

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

ALGORITHMS AND TOOLS
FOR SPLICING JUNCTIONS DONOR RECOGNITION

IN GENOMIC DNA SEQUENCES

by
Maisheng Yin

The consensus sequences at splicing junctions in genomic DNA are required for pre-

mRNA breaking and rejoining which must be carried out precisely. Programs currently

available for identification or prediction of transcribed sequences from within genomic

DNA are far from being powerful enough to elucidate genomic structure completely[4]. In

this research, we develop a degenerate pattern match algorithm for 5' splicing site (Donor

Site) recognition.. Using the Motif models we developed, we can mine out the degenerate

pattern information from the consensus splicing junction sequences. Our experimental

results show that, this algorithm can correctly recognize 93% of the total donor sites at

the right positions in the test DNA group. And more than 91% of the donor sites the

algorithm predicted are correct. These precision rates are higher than the best existing

donor classification algorithm[25]. This research made a very important progress toward

our full gene structure detection algorithm development.

ALGORITHMS AND TOOLS
FOR SPLICING JUNCTION DONOR RECOGNITION

IN GENOMIC DNA SEQUENCES

by
Maisheng Yin

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirement for the Degree of

Master of Science in Computer Science

Department of Computer and Information Science

October 1997

APPROVAL PAGE

ALGORITHMS AND TOOLS
FOR SPLICING JUNCTION DONOR RECOGNITION

IN GENOMIC DNA SEQUENCES

Maisheng Yin

Dr. Jason T. L. Wang, Thesis Advisor 	 Date

Associate Professor of Computer and Information Science, NJIT

Dr. James McHugh, Committee Member 	 Date

Professor of Computer and Information Science, NJIT

Dr. David Nassimi, Committee Member 	 Date

Associate Professor of Computer and Information Science, NJIT

BIOGAPHICAL SKETCH

Author: 	Maisheng Yin

Degree: 	Master of Science in Computer Science

Date: 	 October 1997

Date of Birth:

Place of Birth:

Undergraduate and Graduate Education:

• Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1997

• Master of Science in Microbiology,
Central China Agriculture University, Wuhan, Hubei, China, 1985

• Bachelor of Science in Microbiology,
Central China Agriculture University, Wuhan, Hubei, China, 1982

Major: 	Computer Science

This thesis is dedicated to
my wonderful wife, Yuxian,

my children, Zhigang and Sally
for their love, support,

and patience while I worked nights and weekends
on this project instead of spending time with them.

ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to his supervisor, Professor Jason T. L.

Wang, for his guidance, encouragement and support throughout this research. Special

thanks to Professors James McHugh and David Nassimi for serving as members of the

committee.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	1

1.1 Biology Background 	1

1.2 Current Status and Progress 	5

2 PRELIMINARIES 	 11

2.1 Term Definition 	11

2.1.1 Exon 	 11

2.1.2 Intron 	11

2.1.3 Splicing Junctions 	11

2.1.4 Donor Site 	11

2.1.5 True Donor Site 	12

2.1.6 False Donor Site 	12

2.1.7 Donor Positive DNA Sequence 	12

2.2 The DNA Sequences 	 12

2.3 Donor Site Groups Construction 	 13

2.4 Measures of Performance Accuracy 	15

2.4.1 Donor Site Classification 	 17

2.4.2 Donor Site Detection 	17

DONORCLASSIFICATION AND DETECTIO 	 19

3.1 Features of the 5' Splice Sites 	19

3.2 The Donor Pattern Model 	 22

3.2.1 Data Structure for Storage of the Different Motifs 	 22

vii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

3.2.3 Donor Motif Library Construction 	 24

3.3 Group Discriminant Analysis 	 25

3.4 Donor Classification 	28

3.4.1 Donor Classification Performance 	28

3.5 Detection of Donor Site in DNA Sequences 	 30

4 DISCUTION 	 34

APPENDIX A LEARNING AND TRAINING PROGRAM FOR DONOR
CLASSIFICATION 	 37

APPENDIX B DONOR CLASSIFICATION PROGRAM 	 56

APPENDIX C DONOR DETECTION PROGRAM 	 69

REFERENCES 	 82

viii

LIST OF TABLES

Table 	 Page

1 Performance of the programs evaluated by M. Burset and R. Guigo 	9

2 Frequencies of the donor site nucleotides at different positions 	20

3 A sample Motif model 	 23

4 The donor site sequences data to be analyzed 	27

5 Donor classification result 	31

6 Donor detection result 	33

ix

LIST OF FIGURES

Figure 	 Page

1 The transcribed portion of the human β-globin gene 	

2 Gene structure and mRNA splicing 	3

3 Consensus sequences for the 5' and 3' splice sites used in RNA splicing 	4

4 Algorithm for extract True Donor Site sequences from donor positive DNA
sequences 	14

5 Algorithm for extract False Donor Site sequences from Donor Negative DNA
sequences 	16

6 Consensus sequences for donor site of the splicing junctions in higher eucaryotes. 19

7 Nucleotide Frequencies in the studies Donor sites at different positions 	 21

8 Algorithm for building up the Motif Library 	 24

9 Percentage of motifs from true donor group and false donor group that can be

	

found in the motif library 26

10 Training algorithm 	29

11 Donor Classification algorithm 	 32

CHAPTER 1

INTRODUCTION

1.1 Biology Background

Genes are the invisible information-containing elements that are distributed to each

daughter cell when a cell divides and Genes are made of deoxyribonucleic acid (DNA). A

DNA chain is a long unbranched polymer composed of only four types of subunits.

These are the deoxyribonucleotides containing the bases adenine (A), cytosine (C),

guanine (G), and thymine (T) (see Figure 1).The genetic information in the DNA is

copied into RNA through a process known as DNA transcription. RNA transcripts that

direct the synthesis of protein molecules are called messenger RNA (or mRNA). mRNA

then passes the information into protein during protein synthesis [1].

The basic gene structure components for higher eucaryotes include the promoter,

start codon, introns, exons, stop codon and poly-A adding site, etc. Figure 1 shows the

human β-globin gene sequence with exon and intron regions[1]. The intron sequences

will be removed from mRNA precursors (pre-mRNAs) by the RNA splicing mechanism

(see Figure 2).

Introns sequence in genes have no function at all and are actually the generic

"junk" [1]. Introns range in size from about 80 nucleotides to 10,000 nucleotides or more.

They differ dramatically from exons in that their exact nucleotide sequences seem to be

unimportant. The only highly conserved sequences in introns are those required for intron

removal. Thus there are consensus sequences at each end of an intron that are nearly the

same in all known intron sequences, and these can not be changed without affecting the

1

2

splicing process. The conserved boundary sequences at the 5' splice site is called donor

site, and the one at the 3' splice site is called acceptor site. The consensus sequences for

donor and acceptor sites are shown in Figure 3. The RNA breaking and rejoining

(splicing) must be carried out precisely because an error of even one nucleotide would

shift the reading frame in the resulting mRNA molecule and make nonsense of its

message[1].

For biologists, now it is easy to get genomic sequences by sequencing the

genomic DNA. But identification or prediction of transcribed sequences from within

genomic regions has been a major rate-limiting step in the pursuit of genes. The

bioinformatics approach for gene detection means using computer programs to predict

exon regions. From Figure 1 and 2 we can see that a gene may have several exons

interrupted by introns. To find out exon regions, we have to find out the start codon

(ATG), donor sites, acceptor sites and the stop codon. For the recognition of splicing

junction sites, one can not just do the simple consensus search for the donor and acceptor

sites, because both these sites are of degenerate form and some of the nucleotides in these

5

sites can be changed without affecting the splicing signal[1, 2, 3]. So the simple

consensus analysis provides only a very rough functional mapping of a sequence, and its

results should be interpreted with due caution [4]. It is also impossible for the consensus

sequence to account relative importance of each of the nucleotides in the sequence[5, 6].

Recently, the problems of gene identification and gene structure prediction in

higher eukaryotic genomic DNA sequences by computational analysis have been received

wide attention. As the Human Genome Project turns from mapping to large-scale

sequencing, the need for efficient and accurate methods for identifying the gene coding

regions will continually increase[7, 8]. This research is our first step for a full gene

structure detection program and concentrates on the 5' splicing site (donor site)

recognition.

1.2 Current Status and Progress

Although methods to predict potential protein coding regions on genomic DNA

sequences have existed since the 1980s, the first programs to assemble potential DNA

coding regions into translatable mRNA sequences were not available until the early

1990s[7]. Recently there are 	several programs available for biologists, such as

GeneID[9], GeneParser[10], GenLang[11] and GRAIL[12], etc. GRATI is the one now

widely used by researchers and it is available on the BLAST web site' for gene structure

detection. The approaches have been used for the function sites detection include:

6

Consensus search[4]

Consider an aligned set of site sequences. If at each position with nonuniform

distribution of nucleotides the researchers retain the preferred nucleotide and obtain the

consensus word. It is possible to account for degeneracies and to distinguish between

strongly and weakly conserved positions, dependent on the degree of the non-uniformity.

People write the consensus of mammalian donor splicing sites as maG/GTRAGu, where

boldface denotes invariant positions, capitals and lowercase letters denote, respectively,

strongly and weakly conserved positions, "R" denotes 'A or G', 'm' denotes `a or c', V' is

the splice point. A formal determination of conserved positions can be made using

standard statistical criteria or computation of the information content of positional

nucleotide distribution [13, 14, 15]. The consensus methods are tools to summarize the

distribution of an aligned set of molecular sequences. Typically the methods make three

simplifying assumptions: analysis of molecular sequences is a multistage process in

which sequence alignment precedes the identification of consensus sequences, an

alignment of the molecular sequences has already been obtained, and alignment of the

identification of consensus sequences can be treated independently. Thus the problem to

find a consensus of k aligned molecular sequences, in which n aligned positions have

been identified, can be viewed as a set of n simpler problems, each to find a consensus of

k symbols (i.e. nucleotide) at an aligned position[16]. 	The comparison with the

consensus is the simplest form of a site prediction algorithm, but as mentioned

previously, consensus analysis provides only a very rough functional mapping of a

sequence and its results should be interpreted with caution[4].

7

Weight matrices[4]

The next level of sophistication is provided by weight matrices. Each nucleotide b (b = A,

C, G, T) in the site position p (p = 1,2,..., L) is set in correspondence with the weight

W(b, p). The score off a potential site is defined as the sum of the positional weights of

the constituent nucleotides. R. Staden applied the weight matrix method to obtain the

relative importance of each nucleotide in the consensus sequence [17]. Another approach

used for multivariate statistical analysis was to perform categorical discriminant analysis,

where nucleotide sequences were transformed into categorical data. Categorical weights

on the variables were estimated in such a way that the two classes of the 5' splice site

sequences and sequences other than 5' splice site might be discriminated most

distinctly[5] . It has been demonstrated that site strengths estimated by this theory to some

extent agree with the experimental data [4]. Like consensus search, the weight matrices

can be used for fast database searches.

Pattern recognition and neural networks[4]

Algorithms of the pattern recognition theory are based on the (implicit) assumption that in

the genome there is a tendency to avoid nonfunctioning signal-like sites. Thus, a learning

sample consists of two classes, sites and nonsites, the latter class usually formed by

random fragments of the natural DNA. The basic steps in application of pattern

recognition techniques are as follows: (i) Creation of a learning sample. (ii) Choice and

encoding of signal features. (iii) Iterative correction of recognition rules according to

results of discrimination between the two classes at the previous round. (iv) Testing on an

independent sample.

8

One of the diverse pattern recognition algorithms is neural networks [18]. The

neural networks consists of a layer of input neurons, several layers of hidden neurons, and

an output neuron. When the network is presented with a candidate site, the input neurons

check whether the site possesses the corresponding features and send binary signals to the

neurons of the first hidden layer. Each hidden neurons sums the weighted signals coming

by connections from the lower level, compares the result with the threshold, and sends a

binary signal to the upper level neurons. The output neuron provides the final site /

nonsite decision.

Programs such as GenViewer[19] and GRAIL [12] employs a procedure that

scores candidate exons using some combination of the sites scores and the coding

potential, and then performs an exhaustive search over the set of structures generated by

the remaining high-scoring exons. Recently, Moises Burset and Roderic Guigo evaluated

a number of computer programs designed to predict the structure of protein coding genes

in genomic DNA sequences[7]. The programs analyzed were uniformly tested on a large

set of vertebrate sequences with simple gene structure. Their carefully selected test set

included 570 sequences, totaling 2649 coding exons. All the sequences in the test set had

the start codon and stop codon. All the donor sites contains the GT dinucleotide and all

the acceptor sites contains the AT dinucleotide at the right positions. Some of their data

was shown in Table 1. The results indicated that the predictive accuracy of the program

analyzed was really low. For example, for the widely used GRAIL , the sensitivity (Sn)

and specificity (Sp) were just 36% and 43%[7].

Table 1. Performance of the programs evaluated by M. Burset and R. Guigo[7]

Programs Sensitivity Specificity

FGENEH 0.61 0.64

GeneID+ 0.73 0.7

GeneParser3 0.56 0.58

GenLang 0.51 0.52

GRAIL2 0.36 0.43

SORFIND 0.42 0.47

Xpound 0.15 0.18

Note: Moises Burset and Roderic Guigo defines Sensitivity (Sn) and
Specificity (Sp) as the follows:

9

10

So they claimed that programs currently available may still be of great use in

pinpointing the regions likely to contain exons, they are far from being powerful enough

to elucidate its genomic structure completely[7].

Our research is targeted on developing more efficient and accurate methods for

identifying gene structures. In this thesis, we concentrate on the detection of 5' splicing

junction site, donor site, which is one of the most important components of gene

structure. We first introduce a motif model to represent the degeneracy features of these

splicing sites, then employ pattern match methods to classify / detect the splicing sites.

Our results are very promising for donor sites recognition, which is the most important

step for fully solving the gene detection problem. In the near future we are going to

develop methods for detection / examination of translation initiation signal (Start codon

), 3'-splicing site, translation potential, translation termination position, and etc.

Combining all these together, we will develop a powerful program for elucidate gene

structure.

CHAPTER 2

PRELIMINARIES

2.1 Term Definition

2.1.1 Exon[1]

Segment of a eukaryotic gene that consists of DNA coding for a sequence of nucleotides

in mRNA; an exon can encode amino acids in a protein. An exon is usually adjacent to a

noncoding DNA segment called an intron.

2.1.2 Intron[1]

Noncoding region of a eukaryotic gene that is transcribed into an RNA molecule but then

excised by RNA splicing when mRNA is produced.

2.1.3 Splicing Junctions[1]

The only highly conserved sequences in introns for intron removal, which are found at or

near the ends of an intron and are very similar in all known intron sequences. The splicing

junctions generally cannot be altered without affecting the splicing process that normally

removes the intron sequence from the primary RNA transcript.

2.1.4 Donor Site[1]

The conserved boundary sequences at the 5' splice sites. The conserved sequences

include 9 nuclear bases with GT (GU in mRNA) almost invariable to all donor sites[1, 5,

20, 21, 22]. An example of donor site sequence looks like the following:

11

12

CAGGTGAGT

The counterpart of a donor site is the 3' splice site, Acceptor site.

2.1.5 True Donor Site

A 9 base long authentic donor site sequence extracted from a real gene.

2.1.6 False Donor Site

A 9 base DNA sequence containing a GT dinucleotide that is extracted from any place,

except the True Donor Sites, in a real gene. The GT dinucleotide in the False Donor Site

is in the same position as it in a True Donor Site.

2.1.7 Donor Positive DNA Sequence

A region of a real DNA sequence in which there is least one Donor Site in it.

2.1.8 Donor Negative DNA Sequences

A region of a real DNA sequence in which there are no any Donor Sites in it.

2.2 The DNA Sequences

The DNA sequences used in this research were obtained by anonymous Fl P from the site

ftp.ics.uci.edu/pub/machine-learning-databases/molecular-biology". All sequences in

the group were 60 bases long. Among them were 767 sequences that contain donor sites

(Donor Positive DNA Sequence) and 768 acceptor positive sequences. Rest of them

(1655) were negative sequences (There were no donor or acceptor sites in the

13

sequences). The following sequences are some examples from the test group and the bold

type bases are the Donor Sites:

Donor Positive DNA Sequence:
E I , 	ATR INS -DONOR-521 ,
CCAGCTGCATCACAGGAGGCCAGCGAGCAGGTCTGTTCCAAGGGCCTTCGAGCCAGTCTG

E I , 	ATRINS -DONOR -905 ,
AGACCCGCCGGGAGGCGGAGGACCTGCAGGGTGAGCCCCACCGCCCCTCCGTGCCCCCGC

E I , 	BABAPOE - DONOR -30 ,
GAGGTGAAGGACGTCCTTCCCCAGGAGCCGGTGAGAAGCGCAGTCGGGGGCACGGGGATG

E I , 	BABAPOE -DONOR - 867 ,
GGGCTGCGTTGCTGGTCACATTCCTGGCAGGTATGGGGCGGGGCTTGCTCGGTTTTCCCC

Donor Negative DNA Sequences:
N, 	AGMKPNRSB -NEG- 1 ,
CAAAAGAACAAAGCTGGAGGCATCACGCTACCTGAC TTCAAACTATACTACAAGGCTACA
N, 	AGMORS12A-NEG -181 ,
AGGGAGGTGTCTGATTGGTCCAGCTTAGTCCATGTCCCTACCCTGAACAGGGGCATGGGG
N, 	AGMORS9A-NEG -481 ,
TGGTCAATTCTGAATTCTCTCCACATTATTATTATTATTTTTTGAGACAGTCTTGCTCTG
N, 	AGMRSKPNI -NEG -1141 ,
AGGGCATGGTGAAAAAGGAAATATCTTCCGTTCAAAACTGGAAATAAGCTTTCTGAGAAA

2.3 Donor Site Groups Construction

The Donor Site Learning Group and the Donor Site Positive Training Group were built

up using the True Donor Site extraction algorithm shown in Figure 4. There were 250

True Donor Sites in the Donor Site Learning Group and they were extracted from the

first 250 Donor Positive DNA Sequences (see section 2.1). In the Donor Site Positive

Training Group, there were 250 True Donor Sites. These true donor sites were

extracted from the second 250 sequences following the first 250 sequences in the Donor

Positive DNA Sequences.

There were 800 False Donor Sites in the Donor Site Negative Training Group.

As defined in section 2.1, all entries in this group were 9 base long and all contained the

Input: Donor Positive DNA sequences and the splicing position.

Output: True Donor Site sequences.

for each inputted sequences Seq do

begin

let m be the index of donor D}

m := 0;

{let i be the splicing position}

for j 	-3 to j := i + 5 do

begin

D[m] := Seq.[j];

m := m + 1

end

end;

Figure 4. Algorithm for extract True Donor Site sequences from donor positive
DNA sequence.

14

15

'GT' dinucleotide in the same position as in the true donor sites. The false donor sites

were extracted from 270 Donor Negative DNA Sequences as described in section 2.1

using the algorithm showing in Figure 5.

There 692 candidate donor site sequences in the Candidate Donor Site Group

with 216 true donor sites and 474 false donor sites. They were extracted from the last 216

DNA sequences in the Donor Positive DNA Sequences as described in section 2.1 using

the same algorithm shown in Figure 5 but the input sequences were donor site positive

DNA sequences.

2.4 Measures of Performance Accuracy

In this research, we measured the performance accuracy of the program at two different

levels: donor site classification and donor site detection. For the donor site classification,

we input a group of candidate donor site sequences (see section 2.3) into the program and

let the program classify whether a candidate is a true donor site or false donor site

sequence. This is the way we used to test our algorithms in our developing cycles. The

donor classification algorithm can also be used to classify a segment of DNA sequence to

see whether it is a donor positive or donor negative sequence as reported by Jason T. L.

Wang and his colleagues [23 J. This is useful for finding out some local information for

a giving gene region. For the donor site detection, we input DNA sequences directly into

the program and let the program to recognize the real donor sites in the genes. This is

very important for the full gene structure detection application which we will develop in

the near future.

Input: Donor Negative DNA sequences.

Output: False Donor Site sequences.

for each inputted sequences Seq do

begin

{ let m be the index of False Donor D }

m := 0;

{let len be the length of Seq. }

for i := 3 to i := len - 5 do

begin

if Seq.[i] = 'G' and Seq.[i + 1] = `T'

for j := i - 3 to j := i + 5 do

begin

D[m] := Seq.[j];

m := m + 1

end

end

end;

Figure 5. Algorithm for extract False Donor Site sequences from Donor Negative
DNA sequences.

16

17

2.4.1 Donor Site Classification

At this level, we measured the performance accuracy on a group of candidate donor sites

for Sensitivity and Specificity[7]. To compute sensitivity and specificity, we use the

following formulas:

Sensitivity:

Correct True Donor Sites Predicted

S" 	Total True Donor Sites in the Test Group

Specificity:

Correct True Donor Sites Predicted
S = 	

P 	Total True Donor Sites Predicted

Thus, Sensitivity is the proportion of actual True Donor Sites in the candidate

donor site group that are correctly predicted, and Specificity is the proportion of predicted

donor sites that correctly predicted.

2.4.2 Donor Site Detection

At this level, we measured the performance accuracy on a group of DNA sequences for

Sensitivity and Specificity. The DNA sequences in this group were those from the Donor

Positive and Negative Sequence groups which had been randomly mixed together. To

compute sensitivity and specificity, we use the formulas which are similar to those for

Donor Site Recognition.

Sensitivity:

Correct Donor Sites Detected

Total Donor Sitess in the Test DNA Group

Specificity:

Correct Donor Sites Detected

Total Donor Sites Detected

Thus, Sensitivity is the proportion of actual donor sites in the test DNA sequences

that are correctly detected, and Specificity is the proportion of detected donor sites that

correctly detected.

18

CHAPTER 3

DONOR CLASSIFICATION AND DETECTION

3.1 Features of the 5' Splicing Sites

As mentioned in the previous chapters, donor sites are the 5' splice sites for mRNA

precursors in higher eucaryotes' genes. The conserved boundary sequences at the 5'

splice site (donor site) are shown in Figure 6.

Position: 	-3 -2 -1 0 +1 +2 +3 +4 +5
C 	 T

Nucleotide: 	or AG G T or A G T
A 	 A

Figure 6. Consensus sequences for donor site of the splicing junctions in higher
eucaryotes. '0' position is the splicing site and it is the first nuclear tide in
the intron sequence.

The donor site sequence in Fig.6 just describes the conserved site sequences

which is from statistics analysis. Most of the actual donor site sequences differ from it to

a greater or lesser degree[25]. Following are the frequencies of the possible four

conserved donor site sequences from a group of 550 donor sites:

CAGGTTAGT 	3 in 550
CAGGTAAGT 	12 in 550
AAGGTTAGT 	6 in 550
AAGGTAGAT 	4 in 550

One can find out the donor site detection is much more complicated than first expected.

We also studied the individual nucleotide frequency at each position in the same group of

550 donor sites (see Table 2 and Fig 7).

19

Table 2. Frequencies of the donor site nucleotides at different positions

Position A G C T
-3 33.16% 18.02% 36.58% 12.25%
-2 58.20% 16.58% 4.32% 12.07%
-1 8.29% 78.20% 4.32% 9.19%
0 0.00% 100,00% 0.00% 0.00%
1 0.00% 0.00% 0.00% 100.00%
2 48.65% 47.57% 2.16% 1.62%
3 74.05% 11.71% 8.65% 5.59%
4 3.96% 86.13% 4.86% 5.05%
5 17.12% 22.85% 15.14% 44.86%

20

22

From the above frequency data, we can see that the donor site is of degenerate

pattern feature. The key point of this Donor detection algorithm is how to mine out the

donor degenerate pattern from a set of donor sites containing DNA sequences, and then

using pattern match method to classify candidate DNA sequences.

3.2 The Donor Pattern Model

In order to examine donor information, we construct a Donor model as the following.

A donor site contains 10 motifs:

Mi(p, n),

i (i = 1, 2, ..., 10) denotes motif number (see the following)

p (1 S p 5 4) denotes the motif start position in the donor site,

p = 1 means the `-.3' position in Fig. 1.

n (6 < n < 9) denotes the motif length.

This model says that a donor contains 10 motifs, each motif has a minimum

length of 6 nucleotides, and each motifs must contain " GT " nucleotides. Let us look an

example.

If a donor site sequence is CAGGTAAGT, we can label it as follows:

According as our Motif model, we can derive 10 motifs as shown in Table 3.

3.2.1 Data Structure for Storage of the Different Motifs

Our program uses the 'set' data structure to hold the same kind of motifs.

Table 3 A sample Motif model

i Mi(p, n) Sequence p n

1 M1(1, 9) CAGGTAAGT 1 9

2 M2(1, 8) CAGGTAAG 1 8

3 M3(1, 7) CAGGTAA 1 7

4 M4(1, 6) CAGGTA 1 6

5 M5(2, 8) AGGTAAGT 2 8

6 M6(2, 7) AGGTAAG 2 7

7 M7(2, 6) AGGTAA 2 6

8 M8(3, 7) GGTAAGT 3 7

9 M9(3, 6) GGTAAG
3 6

10 M10(4, 6) GTAAGT 4 6

Note: The bold characters in the sequences are the conserved `GT' dinucleotide.

23

24

Let SMp,n represent the set of motifs starting at position 'p' and having length 'n'. i.e.

SMi9 is the set containing all motifs starting at position '1' and having length '9'.

3.2.2 Donor Motif Library Construction

First, we build up the Donor Site Learning Group of 250 True Donor Sites as

described in Chapter 2. We also call this group Learning Set. Then we use the following

algorithm to build up the Donor Motif Library (Figure 8).

for each donor site in the Learning Set do

begin

extract each motifs Mi(p, n), 1 < i < 10, 1 < p < 4, 6 < n <9;

insert M(p, n) into the appropriate motif set SMp.n

end;

Figure8. Algorithm for building up the Motif Library.

We did an experiment to test if the motif library data can be used for classifying

true / false donor sites. First, we construct a group of 200 True Donor Sites from another

200 positive donor sequences, using the same method for building up the learning group

described above. Then we constructed a group of 900 False Sites from 270 of negative

donor sequences using the false donor extraction algorithm (Figure 5). The donor site

sequence in these two groups are very similar as that ueded in Section 3.3. Next, we

extract all the ten motifs from each donor site in these two groups, and searched the Motif

25

Library for each individual motif to see how many of these motifs from different group

could be found in the library. The results were shown in Figure 9. From Figure 9, we can

see that the motif library is a very good true donor representative data collection, and it

can be used for further study for donor classification.

3.3 Group Discriminant Analysis

For the analysis purpose, we first construct two groups of 9-base DNA sequences data.

The first group, Donor Site Positive Training Group, contain 250 true donor sites

which were extracted from the second 250 positive donor sequences as described Chapter

2. The second group, Donor Negative Training Group, was made up of 800 hundred of

GT containing non donor sites. All the entries in the negative group were 9 bases long

and with GT in the same position as the in the true donor sites (see Table 4).

Next, we introduce a motif score variable, S,n , which is defined by motif number

(i = 1, 2, ..., 10) and motif length (n = 6, 7, 8, 9).

Scoring each donor site candidate can be done by calculating the donor score value,

26

Table 4. The donor site sequences data to be analyzed

No. Donor sites Group
1 TAGGTGAGA Positive
2 CCTGTAAGT Positive
3 CAAGTAAGG Positive
4 AAGGTATCA Positive
. - Positive

• Positive
250 AGAGTAAGA Positive

1 TTGGTCCAG Negative
2 GAGGTGTCT Negative
3 ATGGTGAAA Negative
4 CTGGTGGAA Negative

• Negative
. . Negative

800 CCAGTGAGC Negative

27

Finally we use our training algorithm (see Fig. 10) to score all the sequence data

in the Positive and Negative donor group, and write the scores into the positive score

board or negative score board accordingly. The minimum score in the positive score

board is called the positive lower bound, denoted L1 . The maximum score in the negative

scoreboard is called negative upper bound, denoted U,,. Let Lp = max { Lp. Un } and U„=

min { Lp Un}. For our Positive donor group, we got a maximum score of 1152 and a

minimum score of 640 (). For the Negative donor group we got a maximum score of

768 (U„) and a minimum of score 0. So:

3.4 Donor Classification

When classifying candidate donor site sequences, we calculate the score, SD, based on the

motif scores, S. . If SD > Lpos then that candidate donor site is a donor site. If SD < Uneg

then it is not a donor site. Otherwise, the " Unknown" verdict is given. Figure 11 shows

the donor detecting algorithm.

3.4.1 Donor Classification Performance

The above algorithms were implemented in ANSI C and were tested on a UNIX system

and also on a PC system running Window 95. We used the Donor Classify program and

classified a group of 692 candidate donor site with 200 known true donor sites among

The positive donor training sequences are a group of sequences with

one donor site in each sequence at the known position P

for each sequences Seq data in the Positive and Negative groups do

begin

extract each motif Mi(p,n);

search the motif set SMpn for Mi(p,n);

if Mi(p,n) found,

{ let S be the score for Mi(p,n)}

S := S + 2^n;

if the sequence data from the Positive group

write the Score S to the positive score board;

else

write the Score S to the negative score board;

{ let Pmin := the minimum score in the Positive score board; }

{let Nmax := the maximum score in the Negative score board; }

if Pmin < Nmax

swap (Pmin, Nmax)

end;

them. None of these true donor sites were extracted from the DNA sequences as the

above learning set and positive training group were from. Based on the classification

results in Table 5, we calculate the program performance as follows:

Sensitivity for donor site classification:

Specificity for donor site classification:

3.S Detection of Donor Site in DNA Sequences

In the real world, when a biologist gets a new DNA sequence, he or she need detect the

splicing junction site positions in the DNA. So we modified our Donor site classification

algorithm and let the program report the 5' splicing positions (Donor site). The algorithm

works like this: scan the input DNA sequence for 'GT' di-nucleotides. If `GT' found,

extract the 9-base candidate donor site. Then input the candidate donor site sequence into

the Donor Site Classification program (see Figure 11). If the candidate is a true donor

site, report the GT position in the DNA sequence. In order to test the program, we

randomly mixed 200 donor positive DNA sequences and 200 donor negative DNA

sequences. All these DNA sequences were from that as described in the Chapter 2 but

none of them had been used in the above Learning or Training processes. As described in

Chapter 2, each of the DNA sequences is 60 base long, and for the 200 donor positive

Table 5. Donor classifying result

Total number of candidate donor sites: 692

Total number of true donor sites: 200

Total true donor sites picked: 216

True Positive (Tp) 198

False Positive (Fp) 18

True donor site missed 2

Total false donor sites picked: 476

True Negative (Tn) 474

False Negative (Fn) 2

False donor site missed 18

31

32

The candidate donor sites group contains one or more 9-base DNA

sequences with GT dinucleotide at the same position as it in the

True Donor Site sequences.

}

Input: candidate donor sites group;

Output: label each candidate donor site sequence

as True Donor or False Donor or Unknown;

for each candidate donor site CD do

begin

{let S be the score for CD

S := 0;

for motif number i := 1 to i := 10 do

begin

extract motif Mi(p,n);

search the motif set SMpn for Mi(p,n);

if Mi(p,n) found,

S = S + 2^n;

end;

if S >= Pmin

{ label CD as True Donor; }

else if S < Nmax

{ label CD as False donor; }

else

{ label CD as Unknown; }

end;

Figure 11. Donor Classification algorithm.

33

DNA sequences, there is only one donor site in each of them. The results are shown in

Table 6.

Table 6. Donor detection result.

Total number of input DNA sequences: 400

Total number of donor positive DNA sequences 200

Total number of donor sites in the DNA sequences 200

Total 	donor sites picked: 204

True Positive (Tp) 186

False Positive (Fp) 18

Positive donor site missed 14

The Sensitivity Sn of this program is:

The Specificity Sp of this program is :

These results means that the donor detection algorithm can correctly recognize

93% of the total true donor sites at the right splicing positions in tested DNA

sequences, and more than 91% of the predicted donor sites are correct.

CHAPTER 4

DISCUSSION

Computational gene identification will play an increasingly important role as the human

genome project enters the large-scale sequencing phase[8], 	and a number of

computational methods have recently been developed. As Moises Burset and Roderic

Guigo indicated that programs currently available are far from being powerful enough to

elucidate genomic structure completely[7]. In order to develop more accurate and

efficient programs for detecting gene structures, in this thesis, we concentrate on splicing

junction donor classification and detection. Using our motif model we can discover the

degenerate pattern features of the splicing junction sites to a great degree. Based on this

model, our donor detection algorithm can correctly recognize 93% of the total donor site

in the test group. And more than 91% of the donor sites picked by our program are

correct. These precision rates are higher than the best existing donor classification

algorithm[24]. This research made a very important progress toward our full gene

structure detection algorithm development.

The pattern recognition theory are based on the assumption that in the genome

there is a tendency to avoid nonfunctioning signal-like sites. Thus, researchers usually

using a learning sample consisting of two classes, sites and nonsites, the later class

usually formed by random fragments of the natural DNA. For example, Yoichi lida

extracted all the possible 9-base sequences other than the 5'-splice sites from rabbit

β-globin pre-mRNA as his non-donor site group for his quantification analysis of 5'-splice

signal[6]. In contrast to that approach, our non-splice junction sites groups did not

34

35

formed by random fragments of the natural DNA. All the entries in our non-donor site

sequence group (we call this group False Donor Site Group) contained the dinucleotide

GT at the same position as in the real donor sites. Because the GT dinucleotide is almost

invariable in all donor sites, we treat only GT dinucleotide containing fragments in the

genome DNA as candidate splicing junction sites. In this way, our approach works well to

discriminate between the true splicing sites and non-splicing sites.

Most of the current programs available for gene structure detection do not work

well for short DNA sequences. For example, GRAIL2 can not identify the exon

boundaries in a DNA sequence shorter than 100 bases. This is not a limitation for our

method, because our motif model is based on the sequence information in the splicing

junctions. The splicing junction detection algorithms did not consider global sequence

information. People may argue about this. But we think, because all the exons have

acceptor, donor or both sites, if we can pinpoint precisely the splicing junctions, we will

get good results for detection exons from the genomic DNA sequence. Of cause, we will

integrate other sequence information such as coding potential into our full gene detection

program, but we expect the splicing junction detection algorithms will be the backbone

of our applications.

Mosises Burset and Roderic Guigo also studied the relative robustness of gene

structure prediction programs to sequencing errors. Indeed, artifactual nucleotide

insertions and deletions do occur while sequencing DNA. Moreover, plans are underway

to speed up the full-length sequencing of the human genome by allowing lower sequence

accuracy (8). In Mosises Burset and Roderic Guigo's results, for most of the programs

they evaluated, the accuracy decreased almost 50% when the mutated DNA sequences

36

were presented to those programs for exon detection. Like GRAIL2, accuracy for the

original DNA sequences was 40% for exon detection, but it just could recognize 21% of

the exons in the same group of DNA sequences with 1% of mutations[7]. We think this is

because those programs more depended on the coding potential in the DNA sequences.

The mutation caused frame shifts and affected program performances to a great degree.

We expected this will also not a big problem for our method, because we have

concentrated on the information from the splicing junction sites. If the mutation does not

occur inside the splice sites, it will not affect the performance much. If this is true, it will

be of real value when used in the large-scale sequencing projects.

As mentioned above, this research made a very good step toward our full gene

structure detection program development. This is not only because the donor

classification / detection results are very promising, our motif model approach and

degenerate pattern match algorithms for the donor classification will also fit our further

research. Based on this study, it may be easy to build up a acceptor motif model for the

classification and detection of the 3' splicing junction sites in the eukaryotic genes.

Certainly, we will also try these methods for the detection of translation initiation signal

sequence of mRNA (start coden signal). So we think the method developed in this

research is the benchmark for our future studies.

APPENDIX A

LEARNING AND TRAINING PROGRAM FOR DONOR CLASSIFICATION

This is the ANSI C version of the program for the donor classification
Learning and Training. Algorithms that were implemented into this
program include Algorithm for True Donor Extraction, Algorithm for
False Donor Extraction, Learning Algorithm, Training Algorithms etc.

/* Program Name: DonorLearnAndTrain.c*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MAXLENGTH 100
#define MaxSeq 500
#define MaxNum 300

#define point6 64
#define point? 128
#define point8 256
#define point9 512
typedef struct _donor

{
char b1_6[7], bl_7[8], b1_8[9], b1_9[10],

b2_6[7], b2_7[8], b2_8[9],
b3_6[7], b3_7[8],
b4_6[7];

} donor;

typedef struct _motif

{
int occur;
int posoccur;
int negoccur;
char seq[10];

} motif;

typedef struct _reccord

1
int total; /* Total num of entries*/

37

motif list[MaxNum];
1 reccord;

donor Donor;
int TotalSeq;

int Score;

int ScoreBoard[MaxSeq];
int negScoreBoard[MaxSeq];

int pmin, pmax, /*min and max scores for positive donor*/
nmin, nmax; /*min and max scores for nagative donor*/

reccord
motif_b1_6,
motif_b1_7,
motif b1_8,
motif b1_9,
motif_b2_6,
motif_b2_7,
motif_b2_8,
motif_b3_6,
motif_b3_7,
motif_b4_6;

FILE *F_In, *F_Out;

main()

1

char *donor_bas = "donobas.dat";
char *donor_dat = "donodat.dat";
char *Score_out = "scoreout.dat";
char *donor_pos = "donopos.dat";
char *donor_neg = "dononeg.dat";

FILE *F_pos, *F_neg, *F_Out;

initiateData();

if ((F_In = fopen(donor_bas, "r")) == NULL)

1

38

printf("ERROR: %s file open An", donor_bas);
exit (0);

/*Learning */
LearnDonor();

/* Tarining
if ((F_pos = fopen (donor_pos, ")) == NULL)

printf("ERROR: Open file %s. \n", donor_pos);
exit (0);

if ((F_Out = fopen (Score_out, "w")) == NULL)

printf("ERROR: Open file %s. \n", Score_out);
exit (0);

/*Tain the postive donor sequences.*/
TrainPosDonor(F_pos, ScoreBoard);

pmin = PosiveLowBound(ScoreBoard, TotalSeq, &pmax);

WriteScoreToFile(ScoreBoard, TotalSeq, F_Out);
if ((F_neg = fopen(donor_neg, "r")) == NULL)

printf("ERROR: Open file %s. \n", donor_neg);
exit (0);

}

1* Tarin the negative sequences*/
TrainNegDonor(F_neg, negScoreBoard);
nmax = NegativeHighBound(negScoreBoard, TotalSeq, &nmin);
WriteScoreToFile(negScoreBoard, TotalSeq, F_Out);

WriteDonorToFile(donor_dat);

printf("\nThe Positive Low Bound is: %.1d.\n", pmin);
printf("\nThe Positive High Bound is: %IdAn", pmax);

printf("\nThe Negative High Bound is: %ld.\n", nmax);
printf("\nThe Negative Low Bound is: %ld.\n", nmin);

39

fclose(F_In);
fclose(F_pos);
fclose(F_neg);
fclose(F_Out);

return 0;

void initiateData()

Donor.b1_6[7] = '\0';
Donor.b 1_7[8]= '\0';
Donor.b l_8[9]= 	;
Donor.b 1_9[10]= '\0';
Donor.b2_6[7]= '\0';
Donor.b2_7[8]= '\0';
Donor.b2_8[9]= '\0';

Donor.b3_6[7]= '\0';
Donor.b3_7 [8]= '\0';
Donor.b4_6[7]= '\0';

motif_b I _6.total = 0;
motif_b1_7.total = 0;
motif_b1_8.total = 0;
motif b l_9.total = 0;
motif_b2_6.total = 0;
motif_b2_7.total = 0;
motif_b2_8.total = 0;
motif_b3_6.total = 0;
motif_b3_7.total = 0;
motif_b4_6.total = 0;

1* ReccordDonor() write the subdonor sequences into the reccord list.
If a subsequence is already there, just increase the occrence.
Else if the subsequence is not in the list yet, write the
subsequence into the list and initiate its occurence to 1.

*1

void ReccordDonor(reccord *R, char *S)

40

int i;
int found;
if (R->total == 0)

strcpy(R->list[0].seq, S);
R->list[0].occur = 1;
R->list[0].negoccur=0;
R->list[0].posoccur=0;
R->total = 1;

else

found = 0;
for (i = 0; i < R->total; i++)

if (strcmp(R->list[i].seq, S) == 0)

R->list[i].occur++;
R->list[i].negoccur=0;
R->list[i].posoccur=0;
found = 1;
break;

if (found == 0)

strcpy(R->list[R->total].seq, S);
R->list[R->total].occur = 1;
R->list[R->totallnegoccur=0;
R->list[R->total].posoccur=0;
R->total++;

} /*else*/
}/* ReccordDonor*/

void ExtractMotif(int p, char AO, donor *motif)

int first, last;
int i, m;
last = p + 5;
first = p - 3;

for (i = first; i <= last; i++)

41

m = i - first;

switch (m)
f

case 0:
Motif->b1_9[0] = motif->b1_8[0]
=motif->b1_7[0] = motif->b1_6[0] = A[i];
break;

case 1:
motif->b1_9[1] = motif->b1_8[1]

motif->b 1_7[1] = motif->b 1_6[1]
motif->b2_8[0] = motif->b2_7[0]

• motif->b2_6[0] = A[i];
break;

case 2:
motif->b1_9[2] = motif->b 1_8[2]

motif->b1_7[2] = motif->b 1_6[2]
motif->b2_8 [1] = motif->b2_7 [1]
motif->b2_6[1]

---=!motif->b3_6[0] = motif->b3_7[0] = A[i];
break;

case 3:
motif->b 1_9[3] = motif->b 1_8[3]
=motif->b1_7[3] = motif->b1_6[3]
=motif->b2_8 [2] = motif->b2_7 [2]
=motif->b2_6[2]

motif->b3_6 [1] = motif->b3_7 [1]
=motig->b4_6[0] = A[i] ;

break;
case 4:

motif->b 1_9[4] = motif->b1_8[4]
motif->b1_7[4] = motif->b1_6[4]
motif->b2_8[3] = motif->b2_7[3]
motif->b2_6[3]
motif->b3_6[2] = motif->b3_7[2]

=Thotig->b4_6[1] = A[i];
break;

case 5:
motif->b 1_9[5] = motif->b1_8[5]
=motif->b 1_7[5] = motif->b 1_6[5]
=motif->b2_8[4] = motif->b2_7[4]
=motif->b2_6[4]
=motif->b3_6[3] = motif->b3_7[3]

=motig->b4_6[2] = A[i] ;

42

break;
case 6:

motif->b1_9[6] = motif->b1_8[6]
=motif->b 1_7[6]
=motif->b2_8[5] = motif->b2_7[5]
=motif->b2_6[5]
=motif->b3_6[4] = motif->b3_7[4]
=motig->b4_6[3] = A[i] ;
break;

case 7:
motif->b1_9[7] = motif->b1_8[7]
=motif->b2_8[6] = motif->b2_7[6]
=motif->b3_6[5] = motif->b3_7[5]

=motig->b4_6[4] = A[i] ;
break;

case 8:
motif->bl_9[8]
=motif->b2_8 [7]
= motif->b3_7[6]
=motif->b4_6[5] = A[i];
break;

/*switch*/

void WriteMotifToList(donor *motif)

/*write motif to the records*/
ReccordDonor(&motif_b 1_6, motif->b 1_6);
ReccordDonor(&motif_b2_6, motif->b2_6);
ReccordDonor(&motif b3_6, motif->b3_6);
ReccordDonor(&motif_b4_6, motif->b4_6);
ReccordDonor(&motif_b 1_7, motif->b1_7);
ReccordDonor(&motif b2_7, motif->b2_7);
ReccordDonor(&motif b3_7, motif->b3_7);
ReccordDonor(&motif_b 1_8, motif->b 1_8);
ReccordDonor(&motif_b2_8, motif->b2_8);
ReccordDonor(&motif_b 1_9, motif->b 1_9);

/*Input sequences from a file*/
void LearnDonor()

43

int i, j , n,
seqlen, /*length of input seq*/
TotalSeq; /*Number of sequences in th input file*/

char seq[MAXLENGTH],
T[MAXLENGTH],
ch;

for (TotalSeq =0; ;)

if ((fgets(T, MAXLENGTH, F_In)) == NULL)
break;

if (T[0] == '>')
TotalSeq++;

/****/

printf("\nTotalSeq: %i\n", TotalSeq);
if (TotalSeq > MaxSeq)

printf("\n%s\n", "Error: Too many sequences.'
exit(0);

}
rewind(F_In);
for (n = 0; n < TotalSeq; n++)

if (fgets(T, MAXLENGTH, F_In) != NULL)

if (T[0] == '>')

n--; /*do not count sequence name line*/
continue;

}
i = 0;
seqlen = strlen(T);
if (T[seqlen -l] == '\n')

seqlen--;
for (j = 0; j < seqlen; j ++)

ch = T[j];
if ((ch == ") II (ch 	'*')I1(ch 	'\t'))

continue;
if ((ch >= 'a') && (ch 	'z'))

ch = ch + 'A' - 'a' ; /* Change into capital*/
if ((ch < 'A') II (ch > 2'))

44

printf("Err input!, %i\n", n);
/* 	exit(0); 	*/

seq[i++] = ch;
if (i>(MAXLENGTH -2))

printf("Err: Sequence is too longAn");
exit(0);

ExtractMotif(30, seq, &Donor);
WriteMotifToList(&Donor);

/*Write the donor data to a file*/
void WriteDonorToFile(char *fileName)

int i;

if ((F_Out = fopen(fileName, "w")) == NULL)

printf("\nError: open %s file", fileName);
exit(0);

fprintf(F_Out, "\n \n**motif_b 1_6** \n");
fprintf(F_Out, "Total: %i\n", motif_b1_6.total);
for(i = 0; i < motif_b1_6.total; i++)

fprintf(F_Out, "\t%s\t%i\t%i\t%i\n",
motif bl_6.1ist[i].seq, motif bl_6.1ist[i].occur,
motif_b1_6.1ist[i]. posoccur,
motif_b1_6.1ist[i].negoccur);

fprintf(F_Out, "\n\n**motif_b2_6**\n");
fprintf(F_Out, "Total: %i\n", motif_b2_6.total);

45

for(i = 0; i < motif_b2_6.total; i++)
fprintf(F_Out, "\t%s\t%i\t%i\t%i\n",

motif_b2_6.1ist[i].seq, motif_b2_6.list[i].occur,
motif_b2_6.listribposoccur,
motif_b2_6.list[i].negoccur);

fprintf(F_Out, "\n\n**motif_b3_6"\n");
fprintf(F_Out, "Total: %i\n", motif_b3_6.total);
for(i = 0; i < motif_b3_6.total; i++)

fprintf(F_Out, "\t%s\t%i\t%i\t%i\n",
motif b3_6.list[i].seq, motif_b3_6.list[i].occur,
motif_b3_6.list[i].posoccur,
motif b3_6.list[i].negoccur);

fprintf(F_Out, "\n\n"motif_b4_6**\n");
fprintf(F_Out, "Total: %i\n", motif_b4_6.total);
for(i = 0; i < motifb4_6.total; i++)

fprintf(F_Out, "\t%s\t%i\t%i\t%i\n",
motif_b4_6.list[i].seq, motif_b4_6.list[i].occur,
motif_b4_6.list[i].posoccur,
motif_b4_6.1ist[i].negoccur);

fprintf(F_Out, "\n\n**motif_b1_7**\n");
fprintf(F_Out, "Total: %An", motif_b1_7.total);
for(i = 0; i < motif_b1_7.total; i++)

fprintf(F_Out, "\t%s\t%i\t%i\t%i\n",
motif_b1_7.1ist[i].seq, motif_b1_7.1ist[i].occur,
motif_b1_7.list[i].posoccur,
motif b1_7.list[i].negoccur);

fprintf(F_Out, "\n\n**motif_b2_7**\n");
fprintf(F_Out, "Total: %An", motif_b2_7.total);
for(i = 0; i < motif b2_7.total; i++)

fprintf(F_Out, "\t%s\t%i\t%i\t%i\n",
motif_b2_7.list[i].seq, motif_b2_7.list[i].occur,
motif_b2_7.list[i].posoccur,

motif_b2_7.list[i].negoccur);

fprintf(F_Out, "\n\n"motif b3_7**\n");
fprintf(F_Out, "Total: %i\n", motif_b3_7.total);
for(i = 0; i < motif b3_7.total; i++)

fprintf(F_Out, "\t%s\t%i\t%i\t%i\n",
motif_b3_7.1ist[i].seq, motif_b3_7.list[i].occur,
motif_b3_7.list[i].posoccur,
motif_b3_7.listribnegoccur);

46

fprintf(F_Out, "\n\n**motifb1_8**\n");
fprintf(F_Out, "Total: %i\n", motif_b1_8.to al);
for(i = 0; i < motif_b1_8.total; i++)

fprintf(F_Out, "\t%s\t%i\t%i\t%i\n",
motif b 1_8.1ist[i].seq, motif b 1_8.list[d.occur,
motif_b1_8.list[i].posoccur,

motif_b1_8.list[i]negoccur);

fprintf(F_Out, "\n\n**motif_b2_8**\n");
fprintf(F_Out, "Total: %i\n", motif b2_8.total);
for(i = 0; i < motif_b2_8.total; i++)

fprintf(F_Out, "\t%s\t%i\t%i\t%i\n",
motif_b2_8.list[i].seq, motif_b2_8.list[i].occur,
motif_b2_8.list[i].posoccur,
motif_b2_8.1ist[i].negoccur);

fprintf(F_Out, "\n\n**motif_b1_9**\n");
fprintf(F_Out, "Total: %i\n", motif b1_9.total);
for(i = 0; i < motif_b1_9.total; i++)

fprintf(F_Out, "\t%s\t%i\t%i\t%i\n",
motif_b1_9.list[i].seq, motif_b1_9.list[i].occur,
motif_b1_9.list[i].posoccur,
motif_bl_9.list[i].negoccur);

}

/************ Training Portion Begin*****************/

void InitiateScoreBoard()

int i;
for (i = 0; i < MaxSeq; i++)

ScoreBoard[i] = 0;
negScoreBoard[i] = 0;

void VoteDonorPos(donor *D)

int i;
Score = 0;

47

for (i = 0; i < motif_b1_6.total; i++)

if (strcmp(motif b 1_6.1ist[i].seq, D->b1_6) == 0)

Score += point6;/*motif_b6.list[].occur;*/
motif_b1_6.1ist[i].posoccur++;

for (i = 0; i < motif_b2_6.total; i++)

if (strcmp(motif_b2_6.list[i].seq, D->b2_6) == 0)

Score += point6;/*motif_b6.1ist[i].occur;*/
motif b2_6.list[i].posoccur++;

for (i = 0; i < motif_b3_6.total; i++)

if (strcmp(motif_b3_6.list[i].seq, D->b3_6) == 0)

Score += point6;/*motit_b6.list[i].occur;*/
motif_b3_6.1ist[i].posoccur++;

}

for (i = 0; i < motif_b4_6.total; i++)

if (strcmp(motif_b4_6.list[i].seq, D->b4_6) == 0)

Score += point6;/*motif_b6.list[i].occur;*/
motif_b4_6.list[i].posoccur++;

}

for (i = 0; i < motif b l_7.total; i++)

if (strcmp(motif b1_7.list[i].seq, D->b1_7) 	0)

Score += point7;/*motif_b7.list[i].occur;*/
motif_b1_7.1ist[i].posoccur++;

}

48

for (i = 0; i < motif_b2_7.total; i++

if (strcmp(motif_b2_7.list[i].seq, D->b2_7) == 0)

Score += point7;/*motif_b7.list[i].occur;*/
motif_b2_7.list[i].posoccur++;

}

for (i = 0; i < motif_b3_7.total; i++)

if (strcmp(motif_b3_7.1ist[i].seq, D->b3_7) == 0)

Score += point7;/*motif_b7.1ist[i].occur;*/
motif_b3_7.1ist[i].posoccur++;

1

for (i = 0; i < motif_b1_8.total; i++)

if (strcmp(motif_b1_8.1ist[i].seq, D->b1_8) == 0)

Score 	point8;/*motif_b8.list[i].occur;*/
motif_b 1_8.list[i].posoccur++;

}

for (i = 0; i < motif b2_8.total; i++)

if (strcmp(motif_b2_8.1ist[i].seq, D->b2_8) == 0)

Score += point8;/*motif_b8.list[i].occur;*/
motif_b2_8.list[i].posoccur++;

for = 0; i < motif_b1_9.total; i++)

if (strcmp(motif_b1_9.list[i].seq, D->bl_9) == 0)

Score += point9;/*motif_b9.1ist[i].occur;*/
motif_b1_9.listnposoccur++;
break;

49

void VoteDonorNeg(donor *D)

int i;
Score = 0;

for (i = 0; i < motif b1_6.total; i++)

if (strcmp(motif bl_6.1ist[i].seq, D->b 1_6) == 0)

Score += point6;/*motif_b6.list[i].occur;*/
motif_b1_6.list[i].negoccur++;

for (i = 0; i < motif_b2_6.total; i++)

if (strcmp(motif_b2_6.list[i].seq, D->b2_6) == 0)

Score += point6;/*motif_b6.list[i].occur;*/
motif_b2_6.list[i].negoccur++;

for (i = 0; i < motif_b3_6.total; i++)

if (strcmp(motif_b3_6.1ist[i].seq, D->b3_6) == 0)

f
Score += point6;/*motif_b6.1ist[i].occur;*/
motif b3_6.1ist[i].negoccur++;

}

for (i = 0; i < motif b4_6.total; i++)

if (strcmp(motif_b4_6.list[i].seq, D->b4_6) == 0)

Score += point6;/*motif_b6.1ist[i].occur;*/
motif_b4_6.list[i].negoccurl+;

50

for (i = 0; i < motif bl_7.total; i++)

if (strcmp(motif_b 1_7.1ist[i].seq, D->b l_7) == 0)

Score += point7;/*motif b7.list[i].occur;*/
motif_b1_7.list[i].negoccur++;

}

for (i = 0; i < motif_b2_7.total; i++)

{
if (strcmp(motif_b2_7.list[i].seq, D->b2_7) 	0)

{
Score += point7;/*motif_b7.list[i].occur;*/

motif_b2_7.list[i].negoccur++;

}

for (i = 0; i < motif_b3_7.total; i++)

if (strcmp(motif_b3_7.list[i].seq, D->b3_7) == 0)

Score += point7;/*motif_b7.list[i].occur;*/
motif_b3_7.list[i].negoccur++;

}
}

for (i = 0; i < motif bl_8.total; i++)

if (strcmp(motif_bl_8.list[i].seq, D->b1_8) == 0)

Score += point8;/*motif_b8.list[i].occur;*/
motif b 1_8.list[i].negoccur++;

}

for (i = 0; i < motif b2_8.total; i++)

if (strcmp(motif_b2_8.list[i].seq, D->b2_8) == 0)

Score += point8;/*motif_b8.list[i].occur;*/
motif_b2_8.list[i].negoccur++;

51

for (i = 0; i < motif_bl_9.total; i++)

if (strcmp(motif_bl_9.list[i].seq, D->b1_9) == 0)

Score += point9;/*motif_b9.list[i].occur;*/
motif b 1_9.list[i]. negoccur++;
break;

/*Input sequences from a file*/
void TrainNegDonor(FILE *F_In, int ScoreBoard[])

int i,n,p,
seqlen; /*length of input seq*/

int TempScor;

char seq[MAXLENGTH],
T[MAXLENGTH];

for (TotalSeq =0; ;)

if ((fgets(T, MAXLENGTH, F_In)) == NULL)
break;

if (T[0] == '>')
TotalSeq++;

printf("\nTotalSeq: %i\n", TotalSeq);
if (TotalSeq > MaxSeq)

printf("\n%s\n", "Error: Too many sequences.");
exit(0);

rewind(F_In);
for (n = 0; n < TotalSeq; n++)

if (fgets(T, MAXLENGTH, F_In) != NULL)

if (T[0] == '>')

52

n--; /*do not count sequence name line*/
continue;

i = 0;
seqlen = strlen(T);
if (T[seqlen -l] == '\n')

seqlen--;

strcpy(seq, T);
seqlen = strlen(seq);
TempScor = 0;

for (i=0; i < seqlen; i++)

if (i < 3)
continue;

if ((seq[i] =='G') && (seq[i+l] =='T'))

Score = 0;

P = i;
ExtractMotif(p, seq, &Donor);
VoteDonorNeg(&Donor);

TempScor = Score;
if (TempScor > ScoreBoard[n])

ScoreBoard[n] = TempScor;

}

/*Input sequences from a file*/
void TrainPosDonor(FILE *Fin, int ScoreBoard[])

int i,n,
seqlen; /*length of input seq*/

int TempScor;

char seq[MAXLENGTH],
T[MAXLENGTH];

for (TotalSeq =0; ;)

53

if ((fgets(T, MAXLENGTH, F_In)) == NULL)
break;

if (T[0] 	'>')
TotalSeq++;

}

printf("\nTotalSeq: %i\n", TotalSeq);
if (TotalSeq > MaxSeq)

printf("\n%s\n", "Error: Too many sequences.'
exit(0);

rewind(F_In);
for (n = 0; n < TotalSeq; n++)

if (fgets(T, MAXLENGTH, F_In) != NULL)

if (T[0] == '>')

n--; /*do not count sequence name line*/
continue;

i=0;
seqlen = strlen(T);
if (T[seqlen -l] == '\An')

seqlen--;

strcpy(seq, T);
seqlen = strlen(seq);

TempScor = 0;
Score = 0;

ExtractMotif(30 , seq, &Donor);

VoteDonorPos(&Donor);

TempScor = Score;
if (TempScor > ScoreBoard[n])

ScoreBoardlni = TempScor;

54

void WriteScoreToFile(int A[], int Total, FILE *F_Out)

int i;
for (i = 0; i < Total; i++)

fprintf(F_Out, "\t%i %ld\n", i+l, A[i]);

int PosiveLowBound(int A[], int T, int *pmax)

int min;
int i;
min = A[0];
*pmax = A[0];
for (i = 0; i < T; i++)

if (min > A[i])
min = A[i];

if (*pmax < A[i])
*pmax = A[i];

}

return min;

int NegativeHighBound(int A[], int T,int *nmin)

int max;
int i;
max = *nmin = A[0];
for (i = 0; i < T; i++)

if (max < A[i])
max = A[i];

if (*nmin > A[i])
*nmin = A[i];

55

return max;

APPENDIX B

DONOR CLASSIFICATION PROGRAM

This is the ANSI C version of the Donor Classification program
The defined MAXLENGTH and MaxSeq can be changed into different
values. But other defined constant values can not be changed.

/* Program Name: DonorClassify.c */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MAXLENGTH 1000
#define MaxSeq 300

#define point6 64
#define point? 128
#define point8 256
#define point9 512
typedef struct _donor

char b1_6[7], bl_7[8], bl_8[9],
b2_6{7], b2_7[8], b2_8[9],
b3_6[7}, b3_7[8],
b4_6[7];

} donor;

donor Donor;
int TotalSeq;

typedef struct grade

int Score;
char *Class;

I Grade;
int Score;

Grade ScoreBoard[MaxSeq];

#define Pos_Min 768 	/*Positive lower bound, inclusive*/

56

#define Neg_Max 640 /*Negative high bound*/
#define Positive "Donor"
#define Negative "Non-Donor"
#define Unknown ''Unknown"

#define numb l_6 68
#define numbl_7 141
#define numbl_8 183
#define numb2_6 49
#define numb27 90
#define numb2_8 171
#define numb3_6 40
#define numb3_7 102
#define numb4_6 69
char

motif_bl_6[numb1_6] [7],
motif_bl_7[numbl_7] [8],
motif bl_7[numbl_7] [8],
motif_bl_7[numb1_7] [8],
motif_bl_8 [numbl_8] [9],
motif b2_6[numb2_6][7],
motif_b2_7 [numb2_7] [8],
motif_b2_8 [numb2_8] [9],
motif_b3_6[numb3_6] [7],
motif_b3_7 [numb3_7] [8],
motif_b4_6[numb4_6][7];

FILE *Libin, *F _In, *F_Out, *Score_Out;

main()

char sequence[50];
char *donor_lib = ''donordat.lib";
char Score_file[50];
char *Dono_out = "dono_out2.doc";
printf("\n\n\t\tWelcome for using this\n");
printf("\t\tDonor Classify program!\n");
printf("\n\t\tNote:");
printf("\n\tl) Please put the sequence file in the\n");
printInt same directory as this program is in.\n");
printf("\t2) The max number of sequences is %i\n", MaxSeq);
printf("\t3) The results will be in the file name you specifed\n");

initiateData();
if ((Lib_In = fopen(donor_lib, "r")) == NULL)

57

printf(''ERROR: %s file open.\n", donor_lib);
exit (0);

InportDonorLib();
fclose(Lib_In);

printf("\nPlease enter your sequence file:\n");
scanf("%49s", sequence)

if ((F_In = fopen(sequence, "r")) == NULL)

printf("ERROR: %s file open.\n", sequence);
exit (0);

}

Classif(F_In, ScoreBoard);
fclose(F_In);

printf("\nPlease enter your output file to hold the results:\n");

scanf("%49s", Score_file);

if ((Score_Out = fopen(Score_file, 	")) == NULL)

printf("ERROR: %s file open.\n", Score_file);
exit (0);

WriteScoreToFile(ScoreBoard, TotalSeq, Score_Out);
fclose(Score_Out);

printf("\nThe program finished for Donor Classification.\n");
printf("Please look at your results in file: %s.\n",Score_file);

return 0;

}

void initiateData()

Donor.b1_6[6] = '\0';
Donor.b1_7[7]= '\0';
Donor.b1_8[8]= '\0';
Donor.b2_6[6]= '\0';

58

Donor.b2_7[7]= '\0';
Donor.b2_8 [8]= '\0';
Donor.b3_6[6]= '\0';
Donor.b3_7[7]= '\0';
Donor.b4_6[6]= '\0';

void InportDonorLib()

int i, j;
char T[15],Tl[5];
for (i = 0; i < numb1_6; i++) {

if (fgets(T, 10, Lib_In) == NULL)

printf("Error1: Donor Lib file open.\n");
exit(0);

}
strcpy(T l, T);
for(j = 0; j < 6; j++)

motif_b2_6[i][j] = Tl[j];
motif_b2_6[i][6]='\0';

}

for (i = 0; i < numb2_6; i++)

if (fgets(T, 10, Lib_In) == NULL)

printf("Error2: Donor Lib file open.\n");
exit(0);

strcpy(T 1 T);
for(j = 0; j < 6; j++)

motif_b2_6[i][j] = T 1 [j];
motif_b2_6[i][6]=0';

for (i = 0; i < numb3_6; i++)

if (fgets(T, 11, Lib_In) == NULL)

59

printf("Error3: Donor Lib file open.\n);
exit(0);

strcpy(T I , T);
for(j = 0; j < 6; j++)

motif_b3_6[i][j] = T 1 [j];
motif b3_6[i][6]='\0';

for (i = 0; i < numb4_6; i++)

if (fgets(T, 10, Lib_In) == NULL)

printf("Error: Donor Lib file open.\n");
exit(0);

}
strcpy(T I , T);
for(j = 0; j < 6; j++)

motif_b4_6[i][j] = T1[j];
motif_b4_6[i][6]='\0';

}

for (i = 0; i < numbl_7; i++)

if (fgets(T, 10, Lib_In) == NULL)

printf("Error: Donor Lib file open.\n");
exit(0);

1
strcpy(T1, T);
for(j = 0; j < 7; j++)

motif_b 1_7 [i] [j] = T1[j];
motif_bl_7[i][7]=`\0';

for (i = 0; i < numb2_7; i++)

if (fgets(T, 10, Lib_In) == NULL)

printf("Error: Donor Lib file open.\n");
exit(0);

strcpy(T1, T);

60

for(j = 0; j < 7; j++)

motif_b2_7[i][j] = Tl[j];
motif_b2_7[i][7]=0';

}

for 	0; i < numb3_7; i++)

if (fgets(T, 10, Lib_In) == NULL)

printf("Error: Donor Lib file open.\n");
exit(0);

}
strcpy(Tl, T);
for(j = 0; j < 7; j++)

motif_b3_7[i][j] = T 1 [j];
motif_b3_7[i][7]='\0';

}

for (i = 0; i < numbl_8; i++)

if (fgets(T, 12, Lib_In) == NULL)

printf("Error: Donor Lib file open.\n");
exit(0);

}
strcpy(T1, T);
for(j = 0; j < 8; j++)

motif_bl_8[i][j] = T 1 [j];
motif_b1_8[i][8]=0';

}

for (i = 0; i < numb2_8; i++)

if (fgets(T, 12, Lib_In) == NULL)

printf("Error: Donor Lib file open.\n");
exit(0);

}
strcpy(T1, T);

for(j = 0; j < 8; j++)

motif_b2_8[i][j] = Tl[j];
motif_b2_8[i][8]='\0';

61

void ExtractMotif(int p, char A[], donor *motif)

int first, last;
int i, m;

last = p + 5;
first = p - 3;

for (i = first; i <= last; i++

m = i - first;

switch (m)

case 0:
motif->b l_8 [0]
=motif->b l_7 [0] = motif->bl_6[0] = A[i];
break;

case 1:
motif->bl_8[l]

=motif->b 1_7 [1] = motif->b 1_6[1]
=motif->b2_8[0] = motif->b2_7[0]

motif->b2_6[0] = A[i];
break;

case 2:
motif->b l_8 [2]

=motif->b 1_7 [2] = motif->b 1_6 [2]
=motif->b2_8[1] = motif->b2_7[1]
=motif->b2_6[1]
=motif->b3_6[0] = motif->b3_7[0] = A[i];
break;

case 3:
motif->b 1_8 [3]

=motif->b 1_7 [3] = motif->bl_6[3]
=motif->b2_8[2] = motif->b2_7[2]
=motif->b2_6[2]
=motif->b3_6[1] = motif->b3_7[l]
=motif->b4_6[0] = A[i];
break;

case 4:
motif->b 1_8 [4]
=motif->b l_7[4] = motif->b l_6[4]
=motif->b2_8[3] = motif->b2_7[3]
=motif->b2_6[3]

62

=motif->b3_6[2] = motif->b3_7[2]
=motif->b4_6[l] = A[i];
break;

case 5:
motif->b 1_8[5]
=motif->b l_7[5] = motif->b l_6[5]
=motif->b2_8 [4] = motif->b2_7 [4]
=motif->b2_6[4]
=motif->b3_6[3] = motif->b3_7[3]
=motif->b4_6[2] = A[i];
break;

case 6:
motif->b1_8[6]
=motif->bl_7[6]
=motif->b2_8[5] = motif->b2_7[5]
=motif->b2_6[5]
=motif->b3_6[4] = motif->b3_7[4]
=motif->b4_6[3] = A[i];
break;

case 7:
motif->b 1_8 [7]
=motif->b2_8[6] = motif->b2_7[6]
=motif->b3_6[5] = motif->b3_7[5]
=motif->b4_6[4] = A[i];
break;

case 8:
motif->b2_8[7]
= motif->b3_7[6]
=motif->b4_6[5] = A[i];
break;

/*switch*/

/*Write the donor data to a file*/
void WriteDonorToFile(char *fileName)

int i;

if ((F_Out = fopen(fileName, w")) == NULL)

printf("\nError: open %s file", fileName);
exit(0);

63

fprintf(F_Out, " \n\n"motifb 1_6**\n");
fprintf(F_Out, "Total: %An", numb1_6);
for(i = 0; i < numb l_6; i++)

fprintf(F_Out, "\t%s\n",
motifb 1_6 [i]);

fprintf(F_Out, "\n\n"rnotif_b2_6**\n");
fprintf(F_Out, "Total: %i\n", numb2_6);
for(i = 0; i < numb2_6; i++)

fprintf(F_Out, "\t%s\n",
motif _b2_6[1]);

fprintf(F_Out, "\n\n**motif_b3_6**\n");
fprintf(F_Out, "Total: %i\n", numb3_6);
for(i = 0; i < numb3_6; i++)

fprintf(F_Out, "\t%s\n",
motif b3_6[i]);

fprintf(F_Out, "\n\n"motif b4_6"\n");
fprintf(F_Out, "Total: %i\n", numb4_6);
for(i = 0; i < numb4_6; i++)

fprintf(F_Out, "\t%s\n",
motif_b4_6[i]);

fprintf(F_Out, " \n\n"motif_b 1_7 '4 *\n") ;
fprintf(F_Out, "Total: %i\n", numb1_7);
for(i = 0; i < numb1_7; i++)

fprintf(F_Out, "\t%s\n",
motif_b l_7 [i]) ;

fprintf(F_Out, "\n\n**motif_b2_7**\n");
fprintf(F_Out, "Total: %i\n", numb2_7);
for(i = 0; i < numb2_7; i++)

fprintf(F_Out, "\t%s\n",
motif_b2_7[i]);

fprintf(F_Out, "\n\n"motif_b3_7**\n");
fprintf(F_Out, "Total: %i\n", numb3_7);
for(i = 0; i < numb3_7; i++)

fprintf(F_Out, "\t%s\n",
motif_b3_7[1]);

fprintf(F_Out, "\n\n**motif_b 1 _8 **\n");
fprintf(F_Out, "Total: %i\n", numb l_8);

64

for(i = 0; i < numbl_8; i++)
fprintf(F_Out, "\tVos\n",

motif_b I _8[i]);

fprintf(F_Out, "\n\n**motif_b2_8"\n");
fprintf(F_Out, "Total: %i\n", numb2_8);
for(i = 0; i < numb2_8; i++)

fprintf(F_Out, "\t%s\n",
motif_b2_8[i]);

}

void InitiateScoreBoard()

int i;
for (i = 0; i < MaxSeq; i++)

ScoreBoard[i].Score = 0;

void VoteDonor(donor *D)

int i;
Score = 0;

for (i = 0; i < numbl_6; i++)
if (strcmp(motif_b l_6[i], D->b l_6) == 0)

Score += point6;/*motif_b6.list[i].occur;*/

for (i = 0; i < numb1_7; i++)
if (strcmp(motif_b 1_7[i], D->b l_7) == 0)

Score += point7;

for = 0; i < numbl_8; i++)
if (strcmp(motif_b 1_8 [i], D->b l_8) == 0)

Score += point8;

for (i = 0; i < numb2_6; i++)
if (strcmp(motif_b2_6[i], D->b2_6) == 0)

Score += point6;

for = 0; i < numb2_7; i++)
if (strcmp(motif_b2_7[i], D->b2_7) == 0)

Score += point7;

65

for (i = 0; i < numb2_8; i++)
if (strcmp(motif_b2_8[i], D->b2_8) == 0)

Score += point8;

for (i = 0; i < numb3_6; i++)
if (strcmp(motif_b3_6[i], D->b3_6) == 0)

Score += point6;

for (i = 0; i < numb3_7; i++)
if (strcmp(motif_b3_7[i], D->b3__7) == 0)

Score += point7;

for (i = 0; i < numb4_6; i++)
if (strcmp(motif_b4_6[i], D->b4_6) == 0)

Score += point6;

}

/*Input sequences from a file*/
void Classif(FILE *F_In, Grade ScoreBoard[])

int i,n,p,
seqlen; /*length of input seq*/

int TempScor;
char seq[MAXLENGTH],

T[MAXLENGTH];

for (TotalSeq =0; ;)

if ((fgets(T, MAXLENGTH, Fin)) == NULL)
break;

if (T[0] == '>')
TotalSeq++;

printf("\nTotalSeq: %i\n", TotalSeq);
if (TotalSeq > MaxSeq)

printf("\n%s\n", "Error: Too many sequences.'
TotalSeq = MaxSeq;

}
rewind(F_In);
for (n = 0; n < TotalSeq; n++)

66

(fgets(T, MAXLENGTH, Fin) != NULL)

if (T[0] == '>')

n--; /*do not count sequence name line*/
continue;

}
i = 0;
seqlen = strlen(T);
if (T[seqlen -l] =='\n')

seqlen--;

strcpy(seq, T);
seqlen = strlen(seq);
TempScor = 0;

for (i=3; i < seqlen -5 ; i++)

if ((seq[i] == 'G') && (seq[i+1] == 'T'))

Score = 0;
p=i;
ExtractMotif(p, seq, &Donor);
VoteDonor(&Donor);

TempScor = Score;
if (TempScor > ScoreBoard[n].Score)

ScoreBoard[n].Score = TempScor;

}
if (ScoreBoard[n].Score >= Pos_Min)

ScoreBoard[n].Class = Positive;
else if (ScoreBoard[n].Score <= Neg_Max)

ScoreBoard[n].Class = Negative;

else
ScoreBoard[n].Class = Unknown;

}

}

void WriteScoreToFile(Grade A[], int Total, FILE *F_Out)

int i;

67

fprintf(F_Out, "\t Seq# \t Score \t Class\n\n");
for (i = 0; i < Total; i++)

fprintf(F_Out, "\t %3i %5i \t %s\n", 1+l,
A[i].Score, A[i].Class);

68

APPENDIX C

DONOR DETECTION PROGRAM

This is the Donor Site Detection program. This program can detect
the real donor sites in the input DNA sequences. The Maximum DNA
sequence is 5000 base, but it can be changed to different number.
Please do not change other constant numbers.

/*Program Name: DonorDetection.c */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MAXLENGTH 5000
#define TEMPLENGTH 300
#define MaxSeq 300

#define point6 64
#define point? 128
#define point8 256
#define point9 512
typedef struct _donor

char b1_6[7], b1_7[8], bl_8[9],
b2_6[7], b2_7[8], b2_8[9],
b3_6[7], b3_7[8],
b4_6[7];

} donor;

donor Donor;
typedef struct _spliceP

int Position;
int Score;
struct _spliceP *next;

} spliceP;

typedef struct junctions

spliceP *Donor;

69

spliceP *Acceptor;
Junctions;

Junctions *SpliceJunctions;

int TotalSeq;

int Score;

#define Pos_Min 768 /*Positive lower bound, inclusive*/
#define Neg_Max 640 /*Negative high bound*/
#define Positive "Donor"
#define Negative "Non-Donor"
#define Unknown "Unknown"

#define numbl_6 68
#define numbl_7 141
#define numbl_8 183
#define numb2_6 49
#define numb2_7 90
#define numb2_8 171
#define numb3_6 40
#define numb3_7 102
#define numb4_6 69
char

motif_bl_6[numbl_6] [7],
motif_b1_7[numbl_7] [8],
motif_bl_7[numbl_7] [8],
motif_b1_7 [numb1_7] [8],
motif_bl_8 [numb 1_8] [9],
motif_b2_6[numb2_6] [7],
motif b2_7[numb2_7][8],
motif b2_8[numb2_8][9],
motif_b3_6[numb3_6] [7],
motif_b3_7 [numb3_7] [8],
motif_b4_6[numb4_6][7];

FILE *Lib_I *F_In, *F_Out, *Score_Out;

main()

char sequence[50];
char *donor_lib = "donordat.lib";
char Score_file[50];

70

printf("\n\n\t\tWelcome for using this\n");
printf("\t\tDonor Detection program!\n");
printf("\n\t\tNote:");

printf("\n\t1) Please put the sequence file in the\n");
printf("\t same directory as this program is in.\n");
printf("\t2) The max number of sequences is %i\n", MaxSeq);
printf("\t3) The results will be in the file name you specifed\n");

initiateData();
if ((Lib_In = fopen(donor_lib, ")) == NULL)

printf("ERROR: %s file open.\n", donor_lib);
exit (0);

InportDonorLib();

fclose(Lib_In);

printf("\nPlease enter your sequence file:\n");
scanf("%49s", sequence);

if ((F_In = fopen(sequence, ")) == NULL)

printf("ERROR: %s file open.\n", sequence);
exit (0);

Classif(F_In);
fclose(F_In);

printf("\nPlease enter your output file to hold the results:\n");

scanf("%49s", Score_file);

if ((Score_Out = fopen(Score_file, ")) == NULL)

printf("ERROR: %s file open.\n", Score_file);
exit (0);

WriteScoreToFile(TotalSeq, Score_Out);

71

fclose(Score_Out);
printf("\nThe program finished for Donor RecognitionAn"),
printf("Please look at your results in file: %s.\n",Score_file);

return 0;

void initiateData()

Donor.b l_6[6] = '\0';
Donor.b 1_7[7]= '\0';
Donor.b 1_8 [8]= '\0';
Donor.b2_6[6]= '\0';
Donor.b2_7 [7], '\0';
Donor.b2_8 [8]= '\0';
Donor.b3_6[6]= '\0';
Donor.b3_7[7]= '\0';
Donor.b4_6[6]= '\0';

}

void InportDonorLib()

int i, j;
char T[15],T1[5];
for (i = 0; i < numbl_6; i++)
{

if (fgets(T, 10, Lib_In) == NULL)

printf("Errorl: Donor Lib file open.\n");
exit(0),

}
strcpy(T 1 , T);
for(j = 0; j < 6; j++)

motif_b 1_6 [i] [j] = T 1 [j];
motif_b l_6[i][6]='\0';

}

for (i = 0; i < numb2_6; i++)

if (fgets(T, 10, Lib_In) == NULL)

72

printf("Error2: Donor Lib file open.\n");
exit(0);

strcpy(Tl, T);
for(j = 0; j < 6; j++)

motifb2_6[i][j] = T 1 [j];
motif_b2_6[i][6]=A0';

for (i = 0; i < numb3_6; i++)

if (fgets(T, 11, Lib_In) == NULL)

printf("Error3: Donor Lib file open An");
exit(0);

strcpy (T1 , T);
for(j = 0; j < 6; j++)

motif_b3_6[i][j] = TI [j];
motif_b3_6[i][6]=0';

for (i = 0; i < numb4_6; i++)

if (fgets(T, 10, Lib_In) == NULL)

printf("Error: Donor Lib file open .\n");
exit(0);

strcpy(Tl, T);
for(j = 0; j < 6; j++)

motif_b4_6[i][j] = Tl[j];
motif_b4_6[i][6]=0';

for = 0; i < numbl_7; i++)

if (fgets(T, 10, Lib_In) == NULL)

printf("Error: Donor Lib file open.\n");
exit(0);

73

strcpy(T I , T);
for(j = 0; j < 7; j++)

motif_b I _7 [i] [] = Tl [j];
motif_b1_7[i][7]='\0';

for (i = 0; i < numb2_7; i++)

if (fgets(T, 10, Lib_In) == NULL)

printf("Error: Donor Lib file open.\n");
exit(0);

strcpy(T I , T);
for(j = 0; j < 7; j++)

motifb2_7[i][j] = T 1 [j];

motif_b2_7[i][7]='\0';
}

for (r = 0; i < numb3_7; i++)

if (fgets(T, 10, Lib_In) == NULL)

printf("Error: Donor Lib file open.\n");
exit(0);

}
strcpy(T 1 , T);
for(j = 0; j < 7; j++)

motif_b3_7[i][j] = T1 [j];
motif_b3_7[i][7]='\0';

for = 0; i < numb1_8; i++)

if (fgets(T, 12, Lib_In) == NULL)

printf("Error: Donor Lib file open.\n");
exit(0);

strcpy(T 1 , T);
for(j = 0; j < 8; j++)
motif_bl_8[i][j] = Tl[j];

motif_b1_8[i][8]=VY;

74

for (i = 0; i < numb2_8; i++)

if (fgets(T, 12, Lib_In) == NULL)

printf("Error: Donor Lib file open.\n");
exit(0);

strcpy(T1, T);
for(j = 0; j < 8; j++)

motif_b2_8[i] [j] = T 1 [j];
motif_b2_8[i][8]='\0';

void ExtractMotif(int p, char A[], donor *motif

int first, last;
int i, m;

last = p + 5;
first = p - 3;

for (i = first; i <= last; i++)

m = i - first;
switch (m)

case 0:
motif->b l_8 [0]

=motif->bl_7 [0] = motif->b1_6[0] = A [i];
break;

case 1:
motif->b 1_8 [1]

=motif->bl_7 [l] = motif->bl_6[1]
=motif->b2_8[0] = motif->b2_7[0]
= motif->b2_6[0] = A[i];
break;

case 2:
motif->b1_8 [2]
=motif->bl_7 [2] = motif->bl_6[2]
=motif->b2_8[1] = motif->b2_7 [1]
=motif->b2_6[l]

75

=motif->b3_6[0] = motif->b3_7[0] = A[i];
break;

case 3:
motif->bl_8[3]

=motif->b l_7[3] = motif->b l_6[3]
=motif->b2_8[2] = motif->b2_7[2]
=motif->b2_6[2]
=motif->b3_6[1] = motif->b3_7[1]
=motif->b4_6[0] = A[i];
break;

case 4:
motif->b l_8 [4]
=motif->b l_7 [4] = motif->b1_6[4]
=motif->b2_8[3] = motif->b2_7[3]
=motif->b2_6[3]
=motif->b3_6[2] = motif->b3_7[2]
=motif->b4_6[1] = A[i];
break;

case 5:
motif->b1_8[5]
=motif->b 1_7 [5] = motif->b 1_6[5]
=motif->b2_8[4] = motif->b2_7[4]
=motif->b2_6[4]
=motif->b3_6[3] = motif->b3_7[3]
=motif->b4_6[2] = A[i];
break;

case 6:
motif->b 1_8 [6]
=motif->b l_7[6]
=motif->b2_8[5] = motif->b2_7[5]
=motif->b2_6[5]
=motif->b3_6[4] = motif->b3_7[4]
=motif->b4_6[3] = A[i];
break;

case 7:
motif->b 1_8 [7]
=motif->b2_8 [6] = motif->b2_7 [6]
=motif->b3_6[5] = motif->b3_7[5]
=motif->b4_6[4] = A[i];
break;

case 8:
motif->b2_8[7]
= motif->b3_7[6]
=motif->b4_6[5] = A[i];
break;

76

I /*switch*/

void VoteDonor(donor *D)

int i;
Score = 0;

for (i = 0; i < numb l_6; i++)

if (strcmp(motif_b I_6[i], D->b1_6) == 0)
Score += point6;/*motif_b6.list[i].occur;*/

for (i = 0; i < numb1_7; i++)

if (strcmp(motif_b 1_7[i], D->b l_7) == 0)
Score 	point7;

for (i = 0; i < numb l_8; i++)

if (strcmp(motif b 1_8[i], D->b 1_8) =-= 0)
Score += point8;

for 	0; i < numb2_6; i++)
if (strcmp(motif_b2_6[i], D->b2_6) == 0)

Score += point6;

for (i = 0; i < numb2_7; i++)
if (strcmp(motif_b2_7[i], D->b2_7) == 0)

Score += point7;

for (i = 0; i < numb2_8; i++)
if (strcmp(motif_b2_8[i], D->b2_8) == 0)

Score += point8;

for (i = 0; i < numb3_6; i++)
if (strcmp(motif_b3_6[i], D->b3_6) == 0)

Score += point6;

for (i = 0; i < numb3_7; i++)
if (strcmp(motif_b3_7[i], D->b3_7) == 0)

Score += point7;

for (i = 0; i < numb4_6; i++)
if (strcmp(motif_b4_6[D->b4_6) == 0)

77

Score *z_- point6;

/*Input sequences from a file=/
void Classif(FILE *F_In)

int i,n,p,j,m,
seqlen; /*length of input seq*/

int TempScor;

char seq[MAXLENGTH] = "\O",
T[TEMPLENGTH],

T 1 [TEMPLENCITH];

spliceP *tpl, *tp2;

TotalSeq = 0;

for (j =0; ;)

if ((fgets(T, TIEMPLENGTH, F_In)) == NULL)
break;

if (T[0] == '>')
TotalSeq++;

}

printf("\nTotalSeq: %An", TotalSeq);
if (TotalSeq > MaxSeq)

printf("\n%s\n", "Error: Too many sequences.");
TotalSeq = MaxSeq;

SpliceJunctions = malloc(TotalSeq sizeof(Junctions)),

for (j = 0; j < TotalSeq; j++)

SpliceJunctions[j].Donor = NULL;
SpliceJunctions[j].Acceptor = NULL;

rewind(F_In);
for (n = 0; n < TotalSeq; n++)

if (fgets(T, TEMPLENGTH, F_In) != NULL)

78

if (T[0] == '>')
{

n--; /*do not count sequence name line*/
continue;

seqlen = strlen(T);

m = 0;
for (j = 0; j < seqlen; j ++)

if ((T[j] == 'A') II (T[j] == 'G') H (T[j] == 'C')
II(T[j] == 'T') II (T[j] == 'N'))

T 1 [m] = T[j];
m++;

Tl [m] = '\0';

strcpy(seq, T 1);

for (i = 0; ;)

if (fgets(T, TEMPLENGTH, Fin) == NULL)
break;
if (T[0] == '>')

break;
seqlen = strlen(T);

m = 0;
for (j = 0; j < seqlen; j ++)

if ((T[j] == 'A') H (T[j] == 'G') II (T[j] == 'C')
II(T[j] == 'T') II (T[j] == 'N'))

Tl [m] = T[j];
m++;

Tl[m] ='\0';

strcat(seq, TI);

79

seqlen = strlen(seq);
if (seqlen > MAXLENGTH)

seqlen = MAXLENGTH;
TempScor = 0;

for (i=3; i < seqlen; i++)

if ((seq[i] 	'G') && (seq[i+ l] 	'T'))

Score = 0;

i;
ExtractMotif(p, seq, &Donor);
VoteDonor(&Donor);

TempScor = Score;
if (TempScor > Pos_Min)

tp 1 = malloc(sizeof(spliceP));
tp 1 ->Position = i;
tp I ->Score = TempScor;
tp I ->next = NULL;
if (SpliceJunctions[n].Donor == NULL)

SpliceJunctions[n].Donor = tpl;
tp2 = SpliceJunctions[n].Donor;

else if (tp2->next == NULL)

{
tp2->next = tpl;
tp2 = tp2->next;

}
tpl = NULL;

void WriteScoreToFile(int Total, FILE *F_Out)

f

80

int i;
spliceP *Tptr;

fprintf(F_Out, "\t RESULTS\n");
for (i = 0; i < Total; i++)

Tptr = SpliceJunctions[i]Donor;
fprintf(F_Out, "\n Sequence # %3i\n", i + 1);
fprintf (F_Out, "\tPosition 	Score\n");
while (Tptr != NULL)

{
fprintf (F_Out, "\t%5i 	%5i\n", Tptr->Position, Tptr->Score);
Tptr = Tptr->next;

81

REFERENCES

Alberts, B., Bray, D., Lewis, I., Raff, M., Roberts, K. and Watson, J. D. Molecular
Biology of the Cell. 3rd ed. Garland Publishing, Inc. New York and London, 1994.

2. Reed, R. and Maniatis, T. "Intron Sequences Involved in Lariat Formation during
Pre-mRNA Splicing," Cell, 41, 95-105, 1985.

3. Treisman, R., Orkin, S.H. and Maniatis, T. "Specific Transcription and RNA
Splicing Defects in Five Cloned (3-Thalassaemia Genes," Nature, 302, 591-596,
1983.

4. Gelfand, M.S. "Prediction of Function in DNA Sequence Analysis," J. Comput.
Biol., 2(1), 87-115, 1995.

5. Iida, Y. "DNA Sequences and Multivariate Statistical Analysis. Categorical
Discrimination Approach to 5' Splice Site Signals of mRNA Precursors in Higher
Eukaryotes' Genes," Comput. Appl. Biosci. 3. 93-98, 1987.

6. Iida, Y. "Quantification Analysis of 5'-Splice Signal Sequences in mRNA
Precursors. Mutations in Rabit β-Globin Gene," Biochimica et Biophysica Acta,
1007, 270-276, 1989.

7. Burset, M., and Guigo, R. "Evaluation of Gene Structure Prediction Programs,"
Genomics, 34, 353-367, 1996.

8. Marshall, E. "Emphasis Turns from Mapping to Large-scale Sequencing," Science,
268, 1270-1271, 1995.

9. Guigo, R.,Knudsen, S., Drake, N., and Smith, T.F. "Prediction of Gene Structure," J.
Mol. Biol., 226, 141-157, 1992.

10. Snyder, E. E., and Stormo, G. D. "Identification of Protein Coding Regions in
Genomic DNA," J. Mol. Biol., 248, 1-18, 1995.

11. Dong, S., and Searls, D.B. "Gene Structure Prediction by Linguistic Methods,"
Genomics, 23, 540-551, 1994.

12. Xu, Y., Mural, R.J., and Uberbacher, E.C. "Constructing Gene Models from
Accurately Predicted Exons: An Application of Dynamic Programming," Comput.
Appl. Biosci., 10, 613-623, 1994.

13. Schneider, T. D., and Stephens, R. M. "Sequence Logos: a New Way to Display
Consensus Structures," Nucleic Acids Res., 18, 6097-6100, 1990.

82

83

14. Herman, N.D., and Schneider, T.D."High Information Conservation Implies that at
Least Three Proteins Bind Independently to F Plasmid incD Repeats," J. Bacteriol.,
174, 3558-3560, 1992.

15. Papp, P.P., Chattoraj, D.K., and Schneider, T.D. "Information Analysis of Sequences
that Bind the Replication Initiator RepA," J. Mol. Biol., 233, 219-230, 1993.

16. Day, W.H.E., and McMorris, F.R. "Critical Comparison of Consensus Methods for
Molecular Sequences," Nucleic Acides Res., 20, 1093-1009, 1992

17. Staden, R. "Computer methods to Locate Signals in Nucleic Acid Sequences,"
Nucleic Acids Res., 12, 505-519, 1984.

18. Shavlik, J.W., Towell, G.G., and Noordewier, M.O. "Using Knowledge-based Neural
Networks to Refine Existing Biological Theories," in Lim, H.A., Fickett, J.W., and
Robbins, R.J., eds., Proc. 2nd Int. Conf. on Bioinformatics, Supercomputing and
Complex Genome Analysis, World Scientific, Singapore, 377-390, 1993

19. Milanesi, L., Kolchanov, N.A., Rogozin, 1.B., Ischenlo, I.V., Kel, A.E., Orlov, Y.L.,
Ponomarenko, M.P., and Vezzoni, P. "GenViewer: A computing Tool for Protein-
coding Regions Prediction in Nucleotide Sequences," in Lim, H.A., Fickett, J.W.,
Cantor, C.R., and Robbins, R.J., eds., Proc. 2nd Int. Cong. On Bioinformatics,
Supercomputing and Complex Genome Analysis, World Scientific, Singapore, 573-
587, 1993.

20. Lerner, M.R., Boyle, J. A., Mount, S. M., Wolin, S. L. and Steriz, J.A. "Are snRNPs
involved in splicing?," Nature, 283. 220-224, 1980.

21. Mount, S. M. "A catalogue of splice junction sequences," Nucleic Acids Res., 10,
459-472, 1982.

22. Kudo, M., Kitamura-Abe, S. Shimbo, M., and lida, Y. "Analysis of context of 5'-
splice site sequences in mammalian mRNA precursors by subclass method,"
Comput. Appl. Biosci., 8. 367-376, 1992

23. Wang, J.T.L., Shapiro, B.A., and Shasha, D., edit., Pattern Discovery in Molecular
Biology. Oxford University Press, New York, in progress.

24. Loewensterm, D., Hirsh, H., Yianilos, P., and Noordewier, M. "DNA Sequence
Classification Using Compression-based Induction," DIMACS Tech. Report,
Rutgers University, 1995.

25. Kudo, M., Lida, Y., and Shimbo, M. "Syntactic Pattern Analysis of 5'-splice Site
Sequences of mRNA Precursors in Higher Eukaryotic Genes," Comput. Appl.
Biosci., 3. 319-324, 1987

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Preliminaries
	Chapter 3: Donor Classification and Detection
	Chapter 4: Discussion
	Appendix A
	Appendix B
	Appendix C
	References

	List of Tables
	List of Figures

