, Committee Member 	

				

Date
Professor of Mathematics and Computer Science, Seton Hall University
Visiting Professor, Real-Time Computing Laboratory
& CIS Department at NJIT

	
Dr. Phillip A. Laplante, Committee Member 	 Date
Dean of Engineering and Technology, Burlington County College
Visiting Associate Professor, Real-Time Computing Laboratory
& CIS Department at NJIT

Dr. Rajiv Gupta, External Committee Member 	 Date
Associate Professor of Computer Science, University of Pittsburgh

APPROVAL PAGE
(Page 2 of 2)

SAFE CODE TRANSFORMATIONS FOR SPECULATIVE
EXECUTION IN REAL-TIME SYSTEMS

Mohamed F. Younis

Dr. Bernard Lang, External Committee Member 	 Date
Member of Technical Staff, INRIA, Rocquencourt, France

Dr. James A. McHugh, Committee Member 	 Date
Associate Chairperson and Professor of Computer and Information Science,
New Jersey Institute of Technology, Newark, New Jersey

Dr. Peter A. Ng, Committee Member 	 Date
Chairperson and Professor of Computer and Information Science,
New Jersey Institute of Technology, Newark, New Jersey

Dr. Ami Silberman, Committee Member 	 Date
Assistant Professor of Computer and Information Science,
Member of The Real-Time Computing Laboratory at NJIT

BIOGRAPHICAL SKETCH

Author: 	Mohamed F. Younis

Degree: 	Doctor of Philosophy

Date: 	 January 1997

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1997

• Master of Science in Computer Science,
Alexandria University, Alexandria, Egypt, 1991

• Bachelor of Science in Computer Science,
Alexandria University, Alexandria, Egypt, 1987

Major: Computer Science

Presentations and Publications:

G. Tsai, M. Younis, B. Ghahyazi, T. Marlowe, A. Stoyenko, "Evaluation of
the Applicability and Profitability of Speculative Execution in Real-Time
Programs", in the Proceedings of The 13th IFAC World Congress, San
Francisco, California, July 1996.

M. Younis, P. Sinha, T. Marlowe, A. Stoyenko, "Performance Enhancement of
Various Real-Time Image Processing Techniques Via Speculative Execution",
in the Proceedings of the IS&T/SPIE Symposium on Electronic Imaging:
Science and Technology, San Jose, California, January 1996.

A. Stoyenko, T. Marlowe, M. Younis, "A Language for Complex Real-Time
Systems", The Computer Journal, Vol. 38, No. 4, pp. 319-338, November
1995.

M. Younis, G. Tsai, T. Marlowe, A. Stoyenko, "Using Speculative Execution
For Fault Tolerance in a Real-Time System", in the Proceedings of the 1"
IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS'95), Ft. Lauderdale, Florida, November 1995.

BIOGRAPHICAL SKETCH
(Continued)

M. Younis, G. Tsai, T. Maxlowe, A. Stoyenko, “Formal Verification of Trans
formation Rules for Speculative Execution in Real-Time Systems” , in the
Proceedings of the 20th IFIP/IFAC Workshop on Real-Time Programming
(W R T P ’95), F t. Lauderdale, Florida, November 1995.

M. Younis, T. Marlowe, A. Stoyenko, “Compiler Transformations for Speculative
Execution in a Real-Time System” , in the Proceedings of the 15f/l IEEE Real-
Time Systems Symposium (R T SS>94), San Juan, Puerto Rico, December 1994.

A. Stoyenko, T. Marlowe, M. Younis, A. Ganesh, C. Amaro, P. Laplante, A.
Silberman, P. Sinha, “Towards A Language Paradigm for Construction and
Development of Complex Computer Systems” , in the Proceedings of the IEEE
Workshop on Composability o f Fault-Resilient Real Time Systems, San Juan,
Puerto Rico, December 1994

M. Younis, T. Marlowe, A. Stoyenko, “Speculative Execution in a Real-Time
System” , in the Proceedings o f the 2nd IEEE workshop on Real Time Appli
cations (RTAW 94), Washington DC., July 1994.

M. Younis, A. Stoyenko, “Static Analysis Techniques and Speculative Execution
in Real-Time Systems” , an extended abstract in the Proceedings of the A CM
SIG PLAN workshop on Languages, Compilers, and Tool Support fo r Real-Time
Systems, Orlando, Florida, June 1994.

H. Meske, M. Younis and W. Halang, “A Reduced Instruction Set for a Hard Real
Time Architecture” , in the Proceedings of the ACM SIGARCH workshop on
Architectures fo r Real-Time Applications (ISC A ’94), Chicago IL., April 1994.

A. Stoyenko, L. Welch, P. Laplante, T. Marlowe, C. Amaro, B. Cheng, A. Ganesh,
M. Harelick, X. Jin, M. Younis, and G. Yu, “A Platform For Complex real-Time
Applications” , in the Proceedings o f Complex Systems Engineering Synthesis
and Assessment Workshop, July 1993.

A. Stoyenko, T. Marlowe, W. Halang and M. Younis, “Enabling Efficient Schedula-
bility Analysis Through Conditional Linking And Program Transformations” ,
Control Engineering Practice, Vol. 1, No 1, pp. 85-105, 1993

M. Younis, M. E lattar, Y. Boutros, “Parallelization of the Finite Element Method to
Solve Partial Differential Equations”, Alexandria University Academic Journal,
Vol. 5, No 1, pp. 112-122, 1992

M. Younis, Parallel Solution of Partial Differential Equations on Transputers,
Masters Thesis, Alexandria University, December 1991.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIOGRAPHICAL SKETCH
(Continued)

M. Younis, G. Tsai, T. Marlowe, A. Stoyenko, “Statically Safe Speculative
Execution for Real-Time Systems” , submitted to IEEE Transactions on
Software Engineering.

M. Younis, T. Marlowe, G. Tsai, A. Stoyenko, “Applying Compiler Optimization in
Distributed Real-Time Systems” , in the Proceedings of the 2nd IEEE Interna
tional Conference on Engineering o f Complex Computer Systems (ICECCS'96)
(to appear).

A. Stoyenko, T. Marlowe, M. Younis, P. Petrov, “A Language Support Environment
for Complex Distributed Real-Time Applications” , submitted to IEEE Parallel
and Distributed Technology.

A. Ganesh, T. Marlowe, A. Stoyenko, M. Younis, J. Salinas “Architecture and
Language Support for Fault-tolerance in Complex Real-Time Systems” , in
the Proceedings of the 2nd IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS’96) (to appear).

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOW LEDGM ENT

I would like to express my sincere gratitude to my advisors Prof. Alexander Stoyenko

and Prof. Thomas Marlowe for their leadership and valuable advice. They taught

me how to do research, guided me in my work and provided me with technical

and moral support. I am very grateful to my external readers and the balance of

my thesis committee for their time and the many excellent suggestions which led

to a considerable improvement of this thesis. Thanks is also due to all members

of the Real-Time Computing Laboratory at NJIT for their friendship and support

as colleagues, as well as their constructive criticism and technical expertise. I am

especially grateful to Dr. Grace Tsai, Behrooz Ghahyazi and Purnendu Sinha, who

have been my coauthors in multiple publications.

I am truly indebted to the Office of Naval Research and, recently, also to the

National Science Foundation for sponsoring our Lab’s efforts for building a platform

for designing and developing complex real-time systems. Working on this project

has been a valuable experience and a strong assistance in the validation of my

research. I would like also to thank these agencies for financially supporting my

study and my trips to various conferences and research meetings. I would like to

thank Plamen Petrov, Mehmet Ak§u, Yuan Cheng, Chris Kline, Bin Liang, Robert

Kates, Sun Kim, Bankim Patel, Yakov Khanin, Sergei Gorinsky and Jeff Venetta for

their significant contributions to the project. In addition, I am very grateful to the

Graduate Student Association at NJIT for their financial support of my presentations

at multiple workshops and conferences.

I would like to thank Siemens Corporate Research, and in particular Drs. Paul

Drongowski and Bob Schwanke, for two very productive summer internships that

sharpened my research ability. In addition, I would like to thank the AlliedSignal

Aerospace Microelectronics and Technology Center research team, Drs. David Shupe,

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Jeff Zhou and Neeraj Suri for giving me the opportunity to join them and increasing

my enthusiasm to wrap up my thesis.

My deep thanks to my wife Ghada for her support and assistance throughout

my study. Finally, I would like to thank my parents who encouraged me all the way

and blessed me with their prayers.

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

Chapter Page

1 IN TRO D U CTIO N... I

1.1 Real-Time Systems Requirements.. 3

1.2 Compiler Optimization in the Absence of Timing Constraints 5

1.3 Real-Time Compiler O p tim iza tion ... 7

1.4 Speculative Execution in Real-Time System s.. 9

1.5 C o n trib u tio n .. 13

1.6 O rg an iza tio n .. 14

2 THE REAL TIME M O D E L ... 16

2.1 Hardware E nvironm ent.. 16

2.2 Software Environm ent... 17

2.3 Schedulability A n a ly s is .. 18

2.4 Real-Time Programming Languages.. 19

2.4.1 Requirements of Real-Time L an g u ag es... 20

3 RELATED WORK ... 22

3.1 Compiler O p tim iza tio n .. 24

3.2 Speculative E xecution .. 26

3.3 Enhancing the Prediction of Execution T im e ... 30

3.4 Compiler Transformations to Enhance Schedulability............................ 34

3.5 Enabling Efficient Schedulability A nalysis.. 36

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS
(Continued)

Chapter Page

4 DERIVING REAL-TIME COMPILER RULES... 38

4.1 The Model and Form of R u le s ... 39

4.1.1 A Problem M o d e l... 39

4.1.2 Representation of the R u le s ... 40

4.2 Safe Compiler Optimization R u le s ... 42

4.3 Safe Parallelization of Real-Time P rogram s.. 45

4.4 Opportunities for Speculative E xecu tion ... 46

4.4.1 Opportunities of Speculatively Executing C onditionals............ 48

4.4.2 Opportunities of Speculatively Executing While L o o p s 49

4.4.3 Opportunities for Shadow Execution... 49

4.4.4 An Example of Code T ransform ation ... 51

4.5 Issues of Speculative Execution for Real-Time System s.......................... 54

4.5.1 Ensuring T im eliness... 54

4.5.2 Ensuring Correct Sem antics.. 55

4.5.3 Interaction with Real-Time Optimization T echniques.............. 56

4.6 Compiler Transformations for Speculative E x ecu tio n 57

5 FORMAL VERIFICATION OF SPECULATIVE EXECUTION RULES . . 62

5.1 Semantic Correctness P ro o f .. 63

5.1.1 Timeliness P ro o f... 73

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS
(Continued)

Chapter Page

6 EXPERIMENTAL VALIDATION.. 79

6.1 Design of Sim ulation.. 80

6.1.1 Generating Program s.. 81

6.1.2 Assigning Times to S tatem ents... 83

6.1.3 Calculating WCET and Deadlines ... 84

6.1.4 Calculating the Average Execution T im e 84

6.1.5 Applying Transformation Rules .. 85

6.1.6 Determining Missing or Meeting Deadlines 86

6.2 Performance... 88

7 IMPLEMENTATION AND TEST ENVIRONMENT..101

7.1 Overview of the Platform C om ponents..102

7.2 The Real-Time Language ...105

7.2.1 Language Overview.. 105

7.2.2 Observably Timed S ta te m en ts ..107

7.2.3 Static Sem antics... 107

7.2.4 Relating to Our Language M o d e l.. 109

7.2.5 An E xam ple...109

7.3 The Compilation Process... 115

7.4 The Timing T o o l ..116

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS
(Continued)

Chapter Page

7.5 The Analysis and Transformation E n g in e ... 120

7.6 The Schedulability Analyzer ... 121

7.7 The L inker... ’.122

7.8 The Run-time Environm ent..122

7.8.1 The K e rn e l.. 122

7.8.2 The Network A rchitecture Sim ulation T o o l ..129

7.8.3 User In te rfa c e ...'.................................. 132

7.9 Im plem entation of the Speculative Execution Transform ations132

7.10 Experim ental R e s u l t s ... 135

8 CONCLUSION AND FU TU R E W O R K .. 141

8.1 Fu ture Work .. 142

8.1.1 Extension of the Tool S u p p o r t .. 142

8.1.2 Work on Technical P r o b le m s ... 143

APPEN D IX A CO M PILER OPTIM IZATION SU PPO RTIN G ANALYSIS . . 146

A PPEN D IX B RULES FO R M ACHINE-INDEPENDENT O PTIM IZA TIO N 151

A PPEN D IX C RULES FO R SPECULATIVE E X E C U T IO N 160

REFEREN CES ... 164

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure Page

1.1 A real-time optim ization ... 8

1.2 Speculative execution can result in missed deadlines....................................... 11

4.1 Unsafe code ho isting ... 43

4.2 Rule: safe code hoisting... 44

4.3 Rule: safe code s in k in g ... 45

4.4 A Parallelization transformation r u l e .. 47

4.5 Code transformation for speculative execution.. 52

4.6 Speculative execution for if c lauses ... 58

4.7 Speculative execution for while c la u se s ... 60

6.1 The Grammar of the Generated Program s... 82

6.2 Speculative execution helps programs meeting deadlines.............................. 87

6.3 The relationship between opportunities and program s i z e 92

6.4 The effect of program size on performance.. 93

6.5 Size of i f blocks versus opportunities.. 94

6.6 Impacts of the if block size on perform ance... 94

6.7 Size of while blocks versus o pportun ities .. 95

6.8 Impacts of the while block size on p erfo rm ance... 95

6.9 Size of else block versus opportunities... 96

6.10 I f frequency versus o p p o rtu n itie s ... 96

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES
(Continued)

Figure Page

6.11 Impacts of i f frequency on performance... 97

6.12 While frequency versus o p p o rtu n ities .. 97

6.13 Effects of while frequency on perform ance.. 98

6.14 Percentages of blocking calls versus opportunities 98

6.15 Locality of variables reference versus opportunities...................................... 99

6.16 Effects of locality of variables reference on p erfo rm ance............................ 100

7.1 The platform software com ponents.. 104

7.2 An example of a call g r a p h ... 117

7.3 An example of the timed intermediate co d e ... 119

7.4 Example of the insertion of preemption p o in ts .. 126

7.5 Example of the application of the store-and-forward m echan ism128

7.6 An example of the final code to be linked with the k ern el.............................. 130

7.7 An example of applying speculative execution tran sfo rm atio n s 135

7.8 An example of applying speculative execution tran sfo rm atio n s 136

7.9 Statistics for test programs used ... 137

7.10 Opportunities for speculative execution in test programs 138

7.11 Speedup due to speculative execution of c o n d itio n s 138

A .l Code hoisting.. 147

xv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES
(Continued)

F ig u re P ag e

A.2 Common, subexpression e lim in a tio n .. 148

A.3 An interprocedural constant analysis ... ‘................. 150

xvi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 1

INTRODUCTION

“How is running a dedicated chemical process control program different from running

a compiler on a time-sharing system? Apart from the obvious difference in their

function, the two programs also differ in another fundamental way.

The time it takes the compiler to execute depends on such factors as the system

load and program mix. Sometimes, the user must wait for a relatively long time for

the compilation to complete, and a t other times the compilation runs quickly.

Long compilations can be tolerated because there are no timing constraints

associated with them. On the other hand, once the chemical process control program

is started, it must not take arbitrarily long to execute. Such systems are called real

time systems.” 1

Today there is a large and rapidly growing number of real-time applications.

Such applications axe drawn from different areas and use computer systems as control

elements. These applications motivate research in the area of real-time systems.

A special set of architectures, languages, compilers, and tools has been proposed

in the literature to address the distinct requirements of real-time systems. This

thesis mainly addresses compilation issues in real-time systems, and in particular on

compiler-directed program transformations.

Compiler optimization techniques facilitate development and performance

tuning of non-real-time systems2. Unfortunately, traditional compiler optimization

can complicate the analysis and destroy the timing properties of real-time systems,

'from [38].
2While compiler optimization primarily speeds up execution of programs, it is can be

used to enhance other features such as memory usage and code size.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

That is why real-time systems developers tend to avoid automatic optimization

of their code. However, real-time applications have grown in size and complexity

which necessitates development of a set of compiler optimization transformations

that tune performance without degrading worst-case execution times. Moreover,

real-time systems have become distributed. Thus, the compiler transformations

must consider more complicated issues, such as processor synchronization and the

sharing of resources. This need motivates the current study of how to perform safe

optimization and transformation of real-time programs.

Compiler optimization techniques include not only those transformations that

enhance the average execution time of a single program, but also detection of oppor

tunities for parallelism within the code in a parallel processing environment such as

a distributed system. Detection of parallelism tends to be difficult, especially in real

time systems, due to timing constraints. A tool that can enhance the performance

and expose additional parallelism without violating timing constraints can be of great

benefit to a real-time application developer. For example, safe and beneficial oppor

tunities for pure parallelism and speculative execution can be detected a t compile

time. Speculative execution is an optimistic execution of parts of the code based

on some assumptions about either the control flow or the values of variables. The

assumptions are later validated and rollback may be required to preserve program

semantics. Speculative execution can both enhance performance and increase paral

lelism.

This thesis mainly addresses safe use of machine-independent compiler

optimization, parallelization and speculative execution techniques in real-time

systems, with emphasis on the possibility of applying speculative execution to

real-time programs without risking timeliness. A demonstration is provided for

the use of speculative execution in limited but useful ways to safely improve the

average-case, and sometimes even the worst-case, performance of a distributed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

hard-real-time system. Compile-time analysis is used to verify both safety and

profitability of speculative execution in real-time systems, relying on intensive static

timing analysis to investigate the effect of rollback on worst-case execution time. The

code is transformed to fork new processes to execute parts of the code speculatively

on a shadow replica or on the same processor during a remote call or interleaving

with the current process. This approach, to my best knowledge, has not been used

before in real-time systems.

This chapter provides a motivation for our study of safe application of compiler

optimization techniques to real-time systems, highlights the difficulties associated

with performing such techniques and points out the contribution and the organi

zation of the thesis. In the next section, those requirements that distinguish

real-time systems from other, non-time critical systems, are presented. Then,

compiler optimization without timing constraints is discussed in Section 1.2, and

how timing constraints can complicate compiler optimization is illustrated in Section

1.3. Section 1.4 demonstrates how speculative execution can be useful in real-time

systems and why it should be carefully applied. Finally, a summary of the major

contribution of this work is provided, concluding with an outline of the balance of

the dissertation.

1.1 Real-Time Systems Requirements

Real-time systems are distinguished from other types of computer systems by the

explicit involvement of time expressed by two fundamental requirements: timeliness

and simultaneity [38]. The semantics of a real-time system, and thus its correctness,

involves not only the logical results of the computation, and the logical effect

of communication, but also the meeting of deadlines on various aspects of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

system. The second requirement ensures simultaneous handling of external events

in distributed and parallel processing of real-time programs.

Research in the area of real-time systems in the last few years confirms that

real-time computing is not necessarily equivalent to high performance computing.

Instead the requisite quality is not the temporal behavior itself, but rather the precise

predictability and control of the timing behavior of even complex and distributed

processes, leading to two other requirements of equal importance: predictability

and dependability. Other requirements can be imposed by the nature of the appli

cation, such as security in military applications. The design of such systems has to

provide enough reserve capacity and redundancy to be able to cope with extraor

dinary situations.

Soft and hard real-time systems are distinguished by the effects of a missed

deadline. In soft real-time environments, costs rise with increasing lateness of results.

On the other hand, no lateness can be tolerated in hard real-time environments,

where late reactions may be either useless or dangerous. In other words, the costs

of missing deadlines in hard real-time systems are infinitely high. Many applications

have a mix of hard and soft constraints. Hard real-time constraints typically result

from the physical laws governing the application.

For these reasons, common approaches to questions of performance evaluation

in parallel processing systems, are inappropriate in the hard real-time domain.

Thinking in probabilistic or statistical terms, the notion of fairness for the handling

of competing requests, or the minimization of average reaction times cannot be used

as an optimality criterion of system design. Instead, worst-case behavior, deadline

satisfaction, maximum run-times, and maximum delays need to be considered.

For embedded real-time systems, moreover, optimality of processor utilization

is a minor issue. Instead, costs have to be seen in the larger context of safety

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

requirements. For example, distributed real-time systems will usually have more than

one real-time process running at a time. The execution of various processes should

be synchronized to preserve the semantics of the system. This model of execution

imposes more requirements to assure predictability and timeliness. Access to shared

resources can be a source of unpredictability. Communication delays due to message

routing and contention may affect a process’s execution progress. Thus, the overall

set of running processes should be pre-analyzed. An accurate timing tooi should

be used to consider all sources of overhead and contention. A feasible assignment

of processes to processors, as well as a run-time scheduling policy, should exist

under which every process can meet its deadline without violating the precedence of

execution. Schedulability analysis [38, 89], determination at compile time of whether

every process satisfies its timing constraints, becomes an im portant requirement for

this type of real-time system. However, precise schedulability analysis is known

to be NP-complete. In response, a set of techniques has been developed (see for

example [97, 98]), which can reduce the scheduling complexity for many cases.

1.2 Compiler Optim ization in the Absence of Tim ing Constraints

In this thesis, the issues of applying compiler optimization techniques to real-time

systems without affecting timeliness are addressed. In this section, forms of compiler

optimization, and various program representations and analyses commonly used to

perform the optimization are discussed. The next section is devoted to illustrate

problems of applying compiler optimization to real-time software and complexities

introduced by timing constraints.

Compilation of programs for non-real-time applications typically involves local

and global optimization of code to improve its expected running time. Data flow

analysis techniques have proven to be important and beneficial for optimizing and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

parallelizing programs in sequential, distributed, and parallel environments: for

procedural languages such as Fortran or Pascal [2, 110]; for alternate language

paradigms such as functional languages [34, 81]; and for explicitly parallel languages

such as parallel Fortran and higher-level languages such as Hermes [102]. Recent

results (for example [88]) have suggested tha t compiler optimization/parallelization

can achieve results at least as good as hand-tailored code, and in some cases, much

better.

Compile-time optimization, whether machine-independent or machine-dependent,

should not affect the program semantics. This property is a safety requirement. In

addition, optimization should be reasonably precise; th a t is, it should discover

statically most opportunities which hold a t run-time and provide gains with

acceptable cost for the analysis. Both safety and precision require the use of

only those paths which can be determined using reasonable analysis will be taken at

run-time. These issues are discussed further in the Chapter 4.

In the absence of timing constraints, the most common objective function to

be minimized with compiler optimization is the average-case execution time of a

program. Code optimization techniques are generally applied after syntax analysis,

usually both before and during code generation [2]. The techniques often consist of

detecting patterns in the program and replacing these patterns by equivalent but

more efficient constructs (all of our transformations fall into this category). These

patterns may be local or global, and the replacement strategy may be machine-

dependent or machine-independent. First, control flow analysis is used to extract

the structure of the program. Then, improvable patterns are identified.

Code optimization can be divided into three interrelated areas. Local optimization

is performed within a basic block of code. A basic block is a sequence of consecutive

statements which may be entered only at the beginning and when entered is executed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in sequence without halt or possibility of branch except at the end [2]. Loop

optimization is a transformation of code in a loop, e.g., lifting invariant statements

or strength reduction of calculations. Global optimization is supported by data

flow analysis - the determination at compile-time of information giving facts about

communication and use of data. Data flow analysis can be seen as the transmission

of useful relationships from all parts of the program to the places where the infor

mation can be of use. Data flow analysis includes intraprocedural analysis - analysis

of a single function or procedure - and interprocedural (interprocess) analysis [60].

A more detailed discussion of the three forms of code optimization, as well as

other forms of analysis used to enable optimization, is provided in Appendix A.

In this section, compiler optimization in the absence of timing constraints has

been discussed. Timing constraints can introduce complex problems to applying

compiler optimization to real-time software. The next section provides a discussion

of the difficulties associated with performing code optimization of real-time programs

in a single and a multi-process environment.

1.3 Real-Time Compiler Optimization

Timing constraints may make compiler optimization, discussed in the previous

section, more complicated. Consider, for example, the code in Figure 1.1 which

consists of a loop followed by a call to a critical region c r i t (c) .

Moving the invariant code x : = 5; out of the loop will make the loop faster.

Thus the call to the critical section (accessing shared resources) will be executed

earlier. This may disturb the order in which requests are made for a shared resource,

causing unpredictable delay time and may cause, as a result, another process to miss

its deadline. Assume that before optimization this process will be the third in the

queue following say, process B and C. After optimization, the call is issued more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

ORIGINAL OPTIMIZED

while (i <= 100) do
x := 5;
j := f(i+x);
i := i+1;

x := 5;
while (i <= 100) do

i := i+1;
endwhile

j := f(i+x);

endwhile
call crit (C); call crit(C);

F ig u re 1.1 A real-time optimization

quickly, so this process comes ahead of process C in the resource queue; which may

increase the delay time for process C, causing it to miss its deadline.

Optimization has not often been applied to hard real-time programs, either

to individual processes, or across processes. Real-time programmers have suspected

that naive automatic optimization or parallelization prior to register allocation and

resource scheduling can destroy safety guarantees and deadlines. While this suspicion

is in fact correct, as shown in the above example, lack of optimization can also

lead to missed deadlines. Consider again the code in Figure 1.1. The process may

miss its deadline before optimization if it cannot execute fast enough to satisfy

its deadline. By optimization, the loop invariant will be moved outside the loop

boundaries and the size of the repeated block will be smaller. Thus, the loop runs

faster and the process may be able to satisfy the deadline. However, optimization

after register allocation and resource scheduling can destroy both allocation and

schedule, while optimization before register allocation and scheduling may in fact

worsen performance. In Figure 1.1, if optimization is performed after resource

scheduling, the queue order of the shared resource may be changed (as the call

in that process will be reached faster), and the previous schedule may no longer be

valid.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

In recent years, real-time applications have been growing substantially in size

and complexity which makes it impossible for programmers to write optimal code,

and consequently indicates a need for compiler optimization. Requiring optimization

to be performed together with scheduling, instruction selection, register allocation,

tends to make optimization a very hard problem. Marlowe and Masticola [59]

have shown th a t even optimization for a system consisting of a single process may

disturb timing constraints and may cause a deadline to be missed. In addition,

optimization for explicitly parallel programs tends to be quite hard even without

timing constraints [64].

As was shown earlier, proper optimization can sometimes transform programs

which cannot meet constraints/deadlines or which result in timeouts into deadline-

satisfying programs. Moreover, safe opportunities for parallelism can be detected

that can, if carefully applied, enhance resource utilization and speed up execution.

In addition, optimization of hard real-time programs has benefits even for real-time

programs which are already running, and which can be proven to meet their timing

constraints. For these programs, it is often preferable to reduce resource usage (time,

space, or processors), especially in multiuser or multiprogramming environments.

Not only do resources then become available to other users, but this may also make

the programs more robust in the face of unpredictable system overload, as suggested

by the scheduling-theoretic results of [11].

The following section shows how safe speculative execution can enhance average

performance and generate opportunities for parallelism in real-time systems.

1.4 Speculative Execution in Real-Time System s

In the previous section, the complexity of performing compiler optimization in real

time systems is illustrated. While there is a need for safe compiler optimization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

for real-time code, it is very hard to apply optimization techniques without jeopar

dizing timeliness, even for simple models. This section includes an elaboration of

the benefits of one interesting optimization technique, speculative execution, which

is considered in depth in this thesis and the difficulties associated with applying it

to real-time systems.

In systems without hard deadlines, expected execution times can be further

reduced and parallelism can be increased by speculative execution.

Typically, speculative (or optimistic) execution [48, 103] requires rollbacks

or restarts when the computation in progress is found to be based on assumptions

which are later invalidated; rollback reads a checkpoint, and then replays as much

of subsequent execution as is still valid, and begins execution (for a given process)

when some step depends on changed information.

Speculative execution may: (1) execute a statement with outdated values,

and need to retract the computation and re-execute it with the correct values, or

(2) execute one branch of a conditional, and then need to retract that computation

and execute a different branch, or none at all. Within this speculative execution, it

may be possible to (3) make unnecessary calls or calls with invalid parameters, which

will need to be retracted, if they have begun execution, or killed, if they have not.

Simple examples exist to show that, even when speculative execution provably

improves expected performance, it can result in missed deadlines. In Figure 1.4,

assume exp involves a call and takes time 8, code blockl needs 10 units, code block2

takes time 9, and the fork and copy each take time 2. If there is a 90% probability

for exp to be true, the expected execution time for the original code (on the left) is

17.9 units, and becomes 12.7 for the transformed version (on the right). However,

worst-case time has been extended by transformation from 18 in the original code to

19.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

ORIGINAL TRANSFORMED

if (exp) fork code blockl
code blockl

else
code block2

if (exp)
copy results for blockl

else
code block2

/* Before transformation, /* After transformation,
the deadline is met * / deadline is possibly

missed if exp is false * /

F ig u re 1.2 Speculative execution can result in missed deadlines.

While this dissertation addresses safe use of machine-independent compiler

optimization, parallelization and speculative execution techniques in real-time

programs, speculative execution will be considered in depth. The thesis demonstrates

how speculative execution can be used in limited but useful ways to safely improve

the average-case, and sometimes even the worst-case, performance of a distributed

hard-real-time system. The approach is not based on a specific architecture, but uses

a number of architecture/operating system cost parameters. Compile-time analysis

is used to detect both safety and profitability of speculative execution in real-time

systems relying on intensive static timing analysis to investigate the effect of rollback

on worst-case execution time. The code is transformed to fork new processes to

execute parts of the code speculatively on a shadow replica or on the same processor

during a remote call or interleaving with the current process. This approach, to the

author’s best knowledge, has not been used before in real-time systems.

Program transformations can be used to improve the timeliness, performance,

and analyzability of real-time programs. However, to employ such transformations,

they should be proven to be correct (both semantically and temporally), profitable,

and automatable. To facilitate the use of speculative execution to real-time appli-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

cations, which have grown in size and complexity, a set of compiler transfor

mation rules is developed. The rules preserve not only program semantics but also

timeliness [116], and can be incorporated into a real-time language compiler to be

systematically applied. While applying these rules increase compilation overhead

for real-time programs, this thesis shows that speculative execution pays off.

While the approach to speculative execution presented in thesis, and the

related approach of [59], can be viewed as supporting primarily absolute performance

improvement for real-time systems, information on deadlines and laxity can be used,

both to enable additional transformations in the presence of slack, and to focus

the efforts of the transformation system. In fact, even systems that are provably

schedulable can benefit from such transformations. If the schedulability criterion

is violated, and there are spare processors, speculative execution can be viewed as

forking-off an additional process, presumably lowering the load per processor, and

enabling the system to be scheduled. In addition, speculative execution can improve

other properties of real-time systems, such as fault tolerance [117].

Speculative execution can be successful in computation-intensive complex

systems, such as real-time imaging and multimedia. Although such applications have

potential for parallelism, there are also opportunities for speculative execution [115].

Image filtration, for example, usually involves a lot of computation, while testing

the quality of an image is time-consuming as well [19]. An image can be filtered

speculatively on a shadow while quality tests are running. The same argument

holds for edge detection. Moreover, morphological image processing [32] has a lot

of potential for speculative execution. Construction of a structural element can

be done speculatively while another element is being tried. Another application is

image retrieval according to certain input or the occurrence of an event. The most

complicated image can be retrieved and filtered speculatively on a shadow to shorten

the worst-case execution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

1.5 Contribution

In this dissertation, we mainly study how to apply compiler optimization, in general,

and speculative execution, in particular, to real-time systems. We identify safe and

profitable opportunities for speculative execution at compile-time and transform the

code accordingly. We have developed a set of transformation rules th a t can be

plugged in compilers of most real-time languages. The speculative execution trans

formations have been integrated within a platform for developing complex real-time

systems, being built at the Real-Time Computing Laboratory at NJIT and sponsored

by the Office of Naval Research and the National Science Foundation. The platform is

based on a new real-time language [99] and its tool support including an analysis and

transformation engine. The speculative execution transformations has been imple

mented as a part of that engine. Detailed description of the platform is provided in

Chapter 7. The contribution of this dissertation can be summarized as follows:

• We have developed techniques to detect safe and profitable speculative

execution opportunities. We have defined a set of conditions tha t assure

timeliness of real-time programs before enabling the transformation. We

use compile-time analysis to justify safety and profitability of speculative

execution. Safety is verified by investigating the effect of rollback on the

worst-case execution time. The transformation is profitable when it speeds

up the execution of the longest path of the program (refer to Chapter 4 for

details).

• We have specified transformation rules that can be plugged in compilers of

most real-time languages. The rules provide a set of preconditions, action and

postconditions. Preconditions need to be verified to assure the preservation

of program semantics and timeliness. The action part summarize changes in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

the code, while postconditions reflect side effects resulting from the transfor

mation. This format is proven to be very convenient for formal verification and

implementation (refer to Chapter A for details).

• We have formally verified the safety of the transformation rules. We have used

temporal logic to prove that the semantic of programs are preserved and the

timing behavior is not worsen when applying the transformation rules (refer to

Chapter 5 for details).

To validate our work empirically we have done the following:

• We have conducted an experiment to capture the effect of various properties

of real-time programs that affect applicability and profitability of speculative

execution. The experiment uses randomly generated real-time programs. We

have examined the impact of the frequency of programming constructs, the

size of blocks, and locality of variable references on the number of potential

opportunities and performance gains due to speculative execution (refer to

Chapter 6 for details).

• We have examined the usefulness of speculative execution in realistic appli

cations. We have plugged in our transformation rules in a platform for

developing complex real-time systems at the real-time computing laboratory

at NJIT. The speculative execution transformations have been applied to a

small number of simulated real-time applications, and shown to be beneficial

for performance (refer to Chapter 7 for details).

1.6 Organization

This dissertation is organized as follows. In the next chapter, a real-time model

which serves as a basis for this work is defined. Chapter 3 summarizes related

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

work. In Chapter 4, opportunities for speculative execution are identified, various

safety issues affecting the applicability of speculative execution to real-time programs

are elaborated, and a specification of compiler transformation rules for speculative

execution is provided. These rules are formally verified for semantic correctness

and preserving timeliness in Chapter 5. An experiment based on simulation have

been conducted to capture various code properties that affect the number of feasible

opportunities and performance gains of speculative execution. In Chapter 6, the

design and results of this experiment are illustrated. A prototype implementation

for the speculative execution compiler rules is described in Chapter 7, highlighting the

applicability and usefulness of speculative execution in realistic application. Finally,

Chapter 8 concludes this thesis and summarizes future research directions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

THE REAL TIME MODEL

In the previous chapter, we motivated our study and defined the problem that this

thesis is trying to address. In this chapter, a real-time model is defined for this

work. In addition, definitions are provided for some of the terms used throughout

the thesis. In the next section, assumptions about the hardware platform are stated,

followed by a discussion of the assumed software environment. Schedulability

analysis is illustrated in Section 2.3, followed by a discussion of high-level real-time

programming language support. The discussion of the language model elaborates

features that a language should provide to enable static analysis in the presence of

timing constraints, as illustrated in the next chapter.

2.1 Hardware Environment

In this section, the thesis assumptions about the real-time hardware environment are

stated.

Real-time hardware (for example [38, 63]) need not necessarily be very fast,

but must provide predictable functionality enabling analysis of the system and

fault-tolerance [25]. Issues like caching, direct memory access, virtual addressing,

pipelining, or asynchronous communication protocols can cause nondeterminism,

and consequently should be handled with care. In this thesis, it is assumed that the

execution time of each machine instruction is known at compile-time. Moreover, it

is assumed that the hardware does not introduce any unpredictably long delays into

program execution. In the following section, the software component is defined.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

2.2 Software Environment

Processes in real-time systems can be either periodic or aperiodic. Each process

has a frame - the minimum period which corresponds to the maximum frequency of

activation of that process. The frame is usually dictated by the external environment.

The process can be activated periodically, by a signal from another process or an

external activity, or at a specific time known at compile-time. Once activated, a

process must complete its task before the end of the current frame (its deadline)

and cannot be reactivated before the end of the frame (otherwise, the frame is not

the minimum period). Processes can synchronize their execution. The kernel is

responsible for serializing access to shared resources. A kernel call blocks a process

until a desired shared resource is free, then it claims that resource and returns. All

subsequent attempts to claim the same resource will block until the process with

the resource executes another kernel call to release the resource. Synchronization

primitives (for example, semaphores) can be used to implement this mutual exclusion.

In this thesis, it is assumed that the kernel uses a suitable discipline to schedule

processes, for example the disciplines described in [55, 66].

Traditional real-time systems have often taken the form either of a cyclic

executive or of a relatively small number of independent, coarse-grained processes

executed on a small number of processors and making use of a small number of mostly

homogeneous resources. Current and future systems are expected to run on modern

computer architectures, often parallel and distributed, and to utilize many hetero

geneous resources. Consequently, techniques must be developed to identify parallel

objects of appropriate granularity within real-time systems and to map these objects

and their resource requests to parallel processes and resources, to facilitate such high

performance objectives as short response times and balance of workload. In this

thesis, it assumed that there is a suitable assignment tool, such as the tool in [100],

within the real-time software environment to allocate such processes to processors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

Schedulability analysis, as illustrated in the following section, can provide at

least some kind of prediction of execution behavior of a set of processes. This kind of

analysis can help the programmer, as will be shown, to solve some of the allocation

and scheduling problems a t compile-time. In addition, compiler assistance may be

used to collect additional information about the nature of the processes as an aid to

the allocation and scheduling of processes, as illustrated in the next chapter.

2.3 Schedulability Analysis

The software components of modern real-time systems, as discussed in the previous

section, are typically programmed in a high-level language with some functions

possibly written in assembly code. As the software is written, the programmer

attempts to follow the timing specifications of the system to the best of his or

her ability. The resulting code is subjected to analysis for adherence to its critical

timing constraints under all possible execution orders compatible with the scheduling

discipline in use. This form of analysis, introduced by Stoyenko [89, 90, 91, 95] is

commonly referred to as schedulability analysis. Schedulability analysis is also used

for non-complex, scheduling-theoretic systems amenable to provably optimal rate-

monotonic scheduling [58] to refer to its verification process, which typically involves

checking of a simple set of constraints [30].

The schedulability analyzer consists of two parts, a partially language-

dependent front end and a language-independent back end. The front end is

incorporated into the code parser, and extracts timing information and calling

information, and builds program trees. It computes the amount of tim e individual

statements, subprograms, and process bodies take to execute in the absence of

calls and contention. The front end has as an input table mapping statements to

execution times. The back end is a separate program which analyzes the information

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

summarized in the generated program trees by the front end and predicts guaranteed

response times for the entire real-time application.

The statistics generated by the schedulability analyzer tell the programmer

whether or not the timing constraints are guaranteed to be met. In addition, it may

provide the programmer with hints on problems or bottlenecks if the system fails

one or more deadlines.

The accuracy of schedulability analysis depends on an accurate summary of

timing information. However, finding precise solutions considering contention and

branching in general is a NP-complete problem, and the cost can add significantly

to the cost of program compilation. The NP-completeness arises in particular

from the combinatorial explosion of possible execution orders in cases of processes

sharing resources. As a result, schedulability analysis can either be (1) exact

and efficient of analysis single process or multiple processes of simple form, or

with highly constrained interactions [65, 72, 78, 108], (2) highly imprecise though

efficient analysis of multiple process programs [57], or (3) nearly exact though highly

inefficient analysis of some multiple processes [89, 95]. To combat some sources of

combinatorial explosion, there has been work to reduce the cost of precise schedu

lability analysis, as for example [71, 96, 97, 98]. These are illustrated in the next

chapter.

The next section provides a discussion of how schedulability analysis, among

other requirements, motivated a new programming language paradigm for real-time

high-level programming languages.

2.4 Real-Tim e Programming Languages

In the past, programmers for real-time applications have used assembly language

to develop their programs. While assembly language provides enough control for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

them to hand-optimize small processes, as the applications get larger, it becomes

harder and more time-consuming both to develop and to optimize assembly code.

Moreover, unstructured control flow and the use of address operators make automatic

analyses difficult or impossible. Partly for this reason, the demand for high-level

language programming for real-time applications has grown. Early designers of real

time languages took the natural approach of augmenting existing languages with real

time features. Later, a set of real-time languages was proposed structured around

real-time requirements, such as Real-Time Euclid [51] and (to a lesser extent) Ada 9X

[94], Next, the requirements that real-time languages should support are discussed.

2.4.1 Requirements of Real-Time Languages

The requirements for real-time languages can be classified as: support for multipro

gramming and distributed processing, expressibility of timing constraints, support

for standard high-level language constructs while enabling schedulability analysis

by avoiding or resolving constructs with unbounded execution time, and ability to

describe non-functional constraints such as security and fault-tolerance.

Real-time software almost always involves multiprogramming. A real-time

language must therefore support the process concept by providing process definition.

It should allow concurrency and provide primitives for interprocess precedence,

communication, and synchronization.

The most obvious requirement th a t a real-time language should satisfy is

expressibility of a sufficiently powerful set of timing constraints to capture those

imposed by the nature of time-critical applications. At a minimum, there should be

constructs to express timing constraints on a process.

A real-time language should make sufficient provisions for schedulability

analysis. Every program should be analyzable at compile-time to determine deadline

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

satisfaction during execution. The language should have no constructs that could

take arbitrarily long to execute. For example, a general while-loop can lead to

unpredictable execution times. While-loops axe either removed from the language

or require compile-time analysis or user assertions to provide an upper bound on

iterations to bound execution time of the construct. Recursion can also be an

obstacle for analyzing programs, and likewise may be disallowed or require compile

time knowledge of an upper bound on the depth of the recursion. Dynamic structures

can have a similar effect, and are again disallowed or restricted, by a storage bound

on their maximum size.

In addition to restrictions arising from timing constraints, there are generally

other non-functional constraints. Real-time programs must in general be very

reliable. Thus, a real-time language should be secure. Specifically, the language

should have strong typing and structured constructs, and be modular as well as

simple. There should be a high-level mechanism for exception handling to minimize

the hardware-dependent part of the code that has to be implemented in assembly.

This allows the portability of the programs to different platforms. Exceptions can

also allow relaxation of constraints in abnormal situations, effectively supporting

mode-change within the language.1

1A significant part of this discussion is derived from [92].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

RELATED WORK

A global requirement for all compiler transformations is to preserve the semantics

of the programs. This property is termed the safety or correctness requirement. On

the other hand, there should be some gain from applying them. It makes no sense

to transform a program without enhancing some property of the analysis or the

execution behavior. This requirement is termed profitability. For real-time programs,

safety has a more restrictive definition: in addition, code transformations should

not worsen the timing properties of the program. A program that meets all timing

constraints should not be transformed to a one that fails its deadline. Thus evaluating

the applicability of code transformations in real time systems requires an accurate

estimation of execution time. Before performing the transformations, the effects on

execution behavior must be studied. According to that investigation, the transfor

mation may or may not be applied. The estimation of execution time can be based

on a compile time prediction or monitored while testing the code. The better the

accuracy of th a t estimate, the more confident we will be in transforming the code.

Usually compile-time analysis, including code transformations, is referred to as

static or pre-run time analysis. Static analyses in real-time systems generally fall

into four categories.

1. Code transformations guaranteed to preserve or enhance timing properties and

to improve overall performance. These are generally safe forms of sequential

and parallelizing compiler transformations, including in the latter category

speculative execution. These transformations uniformly affect the executable

code.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

2. Partial evaluation and other forms of code specialization that largely support

writing of high-level reusable code. Although transformations in this group

result in changes in the executable code, their principal effect in working code

is for the benefit of timing analysis. Transformations in this group provide

support for predicting or monitoring execution behavior of systems.

3. Transformations to reduce the complexity of schedulability analysis. Recall

from the discussion in the previous chapter that precise schedulability analysis

is NP-complete. Transformations in this category attem pt to decrease the

complexity, as discussed in Section 3.5. These transformations may or may not

change the code functionality.

4. Techniques to enhance the schedulability of the system, in the sense of trying to

find a feasible schedule for a set of processes or extracting some useful properties

about processes for the scheduler to use. These techniques seldom affect the

code.

The work presented in this thesis falls primarily in the first category. It

provides a study of how to apply various machine-independent compiler optimization

techniques to real-time programs without jeopardizing timeliness. The thesis concen

trates on safe and profitable use of speculative execution in real-time system. This

chapter provides a summary of some of the previous work on static analysis of real

time systems and a comparison with the work presented in this thesis.

The chapter is organized by the goal of the analysis. However, some work

can fit in more than one category. For example, in [36], the goal can be seen

as enhancing schedulability and also as enhancing the average case performance by

detecting more opportunities for interleaving execution. For another, the work in [35]

can enhance utilization of resources, and also provides support for monitoring. The

next two sections focus on the group 1 above, discussing previous work in compiler

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

optimization and speculative execution. The discussion of timing prediction and

monitoring follows. Then, a discussion is provided of the previous work on enhancing

schedulability. Finally, some work on efforts to enable efficient schedulability analysis

is described.

3.1 Compiler Optimization

While much work has been done on compiler optimization, few papers consider

real-time issues. Optimization can be categorized as either sequential program

optimization or parallelization, and moreover, as machine-dependent or machine-

independent. Here only machine-independent optimization is considered, assuming

homogeneous memory. Using techniques related to the VPO approach [5, 27], on

retargetable machine-dependent optimization, we may be able to extend our work

detailed in the next chapter, especially in addressing issues of memory hierarchy.

In this section, previous work on machine-independent optimization is considered,

followed by efforts made to address real-time compiler optimization. Then, a

discussion is provided about research on performing retargetable machine-dependent

optimization.

Compiler optimization for sequential programs is discussed in [2], where most

common machine-independent and machine-dependent optimization techniques are

illustrated. An overview of parallelization techniques is presented in [110]. Both [2]

and [110] address optimization in general without considering real-time systems.

Using a simple model for a class of hard real-time systems, Marlowe and

Masticola [59] examine the applicability of classical source code transformations for

both sequential optimization and parallel programming. They develop a notion of

safe real-time code transformations and base their study on this safety property.

A code transformation is a safe real-time transformation if it not only preserves

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

program semantics, but also preserves timing properties. They address only machine-

independent optimization, using the intermediate code generated by the compiler.

However, they address only deadline constraints, and do not consider the effect of

the transformations in a multiprocess environment, nor do they have results on the

applicability of such transformations.

Although we are principally interested in classic machine-independent optimizations,

their safety for real-time systems appears to depend on memory hierarchy issues,

and we may need to optimize at a level closer to target code. Work done on the

VPO (Very Portable Optimizer) project at the University of Virginia and elsewhere

addresses the use of retargetable machine-dependent optimization, which combines

traditional machine-independent optimization with awareness of memory hierarchy

issues and some machine-dependent optimizations. We would like to look in the

future a t applying this approach to real-time systems. In [5, 27], for example,

an algorithm is presented to increase memory bandwidth for wide-bus machines by

grouping fetch operations to get as many operands per memory read as possible. The

advantage of machine-dependent global optimization is discussed in [13]. Two levels

of intermediate code between the source code and the machine code are suggested:

a high-level intermediate code used for machine-independent optimization, and an

expanded low-level intermediate code. Most machine-dependent optimization can

be performed on low-level intermediate code. In [14], low-level intermediate code for

machine-dependent optimization is used to improve register allocation, in a portable

manner.

In this thesis, machine-independent optimization is only considered, and leave

the machine-dependent transformation as a future extension. In particular, the thesis

focuses on the safe and profitable application of speculative execution to real-time

software. In the next section, a discussion is provided for previous work on speculative

execution which does not address real-time issues.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

3.2 Speculative Execution

Speculative execution is an optimistic execution of parts of the code based on

assumptions that need to be validated. Speculative execution has been substantially

used for super-scalar and VLIW machines, for example [4, 8, 20, 21]. The model

considered there is different from the one assumed in this thesis. The motivation

is to come up with optimal instruction scheduling to achieve better performance

and to decrease the overhead of rollback and recovery. Real-time issues are not

addressed. Most approaches use machine-instruction-level speculative execution.

The work presented in this thesis is not addressing that level of granularity, but is

trying to extract opportunities at source code level. In the future, we may try to use

a specific architecture and add instruction-level speculative execution. We are also

looking at distributed real-time systems which may be running on a heterogeneous

platform.

Speculative execution is also common in database management [105]. There

has been work on speculative concurrency control and transaction management in

real-time databases, such as [16, 17]. Redundancy is used to ensure that serializable

executions are discovered and adopted as early as possible, to increase the likelihood

of the timely commitment of transactions.

Moreover, speculation is used in early parallel implementations of logic and

functional languages [39, 101]. With abundant processors, OR-parallelism is used by

PROLOG interpreters to process in parallel the clauses for a predicate [83]. Antici

pating a false value of the first clause, possibly unnecessary evaluation of the other

clauses can be performed. However, this is a run-time mechanism, while our approach

is to detect opportunities at compile-time and transform the code accordingly.

The use of rollback for synchronizing the execution of processes in distributed

environments was introduced by David Jefferson in [48]. He defines the notion of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

virtual time as a new paradigm for organizing and synchronizing distributed systems.

Every process has its own local virtual clock. All messages output from one process

are sent in virtual send time order but are not necessarily received in that order.

However input messages to any process are read in virtual receive time order. He

uses the Time Warp mechanism, a synchronization protocol distinguished by its

reliance on lookahead-rollback, and implements rollback via antimessages. Every

process continues execution, regardless of the virtual time of other communicating

processes; if it encounters any message in its input queue with receive time-stamp

less than its current virtual time, it performs a rollback to a suitable older state and

sends antimessages to other processes to cancel messages previously sent during that

period. He relies on a global control mechanism to detect global termination and to

handle errors and I/O . When a process sends a command to an output device, output

will only be physically performed if the global virtual time exceeds the virtual receive

time of the message containing the command. After th a t point, no antimessages

for the command can ever be generated and the output can be safely committed.

Although he does not consider real-time processes, we may use his model as a base

in considering speculative execution in multiprocess real-time environments.

The motivation in [103] is different. There, the problem of reconstructing a

consistent state after a failure in a distributed environment is addressed. Optimistic

recovery, an application-independent transparent recovery technique based on

dependency tracking, is introduced. Dependency tracking entails each process

to track its dependency on the states of the other processes with which it commu

nicates. By recording such dependencies, it is possible to avoid unbounded cascades

of rollbacks which may result in an attempt to find a consistent set of individual

process checkpoints. To ensure that the externally visible behavior of the system is

equivalent to some failure-free execution, all external messages are committed to the

outside as soon as it is determined from dependency information that the states that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

generated the messages will never need to be rolled back. Again, real-time issues are

not addressed. We see dependency tracking as a possible technique to apply when

we consider speculative execution in multiprocess real-time systems.

The possibility of optimistic execution of a process in the presence of more than

one replica is studied in [33]. The purpose of process replication is to speed up the

execution of a distributed application by reducing the communication delays with

the replicated process. Optimistic algorithms are presented which guess whether the

modification of a replica’s state due to execution of a message can be performed long

before applying the modification to the process’ other replicas, without having the

application observe the delayed consistency. If the guess is wrong, then execution of

the message may have to be undone, but if the possibility that the guess is correct

is sufficiently high, performance improves due to increased parallelism. The author

considers both virtual time and dependency tracking as optimistic protocols. While

his goal is close to that of this thesis, the approach is quite different. In this thesis,

processes are not replicated; in addition, he does not consider real-time processes,

and it is not clear that his technique applies without modification in this case.

A code replication technique to improve the accuracy of semi-static branch

prediction is presented in [52]. The approach is to use profiling to collect information

about the correlation between the subsequent outcomes of a single branch, especially

for intra-loop branches. Considering that history (profiling data) at compile-time,

it is possible to enable speculative execution based on that history. The disad

vantage of this approach is the increase in code size which may have negative impact

on instruction cache miss rate; thus there needs be a cost function which takes

both execution speed and code size into account. In addition, it requires two-phase

compilation - once for the profiling run, and once using that information for eventual

execution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

Yamana et al. [112] showed the effectiveness of speculative execution of condi

tional branches in enhancing the average performance of Fortran programs running

on multiprocessor platforms. They use static single assignment [2] to avoid race

conditions in their shared memory model. They duplicate code on conditional

branches to increase the effectiveness of speculative execution. They proposed a

distributed control mechanism with: a global data matcher to trigger the execution

of the speculative macrotasks (threads) upon the fulfillment of all data precon

ditions, a broadcasting system th a t report the progress in execution, and a dynamic

task allocator to assign macrotasks to under-utilized processors. However, safety

and profitability of speculative execution is not justified before transformations and

during the execution. In real-time systems, it should be ensured th a t enhancing

average performance does not jeopardize timeliness. Our approach is to statically

verify the safety and profitability of speculative execution before transforming the

code.

Rauchwerger and Padua [84] use speculative execution with run-time tests to

enable parallelization of loops with statically unknown cross-iteration dependence.

Their approach is to optimistically transform the loop so that all iterations are to

be executed in parallel on different processors. A run-time data dependence test

is to be applied to determine if there had been cross-iteration dependences during

the execution. If the test fails, the loop is re-executed serially and the original

execution time is extended by the time of the test. Thus, we see that this technique

is inappropriate for real-time systems.

Automatic parallelization of while loops through transformation into equivalent

for loops have been proposed by Wu and Lewis [111]. The idea is to extract a variable

that can serve as a loop index. Although this technique can handle certain types of

while loops, others cannot be transformed (true while loops). Collard [24] proposed

a technique to automatically parallelize true while loops using speculative execution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

However, his approach is restricted to a single while loop surrounding fo r loops that

perform vector-related operations. The technique creates multiple shadow copies of

arrays and introduce another dimension indexed by a shadow index. Our approach

does not have such restriction either on the loop control structure or the loop body.

Moreover, the notion of safety in our transformations includes timeliness, which

substantially increases the difficulty of the problem.

3.3 Enhancing the Prediction of Execution Time

As illustrated a t the beginning of this chapter, code transformation for real-time

systems must rely on an accurate timing analysis. In this section, some of the

work done on static prediction of execution time is discussed, as well as attem pts to

use compiler support to enable monitoring execution of real-time processes. Some

work has addressed the calculation of the execution time of a single process in

isolation, while others have studied expected timing behavior in the presence of

multiple processes competing for shared resources. Some approaches assume program

annotations to obtain better estimates of the execution time, for example [37]. Others

use perturbation analysis techniques to propose locations in the code at which to

perform run-time monitoring activities, like [87]. On the other hand, some consider

performing a simulation to reflect changes in timing behavior due to any code trans

formations [107], or due to sources of unpredictability such as cache memory and

pipelining [68, 70].

In [71, 72], the aim is to relax the restrictions placed on the use of high-

level constructs, such as recursion, loops, and dynamic da ta structures in real-time

software, and to obtain better estimates for each execution instance, instead of worst-

case estimates over all instances. The technique is based on partial evaluation. Using

information available at compile-time about the execution environment and/or values

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

of variables (e.g., the length of input arrays), a residual program specialized for that

environment can be derived by partial evaluation. Analyzing the residual program,

a more realistic upper bound on execution time can be determined.

A different approach can be found in [78]. The first step is to perform basic

prediction of the execution time statically, based on a simple timing schema for

source-level language constructs. Then using user-provided information, dynamic

path analysis allows refinement of the original predictions by eliminating paths and

decomposing the possible execution behaviors in a path-wise manner. Aspects of

this approach are closely related to [96].

The objective in [37], similar to the above, is to refine execution time estimates

of real-time applications. Refined estimates can be used at run-time to achieve

better resource utilization and early failure detection and recovery. The approach

is to detect, a t compile-time, correlation between execution of a statem ent or a

block of code and the evaluation of a branch condition, between the execution of a

statement outside a loop and the number of loop iterations, between the call site

of a procedure and the evaluation of a branch in that procedure, or between the

execution of a statem ent and creation of a task in a parallel program. Based upon

the execution path followed and the correlation information, the worst execution

time of the remainder of the task can be estimated. The scheduler can consult that

estimate to perform such adaptations as may be required to ensure deadlines, to

pre-schedule other related processes, and to pre-allocate resources.

The approach of [56] is to implicitly consider program paths without explicitly

enumerating them. The problem of determining worst execution bounds is converted

to solving an integer programming problem. Basic blocks are analyzed at compile

time and the execution bounds are computed based on a machine model. Using

integer programming, an upper bound on the number of times a basic block is visited

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

can be computed. User annotations can be incorporated as a set of constraints. While

each integer programming problem can in the worst-case take exponential time, the

authors argue that in practice it takes time similar to that for solving a single linear

programming program.

Perturbation analysis, a technique which identifies the situations in which

run-time monitoring activities can be performed non-intrusively, has been proposed

in [87]. The techniques identify the idle time available during the execution of a task

and schedule monitoring tasks during these times. They partition the monitoring

work among various points at which idle time is available. The approach is based

on viewing a real-time application as a series of execution spans, delineated by

input points, at which the computation must wait to receive data. Idle times occur

during those periods when the current execution is complete and the computation

is suspended at an input point. They view the resulting idle time as the amount

of monitoring work that can be absorbed without affecting the program’s ability

to meet deadlines. They rely on static timing analysis during compilation and rely

on user annotations for monitoring requests to analyze the possibility of monitoring

without affecting worst case execution time.

The problem addressed in [107] is different. The author tries to calculate

accurate source-level execution time bounds for real-time programs in the presence

of code improving transformation. The compiler builds a timing tree reflecting the

execution time of the basic constructs in the program. The tree is then modified

when program optimization or code motion is performed, so that it is possible to see

the effect on the execution time.

A method, called Static Cache Simulation (SCS), is introduced in [68] to enable

using instruction caching without sacrificing predictability. The approach is to use

control flow information provided by the back-end of a compiler to simulate cache

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

behavior at compile-time. Knowing th a t behavior it becomes possible to analyze

worst-case execution timing of the program while gaining performance enhancement

using instruction cashing.

This idea has been extended to support the use of software-based cache parti

tioning to maintain predictability of execution time within preemptive real-time

systems [67]. Tasks will be associated with distinct cache partitions. Compiler trans

formations are introduced to provide instruction and data partitioning. Separate

object files are generated for each code and data partition. The linker combines

these objects files into an executable. Static cache simulation can still be performed

for individual tasks. However, such transformations introduces new code that may

increase the worst-case execution time. Evidence of the usefulness of such technique

is pointed out as future work.

In the same spirit as SCS, a portable pipeline simulator compiler is proposed

in [70]. There, they try to predict pipeline behavior for uniprocessor RISC archi

tectures containing multiple functional units, multicycle operations and out-of-order

instruction execution. They use an architecture description file to model the pipeline.

The simulator compiler analyzes the real-time program in that architecture assembly

language, and provides the worst-case execution of blocks of interest within the code.

An approach to integrate the timing analysis of pipelining and instruction

caching is presented in [41]. Static cache simulation is used to categorize the caching

behavior of each instruction of a given program. The caching behavior of instructions

within a path is considered to predict the pipeline performance of th a t path. The

performance of various paths are integrated to predict the worst-case execution time

of the program.

Huang and Liu [46] address the unpredictability of programs execution due

the use of direct memory access. They suggest an algorithm to give a bound on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

the worst-case execution times of the concurrent execution of CPU instructions and

cycle-stealing DMA I/O operations. This analysis is applicable in absence of cache

memory and pipeline operations.

A heuristic algorithm to determine an upper bound on the response time of each

process in a distributed real-time environment is presented in [57]. The objective

is to determine the worst-case blockage due to competition for shared resources

(processors, critical sections, devices, communication links). The approach starts

with each process simultaneously blocking every process that could block. From

this, they then remove impossible blockage combinations, corresponding for example

to two processes executing the same critical section; thus the remaining blockages

are always an upper bound on the worst-case blockage.

3.4 Compiler Transformations to Enhance Schedulability

There has been a great deal of work to enhance the schedulability of real-time

processes using compiler transformations. Some generate useful decision support

for the on-line scheduler, like [36]; others consider a priori fixed specific real-time

scheduling algorithm, for example [45, 31].

In [36], a compile-time technique is presented to enable interleaving the

execution of tasks on a single processor and/or overlapping the execution of tasks

on multiple processors using a restricted resource contention model. They suggest

a new task graph representation, called the compact task graph, used to aid in

the scheduling of a set of communicating periodic tasks. Assuming availability

of necessary resources, busy-idle execution profiles of the real-time tasks [87, 97],

discussed earlier in this chapter, are computed during compilation. The intention is

to expose the potential for parallelism across tasks, as well as idle times that may be

encountered with a task, in the compact task graph. By providing this information

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

within the compact task graph without splitting tasks, the authors argue that it will

be suitable for achieving efficient on-line scheduling.

A different approach to support on-line schedulers is introduced in [35]. First,

compiler-based techniques classify the application code on the basis of predictability

and monotonicity. Then, those techniques are applied to introduce measurement

code fragments at selected points in the application code and to store monitoring

data. The results of run-time measurements can be used to dynamically adapt

worst-case schedules. The approach is based on the ability to reorder the code

during compilation, so that parts of the code with unpredictable execution times

are executed earlier. Using run-time measures of actual execution, the deviations

from anticipated worst-case execution times can be considered by the scheduler for

a remedy if a process will miss its deadline, or for accommodating additional tasks if

there is slack time. The goal is to enhance utilization of resources and speed detection

and recovery from failure.

An algorithm to achieve consistency between the program’s worst-case execution

time and its real-time requirements is presented in [31, 45]. They use a language

model based on time-constrained relationships between observable events. Then,

they apply compiler transformations to sequential programs to move unobservable

code so that the task can comply with its timing requirements. First, the code is

translated into single static assignment form (SSA) [110], followed by decomposition

it into blocks. Then a variant of section-wise trace scheduling is applied to attain

feasibility or to decide that the program is infeasible.

Based on the same language model as [31, 45], a task transformation technique

for control domain applications driven by rate-monotonic scheduling [58] has been

presented in [30, 44]. The objective of the transformations is to enhance the schedu

lability of the system by transforming unschedulable tasks into multiple threads.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

Another approach to enhance schedulability in a preemptive real-time scheduling

environment is discussed in [85]. They rely on compiler assistance to reduce the

overhead due to context switching for preemptive scheduling in real-time systems.

The method introduced in their paper tries to detect points in the program where

only a small subset of the registers are live. By performing context switching at those

points in the program, it will be possible to avoid saving and restoring irrelevant

registers, and consequently to reduce the time of context switches. They push this

idea further by introducing a machine-dependent optimization technique, called

register remapping, to provide more fast context switch points. To avoid degrading

the performance of the code, they rely on hardware support to identify those points

for the scheduler.

3.5 Enabling Efficient Schedulability Analysis

Schedulability analysis, as discussed in the previous chapter, refers to static deter

mination of the satisfaction of timing-constraints by real-time programs. Precise

compile-time verification of execution constraints on timing is known to be NP-

complete. Practical schedulability analysis of large real-time applications will thus

require tools or analytical techniques to reduce the expected problem size and compu

tation time. In this section, some of the work done to enable efficient schedulability

analysis is discussed.

A polynomial-time code transformation to simplify schedulability analysis of

parallel real-time programs has been presented in [97], A restricted subset of Real-

Time Euclid [51] is used as a language model. A restricted form of shared resource

contention of processes to simplify the analysis is assumed, as also assumed later

by the similar approach of [36]. All resource requests participating in a non-idling

resource interval are released together, when the last request is finished. Moreover.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

the resource scheduler enforces statically pre-computed non-idling resource interval

sizes. Using that model, they introduce clustering transformations, via attribute

grammars [2]. When critical sections occur on branches of a condition, the clustering

algorithm inserts fixed delays into some branch to make accesses to a critical section

happen at the same time as on other branches. Thus, the complexity is reduced by

a factor of two (for each such transformation) while the process will have the same

effect on other processes regardless of the branch it takes.

The work in [98] has a different approach to decreasing the number of paths

to be considered by the schedulability analyzer. The approach is to detect non

executable paths by linking execution of conditional branches in various parts of the

program. They combine that with the clustering transformation discussed above,

and have some positive experimental results illustrating the applicability of these

techniques in reducing problem complexity. While the technique of [35] is somewhat

similar, that technique aims at supporting non-intrusive monitoring.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4

DERIVING REAL-TIME COMPILER RULES

In previous chapters, the problem of applying compiler optimization techniques to

real-time systems, and previous efforts of different researchers have been illustrated.

In this chapter, we present our approach to solving tha t problem. This chapter shows

that it is possible in many cases to apply compiler optimization and parallelization

techniques without affecting the timing constraints of the system. Thus, real-time

systems programmers can use compiler optimization to tune the performance of their

systems and enhance resource utilization.

A set of transformation rules is introduced that can be applied to perform

optimization, parallelization and speculative execution. The applicability and safety

of the transformations are specified through a set of preconditions. Preconditions

include structural, dependence and blocking conditions to preserve the program

semantics, and timing conditions to avoid extending worst-case execution time. The

transformation engine within the compiler makes sure that all these preconditions

are verified before modifying the code. The engine interacts with the timing tool

and uses data flow analysis techniques as well as the program control flow graph.

Once the transformation is proven to be safe and profitable, the engine will make

the appropriate code modifications.

In the next section, the adapted model for this approach is stated and the

syntax of the rules is defined as well as some of the abbreviations used; a discussion of

optimization and parallelization rules follows. The discussion of speculative execution

begins with detection of opportunities for speculative execution. Then an example

of code transformation is shown, illustrating some of the issues to be considered, as

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

well as problems to be overcome. Finally, compiler rules for speculative executions

are provided.

4.1 The M odel and Form of Rules

In this chapter rules for a number of compiler transformations for optimization, paral

lelization and speculative execution are discussed. This section starts with providing

definitions and assumptions needed within the model, as well as representation of

the rules.

4.1.1 A Problem M odel

A real-time model similar to the one presented in Chapter 2 is adapted. A set of

periodic top-level processes are assumed, each with a deadline, invoking methods of

a set of objects governing resources and data. The application runs on an arbitrary

network of processors. Objects and processes are assigned to processors at compile

time.

The analysis relies on an expressive real-time language for all kinds of timing

constraints. The language does not allow any unpredictable constructs: there are no

dynamic structures, all loops have an upper bound on the number of iterations,

and there is no recursion. Conceptually, a program in this language may have

resulted from source-to-source translation of a program with more general loops

and with limited recursion [99, 22]. However, it is assumed that the language allows

concurrency and interprocess synchronization. The execution time of a machine

instruction is known. Moreover, there should be an upper bound on communication

delays.

Throughout the thesis we use the following data dependence terminology

describing dependences between the code of S and other code in P:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

• True or flow dependence: Value of a variable x, defined in S, reaches use in P.

• Anri-dependence: Value of a variable x used (read) in S is subsequently

redefined by a definition in P.

• Output dependence: Value of a variable x set in S is overwritten by the

definition in P.

• Input dependence: Value of a variable x used in S is subsequently be used next

in P.

• Control dependence: The execution of F is controlled by the value of a predicate

in S.

• Resource dependence: Resource R (console, monitor, file, ...) is accessed in S,

and may be accessed next in F , and resource R is ordered (reordering accesses

to R has significant and observable semantic effects).

• Data dependence: true, anti, and output dependence (input dependences

typically m atter only in the presence of memory hierarchies).

4.1.2 Representation of the Rules

An axiomatic specification approach is used that includes both preconditions and

postconditions to denote the execution before and after applying a transformation

for speculative execution. There are other approaches, for example [106, 109], for

specifying data dependence and control flow conditions. However, in their current

form they are not suitable for real-time systems, since compiler transformations of

real-time programs cannot ignore timing constraints and resources access. The rules

are standard Hoare triples [43]:

(precondition, action,postcondition)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

In each rule, the code 5 in a procedure/method P is considered. The

set of preconditions identifies applicability, correctness, and profitability, and is

decomposed into the following subsets:

• One invariant condition: except as provided below, certain types of blocking

statements, for which linearizability is im portant or retraction is impossible

(e.g., I/O , creation/destruction of resources, exceptions with persistent effects,

possible errors), do not occur in S . It is assumed that resource dependences

have been captured in Blocking or Ordered constraints on resource access (see

below).

• Structural conditions: Syntactic flow-graph conditions on S.

• Dependence conditions: Summarize the dependences between the code of S

and other code segments in P.

• Blocking conditions: Additional blocking or unblocking information, possibly

guarded by their own preconditions.

• Timing rules: Needed to determine the profitability of the transformation.

The following information is used in specifying conditions:

• The standard PDG decomposition of dependence into control dependence,

true (flow) dependence, anti-dependence, output dependence, and input

dependence, and for dependences inside loops, into loop-dependent and loop-

independent dependences

• Vars(S) = the set of variables referenced in S.

• M od(S) = the set of variables modified directly or indirectly in S.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

• P res(S) = the set of variables whose definitions must be preserved through

S.

• C alls(S) = the set of method calls in S.

• Blocking(L) is true if L is blocking (that is, concurrent accesses to L are

forbidden); Ordered(L) is true if the order of accesses to L is observable.

• For a method M, TCalls(M) = the set of methods/procedures transitively

calling M .

In addition, the following timing functions are assumed: first, given a set of

variables Vars, the functions tc and tT are assumed to give the time to copy and

restore tha t set of variables; second, Tim e(S) returns an estimate for the worst-case

execution time of 5, which may be a code segment, a procedure, or a method. Also t j

and tj are used for fork time and join time respectively (both include communication

delays).

After stating our model and assumptions, we proceed with our contribution.

In the next section, safe compiler optimization transformation rules are presented,

followed by an illustration of those for parallelization and speculative execution.

4.2 Safe Compiler Optimization Rules

This section includes a presentation of the contribution of this thesis to the problem

of performing profitable compiler optimization for real-time systems without jeopar

dizing the safety of the system.

As shown in the previous chapter, there has been a very little work that

address real-time issues while applying compiler optimization. An attem pt to classify

classical machine-independent compiler optimization according to safety in a single

process context is presented in [59]. A simplified model of real-time processes is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

assumed allowing only the use of homogeneous memory and a subset of possible

timing constraints. In our opinion, four research directions can be explored. The

first is to generalize the set of timing constraints allowed. The second is to extend

the model to support multi-process analysis. The third direction is to get closer

to the machine-dependent optimization including the effect of memory hierarchy.

The fourth and final direction is to construct and implement transformation rules

to experiment the effects on performance, timeliness and predictability of real-time

programs. In this dissertation, we are moving in a combination of the first and last

directions. We are also exploring the second, but that work does not form part of

this thesis. We are building a compiler optimization transformation engine based on

the same simple model. We leave the other directions as a future extension.

ORIGINAL OPTIMIZED

if (si) s2;
s2; if (si)
s3; s3;

else else
s2; s4;
s4; endif

endif s5;
s5;

F ig u re 4.1 Unsafe code hoisting

In this section, one example of the optimization transformation rules is illus

trated, namely for code hoisting and sinking. A list of rules, can be found in Appendix

B.

If a conditional statement has identical code in its then and e ls e branches, it

may be possible to optimize the program size by hoisting the identical code before

the conditional. However, code hoisting may be unsafe if the code is hoisted past

events. The same holds for code sinking. For example, consider the code segment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

RULE:

Preconditions:

Action:

Postcondition:

Comment:

Code Hoisting

Structural:
(1) S = S\ ; if (exp) then S 2 SeS 2 else S^SeS'^.
(2) Neither S 2 nor S3 contains any critical sections or

access to a shared resource.
Dependence:
(3) There is no dependence from S 2 or S3 to Se-
(4) There is no data or resource dependence from exp to Se.
Timing:
(5) Either branch will meet its deadline.

Transform S into
Se (if (exp) then S2S2 else S3S3)

No deadline will be missed.

Will not interfere with dependences from S e to S 2 or S3
since otherwise would have been output or resource dependences from
S2 or S3 to Se.

F ig u re 4.2 Rule: safe code hoisting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

in Figure 4.1. If s i contains a call to a critical section, then moving s2 before the

if-statement will delay the call in s i causing a miss of a deadline. The transformation

rules for code hoisting and sinking are shown in Figure 4.2, and 4.3 respectively.

RULE:

Preconditions:

Action:

Postcondition:

Comment:

Code Sinking

Structural:
(1) S = S\ ; if (exp) then S 2 SeS2 e ŝe ^ 3 S eS'3.
(2) Neither nor S '3 contains any critical sections or

access to a shared resource.
Dependence:
(3) Neither S '2 nor S 3 depends on S e .
Timing:
(4) Either branch will meet its deadline.

Transform S into
(if (exp) then S 2 S '2 else S 3 S3) Se

No deadline will be missed.

Will ordinarily prefer to use Code Hoisting when both are applicable.

F ig u re 4.3 Rule: safe code sinking

4.3 Safe P a ra lle liz a tio n o f R ea l-T im e P ro g ra m s

Wolfe [110] gives a series of source code transformations which may be useful in

exposing parallelism and vector operations in a program. This thesis address only

those parallelization transformations that detect segments in the code th a t can

run simultaneously on different processors without violating the real-time safety

requirement for transformations.

Consider the following two segments of code:

S 1 ; S 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

Assume that there are no data dependencies from Si to So. By inspection,

there are no control dependencies. Moreover, assume, without lost of generality, that

AvgTim e(Si) < A vgTim e(S 2), and th a t the time cost of spawning and initializing

S2 (fork time £/) and obtaining the results (join tim e tj) is less than AvgTim e(S 2).

That code can be transformed so th a t S 2 can run in parallel with Si on a different

processor.

That transformation will be safe if S2 does not have a call to a critical section.

On the other hand, it may be also safe if making that call from S2 earlier is not

going to disturb the queue order of th a t critical section. Multi-process analysis or

scheduler pragmas may be required to prove the safety of the transformation in

that case. One compiler transformation rule for this parallelization transformation

is shown in Figure 4.4.

In the following section, another approach to extracting parallelism in real-time

programs is presented. The approach is based on investigating the opportunities for

safe and profitable speculative execution in real-time systems.

4.4 Opportunities for Speculative Execution

Unconditional parallelism is infeasible, and speculative execution will be required,

when there is a true dependence (or in certain cases of output or resource dependence)

from the callee to subsequent code in the caller (or in subsequent called procedures).

Recall that speculative execution occurs when it is required to execute code without

being certain whether the code will execute, or will not be sure of the initial values

of variables. It is useful to distinguish these two cases. We say that one block S 2 is

value dependent on another Si if values computed in Si affect the initial values in

S2 . The block S 2 is predicate dependent on Si if values computed in Si can affect

whether S2 executes, but not the initial values if it does.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

RULE: PARALLELIZATION

Preconditions: Structural:
(1) S = (Si; S2) is a single-exit code region.
(2) Neither Si nor S2 contains any critical sections or

access to a shared resource.
Dependence:
(3) Vars(S 2) fl M od(Sl) = 0

(There is no data dependency in S2 on Si)
(4) There is no control dependency between S2 and Si
Blocking:
(5) For each method M in TC alls(C alls(S \)) fl TCalls(C alls(S2)),

not(Ordered(M)).
(Incorrectly or prematurely executing any such statement
has a permanent and invalidating effect on the environment.)

Timing:
(6) AvgTim e(S 2) > £/ + tj.
(7) M A X (T im e'(S\), T im e'(S2)) + t f -I- t j < T im e'(S i) + T im e'(S2).

(Useful work can be done; worst-case time does not increase.)
Action:

Execute S2 in parallel with S i.
Insert synchronization between exit(S i) and exit(S2).

Postcondition:
S has completed without missing its deadline.
State is as if execution had been sequential.
The average execution time is reduced.

F ig u re 4.4 A parallelization transformation rule

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

It can be seen th a t S2 is value dependent on Si only if there is some transitive

true dependence, or an input or output dependence interacting with the environment,

from Si to S2. On the other hand, S2 is predicate dependent on Si if any transitive

dependence from Si to S2 involves a control dependence. In this section, the detection

of opportunities for safe and profitable speculative execution is discussed.

4.4.1 Opportunities of Speculatively Executing Conditionals

Assume th a t there is a call at a branch point (for simplicity exactly two branches

are assumed) and the code is of the form p : i f (C) then S2 else S3 , where C is

a call being executed on another processor. If the current state at p is stored (and

possibly later retrieve), there will be a cost of cs for the store, and <v for the restore.

If the execution time of S2 (TSi) dominates that of S3 (Ts3), and Tst - TSs > Cr,

and further, some initial segment of S2 is not data dependent on an out parameter of

C, then S2 can be executed speculatively, abandoning the computation and restoring

prior state only if the returned value indicates that S 3 should have been chosen. This

will almost invariably be the case in dealing with an i f - th e n statement, since S 3 is

the empty statement. However, for the transformation to be useful, it requires that

the evaluation of C (possibly together with some prior statements on which s is not

data dependent) be time-consuming.

If one branch has little or no effect on state, so tha t the restore is inexpensive,

and that branch has some initial segment not data dependent on C, that branch can

be speculatively executed. (If both branches have this property, the one with the

longer execution time will be used.) Furthermore, if there is a data dependence on

a value modified in C, that branch can be speculatively executed and the execution

can be stopped at the point when that value needs to be used, provided that this is

profitable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

4.4.2 Opportunities of Speculatively Executing W hile Loops

While the model of [89] allows only constant-count loops with compile-time bounds,

this can with care be extended to allow w hile loops with a compile-time-provable

bound on iterations, or equivalently, constant-count loops with exits. In parallelizing

compilers, detecting parallelizable loop iterations, and distributing iterations among

processors, is a major source of improved performance [50, 84, 110]. For w hile loops,

this may involve speculative execution of some number of iterations, saving the state

after each. In speculative execution, the next loop body may be evaluated in parallel

with a call late in the previous body, where the loop condition depends on the return

value [49]. For example, in the code block p : while (C) do S2 , where C is a call

being executed on another processor, execution of the loop body S2 (or part of it) can

be started during the evaluation of the call C , undoing all updates to the variables

if the evaluation of the condition results in termination.

One particular subcase which proves interesting is the case in which iterations

modify distinct locations, as, for example, in array-oriented programs. In this case,

the original values can be remembered, allowing iterations to proceed, and restoring

precisely the values which have been written by speculatively-executed iterations

which do not in fact occur. This technique could possibly be generalized using an

approach such as last-write-trees [7].

Again, attention should be paid to the worst-case scenario. The cost of rollback

must be estimated. The transformations may not be performed if they endanger

satisfaction of timing constraints imposed on the program.

4.4.3 Opportunities for Shadow Execution

The technique of shadow execution, modifying a copy of the store during speculative

execution and copying into actual storage upon commitment, is an alternative to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

checkpoint-and-restore strategy frequently used in databases [17, 18, 105]. That is,

checkpoint-and-restore copies state, then modifies the original state, and ends by

either (upon commit) discarding the copy, or (upon abort) copying the checkpoint

back to the store. In contrast, shadow execution copies state and executes, thus

modifying the copy, and ends by (upon abort) discarding the copy or (upon commit)

copying any changed values to the original.

The same technique presents additional opportunities for speculative execution

in real-time systems. Typically, discarding modified values will be less time-

consuming than retrieving and restoring old values in case of rollback. Moreover,

most real-time processes tend to be constrained by deadlines and access to resources,

rather than by the size of resource memory.

A combination of data flow analysis, schedulability analysis, and consideration

of processor resources can enable detection of cases where both expected and worst-

case performance can be improved. First, the initial state is copied into a “shadow”

store. The program is then executed, modifying and storing into shadow variables.

Shadow values are copied to actual locations once the execution has been committed.

In some cases, when the time spent in a call is large, and the subsequent code

does not depend on values modified in the call, it may even be possible to evaluate

both arms of a conditional, and choose the correct arm from which to copy shadow

values, once the value of the condition is known. As an alternative, if there are

idle processors, both branches can be speculatively evaluated, each on a different

processor. Results of both branches are transmitted, but one will be discarded once

the call returns.

Asynchronous call parallelism [93] can be extended to speculative call paral

lelism if values referenced after the call are only conditionally modified within the

body of the call, cached values or defaults can also be used to handle some cases of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

data dependence with shadow execution, simply discarding results if the data values

returned are not the defaults. By analogy to conditionals, in rare cases, results for

several default cases could even be computed; this has not been explored in the

current system.

Shadow execution also interacts favorably with while-loop iteration: the loop

body can be speculatively executed, and only commit its values once it is known

that the next iteration does in fact occur. W ith enough excess memory, an arbitrary

number of future iterations could even be speculatively executed, each using the

data generated by the previous iteration, and writing to a distinct copy of possibly-

modified variables; once the number of iterations is known, simply the values are

copied from the last iteration which actually occurs. Intuitively, the loop is unrolled

and all instances of possibly-modified variables are replaced by write-once variables

(although actually the same variable instance can have multiple writes within the

loop body). Thus, the worst-case execution can even be enhanced.

In the next subsection, this approach is illustrated by an example to show how

to perform the transformation.

4.4.4 An Example o f Code Transformation

Considering the code fragment of Figure 4.5, suppose that none of stmt.l through

stmtJc uses the parameters x and y of the method call m (x,y). Then these

statements can be speculatively executed concurrently with the call to method m.

The speculative fo rk construct causes m(x,y) to be evaluated concurrently with

block s containing stmt _1 through stmtJc. The block containing m, is called the

master block; all other forked blocks are called slave blocks. (In this example, there

is only one slave block, the one containing stmt_l through stmtJc.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

ORIGINAL

m(x,y);
if (y > 1) then
<stmt_l>;

<stmt_k>:
stmt_k+l: z:=x+100;

<stmt_n>;
else

<else_seq>
end if;

TRANSFORMED

fork
<stmt_l>;

<stmt_k>:
end fork;
m(x,y);
t = Cy > 1)
if (t) then
commit results
stmt_k+l: z:=x+100;

<stmt_n>;
else

ignore results
<else_seq>

end if;

F ig u re 4.5 Code transformation for speculative execution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

The slave block s writes only on a local shadow memory space specific to s. If

s itself calls a method, then the execution of that method is itself speculative, and

the processor on which the called method runs must also write to shadow memory

until the method commits. In the above example, if y > 1 is true after evaluating

m (x,y), then the effects of statements s tm t.l through stm t-k are asserted globally;

if y > 1 is false, then only the effect of m(x,y) is asserted. One special case should

be avoided, namely, if the speculative calls eventually come back to the original

processor. Consider the following scenario: process A has some statements running

speculatively on a different processor; one of those statements is a call to a method

assigned on the same processor on which A is running; this call either preempts or

waits for the speculative code. In such a situation, the speculative call should not

be made. The program call graph can be consulted to safely detect this case.

Note that the fo rk construct can be generalized to an arbitrary multiway fork,

generalizing the two-way example above. All slave blocks whose condition variables

evaluate to tru e are asserted, in sequence, to commit the execution. Such a construct

is useful if there might be time to complete more than one slave block while the remote

method is executing. In the above example, it is possible to fork stm t_l and s tm t_2

while forking statements stmt_3 through stm t-k on a different processor. Moreover,

statements for the else clause can be handled similarly, committing only appropriate

blocks according to the condition. A clear consideration of doing multiway fork is

the profitability of the transformation, that is, the overhead compared to the gain in

performance.

This example illustrates the transformation but raises the issue of safety of the

transformation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

4.5 Issues o f Speculative Execution for Real-Tim e Systems

In this section, issues related to applying speculative execution to real-time systems

are addressed. The discussion starts with safety issues concerning timeliness and

data flow dependence, followed by possible interaction with real-time optimization

techniques.

4.5.1 Ensuring Timeliness

Conventional program optimizations, such as those that improve a program’s

concurrency, may be viewed as transformations on the intermediate code of the

program. From the example in Section 4.4, speculative execution can be considered as

a program transformation which enhances a program’s concurrency. The important

issue is whether the transformation for speculative execution ensure timeliness.

It is possible, though not guaranteed, tha t transformations for speculative

execution will improve a program’s deadline satisfaction. However, a poorly-chosen

transformation may make it difficult to satisfy deadlines. Forking requires signaling

all participating processors to sta rt their blocks; let us assume a forking time of £/.

When the fork ends, the master block’s processor Pm must signal the processor on

which the successful slave is running (Ps) as to whether the slave has succeeded or

failed (generally the cheaper case); Ps must then transmit an update of the memory

space to all affected processors, as a broadcast or a series of separate messages. The

time for these “joining” communications is tj. Note that both t j and tj depend

on the assignment of processors and communication links to the blocks. Issues like

the network topology, communication medium and communication protocols can be

important factors, especially if the execution time of the slave blocks is small.

The deadlines after the fo rk construct are preserved only when the sum of the

time of the master block plus th a t of the longest slave block (worst-case execution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

path), is at least the time for all slave blocks to execute, plus the fork and join time.

Let tmax be the longest execution time of any set of slave blocks which are executed

under the same conditions. Then,

l-m "F tm a x ^ m a x (tynj t s i j t s 2 1 *••*) "b t f “b t j •

Therefore, the following condition must be satisfied to guarantee timeliness:

min (tm, tmax) ^ ■b tj.

4.5.2 Ensuring Correct Semantics

Timeliness is not the only property to be preserved during transformation. Data

dependence has to be considered as well. Data dependence can be an obstacle for

speculative execution, although, as indicated, default or current values may be used

(although this possibility is not considered further in this thesis). Other constructs

may also inhibit speculative execution. Changing a pointer variable or freeing a

structure can cause problems, particularly when it involves access to live memory

(in contrast to new allocation or region temporaries). In general, it is not possible

to afford to checkpoint memory reached from an arbitrary live variable; however,

shadow memory can be used, disposing the copy only after the speculative execution

commits. For example, if a pointer is to be dereferenced, a shadow copy pointing

to the same structure can be created and the original pointer can be set free. If the

execution is committed, the shadow copy is dereferenced. Otherwise the pointer is

restored from the shadow copy.

Writing to output or reading from input causes other difficulties. Writing

can often be handled by intercepting the writes in a private buffer, and writing

on commit. The buffer cannot be shared by multiple processes to avoid producing

invalid semantics. The same approach can, with greater difficulty, be used for input.

The values read from input can be buffered and provided to their eventual targets,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56
provided that no other process is concurrently reading the same input file, and that

the data would eventually be read elsewhere (to avoid invalid “file empty” errors).

Other interactions with the external environment, and certain types of inter

actions with resource managers, must also be avoided, e.g., disconnection of a

channel, destruction of a socket, or a font-change message to a printer. Finally,

some exceptions have persistent effects on the environment; these effects have to be

intercepted and buffered for possible later commit.

Because of these and other issues, speculative execute is enabled only when

the code to be speculatively parallelized provably contains no unsafe construct, such

as those discussed above; future work includes identification of unsafe constructs

and of cases in which speculative execution can proceed in their presence, and the

modifications and transformations needed to assure the safety of doing so.

4.5.3 Interaction w ith Real-Time Optimization Techniques

Some optimization techniques for real-time systems can interact positively with

speculative execution. For example, an optimization technique may enable more

opportunities for speculative execution, or allow further optimization in the specu

latively executed code.

Given a computation, for instance x := sin(y) * y + c(), with data dependence

on the value of a variable x, a value Cq for c() may be assumed and later the

value(s) affected by that assumption can be updated. When the true value ct is

returned, simply C\ — Co can be added to x, and other values depending on x can

be adjusted. The code added to make that adjustment is called “A-code” [76, 77],

If the dependence on the return value is “simple” , so that A-code can be easily

specified, and the time to return from the callee is greater than the time for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

A-code update, the code can speculatively evaluated for the current value (or some

guessed or default value), and use the A-code to adjust the solution.

Another situation in which speculative execution can interact positively with

optimization techniques is when the callee method does not modify its own (or

transitively, its descendants’) state, and does not produce observables. In that case,

parameter patterns can cache and values can be returned, and return values can be

reused instead of making a call (provided that testing of equality for parameter lists

is cheap) [82]. If tests are not cheap, but kill message can be passed, a call may be

started, and the initial state can be stored at the callee. If later the call is found

to be unnecessary, a kill message can be sent. In some cases, it may be required

to bypass a second call even before the first call has returned. This guarantee of

a state not being modified must be a user assertion or a compile-time guarantee,

perhaps by data-flow analysis, and it is complicated by pointers, complex array

index expressions, or structures [54]. These techniques are not explored further in

this paper.

In the next section, the compiler transformation rules for speculative execution

are specified. While considering issues discussed in this section, the rules require

a satisfaction of a set of preconditions to avoid violating the program timeliness or

changing the program semantics.

4.6 Compiler Transformations for Speculative Execution

After illustrating various issues concerning speculative execution, in this section, the

specification of compiler transformation rules for speculative execution is presented,

Figures 4.6 to 4.7. The rules detect opportunities for speculative execution in condi

tional statements and while loops. In addition, a dual set of rules, addressing possible

chances for shadow execution, are included in Appendix C.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

RULE:
Preconditions:

Actions:

Postcondition:

Comment:

Properties:

SPECULATIVE J F
Structural:
(1) S = (i f (C) then S2 else S 3) is a single-exit code region.
(2) C is a call being executed on another processor
Dependence:
(3) Vars{S2) n Mod{C) = 0

(S2 ’s variables have correct values immediately before i f)
Blocking:
(4) There are no blocking constructs in S 2 .
(5) For all methods M in TC alls(C alls(S 2)), not(Blocking(M)).
(6) For each method M in TCalls(C) fl TC alls(C alls(S 2)),

not(O rdered(M)).
(Incorrectly or prematurely executing any such statement
has a permanent and invalid effect on the environment.)

Timing:
(7) ts(M od(S 2)) + t f + tj < Tim e(C).

(Useful work can be done.)
(8) Tim e(Sz) + t r (iV/od(S'2)) < T im e(S 2)-

(Worst-case time does not increase.)

Execute C in parallel with the following:
save(M od(S 2))', 52-

Insert synchronization between exit(C) and exit(S 2).
Check x c, the return parameters of C;

If this enables S 2 , do nothing.
Otherwise, execute restore(M od(S2))', S3.

In any case, continue executing from exit(S).

S has completed without missing its deadline.
State is as if execution had been sequential.

A symmetric rule exists for S3.

Preserves the program semantics.
Does not extend the worst-case execution path.

F ig u re 4.6 Speculative execution for if clauses

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59
In the Speculative-If rule (Figure 4.6), the condition of the if-statement is

assumed to include a call that can be executed on another processor. One of the

branches can be selected to be speculatively executed while making the call C in

the condition. The selected branch (S2 for example) should satisfy the following

conditions :

1. The variable used in S2 are not modified as a side effect of the call C.

2. Neither S2 nor any function transitively called from S2 has a blocking construct.

3. There will not be a change in the order of any calls to critical sections if S2

runs while C is running.

To ensure the safety and profitability of the transformations, timing conditions

of (7) and (8) in Figure 4.6 must be satisfied before performing the transformations.

Safety can be guaranteed if the worst-case execution path is not extended. Specu

latively executing the longest branch of a condition, the effect of rollback on the

other branch should be examined. The rollback penalty should not extend the short

branch over the worst-case execution time, as in (8). The transformation is profitable

if the overhead of storage, forking and joining is less than the execution time of C,

as described in (7).

The SPECULATIVE-WHILE rule, in Figure 4.7, follows in the same spirit.

The shadow execution rules are based on the same preconditions considering copy-

and-commit rather than rollback. A full list of the rules for speculative execution

and shadow execution can be found in Appendix C.

We have targeted various real-time image processing techniques to investigate

applicability of speculative execution [115]. A significant potential has been found

for safe and profitable speculative execution in image compression, edge detection,

morphological filters, and blob recognition. In addition, speculative execution can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

RULE: SPECULATIVE-WHILE
Preconditions: Structural:

(1) 5 = (while (C) do S 2) is a single-exit code region.
(2) C is a call being executed on another processor
(3) The loop will be executed at least once.
Dependence:
(4) V ars(S2) fl Mod(C) = (f>

(Sz's variables have correct values immediately before while)
Blocking:
(5) There are no blocking constructs in S2-
(6) For all methods M in TC alls(C alls(S2)), not(B locking(M)).
(7) For each method M in T C alls(C) fl TC alls(C alls(S2)),

not(O rdered(M)).
Timing:
(8) tr (M od(S 2)) + ts(M od(S2)) + t / + tj < T im e(C).

(Useful work can be done; worst-case time does not increase.)
(9) tr(Mod(S2)) < Time(S2)-

(Given at least one iteration; worst-case time does not increase.)
Actions:

Execute C in parallel with the following:
save(M od(S2)); S2.

Insert synchronization between exit(C) and exit(S2)-
Check xc, the return parameters of C;

If this enables S2, repeat.
Otherwise, execute restore{M od(S2)); exit(S).

Postcondition:
S has completed without missing its deadline.
State is as if execution had been sequential.

Properties:
Preserves the program semantics.
Does not extend the worst-case execution path.

F ig u re 4 .7 Speculative execution for while clauses

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

improve other properties of real-time systems, such as fault tolerance [117]. The next

three chapters concentrate on the compiler rules for speculative execution. First, a

formal proof is provided for safety of those rules. Then, empirical validation efforts

are described emphasizing the contribution of speculative execution to performance

and timeliness of real-time systems. A study based on simulation for effects of various

characteristic of real-time programs on the applicability and usefulness of speculative

execution is presented in Chapter 6 . Chapter 7 provides a more aggressive validation

for speculative execution in realistic applications through prototyping.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

FORMAL VERIFICATION OF SPECULATIVE EXECUTION RULES

The previous chapter presented compiler transformation rules for speculative

execution. A global requirement for all compiler transformations is to preserve

program semantics. This is a safety requirement. For real-time programs, safety has

a more restrictive definition: code transformations should also not worsen the timing

properties of the program; a program that meets all timing constraints should not

be transformed to a one that fails its deadline. Thus, it is necessary to verify that

speculative execution does preserve the program semantics and timeliness. This is

especially im portant when applied to safety-critical real-time applications, such as

patient monitoring, avionics and air-traffic control, where errors may be disastrous.

In this chapter, formal verification of semantic correctness and timeliness for the

speculative execution transformation rules is provided.

A correctness proof of a non-real-time compiler transformation consists of three

parts: first, using a technique such as abstract interpretation [26] to show that

the data flow equations correctly abstract the program semantics; second, proving

that the data flow computation terminates; third, proving that the transformations

preserve the semantics. For real-time systems, there are three corresponding proofs

regarding timing: the correctness of individual timing rules, the correctness of timing

summaries, and the preservation of desired timing properties by the transformation.

Assuming that the first two proofs are given, i.e., given correct data flow and timing

information, we show that the transformation preserves the required properties,

program semantics and timeliness [69, 73, 79].

In reasoning about programs, there are two types of proof systems, exogenous

and endogenous. The assertions of an exogenous logic [43, 74] such as “P{S}Q ”

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

contain program fragments (S) and assert the fragments using precondition P and

postcondition Q. With exogenous logics, there is one axiom for each programming

language construct, which makes it suitable for statement-based transformations.

On the other hand, endogenous logic [6 , 40, 75] does not consider intermediate states

and thus is suitable for block-based transformations including this work.

Research in [3, 10] investigates preservation of the meaning of programs, in

the context of a functional language. But they do not handle timeliness, the most

important property of real-time systems. On the other hand, it has been known

that methods developed for shared-memory multiprocessing apply equally well to

distributed systems and real-time systems (with an additional variable time) [1], so

the temporal logics of concurrent systems [6 , 15, 42] can be applied to real-time

programs. The goal is to prove th a t if a property holds originally in a real-time

program, it will hold after applying transformation rules. The focus is on verifying

the semantic correctness and timeliness of a program. We don’t reason step-by-

step on the statements between P and Q ; hence, an endogenous logic based on the

temporal logic of Owicki and Lamport [40, 75] has been adopted.

In this chapter, verification of the speculative execution compiler transfor

mation rules is provided. Based on the discussion above, verification of real-time

compiler transformations must address two properties: preserving semantics and

timeliness. In particular, we verify transformation rules for speculative execution of

conditional branches and while loop bodies on the same processor which were shown

in Figures 4.6 and 4.7. Symmetric proofs exist for shadow execution rules.

5.1 Semantic Correctness Proof

In this section the transformation rules are shown to preserve the semantics of a

program. The goal is to prove that applying a transformation rule should lead to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

a semantically equivalent state, according to the definition of semantic equivalence

below.

In Figure 1.4, let a code biocki and a code biock2 denote the states, with no speculative

execution, after the execution of code blockl and code blocks respectively. Suppose

after applying the transformation rules a/code blockl and a'code b lo c k 2 denote the states

after the execution of code blockl and code block2 respectively. The transformation

preserves the program semantics if

1. the states, aCOde biocki and a'code blockl are semantically equivalent, and

2- cTcode blockl and a'code b lo c k 2 are semantically equivalent.

In other words, it is necessary to show th a t the extra computation (e.g., fork or copy)

incurred by the transformation, as indicated in Figure 1.4, leads to a state which is

semantically equivalent to the state without the extra computation.

Throughout this chapter, S is used to denote a code segment, and 5° is the

corresponding transformed code of S. The following notations and definitions are

necessary for the proof.

N otation . 5.1.1 Let E denote the set o f states of a program P. Let as denote the

state of a program after executing the code segment S , where as € E.

N o ta tio n 5.1.2 Let a(x) be the value of variable x at the state a.

Note that x may not be initialized or declared in a. These two cases are handled

separately in the semantic correctness proof.

N o ta tio n 5.1.3 Let II be the projection of states onto the set of variables live

immediately after the execution of S (i.e., after(S)), and II' be the corresponding

projection immediately after the execution of 5° (i.e., a fte r (S Q)).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

D efin itio n 5.1.1 Given as and a$o, we say that the states as and a so are equivalent,

denoted by as = a so, if for every x € IIos and x 6 flo^o, the value of x is the same

in as and a so.

There is a subtlety in the above notation, namely, the use of projections onto

the set of variables live on exit of the transformed code block. Many compiler trans

formations for optimization and parallelization, and some for speculative execution,

either introduce new variables, or eliminate unnecessary variables, which result in

different values for variables, where, in each case, those values are never used after

exiting the transformed block. Clearly, such dead values should not matter in

evaluating the correctness of the transformation. As far as correctness concerns,

if a variable exists before transformation, its value should be the same after applying

transformation rules. Projections are used to show tha t for the variables of interest,

values are not altered after transformation. We actually use a weaker criterion,

differing when the initial program does not terminate correctly.

D efin itio n 5.1.2 Given as and crso, we say that the semantic of a program is

(weakly) preserved after transformation i f and only i f the following two conditions

hold:

1 . i f S converges and as 6 E, then 050 6 E, and IIos = IT<750.

2 . i f S converges but as $. E, (that is, a s is an error state), then S° also converges.

The above definition of semantic equivalence is motivated by a requirement

th a t any transformation should not worsen the quality of the results returned by a

program. If the computation terminates normally and returns output (correct by

assumption), the transformed program must return the same output. If, however,

the program terminates in error, then we certainly should not object if the trans

formation eliminates the error and returns a correct result; arguably if less clearly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

we shouldn’t be particularly concerned once an error has occurred, as long as the

program terminates. Finally, if a program does not terminate, any behavior in

the transformed program is acceptable. Note tha t this criterion can be modified

to prohibit catastrophic errors in the transformed programs, perhaps by adding an

ordering on errors, and requiring the error in the transformed program to be more

severe.

Semantic correctness is preserved if a transformed program preserves the

contents of the program store during execution. So the program store corresponding

to each program state is examined to show semantics-preservation, as in denotational

semantics [3] or abstract interpretation [26].

In the semantic proof, both fork and join are assumed to have no side effects

on the program state, since they usually represent only operating system overhead

to manage the new process.

Lem m a 5.1.1 The semantic of a program after applying the speculative if-rule,

Figure 4-6, is preserved assuming the computation converges.

Proof: Let the following equations denote, respectively, the state sequences before

and after applying the transformation rule.

where denotes the statement i f (C) then S 2 else S 3 , and 5° = (x c =

C || (Save; Fork; S2)); i f (“^c) then Restore; S 3 , is the corresponding transformed

version. It is required to show th a t for an arbitrary variable x , the value of x will

be the same in both <jq and ctqo. Therefore, the states oq and ctqo are semantically

equivalent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

The value of x may be modified in the transformed version as follows:

1. xc is used only locally in the evaluation of C, and is not live on exit from Sb,

so is unconstrained.

2. If x is not a live variable when the control reaches C , there are no constraints

on cq(x) or aqo(x). Thus x is assumes henceforward to be a live variable upon

entering the execution of C.

3. x € Pres(Sb) =£• x 6 Pres(S°)

=> <Jp(x) = CTq(x) = Oqo(x)

If x is never modified in Sb then its value will be the same in ctqo since the

operations incurred by the transformation such as fork and save do not modify

the value. Thus, ctq (x) = <tqo (x) .

4. x e M od(S 2) and x £ Mod(C) fl Mod(Sz)

C : = > S 2 is to be executed.

=► (Tqo{x) = <Tq|(5a,w;For*;Sa)(z) = <?s2 (x) (Since x £ Mod(C))

= > 0 q(x) = o-C;s2 (x) = as2 (x)

= > crQo(x) = ctq(x)

->C: ==>■ S 3 is executed.

-* 0 Q°(x) = <XC\\(Save;Fork;S2);Restore-1S3{x) = CT Resiore-s3 (x)

= » o-Restare;s3 (x) = aRestore(x) (Since x £ Mod{S3))

=*■ Restore{x) = o>(x) (Since x £ Mod{C))

= » <jq(x) = crc;S3 (x) = o>(x) (Since x £ Mod(S3) and x £ M od(C))

= > o-qo(x) = < tq (x)

If the then-clause is to be executed, the effect of S2 on the value of x will

be propagated to cjqq. However, since x is not modified by C, restoring

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

the value of x of Op is sufficient to preserve the semantics when following

the else branch.

5. a: € Mod(Sz) and x £ Jlfod(S2) n M od(C)

C : ctq0(x) = ctq(x) since x is not modified in S2.

' ' ' C . »' <7qo(x) = &C\\(Save;Fork;S2);Restore;S3 (̂ -)

= > crgo(x) = crs3(x) (Since x £ Mod(S2) n M od(C))

=> <j q {x) = crC;53(x) = <7s3(x) (Since x g Mod(C))

= > <TqO (x) = CTq (x)

Since x is not modified by either C or 52, the speculative execution of the then-

clause has no effect on the value of x. Therefore, the semantic is preserved if

the condition C is true. On the other hand, when the else-clause is executed,

the value of x in op is used, which leads to the same state as the serial order

of execution.

6. x € M od(C) and x £ M od(S2) D Mod(Sz)

= S > <Xq(x) = <7(C;S2M C-,S3) (x) = ° c { x)

==> CTgo(x) = &(C\\(Save;Fork;S2))V(C\\(Save;Fork;S2);Restore;S3)i x)

Since the value of x is not modified in either branch, only the effect of C on x

will be propagated to cfq.

C- 'f CTqo(x) = (̂CIKSavejForÂ Sj))(x) = Gq(x)

= * CTqo(x) = crg(x)

~1̂ '• 0 Q o (x) &(C\\(Save;Fork;S2);Restore;S3) i.x)

= > OQo(x) = <X(C;Restore;s3)(x) = oc ;s 3 (x) (Since x 0 M od(S2))

= * a Q° (x) = a C\S3 (x)

=>■ 0Q°(X) = Vq(x)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

In case of rollback, the value of x will not be restored to o>(x). As the values

of variables modified in S2 are only restored, the modification of x in C will

not be overwritten by rolling back execution.

7. x € Mod{S2) H Mod(S3) and x ^ Mod(C)

C'- =► &Q°(x) = °C||(Saue;Foi-fc;S2)(x) = &S2(X)

There is no race condition due to the parallel execution of C and S2, since

x is not modified in C

= > <Tq(x) = <?C;S2(X) = <7S2(X)

=*> CTqo(x) = (Tq (x)

. V Uqo (x) = G(C\\(SaVe\Fork-,S2y,Resttrre-,Sz) (x)

= > GTqo(z) = (Ts2;Restore;S3(z) (Since X £ Mod(C))

°Q° (X) &S2;Restore;S3 (&) — &S3 (x)

As x € Mod(S2), the value of x will be restored to its original value in

=>• ctq(x) = crc -53(x) = crS3(x) (Since x £ Mod(C))

= > ctqo(x) = o-q(x)

8. x 6 Mod(C) fl Mod{Sz) and x £ Mod(S2)

C: = » o-qo(x) = o-c||(Sa«e;Farifc;S2)(^) = &c(x) (Since X £ Mod(S2))

= ► o-q (x) = crC ;s 2 (x) = a c (x)

= » C7q o (x) = CTq (x)

'C- &Q°{X) = &(C\\(Save;Fork;S2);Restore;S3)(x)

==» ctqo(x) = crc;Rest0re;s3(a:) (Since x £ Mod{S2))

&Q° (x) &C;Restore;S3 (x) &C\S3 (-̂)

As x ^ Mod(S2), the value of x does not need to be restored to its original

value in ap

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

= * <Tq (x) = a C;S3{X)

= > CTqo(x) = <Jq{x)

9. x 6 M od(C) fl M od(S 2) cannot occur, by construction.

10. x 6 Mod(C) fl Mod(5 2) H Mod(S3) cannot occur, by construction.

Lemma 5.1.2 The semantic of a program after the speculative execution o f while-

rule, Figure 4-7, is preserved assuming the computation converges.

P ro o f: For while loops, semantic safety will follow if the states after each iteration

(meaning, for the original, after the execution of S2, and for the transformed code,

at synchronization) are shown to be equivalent. Also the numbers of committed

executions of S2 are the same. It is sufficient to show (1) that a single execution

of the loop transforms the value of a variable x identically if C holds, and (2) that,

when C fails, x's value is likewise transformed identically.

Recall that, Sb = W hile (C) do S2 , is transformed into S° = W hile (x c = C ||

(Save; F o rk ; 52)); Restore. Assume that the state sequence of the original program

is • • • ^ <jp cfq ^ • • • and after applying the speculative while-rule of Figure 4.7,
5 s° sthe state sequence becomes • • • -4 o q 0 -4 • - •. It is required to prove that

c7 q = O’q o .

Assume that the while loop is executed n times, as well as /, and F, are the

states before and after executing the ith iteration, respectively. The original state

sequence can be expanded further into:

S C;S2 C;S2 C;S2 q §
• • • -4- o’p 0 7 (------ > crEl crf 2 > a E2 • • • ff[n > a En a ln+l —► oq -4 • • •

where o> = cr;,, and = oex , i = 1, - ■ ■ ,n and the corresponding expanded

state sequence after the transformation is

§ C||(Saue;Forfc;S2) C||(Saue;Forfc;S2)
Up 070 ------------ > OE0 <J[0 ------------->• aEo---

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71
C||(Sat/e;Forfc;S2) C\\(Save;Fork;S2)-,Restore §

C/o -------------y aEo C/o -------------------- y Cqo —̂ - • •

where 1° and Ef are the corresponding states to 10 and E°, respectively, in the

transformed code, and cp = 070, and o’/°+l = crBo , i = 1, • • •, n

As for speculative-if, it is sufficient to show that the value of an arbitrary

variable x will be the same in both c q and c q o . Therefore, it is necessary to consider

all the possible cases of propagating the value of x to the cqo :

1. Since xc is used only locally in the evaluation of C, it is neither live from

iteration to iteration nor upon exit from Sb, and therefore it is unconstrained.

2. x G Pres(Sb) = » x € Pres(S°)

= > cP{x) = a,i(x) = aAo(x) = cQ{x) = cQo(x)

If x is not modified in Sb, the value of x will be the same for all program points

A in the execution of Sb-

3. x 6 Mod(S2) and x £ Mod(C)

C: assume that c/i (x) = O7o(x), i = 1, • • • , n

(-̂) = &after(C\\(Save;Fork;S2))(%) = <7!>2(*̂) = Ê, {%)

Since c/^x) = 070 (x) = crp(x)

=*>■ by induction 0£p(x) = cEi(x) Vi = 1, • • •,n

C: =>■ C q (x) = 0-c (:r) = o7n+l(x) = o p jx)

=*► ctq(x) = crEn(x) = cEo (x) (just proven by induction)

Oqo(x) = CTa îer(C||(5at;e;f’0rfc;52);ftei£OT-e) (x)

'* <Tq°(x) & a f ter(Save\F ark,S?',Restore) (x) = (x)

=i> <7qo(x) = O-/0+i(x) = CTgo (x)

<Tqo(x) =CTq(x)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

If x is not modified in C, the value of x after every iteration will be the result

of the operation in S2, similar to the original code. However, on exiting the

loop, the value of x after the last iteration needs to be restored.

4. x € Mod{C) and x & M od(S2)

C: assume that 07<(x) = 070 (x), i = 1, • * •, n

=*► 07* (x) = 0C;S2(:r) = <Tc(x)

- >' &E9(x) = CC\\(Save;Fork;Si)(x) = Cq(x)

==* 0 Ep(x) =

Since 07, (x) = 070 (x) = ap(x)

= > by induction c Eo(x) = c Ei(x) Vi = 1, ■■■ ,n

~'G. - V (Tqo(x) = &(C\\(Save;Fork;S2);R£store)(x) = &C',Restare{x)

Given that M od(S2) is only restored

■ <' Cqo (x) = <XC\Restore{%) — CE{x)

= > Cq(x) = cc (x)

Given that c ro+i{x) = 0 Eo(x) = 0 En(x) = o ,n+l{x)

(just proved by induction)

=► Cqo (x) = Cq{x)

As the value of x is affected only by the execution of C, c Eo(x) after any

iteration i is similar to the original code.

5. x E Mod(C) n M od(S2) cannot occur, by construction.

T heorem 5.1.1 Given the transformation rules o f Figure 4 . 6 and Figure 4-7, the

(weak) semantic of a program is preserved after applying the if-rule and while-rule.

Proof: Let E denote the set of states of a program P. Let S denote an i f or

a while statement which satisfies the constraints of Figure 4.6 or Figure 4.7. Let

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

5° be the corresponding transformed code of S . It is required to show that the

semantic of the program P is preserved after transformation regardless of divergence

or convergence of S. Let II and II' be projections on live variables at exit(S) and

exit{S°) respectively. Also, let as denote the state after the execution of S. There

are three cases to consider.

Case 1: S converges and cr5 € E. From Lemma 1 and Lemma 2, 5°
converges, the state aso 6 E, and ILts = IT050.

Case 2: S converges and as & E, i.e., the execution of S leads to an erroneous
state. Since the extra computation incurred by the transformation
rule, such as fork and save, is finite, 5° will terminate.

Case 3: S diverges. No guarantee is required on termination of 5° or the
value of aso after the execution of the transformed code S°.

From Definition 5.1.2, the weak semantic of a program is preserved after the

transformation. □

5.1.1 T im elin ess P ro o f

Timeliness should be guaranteed before a transformation is performed. Consider

the example of Figure 1.4. If the execution time of each block is as defined as in

Section 1.4, the timing preconditions of the rules should prevent transforming the

code as the worst-case time is extended (it becomes 19 units instead of 18 units

in the original code). In this subsection, the issue of the timing property of the

transformations is addressed. In order to prove safety of a transformation rule, it

is necessary to verify that the worst-case execution time is not increased. In the

following proof, WCT, □, ^ are used to denote worst-case time, always true, and

leads to, respectively. In addition, the notation P a th (P ,T ,Q) means that Q is

reachable from P through T . As for the semantic correctness proof, we begin by

showing that timeliness is preserved for the speculative-if rule.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

T h e o rem 5 .1 .2 The speculative-if rule o f Figure 1 ^ . 6 does not extend the worst-case

execution of the code after transformation.

P ro o f: Assume that a program meets its deadline, and has the property

P Q for the code segment i f (C) then S2 else S 3 where P denotes a t(if)

and Q is a fte r { if) . The following holds according to the constraints of Figure 4.6.

• OP = > Path{P, R, Q) V P ath(P: H, Q), using the proof system in [40], where

R and H represent the state formulas following the execution of then and else

branches, respectively.

• p Q, (given that the program meets its deadline).

. p ^ B r v h

• T im e(C) + Tim e{Sf) < W C T , (assuming that the then-clause is the longer

branch).

• Tim e(C) + Time{Sz) < W C T

After applying the speculative-if rule, the program structure is modified, and

the path of reaching Q from P is different.

Assume that O P ==> Path(P , R°, Q)VP ath{P , H°, Q) , where R° and H° represent

the state formulas denoting at(52) and at(S 3) respectively.

= * (p R° V P °)

W ith speculative execution, R° or H° are reachable from P after the execution of C.

Thus Q may be reached from them at different time. C is executed in parallel with

forking a new process for executing S2 after saving the original state. It is required

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

to rollback before executing S3.
^ j j o q 'J

Therefore, the time to reach Q from P depends on the path, and is less than the

execution time of longest branch.
<Max((Time(S3)+tr+Time(C)),(Time(S 2)+ ts +tj+ tf) ,T ime(C))

Q)

Using the timing preconditions of the transformation rule of Figure 4.6, we

now prove that the worst-execution time is not extented after transforming the code.

If M ax((T im e(S 2) + ts + tj + t/) ,T im e(C)) = Tim e(C)

= s , (p Q'j (Using (8) of Figure 4.6).

= * (p q)

If M ax((T im e(S 2) + ts + tj + £/), Tim e{C)) = T im e(S 2) + ts + tj + t f
 ̂ ^ p <Max({Time(S 3)+tr-hTime(C)),(Time(S2) + t ,+ t j + t f)) ^

= > (p q \ (Using (7) of Figure 4.6).

= > (p ,j8 !£ C . Q)

Having proven the timeliness of the transformed code after applying the

speculative-if rule, it is next shown that the same property holds for the while loop

transformation.

T h e o re m 5.1.3 The speculative-while rule of Figure ^.7 does not extend the worst-

case execution of the code after transformation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

P ro o f: Similar to the case of if-statement, the original program as assumed to meet

its deadline, and has the property P Q for the code segment while (C) do S2.

The following hold according to the speculative-while rule of Figure 4.7.

• UP = > Path(P , 7i, E i , I 2, E2, ...I n, En, In+i,Q) again using the proof system

in [40], where n is the number of iterations, and /, and are the states before

and after executing the ith iteration, respectively.

<W C T• p Q (given that the program meets its deadline).

• /, => at(C) , i = l , ..., n (every iteration starts by executing C).

• at(C) a fter(C)

• a fte r(C) = > at(S2) (S2 will be serially executed following C).

• at(S2) a fte r(S 2)

• a fte r(S 2) Ei i = 1,..., n

• In+l £ £ :£ £ } Q

• (n + l)Twne(C) + nT im e(S2) < W C T

After performing the transformation, the state transition occurs a t different

times. The two scenarios are considered separately. The first is when the speculative

execution of S2 is committed. The second case deals with exiting the loop.

□ /, (at(C) A at(Save(S2))) i = 1, • • •, n

(C is to be executed in parallel with S2).

=► (at{C) afte r{C))

(at(Save{S2)) a fte r(S 2)̂ j

UEi = » (a fte r{C) V a fte r (S 2))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77
<Max{Time(C),(t,+Time(,S 2)+ t j+ t f))

When C is false, all side effects due to the speculative execution of S 2 need to

be undone.

□ / n+ i = » (at(C) A at(Save(S2)))

=► (at{C) a / te r (C))

The state after(C) is actually the state at(Restore(S2)).

= » ^at(Restore{S2))

=, (/„+1

Considering the whole execution of the while loop, we conclude that:
<[TiTne(C)+tr+nMax(Time(C),(t3+Time(S 2) + t j + t f))] _\

The next step is to compare the new worst-case execution time (due to the

transformation) with the original and show that the new WCT is not greater than

the original WCT. There are two cases.

If M ax(T im e(C), (ts + T im e(S2) + tj +t f)) = Time(C)

. ^p q 'J

=*• (p q j (Using (9) of Figure 4.7).

Similarly, if M ax(T im e(C), (ts + T im e(S 2) + tj + tf)) = ts + T im e{S2) + tj + tj
 ̂ <Ttme(C)+ir+nTime(52)+n(i5+ij+i/)

 ̂ ^ p ^7’*nie(C)+n7'*me(S2)+(ir

=4- (p q) (Using (8) of Figure 4.7).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

^ (p ^ s ^ o)

After formally verifying the compiler rules for speculative execution, the appli

cability and usefulness of speculative execution are addressed. In the next chapter,

an experiment based on simulations th a t study the impact of various properties of

real-time programs affecting the applicability of speculative execution is described.

In Chapter 7, the results of applying the transformation rules, implemented in a

prototype, to realistic applications are presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

EXPERIM ENTAL VALIDATION

In previous chapters, a set of transformation rules for speculative execution have been

developed and proven that these rules do not change the program semantics and do

not extend its deadline. Applicability refers to the possibility of using speculative

execution in real-time programs, which is not a guaranteed property of the specu

lative execution rules as are timeliness and semantic correctness. It may happen

that the preconditions of the rules are never met. Consequently, applicability cannot

be validated using formal verification. In this chapter, various coding character

istics th a t affect the applicability of speculative execution in real-time programs are

investigated using simulation. In the next chapter, prototyping is used to address

applicability and usefulness of speculative execution in actual real-time applications.

We have investigated the use of speculative execution, and shown that it can

be effective for an industrial real-time application, such as a cardiac workstation [98].

However, the applicability of speculative execution can potentially be affected by a

number of code parameters, dependent themselves upon application domain, module

type, and individual and team coding styles and practices. Since it is difficult to

obtain a suitable variety of real-world programs, we have decided to investigate

the effects of coding parameters through simulation. The simulation uses randomly

generated sets of real-time programs created by a workload generator. We have

looked at real-time programs for air traffic control [29], passive sonar [86], navigation

control [31], multi-motor control system [9], and quality monitoring [28]. The design

of the simulation, in large, is guided by these applications.

Among the factors that affect the applicability of speculative execution to real

time software, are data dependence, frequency of conditionals and while loops, and

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

the size of conditional clauses and while loop bodies. This chapter provides a study

of the impact of such properties on the number of opportunities, program timeliness,

as well as performance enhancement anticipated while applying speculative execution

transformations.

In this chapter, the simulation design is discussed, and the experimental results

of applying the transformation rules is presented, highlighting the impact of various

parameters affecting the overall success rate of transformation. Section 6.1 illustrates

the design of the simulation. The results are presented and analyzed in Section 6.2.

6.1 Design of Simulation

The experiment consists of the following steps:

1. Generate programs.

2. Assign times to statements.

3. Calculate the worst-case execution time (WCET) and the deadline.

4. Calculate the execution time without speculative execution (T^s e)-

5. Apply speculative (shadow) transformation rules and calculate the execution

time (Tse und '̂ shadow')'

6. Compare the results of (4) and (5), and determine the effect of speculative

execution on the timeliness of programs (missing or meeting deadlines).

Each step is illustrated starting with program generation through a workload

generator.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

6.1.1 Generating Programs

A program is a group of statements selected out of the following; IF, WHILE,

ASSIGNMENT, CALL, BLOCKING.CALL, READ, and WRITE. The syntax obeys

the grammar shown in Figure 6.1. The frequency of each type of statement is

controlled by a probability density function. Based on experience with the code

of real-time systems such as patient cardiac monitoring [98], air traffic control [29],

passive sonar [86], navigation control [31], multi-motor control system [9], and quality

monitoring [28], The following probabilities are assigned to each statement type:

IF 10%

LOOP 10%

ASSIGNMENT 35%

CALL 20%

BLOCKING-CALL 5%

READ/W RITE 20%

Both READ and WRITE use buffers. Consequently they are considered non-

blocking. Calls are an invocation of code on different processor, and can be blocking

(BLOCKING-CALL), or non-blocking (CALL). Parameters to calls are randomly-

selected from the set of variables and classified randomly as in or out parameters.

Loops and if statements are not primitive statements, in the sense that they

contain more than one statement. To study the impact of the block size on the

simulation results, two simulation parameters are defined to control the size of blocks

within loops and conditionals by generating number of statements less or equal to

these constants. Loops have an upper bound on the number of iterations which will

be used in the next step to compute the worst-case execution time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

< program >
<block>
<statem ents>
<statem ent>

<if>
<loop>
<read>
<write>
<call>
<bIocking-call>

<block>
{<statem ents>
[<statem ent>]+
<if>

<loop>
< assignment >
<read>
<w rite>
<call>
<blocking-call>

IF (<var>) <block> ELSE <block>
WHILE (<var>) <block>
READ (<var>)
W RITE (<var>)
CALL ([<var>]+)
BLOCKING.CALL ([<var>]+)

F ig u re 6.1 The Grammar of the Generated Programs

To represent the relationship between the conditional variable and the

preceding code, both loops and if statements are preceded by calls. The condi

tional variable is selected randomly from the out parameters of the preceding call. 1

For while-loops, the same call will be included in the body of the loop to update the

condition variable.

Locality of reference entails some combination of lengths of live ranges and

degree of reuse of variables. In the experiment, locality of reference have been treated

as a measure of the first of these, and to have a separate ” degree of reuse” parameter.

To simulate locality of reference, a program is divided into segments. The segment

size can be controlled by a constant determining the percentage of locality (i.e.,

segmentsize = program.size * (1-locality)). The variables used in the program are

divided throughout segments (i.e., segment.variables = max.no.variables * (1-locality)).

A random number is used to determine how many variables from the preceding

segment will be reused in the current segment. A counter is used to keep track of

rIn principle, it could depend on a combination of parameters, but this combining is
assumed to occur inside the call.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

the current segment, and variable references are selected from the subset associated

with that segment. For example, a program of 500 statements using 50 variables

with 90% locality has segm entsize of 50. For each segment, 5 different variables are

used. Some of the variables are taken from the previous segments. Assume that

the percentage of variables of reuse in each segment is 40%. Thus 5 + 5 x 40% = 7

variables are used in each segment, where two of them are from the previous segment.

Two lists of variables are maintained for each statement: First, the set of

variables reached (used) in that statement; second the set of all variables modified

or defined. These lists will be used while applying the speculative execution rules to

ensure the dependency conditions.

After generating the program control flow graph, the next step is to associate

with every statement its worst-case execution time.

6.1.2 Assigning Tim es to Statem ents

At step 2, execution time is attached to each statement. For a primitive statement,

the execution time is assumed to be proportional to the number of variables used

or modified in that statement. Consequently, the execution time of a primitive

statement can be computed by multiplying the number of variables involved by a

constant. On the other hand, the execution time of a block is the sum of execution

times of statements in th a t block.

As in real-time systems, worst-case execution time is of most interest, the next

step is to analyze the generated program control flow graph to calculate an upper

bound on the execution time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

6.1.3 Calculating W CET and Deadlines

The worst-case execution time (WCET) is the sum of worst-case times of all the

statements of a program. For primitive statements, WCET is the assigned execution

time, as discussed at the previous step. For conditional statements, the time of

the longest path is used as WCET. The sum of times of the loop block statements

multiplied by the upper bound of the loop index is the WCET of a loop.

Deadlines are constructed as a function of the worst-case execution time. In the

experiment, after computing WCET of a program, the deadline is selected randomly

in the range of [.8, l.l] * WCET. Thus, a mixture of processes can be provided, some

of them meeting and others missing deadlines. Selecting very tight or loose deadlines

makes most programs fall into group 0 or group 1 respectively.

While timeliness of real-time systems is closely related to the worst-case

execution time, speculative execution mainly contributes to improvements in the

average execution time. Next the average execution time of the generated programs

is calculated in order to measure the effectiveness of the proposed transformations.

6.1.4 Calculating the Average Execution Time

At this step, the (non-speculative) average execution time (T m s e) is computed as

follows. The average execution time is accumulated by going through each program

statem ent by statement. For primitive statements, the execution time from step 2

is used. Care is needed for conditionals and loops. The probability of selecting the

longest branch of an i f is assumed to be 90%. For loops, a random number will be

generated in the range of one to the upper bound of loop iterations. This number is

considered as the average number of iterations of a loop. So the average execution

time of a loop is the average number of iterations multiplied by the average execution

time of the loop body per iteration.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

To measure the impact of speculative execution, the average execution time of

a program is compared with the execution time of the program after application of

the transformation rules.

6.1.5 Applying Transformation Rules

In this step, the compiler transformation rules are applied to the generated

programs. Success is monitored using two measures, applicability and performance

improvement. Applicability is indicated by the number of successful applications

of the safe speculative execution transformations. Performance improvement is

measured by the enhancement in average execution time compared to the original

program.

To obtain the average execution time using speculative execution T se {Tshadow),

the algorithm of the previous step is used for serially executed code. However,

when applying the transformation rules, parallel execution is considered as well as

overheads for forking and joining. Forking and joining time, t f and tj, include inter

process communication, which may involve sending messages over links in case of

shadow execution. If the code is running speculatively on the current processor, t f

and tj are calculated as a linear function of the number of variables to be stored

and restored (e.g., t f = constant\ * sent.variables + constant2). The values of such

constants for running speculative code on a shadow may differ from the values for

running the code on the current processor. In case of shadow execution, commu

nication time is calculated as the sum of propagation delay, transmission delay

and preparation of frames, which may vary according to network traffic. However,

assuming no message contention, t / and tj are compile-time computable. Moreover,

frames can be quickly constructed. Only a small and fixed number of variables

occur in the parts of IF and LOOP constructs to be speculatively executed, and

only those variables need to be involved in forking and joining. Thus most values

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

in a frame are known except parts of the data and the cyclic redundancy check

(CRC). Assuming Ethernet connections without repeaters, the propagation delay is

500m/2 x 108m /sec, which is 2.5fisec; assuming at most 526 bytes for the variables,

the transmission time is at most 526/10M6ps, or 20fxsec [47]. The preparation of

frames involves local computation, and the time required is negligible. Thus both t /

and tj are assumed to be 22.5usee.

To be consistent, the same assumptions are used as in calculating Tn se■ The

number of loop iterations, generated from step 4, is used to calculate the average

execution time of loops. Also, the longest branch of a conditional is assumed to be

taken 90% of the time. To capture the number of successful matches and applications

of the compiler rules, a set of counters is used to keep track of success and failure of

every rule.

The final step of the experiment is to study the impact of speculative execution

on the timeliness of real-time programs, as explained in the next subsection.

6.1.6 Determ ining M issing or M eeting Deadlines

After computing T s e and T n s e , programs are classified into 4 groups as follows:

programs which miss deadlines without speculative execution and
with speculative execution, i.e. both T s e and T n s e are greater
than the deadline.

programs which meet deadlines without speculative execution and
with speculative execution, i.e. both Tse and Tn se are less than
the deadline.

programs which meet deadlines using speculative execution but miss
deadlines with no speculative execution, i.e. T n se is greater than
the deadline and Tse is less than the deadline.

programs which miss deadlines using speculative execution but meet
deadlines with no speculative execution, or in which no speculative
execution can be performed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Group 0:

Group 1:

Group 2:

Group 3:

87

Deadline Group 0 Group 1 Group 2 Group 3
[.5, .7] * WCET 1000 0 0 0
.7, .9] * WCET 93 370 537 0

[.9,1.0] * WCET 63 650 287 0
[1.0,1.1] * WCET 0 1000 0 0

F ig u re 6.2 Speculative execution helps programs meeting deadlines

The programs of group 0 are of no interest since they miss deadlines for

both speculative execution (SE) and non-speculative execution (NSE). No programs

belong to group 3 where deadlines are missed using speculative execution but met

using no speculative execution, since no code will be speculatively executed if it is

not safe or profitable according to the analysis performed by the compiler. It is

interesting but not surprising that every program presented at least one opportunity

for speculative execution.

The selection of deadlines affects the size of each group. For instance, more

programs belong to group 0 if the deadline is in the range of [.6, .7] * WCET than the

range of [.8,1.1]*WCET. An experiment is conducted using 1000 programs, assuming

5% to 10% ifs and loops. The result of this experiment is shown in Figure 6.2.

Note that the sum of groups 0 and 2 is the number of programs missing

deadlines before applying the transformation rules, while the sum of groups 1 and (the

first subgroup in) 3 is the programs meeting deadlines before applying the transfor

mation rules. For example, the third row indicates that before applying speculative

execution, there are 370 (630) programs meeting (missing) deadline and (370 + 537

= 907) meeting deadlines after applying the transformation rules.

As indicated in Figure 6.2, speculative execution may not help if the deadline

is [.5, .7] * W C E T , when no programs meet their deadline. On the other hand,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

speculative execution will have a minor or no effect on the timeliness of programs, if

ail deadlines are slack, that is, if each deadline lies in the range [1.0,1.1] * W C E T .

In the following section, deadlines are assumed in the range [.8,1.1] * W C E T

to capture the effects of deadlines on applying speculative execution.

6.2 Performance

In the simulation, the goal is to capture the impact of various parameters that affect

the usefulness and applicability of speculative execution. The parameters of interest

are locality o f reference fo r variables, program size, percentage of i f statements,

percentage of loop statements, the size of a branch of a conditional, the size of the

loop body block, and percentage of blocking calls. The performance is measured by

speedup, improvement of timeliness and applicability, defined as follows:

• Speedup: the percentage of 1 — where Tse denotes the execution time of

a program with speculative execution and Tn se denotes the execution time of

a program without speculative execution.

• Improvement in timeliness: the percentage of programs which originally miss

their deadlines but meeting deadlines using speculative execution.

• Applicability: the number of successful while and i f transformations, divided

by the total number of while and i f statements in the considered programs.

An experiment with 1000 programs is performed. Each program contains

1500 statements, selected according to the probability density function described

in Subsection 6.1.1. A set of 100 variables are used in each program. Deadlines are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

in the range of [.8,1.1] * W C E T , as explained in the previous section. A locality of

reference of 10% with 50% reuse of variables from the previous segment is used. 2

To capture the impact of various parameters multiple experiments are

performed changing one param eter a t a time. In the following figures, SE and

SH are used to denote speculative execution and shadow execution respectively. The

results are summarized beginning with the effects of program size,

P ro g ra m Size. Since the frequency of if, and while as well as other statements are

selected according to a probability density function, the program size is not expected

to have any impact on the applicability of speculative execution (percentage of

success relative to the number of opportunities). The simulation results confirm our

expectation, as shown in Figure 6.3. Figure 6.4 shows that speedup and improvement

of timeliness stay almost the same. Since program size, in general, does not affect the

rate of opportunities, both applicability and improvement scale without problems.

Size o f V arious B locks. While speculative execution is possible if the size of the

block to be executed is reasonably large to compensate for the overhead of forking

and joining, data dependence increases and may affect the feasibility of speculative

execution. In addition, chances are increased that an if or while block will contain a

blocking-call which makes the satisfaction of the blocking preconditions impossible.

The effect of the size of the then-clause of a conditional on applicability and other

performance measures is presented in Figure 6.5, and 6.6. As the size of the i f block

is increased, opportunities for transformation decrease, hence the amount of speedup

and improvement in timeliness is reduced. This is largely because larger blocks have

higher probability of including blocking calls. Moreover, they tend to have larger

variable read and write sets, which makes it more likely that these sets overlap with

2Every program segment refers to 10% of the variables and half of them are taken from
the previous segment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

the out parameters of the preceding call, and also increases the time to store and

restore (for shadow execution, send and receive) times. The same argument holds

for effects of the size of a while-loop body, as shown in Figure 6.7, and 6.8.

Figure 6.9 presents the impact of the size of the else-clause of a condition on

the applicability of speculative execution. The more the execution time required for

the else-clause, the more expensive the rollback.

F req u en cy o f V arious S ta te m e n ts . Increasing the frequency of if statements

enables more opportunities for speculative execution. However, it does not mean that

on average the number of opportunities will increase. Studying the effect of changing

the frequency of if statements, the applicability of the speculative execution transfor

mations is found to increase (see Figure 6.10). However, improvement in timeliness

and speedup is getting saturated and even decreases after a certain threshold, as

shown in Figure 6.11. The reason for this phenomenon is that increasing the number

of i f statements makes nesting of conditions more frequent. On the other hand,

increasing the frequency of while loops always has positive effects on the number

of safe opportunities (see Figure 6.12), and on the speedup and timeliness (see

Figure 6.13).

As expected, with the increase the percentage of blocking calls, the opportu

nities for transformation decrease (see Figure 6.14). The greater chance of having

blocking calls inside i f and while statements results in difficulty of satisfying the

blocking constraints.

L o ca lity o f R eference. The effect of changing the degree of locality of reference

and degree of reuse in the program can be seen to be non-linear. With high locality

and low degree of reuse, almost all variables are local to a single segment, so few

if any will “leak” into nearby segments, and there will be few data dependencies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

between segments. In contrast, with low locality and high degree of reuse, almost all

variables are global to the program as a whole, but variables are referenced essentially

a t random, so with a large variable set, there will again be little overlap between

segments.

Overall, as locality decreases, opportunities for speculative or shadow execution

increase for short-lived constructs, and decrease for long-lived constructs (see

Figures 6.15 and 6.16). An overall increase is expected, since the opportunities

studied in this simulation are mostly in short-lived constructs.

As a general observation, shadow execution always outperforms speculative

execution, because rollback is not necessary for shadow execution, which makes the

satisfaction of its timing precondition easier. In addition, the shadow processor is

under-utilized, which suggests that a shadow processor can serve more than one

process.

Through the simulation, it has been shown that speculative execution can

enhance the timeliness and performance of real-time programs. Data dependence

has a significant impact on the applicability of speculative execution. Opportu

nities of speculative execution scales with real-time program sizes. The higher the

frequency of blocking calls, the smaller the number of opportunities. Applicability

of speculative execution tends to diminish for large sizes of conditional and while

loop body blocks. As expected, shadow execution is always more applicable and

profitable since rollback is not required. In the following chapter, a prototype imple

mentation of the transformation rules is described and a study of the applicability

and usefulness of speculative execution in actual real-time applications is presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

Opportunities

0.40

0.35

0.30

0.25

0.20

0.15

0.10

- s -

 ̂ SE Opportunities

O SH Opportunities

-o

Program size

1000 2000 3000 4000 5000 6000 7000

F ig u re 6.3 The relationship between opportunities and program size

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

Speedup / Improvement 0 SE speedup
a SE improvement

0.4
□ SH speedup
O SH improvement

0.3

0.2

tx ■a. o

Program size

70003000 4000 5000 60001000 2000

F ig u re 6.4 The effect of program size on performance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

Opporunities
0.40 □ SE Opportunities

o SH O pportunities0.35

0.30

0.25

0.20

0.15

0.10

If block size

0 6 182 4 8 10 12 14 16 20

F ig u re 6.5 Size of i f blocks versus opportunities

Speedup / Improvement

0.30 a SE speedup
j SE improvement

0.25 □ SH speedup
O SH improvement

0.20

0.15

0.10

0.05

If block size

0 5 10 15 20

F ig u re 6.6 Impacts of the if block size on performance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

Opportunities
□ SE Opportunities

O SH O pportunities

0.35

0.30

0.25

0.20

0.15

0.10

Loop block size

0 6i 4 8 10 12 14 16

F ig u re 6.7 Size of while blocks versus opportunities

Speedup / Improvement

SE speedup
SE improvement0.30

□ SH speedup
O SH improvement0.25

0.20

0.15

0.10

0.05

Loop block size

0 5 10 15 20

F ig u re 6.8 Impacts of the while block size on performance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

Speedup / Improvement B SE speedup
4 SE improvement

SH speedup
SH improvement0.30

0.25

0.20

0.15

0.10
B-

JO .0.05 cr

Else block size

0 5 10 15

F ig u re 6.9 Size of else block versus opportunities

Opportunities

0.40
0.35
0.30
0.25
0.20

□ SE Opportunities0.15
O SH Opportunities

0.10

0.05
If frequncy

0 5 10 15 20 25

F ig u re 6.10 //frequency versus opportunities

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

Speedup / Improvement

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0

0

a SE speedup

* SE improvement

□ SH speedup

o SH improvement

If frequency

0 5 10 15 20 25 30

F ig u re 6.11 Impacts of i f frequency on performance

Opportunities

0.35

0.30
CD SH opportun ities

0.25 O S H opportun ities

0.20

0.15

Loop frequency0.10

0 5 10 15 20 25

F ig u re 6.12 While frequency versus opportunities

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

Speedup / Improvement
C l SE speedup
j SE improvement

0.50
□ SH speedup
O SH improvement

0.40

0.30

0.20

0.10
aa

Loop frequency

0 205 10 15 3025

F ig u re 6.13 Effects of while frequency on performance

Opportunities
0.40

0.35

CD SE Opportunities0.30
Q SH Opportunities

0.25 Q

0.20

0.15

0.10

Frequency of blocking calls

70 2 3 4 5 6 8

F ig u re 6 .14 Percentages of blocking calls versus opportunities

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

Opportunities
□ S E O p p o rtu n ities

O S H O p p o rtu n ities

0.4

0.3

0.2

Locality

0 10 20 30 40 50 60 70 80 90

F igu re 6.15 Locality of variables reference versus opportunities

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

Speedup / Improvement
B SE speedup

j SE improvement

□ SH speedup

O SH improvement

0.30

0.25

0.20

0.15

0.10

0.051

Locality

0 10 20 30 40 50 60 70 80 90 100

F ig u re 6.16 Effects of locality of variables reference on performance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PT E R 7

IMPLEMENTATION A N D TEST ENVIRONM ENT

In the previous chapter, the impacts of various code characteristics on the applica

bility of speculative execution have been studied. While the simulation results clearly

show the potential and usefulness of speculative execution in real-time systems, we

decided to go for the more aggressive validation by applying the transformation

rules to actual real-time applications. This chapter includes a description of the

prototyping efforts to implement and test the applicability and usefulness of the

transformation rules of Chapter 4 in fragments of actual real-time applications.

As illustrated earlier, the speculative execution transformations are based

on a language model which supports only predictable constructs and expresses

timing constraints on fine-grained level. A prototype based on a new object-

oriented language for complex real-time applications, called CRL [99], is being

built at the Real-Time Computing Laboratory at NJIT. The prototype includes a

compiler, a transformation engine supporting various types of transformations such

as conditional linking and partial evaluation and others discussed in Chapter 3, an

objects-to-processors assignment tool, and a run-time environment. The execution

of processes is handled by a single kernel. The kernel manages object queues,

and initiates execution of various methods (calls). The processor interconnection

topology and network is simulated by a separate tool communicating with the kernel

to get requests and to simulate message propagation delays and queuing.

This chapter is organized as follows. First, an overview of the components

of the experimentation platform is provided. Next, the language characteristics

are addressed, emphasizing why they support the features assumed in the language

model of this work. Then, the compilation process is described for programs written

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

in that language. The timing tool supporting the analysis is discussed, followed

by a description of the compiler transformation engine. Then, the role of the

schedulability analyzer is described. The discussion of the run-time environment

begins by presenting the design of the kernel, followed by the network architecture

simulation and user interface. Finally, the implementation of the compiler trans

formation rules for speculative execution is illustrated, followed by a summary of

experimental results.

7.1 Overview of the Platform Com ponents

The platform consists of seven major components, as shown in Figure 7.1. In this

section, each component is briefly defined. A more detailed discussion follows in the

balance of the chapter.

The input for the prototype may include, in addition to source code, an archi

tecture file describing the target processors’ architecture, an instruction time map

for that architecture, and an assertions file providing user annotations to be used by

the transformation engine (for example, in performing partial evaluation).

The first component is the compiler for the CRL language. The front end of the

compiler generates intermediate code (in this implementation, a safe subset of C ++),

including run-time checks, and creates files containing constraints and assertions,

and some additional information, for the run-time environment. The compiler also

generates a representation for the call graph (caller and callee relationships), a data

dependence graph, and control flow graphs of processes to be used both by the timing

tool and by the transformation engine. Currently no machine code is generated,

relying on the intermediate code in the analysis. The timing tool then uses the

instruction timing map to assign times to atomic statements (but not structured

statements or calls) of the intermediate code. The timing tool annotates every

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

statement of the intermediate code with its execution time, implemented by defining

a time variable incremented past statements of every basic block by the execution

time of statements of that block, and output a timed intermediate code.

The analysis/transformation engine uses the timed intermediate code generated

by the timing tool and applies static analysis and various transformations, as

discussed in earlier chapters, to improve the code. Moreover, it tries to eliminate

some checks, and to detect certain classes of errors, resulting in a final version of the

code and of the constraint file.

The schedulability analyzer then takes the transformed code and constraint

file, and certifies schedulability under the validity of constraints and assertions. The

schedulability analyzer also reports a possible object-to-processor assignment (in

which some objects may be cloned, or even replicated on every processor), and a

partial or complete static scheduler.

The run-time preprocessor (linker) translates the intermediate code into

executable code. The run-time kernel uses the executable code and the final

constraint file and consults the static schedule generated by the schedulability

analyzer to schedule tasks, allocate resources, and manage object queues. The

network simulator provides the kernel with the delays due to communications (trans

missions and message queuing). Finally, the user interface component displays some

measurements, such as performance, processes missing deadlines, and average case

improvement.

The implementation efforts related to this thesis have been focused on the

analysis and transformation engine. The interaction with the assignment tool is

a future extension. Currently, the run-time component is considered as a test

environment, used to report measurements of the applicability and profitability

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

A r c h i t e c t u r e S o u r c e
rodeF i l e

I n s t r u c t i o n s

T i m i n g M ap
t s e r t i o n s

Compiler

I n t e r m e d i a t e
C o d e

C a l l G r a p h C o n s t r a i n t s
F i l e

C o n t r o l F lo w G r a p h

D a ta D e p e n d e n c y G ra p h
Timing

Tool

T im e d
I n t e r m e d i a t e

C o d e

/ Analysis I \
Transformation

V Engine /

(2*
F i n a l T i m e d C o d e F i n a l C o n s t r a i n t s

^ F i l e

Schedulability
Analyzer

C e r t i f i e d T im e d

I n t e r m e d i a t e C o d e
H i n t s f o r C l o n i n g

a n d M i g r a t i o n

Linker Assignment
l Tool

E x e c u t a b l e C o d e S e c o f A s s i g n m e n t s

User
in terface

Real-Time
Kernel

Network
Simulator

Run-Time Environment

F ig u re 7.1 The platform software components

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

of various techniques involved. In the future, the run-time environment may be

upgraded to reflect additional issues, as for example scheduling disciplines.

Before illustrating the compiler as the first component in the prototype, an

overview of the CRL language, on which the platform is based, is provided.

7.2 The Real-Tim e Language

As just mentioned, the experimentation prototype is based on a new real-time

language, CRL. The language is sufficiently robust and expressive to capture most

standard functionality, but also sufficiently structured in both native constructs and

annotations to afford static analysis by reasonable techniques. The language serves

as a vehicle for research and experimentation in real-time languages, schedulability

analysis, techniques for enabling efficient analysis, and assignment of objects and

processes to processors for complex real-time programs.

In this section, an overview of the language is provided as well as its real-time

features. The language expressivity in stating a wide range of timing constraints

is elaborated, with an argument of why it accords with the language model of this

thesis. Finally, an example of a program written in that language is provided.1

7.2.1 Language Overview

A run-time program in CRL can be seen as a collection of strongly-typed objects,

instantiated from abstract data types (classes). An object encapsulates a persistent

state, exported operations on this state, internal operations, and possible threads of

control. A thread may call operations of the owner object and exported operations

of other objects. There are primitives for synchronizing persistent states of objects:

critical sections for threads of the object and caller queues for external threads.

JThe discussion in this section is largely based on [99].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

For the purpose of our current research, basic types integer, rational, boolean,

and character suffice. There are compound type constructors array, and record.

Arrays have syntactically declared rank, and compile-time specified bounds. There

are no pointers, and in particular, no dynamic structures, and no new or free operators

for record types. Array index expressions currently may involve only scalar variables.

The expression and operator grammar is standard. Timing for an expression

involving only register or immediate operands is deterministic, and depends only on

the operator and the type and storage class of the operands.

The control flow constructs CRL provides includes loop, exit, if-elseif-...-else.

It is required that all loops and recursion are a priori bounded. These bounds may

be specified: (i) explicitly; (ii) by user assertions (in which case it is a run-time error

if such an assertion fails); (iii) a t compile-time through static analysis; or (iv) at or

before link-time by partial evaluation. Non-complying programs are not compiled.

Parameters may be passed IN, OUT, INOUT. IN parameters are passed by

value; OUT parameters are passed by result; INOUT parameters are passed by

reference rather than value-result. Restrictions in the type system ensure that alias

analysis is reasonably precise, while avoiding the semantic checks required for use of

value-result parameters; the only possibility for aliasing is through method reference

parameter collisions.

The syntax uses single-line prefixed comments (rather than delimited comments);

the comment character is %. Any input between a comment character and the next

end-of-line is ignored by the compiler.

In this section, the structural constructs of the the CRL language is discussed.

The following section shows how timing constraints are expressed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

7.2.2 Observably Tim ed Statem ents

The set of program statements whose execution time may occur in timing constraints

is specified syntactically. All critical section accesses, accesses to I/O , and synchro

nizations/messages between processes are by default observably timable, as are the

beginning and the end of each process. The fork and join nodes governing one

or more conditionally executable timable nodes are themselves observably timable.

Other statements may be labeled as timable.

The execution time of a timable statements can be distinguished by labels. A

timable statement has the form

< timed-statement > ::= [$ < label >!] < untimed-statement > [! < label > $]

where the first label represents the execution initiation time for untimed-statement,

and the second label represents the execution completion time.

Constraints are either absolute, relating a statement in a process or object to

the beginning or end of the current frame, or relative, constraining the time interval

between two observably timable and statically co-executable statements, each in or

called by the same process, or involved in a single inter-process synchronization.

Constraints are either m axJime or m inJim e constraints, accordingly placing an

upper or a lower bound on absolute or relative times; more complicated constraints

are constructed as combinations of these basic types.

The following section includes a discussion of the language static semantics

that will be checked by the compiler.

7.2.3 Static Semantics

The language enforces standard Pascal-like static restrictions on type consistency,

function arity and name conflict. A few other similar constraints on the use of names

(such as the second label in time expressions) are given above. The compiler also

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

inserts checks for array bounds (although some may be removed by optimization)

and other similar access validity enforcement mechanisms.

There are two additional semantic restrictions. First, there is a restriction on

the reference of the first label on a time expression, relative to the location of the

current statement. This constraint can be verified by standard attribute grammar

techniques. Second, and inherent in the real-time nature of the language, constraints

and assertions are subject to compile-time verification or run-time checking. In

general, timing constraints must be verified at compile-time.

In addition to the timing constraints, the language allows restrictions to be

imposed on the activation of processes, the number of iterations of a loop, and the

depth of recursion. Process activation/deactivation constraints are enforced by the

scheduler and run-time system. Iteration and recursion constraints must either be

verified at compile-time or checked at run-time.

Assertions are assumed true at compile (or link) time, and may be used by the

partial evaluator and subsequent analyses and transformations. It is however required

that they be checked at run-time (unless proven to be redundant and removed by

the compiler). It is a fatal error for a run-time check of a constraint or assertion to

fail.

After giving an overview of the language, and illustrating its expressiveness

for timing constraints, it should be matched with the thesis assumptions about the

real time language. In the next section, real-time language model of this thesis is

related to the features provided by CRL, concluding with the suitability of using it

to validate this work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

7.2.4 Relating to Our Language M odel

Fundamentally, both a high-level general-purpose language, and a powerful expression

mechanism for tim ing and other constraints are needed. The CRL language

provides the standard core of a high-level language, including array and record

type constructors and function calls allowing recursion with an upper bound on

the number of recursive calls. All language constructs are predictable in terms of

execution time, either through compile-time bounds or through run-time assertions.

The start and end of any atomic statement can be used as temporal reference points,

allowing an extremely powerful language for temporal constraints.

Moreover, the CRL language allows concurrency and inter-process synchro

nization. In CRL, a real-time system consists of a set of top-level objects (some of

which with threads of control), possibly running on a distributed network, accessing

a set of resources managed as other objects, and synchronizing via calls and messages

(messages are not yet implemented). The objects are declared on the basis of abstract

data types (classes).

In addition to the above, the language provide a very strong static semantics

that allows an intensive compile-time checking of all interfaces as well as for timing

constraints.

The next section provides an example written in CRL.

7.2.5 An Exam ple

To present the syntax as well as the power of CRL in expressing timing constraints,

an example of aircraft navigation control system, similar to the one discussed in [31],

is shown. The route of an aircraft is represented by a set of goal coordinates

(stored in the GOAL array). This set of coordinates is assumed to be provided by

another module, and passed as a parameter to the navigation control thread. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

algorithm can be summarized in three steps. First it samples the aircraft’s current

coordinates, direction (heading), roll, and ground speed 2. Second, it consults the

GOAL array for the next coordinate to target and calculates, the relative a ttitu te and

the new direction angle. Finally, it adjusts the throttle and roll to move to the new

coordinate. For simplicity, a 2-dimensional abstraction of navigation control problem

is considered. Assume the following timing constraints imposed by the problem:

1. Control update should be done every 20 ms.

2. All measurements updates should be done within the first 5 ms in each period.

3. All throttle and flap changes must be made within 3.1 ms of the actual ground

speed reading.

The CRL code for that example is shown below. One important observation

in the program is the use of labels to express the timing constraints relative to some

other point in the program. The label readstat is used to reference the timing

constraints imposed on the execution of the block in the thread control relative to

an earlier execution point. Another observation is the flexibility of expressing timing

constraints on statement or a group of statem ents (block) in addition to methods

and threads.

types

record
vars

rational x,
rational y,
boolean passed

endvars
endrecord POINT,

array 1..100 of POINT endarray GOAL,

2While other readings may be required, for simplicity, these are only considered.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

'/, Definition of the velocity class
classimplementation velocity

export velocity
methodinterface get

in rational trap
out rational speed

endmethodinterface get

7, Method to update the current status by reading various measures
method get

7, Method interface specification
in rational tmp
out rational speed

The body should be here
IOreadCSPDMTR speed)

endmethod get

endclassimplementation velocity,

classimplementation navigation

'/, Class interface specification
export threadinterface control

in GOAL goal
endthreadinterface control

import velocity

Constants declaration section
consts

100 NC00RD,
400 VHIGH,
0.0001 EPS

endconsts

'/, Variables declaration section
vars

rational
X , '/, Current x-coordinate
y. '/. Current y-coordinate
theta, '/, Current direction angle
speed, '/, Current velocity
roll, '/, Current roll
throttle, 7' The aircraft throttle

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

velocity vel
endvars

% An object to monitor the velocity

7% Method to update the current status by reading various measures
method update_status

timeconstraint nolaterthan (5)
endt ime constraint

7. The method has a deadline of 5

IOread(GPS x)
IOreadCGPS y)
IOread(NAV theta)
c a ll v e l .g et(th eta , speed)

7, Read the current angle
Read the current speed through

*/, the object velocity

V. Read the current coordinates

endmethod update_status

Method to calculate the re la tive attitude and the new angle adjustment
method compRelAtt

'/, Method interface specification
in rational theta,

rational x,
rational y,
rational gx,
rational gy

out rational rtheta

7, The body should be here

endmethod compRelAtt

7. Method to calculate delta theta (angle deviation) i f the velocity of the
'/, a ircraft reaches the maximum
method safeDtheta

7, Method interface specification
in rational rtheta,

rational r o ll
out rational dtheta

7, The body should be here

endmethod safeDtheta

'/. Method to compute the new flap of the a ircraft based on the current r o ll ,
7. velocity and the required angle deviation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

method compFlapw

’/, Method interface specifica tion
in rational r o l l ,

rational speed,
rational dtheta

out rational wflap

'/• The body should be here

endmethod compFlapw

7, Method to compute the new th ro ttle of the aircraft based on the current r o ll,
7, velocity and the required angle deviation
method compThrottle

7. Method interface specifica tion
in rational r o l l ,

rationed speed,
rational dtheta

out rational th ro ttle

7. The body should be here

endmethod compThrottle

7. Method to do the action of the contol
method action

7. Interface specifica tion
in GOAL goal
inout integer index

7, Declaration section
vars

rational gx,
rational gy,
rational rtheta,
rational dtheta,
rationed abs_rtheta,
rationed wflap

endvars

c a ll s e lf .update_status() !read_stat$ 7. read the current measurements

block
7, Get the next teirget coordinates

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

i f goal(index).passed
then

gx := goal(index).x
gy := goal(index).y
index := index + 1 - ((index + 1) / NCOORD) * NCOORD

endif

V, Using re la tiv e attitude w .r.t target compute angular adjustment
c a ll s e l f . compRelAtt (theta , x , y , gx, gy, rtheta)
c a ll abs_rtheta.abs(rtheta)
i f abs_rtheta < EPS
then

dtheta := 0
e ls e if speed < VHIGH

then
dtheta := rtheta

else
c a ll s e l f . safeD theta(rtheta.roll,dtheta)

endif

'/, Adjust flap and th ro ttle for heading
ca ll s e l f . compFlapw (r o ll , speed, dtheta, wflap)
ca ll s e lf .com pThrottle(roll,speed,dtheta,throttle)
IOwrite(THROT th ro ttle)
IOwrite(FLAP wflap)

endblock
timeconstraint

nolaterthanrelative (read_stat 3 local)
% to generate the output fast enough

endt ime cons t r aint

endmethod action

The periodic navigation control
thread control

*/, Specification for the period and any activation constraints
activationdeactivationconstraint

periodic use (20)
f ir s ta c tiv e nosoonerthan (5)

endact ivat iondeact ivat ionconstraint

Declaration section
vars

GOAL goal,
rational x l,
rational y l,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

integer index
endvaxs

index := 1
loop nomorethaniterations 5

IOreadCuser x l)
IOreadCuser y l)
goal(index).x := x l
goal(index).y := y l
goal(index).passed := fa lse
c a ll se lf .a c tio n (g o a l, index)
index := index + 1

endloop
c a ll se lf.action (goa l,in d ex)

endthread control

endclassimplementation navigation

endtypes

vars
navigation nav

endvaxs

In the following section, the input and output of the compiler are discussed.

The interface between the compiler and other modules in the prototype is described.

Finally, some of the restrictions assumed in order to facilitate the compilation are

illustrated.

7.3 The Compilation Process

Inputs to the compilation process include (1) the source code, (2) a file of archi

tectural specifications (for now, a homogeneous network with an arbitrary topology

is assumed), including instruct ion-class/time maps, network topology, and other

interconnection details, and (3) a (possibly empty) file of compile-time assertions

for the partial evaluator. The output from the compiler will be an intermediate

code program (in C + +) and a timing constraints file. In addition, the compiler will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

construct a call graph, a data dependence representation used by the timing tool, and

the control flow graph to be used by the analysis/transformation engine. Currently,

the compiler generates a use-def chain [2] as a data dependence representation, with

monolithic handling of arrays (i.e., reference to one entry of an array is considered as

using the whole array). The intermediate code is then subject to transformations by

the analysis/transformation engine after being analyzed by the timing tool. Corre

spondence between the generated code and the control graph is maintained by two

pointers per basic block to the starting and ending line numbers of the translation

of that block.

Some restrictions have been imposed to facilitate the compilation process. As

in Pascal, use or reference to any variable or object should be preceded by an explicit

declaration of that variable or object. All parameters of objects, methods and threads

should be explicitly specified as either imported or exported. The compiler will match

any call to a method or a thread against the interface of that method or thread. The

language provides only static scoping and a t present disallows aliasing.

Currently, no target architecture for the compilation process is assumed. The

transformed C + + code will be further compiled and linked with other library

routines. The kernel will be responsible for invoking the generated executable code.

In this section, the compilation process as well as the interaction with other

component in the prototype have been discussed. The following two sections provide

a description of the tools that use the output from the compiler, namely the timing

tool and the analysis and transformation tool.

7.4 The Tim ing Tool

The timing tool is used to provide a safe static estimate of the execution time of

programs. Inputs to the tool include the timing map of instructions executed by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

F ig u re 7.2 An example of a call graph

the target architecture, given as a table of instruction type and required execution

time. In a heterogeneous network the instruction types of all the processor types are

specified.

To resolve the execution time of calls, the timing tool uses the call graph,

unwound if necessary in the presence of (bounded) recursion. It starts by computing

the execution time of leaf methods in the call graph, using this information in their

callers, and so on. For example, in the call graph in Figure 7.2, the timing tool will

s tart with g then d,e, and / followed by b and c. Finally, it calculates the execution

time for a. For remote calls, the tool should consider communication delays that

messages may anticipate due to contention. An upper bound on the propagation of

messages throughout the network is assumed.

The timing tool will calculate two types of execution times: first the worst-

case execution time of processes, to resolve references to other methods through

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

calls; second, a timing annotation on every executable statement, both simple and

structured, by consulting the timing map provided as an input to the platform.

Currently, execution time of every basic block is stored in the control graph.

The timing tool analyzes the control graph for every m ethod/thread to calculate

the execution time of basic blocks to be used in justifying safety and profitability

of transformations. In addition, the tim ing tool will add a statement to the output

intermediate code past those corresponding to a basic block to increment a local

time variable used to propagate static timing prediction to the run-time environment

(see Section 7.8). The worst-case execution time of the whole m ethod/thread will

be deducted using execution time of basic blocks and will be stored with the

m ethod/thread entry in the call graph.

Because only intermediate code is generated in the current implementation,

a map for the basic data types (classes), defined by the language, is used. The

execution time of instructions (methods in the basic classes) in the map will be based

on some reasonable assumptions. Compound statements and calls are annotated by

the compiler with their initialization time as well as other constant execution time not

including the cost of the statements in the body. For example, for a loop the compiler

will annotate the initialization time which will be added to the execution time for

evaluating the loop condition and a jum p multiplied by the worst-case number of

iterations. Assuming a network of homogeneous processors, an instruction-dependent

timing map is provided.

The output of the timing tool is timed intermediate code. Figure 7.3

shows the timed intermediate code for the method action in the CRL example

of Subsection 7.2.5. Note the increment of the time variable past every basic block.

Time elapsed to evaluate conditions is reported earlier to facilitate the implemen

tation. The transformation engine then uses that output and the timing constraints

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

void action(GOAL goal , Integerft index) {

long time=0;

this->update_status();
time += 14; // time for the call
time +=2; // time for the condition evaluation
if(goal [index] .passed) ■[
action_gx = goal[index].x;
action_gy = goal[index].y;
index=index + 1 - ((index + 1) / NCOORD) * NCOORD;
time += 10;

>
self->compRelAtt(theta,x,y,action_gx,action_gy,action_rtheta);
time += 13;
action_abs_rtheta.abs(action_rtheta);
time += 3;
time +=3; // time for the condition evaluation
if(action_abs_rtheta < EPS) {
action_dtheta = 0;
time += 2;

>
else {

time +=2; // time for the condition evaluation
if (speed < VHIGH) {
action_dtheta = action.rtheta;
time += 2;

>
else {
this->safeDtheta(action_rtheta,roll,action_dtheta);
time += 5;

>
>
this->compFlapw(roll,speed, action_dtheta,action.wflap);
time += 7;
this->compThrottle(roll,speed,action.dtheta,throttle);
time += 5;
cout « "Write to THROT :" « throttle « endl;
time += 3;
cout « "Write to FLAP :" « action.wflap « endl;
time += 3;

F ig u re 7.3 An example of the timed intermediate code

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

file generated by the compiler to check the feasibility, safety and profitability of

transformations, as elaborated in the next section.

7.5 The Analysis and Transformation Engine

The transformation engine uses the data dependence graph, the call graph, and the

control flow graph generated by the compiler to detect various possible code transfor

mations. The timing constraints file is consulted to test the safety of transformations;

the timing profile generated by the timing tool is used to measure their profitability.

We have implemented the transformation rules provided in the Chapter 4, as

illustrated in Section 7.9. In the future, we plan to implement other transformations,

such as those discussed in the Chapter 3, possibly including partial evaluation [72],

branch/clause transformations [97], and conditional linking [98] to test their inter

action with our approach. The engine will be applying the transformations as a

sequence of steps. In each step a different kind of transformation will be considered.

The order in which the transformations will be applied remains an issue that our

future experiments will address. It may be necessary to repeat a step because

of successful transformations in other steps. For example, branch/clause transfor

mations may need to be re-applied if a condition can be eliminated by the conditional

linker. This dependence is represented by the feedback arrow (1) in Figure 7.1.

The analysis/transformation component will have two effects: first, it will

change the code according to the rules of the transformations applied; second, it

may relax some of the constraints or strengthen some of the assertions. Actually,

some transformations change only the final form of the code, without affecting timing

constraints, like branch/clause transformations. On the other hand, others may affect

both the code and the constraints, such as compiler optimization, as for example by

removing unreachable code.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

The output from this tool is updated timed intermediate code, as well as an

updated timing constraints file. These outputs are then used by the schedulability

analyzer, illustrated in the following section. However, the schedulability analyzer

may need to call the transformation engine again if it is not able to guarantee schedu

lability.

7.6 The Schedulability Analyzer

The transformed code and the revised constraint file produced by the analysis and

transformation engine are passed to a schedulability analyzer. The schedulability

analyzer may use either an exhaustive or a heuristic analysis to produce an the

assignment and a certificate of schedulability. The analyzer may also report a partial

static schedule to be used by the run-time environment. In addition, it may generate

directives for migration and cloning to the assignment tool.

The schedulability analyzer may also consult the assignment tool for the feasi

bility and profitability of certain transformations, as in the case of parallelization and

speculative execution (feedback (3) in Figure 7.1). If some of the transformations

are either infeasible or unprofitable, the schedulability analyzer will report this fact

(feedback (2) in Figure 7.1) to the transformation engine, requiring it to undo the

transformation. Moreover, if the analyzer cannot find a feasible schedule, it may

request more effort to be spent on analyses and transformations, in the sense of [31],

to enhance the schedulability of the code.

Finally, the schedulability analyzer outputs certified intermediate code from

which the compiler backend will generate executable code. In the current implemen

tation, the C + + compiler and linker is used, as discussed in the following section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

7.7 The Linker

As mentioned, no specific architecture is considered at the moment. The target code

machine implementation is a mixture of native C + + statements for some control

statement support and a set of C + + class objects, types, and resources for the

kernel interface. The linker is simply the C + + compiler. This compiles the certified

intermediate code generated by the schedulability analyzer, and links th a t code with

kernel code, as well as with the basic C + + classes.

The executable code generated in this stage is executed by the run-time

environment, which simulates distributed processing of the code over a network of

processors.

7.8 The Run-tim e Environment

The run-time environment consists of a kernel, a network simulator and a user

interface. It is designed as a single program. The linker combines that program with

the application intermediate code. As previously mentioned, the run-time component

of the platform is a test environment. No new research ideas are applied to that part

of the prototype. This section explains the role of every subcomponent of the run

time environment beginning with the kernel.

7.8.1 The Kernel

Basically, the kernel is a continuous loop. Every iteration, it checks an event list,

picks some event, and performs the appropriate action. Events include: scheduling a

method/thread, executing a call to a method, sending a message to a remote object

(making a call to a method of th a t object while the object is assigned to a different

processor), and updating object queues. Every entry in the event table has a time

stamp to determine when the kernel should react to that event. Every object has a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

queue to serialize access to all methods exported by that object. The order in that

queue depends on the scheduling criteria used and the arrival order of messages.

Typically, there is a kernel for every processor in the network. While, in the current

implementation the platform will have only one physical kernel used for emulating

a kernel per processor, the platform is scalable to any number of processors and

portable to different machines.

There is one master real-time clock for the entire system using abstract real

time units and the kernel is responsible for updating this clock. All events are

stamped with time of occurrence. The kernel responds to an event by initiating

the required activity; for example, by activating thread execution or initiating the

execution of methods. Thus, calls (except some calls to local methods or system

libraries) are directed as requests or as events to the kernel. The kernel actually

makes the call by executing the callee method. The implementation addresses two

call support problems which are inherent in distributed environments: consistency

of the values of out parameters at the conclusion of the call, when the execution of

the caller is resumed, and restoring old state after preemptions. Those problems are

addressed when the store-forward mechanism is discussed later in this subsection.

The kernel algorithm is an infinite loop. Every iteration of the loop, the kernel

checks the event table sorted by the time and process one event. It first increments

the current time by one unit. The kernel interacts with the network simulator

to handle messages that have reached their destination. Each message received

is decoded, and the kernel updates the corresponding object queue accordingly.

Browsing the event table, the kernel selects events with time-stamp equal to the

current time. For these selected events, the kernel reacts with the appropriate action,

which may be activation of a thread, or sending a message. Sending messages is

performed by passing that message to the network simulator which will simulate the

propagation of that message to its destination.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

The kernel maintains two sets of queues: object queues and processor queues.

Access to the object will be serialized using its queue. All requests (calls) to services

(methods) provided by this object will be added to its queue. The object queue

is a general priority-based queue. Every processor may host multiple objects. The

processor queue contains the highest priority requests from the object queues assigned

to that processor. Every loop iteration in the kernel algorithm, the object queues of

every processor will be checked. If there are any calls still pending, one of them will

be scheduled to run. The selection of the method to be executed will be based on

some real-time scheduling criterion. In the current implementation, Earliest Deadline

First scheduling is used for the sake of testing. However, any scheduling discipline,

established or experimental, can be used. The kernel executes the code of that

m ethod/thread, which may generate a new set of events. The kernel marks the new

events with the correct time-stamp and add them to the event table. The kernel

refers to the output of the timing tool to get the static estimate of the execution

time. This estimate is used to stamp events produced by the executed method.

As mentioned earlier, the kernel makes the calls to callee object methods. This

raises three issues. First, the kernel must remember values of out parameters of the

call and pass them back to the caller, both for local calls, and for remote calls to

methods of other objects assigned to different processors. The issue becomes still

harder for remote calls that invoke other calls. The second issue is similar, but

arises from preemption of the method. The kernel must remember the values of local

variables to resume execution correctly afterward. Finally, the kernel must remember

the method program counter, in order to determine the next statement to execute

after resuming execution and to keep track of the elapsed time. Note however that

these issues, and the transformations used to solve them, will not affect the simulated

behavior of the program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

We start by addressing the third issue. Every m ethod/thread is subdivided into

a set of non-preemptable units (submethods/subthreads). Every unit then runs to

completion without preemption. The criteria used for determining preemption points

are based on calls. Whenever a call is found, the m ethod/thread is subdivided into

two. The first part ends at the call, while the second part starts with the statement

following the call. The second part is further subdivided if another call is found, and

so on. A discussion of how the kernel handles the execution of these units is provided

later in this section.

To overcome the second issue, the scope of the declaration of local variables

defined within a method is changed to be the scope of the object (assuming all

recursive calls are unwound). In other words, local variables for any method become

part of the object internal state. Variables are renamed, e.g., by using the method

name as a prefix, so that no two methods assign a common name incompatibly. Thus,

in the case of local calls, the kernel does not worry about out parameters, as every

variable (including the parameters) are part of the object state and thus can be seen

by other methods in the object. This will also hold for those submethods generated

by inserting preemption points, as just discussed. Figure 7.4 shows the change in

code due to insertion of preemption and changing the scopes of local declarations.

For external calls, the solution is quite different, as the caller and callee do

not share state. A store-and-forward mechanism, similar to SUPRA-RPC [93],

is used instead to remember the parameters of the previous call. For example,

if the first call makes another external call, the values of the parameters of the

first call need to be retrieved in order to resume execution after returning from the

second call. In store-and-forward, the values of input parameters of the caller are

usually passed in addition to the parameters required by the callee. Thus, calls

to methods have a variable list of parameters. Whenever an external call is found

within a m ethod/thread, code must be added to store those parameters. All methods

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

ORIGINAL TRANSFORMED

Object 01 Object 01

var vl, var vl,
var v2 var v2

private:
method ml var ml_mvl,

var mvl, var ml_mv2 ,
var mv2 , method ml_l

call 02.ml() call 02.ml()
endmethod ml_l
method ml_2

call 03.m5() call 03.m5()
endmethod ml_2
method ml_3

endmethod ml endmethod ml_3

F ig u re 7.4 Example of the insertion of preemption points

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

and threads will use a standard parameter list consisting of two stacks. The first

stack has the parameters of the call. Statements will be added to the code of the

m ethod/thread to pop the parameters from that stack. All the parameters of that

call will be pushed again onto the stack at preemption points (when making calls)

so that they can be retrieved when the call returns. The second stack contains the

source object and the next submethod to be executed. The kernel pops that stack

when a call returns to determine which object made that call.

Every (non-local) call in the program is replaced by a call to the function store-

and-forward. The parameters needed for store-and-forward are: source id (where to

return), target id (which method to call), and the actual parameters of the caller.

The post-processor replaces external calls with a return statem ent. The id’s referred

to above can be addresses or object id and method name. For example: if O l.m l _1

calls 02.m 3 then the source id will be the address of Ol.ml_2, while the target id will

be the address of 02.m3_l. Figure 7.5 shows an example of the code transformations

performed by the post-processor to support store-and-forward: the external call has

been replaced with a store-and-forward request to the kernel, and the method returns.

Later, the kernel will send a message to the target object and resume execution at

ml_3 upon the return from the call to 02.m3.

As the motivation for this transformation of the code is to enable the implemen

tation of the run-time kernel, a decision was made to implement it by a post-processor

of the intermediate code ju st before integrating the code with the linker. The input

to the post-processor is basically C + + code; the output will also be C + + .

The kernel interacts with the other subcomponents of the run-time environment,

as shown in Figure 7.1. First, it calls the network simulation routine to calculate

communication delays through the network when invoking an external call. In

addition, the kernel measures the execution time of various threads and methods

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

ORIGINAL

Object 01

var vl,
var v2

method ml
var mvl,
var mv2 ,

TRANSFORMED

Object 01

var vl,
var v2

private:
var ml_mvl,
var ml_mv2 ,

method m il

c a ll 02.m3(..)

endmethod ml

store_and_forward(01.ml_2,02.m3_l,..)
return

endmethod ml_l
method ml_2

endmethod ml_2

F ig u re 7.5 Example of the application of the store-and-forvvard mechanism

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

and reports that to the user along with other statistics through the user interface

module, as discussed in Subsection 7.8.3. A local time variable is added to every

method/submethod. An increment statement for the time variable after every basic

block is added to the code generated by the timing tool. The increment reflects the

execution time for that basic block. Figure 7.6 shows the C + + translation of the

method updatestatus in the CRL example of Subsection 7.2.5. The static prediction

of the execution time of basic blocks by the timing tool is propagated to the kernel

by adding a local time variable. This time variable will be incremented at basic

block boundaries to accumulate the execution time. The value of time is pushed

to the stack and the kernel will pop it to know the execution time of that method

(not including any communication delays). The purpose of providing measures of

execution time a t run-time is to correlate the basic timing measures based on the

timing map with actual execution. For some operations, the amount of time is

an integer constant, while for others it is expressed as a parameterized expression.

In practice, some of these parameterized expressions depend only on compile-time

information as operand list lengths, or iteration and time constraint requirements,

and are thus easily resolved and specialized into constants statically. However,

timing expressions may also depend on the distribution of operands, objects, and

processes across the network (this is relevant in calls) and on the usage of shared

resources.

In the next section, the network architecture simulator is described.

7.8.2 The Network Architecture Simulation Tool

The network simulation tool provides the timing delay that thread execution antic

ipates due to distributed allocation of objects. The simulator uses architectural infor

mation including a description of the network topology, various distances between

nodes, and the transmission medium, as provided in architecture description file.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

int update_status_l(System_Stack *sp) {

long time = 0;

cin » x ;
time += 3;
cin » y ;
time += 3;
cin » theta ;
time += 3;

// CALL to vel.get(theta,speed)
sp->Param_Stack.pushPointer((void*) fetheta);
sp->Param_Stack.pushPointer((void*) ftspeed);
sp->Qbject_Stack.pushPointer((void*) this);
sp->Object_Stack.pushPointer((void*) fcupdate_status_2);
sp->Object_Stack.pushPointer((void*) fcvel);
sp->Object_Stack.pushPointer((void*) &vel.get_l);

sp->Param_Stack.pushLong(time);

store_forvard(self.id,"navigation.update_status_2 :navigation",
vel.id,"vel.get_l:navigation",sp->no);

return(1);

F ig u re 7.6 An example of the final code to be linked with the kernel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

Initially, the simulator reads an assignment file generated by the assignment

tool, providing a mapping for every object to a processor. Interaction with the

kernel is in the form of requests providing the source object and the target object as

well as the size of the message to be sent. The simulator consults the object map,

and determines the source processor and the target processor. Using the topology

description, it then finds the appropriate route along which to transfer the request.

There is a message queue in every node maintained by the network simulator.

If a message is to be transferred on a busy link, it will be queued until the link is

free. The transmission rate will be dependent on the medium and the distance the

message has to travel. The simulator consults some internal table (data sheet) to

calculate the transmission time over that line. The kernel will not block waiting

for the results of that request. The results of that call are reported back using the

same message format but the previous target object becomes a source for the return.

The total communication delay time is the sum of the transmission times and the

communication queuing time (forward for the request and backward for the results).

The total service time for the kernel request is the sum of the communication delay,

the execution time of the specified method within the target object, and the object

queuing delay.

There is no interaction between the network simulator and the user interface

in the current implementation. All results and status reported to the user come only

from the kernel. In the future, a graph may be provided to show the current status

of the network, including communication queues and bottlenecks. In the coming

section, the user interface subcomponent in the run-time environment is described.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

7.8.3 User Interface

In the current implementation the user interface is used only to display measurements

and statistics on the applicability of transformations and their effects on performance,

deadlines, and processor utilization. Development of a graphical interface is work in

progress. It eventually will be possible to draw execution progress figures, providing

the user with information on the activities of every processor. Moreover, the

measurements and statistics mentioned above will also be presented using graphs.

In the future, these capabilities may be extended to include a facility for affecting

the execution behavior and for providing run-time assertions.

In the next section, the implementation and integration of the speculative

execution transformation within the prototype are illustrated.

7.9 Implementation of the Speculative Execution Transformations

To apply the compiler transformation rules for speculative execution, discussed in

Chapter 4, it is needed to use the control graph, a data dependence representation

and the call graph. The input to the transformer is timed intermediate code. The

implementation of the transformation rules follows the following steps:

1. The control graph is browsed trying to find a pattern match, to justify the

structural preconditions.

2. If a pattern is found, the dependence preconditions are verified.

3- The call graph is consulted to test all blocking conditions.

4. Safety and profitability of the transformation are justified using the timing

preconditions.

5. The code is transformed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

In the first step, the control flow graph is browsed matching patterns that

satisfy structural preconditions3. Because the CRL language allows only explicit

calls, there will be no call in the condition of any if statement. We thus extended

our analysis to consider cases in which the boolean expression of an if statement

involves a variable modified by an earlier call. If a pattern is found, the dependence

and blocking preconditions are to be verified. The static prediction of the execution

time of basic blocks, stored in the control graph, is used to check the safety and

profitability of speculative execution according to the timing preconditions. Scanning

the control flow graph commences from the top down towards the end and outer

to inner in nested constructs. While possible matches within nested compound

statements (loops and conditionals) are considered, currently the first feasible match

is picked. In the future, we would like to consider alternate opportunities and pick

the most profitable one.

The call graph and the object assignment file are used to justify blocking

conditions. A call is considered blocking if it is made to a method of an object

not assigned to the same processor as the caller. Non-blocking calls are those made

to methods of the same object, and which do not invoke any blocking calls. The call

graph is consulted to check calls made from the callee method in order to verify the

non-blocking nature of the call by checking descendents of the callee. In addition,

the assignment file is checked to avoid deadlocks because shadow execution can cause

a deadlock if it makes a call to a method on the caller processor, in this case.

As mentioned in Section 7.3, pointers in the control graph are maintained

to relate every basic block to the corresponding intermediate code generated by

the compiler. Currently, these pointers are the starting and ending line numbers

3 All transformations are applied before doing any changes to the code to enable
integration with the run-time environment, as discussed in Section 7.8. Thus the control
graph will be still reflecting the original structure of the program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

of C + + translation of the basic block. Knowing line numbers facilitates carrying

out the action part of the rules (and supports debugging and monitoring). The

transformation is performed by creating a new method whose body includes the

code to be speculatively executed. The new speculative method will be called from

the original code. The values of variables modified in the new speculative method

will be saved before making the call and retrieved in case of rollback. The kernel

needs to detect the speculative nature of the call and to update the execution time as

if the call is performed in parallel with the current execution in the caller. A naming

convention is used for the new speculative methods so that the kernel can recognize

them. The kernel will not update the clock until validating the speculative execution.

Figures 7.7 and 7.8 show the transformed version of the timed intermediate code in

Figure 7.3 after applying the compiler rule of Figure 4.6. Note that there is no

update of the time after the call to SPEC-1-action. The kernel will realize from

the name that it is a speculative execution and will store the execution time for

correct updating of the clock upon validation of the speculative execution. The

kernel library function updatespec-time will consider the parallel execution of the

SPEC.l-action and the remote execution of abs and increment the clock with the

maximum of their execution times. Note that the transformation will not affect

the timing constraints of the block. Currently the speculative execution transformer

handle only “no later than” timing constraints. Future extensions include verifying

other types of constraints.

After integrating the speculative execution transformer with the other tools,

some experiments have been performed to test the applicability and profitability of

speculative execution in actual applications. Fragments of a small set of real-time

applications have been translated to CRL and tried. In the next section, the results

of that experiment are discussed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

void SPEC_l_action(GOAL goal,Integer ftindex) {

long time=0 ;

time + = 2 ; // time for the condition evaluation
if C speed < VHIGH) {
action_dtheta = action.rtheta;
time += 2 ;

>
else {
this->safeDtheta(action_rtheta.roll,action_dtheta) ;
time += 5;

>
>

F ig u re 7.7 An example of applying speculative execution transformations

7.10 E x p e rim e n ta l R esu lts

An experiment was performed to capture the impact of speculative execution on

performance of actual real-time applications. Fragments of real-time applications

including navigation control, quality monitoring, multi-motor control system, passive

sonar, and air traffic control applications, based on the description in [9, 28, 29, 31,

86] respectively, have been translated into CRL. The size of programs and various

frequencies of statements are shown in Figure 7.9, reflecting, respectively, the number

of conditionals, loops, blocking calls, non-blocking calls, input/output, assignment,

and other statements including comments and declarations. Each application was

compiled and analyzed for static timing behavior. The generated timed intermediate

code was linked with the kernel and the run-time performance monitored. Then, the

timed intermediate code is reconsidered by the speculative execution transformer

linking the output code with the kernel. The new version was executed and the

performance was compared with that of the version without speculative execution.

In the experiment, processors are assumed to be homogeneous and inter

connected through a bus topology by Ethernet [47] (without repeaters). While

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

void action(GOAL goal , Integerft index) {

long time=0 ;

this->update_statusO;
time += 14; // time for the call
time + = 2 ; // time for the condition evaluation
if(goal [index].passed) {

action_gx = goal [index].x;
action_gy = goal[index].7 ;
index=index + 1 - ((index + 1) / NCOORD) * NCOORD;
time += 10;

>
self->compRelAtt(theta,x,y,action_gx,action_gy,action_rtheta);
time += 13;
// save the modified variables
sp->Param_Stack.pushPointer((Void*) ftdtheta);
time += 1;
this->SPEC_l_action(goal, index);
action_abs_rtheta.abs(action_rtheta);
time +=3; // time for the call
time +=3; // time for the condition evaluation
if(action_abs_rtheta < EPS) {
// restore the original values of modified variables
dtheta = *(Rational *)sp->Param_Stack.popPointer();
time += 1;
action_dtheta = 0 ;
time += 2;

>
else {

// clean up the stack
sp->Param_Stack.popPointer();
update_spec_time(time);

>
this->compFlapw(roll,speed,action.dtheta, action.wflap);
time += 7;
this->compThrottle(roll,speed,action.dtheta,throttle);
time += 5;
cout « "Write to THROT : 11 « throttle « endl;
time += 3;
cout « "Write to FLAP « action.wflap « endl;
time += 3;

F igure 7.8 An example of applying speculative execution transformations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

Program Size Cond Loop Block Non-block I/O Assign Other
Navigation Control 204 10 3 3 7 14 14 156
Quality Monitoring 232 3 1 2 7 8 14 193
Multi-Motor Control 783 26 9 2 38 28 69 611
Sonar 504 9 0 1 5 0 32 457
Air Traffic Control 1284 22 3 26 103 12 128 990

F ig u re 7.9 Statistics for test programs used

the network topology and connection type can be changed, a bus topology and

Ethernet connection were selected for consistency with the simulation discussed in

the previous chapter. Thus, it is possible to capture the effect of contention on

performance measures, something that could not be detected by the simulation. As

mentioned earlier, in the current implementation, execution time is based on a map

for the basic data types (classes) defined by the CRL language. A static assignment

of objects to processors is provided manually (the assignment tool is still under

development by other members of the real-time laboratory).

The current status of the prototype imposed on the experiment some limitations

which we hope to address in the future. Currently, it is only possible to assign objects

to execution nodes, which does not allow shadow execution of part of a method on

a different processor. In addition, the currently implemented subset of the CRL

language does not directly support loops controlled by conditions other than the

number of iterations.

While applying the speculative execution, the number of potential opportu

nities is reported. If a trial to transform the code fails due to violation of one of the

preconditions, the tool reports the cause so th a t the impact of various conditions on

the success rate can be studied. The results of applying the speculative transfor

mation rules to the real-time programs mentioned above are shown in Figure 7.10.

The table reports the number of possible opportunities, feasible application of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

Program Trials Success Structural Dependence Blocking Timing
Navigation Control 2 1 0 0 0 1
Quality Monitoring 2 0 2 0 0 0
Multi-Motor Control 3 1 2 0 0 0
Sonar 9 0 9 0 0 0
Air Traffic Control 16 3 7 1 4 0

F ig u re 7.10 Opportunities for speculative execution in test programs

Program Opportunities Speedup
Navigation Control 1 3%
Quality Monitoring 0 0%
Multi-Motor Control 1 2%
Sonar 0 0%
Air Traffic Control 3 7%

F ig u re 7.11 Speedup due to speculative execution of conditions

rules, and number of unsuccessful trials due to violation of a certain precondition.

Note that the number of trials is different from the number of conditionals in the

applications as elseif is not counted.

Generally, the success rate have been noticed to be highly influenced by

programming styles. Considerable feasible opportunities have been found in

programs tha t follow a modular or an object oriented style, in which the structural

preconditions do not have a dominant effect on the applicability of the transfor

mation rules. Moreover, we see in the use of programmer annotation an interesting

possibility that can be tried in the future. In addition, relatively small programs

in our experiment are considered. We expect to have more opportunities in large

modular programs.

The effect of speculative execution on performance for the above programs is

shown in Figure 7.11. Speedup is measured as the percentage of the reduction in

the average execution time due to speculative execution relative to the execution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

time without it. While the performance gains are smaller than that observed in the

simulation results in the previous chapter, better results are expected by enabling

loop transformations and shadow execution. In addition, the programs considered

are small. As the simulation results indicated, the gain will scale with the size of

programs. Better performance enhancement are expected for larger programs, due

to greater modularity.

In this chapter, an implementation of the speculative execution transformation

rules in a platform for developing complex real-time systems has been described. The

platform is based on a new real-time programming language called CRL. Fragments of

actual real-time applications have been translated into CRL and investigated by the

speculative execution transformer for safe and profitable opportunities. The exper

imental results, consistent with the simulation discussed in the previous chapter,

indicate the applicability and profitability of speculative execution in real-time appli

cations. The applicability of speculative execution is highly affected by coding

style. Significant numbers of opportunities were found in programs written in object-

oriented or modular style. Greater gains in performance are expected for large real

time programs. We believe that the speculative execution transformation can be

successful in large applications with modular coding style, in programs written in a

language that support while loops with an upper bound on the number of iterations,

and in distributed real-time applications supporting remote procedural calls. In

addition, we think that the transformation rules can be more applicable when real

time programmers are aware of various preconditions to enable the transformations.

For example, C programmers that expect parallelization of their code can access

arrays by indices instead of pointers to facilitate parallelization of array access by the

compiler. Using object oriented programming methodology and minimizing global

variables are examples of coding styles that real-time programmers may consider in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

order to enable more safe and profitable opportunities for speculative execution in

their programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8

CONCLUSION AND FUTURE W ORK

This thesis has addressed the problem of performing safe compiler optimization,

parallelization and speculative execution techniques in real-time systems. While

naive use of compiler optimization and speculative execution may in general both

degrade worst-case performance and complicate timing analyses for distributed

real-time systems, we have shown that there are opportunities for safe use of these

techniques. We have provided guidelines for identifying such opportunities at

compile-time, and applying these in generated code. In addition, we have developed

compiler transformation rules for machine-independent compiler optimization, paral

lelization and speculative execution considering a single real-time process at a time.

We have presented a formal proof of the correctness and safety of the trans

formation rules for speculative execution. We used temporal logic to verify that the

rules preserve the semantics as well as the timeliness of a program. We extended

the notion of a state in temporal logic to support reasoning on the contents of the

program store.

Through simulation, we have shown that speculative execution can enhance

timeliness and performance of real-time programs, demonstrating that the increased

compilation time used in analyzing safe opportunities is not wasted. D ata dependence

has a significant impact on the applicability of speculative execution, which is

consistent with the simulation results, but opportunities for speculative execution

scale with real-time program sizes. Applicability of speculative execution tends

to diminish for large sizes of conditional and while loop body blocks, as well as

increased frequency of blocking calls. As expected, shadow execution is always more

applicable and profitable on average, since rollback is not required.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

In addition, the transformation rules have been implemented in a platform for

complex real-time applications in the Real-Time Computing Laboratory a t NJIT,

which we are using to validate our research ideas. The platform is based on a new

object-oriented real-time language. The language and its run-time environment are

both being developed a t NJIT. The speculative execution transformations have been

applied to actual real-time applications. The results of this validation show the

applicability and usefulness of speculative execution to real-time systems.

In this chapter, we summarize our current research efforts and suggest future

directions to extend our work.

8.1 Future Work

The work presented throughout this thesis can be extended, in our opinion, in many

directions. The extensions can be classified into two categories: (i) performing

additional experiments and expanding the prototype capabilities, (ii) tackling

unsolved technical problems.

8.1.1 Extension of the Tool Support

We would like to extend our prototype and expect to investigate the efficiency

of our suggested transformations in additional applications, in co-operation with

the sponsors of the real-time computing laboratory at NJIT in industry. We have

assumed in this thesis a homogeneous memory; we will extend our model to consider

the effects of memory hierarchy on the transformations. We also hope to study the

safe application of machine-dependent optimization techniques in real-time systems.

We would like to extend our speculative transformation rules to handle hetero

geneous sets of processors and relative timing constraints. We hope to study the

applicability of the rules for a specific real-time architecture. Moreover, we may

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

address the possibility of including instruction-level speculative execution as provided

by some architectures.

Currently, we assume abundant resources (processors) which can then be used

to speculatively execute part of the code; we hope to relax this restriction in the

future. We will investigate the interaction between the transformation engine and

assignment tool to provide feedback in the presence of infeasible transformations. We

would like to study the possibility of incorporating user assertions or user interaction

to guide transformations. In addition, we would like to consider the interaction with

various scheduling disciplines and with schedulability analyzers.

Another interesting research direction is to study the impact of phase ordering

of real-time compiler transformations. Some transformations may affect the feasi

bility and usefulness of others. We also hope to build a tool, like the one described

in [109] to study the interaction between various real-time compiler transformations.

8.1.2 Work on Technical Problem s

Speculative execution can be useful in achieving real-time fault tolerance. Two

schemes, passive and active replication, are commonly used to replicate servers

that fail independently. We have proposed a semi-passive architecture for fault

tolerance, in which some replicas may be active a fraction of the time to specu

latively execution part of the code [117]. We have shown th a t speculative execution

(on a shadow) can enhance overall performance and hence shorten the recovery

time in the presence of failure. The compiler is used to detect opportunities for

speculative execution, to insert checkpoints, and to construct update messages. We

plan to extend the compiler-assisted approach for inserting checkpointing to achieve

schedulability-analyzable fault-tolerant real-time systems. In the future, we shall be

extending the semi-passive architecture to allow sharing of shadows between multiple

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

primary processors. In addition, we expect to extend the fault model to handle linked

failures and some multiple faults. We also plan to use formal dependability analysis

techniques to verify timely recovery.

Speculative execution shares some features with intelligent backtracking in logic

programming [12]. We hope to explore the possibility of using similar techniques

to minimize the penalty of rollback. In addition, we would like to apply both the

analysis of [61], and our transformations, to obtain parallel and speculative execution

of code to be executed following an exception, or to speculatively execute ordinary

code under the assumption that an exception does not occur. However, care must be

taken that ordinary execution in the presence of exceptions will not have a permanent

effect.

In this thesis, we formally verified that the speculative execution transformation

rules preserve semantics and timeliness. We plan to formally specify and verify

various other code transformations, and hope to extend that approach to a general

real-time compiler transformation specification and verification tool, like th a t of [109].

In addition, we would like to tackle the much tougher problem of formal verification

of transformations in distributed real-time systems.

Real-time compiler transformations can be very useful in enabling non-intrusive

activities such as monitoring and debugging without affecting timing constraints. In

safety-critical applications, simulation is usually used to test the code, since it is

impossible to develop the code on the target environment due to high risk and cost.

Gains in performance by optimization can be replaced by delays. Using inserted

delays as a placeholder for debugging and monitoring, it is possible to capture more

accurately the behavior of programs in the target environment. In addition, bugs

may be isolated more easily. We would like to investigate the effectiveness of compiler

optimization in supporting non-intrusive monitoring and debugging.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

Currently, we are working on the problem of applying compiler optimization

techniques to distributed real-time systems [114]. We are extending our analysis

to consider the effect of compiler optimization and speculative execution trans

formation in one process on the other processes in the system (multiprocess

analysis). We have addressed the difficulties associated with performing compiler

optimization in distributed real-time systems, and developed an algorithm to apply

machine-independent code improvement optimization safely in such a distributed

environment. The algorithm uses resources’ busy-idle profiles [36] to investigate

effects of optimizing one process on other processes, where a restricted form of

resource contention [97] is assumed to simplify analysis. In the future, we plan to

extend the resource contention model to allow for resource optimization and handle

nested calls to shared resources.

We believe that our research enhances the confidence of real-time systems

programmers in high-level language development, and allows them to rely on

compiler optimization. Our study provides guarantees for safe application of

compiler optimization and parallelization techniques. We believe that the studies

we are conducting will be essential for the design and development of complex

real-time systems. The development of such systems will require the assistance

of compiler optimization techniques to tune performance and enhance resource

utilization without destroying the timing behavior of the system. In addition,

currently running real-time applications can still benefit, by being recompiled to

enhance their response time which increase their robustness and reliability.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A P P E N D IX A

COMPILER OPTIMIZATION SUPPO RTING ANALYSIS

Code optimization can be divided into three interrelated areas. Local optimization

is performed within a basic block of code. A basic block is a sequence of consecutive

statements which may be entered only a t the beginning and when entered is executed

in sequence without halt or possibility of branch except at the end [2]. Loop

optimization is a transformation of code in a loop, e.g., lifting invariant statements

or strength reduction of calculations. Global optimization is supported by data

flow analysis - the determination at compile-time of information giving facts about

communication and use of data. Data flow analysis can be seen as the transmission

of useful relationships from all parts of the program to the places where the infor

mation can be of use. Data flow analysis includes intraprocedural analysis - analysis

of a single function or procedure - and interprocedural (interprocess) analysis [60].

In this appendix, the three forms of code optimization are elaborated, as well

as other forms of analysis used to enable optimization. The discussion begins with

control flow analysis, followed by representation of basic blocks. Next, the application

global data flow analysis is shown. This appendix is concluded by a brief discussion

of some machine-related optimization techniques.

A .l Control Flow Analysis

Control flow analysis is the determination of the structure of a program. It identifies

possible execution paths as well as basic blocks within the program. Control flow

analysis enables application of local optimization techniques by breaking the code

into basic blocks. The basic blocks and their successor relationships are often repre

sented as a directed graph called a flow graph. Nodes of the flow graph are basic

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

blocks, and edges represent control flow. A loop has a single entry node, and the

nodes in the loop body form a strongly connected region. As an example of the use of

control flow analysis, consider a conditional statement with identical code in its then

and else branches. It may be possible to optimize the size of the program by hoisting

the common code before the conditional (Figure A .l). A related optimization, using

the flow graph during instruction scheduling, can improve performance if execution

is pipelined by filling the conditional delay slot.

ORIGINAL OPTIMIZED

if (si)
s2;
s3;

else
s2;
s4;

endif
s5;

s2;
if (si)
s3;

else
s4;

endif
s5;

F ig u re A .l Code hoisting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

A.2 D A G R e p re se n ta tio n o f B asic B locks

A directed acyclic graph (DAG) representation is commonly used to automatically

analyze code in a basic block, giving a picture of how values computed by one

statement in the block are used in others. Constructing the DAG allows deter

mination of common subexpressions, names with external reaching definitions,

and names or expressions whose values may be used outside the block. Local

optimization, such as common subexpression elimination, and copy and constant

propagation, can be applied within the block. Consider for example, the basic block

in Figure A.2.

ORIGINAL OPTIMIZED

[51] c := a+b [SI] c := a+b
[52] d := a+b [S2>] d := c

F ig u re A .2 Common subexpression elimination

There is no need to compute the expression a+b twice, since a and b do not

change. Therefore the value of c can be used. Furthermore, the use of d can be

replaced with c, using copy propagation.

A .3 G lobal D ata-flow A nalysis

A number of optimizations can be realized by comparing various pieces of information

which can only be obtained by examining the entire program. For example, if a

variable A has the value 3 every time control reaches a certain point p, then 3 can

be substituted for each use of A at p. This gathering of information from the entire

program occurs via global data-flow analysis. Global data-flow analysis relates the

definition of variable and constants with their uses throughout the program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

One standard data flow problem is Reaching Definitions, th a t is, the problem

of which definition of a variable can possibly reach a given program point. In the

previous example, it is necessary to know which values A might have when reaching p.

So, two sets are computed for each basic block. The first is the Gen set of generated

definitions. The second is the Kill set of defined identifiers redefined in the block.

The basic block DAG can be used to generate those sets, and those sets can be used

to compute the IN and OUT sets of defined identifiers.

A.4 Intraprocedural and Interprocedural Analysis

Data-flow analysis generally pertains to relationships among the definitions and

uses of variables occurring in the program. An intraprocedural program analysis

considers an individual procedure in isolation from the rest of the program. In the

spirit of separate compilation, it is assumed during the analysis of procedure P that

information about the program outside the boundaries of P is not available. An

interprocedural program analysis takes place across procedure boundaries. During

the analysis of P, the results of analyzing other procedures are utilized. Consider

constant propagation. If no knowledge is available or utilized regarding values of

formal parameters and globals on entrance to, or return from, procedures, then

the constant propagation analysis is intraprocedural. An interprocedural constant

propagation algorithm [23] improves this knowledge in particular by attem pting to

recognize when a formal parameter always has the same value upon entrance to

a procedure, and incorporating this information into the propagation of constants

within the procedure. For another example, consider the code in Figure A.3:

If it is known that neither a nor b will be modified in P2, the second expression

a + b can eliminated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

Procedure Pl()

x a + b;
call P2(*a, *b)
y a + b;

F ig u re A. 3 An interprocedural constant analysis

Some interprocedural problems can be solved using only the function call graph

of a program; others require more sophisticated representations combining interpro

cedure and intraprocedural flow, such as the technique presented in [54]. Meanwhile,

explicitly parallel programs often need representation with multiple classes of edges,

as discussed in [62].

A. 5 P eep h o le O p tim iz a tio n

Peephole optimization is a technique used in many compilers in connection with

the optimization of either intermediate or object code. It occurs in the compiler

back-end, during code generation. Peephole optimization works by looking at

the intermediate or object code within a small range of instructions (a peephole),

although the code in the peephole need not be contiguous. It is the characteristic

of peephole optimization that each improvement may spawn opportunities for

additional improvements; thus, repeated passes over the code may be necessary to

get maximum benefit. Peephole optimization includes removal of redundant loads

and stores, detection of unreachable code, and simplification of multiple jumps, as

well as other machine-related optimization like reduction in strength, use of machine

idioms, and efficient register usage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A P P E N D IX B

RULES FOR M A CH IN E-IND EPEN DENT OPTIMIZATION

RULE:

Preconditions:

Action:

Postcondition:

DAG Optimization (Copy Propagation)

Structural:
(1) S = S1S2S3 >' where Si: a = expl, S 3 : b = expl .
(2) expl does not contain any critical sections or

access to a shared resource.
Dependence:
(3) S2 affects neither a nor the variables in expl.
(4) There is no dependence from S2 to S3.
Timing:
(5) S will meet its deadline.
(6) expl contains at least one memory stored variable or a

is a register variable and expl is not a constant.

Transform S 3 into
S3: b = a .

No deadline will be missed.

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

RULE:

Preconditions:

Action:

Postcondition:

Comment:

RULE:

Preconditions:

Action:

Postcondition:

Comment:

Code Hoisting

Structural:
(1) S = S i ; if (exp) then S2SeS'2 else S^SeS'^.
(2) Neither S 2 nor S3 contains any critical sections or

access to a shared resource.
Dependence:
(3) There is no dependence from S2 or S3 to S e.
(4) There is no data or resource dependence from exp to Se.
Timing:
(5) Either branch will meet its deadline.

Transform S into
S e (if (exp) then S 2S 2 else S3S3)

No deadline will be missed.

will not interfere with dependences from S e to S2 or S'3
since otherwise would have been output or resource
dependences from S 2 or S3 to S e.

Code Sinking

Structural:
(1) S = Si ; if (exp) then S 2S eS 2 else SsSeS .̂
(2) Neither S 2 nor S'3 contains any critical sections or

access to a shared resource.
Dependence:
(3) Neither S'2 nor S'z depends on S e .
Timing:
(4) Either branch will meet its deadline.

Transform S into
(if (exp) then S2S 2 else S3S3) S e

No deadline will be missed.

Will ordinary prefer to use Code Hoisting when both are
applicable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

RULE: Common Subexpression Elimination # 1

Preconditions:

Action:

Postcondition:

Comment:

Structural:
(1) S = S iS 2 S 3 ; where Si and S3 compute the same expression.
Dependence:
(2) S3 does not depend on S2.
(3) S 2 may depend on Si (i.e. no jum p from Si to S3).
Timing:
(4) S will meet its deadline.

Transform S into S1S2 (references to S3 use Si instead).

No deadline will be missed.

There cannot be an output or resource dependence from Si to
S2, since otherwise there would have be one from S2 to S3.

RULE: Common Subexpression Elimination # 2

Preconditions:

Action:

Postcondition:

Comment:

Structural:
(1) S = S1S2S3 ; where Si and S3 compute the same expression.
Dependence:
(2) S2 does not depend on Si .
Timing:
(3) S will meet its deadline.

Transform S into S2 S 3 (references to S3 use Si instead).

No deadline will be missed.

Case of dead code elimination.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

RULE: Common Subexpression Elimination # 3

Preconditions: Structural:
(1) S = S1S2S3 ; where Si and S3 compute the same expression.
(2) S2 does not contain any critical sections or

access to a shared resource.
Dependence:
(3) There is a true dependence from S2 to Si.
(4) S2 may depend on Si (i.e. no jum p from Si to S3).
Timing:
(5) S will meet its deadline.
(6) S3 uses at least one memory variable.

Action:
Transform S into
Si (a = value)S2 (use a) (refernces to S3 use of the value of a).

Postcondition:
No deadline will be missed.

RULE: Copy and Constant Propagation

Preconditions: Structural:
(1) S = S 1S2S3 ;

where Si : a = b , b is a live variable or constant
Dependence:
(2) Neither a nor b is redefined in S2 .
(3) a is dead at S3 .
Timing:
(4) Both a and b are of homogeneous type or 6 is a register

variable (or constant if immediate instructions are at least
as fast as register instructions).

(5) S will meet its deadline.
Action:

Transform S2 into S 2 by replacing every use of a with b
Transform S into S '2 S3 .

Postcondition:
No deadline will be missed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

RULE:

Preconditions:

Action:

Postcondition:

Dead Assignment Elimination

Structural:
(1) S = S1S2S3 ! w^ere Si is a = exp
Dependence:
(2) no other segments depend on a .
Timing:
(3) S will meet its deadline.

Remove Si

No deadline will be missed.

RULE:

Preconditions:

Action:

Postcondition:

Comment:

Dead Branch Elimination

Structural:
(1) S = Si ; where Si is if (exp) S 2 else S3
(2) exp is always true.
Timing:
(3) S will meet its deadline.

Transform S into S3 .

No deadline will be missed.

Symmetric case for exp always false.

RULE:

Preconditions:

Action:

Postcondition:

Dead Conditional Elimination

Structural:
(1) S = Si ; where Si is if (exp) S2 else S3
(2) S 2 and S3 both are empty.
(3) exp contains neither an assignment nor a resource use.
Timing:
(4) S will meet its deadline.

Remove S .

No deadline will be missed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

RULE:

Preconditions:

Action:

Postcondition:

Comment:

Reduction in Strength

Structural:
(1) S = S\ ; where Si is on the form a = constant * b
(2) S is not inside a loop.
Timing:
(3) S will meet its deadline.

Transform S into a = b + b + b + ...constant times.

No deadline will be missed.

Require that repetitive addition to be less time-consuming than
multiplication (highly machine dependent).

RULE:

Preconditions:

Action:

Postcondition:

Comment:

Reduction in Strength in a loop # 1

Structural:
(1) S = S & S & S s where

51 is the segment before the loop,
52 is the beginning of the loop,
53 is of the form a = consti * i + const2 with i loop index,
54 is the rest of the iteration body,
55 is the next segment after the loop.

(2) S4 contains critical section call.
(3) The number of iterations > 1.
Dependence:
(4) The only definition of i in S4 is the increment statement.
Timing:
(5) S will meet its deadline.

Define S[a = const 1 * i initial + const2.
S4 substituting i with i initial.
a = a + consti•
S2 substituting initial with next (initial).

Transform S into S i S J S ^ S ^ S s

Define S4
Define S '3

Define S '2

No deadline will be missed.

Highly machine dependent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

RULE:

Preconditions:

Reduction in Strength in a loop #2

Action:

Postcondition:

Comment:

Structural:
(1) S = S 1S2 S 2 S4 S 5 where

51 is the segment before the loop,
5 2 is the beginning of the loop,
5 3 is of the form a = consti * i + const2 with i loop index,
54 is the rest of the iteration body,
5 5 is the next segment after the loop.

(2) S4 does not contain critical section call.
(3) The number of iterations > 1.
Dependence:
(4) The only definition of i in S4 is the increment statement.
Timing:
(5) S will meet its deadline.

Define S[a = consti * i initial + const2 .
a = a + consti.

Transform S into S1SJS2S4S3S5
Define S '3

No deadline will be missed.

Highly machine dependent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

RULE:

Preconditions:

Action:

Postcondition:

Invariant Code Motion

Structural:
(1) S = S 1 S 2 S 3 S 4 S S S G ; where

S\ is the segment before the loop,
S 2 is the header of the loop,
Sz,S$ is loop variant code,
54 is loop invariant code,
56 is the next segment after the loop.

(2) S 2 S 3 S 4 S 5 will be executed at least once.
(3) S 3 does not contain critical section call.
(4) S5 may contain critical section call.
Dependence:
(5) 54 does not depend, directly or transitively, on the

loop index.
(6) 54 does not depend, directly or transitively, on any

resource use.
(7) Both 53 and S 5 depend on the loop index.
Timing:
(3) 5 will meet its deadline.

Transform 5 into 5 i5 j52535a 56

No deadline will be missed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

RULE:

Preconditions:

Action:

Postcondition:

RULE:

Preconditions:

Action:

Postcondition:

Invariant Code Peeling

Structural:
(1) S = S ^ S ^ S s S e ; where

51 is the segment before the loop,
52 is the header of the loop,
53,55 is loop variant code,
54 is loop invariant code,
56 is the next segment after the loop.

(2) 52535455 will be executed at least once.
(3) S3 may contain critical section call.
(4) S5 may contain critical section call.
Dependence:
(5) 54 does not depend, directly or transitively, on the

loop index.
(6) 54 does not depend, directly or transitively, on any

resource use.
(7) Both S 3 and S5 depend on the loop index.
Timing:
(3) 5 will meet its deadline.

Define S3 : S3 substituting i with i initial.
Define S '5 : S5 substituting i with i initial.
Define S '2 : S2 substituting initial with next(initial).
Transform 5 into S 1S3S4S5S2S3S5S6

No deadline will be missed.

Dead Loop Elimination

Structural:
(1) S = Si ; where Si is loop (exp) S2
(2) S2 is empty.
(3) exp contains neither an assignment nor a resource use.
Timing:
(4) S will meet its deadline.

Remove S .

No deadline will be missed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A PPE N D IX C

RULES FOR SPECULATIVE EXECUTION

RULE: SPECULATIVE J F

Preconditions: Structural:
(1) S = (i f (C) then S 2 else S3) is a single-exit code region.
(2) C is a call being executed on another processor
Dependence:
(3) Vars{S2) n Mod(C) = 6

(Sa’s variables have correct values immediately before i f)
Blocking:
(4) There are no blocking constructs in S2.
(5) For all methods M in TC alls(C alls(S2)), not {Blocking (A/)).
(6) For each method M in TCalls(C) nT C alls(C a lls(S2)),

not(Ordered(M)).
(Incorrectly or prematurely executing any such statement
has a permanent and invalid effect on the environment.)

Timing:
(7) ts(M od(S2)) + t f + tj < T im e(C).

(Useful work can be done.)
(8) Time(Sz) + tr(M od(S2)) < T im e(S2).

(Worst-case time does not increase.)
Actions:

Execute C in parallel with the following:
save(M od(S2)); S2.

Insert synchronization between exit(C) and exit(S2).
Check xc, the return parameters of C;

If this enables S2, do nothing.
Otherwise, execute restore(M od(S2))\ S3.

In any case, continue executing from exit(S).
Postcondition:

S has completed without missing its deadline.
State is as if execution had been sequential.

Comment:
A symmetric rule exists for S3.

Properties:
Preserves the program semantics.
Does not extend the worst-case execution path.

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

RULE: SPECULATIVE_WHILE

Preconditions: Structural:
(1) 5 = (while (C) do S2) is a single-exit code region.
(2) C is a call being executed on another processor
(3) The loop will be executed at least once.
Dependence:
(4) V ars(S2) n Mod{C) = 0

(S2’s variables have correct values immediately before while)
Blocking:
(5) There are no blocking constructs in S2.
(6) For all methods M in TC alls(C alls(S2)), not {Blocking {M)).
(7) For each method M in TCalls{C) r\TC alls(C alls(S2)),

not(O rdered(M)).
Timing:
(8) tT(M od(S2)) + ts(M od(S2)) + t f + tj < T im e(C).

(Useful work can be done; no increase in worst-case time.)
(9) tT(M od(S2)) < Tim e{S2).

(Given at least one iteration; no increase in worst-case time.)
Actions:

Execute C in parallel with the following:
save{M od(S2)); S2.

Insert synchronization between exit(C) and exit(S2).
Check x c, the return parameters of C;

If this enables S2, repeat.
Otherwise, execute restore(M od(S 2))-,exit(S).

Postcondition:
S has completed without missing its deadline.
State is as if execution had been sequential.

Properties:
Preserves the program semantics.
Does not extend the worst-case execution path.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

RULE: SHADOWJF

Preconditions:
Structural, Dependence, Blocking Constraints are same as
speculative J f rule.
Timing:
(7) tc(M od(S2)) + t / + tj < Tim e(C).

(Useful work can be done; no increase in worst-case time.)
(8) t c(M od(S2)) + t j + T im e{Sz) < T im e(S2)-

(Worst-case time does not increase along the else branch.)
Action:

Execute C in parallel with the following:
copy(Mod(S2)); shadow(S2)•

When C finishes, check the return parameters of C;
If true, wait (if necessary) for S2 to complete,

and execute copy{Mod(shadow(S2)))-
Otherwise enables S3, interrupt the shadow execution of S2 ,

and begin execution of S3.
In any case, continue executing from exit(S). Postcondition:
S has completed without missing its deadline.
State is as if execution had been sequential. Comment:
A symmetric rule exists for S3.

Properties:
Preserves the program semantics.
Does not extend the worst-case execution path.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

RULE:

Preconditions:

Action:

Postcondition:

Properties:

SHADOW-WHILE

Structural, Dependence, Blocking Constraints are same as
speculative.while rule.
Timing:
(7) tc(M od(S2)) + t / + tj < T im e(C).

(Useful work can be done.)
(Given at least one iteration; no increase in worst-case time.)

Execute C in parallel with the following:
copy(Mod(S2))', s h a d o w ^) .

When C finishes, check the return parameters of C ;
If true, wait (if necessary) for S2 to complete,

and execute copy(Mod(shadow(S2))).
Otherwise interrupt the shadow execution of S 2 -

In any case, continue executing from exit(S).

S has completed without missing its deadline.
State is as if execution had been sequential.

Preserves the program semantics.
Does not extend the worst-case execution path.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

1. M. Abadi and L. Lamport, “An Old-Fashioned Recipe for Real Time,” Research
Report 91, Digital Equipment Corporation, System Research Center,
October, 1992.

2. A. V. Aho, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques,
and Tools. Addison-Wesley, Reading, Massachusetts, 1986. ISBN 0-201-
10088-6.

3. A. Aiken, J. H. Williams and E.L. Wimmers, “Safe: A Semantic Technique for
Transforming Programs in the Presence of Errors,” A CM Transaction of
Programming Languages and Systems, Vol. 17, No. 1, pp. 63-84, January
1995.

4. N. Alewine, W. Fuchs and W. Hwu, “Application of Compiler-assisted Rollback
Recovery to Speculative Execution Repair,” Proceedings o f the Conference
on Hardware and Software Architectures for Fault Tolerance Experiences
and Perspectives, Le Mont Saint Michel, France, June 1993.

5. M. Alexander et al., “Memory Bandwidth Optimizations for Wide-Bus
Machines,” Hawaii International Conference on Systems and Software
(HICSS) 26, pp. 466-475, 1993.

6 . R. Alur and T. Henzinger, “Logics and Models of Real-Time: A Survey,” Lecture
Notes on Computer Science 600, Real-time: Theory in Practice, pp. 74-
106.

7. S. P. Amarasinghe and M. S. Lam, “Communication Optimization and Code
Generation for Distributed Memory Machines,” Proceedings of the ACM
SIGPLAN ’93 Conference on Programming Language Design and Imple
mentation (PLD I’93), pp. 126-138, Albuquerque, New Mexico, June
1993.

8 . H. Ando et al., “Speculative Execution and Reducing Branch Penalty on a
Superscalar Processor,” IEICE Transactions on Electronics, Vol E76-C,
Vol. 7, pp. 1080-1093, July 1993.

9. D. Auslander and C. Tham. Real-time software for control: program examples
in C. Prentice Hall, Englewood Cliffs, New Jersey, 1990.

10. J. Backus, J. H. Williams and E.L. Wimmers, “The FL Language Manual,”
Technical Report, R J 5339(54809), IBM Corp., Armonk, New York.

11. S. K. Baruah and L. E. Rosier, “Limitations Concerning On-line Scheduling
Algorithms for Overloaded Real-Time Systems,” Proceedings of the
IEEE/IFAC Real-Time Operating Systems Workshop, Atlanta, Georgia.
May 1991.

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

165

12. M. Bruynooghe and L. Pereira, Deductive Revision by Intelligent Backtracking.
Ellis Horwood Publication, Distributed by John-Wiley & Sons, New York,
1984.

13. M. Benitez and J. Davidson, “The Advantage of Machine-Dependent Global
Optimization,” Proceeding of International Conference on Programming
Languages and System Architectures, pp. 105-124, Springer-Verlag LNCS,
March 1994.

14. M. Benitez and J. Davidson, “A Retargetable Integrated Code Improver,”
Technical report No. CS-93-64, Department of Computer Science,
University of Virginia at Charlottesville, November 1993.

15. A. Berstein and P. Harter, “Proving Real Time Properties of Programs with
Temporal Logic,” Proceedings of the Eighth Symposium on Operating
Systems Principles, pp. 1-11, 1981.

16. A. Bestavros and S. Braoudakis, “SCC-ns: A Family of Speculative Concurrency
Control Algorithms for Real-Time Databases,” Proceedings of Third
International Workshop on Responsive Computer Systems, Lincoln, New
Hampshire, September 1993.

17. A. Bestavros and S. Braoudakis, ‘Timeliness via Speculation for Real-Time
Databases,” Proceedings o f 15th IEEE Real-Time Systems Symposium ,
San Juan, Puerto Rico, December, 1994.

18. A. Bestavros and S. Braoudakis, Value-cognizant Speculative Concurrency
Control. Proceedings of VLDB’95: The International Conference on Very
Large Databases, Zurich, Switzerland, September 1995.

19. A. Broggi, A Novel Approach to Lossy Real-Time Image Compression: Hierar
chical Data Reorganization on a Low-cost Massively Parallel System.
Journal of Real-Time Imaging, Academic Press, New York, (to appear).

20. R. Bringmann et al., “Speculative Execution Exception Recovery Using
Write-back Suppression,” Proceedings o f the 26t/l Annual International
Symposium on Microarchitecture, pp. 214-223, 1993.

21. P. Chang, et al., “Three Architecture Models for Compiler-Controlled Specu
lative Execution,” IEEE Transactions on Computers, Vol. 44, No. 4, pp.
481-494, April 1995.

22 . T. M. Chung and H. G. Dietz, “Language Constructs and Transformation for
Hard Real-time Systems,” Proceedings o f the ACM SIGPLAN Workshop
on Languages, Compilers, and Tools fo r Real-Time Systems, La Jolla,
California, June 1995.

23. D. Callahan, K. Cooper, K. Kennedy and L. Torczon, “Interprocedural constant
propagation,” Proceedings o f ACM SIGPLAN , pp. 152-161, June 1986.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166

24. J. Collard, “Automatic Parallelization of while-Loops Using Speculative
Execution,” International Journal o f Parallel Programming, Vol. 23, No.
2, 1995.

25. M. Colnaric and W. A. Halang, “Architectural Support for Predictability in
Hard Real Time Systems,” IF AC Control Engineering Practice, Vol. 1,
No. 1, pp. 51-57, 1993.

26- P. Cousot and R. Cousot, “Abstract Interpretation: a Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of
Fixpoints,” Proceedings o f ACM SIG PLAN , pp 238-252, January 1977.

27. J. Davidson and A. Jinturkar, “Memory Access Coalescing: A Technique
for Eliminating Redundant Memory Accesses,” Proceeding of the ACM
SIG PLAN ’94 Conference on Programming Languages Design and Imple
mentation (PLD I’94), pp. 186-195, June 1994.

28. S. Davidson, I. Lee, and V. Wolfe, “Time Atomic Commitment” , IEEE Trans
actions on Computers. Vol. 40, No. 5 , pp. 573-583, May 1991.

29. T. Davis, H. Erzberger and S. Green, “Design and Evaluation of an Air Traffic
Control Final Approach Spacing Tool,” Journal o f Guidance, Control and
Dynamics, Vol. 14, No. 4, pp. 848-854, July 1991.

30. R. Gerber and S. Hong, “Semantics-Based Compiler Transformations for
Enhanced Schedulability,” Proceedings of the 14t/l IEEE Real-Time
Systems Symposium , pp. 232-242, December 1993.

31. R. Gerber and S. Hong, “Compiling Real-Time Programs with Timing
Constraints Refinement and Structural Code Motion,” IEEE Trans
actions on Software Engineering, Vol. 21, No. 5, May 1995.

32. C. Giardina and E. Dougherty, Morphological Methods in Image and Signal
Processing. Prentice Hall, Englewood Cliffs, New Jersey, 1988.

33. A. P. Goldberg, “Optimistic Algorithms for Distributed Transparent Process
Replication,” Ph.D. Thesis, University of California at Los Angeles,
California, 1991.

34. B. Goldberg, “Detecting Sharing of Partial Applications in Functional
Programs,” Proceedings of the Functional Programming Languages and
Computer Architecture Conference, pp. 408-425, 1987.

35. P. Gopinath and R. Gupta, “Applying Compiler Techniques to Scheduling in
Real-time Systems,” Proceedings of the 11th IEEE Real-Time Systems
Symposium , pp. 247-256, Orlando, Florida, December 1990.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

36. R. Gupta and M. Spezialetti, “Busy-Idle Profiles and Compact Task Graphs:
Compile-time Support for Interleaved and Overlapped Scheduling of
Real-Time Tasks,” Proceedings o f the 15£/l IEEE Real-Time Systems
Symposium, San Juan, Puerto Rico, December 1994.

37. R. Gupta and P. Gopinath, “Correlation Analysis Techniques for Refining
Execution Time Estimates of Real-Time Applications,” Proceedings of
the l l £/l IEEE Workshop on Real-Time Operating Systems and Software,
pp. 54-58, Seattle, Washington, May 1994.

38. W. Halang and A. Stoyenko, Constructing Predictable Real-Time Systems.
Kluwer Academic Publishers, Boston, 1991.

39. R. Halstead, Design Requirements fo r Concurrent Lisp Machines. McGraw-Hill,
New York, pp. 69-105, 1989.

40. P. K. Harter, Jr., “On the Application of Temporal Logic to the Verification
of Real-Time Programs,” Ph.D. Thesis, Computer Science Department,
University of New York a t Stony Brook, New York, 1982.

41. C. Healy, D. Whalley and M. Harmon, “Integrating the Timing Analysis of
Pipelining and Instruction Caching,” Proceedings of the 16t/l IEEE Real-
Time Systems Symposium, pp. 288-296, December 1995.

42. T.A. Henzinger, Z. Manna, and A. Pnueli, “Temporal Proof Methodologies for
Real-Time Systems,” Proceedings of the 18th Annual ACM Symposium on
Principles of Programming Language, pp. 353-366, 1990.

43. C. A. R. Hoare, Communicating Sequential Processes. Prentice Hall, Englewood
Cliffs, New Jersey, 1985.

44. S. Hong and R. Gerber, “Scheduling with Compiler Transformations: The
TCEL Approach,” Proceedings of the Tenth IEEE Workshop on Real-
Time Operating Systems and Software, pp. 80-84, May 1993.

45. S. Hong and R. Gerber, “Compiling Real-Time Programs into Schedulable
Code,” Proceedings of the ACM SIG PLAN ’93 Conference on
Programming Language Design and Implementation, SIGPLAN Notices,
28(6):166-176, ACMPRESS, June 1993.

46. T. Huang and J. Liu, “Predicting the Worst-Case Execution Time of the
Concurrent Execution of Instruction and Cycle-Stealing DMA I/O
Operations,” Proceedings o f the ACM SIG PLAN Workshop on Languages,
Compilers and Tools for Real-Time Systems, La Jolla, California, June
1995.

47. Carrier Sense Multiple Access with Collision Detection (CSM A/CD) Access
Method and Physical Layer Specifications. Institute of Electrical and
Electronics Engineers, ANSI/IEEE standard 802.3, 1990.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168

48. D. R. Jefferson, “Virtual Time,” ACM Transactions on Programming Languages
and Systems, Vol. 7, No. 3, pp. 404-425, July 1985.

49. M. Katz, “Optimistic Concurrency with Rollback: an Alternative When
Compile-time Parallelization Fails,” Proceedings of the Workshop on
Parallelism in the Presence o f Pointers and Dynamically-Allocated
Objects. Supercomputing Research Center of the Institute for Defense
Analyses, March 1990.

50. K. Kennedy and K. S. McKinley, “Loop Distribution with Arbitrary Control
Flow,” Proceedings of Supercomputing ’90, pp. 407-416, November 1990.

51. E. Kligerman and A. Stoyenko, “Real-Time Euclid: A Language for Reliable
Real-Time Systems,” IEEE Transactions on Software Engineering, Vol.
12, No. 9, pp. 940-949, September 1986.

52. A. Krai, “Improving Semi-static Branch Prediction by Code Repli
cation,” Proceedings of the ACM SIG PLAN ’94 Conference on
Programming Language Design and Implementation (PLD I’94), pp. 97-
105, ACMPRESS, June 1994.

53. L. Lamport, “Time, Clocks, and the Ordering of Events in Distributed Systems,”
Communications of the ACM, Vol. 21, No. 7, pp. 558-565, July 1978.

54. W. Landi and B. G. Ryder, “A Safe Approximate Algorithm for Pointer-
induced Aliasing,” Proceedings o f the AC M SIGPLAN ’92 Conference
on Programming Language Design and Implementation (PLD I’92), pp.
235-248, 1992. Published as SIGPLAN Notices, 27 (7).

55. J. Lehoczky, “Fixed Priority Scheduling of Periodic Task Sets with Arbitrary
Deadlines,” Proceedings of the l l </l IEEE Real-Time Systems Symposium,
pp. 201-209, December 1990.

56. Y. Li and S. Malik, “Performance Analysis of Embedded Software Using Implicit
Path Enumeration,” Proceedings of the AC M SIG PLAN Workshop on
Languages, Compilers and Tools for Real-Time Systems, La Jolla,
California, June 1995.

57. D. Leinbaugh and M. Yamini, “Guaranteed Response Times in a Distributed
Hard Real Time Environment,” IEEE Transactions on Software
Engineering, Vol. 12, No. 12, pp. 1139-1144, December 1986.

58. C. Liu and J. Layland, “Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment,” Journal of the ACM, Vol. 20, pp. 46-61, 1973.

59. T. Marlowe and S. Masticola, “Safe Optimization for Hard Real-Time
Programming,” Second International Conference on Systems Integration,
Special Session on Real-Time Programming, pp. 438-446, June 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169

60. T. Marlowe and B. Ryder, “Properties of D ata Flow Frameworks: A Unified
Model,” Acta Informatica, Vol. 28, 1990.

61. T. Marlowe, A. Stoyenko, S. Masticola and L. Welch, “Schedulability-Analyzable
Exception Handling for Fault-Tolerant Real-Time Languages,” Journal of
Real-Time Systems, Vol 7, pp. 183-212, 1994.

62. S. Masticola, “Static Detection of Deadlocks in Polynomial Time,” Ph.D. Thesis,
Department of Computer Science, Rutgers University, New Brunswick,
New Jersey, 1993.

63. H. Meske, M. Younis and W. Halang, “A Reduced Instruction Set for a Hard
Real Time Architecture,” Proceedings o f ACM SIGARCH Workshop on
Architectures for Real Time Applications (ISCA 94), Chicago, Illinois,
April 1994

64. S. P. Midkiff and D. A. Padua, “Issues in the Optimization of Parallel
Programs,” Proceedings of the International Conference on Parallel
Processing, Vol. II, 105-113, 1990.

65. A. K. Mok, P. Amerasinghe, M. Chen and K. Tantisrivat, “Evaluating Tight
Execution Time Bounds of Programs by Annotations,” Proceedings of
the IEEE Workshop on Real-Time Operating Systems and Software,
Pittsburgh, Pennsylvania, pp. 74-80, May 1989.

66 . A. Mok and M. Dertouzos, “Multiprocessor Scheduling in a Hard-Real-
Time Environment,” Proceedings of the Seventh Texas Conference on
Computing Systems, November 1978.

67. F. Mueller, “Compiler Support for Software-Based Cache Partitioning,”
Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers
and Tools for Real-Time Systems, La Jolla, California, June 1995.

68 . F. Mueller, D. Whalley and M. Harmon, “Predicting Instruction Cache
Behavior,” Proceedings of the ACM SIG PLAN Workshop on Languages,
Compilers, and Tools for Real-Time Systems, Orlando, Florida, June
1994.

69. K. T. Narayana and A. A. Aaby, “Specification of Real-Time Systems in Real-
Time Temporal Interval Logic,” Proceeding of the 9th IEEE Real-Time
Systems Symposium, pp. 86-95, December 1988.

70. K. Narasimhan and K. Nilsen, “Portable Execution Time Analysis for RISC
Processors,” Proceedings of the ACM SIG PLAN Workshop on Language,
Compiler, and Tool Support for Real-Time Systems, Orlando, Florida,
June 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170

71. V. Nirkhe and W. Pugh, “Partial Evaluation of High-level Imperative
Languages, with Applications in Hard Real-Time Systems,” Conference
Record o f the Nineteenth Annual ACM Conference on the Principles of
Programming Languages, pp. 269-280, 1992.

72. V. Nirkhe and W. Pugh, “A Partial Evaluator for the Maruti Hard-Real-Time
System,” Journal of Real-Time Systems, Vol. 5, No. 1, pp. 13-30, March
1993.

73. J. Ostroff, “Verifying Finite State Real-Time Discrete Event Processes,”
Proceedings of the 9th International Conference of Distributed Computing
Systems, pp. 207-216, 1989.

74. S. Owicki and D. Gries, “An Axiomatic Proof Technique for Parallel Programs,”
Acta Informatica, Vol. 6 , pp. 319-340, Springer Verlag, 1976.

75. S. Owicki and L. Lamport, “Proving Liveness Properties of Concurrent
Programs,” Technical Report, Department of Computer Science, Stanford
University, October 1980.

76. R. Paige, “Symbolic Finite Differencing,” Proceedings o f the Third European
Symposium on Programming, pp. 36-56, 1990 (available also in Number
432 in Lecture Notes on Computer Science, 1990).

77. R. Paige and S. Koenig, “Finite Differencing of Computable Expressions,” AC M
Transactions on Programming Languages and Systems, Vol. 4, No. 3, pp.
403-454, July 1982.

78. C. Park, “Predicting Program Execution Times by Analyzing Static and
Dynamic Program Paths,” Journal o f Real-Time Systems, Vol. 5, No.
1, pp. 31-62, March 1993.

79. A. Pnueli and E. Harel, “Applications of Temporal Logic to the Specification of
Real Time Systems,” Lecture Notes on Computer Science 331, pp. 84-98,
1988.

80. C. D. Polychronopoulos and D. J. Kuck, “Guided Self-Scheduling: A Practical
Scheduling Scheme for Parallel Supercomputers,” IEEE Transactions on
Computers, Vol. 36, No. 12, pp. 1425-1439, 1987.

81. W. Pugh, “An Improved Cache Replacement Strategy for Function
Caching,” Proceedings of the ACM Conference on LISP and Functional
Programming, pp. 267-276, 1988.

82. W. Pugh and T. Teitelbaum, “Incremental Computation Via Function
Caching,” Conference Record of the AC M SIGPLAN-SIGACT ’89
Symposium on Principles of Programming Languages (PO PL’89), pp.
315-328, 1989.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

171

83. B. Ramkumar and L. Kale, “A Join Algorithm for Combining AND Parallel
Solutions in AND/OR Parallel Systems,” International Journal of
Parallel Programming, Vol. 21, No. 1, pp. 67-107, 1992.

84. L. Rauchwerger and D. Padua, “The LRPDT test: Speculative Run-Time Paral-
lelization of Loops with Privatization and Reduction Parallelization,”
Proceedings of the A C M SIGPLAN ’95 Conference on Programming
Language Design and Implementation (PLD I’95), pp. 218-232, 1995.

85. J. Snyder, D. Whalley and T. Baker, “Fast Context Switches: Compiler and
Architectural Support for Preemptive Scheduling,” Journal o f Micropro
cessors and Microsystems (to appear).

86 . M. Solal, D. Pillon and S. Brasseur, “Simultaneous Detection and Target Motion
Analysis from Conventional Passive Beamforming Outputs,” Proceedings
of the 1991 International Conference on Acoustics, Speech, and Signal
Processing (IC ASSP’91), Toronto, Canada, V2 , 1991.

87. M. Spezialetti and R. Gupta, “Timed Perturbation Analysis: An Approach for
Non-Intrusive Monitoring of Real time Computations,” Proceedings of the
ACM SIGPLAN Workshop on Language, Compiler, and Tool Support for
Real-Time Systems, Orlando, Florida, June 1994.

88 . G. L. Steele Jr., et. al., “Fortran at Ten Gigaflops: the Connection
Machine Convolution Compiler,” Proceedings of the ACM SIGPLAN
’91 Conference on Programming Language Design and Implementation
(PLD I’91), pp. 145-156, 1991.

89. A. Stoyenko, “A Schedulability Analyzer for Real-Time Euclid,” Proceedings of
the IEEE 1987 Real-Time Systems Symposium, pp. 218-225, December
1987.

90. A. Stoyenko, “A Real-Time Language with A Schedulability Analyzer,” Ph.D.
Thesis, Department of Computer Science, University of Toronto, Canada,
1987.

91. A. Stoyenko, Language-Independent Schedulability Analysis of Real-Time
Systems, in Real-Time Systems Engineering and Applications, edited by
S. Pferrer and M. Schiebe, Kluwer Academic Publishers, Boston, 1992.

92. A. Stoyenko, “Evolution and State-of-the-Art of Real-Time Languages,” Journal
o f Systems and Software, Vol. 18, pp. 61-84, April 1992. (also in Tutorial
on Specification of Time — Abstractions, Design Methods and Languages,
K. M. Kavi (Ed.), Washington: IEEE Computer Society Press, 1992.)

93. A. Stoyenko, “SUPRA-RPC: Subprogram PaRAmeters in Remote Procedure
Calls,” Software-Practice and Experience, Vol. 24, No. 1, pp. 27-49,
January 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

172

94. A. Stoyenko and T. Baker, “Real-Time Schedulability-Analyzable Mechanisms
in Ada 9X,” Proceedings o f the IEEE, Special Issue on Real-Time Systems,
pp. 95-107, January 1994.

95. A. Stoyenko, V. Hamacher and R. Holt, “Analyzing Hard-Real-Time
Programs for Guaranteed Schedulability,” IEEE Transactions on Software
Engineering, Vol. 17, No. 8 , pp. 737-750, August 1991.

96. A. Stoyenko and T. Marlowe, “Schedulability, Program Transformations and
Real-Time Programming,” Proceedings o f the IEEE/IFAC Real-Time
Operating Systems Workshop, Atlanta, Georgia, May 1991.

97. A. Stoyenko and T. Marlowe, “Polynomial-Time Transformations and Schedula
bility Analysis of Parallel Real-Time Programs with Restricted Resource
Contention,” Journal o f Real-Time Systems, Vol 4, No. 4, pp. 307-329,
November 1992.

98. A. Stoyenko, T. Marlowe, W. Halang and M. Younis, “Enabling Efficient Schedu
lability Analysis through Conditional Linking and Program Transfor
mations,” Control Engineering Practice, Vol 1, No. 1, pp. 85-105, January
1993.

99. A. Stoyenko, T. Marlowe and M. Younis, “A Language for Complex Real-Time
Systems,” The Computer Journal, Vol. 38, No. 4, pp. 319-338, November
1995.

100. A. Stoyenko, L. Welch, and B. Cheng, “Response Time Prediction in Object-
Based, Parallel Embedded Systems,” Microprocessing and Micropro
gramming, Vol. 40, pp. 135-150, 1994.

101. W. Strack, Implementations of Distributed PROLOG. Series in Parallel
Computing, Wiley, New York, 1992.

102. R. Strom, et al., Hermes: a Language for Distributed Processes. Addison-
Wesley, Reading, Massachussetts, 1991.

103. R. E. Strom and S. A. Yemini, “Optimistic Recovery in Distributed Systems,”
ACM Transactions on Computer Systems, Vol. 3, No. 3, pp. 204-226,
August 1985.

104. G. Tsai and B. McMillin, “Formal Methods of Real-Time Systems,” Technical
Report Number CSC 91-17, Department of Computer Science, University
of Missouri-Rolla, Rolla, Missouri, 1991.

105. J. D. Ullman, Principles of Database Systems. Computer Science Press,
Rockville, Maryland, 1982.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

106. G.A. Venkatesh, A framework for construction and evaluation of high-level
specifications for program analysis techniques. Proceedings of SIGPLAN
’89 Conference on Programming Language Design and Implementation
(PLDI ’89), pp. 1-12, Portland, Oregon, June, 1989.

107. A. Vrchoticky, “Compilation Support for Fine-Grained Execution Time
Analysis,” Proceedings of the ACM SIGPLAN Workshop on Language,
Compiler, and Tool Support for Real-Time Systems, Orlando, Florida,
June 1994.

108. H. F. Wedde, B. Korel and D. M. Huizinga, “Static Analysis of Timing
Properties for Distributed Real-Time Programs,” Proceedings of the IEEE
Workshop on Real-Time Operating Systems and Software, pp. 88-95, May
1991.

109. D. Whitfield, and M. L. Sofia, Automatic Generation of Global Optimizers.
Proceedings of The ACM SIGPLAN’91 Conference on Programming
Language Design and Implementation (PLDI’91), pp. 120-129, Toronto,
Canada, June 1991.

110. M. Wolfe, Optimizing Supercompilers for Supercomputers. The MIT Press,
Cambridge, Massachussetts, 1989.

111. Y. Wu and T. Lewis, “Parallelizing While Loops,” Proceedings of International
Conference on Parallel Processing, Vol. 2, pp. 1-8, 1990.

112. H. Yamana, et al., “A Macrotask-level Unlimited Speculative Execution on
Multiprocessors,” Proceedings of the International Conference on Super
computing (IC S’95), Barcelona, Spain, pp. 328-337, July 1995.

113. M. Younis, T. Marlowe and A. Stoyenko, “Compiler Transformations for Specu
lative Execution in a Real-Time System,” Proceedings of the 15t/l Real-
Time Systems Symposium, San Juan, Puerto Rico, December 1994.

114. M. Younis, T. Marlowe, G. Tsai, A. Stoyenko, “Applying Compiler
Optimization in Distributed Real-Time Systems”, Proceedings of the 2nd
IEEE International Conference on Engineering of Complex Computer
Systems ICEC CS’96, Montreal, Canada, October 1996 (to appear).

115. M. Younis, P. Sinha, T. Marlowe and A. Stoyenko, “Performance Enhancement
of Various Real-Time Image Processing Techniques Via Speculative
Execution” , Proceedings o f the IS& T/SPIE Symposium on Electronic
Imaging: Science and Technology, San Jose, California, Jan 1996.

116. M. Younis, G. Tsai, T. Marlowe, and A. Stoyenko, “Formal Verification of
Transformation Rules for Speculative Execution in a Real-Time System,”
Proceedings of the IFIP /IFA C Workshop on Real-Time Programming
W RTP’95, Ft. Lauderdale, Florida, November 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174

117. M. Younis, G. Tsai, T. Marlowe, and A. Stoyenko, “Improving the performance
of Fault Tolerance in Real-Time Systems Using Speculative Execution,”
Proceedings of the 1st IEEE International Conference on Engineering
of Complex Computer Systems ICEC CS’95, Ft. Lauderdale, Florida,
November 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page(1 of 2)
	Approval Page(2 of 2)

	Biographical Sketch (1 of 3)
	Biographical Sketch (2 of 3)
	Biographical Sketch (3 of 3)

	Acknowledgment (1 of 2)
	Acknowledgment (2 of 2)

	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: The Real Time Model
	Chapter 3: Related Work
	Chapter 4: Deriving Real-Time Compiler Rules
	Chapter 5: Formal Verification of Speculative Execution Rules
	Chapter 6: Experimental Validation
	Chapter 7: Implementation and Test Environment
	Chapter 8: Conclusion and Future Work
	Appendix A: Compiler Optimization Supporting Analysis
	Appendix B: Rules for Machine-Independent Optimization
	Appendix C: Rules for Speculative Execution
	References

	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

