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ABSTRACT 

ALGORITHMS AND TOOLS 
FOR SPLICING JUNCTIONS DONOR RECOGNITION 

IN GENOMIC DNA SEQUENCES 

by 
Maisheng Yin 

The consensus sequences at splicing junctions in genomic DNA are required for pre-

mRNA breaking and rejoining which must be carried out precisely. Programs currently 

available for identification or prediction of transcribed sequences from within genomic 

DNA are far from being powerful enough to elucidate genomic structure completely[4]. In 

this research, we develop a degenerate pattern match algorithm for 5' splicing site (Donor 

Site) recognition.. Using the Motif models we developed, we can mine out the degenerate 

pattern information from the consensus splicing junction sequences. Our experimental 

results show that, this algorithm can correctly recognize 93% of the total donor sites at 

the right positions in the test DNA group. And more than 91% of the donor sites the 

algorithm predicted are correct. These precision rates are higher than the best existing 

donor classification algorithm[25]. This research made a very important progress toward 

our full gene structure detection algorithm development. 
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CHAPTER 1 

INTRODUCTION 

1.1 Biology Background 

Genes are the invisible information-containing elements that are distributed to each 

daughter cell when a cell divides and Genes are made of deoxyribonucleic acid (DNA). A 

DNA chain is a long unbranched polymer composed of only four types of subunits. 

These are the deoxyribonucleotides containing the bases adenine (A), cytosine (C), 

guanine (G), and thymine (T) ( see Figure 1 ).The genetic information in the DNA is 

copied into RNA through a process known as DNA transcription. RNA transcripts that 

direct the synthesis of protein molecules are called messenger RNA ( or mRNA ). mRNA 

then passes the information into protein during protein synthesis [1 ]. 

The basic gene structure components for higher eucaryotes include the promoter, 

start codon, introns, exons, stop codon and poly-A adding site, etc. Figure 1 shows the 

human β-globin gene sequence with exon and intron regions[1]. The intron sequences 

will be removed from mRNA precursors (pre-mRNAs) by the RNA splicing mechanism 

(see Figure 2). 

Introns sequence in genes have no function at all and are actually the generic 

"junk" [1]. Introns range in size from about 80 nucleotides to 10,000 nucleotides or more. 

They differ dramatically from exons in that their exact nucleotide sequences seem to be 

unimportant. The only highly conserved sequences in introns are those required for intron 

removal. Thus there are consensus sequences at each end of an intron that are nearly the 

same in all known intron sequences, and these can not be changed without affecting the 

1 
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splicing process. The conserved boundary sequences at the 5' splice site is called donor 

site, and the one at the 3' splice site is called acceptor site. The consensus sequences for 

donor and acceptor sites are shown in Figure 3. The RNA breaking and rejoining 

(splicing) must be carried out precisely because an error of even one nucleotide would 

shift the reading frame in the resulting mRNA molecule and make nonsense of its 

message[1]. 

For biologists, now it is easy to get genomic sequences by sequencing the 

genomic DNA. But identification or prediction of transcribed sequences from within 

genomic regions has been a major rate-limiting step in the pursuit of genes. The 

bioinformatics approach for gene detection means using computer programs to predict 

exon regions. From Figure 1 and 2 we can see that a gene may have several exons 

interrupted by introns. To find out exon regions, we have to find out the start codon 

(ATG), donor sites, acceptor sites and the stop codon. For the recognition of splicing 

junction sites, one can not just do the simple consensus search for the donor and acceptor 

sites, because both these sites are of degenerate form and some of the nucleotides in these 
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sites can be changed without affecting the splicing signal[1, 2, 3]. So the simple 

consensus analysis provides only a very rough functional mapping of a sequence, and its 

results should be interpreted with due caution [4]. It is also impossible for the consensus 

sequence to account relative importance of each of the nucleotides in the sequence[5, 6]. 

Recently, the problems of gene identification and gene structure prediction in 

higher eukaryotic genomic DNA sequences by computational analysis have been received 

wide attention. As the Human Genome Project turns from mapping to large-scale 

sequencing, the need for efficient and accurate methods for identifying the gene coding 

regions will continually increase[7, 8]. This research is our first step for a full gene 

structure detection program and concentrates on the 5' splicing site (donor site ) 

recognition. 

1.2 Current Status and Progress 

Although methods to predict potential protein coding regions on genomic DNA 

sequences have existed since the 1980s, the first programs to assemble potential DNA 

coding regions into translatable mRNA sequences were not available until the early 

1990s[7]. Recently there are 	several programs available for biologists, such as 

GeneID[9], GeneParser[10], GenLang[ 11] and GRAIL[12], etc. GRATI is the one now 

widely used by researchers and it is available on the BLAST web site' for gene structure 

detection. The approaches have been used for the function sites detection include: 
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Consensus search[4] 

Consider an aligned set of site sequences. If at each position with nonuniform 

distribution of nucleotides the researchers retain the preferred nucleotide and obtain the 

consensus word. It is possible to account for degeneracies and to distinguish between 

strongly and weakly conserved positions, dependent on the degree of the non-uniformity. 

People write the consensus of mammalian donor splicing sites as maG/GTRAGu, where 

boldface denotes invariant positions, capitals and lowercase letters denote, respectively, 

strongly and weakly conserved positions, "R" denotes 'A or G', 'm' denotes `a or c', V' is 

the splice point. A formal determination of conserved positions can be made using 

standard statistical criteria or computation of the information content of positional 

nucleotide distribution [ 13, 14, 15]. The consensus methods are tools to summarize the 

distribution of an aligned set of molecular sequences. Typically the methods make three 

simplifying assumptions: analysis of molecular sequences is a multistage process in 

which sequence alignment precedes the identification of consensus sequences, an 

alignment of the molecular sequences has already been obtained, and alignment of the 

identification of consensus sequences can be treated independently. Thus the problem to 

find a consensus of k aligned molecular sequences, in which n aligned positions have 

been identified, can be viewed as a set of n simpler problems, each to find a consensus of 

k symbols ( i.e. nucleotide ) at an aligned position[16]. 	The comparison with the 

consensus is the simplest form of a site prediction algorithm, but as mentioned 

previously, consensus analysis provides only a very rough functional mapping of a 

sequence and its results should be interpreted with caution[4]. 
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Weight matrices[4] 

The next level of sophistication is provided by weight matrices. Each nucleotide b (b = A, 

C, G, T) in the site position p (p = 1,2,..., L) is set in correspondence with the weight 

W(b, p). The score off a potential site is defined as the sum of the positional weights of 

the constituent nucleotides. R. Staden applied the weight matrix method to obtain the 

relative importance of each nucleotide in the consensus sequence [17]. Another approach 

used for multivariate statistical analysis was to perform categorical discriminant analysis, 

where nucleotide sequences were transformed into categorical data. Categorical weights 

on the variables were estimated in such a way that the two classes of the 5' splice site 

sequences and sequences other than 5' splice site might be discriminated most 

distinctly[5] . It has been demonstrated that site strengths estimated by this theory to some 

extent agree with the experimental data [4]. Like consensus search, the weight matrices 

can be used for fast database searches. 

Pattern recognition and neural networks[4] 

Algorithms of the pattern recognition theory are based on the (implicit) assumption that in 

the genome there is a tendency to avoid nonfunctioning signal-like sites. Thus, a learning 

sample consists of two classes, sites and nonsites, the latter class usually formed by 

random fragments of the natural DNA. The basic steps in application of pattern 

recognition techniques are as follows: (i) Creation of a learning sample. (ii) Choice and 

encoding of signal features. (iii) Iterative correction of recognition rules according to 

results of discrimination between the two classes at the previous round. (iv) Testing on an 

independent sample. 
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One of the diverse pattern recognition algorithms is neural networks [18]. The 

neural networks consists of a layer of input neurons, several layers of hidden neurons, and 

an output neuron. When the network is presented with a candidate site, the input neurons 

check whether the site possesses the corresponding features and send binary signals to the 

neurons of the first hidden layer. Each hidden neurons sums the weighted signals coming 

by connections from the lower level, compares the result with the threshold, and sends a 

binary signal to the upper level neurons. The output neuron provides the final site / 

nonsite decision. 

Programs such as GenViewer[19] and GRAIL [12] employs a procedure that 

scores candidate exons using some combination of the sites scores and the coding 

potential, and then performs an exhaustive search over the set of structures generated by 

the remaining high-scoring exons. Recently, Moises Burset and Roderic Guigo evaluated 

a number of computer programs designed to predict the structure of protein coding genes 

in genomic DNA sequences[7]. The programs analyzed were uniformly tested on a large 

set of vertebrate sequences with simple gene structure. Their carefully selected test set 

included 570 sequences, totaling 2649 coding exons. All the sequences in the test set had 

the start codon and stop codon. All the donor sites contains the GT dinucleotide and all 

the acceptor sites contains the AT dinucleotide at the right positions. Some of their data 

was shown in Table 1. The results indicated that the predictive accuracy of the program 

analyzed was really low. For example, for the widely used GRAIL  , the sensitivity (Sn) 

and specificity (Sp) were just 36% and 43%[7]. 



Table 1. Performance of the programs evaluated by M. Burset and R. Guigo[7] 

Programs Sensitivity Specificity 

FGENEH 0.61 0.64 

GeneID+ 0.73 0.7 

GeneParser3 0.56 0.58 

GenLang 0.51 0.52 

GRAIL2 0.36 0.43 

SORFIND 0.42 0.47 

Xpound 0.15 0.18 

Note: Moises Burset and Roderic Guigo defines Sensitivity (Sn) and 
Specificity (Sp) as the follows: 

9 
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So they claimed that programs currently available may still be of great use in 

pinpointing the regions likely to contain exons, they are far from being powerful enough 

to elucidate its genomic structure completely[7]. 

Our research is targeted on developing more efficient and accurate methods for 

identifying gene structures. In this thesis, we concentrate on the detection of 5' splicing 

junction site, donor site, which is one of the most important components of gene 

structure. We first introduce a motif model to represent the degeneracy features of these 

splicing sites, then employ pattern match methods to classify / detect the splicing sites. 

Our results are very promising for donor sites recognition, which is the most important 

step for fully solving the gene detection problem. In the near future we are going to 

develop methods for detection / examination of translation initiation signal ( Start codon 

), 3'-splicing site, translation potential, translation termination position, and etc. 

Combining all these together, we will develop a powerful program for elucidate gene 

structure. 



CHAPTER 2 

PRELIMINARIES 

2.1 Term Definition 

2.1.1 Exon[1] 

Segment of a eukaryotic gene that consists of DNA coding for a sequence of nucleotides 

in mRNA; an exon can encode amino acids in a protein. An exon is usually adjacent to a 

noncoding DNA segment called an intron. 

2.1.2 Intron[1] 

Noncoding region of a eukaryotic gene that is transcribed into an RNA molecule but then 

excised by RNA splicing when mRNA is produced. 

2.1.3 Splicing Junctions[1] 

The only highly conserved sequences in introns for intron removal, which are found at or 

near the ends of an intron and are very similar in all known intron sequences. The splicing 

junctions generally cannot be altered without affecting the splicing process that normally 

removes the intron sequence from the primary RNA transcript. 

2.1.4 Donor Site[1] 

The conserved boundary sequences at the 5' splice sites. The conserved sequences 

include 9 nuclear bases with GT (GU in mRNA) almost invariable to all donor sites[1, 5, 

20, 21, 22]. An example of donor site sequence looks like the following: 

11 
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CAGGTGAGT 

The counterpart of a donor site is the 3' splice site, Acceptor site. 

2.1.5 True Donor Site 

A 9 base long authentic donor site sequence extracted from a real gene. 

2.1.6 False Donor Site 

A 9 base DNA sequence containing a GT dinucleotide that is extracted from any place, 

except the True Donor Sites, in a real gene. The GT dinucleotide in the False Donor Site 

is in the same position as it in a True Donor Site. 

2.1.7 Donor Positive DNA Sequence 

A region of a real DNA sequence in which there is least one Donor Site in it. 

2.1.8 Donor Negative DNA Sequences 

A region of a real DNA sequence in which there are no any Donor Sites in it. 

2.2 The DNA Sequences 

The DNA sequences used in this research were obtained by anonymous Fl P from the site 

ftp.ics.uci.edu/pub/machine-learning-databases/molecular-biology". All sequences in 

the group were 60 bases long. Among them were 767 sequences that contain donor sites 

(Donor Positive DNA Sequence ) and 768 acceptor positive sequences. Rest of them 

(1655) were negative sequences ( There were no donor or acceptor sites in the 
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sequences). The following sequences are some examples from the test group and the bold 

type bases are the Donor Sites: 

Donor Positive DNA Sequence: 
E I , 	ATR INS -DONOR-521 , 
CCAGCTGCATCACAGGAGGCCAGCGAGCAGGTCTGTTCCAAGGGCCTTCGAGCCAGTCTG 

E I , 	ATRINS -DONOR -905 , 
AGACCCGCCGGGAGGCGGAGGACCTGCAGGGTGAGCCCCACCGCCCCTCCGTGCCCCCGC 

E I , 	BABAPOE - DONOR -30 , 
GAGGTGAAGGACGTCCTTCCCCAGGAGCCGGTGAGAAGCGCAGTCGGGGGCACGGGGATG 

E I , 	BABAPOE -DONOR - 867 , 
GGGCTGCGTTGCTGGTCACATTCCTGGCAGGTATGGGGCGGGGCTTGCTCGGTTTTCCCC 

Donor Negative DNA Sequences: 
N, 	AGMKPNRSB -NEG- 1 , 
CAAAAGAACAAAGCTGGAGGCATCACGCTACCTGAC TTCAAACTATACTACAAGGCTACA 
N, 	AGMORS12A-NEG -181 , 
AGGGAGGTGTCTGATTGGTCCAGCTTAGTCCATGTCCCTACCCTGAACAGGGGCATGGGG 
N, 	AGMORS9A-NEG -481 , 
TGGTCAATTCTGAATTCTCTCCACATTATTATTATTATTTTTTGAGACAGTCTTGCTCTG 
N, 	AGMRSKPNI -NEG -1141 , 
AGGGCATGGTGAAAAAGGAAATATCTTCCGTTCAAAACTGGAAATAAGCTTTCTGAGAAA 

2.3 Donor Site Groups Construction 

The Donor Site Learning Group and the Donor Site Positive Training Group were built 

up using the True Donor Site extraction algorithm shown in Figure 4. There were 250 

True Donor Sites in the Donor Site Learning Group and they were extracted from the 

first 250 Donor Positive DNA Sequences ( see section 2.1). In the Donor Site Positive 

Training Group, there were 250 True Donor Sites. These true donor sites were 

extracted from the second 250 sequences following the first 250 sequences in the Donor 

Positive DNA Sequences. 

There were 800 False Donor Sites in the Donor Site Negative Training Group. 

As defined in section 2.1, all entries in this group were 9 base long and all contained the 



Input: Donor Positive DNA sequences and the splicing position. 

Output: True Donor Site sequences. 

for each inputted sequences Seq do 

begin 

let m be the index of donor D} 

m := 0; 

{let i be the splicing position} 

for j 	-3 to j := i + 5 do 

begin 

D[m] := Seq.[j]; 

m := m + 1 

end 

end; 

Figure 4. Algorithm for extract True Donor Site sequences from donor positive 
DNA sequence. 

14 
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'GT' dinucleotide in the same position as in the true donor sites. The false donor sites 

were extracted from 270 Donor Negative DNA Sequences as described in section 2.1 

using the algorithm showing in Figure 5. 

There 692 candidate donor site sequences in the Candidate Donor Site Group 

with 216 true donor sites and 474 false donor sites. They were extracted from the last 216 

DNA sequences in the Donor Positive DNA Sequences as described in section 2.1 using 

the same algorithm shown in Figure 5 but the input sequences were donor site positive 

DNA sequences. 

2.4 Measures of Performance Accuracy 

In this research, we measured the performance accuracy of the program at two different 

levels: donor site classification and donor site detection. For the donor site classification, 

we input a group of candidate donor site sequences (see section 2.3 ) into the program and 

let the program classify whether a candidate is a true donor site or false donor site 

sequence. This is the way we used to test our algorithms in our developing cycles. The 

donor classification algorithm can also be used to classify a segment of DNA sequence to 

see whether it is a donor positive or donor negative sequence as reported by Jason T. L. 

Wang and his colleagues [ 23 J.  This is useful for finding out some local information for 

a giving gene region. For the donor site detection, we input DNA sequences directly into 

the program and let the program to recognize the real donor sites in the genes. This is 

very important for the full gene structure detection application which we will develop in 

the near future. 



Input: Donor Negative DNA sequences. 

Output: False Donor Site sequences. 

for each inputted sequences Seq do 

begin 

{ let m be the index of False Donor D } 

m := 0; 

{let len be the length of Seq. } 

for i := 3 to i := len - 5 do 

begin 

if Seq.[i] = 'G' and Seq.[i + 1] = `T' 

for j := i - 3 to j := i + 5 do 

begin 

D[m] := Seq.[j]; 

m := m + 1 

end 

end 

end; 

Figure 5. Algorithm for extract False Donor Site sequences from Donor Negative 
DNA sequences. 

16 
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2.4.1 Donor Site Classification 

At this level, we measured the performance accuracy on a group of candidate donor sites 

for Sensitivity and Specificity[7]. To compute sensitivity and specificity, we use the 

following formulas: 

Sensitivity: 

Correct True Donor Sites Predicted 

S" 	Total True Donor Sites in the Test Group 

Specificity: 

Correct True Donor Sites Predicted 
S = 	  

P 	Total True Donor Sites Predicted 

Thus, Sensitivity is the proportion of actual True Donor Sites in the candidate 

donor site group that are correctly predicted, and Specificity is the proportion of predicted 

donor sites that correctly predicted. 

2.4.2 Donor Site Detection 

At this level, we measured the performance accuracy on a group of DNA sequences for 

Sensitivity and Specificity. The DNA sequences in this group were those from the Donor 

Positive and Negative Sequence groups which had been randomly mixed together. To 

compute sensitivity and specificity, we use the formulas which are similar to those for 

Donor Site Recognition. 

Sensitivity: 



Correct Donor Sites Detected 

Total Donor Sitess in the Test DNA Group 

Specificity: 

Correct Donor Sites Detected 

Total Donor Sites Detected 

Thus, Sensitivity is the proportion of actual donor sites in the test DNA sequences 

that are correctly detected, and Specificity is the proportion of detected donor sites that 

correctly detected. 

18 



CHAPTER 3 

DONOR CLASSIFICATION AND DETECTION 

3.1 Features of the 5' Splicing Sites 

As mentioned in the previous chapters, donor sites are the 5' splice sites for mRNA 

precursors in higher eucaryotes' genes. The conserved boundary sequences at the 5' 

splice site (donor site) are shown in Figure 6. 

Position: 	-3 -2 -1 0 +1 +2 +3 +4 +5 
C 	 T 

Nucleotide: 	or AG G T or A G T 
A 	 A 

Figure 6. Consensus sequences for donor site of the splicing junctions in higher 
eucaryotes. '0' position is the splicing site and it is the first nuclear tide in 
the intron sequence. 

The donor site sequence in Fig.6 just describes the conserved site sequences 

which is from statistics analysis. Most of the actual donor site sequences differ from it to 

a greater or lesser degree[25]. Following are the frequencies of the possible four 

conserved donor site sequences from a group of 550 donor sites: 

CAGGTTAGT 	3 in 550 
CAGGTAAGT 	12 in 550 
AAGGTTAGT 	6 in 550 
AAGGTAGAT 	4 in 550 

One can find out the donor site detection is much more complicated than first expected. 

We also studied the individual nucleotide frequency at each position in the same group of 

550 donor sites (see Table 2 and Fig 7). 

19 



Table 2. Frequencies of the donor site nucleotides at different positions 

Position A G C T 
-3 33.16% 18.02% 36.58% 12.25% 
-2 58.20% 16.58% 4.32% 12.07% 
-1 8.29% 78.20% 4.32% 9.19% 
0 0.00% 100,00% 0.00% 0.00% 
1 0.00% 0.00% 0.00% 100.00% 
2 48.65% 47.57% 2.16% 1.62% 
3 74.05% 11.71% 8.65% 5.59% 
4 3.96% 86.13% 4.86% 5.05% 
5 17.12% 22.85% 15.14% 44.86% 
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From the above frequency data, we can see that the donor site is of degenerate 

pattern feature. The key point of this Donor detection algorithm is how to mine out the 

donor degenerate pattern from a set of donor sites containing DNA sequences, and then 

using pattern match method to classify candidate DNA sequences. 

3.2 The Donor Pattern Model 

In order to examine donor information, we construct a Donor model as the following. 

A donor site contains 10 motifs: 

Mi(p, n), 

i (i = 1, 2, ..., 10) denotes motif number ( see the following) 

p (1 S p 5 4) denotes the motif start position in the donor site, 

p = 1 means the `-.3' position in Fig. 1. 

n (6 < n < 9) denotes the motif length. 

This model says that a donor contains 10 motifs, each motif has a minimum 

length of 6 nucleotides, and each motifs must contain " GT " nucleotides. Let us look an 

example. 

If a donor site sequence is CAGGTAAGT, we can label it as follows: 

According as our Motif model, we can derive 10 motifs as shown in Table 3. 

3.2.1 Data Structure for Storage of the Different Motifs 

Our program uses the 'set' data structure to hold the same kind of motifs. 



Table 3 A sample Motif model 

i Mi(p, n) Sequence p n 

1 M1(1, 9) CAGGTAAGT 1 9 

2 M2(1, 8) CAGGTAAG 1 8 

3 M3(1, 7) CAGGTAA 1 7 

4 M4(1, 6) CAGGTA 1 6 

5 M5(2, 8) AGGTAAGT 2 8 

6 M6(2, 7) AGGTAAG 2 7 

7 M7(2, 6) AGGTAA 2 6 

8 M8(3, 7) GGTAAGT 3 7 

9 M9(3, 6) GGTAAG 
3 6 

10 M10(4, 6) GTAAGT 4 6 

Note: The bold characters in the sequences are the conserved `GT' dinucleotide. 

23 
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Let SMp,n represent the set of motifs starting at position 'p' and having length 'n'. i.e. 

SMi9 is the set containing all motifs starting at position '1' and having length '9'. 

3.2.2 Donor Motif Library Construction 

First, we build up the Donor Site Learning Group of 250 True Donor Sites as 

described in Chapter 2. We also call this group Learning Set. Then we use the following 

algorithm to build up the Donor Motif Library (Figure 8). 

for each donor site in the Learning Set do 

begin 

extract each motifs Mi(p, n), 1 < i < 10, 1 < p < 4, 6 < n <9; 

insert M(p, n) into the appropriate motif set SMp.n 

end; 

Figure8. Algorithm for building up the Motif Library. 

We did an experiment to test if the motif library data can be used for classifying 

true / false donor sites. First, we construct a group of 200 True Donor Sites from another 

200 positive donor sequences, using the same method for building up the learning group 

described above. Then we constructed a group of 900 False Sites from 270 of negative 

donor sequences using the false donor extraction algorithm (Figure 5). The donor site 

sequence in these two groups are very similar as that ueded in Section 3.3. Next, we 

extract all the ten motifs from each donor site in these two groups, and searched the Motif 
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Library for each individual motif to see how many of these motifs from different group 

could be found in the library. The results were shown in Figure 9. From Figure 9, we can 

see that the motif library is a very good true donor representative data collection, and it 

can be used for further study for donor classification. 

3.3 Group Discriminant Analysis 

For the analysis purpose, we first construct two groups of 9-base DNA sequences data. 

The first group, Donor Site Positive Training Group, contain 250 true donor sites 

which were extracted from the second 250 positive donor sequences as described Chapter 

2. The second group, Donor Negative Training Group, was made up of 800 hundred of 

GT containing non donor sites. All the entries in the negative group were 9 bases long 

and with GT in the same position as the in the true donor sites (see Table 4). 

Next, we introduce a motif score variable, S,n , which is defined by motif number 

(i = 1, 2, ..., 10) and motif length ( n = 6, 7, 8, 9). 

Scoring each donor site candidate can be done by calculating the donor score value, 
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Table 4. The donor site sequences data to be analyzed 

No. Donor sites Group 
1 TAGGTGAGA Positive 
2 CCTGTAAGT Positive 
3 CAAGTAAGG Positive 
4 AAGGTATCA Positive 
. - Positive 

• Positive 
250 AGAGTAAGA Positive 

1 TTGGTCCAG Negative 
2 GAGGTGTCT Negative 
3 ATGGTGAAA Negative 
4 CTGGTGGAA Negative 

• Negative 
. . Negative 

800 CCAGTGAGC Negative 
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Finally we use our training algorithm ( see Fig. 10 ) to score all the sequence data 

in the Positive and Negative donor group, and write the scores into the positive score 

board or negative score board accordingly. The minimum score in the positive score 

board is called the positive lower bound, denoted L1  . The maximum score in the negative 

scoreboard is called negative upper bound, denoted U,,. Let Lp  = max { Lp. Un } and U„= 

min { Lp Un}. For our Positive donor group, we got a maximum score of 1152 and a 

minimum score of 640 ( 	). For the Negative donor group we got a maximum score of 

768 ( U„ ) and a minimum of score 0. So: 

3.4 Donor Classification 

When classifying candidate donor site sequences, we calculate the score, SD, based on the 

motif scores, S. . If SD  > Lpos then that candidate donor site is a donor site. If SD  < Uneg 

then it is not a donor site. Otherwise, the " Unknown" verdict is given. Figure 11 shows 

the donor detecting algorithm. 

3.4.1 Donor Classification Performance 

The above algorithms were implemented in ANSI C and were tested on a UNIX system 

and also on a PC system running Window 95. We used the Donor Classify program and 

classified a group of 692 candidate donor site with 200 known true donor sites among 



The positive donor training sequences are a group of sequences with 

one donor site in each sequence at the known position P 

for each sequences Seq data in the Positive and Negative groups do 

begin 

extract each motif Mi(p,n); 

search the motif set SMpn  for Mi(p,n); 

if Mi(p,n) found, 

{ let S be the score for Mi(p,n)} 

S := S + 2^n; 

if the sequence data from the Positive group 

write the Score S to the positive score board; 

else 

write the Score S to the negative score board; 

{ let Pmin := the minimum score in the Positive score board; } 

{let Nmax := the maximum score in the Negative score board; } 

if Pmin < Nmax 

swap (Pmin, Nmax) 

end; 



 

them. None of these true donor sites were extracted from the DNA sequences as the 

above learning set and positive training group were from. Based on the classification 

results in Table 5, we calculate the program performance as follows: 

Sensitivity for donor site classification: 

Specificity for donor site classification: 

3.S Detection of Donor Site in DNA Sequences 

In the real world, when a biologist gets a new DNA sequence, he or she need detect the 

splicing junction site positions in the DNA. So we modified our Donor site classification 

algorithm and let the program report the 5' splicing positions (Donor site). The algorithm 

works like this: scan the input DNA sequence for 'GT' di-nucleotides. If `GT' found, 

extract the 9-base candidate donor site. Then input the candidate donor site sequence into 

the Donor Site Classification program (see Figure 11 ). If the candidate is a true donor 

site, report the GT position in the DNA sequence. In order to test the program, we 

randomly mixed 200 donor positive DNA sequences and 200 donor negative DNA 

sequences. All these DNA sequences were from that as described in the Chapter 2 but 

none of them had been used in the above Learning or Training processes. As described in 

Chapter 2, each of the DNA sequences is 60 base long, and for the 200 donor positive 



Table 5. Donor classifying result 

Total number of candidate donor sites: 692 

Total number of true donor sites: 200 

Total true donor sites picked: 216 

True Positive (Tp) 198 

False Positive (Fp) 18 

True donor site missed 2 

Total false donor sites picked: 476 

True Negative (Tn) 474 

False Negative (Fn) 2 

False donor site missed 18 
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The candidate donor sites group contains one or more 9-base DNA 

sequences with GT dinucleotide at the same position as it in the 

True Donor Site sequences. 

} 

Input: candidate donor sites group; 

Output: label each candidate donor site sequence 

as True Donor or False Donor or Unknown; 

for each candidate donor site CD do 

begin 

{let S be the score for CD 

S := 0; 

for motif number i := 1 to i := 10 do 

begin 

extract motif Mi(p,n); 

search the motif set SMpn for Mi(p,n); 

if Mi(p,n) found, 

S = S + 2^n; 

end; 

if S >= Pmin 

{ label CD as True Donor; } 

else if S < Nmax 

{ label CD as False donor; } 

else 

{ label CD as Unknown; } 

end; 

Figure 11. Donor Classification algorithm. 
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DNA sequences, there is only one donor site in each of them. The results are shown in 

Table 6. 

Table 6. Donor detection result. 

Total number of input DNA sequences: 400 

Total number of donor positive DNA sequences 200 

Total number of donor sites in the DNA sequences 200 

Total 	donor sites picked: 204 

True Positive (Tp) 186 

False Positive (Fp) 18 

Positive donor site missed 14 

The Sensitivity Sn of this program is: 

The Specificity Sp of this program is : 

These results means that the donor detection algorithm can correctly recognize 

93% of the total true donor sites at the right splicing positions in tested DNA 

sequences, and more than 91% of the predicted donor sites are correct. 



CHAPTER 4 

DISCUSSION 

Computational gene identification will play an increasingly important role as the human 

genome project enters the large-scale sequencing phase[8], 	and a number of 

computational methods have recently been developed. As Moises Burset and Roderic 

Guigo indicated that programs currently available are far from being powerful enough to 

elucidate genomic structure completely[7]. In order to develop more accurate and 

efficient programs for detecting gene structures, in this thesis, we concentrate on splicing 

junction donor classification and detection. Using our motif model we can discover the 

degenerate pattern features of the splicing junction sites to a great degree. Based on this 

model, our donor detection algorithm can correctly recognize 93% of the total donor site 

in the test group. And more than 91% of the donor sites picked by our program are 

correct. These precision rates are higher than the best existing donor classification 

algorithm[24]. This research made a very important progress toward our full gene 

structure detection algorithm development. 

The pattern recognition theory are based on the assumption that in the genome 

there is a tendency to avoid nonfunctioning signal-like sites. Thus, researchers usually 

using a learning sample consisting of two classes, sites and nonsites, the later class 

usually formed by random fragments of the natural DNA. For example, Yoichi lida 

extracted all the possible 9-base sequences other than the 5'-splice sites from rabbit 

β-globin pre-mRNA as his non-donor site group for his quantification analysis of 5'-splice 

signal[6]. In contrast to that approach, our non-splice junction sites groups did not 
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formed by random fragments of the natural DNA. All the entries in our non-donor site 

sequence group (we call this group False Donor Site Group) contained the dinucleotide 

GT at the same position as in the real donor sites. Because the GT dinucleotide is almost 

invariable in all donor sites, we treat only GT dinucleotide containing fragments in the 

genome DNA as candidate splicing junction sites. In this way, our approach works well to 

discriminate between the true splicing sites and non-splicing sites. 

Most of the current programs available for gene structure detection do not work 

well for short DNA sequences. For example, GRAIL2 can not identify the exon 

boundaries in a DNA sequence shorter than 100 bases. This is not a limitation for our 

method, because our motif model is based on the sequence information in the splicing 

junctions. The splicing junction detection algorithms did not consider global sequence 

information. People may argue about this. But we think, because all the exons have 

acceptor, donor or both sites, if we can pinpoint precisely the splicing junctions, we will 

get good results for detection exons from the genomic DNA sequence. Of cause, we will 

integrate other sequence information such as coding potential into our full gene detection 

program, but we expect the splicing junction detection algorithms will be the backbone 

of our applications. 

Mosises Burset and Roderic Guigo also studied the relative robustness of gene 

structure prediction programs to sequencing errors. Indeed, artifactual nucleotide 

insertions and deletions do occur while sequencing DNA. Moreover, plans are underway 

to speed up the full-length sequencing of the human genome by allowing lower sequence 

accuracy (8). In Mosises Burset and Roderic Guigo's results, for most of the programs 

they evaluated, the accuracy decreased almost 50% when the mutated DNA sequences 
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were presented to those programs for exon detection. Like GRAIL2, accuracy for the 

original DNA sequences was 40% for exon detection, but it just could recognize 21% of 

the exons in the same group of DNA sequences with 1% of mutations[7]. We think this is 

because those programs more depended on the coding potential in the DNA sequences. 

The mutation caused frame shifts and affected program performances to a great degree. 

We expected this will also not a big problem for our method, because we have 

concentrated on the information from the splicing junction sites. If the mutation does not 

occur inside the splice sites, it will not affect the performance much. If this is true, it will 

be of real value when used in the large-scale sequencing projects. 

As mentioned above, this research made a very good step toward our full gene 

structure detection program development. This is not only because the donor 

classification / detection results are very promising, our motif model approach and 

degenerate pattern match algorithms for the donor classification will also fit our further 

research. Based on this study, it may be easy to build up a acceptor motif model for the 

classification and detection of the 3' splicing junction sites in the eukaryotic genes. 

Certainly, we will also try these methods for the detection of translation initiation signal 

sequence of mRNA ( start coden signal). So we think the method developed in this 

research is the benchmark for our future studies. 



APPENDIX A 

LEARNING AND TRAINING PROGRAM FOR DONOR CLASSIFICATION 

This is the ANSI C version of the program for the donor classification 
Learning and Training. Algorithms that were implemented into this 
program include Algorithm for True Donor Extraction, Algorithm for 
False Donor Extraction, Learning Algorithm, Training Algorithms etc. 

/* Program Name: DonorLearnAndTrain.c*/ 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 

#define MAXLENGTH 100 
#define MaxSeq 500 
#define MaxNum 300 

#define point6 64 
#define point? 128 
#define point8 256 
#define point9 512 
typedef struct _donor 

{ 
char b1_6[7], bl_7[8], b1_8[9], b1_9[10], 

b2_6[7], b2_7[8],  b2_8[9], 
b3_6[7], b3_7[8], 
b4_6[7]; 

} donor; 

typedef struct _motif 

{ 
int occur; 
int posoccur; 
int negoccur; 
char seq[10]; 

} motif; 

typedef struct _reccord 

1 
int total; /* Total num of entries*/ 
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motif list[MaxNum]; 
1 reccord; 

donor Donor; 
int TotalSeq; 

int Score; 

int ScoreBoard[MaxSeq]; 
int negScoreBoard[MaxSeq]; 

int pmin, pmax, /*min and max scores for positive donor*/ 
nmin, nmax; /*min and max scores for nagative donor*/ 

reccord 
motif_b1_6, 
motif_b1_7, 
motif b1_8, 
motif b1_9, 
motif_b2_6, 
motif_b2_7, 
motif_b2_8, 
motif_b3_6, 
motif_b3_7, 
motif_b4_6; 

FILE *F_In, *F_Out; 

main() 

1 

char *donor_bas = "donobas.dat"; 
char *donor_dat = "donodat.dat"; 
char *Score_out = "scoreout.dat"; 
char *donor_pos = "donopos.dat"; 
char *donor_neg = "dononeg.dat"; 

FILE *F_pos, *F_neg, *F_Out; 

initiateData(); 

if ((F_In = fopen(donor_bas, "r")) == NULL) 

1 
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printf("ERROR: %s file open An", donor_bas);  
exit (0); 

/*Learning */ 
LearnDonor(); 

/* Tarining 
if ((F_pos = fopen (donor_pos, ")) == NULL) 

printf("ERROR: Open file %s. \n", donor_pos); 
exit (0); 

if ((F_Out = fopen (Score_out, "w")) == NULL) 

printf("ERROR: Open file %s. \n", Score_out); 
exit (0); 

/*Tain the postive donor sequences.*/ 
TrainPosDonor(F_pos, ScoreBoard); 

pmin = PosiveLowBound(ScoreBoard, TotalSeq, &pmax); 

WriteScoreToFile(ScoreBoard, TotalSeq, F_Out); 
if ((F_neg = fopen(donor_neg, "r")) == NULL) 

printf("ERROR: Open file %s. \n", donor_neg); 
exit (0); 

} 

1* Tarin the negative sequences*/ 
TrainNegDonor(F_neg, negScoreBoard); 
nmax = NegativeHighBound(negScoreBoard, TotalSeq, &nmin); 
WriteScoreToFile(negScoreBoard, TotalSeq, F_Out); 

WriteDonorToFile(donor_dat); 

printf("\nThe Positive Low Bound is: %.1d.\n", pmin); 
printf("\nThe Positive High Bound is: %IdAn", pmax); 

printf("\nThe Negative High Bound is: %ld.\n", nmax); 
printf("\nThe Negative Low Bound is: %ld.\n", nmin); 
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fclose(F_In); 
fclose(F_pos); 
fclose(F_neg); 
fclose(F_Out); 

return 0; 

void initiateData() 

Donor.b1_6[7] = '\0'; 
Donor.b 1_7[8]= '\0'; 
Donor.b l_8[9]= 	; 
Donor.b 1_9[ 10]= '\0'; 
Donor.b2_6[7]= '\0'; 
Donor.b2_7[8]= '\0'; 
Donor.b2_8[9]= '\0'; 

Donor.b3_6[7]=  '\0'; 
Donor.b3_7 [8]= '\0'; 
Donor.b4_6[7]= '\0'; 

motif_b I _6.total = 0; 
motif_b1_7.total = 0; 
motif_b1_8.total = 0; 
motif b l_9.total = 0; 
motif_b2_6.total = 0; 
motif_b2_7.total = 0; 
motif_b2_8.total = 0; 
motif_b3_6.total = 0; 
motif_b3_7.total = 0; 
motif_b4_6.total = 0; 

1* ReccordDonor() write the subdonor sequences into the reccord list. 
If a subsequence is already there, just increase the occrence. 
Else if the subsequence is not in the list yet, write the 
subsequence into the list and initiate its occurence to 1. 

*1 

void ReccordDonor(reccord *R, char *S) 
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int i; 
int found; 
if (R->total == 0) 

strcpy(R->list[0].seq, S); 
R->list[0].occur = 1; 
R->list[0].negoccur=0; 
R->list[0].posoccur=0; 
R->total = 1; 

else 

found = 0; 
for (i = 0; i < R->total; i++ ) 

if (strcmp(R->list[i].seq, S) == 0) 

R->list[i].occur++; 
R->list[i].negoccur=0; 
R->list[i].posoccur=0; 
found = 1; 
break; 

if (found == 0) 

strcpy(R->list[R->total].seq, S); 
R->list[R->total].occur = 1; 
R->list[R->totallnegoccur=0; 
R->list[R->total].posoccur=0; 
R->total++; 

} /*else*/ 
}/* ReccordDonor*/ 

void ExtractMotif(int p, char AO, donor *motif) 

int first, last; 
int i, m; 
last = p + 5; 
first = p - 3; 

for (i = first; i <= last; i++) 
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m = i - first; 

switch (m) 
f 

case 0: 
Motif->b1_9[0] = motif->b1_8[0] 
=motif->b1_7[0] = motif->b1_6[0] = A[i]; 
break; 

case 1: 
motif->b1_9[1] = motif->b1_8[1] 

motif->b 1_7[1] = motif->b 1_6[1] 
motif->b2_8[0] = motif->b2_7[0] 

• motif->b2_6[0] = A[i]; 
break; 

case 2: 
motif->b1_9[2] = motif->b 1_8[2] 

motif->b1_7[2] = motif->b 1_6[2] 
motif->b2_8 [1 ] = motif->b2_7 [1 ] 
motif->b2_6[1] 

---=!motif->b3_6[0] = motif->b3_7[0] = A[i]; 
break; 

case 3: 
motif->b 1_9[3] = motif->b 1_8[3] 
=motif->b1_7[3] = motif->b1_6[3] 
=motif->b2_8 [2] = motif->b2_7 [2] 
=motif->b2_6[2] 

motif->b3_6 [1 ] = motif->b3_7 [1 ] 
=motig->b4_6[0] = A[i] ; 

break; 
case 4: 

motif->b 1_9[4] = motif->b1_8[4] 
motif->b1_7[4] = motif->b1_6[4] 
motif->b2_8[3] = motif->b2_7[3] 
motif->b2_6[3] 
motif->b3_6[2] = motif->b3_7[2] 

=Thotig->b4_6[1 ] = A[i]; 
break; 

case 5: 
motif->b 1_9[5] = motif->b1_8[5] 
=motif->b 1_7[5] = motif->b 1_6[5] 
=motif->b2_8[4] = motif->b2_7[4] 
=motif->b2_6[4] 
=motif->b3_6[3] = motif->b3_7[3] 

=motig->b4_6[2] = A[i] ; 
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break; 
case 6: 

motif->b1_9[6] = motif->b1_8[6] 
=motif->b 1_7[6] 
=motif->b2_8[5] = motif->b2_7[5] 
=motif->b2_6[5] 
=motif->b3_6[4] = motif->b3_7[4] 
=motig->b4_6[3] = A[i] ; 
break; 

case 7: 
motif->b1_9[7] = motif->b1_8[7] 
=motif->b2_8[6] = motif->b2_7[6] 
=motif->b3_6[5] = motif->b3_7[5] 

=motig->b4_6[4] = A[i] ; 
break; 

case 8: 
motif->bl_9[8] 
=motif->b2_8 [7] 
= motif->b3_7[6] 
=motif->b4_6[5] = A[i]; 
break; 

/*switch*/ 

void WriteMotifToList( donor *motif) 

/*write motif to the records*/ 
ReccordDonor(&motif_b 1_6, motif->b 1_6); 
ReccordDonor(&motif_b2_6, motif->b2_6); 
ReccordDonor(&motif b3_6, motif->b3_6); 
ReccordDonor(&motif_b4_6, motif->b4_6); 
ReccordDonor(&motif_b 1_7, motif->b1_7); 
ReccordDonor(&motif b2_7, motif->b2_7); 
ReccordDonor(&motif b3_7, motif->b3_7); 
ReccordDonor(&motif_b 1_8, motif->b 1_8); 
ReccordDonor(&motif_b2_8, motif->b2_8); 
ReccordDonor(&motif_b 1_9, motif->b 1_9); 

/*Input sequences from a file*/ 
void LearnDonor() 
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int i, j , n, 
seqlen, /*length of input seq*/ 
TotalSeq; /*Number of sequences in th input file*/ 

char seq[MAXLENGTH], 
T[MAXLENGTH], 
ch; 

for (TotalSeq =0; ;) 

if ((fgets(T, MAXLENGTH, F_In)) == NULL) 
break; 

if (T[0] == '>') 
TotalSeq++; 

/****/ 

printf("\nTotalSeq: %i\n", TotalSeq); 
if (TotalSeq > MaxSeq) 

printf("\n%s\n", "Error: Too many sequences.' 
exit(0); 

} 
rewind(F_In); 
for (n = 0; n < TotalSeq; n++) 

if (fgets(T, MAXLENGTH, F_In) != NULL) 

if (T[0] == '>') 

n--; /*do not count sequence name line*/ 
continue; 

} 
i = 0; 
seqlen = strlen(T); 
if (T[seqlen -l] == '\n') 

seqlen--; 
for (j = 0; j < seqlen; j ++) 

ch = T[j]; 
if ( (ch == ") II (ch 	'*')I1(ch 	'\t')) 

continue; 
if ((ch >= 'a') && (ch 	'z')) 

ch = ch + 'A' - 'a' ; /* Change into capital*/ 
if ((ch < 'A') II (ch > 2')) 
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printf("Err input!, %i\n", n); 
/* 	exit(0); 	*/ 

seq[i++] = ch; 
if (i>(MAXLENGTH -2)) 

printf("Err: Sequence is too longAn"); 
exit(0); 

ExtractMotif(30, seq, &Donor); 
WriteMotifToList( &Donor); 

/*Write the donor data to a file*/ 
void WriteDonorToFile(char *fileName) 

int i; 

if ((F_Out = fopen(fileName, "w")) == NULL) 

printf("\nError: open %s file", fileName); 
exit(0); 

fprintf(F_Out, "\n \n**motif_b 1_6** \n"); 
fprintf(F_Out, "Total: %i\n", motif_b1_6.total); 
for( i = 0; i < motif_b1_6.total; i++ ) 

fprintf(F_Out, "\t%s\t%i\t%i\t%i\n", 
motif bl_6.1ist[i].seq, motif bl_6.1ist[i].occur, 
motif_b1_6.1ist[i]. posoccur, 
motif_b1_6.1ist[i].negoccur); 

fprintf(F_Out, "\n\n**motif_b2_6**\n"); 
fprintf(F_Out, "Total: %i\n", motif_b2_6.total); 
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for( i = 0; i < motif_b2_6.total; i++ ) 
fprintf(F_Out, "\t%s\t%i\t%i\t%i\n", 

motif_b2_6.1ist[i].seq, motif_b2_6.list[i].occur, 
motif_b2_6.listribposoccur, 
motif_b2_6.list[i].negoccur); 

fprintf(F_Out, "\n\n**motif_b3_6"\n"); 
fprintf(F_Out, "Total: %i\n", motif_b3_6.total); 
for( i = 0; i < motif_b3_6.total; i++ ) 

fprintf(F_Out, "\t%s\t%i\t%i\t%i\n", 
motif b3_6.list[i].seq, motif_b3_6.list[i].occur, 
motif_b3_6.list[i].posoccur, 
motif b3_6.list[i].negoccur); 

fprintf(F_Out, "\n\n"motif_b4_6**\n"); 
fprintf(F_Out, "Total: %i\n", motif_b4_6.total); 
for( i = 0; i < motifb4_6.total; i++ ) 

fprintf(F_Out, "\t%s\t%i\t%i\t%i\n", 
motif_b4_6.list[i].seq, motif_b4_6.list[i].occur, 
motif_b4_6.list[i].posoccur, 
motif_b4_6.1ist[i].negoccur); 

fprintf(F_Out, "\n\n**motif_b1_7**\n"); 
fprintf(F_Out, "Total: %An", motif_b1_7.total); 
for( i = 0; i < motif_b1_7.total; i++ ) 

fprintf(F_Out, "\t%s\t%i\t%i\t%i\n", 
motif_b1_7.1ist[i].seq, motif_b1_7.1ist[i].occur, 
motif_b1_7.list[i].posoccur, 
motif b1_7.list[i].negoccur); 

fprintf(F_Out, "\n\n**motif_b2_7**\n"); 
fprintf(F_Out, "Total: %An", motif_b2_7.total); 
for( i = 0; i < motif b2_7.total; i++ ) 

fprintf(F_Out, "\t%s\t%i\t%i\t%i\n", 
motif_b2_7.list[i].seq, motif_b2_7.list[i].occur, 
motif_b2_7.list[i].posoccur, 

motif_b2_7.list[i].negoccur); 

fprintf(F_Out, "\n\n"motif b3_7**\n"); 
fprintf(F_Out, "Total: %i\n", motif_b3_7.total); 
for( i = 0; i < motif b3_7.total; i++ ) 

fprintf(F_Out, "\t%s\t%i\t%i\t%i\n", 
motif_b3_7.1ist[i].seq, motif_b3_7.list[i].occur, 
motif_b3_7.list[i].posoccur, 
motif_b3_7.listribnegoccur); 
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fprintf(F_Out, "\n\n**motifb1_8**\n"); 
fprintf(F_Out, "Total: %i\n", motif_b1_8.to al); 
for( i = 0; i < motif_b1_8.total; i++ ) 

fprintf(F_Out, "\t%s\t%i\t%i\t%i\n", 
motif b 1_8.1ist[i].seq, motif b 1_8.list[d.occur, 
motif_b1_8.list[i].posoccur, 

motif_b1_8.list[i]negoccur); 

fprintf(F_Out, "\n\n**motif_b2_8**\n"); 
fprintf(F_Out, "Total: %i\n", motif b2_8.total); 
for( i = 0; i < motif_b2_8.total; i++ ) 

fprintf(F_Out, "\t%s\t%i\t%i\t%i\n", 
motif_b2_8.list[i].seq, motif_b2_8.list[i].occur, 
motif_b2_8.list[i].posoccur, 
motif_b2_8.1ist[i].negoccur); 

fprintf(F_Out, "\n\n**motif_b1_9**\n"); 
fprintf(F_Out, "Total: %i\n", motif b1_9.total); 
for( i = 0; i < motif_b1_9.total; i++ ) 

fprintf(F_Out, "\t%s\t%i\t%i\t%i\n", 
motif_b1_9.list[i].seq, motif_b1_9.list[i].occur, 
motif_b1_9.list[i].posoccur, 
motif_bl_9.list[i].negoccur); 

} 

/************ Training Portion Begin*****************/ 

void InitiateScoreBoard() 

int i; 
for (i = 0; i < MaxSeq; i++ ) 

ScoreBoard[i] = 0; 
negScoreBoard[i] = 0; 

void VoteDonorPos(donor *D) 

int i; 
Score = 0; 
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for (i = 0; i < motif_b1_6.total; i++ ) 

if (strcmp(motif b 1_6.1ist[i].seq, D->b1_6) == 0) 

Score += point6;/*motif_b6.list[ ].occur;*/ 
motif_b1_6.1ist[i].posoccur++; 

for (i = 0; i < motif_b2_6.total; i++ ) 

if (strcmp(motif_b2_6.list[i].seq, D->b2_6) == 0) 

Score += point6;/*motif_b6.1ist[i].occur;*/ 
motif b2_6.list[i].posoccur++; 

for (i = 0; i < motif_b3_6.total; i++ ) 

if (strcmp(motif_b3_6.list[i].seq, D->b3_6) == 0) 

Score += point6;/*motit_b6.list[i].occur;*/ 
motif_b3_6.1ist[i].posoccur++; 

} 

for (i = 0; i < motif_b4_6.total; i++ ) 

if (strcmp(motif_b4_6.list[i].seq, D->b4_6) == 0) 

Score += point6;/*motif_b6.list[i].occur;*/ 
motif_b4_6.list[i].posoccur++; 

} 

for (i = 0; i < motif b l_7.total; i++ ) 

if (strcmp(motif b1_7.list[i].seq, D->b1_7) 	0) 

Score += point7;/*motif_b7.list[i].occur;*/ 
motif_b1_7.1ist[i].posoccur++; 

} 
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for (i = 0; i < motif_b2_7.total; i++ 

if (strcmp(motif_b2_7.list[i].seq, D->b2_7) == 0) 

Score += point7;/*motif_b7.list[i].occur;*/ 
motif_b2_7.list[i].posoccur++; 

} 

for (i = 0; i < motif_b3_7.total; i++ ) 

if (strcmp(motif_b3_7.1ist[i].seq, D->b3_7) == 0) 

Score += point7;/*motif_b7.1ist[i].occur;*/ 
motif_b3_7.1ist[i].posoccur++; 

1 

for (i = 0; i < motif_b1_8.total; i++ ) 

if (strcmp(motif_b1_8.1ist[i].seq, D->b1_8) == 0) 

Score 	point8;/*motif_b8.list[i].occur;*/ 
motif_b 1_8.list[i].posoccur++; 

} 

for (i = 0; i < motif b2_8.total; i++ ) 

if (strcmp(motif_b2_8.1ist[i].seq, D->b2_8) == 0) 

Score += point8;/*motif_b8.list[i].occur;*/ 
motif_b2_8.list[i].posoccur++; 

for = 0; i < motif_b1_9.total; i++ ) 

if (strcmp(motif_b1_9.list[i].seq, D->bl_9) == 0) 

Score += point9;/*motif_b9.1ist[i].occur;*/ 
motif_b1_9.listnposoccur++; 
break; 
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void VoteDonorNeg(donor *D) 

int i; 
Score = 0; 

for (i = 0; i < motif b1_6.total; i++ ) 

if (strcmp(motif bl_6.1ist[i].seq, D->b 1_6) == 0) 

Score += point6;/*motif_b6.list[i].occur;*/ 
motif_b1_6.list[i].negoccur++; 

for (i = 0; i < motif_b2_6.total; i++ ) 

if (strcmp(motif_b2_6.list[i].seq, D->b2_6) == 0) 

Score += point6;/*motif_b6.list[i].occur;*/ 
motif_b2_6.list[i].negoccur++; 

for (i = 0; i < motif_b3_6.total; i++ ) 

if (strcmp(motif_b3_6.1ist[i].seq, D->b3_6) == 0) 

f 
Score += point6;/*motif_b6.1ist[i].occur;*/ 
motif b3_6.1ist[i].negoccur++; 

} 

for (i = 0; i < motif b4_6.total; i++ ) 

if (strcmp(motif_b4_6.list[i].seq, D->b4_6) == 0) 

Score += point6;/*motif_b6.1ist[i].occur;*/ 
motif_b4_6.list[i].negoccurl+; 
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for (i = 0; i < motif bl_7.total; i++ ) 

if (strcmp(motif_b 1_7.1ist[i].seq, D->b l_7) == 0) 

Score += point7;/*motif b7.list[i].occur;*/ 
motif_b1_7.list[i].negoccur++; 

} 

for (i = 0; i < motif_b2_7.total; i++ ) 

{ 
if (strcmp(motif_b2_7.list[i].seq, D->b2_7) 	0) 

{ 
Score += point7;/*motif_b7.list[i].occur;*/ 

motif_b2_7.list[i].negoccur++; 

} 

for (i = 0; i < motif_b3_7.total; i++ ) 

if (strcmp(motif_b3_7.list[i].seq, D->b3_7) == 0) 

Score += point7;/*motif_b7.list[i].occur;*/ 
motif_b3_7.list[i].negoccur++; 

} 
} 

for (i = 0; i < motif bl_8.total; i++ ) 

if (strcmp(motif_bl_8.list[i].seq, D->b1_8) == 0) 

Score += point8;/*motif_b8.list[i].occur;*/ 
motif b 1_8.list[i].negoccur++; 

} 

for (i = 0; i < motif b2_8.total; i++ ) 

if (strcmp(motif_b2_8.list[i].seq, D->b2_8) == 0) 

Score += point8;/*motif_b8.list[i].occur;*/ 
motif_b2_8.list[i].negoccur++; 
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for (i = 0; i < motif_bl_9.total; i++ ) 

if (strcmp(motif_bl_9.list[i].seq, D->b1_9) == 0) 

Score += point9;/*motif_b9.list[i].occur;*/ 
motif b 1_9.list[i]. negoccur++; 
break; 

/*Input sequences from a file*/ 
void TrainNegDonor(FILE *F_In, int ScoreBoard[]) 

int i,n,p, 
seqlen; /*length of input seq*/ 

int TempScor; 

char seq[MAXLENGTH], 
T[MAXLENGTH]; 

for (TotalSeq =0; ;) 

if ((fgets(T, MAXLENGTH, F_In)) == NULL) 
break; 

if (T[0] == '>') 
TotalSeq++; 

printf("\nTotalSeq: %i\n", TotalSeq); 
if (TotalSeq > MaxSeq) 

printf("\n%s\n", "Error: Too many sequences."); 
exit(0); 

rewind(F_In); 
for (n = 0; n < TotalSeq; n++) 

if (fgets(T, MAXLENGTH, F_In) != NULL) 

if (T[0] == '>') 
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n--; /*do not count sequence name line*/ 
continue; 

i = 0; 
seqlen = strlen(T); 
if (T[seqlen -l] == '\n') 

seqlen--; 

strcpy(seq, T); 
seqlen = strlen(seq); 
TempScor = 0; 

for (i=0; i < seqlen; i++) 

if (i < 3) 
continue; 

if ((seq[i] =='G') && (seq[i+l] =='T')) 

Score = 0; 

P = i; 
ExtractMotif(p, seq, &Donor); 
VoteDonorNeg(&Donor); 

TempScor = Score; 
if (TempScor > ScoreBoard[n]) 

ScoreBoard[n] = TempScor; 

} 

/*Input sequences from a file*/ 
void TrainPosDonor(FILE *Fin, int ScoreBoard[]) 

int i,n, 
seqlen; /*length of input seq*/ 

int TempScor; 

char seq[MAXLENGTH], 
T[MAXLENGTH]; 

for (TotalSeq =0; ;) 
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if ((fgets(T, MAXLENGTH, F_In)) == NULL) 
break; 

if (T[0] 	'>') 
TotalSeq++; 

} 

printf("\nTotalSeq: %i\n", TotalSeq); 
if (TotalSeq > MaxSeq) 

printf("\n%s\n", "Error: Too many sequences.' 
exit(0); 

rewind(F_In); 
for (n = 0; n < TotalSeq; n++) 

if (fgets(T, MAXLENGTH, F_In) != NULL) 

if (T[0] == '>') 

n--; /*do not count sequence name line*/ 
continue; 

i=0; 
seqlen = strlen(T); 
if (T[seqlen -l] == '\An') 

seqlen--; 

strcpy(seq, T); 
seqlen = strlen(seq); 

TempScor = 0; 
Score = 0; 

ExtractMotif(30 , seq, &Donor); 

VoteDonorPos( &Donor); 

TempScor = Score; 
if (TempScor > ScoreBoard[n]) 

ScoreBoardlni = TempScor; 
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void WriteScoreToFile(int A[], int Total, FILE *F_Out) 

int i; 
for (i = 0; i < Total; i++) 

fprintf(F_Out, "\t%i %ld\n", i+l, A[i]); 

int PosiveLowBound(int A[], int T, int *pmax) 

int min; 
int i; 
min = A[0]; 
*pmax = A[0]; 
for (i = 0; i < T; i++) 

if (min > A[i]) 
min = A[i]; 

if (*pmax < A[i]) 
*pmax = A[i]; 

} 

return min; 

int NegativeHighBound(int A[], int T,int *nmin) 

int max; 
int i; 
max = *nmin = A[0]; 
for (i = 0; i < T; i++ ) 

if (max < A[i]) 
max = A[i]; 

if (*nmin > A[i]) 
*nmin = A[i]; 
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APPENDIX B 

DONOR CLASSIFICATION PROGRAM 

This is the ANSI C version of the Donor Classification program 
The defined MAXLENGTH and MaxSeq can be changed into different 
values. But other defined constant values can not be changed. 

/* Program Name: DonorClassify.c */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 

#define MAXLENGTH 1000 
#define MaxSeq 300 

#define point6 64 
#define point? 128 
#define point8 256 
#define point9 512 
typedef struct _donor 

char b1_6[7], bl_7[8], bl_8[9], 
b2_6{7], b2_7[8], b2_8[9], 
b3_6[7}, b3_7[8], 
b4_6[7]; 

} donor; 

donor Donor; 
int TotalSeq; 

typedef struct grade 

int Score; 
char *Class; 

I Grade; 
int Score; 

Grade ScoreBoard[MaxSeq]; 

#define Pos_Min 768 	/*Positive lower bound, inclusive*/ 
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#define Neg_Max 640 /*Negative high bound*/ 
#define Positive "Donor" 
#define Negative "Non-Donor" 
#define Unknown ''Unknown" 

#define numb l_6 68 
#define numbl_7 141 
#define numbl_8 183 
#define numb2_6 49 
#define numb27 90 
#define numb2_8 171 
#define numb3_6 40 
#define numb3_7 102 
#define numb4_6 69 
char 

motif_bl_6[numb1_6] [7], 
motif_bl_7[numbl_7] [8], 
motif bl_7[numbl_7] [8], 
motif_bl_7[numb1_7] [8], 
motif_bl_8 [numbl_8] [9], 
motif b2_6[numb2_6][7], 
motif_b2_7 [numb2_7] [8], 
motif_b2_8 [numb2_8] [9], 
motif_b3_6[numb3_6] [7], 
motif_b3_7 [numb3_7] [8], 
motif_b4_6[numb4_6][7]; 

FILE *Libin, *F _In, *F_Out, *Score_Out; 

main() 

char sequence[50]; 
char *donor_lib = ''donordat.lib"; 
char Score_file[50]; 
char *Dono_out = "dono_out2.doc"; 
printf("\n\n\t\tWelcome for using this\n"); 
printf("\t\tDonor Classify program!\n"); 
printf("\n\t\tNote:"); 
printf("\n\tl) Please put the sequence file in the\n"); 
printInt same directory as this program is in.\n"); 
printf("\t2) The max number of sequences is %i\n", MaxSeq); 
printf("\t3) The results will be in the file name you specifed\n"); 

initiateData(); 
if ((Lib_In = fopen(donor_lib, "r")) == NULL) 
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printf(''ERROR: %s file open.\n", donor_lib); 
exit (0); 

InportDonorLib(); 
fclose(Lib_In); 

printf("\nPlease enter your sequence file:\n"); 
scanf("%49s", sequence) 

if ((F_In = fopen(sequence, "r")) == NULL) 

printf("ERROR: %s file open.\n", sequence); 
exit (0); 

} 

Classif(F_In, ScoreBoard); 
fclose(F_In); 

printf("\nPlease enter your output file to hold the results:\n"); 

scanf("%49s", Score_file); 

if ((Score_Out = fopen(Score_file, 	")) == NULL) 

printf("ERROR: %s file open.\n", Score_file); 
exit (0); 

WriteScoreToFile(ScoreBoard, TotalSeq, Score_Out); 
fclose(Score_Out); 

printf("\nThe program finished for Donor Classification.\n"); 
printf("Please look at your results in file: %s.\n",Score_file); 

return 0; 

} 

void initiateData() 

Donor.b1_6[6] = '\0'; 
Donor.b1_7[7]= '\0'; 
Donor.b1_8[8]= '\0'; 
Donor.b2_6[6]= '\0'; 
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Donor.b2_7[7]= '\0'; 
Donor.b2_8 [8]= '\0'; 
Donor.b3_6[6]= '\0'; 
Donor.b3_7[7]=  '\0'; 
Donor.b4_6[6]= '\0'; 

void InportDonorLib() 

int i, j; 
char T[15],Tl[5]; 
for (i = 0; i < numb1_6; i++) { 

if (fgets(T, 10, Lib_In) == NULL) 

printf("Error1: Donor Lib file open.\n"); 
exit(0); 

} 
strcpy(T l, T); 
for(j = 0; j < 6; j++) 

motif_b2_6[i][j] = Tl[j]; 
motif_b2_6[i][6]='\0'; 

} 

for (i = 0; i < numb2_6; i++) 

if (fgets(T, 10, Lib_In) == NULL) 

printf("Error2: Donor Lib file open.\n"); 
exit(0); 

strcpy(T 1 T); 
for(j = 0; j < 6; j++) 

motif_b2_6[i][j] = T 1 [j]; 
motif_b2_6[i][6]=0'; 

for (i = 0; i < numb3_6; i++) 

if (fgets(T, 11, Lib_In) == NULL) 
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printf("Error3: Donor Lib file open.\n ); 
exit(0); 

strcpy(T I , T); 
for(j = 0; j < 6; j++) 

motif_b3_6[i][j] = T 1 [j]; 
motif b3_6[i][6]='\0'; 

for (i = 0; i < numb4_6; i++) 

if (fgets(T, 10, Lib_In) == NULL) 

printf("Error: Donor Lib file open.\n"); 
exit(0); 

} 
strcpy(T I , T); 
for(j = 0; j < 6; j++) 

motif_b4_6[i][j] = T1[j]; 
motif_b4_6[i][6]='\0'; 

} 

for (i = 0; i < numbl_7; i++) 

if (fgets(T, 10, Lib_In) == NULL) 

printf("Error: Donor Lib file open.\n"); 
exit(0); 

1 
strcpy(T1, T); 
for(j = 0; j < 7; j++) 

motif_b 1_7 [i] [j] = T1[j]; 
motif_bl_7[i][7]=`\0'; 

for (i = 0; i < numb2_7; i++) 

if (fgets(T, 10, Lib_In) == NULL) 

printf("Error: Donor Lib file open.\n"); 
exit(0); 

strcpy(T1, T); 
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for(j = 0; j < 7; j++) 

motif_b2_7[i][j] = Tl[j]; 
motif_b2_7[i][7]=0'; 

} 

for 	0; i < numb3_7; i++) 

if (fgets(T, 10, Lib_In) == NULL) 

printf("Error: Donor Lib file open.\n"); 
exit(0); 

} 
strcpy(Tl, T); 
for(j = 0; j < 7; j++) 

motif_b3_7[i][j] = T 1 [j]; 
motif_b3_7[i][7]='\0'; 

} 

for (i = 0; i < numbl_8; i++) 

if (fgets(T, 12, Lib_In) == NULL) 

printf("Error: Donor Lib file open.\n"); 
exit(0); 

} 
strcpy(T1, T); 
for(j = 0; j < 8; j++) 

motif_bl_8[i][j] = T 1 [j]; 
motif_b1_8[i][8]=0'; 

} 

for (i = 0; i < numb2_8; i++) 

if (fgets(T, 12, Lib_In) == NULL) 

printf("Error: Donor Lib file open.\n"); 
exit(0); 

} 
strcpy(T1, T); 

for(j = 0; j < 8; j++) 

motif_b2_8[i][j] = Tl[j]; 
motif_b2_8[i][8]='\0'; 
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void ExtractMotif(int p, char A[], donor *motif) 

int first, last; 
int i, m; 

last = p + 5; 
first = p - 3; 

for (i = first; i <= last; i++ 

m = i - first; 

switch (m) 

case 0: 
motif->b l_8 [0] 
=motif->b l_7 [0] = motif->bl_6[0] = A[i]; 
break; 

case 1: 
motif->bl_8[l] 

=motif->b 1_7 [ 1 ] = motif->b 1_6[ 1 ] 
=motif->b2_8[0] = motif->b2_7[0] 

motif->b2_6[0] = A[i]; 
break; 

case 2: 
motif->b l_8 [2] 

=motif->b 1_7 [2] = motif->b 1_6 [2] 
=motif->b2_8[1] = motif->b2_7[1] 
=motif->b2_6[1] 
=motif->b3_6[0] = motif->b3_7[0] = A[i]; 
break; 

case 3: 
motif->b 1_8 [3] 

=motif->b 1_7 [3] = motif->bl_6[3] 
=motif->b2_8[2] = motif->b2_7[2] 
=motif->b2_6[2] 
=motif->b3_6[1] = motif->b3_7[l] 
=motif->b4_6[0] = A[i]; 
break; 

case 4: 
motif->b 1_8 [4] 
=motif->b l_7[4] = motif->b l_6[4] 
=motif->b2_8[3] = motif->b2_7[3] 
=motif->b2_6[3] 
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=motif->b3_6[2] = motif->b3_7[2] 
=motif->b4_6[l] = A[i]; 
break; 

case 5: 
motif->b 1_8[5] 
=motif->b l_7[5] = motif->b l_6[5] 
=motif->b2_8 [4] = motif->b2_7 [4] 
=motif->b2_6[4] 
=motif->b3_6[3] = motif->b3_7[3] 
=motif->b4_6[2] = A[i]; 
break; 

case 6: 
motif->b1_8[6] 
=motif->bl_7[6] 
=motif->b2_8[5] = motif->b2_7[5] 
=motif->b2_6[5] 
=motif->b3_6[4] = motif->b3_7[4] 
=motif->b4_6[3] = A[i]; 
break; 

case 7: 
motif->b 1_8 [7] 
=motif->b2_8[6] = motif->b2_7[6] 
=motif->b3_6[5] = motif->b3_7[5] 
=motif->b4_6[4] = A[i]; 
break; 

case 8: 
motif->b2_8[7] 
= motif->b3_7[6] 
=motif->b4_6[5] = A[i]; 
break; 

/*switch*/ 

/*Write the donor data to a file*/ 
void WriteDonorToFile(char *fileName) 

int i; 

if ( (F_Out = fopen(fileName, w")) == NULL) 

printf("\nError: open %s file", fileName); 
exit(0); 
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fprintf(F_Out, " \n\n"motifb 1_6**\n"); 
fprintf(F_Out, "Total: %An", numb1_6); 
for( i = 0; i < numb l_6; i++ ) 

fprintf(F_Out, "\t%s\n", 
motifb 1_6 [i]); 

fprintf(F_Out, "\n\n"rnotif_b2_6**\n"); 
fprintf(F_Out, "Total: %i\n", numb2_6); 
for( i = 0; i < numb2_6; i++ ) 

fprintf(F_Out, "\t%s\n", 
motif _b2_6[1]); 

fprintf(F_Out, "\n\n**motif_b3_6**\n"); 
fprintf(F_Out, "Total: %i\n", numb3_6); 
for( i = 0; i < numb3_6; i++ ) 

fprintf(F_Out, "\t%s\n", 
motif b3_6[i]); 

fprintf(F_Out, "\n\n"motif b4_6"\n"); 
fprintf(F_Out, "Total: %i\n", numb4_6); 
for( i = 0; i < numb4_6; i++ ) 

fprintf(F_Out, "\t%s\n", 
motif_b4_6[i]); 

fprintf(F_Out, " \n\n"motif_b 1_7 '4  *\n") ; 
fprintf(F_Out, "Total: %i\n", numb1_7); 
for( i = 0; i < numb1_7; i++ ) 

fprintf(F_Out, "\t%s\n", 
motif_b l_7 [i]) ; 

fprintf(F_Out, "\n\n**motif_b2_7**\n"); 
fprintf(F_Out, "Total: %i\n", numb2_7); 
for( i = 0; i < numb2_7; i++ ) 

fprintf(F_Out, "\t%s\n", 
motif_b2_7[i]); 

fprintf(F_Out, "\n\n"motif_b3_7**\n"); 
fprintf(F_Out, "Total: %i\n", numb3_7); 
for( i = 0; i < numb3_7; i++ ) 

fprintf(F_Out, "\t%s\n", 
motif_b3_7[1]); 

fprintf(F_Out, "\n\n**motif_b 1 _8 **\n"); 
fprintf(F_Out, "Total: %i\n", numb l_8); 
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for( i = 0; i < numbl_8; i++ ) 
fprintf(F_Out, "\tVos\n", 

motif_b I _8[i]); 

fprintf(F_Out, "\n\n**motif_b2_8"\n"); 
fprintf(F_Out, "Total: %i\n", numb2_8); 
for( i = 0; i < numb2_8; i++ ) 

fprintf(F_Out, "\t%s\n", 
motif_b2_8[i]); 

} 

void InitiateScoreBoard() 

int i; 
for (i = 0; i < MaxSeq; i++ ) 

ScoreBoard[i].Score = 0; 

void VoteDonor(donor *D) 

int i; 
Score = 0; 

for (i = 0; i < numbl_6; i++ ) 
if (strcmp(motif_b l_6[i], D->b l_6) == 0) 

Score += point6;/*motif_b6.list[i].occur;*/ 

for (i = 0; i < numb1_7; i++ ) 
if (strcmp(motif_b 1_7[i], D->b l_7) == 0) 

Score += point7; 

for = 0; i < numbl_8; i++ ) 
if (strcmp(motif_b 1_8 [i], D->b l_8) == 0) 

Score += point8; 

for (i = 0; i < numb2_6; i++ ) 
if (strcmp(motif_b2_6[i], D->b2_6) == 0) 

Score += point6; 

for = 0; i < numb2_7; i++ ) 
if (strcmp(motif_b2_7[i], D->b2_7) == 0) 

Score += point7; 
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for (i = 0; i < numb2_8; i++ ) 
if (strcmp(motif_b2_8[i], D->b2_8) == 0) 

Score += point8; 

for (i = 0; i < numb3_6; i++ ) 
if (strcmp(motif_b3_6[i], D->b3_6) == 0) 

Score += point6; 

for (i = 0; i < numb3_7; i++ ) 
if (strcmp(motif_b3_7[i], D->b3__7) == 0) 

Score += point7; 

for (i = 0; i < numb4_6; i++ ) 
if (strcmp(motif_b4_6[i], D->b4_6) == 0) 

Score += point6; 

} 

/*Input sequences from a file*/ 
void Classif(FILE *F_In, Grade ScoreBoard[]) 

int i,n,p, 
seqlen; /*length of input seq*/ 

int TempScor; 
char seq[MAXLENGTH], 

T[MAXLENGTH]; 

for (TotalSeq =0; ;) 

if ((fgets(T, MAXLENGTH, Fin)) == NULL) 
break; 

if (T[0] == '>') 
TotalSeq++; 

printf("\nTotalSeq: %i\n", TotalSeq); 
if (TotalSeq > MaxSeq) 

printf("\n%s\n", "Error: Too many sequences.' 
TotalSeq = MaxSeq; 

} 
rewind(F_In); 
for (n = 0; n < TotalSeq; n++) 
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(fgets(T, MAXLENGTH, Fin) != NULL) 

if (T[0] == '>') 

n--; /*do not count sequence name line*/ 
continue; 

} 
i = 0; 
seqlen = strlen(T); 
if (T[seqlen -l] =='\n') 

seqlen--; 

strcpy(seq, T); 
seqlen = strlen(seq); 
TempScor = 0; 

for (i=3; i < seqlen -5 ; i++) 

if ((seq[i] == 'G') && (seq[i+1] == 'T')) 

Score = 0; 
p=i; 
ExtractMotif(p, seq, &Donor); 
VoteDonor(&Donor); 

TempScor = Score; 
if (TempScor > ScoreBoard[n].Score) 

ScoreBoard[n].Score = TempScor; 

} 
if (ScoreBoard[n].Score >= Pos_Min) 

ScoreBoard[n].Class = Positive; 
else if (ScoreBoard[n].Score <= Neg_Max) 

ScoreBoard[n].Class = Negative; 

else 
ScoreBoard[n].Class = Unknown; 

} 

} 

void WriteScoreToFile(Grade A[], int Total, FILE *F_Out) 

int i; 
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fprintf(F_Out, "\t Seq# \t Score \t Class\n\n"); 
for (i = 0; i < Total; i++) 

fprintf(F_Out, "\t %3i %5i \t %s\n", 1+l, 
A[i].Score, A[i].Class); 
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APPENDIX C 

DONOR DETECTION PROGRAM 

This is the Donor Site Detection program. This program can detect 
the real donor sites in the input DNA sequences. The Maximum DNA 
sequence is 5000 base, but it can be changed to different number. 
Please do not change other constant numbers. 

/*Program Name: DonorDetection.c */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 

#define MAXLENGTH 5000 
#define TEMPLENGTH 300 
#define MaxSeq 300 

#define point6 64 
#define point? 128 
#define point8 256 
#define point9 512 
typedef struct _donor 

char b1_6[7], b1_7[8], bl_8[9], 
b2_6[7], b2_7[8], b2_8[9], 
b3_6[7], b3_7[8], 
b4_6[7]; 

} donor; 

donor Donor; 
typedef struct _spliceP 

int Position; 
int Score; 
struct _spliceP *next; 

} spliceP; 

typedef struct junctions 

spliceP *Donor; 
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spliceP *Acceptor; 
Junctions; 

Junctions *SpliceJunctions; 

int TotalSeq; 

int Score; 

#define Pos_Min 768 /*Positive lower bound, inclusive*/ 
#define Neg_Max 640 /*Negative high bound*/ 
#define Positive "Donor" 
#define Negative "Non-Donor" 
#define Unknown "Unknown" 

#define numbl_6 68 
#define numbl_7 141 
#define numbl_8 183 
#define numb2_6 49 
#define numb2_7 90 
#define numb2_8 171 
#define numb3_6 40 
#define numb3_7 102 
#define numb4_6 69 
char 

motif_bl_6[numbl_6] [7], 
motif_b1_7[numbl_7] [8], 
motif_bl_7[numbl_7] [8], 
motif_b1_7 [numb1_7] [8], 
motif_bl_8 [numb 1_8] [9], 
motif_b2_6[numb2_6] [7], 
motif b2_7[numb2_7][8], 
motif b2_8[numb2_8][9], 
motif_b3_6[numb3_6] [7], 
motif_b3_7 [numb3_7] [8], 
motif_b4_6[numb4_6][7]; 

FILE *Lib_I *F_In, *F_Out, *Score_Out; 

main() 

char sequence[50]; 
char *donor_lib = "donordat.lib"; 
char Score_file[50]; 
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printf("\n\n\t\tWelcome for using this\n"); 
printf("\t\tDonor Detection program!\n"); 
printf("\n\t\tNote:"); 

printf("\n\t1) Please put the sequence file in the\n"); 
printf("\t same directory as this program is in.\n"); 
printf("\t2) The max number of sequences is %i\n", MaxSeq); 
printf("\t3) The results will be in the file name you specifed\n"); 

initiateData(); 
if ((Lib_In = fopen(donor_lib, ")) == NULL) 

printf("ERROR: %s file open.\n", donor_lib); 
exit (0); 

InportDonorLib(); 

fclose(Lib_In); 

printf("\nPlease enter your sequence file:\n"); 
scanf("%49s", sequence); 

if ((F_In = fopen(sequence, ")) == NULL) 

printf("ERROR: %s file open.\n", sequence); 
exit (0); 

Classif(F_In); 
fclose(F_In); 

printf("\nPlease enter your output file to hold the results:\n"); 

scanf("%49s", Score_file); 

if ((Score_Out = fopen(Score_file, ")) == NULL) 

printf("ERROR: %s file open.\n", Score_file); 
exit (0); 

WriteScoreToFile(TotalSeq, Score_Out); 
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fclose(Score_Out); 
printf("\nThe program finished for Donor RecognitionAn"), 
printf("Please look at your results in file: %s.\n",Score_file); 

return 0; 

void initiateData() 

Donor.b l_6[6] = '\0'; 
Donor.b 1_7[7]= '\0'; 
Donor.b 1_8 [8]= '\0'; 
Donor.b2_6[6]= '\0'; 
Donor.b2_7 [7],  '\0'; 
Donor.b2_8 [8]= '\0'; 
Donor.b3_6[6]= '\0'; 
Donor.b3_7[7]= '\0'; 
Donor.b4_6[6]= '\0'; 

} 

void InportDonorLib() 

int i, j; 
char T[15],T1[5]; 
for (i = 0; i < numbl_6; i++) 
{ 

if (fgets(T, 10, Lib_In) == NULL) 

printf("Errorl: Donor Lib file open.\n"); 
exit(0), 

} 
strcpy(T 1 , T); 
for(j = 0; j < 6; j++) 

motif_b 1_6 [i] [j] = T 1 [j]; 
motif_b l_6[i][6]='\0'; 

} 

for (i = 0; i < numb2_6; i++) 

if (fgets(T, 10, Lib_In) == NULL) 
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printf("Error2: Donor Lib file open.\n"); 
exit(0); 

strcpy(Tl, T); 
for(j = 0; j < 6; j++) 

motifb2_6[i][j] = T 1 [j]; 
motif_b2_6[i][6]=A0'; 

for (i = 0; i < numb3_6; i++) 

if (fgets(T, 11, Lib_In) == NULL) 

printf("Error3: Donor Lib file open An"); 
exit(0); 

strcpy (T1 , T); 
for(j = 0; j < 6; j++) 

motif_b3_6[i][j] = TI [j]; 
motif_b3_6[i][6]=0'; 

for (i = 0; i < numb4_6; i++) 

if (fgets(T, 10, Lib_In) == NULL) 

printf("Error: Donor Lib file open .\n"); 
exit(0); 

strcpy(Tl, T); 
for(j = 0; j < 6; j++) 

motif_b4_6[i][j] = Tl[j]; 
motif_b4_6[i][6]=0'; 

for = 0; i < numbl_7; i++) 

if (fgets(T, 10, Lib_In) == NULL) 

printf("Error: Donor Lib file open.\n"); 
exit(0); 
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strcpy(T I , T); 
for(j = 0; j < 7; j++) 

motif_b I _7 [i] [] = Tl [j]; 
motif_b1_7[i][7]='\0'; 

for (i = 0; i < numb2_7; i++) 

if (fgets(T, 10, Lib_In) == NULL) 

printf("Error: Donor Lib file open.\n"); 
exit(0); 

strcpy(T I , T); 
for(j = 0; j < 7; j++) 

motifb2_7[i][j] = T 1 [j]; 

motif_b2_7[i][7]='\0'; 
} 

for (r = 0; i < numb3_7; i++) 

if (fgets(T, 10, Lib_In) == NULL) 

printf("Error: Donor Lib file open.\n"); 
exit(0); 

} 
strcpy(T 1 , T); 
for(j = 0; j < 7; j++) 

motif_b3_7[i][j] = T1 [j]; 
motif_b3_7[i][7]='\0'; 

for = 0; i < numb1_8; i++) 

if (fgets(T, 12, Lib_In) == NULL) 

printf("Error: Donor Lib file open.\n"); 
exit(0); 

strcpy(T 1 , T); 
for(j = 0; j < 8; j++) 
motif_bl_8[i][j] = Tl[j]; 

motif_b1_8[i][8]=VY; 
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for (i = 0; i < numb2_8; i++) 

if (fgets(T, 12, Lib_In) == NULL) 

printf("Error: Donor Lib file open.\n"); 
exit(0); 

strcpy(T1, T); 
for(j = 0; j < 8; j++) 

motif_b2_8[i] [j] = T 1 [j]; 
motif_b2_8[i][8]='\0'; 

void ExtractMotif(int p, char A[], donor *motif 

int first, last; 
int i, m; 

last = p + 5; 
first = p - 3; 

for (i = first; i <= last; i++) 

m = i - first; 
switch (m) 

case 0: 
motif->b l_8 [0] 

=motif->bl_7 [0] = motif->b1_6[0] = A [i ]; 
break; 

case 1: 
motif->b 1_8 [ 1 ] 

=motif->bl_7 [l] = motif->bl_6[1] 
=motif->b2_8[0] = motif->b2_7[0] 
= motif->b2_6[0] = A[i]; 
break; 

case 2: 
motif->b1_8 [2] 
=motif->bl_7 [2] = motif->bl_6[2] 
=motif->b2_8[1] = motif->b2_7 [1] 
=motif->b2_6[l] 
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=motif->b3_6[0] = motif->b3_7[0] = A[i]; 
break; 

case 3: 
motif->bl_8[3] 

=motif->b l_7[3] = motif->b l_6[3] 
=motif->b2_8[2] = motif->b2_7[2] 
=motif->b2_6[2] 
=motif->b3_6[1] = motif->b3_7[1] 
=motif->b4_6[0] = A[i]; 
break; 

case 4: 
motif->b l_8 [4] 
=motif->b l_7 [4] = motif->b1_6[4] 
=motif->b2_8[3] = motif->b2_7[3] 
=motif->b2_6[3] 
=motif->b3_6[2] = motif->b3_7[2] 
=motif->b4_6[1] = A[i]; 
break; 

case 5: 
motif->b1_8[5] 
=motif->b 1_7 [5] = motif->b 1_6[5] 
=motif->b2_8[4] = motif->b2_7[4] 
=motif->b2_6[4] 
=motif->b3_6[3] = motif->b3_7[3] 
=motif->b4_6[2] = A[i]; 
break; 

case 6: 
motif->b 1_8 [6] 
=motif->b l_7[6] 
=motif->b2_8[5] = motif->b2_7[5] 
=motif->b2_6[5] 
=motif->b3_6[4] = motif->b3_7[4] 
=motif->b4_6[3] = A[i]; 
break; 

case 7: 
motif->b 1_8 [7] 
=motif->b2_8 [6] = motif->b2_7 [6] 
=motif->b3_6[5] = motif->b3_7[5] 
=motif->b4_6[4] = A[i]; 
break; 

case 8: 
motif->b2_8[7] 
= motif->b3_7[6] 
=motif->b4_6[5] = A[i]; 
break; 
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I /*switch*/ 

void VoteDonor(donor *D) 

int i; 
Score = 0; 

for (i = 0; i < numb l_6; i++ ) 

if (strcmp(motif_b I_6[i], D->b1_6) == 0) 
Score += point6;/*motif_b6.list[i].occur;*/ 

for (i = 0; i < numb1_7; i++ ) 

if (strcmp(motif_b 1_7[i], D->b l_7) == 0) 
Score 	point7; 

for (i = 0; i < numb l_8; i++ ) 

if (strcmp(motif b 1_8[i], D->b 1_8) =-= 0) 
Score += point8; 

for 	0; i < numb2_6; i++ ) 
if (strcmp(motif_b2_6[i], D->b2_6) == 0) 

Score += point6; 

for (i = 0; i < numb2_7; i++ ) 
if (strcmp(motif_b2_7[i], D->b2_7) == 0) 

Score += point7; 

for (i = 0; i < numb2_8; i++ ) 
if (strcmp(motif_b2_8[i], D->b2_8) == 0) 

Score += point8; 

for (i = 0; i < numb3_6; i++ ) 
if (strcmp(motif_b3_6[i], D->b3_6) == 0) 

Score += point6; 

for (i = 0; i < numb3_7; i++ ) 
if (strcmp(motif_b3_7[i], D->b3_7) == 0) 

Score += point7; 

for (i = 0; i < numb4_6; i++ ) 
if (strcmp(motif_b4_6[ D->b4_6) == 0) 

77 



Score *z_- point6; 

/*Input sequences from a file=/ 
void Classif(FILE *F_In) 

int i,n,p,j,m, 
seqlen; /*length of input seq*/ 

int TempScor; 

char seq[MAXLENGTH] = "\O", 
T[TEMPLENGTH], 

T 1 [TEMPLENCITH]; 

spliceP *tpl, *tp2; 

TotalSeq = 0; 

for (j =0; ;) 

if ((fgets(T, TIEMPLENGTH, F_In)) == NULL) 
break; 

if (T[0] == '>') 
TotalSeq++; 

} 

printf("\nTotalSeq: %An", TotalSeq); 
if (TotalSeq > MaxSeq) 

printf("\n%s\n", "Error: Too many sequences."); 
TotalSeq = MaxSeq; 

SpliceJunctions = malloc(TotalSeq sizeof(Junctions)), 

for ( j = 0; j < TotalSeq; j++) 

SpliceJunctions[j].Donor = NULL; 
SpliceJunctions[j].Acceptor = NULL; 

rewind(F_In); 
for (n = 0; n < TotalSeq; n++) 

if (fgets(T, TEMPLENGTH, F_In) != NULL) 
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if (T[0] == '>') 
{ 

n--; /*do not count sequence name line*/ 
continue; 

seqlen = strlen(T); 

m = 0; 
for (j = 0; j < seqlen; j ++) 

if ((T[j] == 'A') II (T[j] == 'G') H (T[j] == 'C') 
II(T[j] == 'T') II (T[j] == 'N') ) 

T 1 [m] = T[j]; 
m++; 

Tl [m] = '\0'; 

strcpy(seq, T 1); 

for (i = 0; ;) 

if (fgets(T, TEMPLENGTH, Fin) == NULL) 
break; 
if (T[0] == '>') 

break; 
seqlen = strlen(T); 

m = 0; 
for (j = 0; j < seqlen; j ++) 

if ((T[j] == 'A') H (T[j] == 'G') II (T[j] == 'C') 
II(T[j] == 'T') II (T[j] == 'N') ) 

Tl [m] = T[j]; 
m++; 

Tl[m] ='\0'; 

strcat(seq, TI); 
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seqlen = strlen(seq); 
if (seqlen > MAXLENGTH) 

seqlen = MAXLENGTH; 
TempScor = 0; 

for (i=3; i < seqlen; i++) 

if ((seq[i] 	'G') && (seq[i+ l] 	'T')) 

Score = 0; 

i; 
ExtractMotif(p, seq, &Donor); 
VoteDonor(&Donor); 

TempScor = Score; 
if (TempScor > Pos_Min) 

tp 1 = malloc(sizeof(spliceP)); 
tp 1 ->Position = i; 
tp I ->Score = TempScor; 
tp I ->next = NULL; 
if (SpliceJunctions[n].Donor == NULL) 

SpliceJunctions[n].Donor = tpl; 
tp2 = SpliceJunctions[n].Donor; 

else if (tp2->next == NULL) 

{ 
tp2->next = tpl; 
tp2 = tp2->next; 

} 
tpl = NULL; 

void WriteScoreToFile( int Total, FILE *F_Out) 

f 
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int i; 
spliceP *Tptr; 

fprintf(F_Out, "\t RESULTS\n"); 
for (i = 0; i < Total; i++) 

Tptr = SpliceJunctions[i]Donor; 
fprintf(F_Out, "\n Sequence # %3i\n", i + 1); 
fprintf (F_Out, "\tPosition 	Score\n"); 
while (Tptr != NULL) 

{ 
fprintf (F_Out, "\t%5i 	%5i\n", Tptr->Position, Tptr->Score); 
Tptr = Tptr->next; 
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