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ABSTRACT  

TW O DIMENSIONAL AG O NISTIC CONTROL 

by 
Daqing Yang

The conventional method of precise multiple-axis motion control entails use of 

a multiple axis positioning system with each axis carrying not only the workpiece but 

also the positioning system of the remaining axes. The resultant structure is heavy, 

sluggish, and expensive. An alternative positioning technique is being investigated 

in which the motion of the workpiece is controlled by pulling it with tendons, each 

of which has its own actuator. Since the actuators can be mounted on the base of 

the structure instead of being carried by motion system of the other axes, they can 

be relatively large and powerful without the need for a massive structure such as 

is found in a conventional motion control system. This method of control is given 

the appellation agonistic, based on the usages of the word suggesting tension or a 

contest.

Agonistic control system can be used for low cost accurate positioning of 

workpiece. The control task can be moving the workpiece from one point to another 

point and kept there or tracking a given trajectory. While the workpiece moves, the 

tendons should be always kept in tension.

In this thesis, the model of two dimensional agonistic control (in the case of 

tendons of infinite elastic modulus) is established. It leads to a nonlinear multi- 

variable control problem. Based on this nonlinear model, a full-state feedback control 

law is synthesized. It is composed of two paxts. The first part is a feedforward 

control to cancel the nonlinear dynamics. The second part is a PD control term 

which requires velocity information. In the practice, velocity measurement may be 

contaminated by noise. In order of only using position measurement in the control 

law, a nonlinear observer is designed to provide the velocity information.
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Numerical simulation is performed to verify the ability of the proposed control

law.

In reality, the tendon has some elasticity. This finite elasticity, if not accounted 

for, can render the closed-loop system unstable. The investigation shows that the 

effect of elastic tendons can be compensated for by appropriately modifying the 

control law designed for inelastic tendons. In particular, the control law is synthesized 

using the singular perturbation method. It consists of a fast control and a slow 

control. The fast control is used to stablize the oscillations incurred by the finite 

elasticity of the tendon. The slow control drives the system to track the desired 

trajectory. Robustness of the controller is enhanced by using sliding mode control.

In the chapter 4, the design of observer in the elastic case is addressed. Linear 

uncertain system theory is used. The observer is globally stable.

The use of decentralized control scheme makes very simple the controller design 

and reduces the computational complexity. It is very useful for real time agonistic 

control. A design approach is presented for the decentralized control scheme. A 

simple linear second order model is used instead of complex nonlinear model used 

in centralized version. In this approach, the tension in each tendon is treated as 

disturbance, estimated by an observer, to be compensated.
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C H A PTER  1 

INTRO DUCTIO N  

1.1 Background

Motion control system are commercially available that achieve high static accuracy. 

These machines achieve their accuracy by relying upon a very rigid structure and 

motion of the object to be controlled is achieved through very precise mechanical 

drive systems. Not only are such machines very costly, but they are usually very 

slow, since the motors in the multiple axis positioning system have to move along 

with the load.

XY-table is an example of conventional positioning system (Jager, 1994). The 

table consists of three prismatic joints, where two of the joints move parallel to each 

other and coupled by a spindle with a torsion spring. It has two degrees-of-freedom, 

moving in the horizontal plane. The target area is a rectangle covered by the end- 

effector. The x and y coordinates correspond to the position of the “target” point 

in the horizontal plane. Two current amplifiers feed two permanent magnet DC 

motors. The transmission consists of cog wheels and timing belts. The two belts 

that drive the x-slides, and by that the y-slideway, are connected to belt-wheels on 

the spindle. The spindle is connected to the x-motor by a belt. The belt for the 

y-slide is connected to a belt-wheel directly mounted on the y-motor, so this motor 

drives the end-effector without reduction. Pre-tensioned springs connect the belts 

with the slides. With a flexible spindle, it is not necessary for the y-slideway to be 

perpendicular to the x-slideway.

Conventional positioning machines are useful for positioning of heavy objects 

but are inefficient for positioning of light objects such as semiconductor wafers.

There is a need for cheaper and faster means of motion control. A number of 

techniques have been proposed to address this need. The “Hummingbird” minipo

sitioner was developed at the IBM Thomas J. Watson Research Laboratories (Zai

1
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belt wheel belt wheel

belt
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belt target
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y slide 

torsion spring

y motor

spindle

x motor

Figure 1.1 Schematic drawing of XY-table

and Durfee et al, 1992). As its name suggests, the Hummingbird system has a small, 

wing-link actuator structure. It uses more or less conventional mechanical elements, 

but employs light weight materials, novel configurations, and pays careful attention 

to details of balance to achieve both precision and high speed operation. A prototype 

system was demonstrated to have micron precision.

Minipositioner is useful in applications requiring fast incremental motion of 

very low-mass payloads over a planar workspace. One example of such an application 

is the electrical probing of high-density electronic components, where the payload is 

a very small probe and speed is important because of the large number of moves. 

Other applications are laser beam positioning (Neumann, 1992), semiconductor wafer 

positioning and disk-drive (L.W. Chang, 1991).

In the mini-positioning system, tendons (cables, ropes and chains) can be used 

for actuation. The resulting system is so called “tendon-driven” system, Figure 1.2. 

Teleoperation manipulator is such an example where tendons are used to actuate 

manipulator remotely (Jacobsen et al, 1989).
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Load

Actuator
Tendon

Figure 1.2 Model of a single-joint driven by one rotary actuator

The conventional method of precise multiple-axis motion control entails use of 

a multiple axis positioning system with each axis carrying not only the workpiece 

but also the positioning system of the remaining axes. The resultant structure is 

heavy and sluggish. An alternative positioning technique is being investigated in 

this dissertation in which the object to be positioned is pulled from remote points 

on a fixed external framework. The motion of the workpiece is controlled by pulling 

it with tendons, each of which has its own actuator. Since the actuators can be 

mounted on the base of the structure instead of being carried by motion system of 

the other axes, they can be relatively large and powerful without the need for a 

massive structure such as is found in a conventional motion control system. This 

method of control is given the appellation agonistic, based on the usages of the word 

suggesting tension or a contest.

The idea of positioning an object by pulling on it is not new, of course, since 

that is precisely the mechanism used for position control in biological control, since 

the muscles can effect motion only by pulling their loads. In biology, such control is 

called “antagonistic.” The latter term, however, suggests a spirit of belligerence, or 

working at cross purposes, rather than in the highly coordinated manner in which 

an agonistic control system would have to operate to achieve optimal accuracy.

Agonistic control is very similar to multiple manipulator system where a 

number of manipulators engage a cooperative task such as carrying a single object.

In the paper (YVendlandt and Sastry, 1994), a special manipulator is considered 

which is designed for minimally invasive surgery. It is a wrist-like manipulator and
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provides the ability to point a tool at a desired location. With this system, surgeons 

are able to control the pointing direction of the tool by pulling.the tendons.

The system developed by S. Kawamura (Kawamura, 1994, 1995) and his 

students is most similar to the agonistic control system investigated in this thesis. 

Kawamura called his system as the “radial wire drive system”. It can be used in 

teleoperation with a master-slave systems. The slave robot performs tasks while 

human operators use master robot system to control the slave robot. Virtual reality 

is an example of such application (Ishii and Sato, 1993).

In the radial wire drive systems, the ends of several wires are fixed at the handle 

and each wire is radially stretched. The other end of each wire is connected to a 

pulley which is driven by a D.C. servo motor. Since there is no other pulley or outer 

tube between the handle and the actuator, transmission loss of wire tension is very 

low.

The use of tendons creates challenges for the controller design. Contrary to the 

multi-finger system where fingers push an object, tendons can only be pulled in the 

tendon-driven system. Therefore the common requirement in the controller design 

of the tendon-driven system is to ensure that the tendons do not go slack.

1.2 D escrip tion  o f an A gonistic System  

Agonistic control is a novel method of motion control. It provides X-Y positioning 

in the horizontal plane. The workpiece (a small object) is pulled by a multiplicity of 

tendons. Each tendon is controlled by its own actuator. While the workpiece moves, 

the tendons are required to be kept in tension.

Since the tendons must always be under tension, it is clear that motion in n 

dimensions requires a minimum of n +  1 tendons. But more than the minimum 

number of tendons can be used. The redundancy can be used to enlarge the size of 

the region in which the object can move. In particular, if the object is controlled
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Figure 1.3 Two dimensional agonistic control
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by tendons passing through a number of fixed passage points, the workpiece can be 

moved to any point within the convex hull of the set of passage points.

The mechanism of agonistic control is dynamically very similar to manipulators 

that have been developed in the past. It differs quite significantly and substan

tially, however, in the details of its dynamically balanced, symmetric actuator/tendon 

design.

A significant challenge to the control system designer is created by the 

requirement of careful coordination of the control signals to the actuators that 

pull the tendons. In particular, our concern is with a two-dimensional positioning 

system employing four tendons in a symmetric configuration as shown in Figure 1.3. 

The four actuators are mounted such that the tendons pass through the points A, 

B, C, and D. Obviously, the domain that the workpiece can reach is limited to the 

interior of the square ABCD.

Each actuator is a DC motor with an attached pulley, around which the corre

sponding tendon is wound. The tendons each pass through holes in the supporting 

structure. The control task is defined either as moving the workpiece form one point 

to another point and keeping it there (set point problem), or as tracking a prescribed 

trajectory (tracking problem).

One of the advantages of the agonistic system is high bandwidth. Unlike the 

conventional multiple axis positioning system ( such as X-Y table), , the motors in 

the agonistic system are not needed to move during the movement of the workpiece. 

So, the system is agile and the workpiece can quickly acquire and track the given 

trajectory. VVe know that the system bandwidth is inversely proportional to the 

response time (Friedland, 1986, page 167). Therefore, the agonistic system is 

expected to have high bandwidth.

The elastic effect of the tendon tends to reduce the bandwidth of the agonistic 

system since the elasticity of the tendons may induce oscillations and inhibit the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

workpiece from quickly acquiring and following a given trajectory. By suppressing the 

oscillatory behavior through using composite control law, we expect the bandwidth 

of the rigid system can be maintained.

Given the development of two dimensional agonistic system, extension to the 

three dimensional agonistic system is straightforward since the dynamic equations 

characterizing the system behavior is very similar.

1.3 C ontro l M ethodology

The goal of the control system design is the development of a control law that 

generates the input voltages to the four motors in order to make the workpiece 

achieve and then follow a specified reference trajectory.

There are two control strategies: centralized vs. decentralized control.

1. C en tra lized  control:

A single controller oversees and controls the operation of each motor in the 

system. The input torque to each motor is calculated centrally, using a single dynamic 

model that accounts for all the motor input torques. All the motors in the system 

are fully coupled and work cooperatively.

2. D ecentralized control: Based on the desired location of the controlled 

object, a desired angular motion is calculated for each motor, and each motor is 

controlled individually so that the actual angular motion equals the desired one. 

Only the local information (angular position of each motor) is used. This local 

information is provided by the optical encoder mounted on each motor.

One way of designing the control for each channel is to assume that the tension 

in the tendon as an unknown constant in each channel. This assumption is of course 

contrary to fact, because the tension constantly changes with the movement of the 

workpiece. Moveover, the assumption that the tension in one channel is unrelated 

to the other is contrary to fact, since the tension in each channel must be coupled
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to achieve dynamic balance. Nevertheless, a control law can be designed on the 

basis of this assumption which can give satisfactory performance. In particular, the 

assumption that the tension is an unknown constant to be estimated in each of the 

channels leads to a control law with integral control.

The decentralized control has the advantage of simplicity: if the dynamic 

interaction between the motors is neglected, for example, that the load torque on 

each motor is constant, each channel is dynamically independent of the others and 

hence can be designed as a single axis servo. The simplicity has another advantage, 

namely, that the controller for each channel can be implemented by one processor in 

a computer having a parallel-processing architecture, such as a transputer system.

But the decentralized scheme also has disadvantages:

1. The dynamic effect of the interaction of the tendons is not directly accounted 

for. It is simply viewed as a disturbance.

2. The working domain of the workpiece is smaller than the available area. If 

the trajectory extends too far from the center, the system may become unstable.

At the expense of much greater control law complexity, a centralized approach 

avoids these problems. The difficulty of performing the calculation for a centralized 

control law has its counterpart in implementation.

In the one dimensional (single axis) case, the dynamics of the agonistic system is 

linear. The centralized control is not very much more complex than the decentralized 

control. However, in the multi-axis case, the agonistic system is a highly nonlinear, 

multivariable system. The improved performance that a centralized control law 

would achieve would come only at the expense of requiring much more analysis at the 

design level. The control law design appropriate for a multivariable nonlinear system 

has to be selected from among the various methods currently available. Computed 

torque control can be used.
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In addition to the basic requirement on the controller to accomplish the control 

task such as a point-to-point move, or tracking a given trajectory, there are other 

requirements imposed on the controller:

• The control torques exerted on each motors must be nonnegative. This is 

required to keep the tendons in tension.

• The input voltage can not exceed its maximun value. In real actuators, there 

is a physical limitation on the input energy.

Under these requirements, the agonistic control becomes a nonlinear multi- 

variable control problem with constraints on control input. Let u be the control 

input, then u must satisfies: 0 <  u < u where u is the maximun allowable value. A 

lot of work has been done on the energy constraints on the input. However, only a 

few have dealt with nonnegative control. The general case is not easy.

1.4 Contribution of this D issertation

The agonistic control was conceived by Dr. Bernard Friedland. Under his super

vision, this research has been conducted. The contributions are:

• Establishment of the dynamic model of agonistic system in the stiff case and 

design of the control law to satisfy the requirement of positive torque. (Technical 

paper presented in 1994 IEEE Regional Conference on Control Systems, Rutgers 

University, August 1994)

• Establishment of the dynamic model of agonistic system in the elastic case and 

using singular perturbation theory to design the control law to suppress the oscillation 

incurred by finite elasticity. (Technical paper was presented in 1996 Japan-USA Joint 

Symposium on Flexible Automation, Boston)

• Design of the observer of agonistic system in the elastic case and prove that 

the observer is linear and globally stable.
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• Development of the decentralized control law and propose the “bias torque 

method” to guarantee the positiveness of the control torque. (Technical paper has 

been submitted to the 1997 American Control Conference).

1.5 Organization of this D issertation

The dissertation is organized as follows:

In chapter 1, we give a review on the positioning devices and the description 

of the agonistic system.

In chapter 2, we present an in-depth investigation of the dynamic modelling 

of the agonistic system in both ideal and realistic cases. The dynamic equations 

describing its dynamic motion axe established. In addition, the dynamic model for 

the decentralized control is also developed which is suitable for the decentralized 

control strategy.

In chapter 3, a control law is synthesized based on the dynamic model estab

lished in chapter 2. The controller is designed to address the specific requirements 

of agonistic control.

In chapter 4, an observer is designed to produce the velocity information which 

is required for the implementation of the control law.

In chapter 5, results of extensive simulation are reported. Actual scenarios such 

as friction and parameter variation are incorporated.

Finally, in the chapter 6, we summarize the results and draw some conclusions 

from above investigation.
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C H APTER 2 

DERIVATION OF D Y N A M IC  MODEL

Notation

length of ith tendon (i=l,2,3,4) 

angle between zth tendon and 

horizontal axis 

/;: tension of the tendon i

r: radius of the pulley

J,-: inertia of the actuator

m: mass of the workpiece

In the following, we will derive the various dynamic models of the agonistic 

system under different scenarios. The common ground is Langrange’s equation 

(Synge and Griffith, 1942):

p .! )
d t \ 8 q )  dq 1 1

where q is the coordinate, q is the corresponding velocity and r  is either a force or a 

torque, depending upon whether q is a linear or an angular coordinate.

The Lagrange equation will be utilized throughout this chapter. We will 

establish different energy functions corresponding to different cases, which leads to 

the different dynamic equations. Once the dynamic model is obtained, the remaining 

issue is to design the control law which is the central topic of the next chapter.

In our problem, the generalized coordinates are:

q =  [ x y 02 03 ]

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

(x, y) is the positions of the workpiece and 0,- (i=l,2,3,4) are the angular positions 

of the motors.

Each of the four actuators are controlled by individual torque. The vector of 

generalized force is

r = [ 0  0 Ti T2 T3 T4 ]'

When the workpiece is in the point (x, y), the length of each tendon is:

h 2 = (a + x )2 + y2 (2.2)

k 2 =  (a +  y )2 +  x2 (2.3)

h 2 =  (a -  x )2 +  y2 (2.4)

I 2 =  (a -  y )2 + x2 (2.5)

2.1 Stiff Case

Under the assumption that the tendons are stiff, the change in the length of the 

tendons correspond to the movement of the workpiece. So, we have the following 

holonomic constraints:

/, -  =  - r« ,

12 — 2̂° =  —r@2

13 — 3̂° =  —t 63

14 -  U° =  - r d 4

Or denoted as

m  =  0. (2 .6 )

where q is the generalized coordinates.

is the initial length of the ith tendon. When the workpiece starts from the
•  •  /  0o rig in , =  a.
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The Lagrangian is defined as the difference between the kinetic energy and the 

potential energy of the system. In the stiff case, the potential energy is zero.

L =  j m ( i 2 +  y1) +  i  +  i  J j *  +  l- j j *  +  i  j J l

Define:

where A is the Lagrange multiplier.

(2.7)

dL dL ,d(f>'
~d  ̂ ~  ’
dL  _  dL
dq dq

From the Lagrange equation, we obtain:

at \  aq )  dq \ d q )
(2.8 )

where /  =  —A. f  corresponds to the constraint forces in the tendons. Its direction 

is away from the pulley.

Taking the time derivative on (2.6) results in:

d<f>- _ n
dqq

d ( d{f> d<l>_
Jt%)q + Tqq = 0 (2.9)

let

a ] . , -
9.4
qB

From (2.9) we can obtain

q~B = - E b ~1 [ f t (If) q + EAqA ] (2.10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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denote

A r — —  -
dt dq dq

DxqA +  B x (q, q) 
D2qB +  B2 (q, q)

Substituting (2.10) into (2.8) gives:

Ra +
Dx

—D2E b ~1Ea
B \ (? ,q)

=  r - ( a?)

The above equation can be written as 

Dx
—D2Eb lE,i

In our problem,

(If) <IA

I
+ B X(q,q) 

B2( q , q ) - D 2EB- l £t (%)q

VVe see that

where

[ 0 1
X 0 2

<7.4 =
. y .

,R B  =
03

1

Dx =  m l 2, D2 =  diag{Jx,J 2l J 3, J 4},

d£
dq

Bx =  B2 =  0
— cos 0 X sin 0 X r  0 0 0
— cos 02 sin 02 0 r 0 0
— cos 03 sin 03 0 0 r 0
— cos04 sin 04 0 0 0 r  .

Ea =

— cos 0 X sin 0 i
— cos 0 2 sin 0 i
— cos 03 sin 03 

m — cos04 sin 04

,E b = r l4,

cos 0 i =

• a y sin 0 i =  r
Xcos 01 =  —-  
‘2

/

r  (2.11)

(2.12)
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sin ̂ 2 =

cos #3 =

a + y 
h

a — x
Is

ysin fa =  — 
*3

C O S #  =  — —  
*4

a - y
sin 0A =

/4

Since

s
dx
c>#
dy

sin #•
I T ’

COS #

: ~ T ~

and

d ( - c o s # )  s in #  . .
-  -(x sin #  +  y cos #•),

/,*
d(sin#) co s#  . .

— -(xsin#  +  y co s# )dt U

We have

dt dq

'  s ^ . ( i s i n #  +  t ) c o s # )  

s i n  02  +  J/ COS # 2 )/j
sin

- *3/> sin  o,

^ ^ - ( x s in #  + y c o s # )  0 
^^^■(xsin# +  y cos 02) 0
co s0:

U

(x sin #3 H~ y cos #3) - 2-{xsm0z + ycos0z) 0 
^-(xsin#t +  ycos#i) ^ ^ - ( x s in #  +  y c o s# )  0

0
0
0
0

0
0
0
0

0
0
0
0

Denote:

n = Dt
( § £ )- D 2E B- lEA

mr
0

Ji cos #  
J2 cos 02 
Jz cos 03
J4 COS 04

0
mr  

—Ji sin 0 i 
—J2 sin 02 
—Jz sin 0z 
—J4 sin 04

—  COS 01 

sin 0 i 
r 
0 
0 
0

— COS 02

sin 02 
0 
r 
0 
0

-  COS 0 3  

sin/?3 
0 
0 
r 
0

— COS 04  

sin 04 
0 
0 
0

We want to take the inverse of the matrix 0  to decouple the qA and / .
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P a r ti tio n in g  th e  m a t r ix  ft as:

f t  =
A  B  
C  D

w here

A  =
m r  0 
0 m r , £  =

C  =

J i cos —J \  s in  01 
J i  cos 02 —J2 s in  02 
J 3 cos 0 z  — J 3 s in ^ 3 

. J 4 cos 04  — J 4 sin  0 \

U sing th e  m a tr ix  id e n tity :

— COS 01 — COS 02 — COS 03  — COS 04
s m 0 i  s in /?2 s in  03 s in  04

r  0 0 0 
0 r  0 0 
0 0 r  0 
0 0 0 r

,D  =

' A B  ' ' I B ' A  — B D ~ XC  0 ‘
C D 0 D D ~ XC  I

w here I  is id e n t i ty  m a tr ix . 

W e know  th a t

I  B  
0 D

A  — B D ~ l C  0 
D ~ l C  I

- l

- l

I  - B D - 1 
0 D~l

(A - B D ~ l C )~ 1 
—D ~ l C ( A  — B D ~ xC ) ~ l

0
/

Now,

w here

A  — B D ~ l C  =  - M
r

M  =

m u  =

77122 =

77112 =

77721 =

777ii 777 1 2
77721 77722

4

m r 2 +  ^ 2  J i cos2 0i  
1=1 

4

m r 2 +  5Z Ji  s n̂2 Pi 
1 = 1

4

— J{ cos 0i  s in  0i
i=i

77712
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We have

1 _ ■ A 5 '

-1 rM "1 0 ' ' /  - \ B '
c D 1

1 O
.

£ 1 ►»» * 0 ±7r

Finally, we obtain

n - i  _ [ r M ~ l  - M ~ lB
C M - 1 l-{CM~l B  + I)

Multiply the (2.11) on both sides by fi-1, we obtain:

K E;=i Ti cos 00
~K  Ei=i T{ sin 0i)

m u 77112 X
+

m i3 _

m 21 m 22 . ^ .
m 23

where

17113
i=l *»

cos fli(x sin 0 i +  y cos 0 0 2

4 «/«
m 23 =  -  5 1  T - sin  & (*  sin  A  +  y  COS Pi f

1 = 1  **■

and

h r  
h r  
h r  

. h r

Tx +  ^-(xsin/?i +  y cos 0 \ ) 2 

T2 +  ^-(x  sin 0 2  +  y cos 0 2 )2 
^3 +  sin 0 z  + y cos /?3)2 

. h  +  sin 04 + y cos # ,)2 _

where

B(q) = - B  = COS 01 COS 02 COS 0 z  COS 04 
— sin 0 x — sin 0 2 — sin 0z — sin 0A

J\ cos 0x —Ji sin 0i 
J2 cos 02 — J2 sin 02 
J3 cos 0z —J 3 sin/93 

. J 4 cos 04 —J4 sin 04

C = C =

Denote q = X X m i3
A  = •

. y . . y . m 23

(2.13)

(2.14)

can be written as the form C(q, q)q:

C(q,q) =
-  E 4=i ^  sin 0 i cos &(x sin 0 i +  y cos /?,) -  E!4=i jf  cos20 {(x sin 0 { +  y cos ft)

Ef=i jfsia20 i(x sin 0 i +  y cos 00  Ei=1 7* sin 0 { cos ft(x sin f t  + y cos f t )
(2.15)

Then, the dynamic equation of the system can be written as

*■1(9)9 +  C(9 .9)9 =  rB(q)T (2.16)
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2.2 Elastic Case

In last section, we assume that there is no extension of the tendons. This is an ideal 

situation. In reality, the tendon will exhibit some elasticity. The requirements of high 

precision and high speed on the agonistic control calls for the accurate modelling 

of elastic effect. Based on this modelling in which the elasticity of the tendon is 

considered, the control law should be designed to compensate the elastic effect.

In the elastic case, due to the elasticity of the tendon, there is no one-to-one 

correspondence between the position of the workpiece and the angular position of 

the pulleys.

The extension of each tendon is given by:

A/i = ( , - ( / i ° - r « I)

A ^ = I2 — — ^^2)

A/3 = I3 — (/30 — rd3)

A / 4  = U -  ( / 4 0  -  rdA)

where /,°(i =  1,2,3,4) is the initial length of ith tendon, r,- is the radius of the pulley, 

Oi is the angular position of ith  pulley.

The Lagrangian for this problem is:

L =  i  m(i2 + y2) +  +  l j 3»i +  \ j j \

- jM 'i -  h° + rOr? -  !*(/, -  h° + r02)2

-\k (k  -  ka +  r«3)a -  | i ( /4  -  +  r<M!

where k is the elastic modulus of the tendon, m  is the mass of the workpiece, J, is

the inertia of the actuator.

From (2.2) to (2.5),

/,- =  y sin fa — x cos f t
(x sin f t  +  y cos ft)2

/,- =  y sin f t  — x cos f t  +
h
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where /?,• is the angle between the ith  tendon and horizontal axis. 

From Lagrange’s equation, we obtain

J l e1 + kr(ll - l 1° + rd1) = Tx 

J2& 2  4* k r ( l 2 — / 2°  +  ^ ^ 2 ) — T 2  

J j z  +  kr(k  -  /3° +  rd3) = T3 

J494 +  kr(l4 — 14* +  r94) =  T4

and

mx = (li — li° +  r&i)kcos0 i + ( /2 — I2 + r02)k cos 0 2 

+ (/3  -  I30 +  rQz)k cos 0z +  (U — U° +  rd4)k cos 0 4

m y =  —(/1 — /i° +  r6\ ) k sin/?i — (/2 — /2° +  r<?2)A:sin/92

-(I3 — /30 +  r93)k sin 0z — {l4 — l4° +  r94)k sin 04{2.22) 

Define

*i =  ( h - k °  + rel )k

~2 =  (h — I2 +  r02)k

- 3  =  (h ~  h°  +  r6z)k

z4 =  (/4 — l4° +  r64)k

\
Then, (2.21) and (2.22) become

m x  =  z\ cos 0i +  z2 cos 02 

+ z3 COS 0 z  + z4 cos 0 4 

my  =  —(zi sin 0 \ +  z2 sin 02 

+z3 sin 0 z  +  z4 sin 0 4 )
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From (2.23) and (2.27),

ft =  (/i +  rdijk

s2zi =  ft +  rdi

- • o - a , (i s i n A  +  y co sft)2 - =  y sm f t  — x  cos f t  H------------- j-----------— +  rf t
ft

(2.30)

But from (2.17),

Substituting (2.31) into (2.30) yields

e2z\ =  y sin f t  — x cos f t

(x sin f t  +  y cos f t ) 2 ( r ( 7 \ - r z x)
"I Tft f t

As £ =  0, the elastic case reduces to the stiff case, and the tension in the tendon 

becomes the constraint force. In this case

T\ , f t / -  • o - a \z i  -----1- —(y sin f t  -  x cos f t )
r r*

+  - ^ - ( i  sin f t  - fy co s ft)2 (2.33)
‘x

Similarly, for the other tendons, we have:

e2ft  =  y sin f t  — x cos f t  +
(x sin f t  +  y cos f t ) 2 +  r(T 2 - r z 2) ^

ft f t

e2f t  =  y  sin f t  — X cos f t  +
(x sin f t  +  y cos f t ) 2 r ( r 3 -  rz3)

ft

e2£j =  y sin f t  — x cos f t  +

+  — ~ T- - ■ - (2.35)

(x sin f t  +  y cos f t ) 2 r(T4 -  rz4)-----------   + -------    (2.36)
‘4 *'4
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and

t 2 J2
*2 = -----h -r(y  sin f t  — i  cos f t)  +t* !*•

A
r2U ( i  sin f t  +  y cos f t )2

z3 = —  + ^ ( y s i n  fc  -  x co sft)  +
r  r»*

r2/-
-(xsinftj +  y c o s f t )2

-4 =  — + ^ ( y  sin — xcosfti) +t» r»

A
r2L (x sin ft» +  y cos /?4)2

Substituting (2.33) and (2.37)-(2.39) into (2.28)-(2.29) yields

+mu  m 12
m 2i m22

x
y

m  13 
m23

r (Ei=i f t  cos ft)
- r ( £ ? =if ts in f t )

where

m n =  mr2 +  ^  J,- cos2 f t
i=i
4

: mr2 +  ^  ft sin2 ft-m22
1=1

m x2 =  — y ;  f t sin f t  cos f t
i=i

m2i =  mx2 

m 13 =

m23 =

4 f t
- J 2 t cos A'(* sin A +  y cos f t )2

i=i *«
4 J

j -  sin ft(x  sin A  + y cos ft)2
t=i *«'

These equations are exactly the equations of the stiff case.

Substituting (2.28), (2.29) into (2.32) and (2.34)-(2.36) yields

22

(2.37)

(2.38)

(2.39)

(2.40)

'  f t  ' f t  C12 Ci3 C14 ■ z1 '
f t 1 Cl2 f t  C23 C24 Z2
-3 m Cl3 C23 f t  C34 *3

. f t  . . C14 C24 034 f t  _ . *4 .
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+

* (£  s in f f i+ y c o s f f i )2 

( x s i a f o + y c o s f c ) 3
h

( r s i n / ? 3+ y c o s / ? 3 )

13(x  sinj34+ycos/?«)z
U

F
+F

F
.F.

(2.41)

where d ,=  1 +  Cij =  cos(/9f- — /?_,).

In compact form, (2.28),(2.29) and (2.41) can be written as:

mq =  B{q)z

e2z = —A(q)z + E{q,q)q + Du

(2.42)

(2.43)

where

9 =
x
y

’  z\ ' r r x
*2 t 2
-3

,U = t 3
.  z4 . Ta .

A(q) = ~

B(q) = 

Si =

E{q,q) = 

D =

d\ Ci 2 c13 c14
C l2 d-1 c 23 C24

C1 3  C23 d 3  C3 4

.  c 14 c 24 C3 4  d 4

COS j3\ COS 02 COS 03 COS 04 
— sin — sinfc — sin #3 — sin/34

i: sin /3t- +  y cos
r |-sin/3i fj-cosft

I* sin /?2 , cos /?2
fsinft fcosft

_ sin fa cos 04
r r v r 

diag{T , — , —, —}
Jl «>2 ^3

These equations are similar to the equations obtained in (Spong, 1987), (Marino 

and Nicosia, 1985). The system of equations (2.42) and (2.43) is singularly perturbed. 

The position vector q and its derivatives are slow variables. The tension vector z 

and its derivatives axe fast variables.
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2.3 Dynamic M odel for Decentralized Control

The centralized control law is based on the workpiece coordinates x and y. Decen

tralized control law should based on the individual coordinate of each motor.

In this section, we establish the dynamic model of the whole system using the 

coordinates 81 ~  84 which describes the true dynamic behavior of the system.

Since in agonistic control, the workpiece is pulled to move by multiple tendons, 

the basic requirement is that each tendon in the system must always be under tension. 

This implies the control torque exerted on each motor must be positive all the time.

q =

r d i '
<IA X 8 2

. ? B  .
5 Qa  =

. y .
, q B  =

8 3

. 0 4  .

(2.44)

and /,-° is the initial length of the tendon i.

When the workpiece starts from the origin, 1° =  a.

Now, we derive the actual dynamic model of the system based on the 

coordinates 81 to 84. The dynamic model is obtained with the aid of Lagrange’s 

equations:
d ( d L \  _ d L _ _ T _ ( d ± V / (2.45)
dt \ d q  J dq J

where /  corresponds to the constraint forces in the tendons. Its direction is away 

from the pulley.

In this application, the Lagrangian is

1 1 1 I
(2.46)

r
dL
dq
dL
dq

[ 0 0 Ti T2 T3 T4 ] \

0,

[ mx my Jxd\ J282 J$8z J484
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From (2.6),

~ — cos/3i sin/?i r 0 0 0 '
dtp — COS 02 sin 02 0 r 0 0
dq — COS 02 sin 02 0 0 r 0

. — COS 04 sin/?4 0 0 0 r

=  [ —B' rI,  ] (2.47)

(2.9) becomes:

B 'U  =  ’- «  +  |  ( | f  )  ? (2.48)

Reduction of dimensionality: Under the holonomic constraint (2.6), the

dimension of the system is reduced. We can take advantage of this constraint 

and remove the constraint force from the equation (2.45). The method is based on 

(Hemami and Weimer, 1981).

Define

rci —rsx 1 Cl2 Cl3 C1 4

rc2 —rs2 C\2 1 C23 C24

rc3 ~rs3 Cl3 C22 1 C3 4

rc4 —rs4 C n C24 C3 4 1

Dx d 2 1

where a  = cos s,- =  sin qj  =  cos(/?,• — 0j), =  sin(/?,- — /3y) and D\ =  rB ' , D2 =

B'B.

The construction of D is intended to satisfy

c0 ,=o
If the both sides of the the equation (2.45) axe premultiplied by the matrix D , 

the constraint force can be eliminated. We obtain

—
1 

.S
•

fT x  1

Dx m x
my +  D2

1

 ̂
 ̂

^
1

= d 2

11

i.e.

mrB'qjx + B'BJqs  =  (B 'B )T  (2.49)
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where

[ J l  1 \ T X 1

J  =

1

w"

1

,T  = t 2
t 3

, T 4 .

Substituting (2.48) into (2.49), finally we obtain:

[mr214 +  B'BJ]qg  +  m r^ - (^ - )q  =  (B 'B)T

where

d d<f> . _  
dt dq

dt dq

^(zsin/^i + y  cos/?i)2 
j-(x sin 0 2 + y  cos 02)2 
j-(xsin03 + ycos(33)2 

_ ^-(z sin0 4 + y  cos /?4)2

(2.50)

The z and y in the above expression are related to Q\ ~  Q4 through the following 

equalities:

iJ i — i3i3
x = ---- -------

2a
. h k  ~  UU 

y  = 2 a

while U =  —rdi.

(2.50) is the actual dynamic model of the system represented in the coordinates

0 i . . .  64.

The tensions in each tendon can be computed from (2.14).
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CH APTER 3 

CONTROL LAW DESIG N

In this chapter, we will design the control law to accomplish the control task as 

wel as meet other requirements imposed on the control input such as positiveness 

and actuator saturation. Fist, we use centralized control strategy. In this scenario, 

computed-torque method and passivity-based method are investigated.

Based on the investigation of control law design in the stiff case, the control 

law design in the elastic case will be dealt with. The stiff-based control law will be 

incorporated into the control law for elastic case.

Finally, we explore the decentralized control strategy and try to use simple 

linear control law to replace the complicated nonlinear control law.

3.1 Centralized Control Strategy
3.1.1 Stiff Case

The dynamic equation of the system can be written as

M(q)q + C{q,q)q = rB{q)T = T  (3.1)

Although the system (3.1) is complex, it has several fundamental properties 

which can be exploited to facilitate the control law design.

Property 1: The inertia matrix M(q) is symmetric, positive definite.

Property 2: \M{q) — C(q,q) is skew-symmetric. It satisfies

x t ( ~ M ~ C ) x  =  0 ,

4 f tmn =  - 2  ]T  -r1 sin f t  cos f t(z  sin f t  +  y cos ft),
i=i *«'

4 Jim22 =  2 ^  y  sin f t  cos ft(x  sin f t  +  y cos ft),
t=i *'

27
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m u  =  rri2i =  E;=i ^ (sin 2 Pi -  cos2 Pi)(xsinPi +  ycosPi)

So,

0
—5 £ ;= i j^{xsin0 i +  y cos fa)

\  E L i £(*  sin Pi +  y cos /?,-) ' 
0

Property 3: Linearity in the inertia parameter. Let 6 denote the inertia 

parameters,the equation (2.16) can be written as

inertia parameters. In (3.2), the torque is expressed as a linear regression in terms 

of the inertia parameters of the system. Y(q,q,q) is called the regressor. This can 

be extended to include friction term.

The equations of motion (3.1) may be exactly linearized and decoupled by static 

nonlinear state feedback (sometimes called inverse dynamics or computed torque in 

the robotics literature, Spong and Vidyasagar, 1989).

Basically, there are two control methods: computed torque method and 

passivity-based method

3.1.1.1 Computed Torque M ethod

Y(q,q,q )8 =  T (3.2)

This means that the dynamic equation can be linearly parametrized by the

r  =  M{q)(qd -  kpe -  kve) +  C(q, q)q (3.3)

where t  — q — qd.

The error dynamics is

e +  kve +  kpe = 0 (3.4)

The computed torque method is very popular in the control of manipulators. 

It makes use of the invertibility of the system dynamics to reduce the dynamics to a
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M(q) Agonistic
System

C(q.q)

F igu re  3.1 Computed torque control scheme

linear second order system with a feedforward control element. Feedback of tracking 

errors is then employed to position the error poles at desired locations.

Computed torque method is essentially a feedback linearization method which 

is a general method and does not take into account the specific structure of the 

agonistic control dynamics. It depends on the exact cancellation of the nonlinear 

terms and hence may be vulnerable with regard to robustness. Its advantage is that 

the error dynamics are independent of the configuration of the system and therefore 

the inertia matrix.

The control torques can be determined from:

B{q)T =  u (3.5)

where

1u =  - r  
r

There are infinitely many solutions for the above equation. Among them, B +u 

minimizes the norm of the torque vector T, where B + is the pseudo-inverse of B. 

B + = B T(B B T)~1 (rankB  =  2). The specific point in the agonistic control is that T 

must be positive all the time. If B +u alone is used, T may become negative. In order 

to meet positivity requirement, a second term is added and results in the following
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control law:

T  = B+u + ( I - B + B ) N  (3.6)

where N  is a constant vector.

The second term in (3.6) is used to guarantee T, > 0. It does not alter the 

relation (3.5). But N  can adjust the nominal magnitude of the torque T.  Note that 

I  — B +B  is am idempotent matrix. It is nonnegative since its eigenvalues are 0 and 

1 (Ben-Israel and Greville, 1974)

The constraint forces can be calculated from (2.14).

In order to ensure the positiveness of the control torque, there two parameters 

to tune in the control law: the gain and the constant vector N.

Large value of N  helps make the total torque positive, but too large value of 

N  can result in actuator saturation.

Large value of control gain can lead to rapid dynamic response. Too large gain, 

however, will render the total control torques negative. Therefore, we should make 

a balance in the choice of the control gain and the value of N to compromise the 

conflicting requirements.

3.1.1.2 Passivity  B ased M e th o d  In distinction to the computed torque method, 

passivity-based methodology fully exploids the inherent structure of the agonistic 

dynamics.

The basic idea is to modify the dynamics of the system (2.16) and reshape the 

natural energy function of the system and shift the equilibrium point of the system

(2.16) from its natural point to the desired point q*. The passivity-based controller 

uses feedforward to meet a desired energy function for the closed-loop system, and 

add damping, via velocity feedback, for asymptotic stabilization purposes. Based on
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this idea, Takegaki and Arimoto proposed a beautiful, simple solution to the robot 

set-point problem. Paden and Panja extend it to the tracking problem.

Definition:

A mapping x —► y is said to be passive if and only if

rT '< x , y > =  / x y d t > —@Jo

for some /3 > 0 and for all T.

The following theorem (LaSalle and Lefschetz, 1961) will be useful in proving 

asmptotic stability of the closed-loop system.

T heo rem  1 (LaSalle) Consider the autonomous nonlinear system

x = f ( x )

and let the origin be an equilibrium point.

Suppose that the Lyapunov function V(x) satisfies

1. V(x) > 0

2. V{x) < 0

3. the set defined by V(x) =  0 contains no trajectories other than the trivial 

trajectory x =  0

Then, the origin is asmptotically stable.

• Set point problem:

Denote e =  q — qj, for set-point problem, the desired equilibrium point is 

(ei?) =  (0,0). (Takegaki and Arimoto,1987)

Consider the function:

H(e,q) = ^qTM ( q ) q + l- c % e  (3.7)

Let

r  =  — kve -I- u (3.8)
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Where u is the new input to shape the system energy, then,

dH
- j - = < « , « >

If the mapping: u —>• q is passive, we obtain a marginally stable closed-loop 

system. In order to yield the passive mapping, we introduce the damping term:

u =  —kvq

We get a simple PD control.

t  =  —kpe — kvq (3.9)

Now, we use LaSalle’s theorem to prove the asymptotic stability.

When =  —q'kvq =  0, q =  0. Then, r  =  — kpe. But from equation (3.1),

r  =  0 (due to q =  0). Hence, e =  0.

(3.9) does not depend on the parameters of the system. So, it has immunity 

to the variations in the parameters. Indeed, a good control law should use as little 

information about the system as possible.

• Tracking problem:

Let the desired trajectory be qd(t). We want q —► qd-

The desired equilibrium point is (e, e) =  (0,0), where e =  q — qd(t)-

Let

r  =  M(q)qd +  C(q, q)qd — kpe + u (3.10)

where M(q)qd +  C{q,q)qd is the feedforward compensation.

H («, e) =  \ i TM(q)e +  i e TV  (3.11)

^  = < £ , « >  (3.12)
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u =  — kve (3.13)

We get the passive mapping: u —* e and the passivity of the agonistic system is 

preserved in the closed loop. The closed system can be stabilized by the control law:

t =  M{q)qd + C(q, q)qd -  kpe -  kve (3.14)

This control law leads to the following error dynamics:

M(q)e + C(q,q)e + k ve + k pe =  0 (3.15)

LaSalle’s theorem can be used to prove the asymptotic stability.

When ^  =  —e'kve =  0, e =  0. From (3.15), we have e =  0.

Controller (3.14) is a simple PD controller with dynamic feedforward compen

sation. So, it is named as “PD +” controller (Paden and Panja, 1988). The

feedforward compensation constitutes the inner loop, the outside loop is the PD 

control. In the implementation, this structure allows the simple PD computation 

to be updated at higher rate than the feedforward compensation. This helps to 

increase the system bandwidth since in the digital implementation, the gains in 

the control law is limited by the computer update rate (Under the given computer 

update rate, too large a control gain will lead to an unstable system). With the 

higher computer update rate, we can choose the larger values for the control gains 

to get rapid response time.

The passivity-based control law results in the complicated error dynamics. It 

is not easy to analyze the effects of the PD gains to the transient behavior of the 

error dynamics. Judicious choice of the gains in the PD term is important.

In the paper of (Takegaki and Arimoto,1987), the gains were chosen empirically. 

Here we give a systematic way to choose these gains which is applicable to both
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Agonistic

System

M(q)

C(q,q)

Figure 3.2 PD + control scheme

set-point and tracking problems. In the initial time, the workpiece is in the state 

9 =  9o, 9 =  0. C(q,q) =  0. The error dynamics becomes:

M(q0)e + kve +  kpe =  0 (3.16)

Let

kp =  M(q0)kp, kv = M(q0)kv (3.17)

We don’t need to worry about the effect of the value of the gains on the stability 

of the error dynamics, since stability is guaranteed by the passivity-based design.

In the simulation, when we choose:

We have

kn =

kp —

2.1097 x 10"3 
2.0317 x 10"3

■ 100 ' _ ‘ 20 '
100 , kv = 20

k = 4.2194 x 10~4 
4.0635 x 10~4
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The torque is large at the beginning, if we increase the value of kp and kv to 

accelerate the convergence rate, the total toque may have negative values at the 

initial period. In this case, we need to increase the value of N  to guarantee the 

positiveness of the total torque. In the meantime, the magnitude of the constraint 

forces will be increased since it is determined by N.

The set point problem can be beautifully handled: only position information 

is needed and the global stability can be guaranteed.

3.1.2 Elastic Case

In the chapter 2 , we considered agonistic control with inelastic tendons in which 

the elastic modulus of the tendon is assumed to be infinite. ( We refer this as 

the “stiff” case.) In the real world, however, the elastic modulus of the tendon is 

finite. Using the control law based on the stiff case can lead to oscillatory behavior 

which can degrade the performance of the system, or even make the system fail. 

To avoid the problems introduced by finite elasticity, it is necessary to modify the 

control law. In last chapter, the model in which the finite elasticity is considered 

was established. It describes the dynamic behavior of agonistic system with elastic 

tendons. Based on this model, the control law is designed to compensate the elastic 

effect. It is shown that the finite elasticity can introduce the oscillations. The control 

problem is quite complex because of resonance phenomena and the nonlinearity itself. 

Severed important control concepts and techniques, such as feedback linearization, 

singular perturbation, and composite control are useful tools for the investigtion of 

the dynamics and control of agonistic system in the elastic case. In particular, the 

control law is synthesized using the singular perturbation method. It consists of a 

feist control and a slow control. The feist control is used to stablize the oscillations 

incurred by the finite elasticity of the tendon. The slow control drives the system to 

track the desired trajectory.
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We have established the following model:

mq =  B(q)z

e2z  =  -A (q)z  +  E(q , q)q +  Du

where

9 =

’ Z \  ' rr, I
X Z2

, U  =
t 2

. y .
,  z  —

Z3 t 3
.  ~4 . . t 4 .

A(q) =  ±  m

B(q) = 

Si =

£(9,9) =

D =

dl C12 C13 c14
C i2 d.2 C23  C24

C13  C23 d 3  C34

. C14  C24 C34  d 4  _

COS 01 COS 02 COS 03 COS 0 4

— sin 0 i — sin #2 — sin 0$ — sin 0 4 

x sin 0 ,- +  y cos 0i 
r fLsin0 i cos 0 i 

f* sin 02 f cos 02 
sin 03 f-cos 03 
sin 04 jj- cos 04

(3.18)

(3.19)

These equations are similar to the equations obtained in (Spong, 1987), (Marino 

and Nicosia, 1985). The system of equations (3.18) and (3.19) is singularly perturbed. 

The position vector q and its derivatives are slow variables. The tension vector s 

and its derivatives are fast variables.

Let

z — z := 7/(r) +  0 (e2) (3.20)

Using the concept of composite control (Chow and Kokotovic, 1978), (Saberi and 

Khalil, 1985), we choose the control input u of the form

u =  ua(q,q) + uj(q,q,z ,z)
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where u3 is the control law for the stiff case. We refer it as “slow” control, z is the

constraint force in the stiff case. It satisfies

A(q)z =  E{q, q)q +  Dua (3.21)

From (3.19) and (3.21), we see that q satisfies the boundary layer equation:

cPn d?z
= D u , - -  (3.22)

where .4(<?) is positive definite and r  =  t /e  is the fast time scale. Neglecting <Pz/dr2

which is very small in the boundary layer, (3.22) becomes

^  +  A{q)q =  Duf  (3.23)

This is a linear system in q parameterized by q. It has the eigenvalues on the

jus axis. If the control law derived from stiff case is applied to the elastic system

(3.18) (3.19), the feist variables will exhibit oscillation. In practice, dissipation will 

be present to damp these oscillations. But the damping may not be sufficient. The 

control U f  is used to provide additional damping.

Based on the dynamics given by (3.23), the control law for u / is:

uf  =  D~x[A{q)q + kiq +

= D~x[A(q)q + kiq + k2£ ^ — z -̂] (3.24)

Since dz/dt  is not easily obtained and, moreover, it is very small compared

to dz/dt  in the boundary layer, it is simply neglected. The proposed control law 

becomes:

dz
U f  = D~x[A(q)q + k iq  + k2e-^]  (3.25)

This control law requires the knowledge of q and dz/dt. The measurements of

the workpiece position (x, y) and the measurements of the angular positions &i, • • •, 

are necessary to determine q.
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exogenous
disturbance

fast system

slow system

Figure 3.3 The composite control law is designed to achieve robust tracking

When the fast variable tj asymptotically goes to zero, from Tikhonov’s theorem 

(Hoppensteadt, 1971) the orbits of the elastic system driven by the composite control 

will tend to the orbits of the stiff system. Although tj can not be damped to 

exactly zero because the presence of dz/dt, as long as 77 decays to a sufficiently 

small amplitude, it can be viewed as a persistent disturbance to the stiff system. 

This disturbance prevents the tracking error from going to zero. In addition to this 

disturbance, there are other things to affect the tracking error such as unmodeled 

dynamics, parameter variation or lack of knowledge of exact values, and exogenous 

disturbance. This suggests that the proposed control law must be robust. Based on 

this consideration, sliding mode control is used.

The sliding mode control law is designed to drive the system to the sliding 

surface. Once the sliding surface is reached, the system will evolve along the sliding 

surface and the tracking error will exponentially decay to zero. The sliding surface 

is independent of the parameters of the system. Therefore the variation in the 

parameters and disturbance will not affect the performance of the system. The 

disturbance rejection and robustness to the variation in the parameters is achieved.

Define the sliding surface:

ei(<) =  (*(<) -  *<*(*)) +  A(x(*) -  irrf(<)) (3.26)
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ea(<) =  (y{t) -  yd{t)) +  A(y(t) -  yd(t)) (3.27)

A > 0 controls the convergence rate of e(t).

The sliding mode control law is designed as (Slotine and Li, 1991):

5 (0  =  - » ( « « )  (3.28)

a should be large enough to overcome the influence of disturbance. When a  is 

increased, N  should be also increased to ensure the positiveness of the control torques. 

The sliding mode control u is added to the PD  part in the sohv control u3. The 

modified slow control is denoted as u3.

The complete control law is:

u = us + uf (3.29)

After the sliding mode control law (3.28) is introduced, the right-hand side of 

the differential equations (3.18) and (3.19) of the dynamical system is discontinuous, 

chattering phenomenon occurs. In order to reduce the chattering, a saturation

function is used to replace the signum function (Slotine and Sastry, 1983). It defines

a boundary layer.

sat(e) =

u(t) =  —a sat(e) 
1 e > 8 
f - 8  < e < 8

- 1  t < - 8

where 8 is the thickness of the boundary layer.

There is no abrupt change across the boundary layer . Therefore, the right- 

hand side of the differential equations of the dynamical system is continuous. Indeed, 

the chattering is avoided and the smooth tracking is obtained. But there is a penalty 

to be paid on the tracking error. The tracking error will not aympototically tend to 

zero anymore. There is a discrepency between the desired trajectory and the true 

trajectory. The difference depends on the thickness 8 of the boundary layer which 

can be adjusted at the designer’s will.
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3.2 Decentralized Control Strategy

The agonistic control system was proposed and analyzed in previous sections where 

a centralized control strategy was considered. In centralized version, a thorough 

analysis must be performed at the design level and the complex dynamics model must 

be established. The complicated model requires extensive computation and real time 

control becomes a problem. In this section, we develop a decentralized strategy for 

agonistic control. Compared with the centralized version, it uses a simplified model 

and controller complexity is considerably reduced. Under the assumption of the stiff 

tendons, the desired movement of the workpiece can be transformed to the desired 

movement of the angular positions of individual motors. In the decentralized scheme, 

each motor is independently controlled using only local information. The dynamics 

of each subsystem can be expressed as a independent linear time-invariant second 

order system with the tension being viewed as a disturbance which is assumed as 

constant and is estimated by an observer.

The use of decentralized control scheme makes very simple the controller design 

and reduces the computational complexity. The control tasks can be distributed onto 

several processors. The i th  subsystem is associated with the i th controller which 

generates the torque T,- to affect only the angle 0,. The decentralized controller allows 

the real-time parallel implementation.

Centralized control law is based on the workpiece coordinates x  and y. Decen

tralized control law should based on the individual coordinate of each motor.

The control scheme is based on the following key idea: the total control torque 

is the superposition of the base value and the correction term, that is:

T i  =  T \ a se +  AT- (3.30)

The base value is exerted to keep the tendon from becoming slack. It does not 

contribute to the motion of the workpiece. Actually, it serves to establish an 

equlibrium point. The correction term is responsible for the movement of the
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workpiece such as tracking and positioning. The correction term actually fluctuates 

around the base value. Choosing the base value of the torque being sufficient large 

can guarantee total torque exerted on each motor be positive.

An agonistic system is analogous to cooperative multiple robots (Wendlandt 

and Sastry, 1994), (Arimoto, Miyazaki and Kawamura, 1987). The base value corre

sponds to the internal force in the cooperative multiple robots.

The base value can be computed from the so-called “equilibrium condition”. 

Since the tendons are not allowed to be slack, when the workpiece is in standstill, 

the torque exerted on each motor should satisfy the following equilibrium condition.

BTbase =  0 (3.31)

There are infinite ways to choose the values of the base torque. Among them, 

we want a nonnegative value because the purpose of introducing the base torque is 

to obtain the nonnegative value of the total torque.

The base value of the torque are chosen as

Tbase = ( I -  B +B)N

where B + =  B \B B ' ) ~ l is the pseudo-inverse of the matrix B  and N  is a constant 

vector. It can adjust the nominal magnitude of the base torque.

Note that as long as the base torque satisfies the equilibrium condition, the 

system dynamic behavior remains unchanged.

Each motor is treated as a subsystem which has a simple second order linear 

dynamics.

J A  = T i -  rfi  (3.32)

where /; represents the tension in each tendon.

Just as the torque consists of two components, the tension /,• is decomposed

as:

/ . - A a ^  +  A/i (3.33)
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where f \ aae is the equilibrium force, f \ ase =  7T'base• A/) corresponds to the 

movement of the workpiece. A/,- represents the variation away from the equilibrium 

value. For simplicity, A/,- is treated as a constant disturbance and is estimated from 

an observer.

The dynamics of each motor then becomes

Jidi = T i -  A /,r  -  r f \ ase (3.34)

In state space form,

■ Oi ■ * 0 1 0 ' ■ Oi ■
9, = Ms100

Oi
. A/,- . l 0

 
O O 

,
1

+

'  0  ' ti
1

Ji 
_ 0  ,

T i - — PJ i J  base 
0

d_
dt

(3.35)

The correction term is designed based on the each independent simple 

subsystem according to the simple PD control law:

AT,- =  Ji[0f + kp{6{ -  Qid) +  kv(9i -  5'/)] +  A f {r (3.36)

where Qd is the desired position of the workpiece.

The actual tensions in each tendon can be calculated from (2.14). The following 

observer is used to construct the estimates of 0,-, 0,- and /,-.

z\

z*

z%

—  Z 2 +  k i ( 9 i  —  z i )

— ~ —  ~ J . F b a s t  +  ~ j j i  +  ^2(^t -  2l)

=  k3(6i -  Zi)

(3.37)

(3.38)

(3.39)

where

[zi,z2,z3] = [0,-, §i, A/,-] 

Choice of the gains in the observer:
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When we select large gains in the control law to obtain quick response, the 

gains in the observer should also be chosen large values so that the state variables of 

the observer can acquire and track the state variables of the true system.

Under the physical values we use for r  and J  (r =  0.01m, J  =  10~6kg — m 2), 

the characteristic equation of the observer is:

s3 + kts2 +  k2s — 10000&3 =  0

The set of values ki =  100, k2 = 3100, k3 = —3 corresponds to the eigenvalues: 

-20, -30 and -50 which were used in the simulation studies reported in the next 

chapter.

The observer-based PD control law is:

ATi = J{[0f + kp(0i -  9id) + kv(di -  6d)} +  Af ir (3.40)

Each controller uses only its own local information, the angular position information, 

provided by the shaft encoder attached to the motor.

In simulation, the control torques Ti are exerted to the actual system model 

(2.50).

3.3 C onsideration  o f DC M o to r C haracteristics 

Now, we have established the dynamic equations of the agonistic system and designed 

the control law where we assume that the inputs axe torques acting on the motors. 

However these torques are supplied by actuators. In agonistic control, the electric 

direct current (DC) motors are used, with voltage as inputs. Therefore, after 

obtaining the required torque for agonistic control, correct input voltage values are 

needed to generate the desired torque. Also, the input voltage has a maximum value 

which can not be exceeded. Consequently, we have to take this factor into account 

in the controller development.
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The motor dynamics is derived in (Friedland, 1986). The torque developed at 

the shaft of a motor is proportioned to the input current to the motor, r  =  kii, 

where ki is the torque constant. The induced emf (“back emf”) E  is proportional 

to the angular speed uj of the motor. E  = k2u>, where k2 is the back emf constant, 

u> =  jf-, 9 is the angular position of the motor.

Let u be the input voltage to the motor, from Ohm’s law, we have the following 

relation:

u - E  + Ri

where R  is the resistance of the motor armature.

We obtain
R , dO ,
T j + dt = “ (3'41)

From above relation, given the desired torque r , we can easily calculate the

input voltage u.

agonistic

system
motor

Figure 3.4 Combining motor dynamics with agonistic system, voltage as the input 
and the positition of the workpiece as the output

The electric motor is an electro-mechanical energy transducer. When the 

energy conversion is 100 percent efficient, the electrical input power Pe = Ei = ^-wr 

should be equal to the mechanical output power Pm =  wr, thus ki =  k2.

Note (3.41) is derived under the assumption that the inductance of the motor 

armature is negligible. If the inductance is not negligible, combining the motor 

dynamics with the motion equation of the agonistic system will leads to a third 

order nonlinear system (Tarn, 1991). In that case, it is very difficult to design the 

control law for the input voltage. In addition, control problem is further complicated
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in agonistic control by the requirement that the torque should be kept positive all 

the time.

Determination of

In the calculation of the input voltage u, the value ^  is needed.

In the stiff case, due to the holonomic constraints: /,• — 1° = —r0,-, 0,- is related 

to the velocity of the tendon by =  —r0,-. While /,- =  y  s in  Pi — x  cos Pi. Therefore,

10; =  — {y sin Pi — x cos Pi)
V

In the elastic case, from the relation c; = (/,- — +  r9i)k, we can obtain:

r k

where U =  y sin Pi — x  cos Pi and i,-, x, y can be constructed from observer.

In the decentralized case, 0,- itself is the state variable. It is easy to obtain the 

value of 0,- from the observer.

Choice of the gains in the PD controller:

In the PD ( proportional plus derivative) control law, velocity and position 

gains should be chosen carefully. Too small gains will leads to slow response time 

and too large gains will result in actuator saturation. In agonistic control, with the 

increase of the gains, the value of N  should be increased accordingly in order to 

ensure the positiveness of the torques.

PD gains are usually selected for critical damping. kv = u n2, kp = 2wn.

In the simulation of agonistic system, parameters of Clifton Precision DC 

motors were used (model number: JDTH-2250-FN-1C). The relevant data are the 

following (Catalog, Servo Systems Co.):

ki =  8 oz-in/Amp =  5.76 x 10-3 kg-m/Amp, 

resistance i? =  1.2 ohm

The maximum input voltage is 24 v and the noload current is 560 mA. Therefore 

the maximum power is 13.5 watts.
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C H A P T E R  4 

O B SER V ER  D ESIG N  F O R  A G O N ISTIC  C O N TRO L

4.1 N ecessity  o f O bserver

The control law used in agonistic control is basically PD type. It always requires the 

velocity information. In the agonistic system with elastic tendons, q is used in the 

slow control law and i  is used in the fast control law to stablize the fast system.

Usually, only the position variables q and z are available. VVe need to construct 

the velocity variables based on these available quantities. In the elastic case, due 

to the elasticity of the tendon, there is no one-to-one correspondence between the 

position of the workpiece and the angular position of the motors. Both these position 

measurements are needed.

The problem of designing observers for agonistic system is very complex, due to 

the nonlinear and coupled structure of the related dynamic models. In this chapter, 

we exploit the structural properties of the agonistic system with elastic tendons and 

develop a method to reconstruct the velocities of the workpiece. Linear uncertain 

system theory is used. The observer is shown to be gloablly stable.

4.2 Developm ent of th e  N onlinear O bserver 

In the PD control law (3.3),(3.4), the position and velocity information of the 

workpiece is required. The position of the workpiece can be determined from the 

following relationships:

while li = 1° — r&{(i = 1,2,3,4).5,- are provided by the shaft encoders mounted 

on the motors.

46
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Although the position sensor can give us accurate position measurement of 

the workpiece, the velocity measurement is not always possible. Even the velocity 

information is available, it may contaminate with noise. This will deteriote the 

controller performance. So, in order that the PD control law is feasible, we need to 

estimate the velocity of the workpiece using the position measurements via nonlinear 

observer.

let [zx,z2, z3, z4] =  [x,x,y,y]

observer:

*1 =  -2 +  k$(x — Z\ ) (4.3)

-2 =  —<7i +  +  ks(x — zi) (4.4)

*3 =  *4 +  k5(y — z3) (4.5)

z4 = —q2 +  v2 +  ks(y — z3) (4.6)

Observer-based control law:

Vi = ki(x — Xd) + k2(z2 — id) +Xd + qi (4.7)

i>2 =  k3(y -  yd) +  k4(z4 -  yd) + Vd + q2 (4.8)

For passivity-based set-point control, by using only the position measurements, 

velocity information can be obtained via filtering.

Kelly (Kelly, 1993) used a high pass filter of the form ^  (s is the differential 

operator) to filter the position measurements and extract the velocity information. 

Similar idea also appeared in (Middleton and Goodwin, 1988) where the operator 

was used to avoid the measurement of acceleration.

Let qi represent the position state. Define:

ft =  - £ - *  (4.9)
s +  a,-
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then can be viewed as velocity approximation and be used to replace the 

true velocity <n in the implementation of the set point control law.

Define

we have

and

■ 0 1 '
'  i i5  

5+01 0 ?1

.  * 2 . 0 6?s
.  ? 2 .

A  =  diag{a.i}, B  =  diag{b{\

x  =  — A x — A B q

0 =  x + Bq

(4.10)

(4.11)

(4.12)

(4.13)

By substituting the velocity approximation 0 instead the true velocity q into 

the control law (3.9), we have the following proposed control law:

r  =  — kp(q — qd) -  kv0 =  kpq — kv0 (4.14)

where q =  qd — q.

Then, the overall closed loop system is:

L
dt

This is an autonomous system with an unique equilibrium point at ( q , x , q )  =  

(0, —Bqd, 0). In order to shift the equilibrium to the origin, introduce the variable 

f  =  x  + Bqd , the new closed system becomes:

£
dt

’  4 ' - 4
X = —Ax — ABq (4.15)

. 4  . . A/-1(?)[M  -  k v ( x  + B(i)\ -  4 ) 4  .

’  4 ' - 4
= - A t  +  ABq (4.16)

.  4 . . M - ' i q ^ k p  +  kvB)q -  £*£] -  C(g, q)q

It has an unique equilibrium point at origin. 

Define the Lyapunov function candidate:
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V  =  i f M ( q ) q  + ± q % q  + i({ -  B q f h B - ' ( (  -  Bq) (4.17)

which is positive definite since M(q),kp and kvB~l are ail positive definite.

V  =  —(f -  Bq)TkvB~l A(Z — Bq) (4.18)

Since kvB~l A  is positive definite, V  is a negative semi-definite function. Hence, the 

origin is a stable equilibrium.

Now, we use LaSalle’s theorem to prove the asymptotically stability. When

V  =  0, £ — Bq =  0. We have 9 =  x + Bq =  0 and x = 0. From (4.13), q = 0. Hence

r  =  0 (from (3.1)). Finally, we have q = 0 from (4.14).

We conclude that the origin is the global asymptotically stable. Hence

lim q(t) =  0f—*00

4.3 Observer Design for Agonistic Control: Elastic Case 

In (Yang and Friedland, 1996), we established the dynamic model of agonistic control 

in the elastic case.

mq ~  B{q)z (4.19)

e2z =  —A(q)z +  E(q,q)q +  Du (4.20)

Although the dynamic equations in the elastic case seem more complicated than 

those in the stiff case, there is inherent structure (Property 1 through Property 3, in 

section 3.1.1 of chapter 3). By taking advantage of this inhertent structure property,
t

the observer design for the elastic case can be made easier than the observer design 

in the stiff case.
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We note

B(q,q) =  - B T(q) (4.21)

Then, (4.20) can be written as

£2z =  —A(q)z — B T[q)q +  Du  (4.22)

T heorem  2 The system defined by (4-19) and (4-22) is equivalent to the following 

system:

mq =  B(q)z 

v =  —rDz  +  Du 

=  V  -  B r (q)q

Proof: Differentiating (4.25), we have

dt
=  D{u -  rz) -  B T{q)q -  B T{q)q

From (4.19),q = —B(q)z, we obtain:

e2z =  D(u — rz) — B T(q)q — —B T(q)B(q)z (4.26)
m

But

± B T(q)B(q) =  A(q) -  tD  (4.27)m

we have

e2z =  —A(q)z — B T(q)q +  Du (4.28)

This ia exactly the equation(4.22). □□
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9i =  9» 92 == q,x

9i ' 0
92 0
V 0
2 •

S  Z . 0 -

91
92
V

h
0
0

where It is I x  I identity matrix.

(4.29) can re rewritten as:

, (4.23) to (4.25) can be written as:

0 0 
0 i B[q)  
0 —rD 
h  0

' 9i ' * 0 '
92
V

+
0
D u (4.29)

z . 0 .

x  =  F(q)x +  Gu (4.30)

This is a linear singularly perturbed, parameter-dependent system, q enters 

the matrix F(q) nonlinearly. When the workpiece moves, q varies accordingly. But 

its value is known in real time through measurement.

Remark 1: (4.29) is parametrized by a time varying parameter q. Although 

it is a linear time varying system, the variable t does not explicitly appear in the 

equation. It is more approprite to call (4.29) a linear parameter-varying (LPV) 

system. Its observer design problem is quite different from those for linear time 

varying systems. It is closely related to the linear uncertain system theory (Barmish, 

1985), (Petersen and Hollot, 1986), (Petersen, 1987), (Zhou and Khargonekar, 1988).

Remark 2: We see that by exploiting the inherent structure of the system, some 

nonlinear system can be converted to linear parameter-varying system.

Remark 3: (4.29) is a linear singularly perturbed system. But it differs with the 

standard linear singularly perturbed system (Kokotovic, Khalil and O’Reilly, 1986). 

The standard linear singularly perturbed system has the form:

x  =  Anar +  A\iz  

e z  =  A2 i a :  +  A 2 2 Z

where A22 is always assumed to be nonsingular. In (4.29), A22 does not exist, much 

less to say it is nonsingular.Indeed, (4.29) is not directly derived from a physical
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system. Rather, it is obtained by artificial manipulation. Therefore, the standard 

method of the observer design for singularly perturbed systems can not be used.

Assume that the workpiece positions (x, y) and the angular positions of of the 

motor Oi, (i =  1,2,3,4) are measurements and the elastic modulus of the tendon is 

known.

Define q and z  as output variables:

V = 9 ' h 0 0 0  '

1
10 

M
 

__
__

__
1

2 0 0 0 V
= Hx (4.31)

where H  = I2 0 0 0 
0 0 0 / 4

(4.30) and (4.31) are observable regardless of the values of q. The observability

matrix is:

r h  i
H F
H F 2

■

O =

The matrix O has full rank. 

Observer Design:

h
0
0
0

0 0 0
0  0 / 4

h  0 0
~ h B T{q) 4 /4  0

x = F{q)x -  K T(q)(y -  Hx)  + Gu (4.32)

From (4.32), we can reconstruct the state variable (q,q,v,z). As for i ,  it can 

be calculated from (4.25) after we know v and q.

Define the error e = x — x, then

e =  [F(«) +  K T(q)H]e (4.33)

The objective is to choose the gain matrix K(q)  to stabilize the system (4.33) 

for all the possible values of q.
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This is a robust stabilization problem. It is not a new problem. It has been 

haunting in the control community for many years, see (Vinkler and Wood, 1978), 

(Chang and Peng, 1972).

• R obust S tab iliza tion

Robust stabilization theory (Petersen and Hollot, 1986), (Petersen, 1987) 

involves solving an algebraic Riccati equation(ARE). The solution to this Riccati 

equation defines a quadratic Lyapunov function which is used to establish the 

stability of the closed loop system. This leads to the notion of “quadratic stabiliz- 

bility”.

Consider the linear uncertain system:

x =  (Ao +  AA(q))x + Bqu (4.34)

where x is the state, u is the control input and q(t) is a vector of uncertain parameters 

which is restricted to a prescribed bounding set.

D efinition (quadratic stabilization): (4.34) is said to be quadratic stabilizable 

via a linear constant control if there exists a linear constant gain feedback law u =  

A'x, a positive definite symmetric matrix P and a constant a  > 0 such that for any

admissible uncertainty q(t), the Lyapunov function V(x) =  x TP x  satisfies

V  =  xr [P(A0 +  AA(<?) +  BqI<) + (Ac +  AA(q) +  B0K ) TP]x <  - a | |x | |2

When the system (4.34) is quadratically stabilizable, The corresponding closed 

loop system can be shown to be uniformly and asympotically stable.

There are several ways to represent the uncertainty matrix AA(q).

Decomposition 1:

AA(q) =  JZ AjSjiq) (4.35)
i=i

where Aj is a known constant matrix and Sj(q) is a scalar which contains the uncer

tainty. Assume Sj(q) < r for all j  (r is a constant).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Decomposition 2: (norm bounded uncertainty)

54

AA(g) =  DF(q)E (4 .36)

Where D and E  are known constant matrices. Assume ||F || <  1. Here, || • || denotes 

the Euclidean norm.

Decomposition 3: (block-structured norm-bounded uncetainty)

A A(q) = ’t D lFi(,q)El (4.37)
1 = 1

Sometimes, it is more approprite to represent AA(q) by (4.37) which can be 

converted to (4.36) since

[A , •••,!>*]
i=l

Fi(q)

Fk{q)

Ex

. Ekiq) .

Equation (4.35) represent a larger class of uncertainties in the sense that some 

uncertaintis can not be represented as the form (4.36). Furthermore, (4.35) can be 

more easily obtained than (4.36). But with the decomposition 2, we can obtain 

stronger results. More specifically, for decomposition 2, the existence of the positive 

definite solution of the ARE is sufficient and necessary condition for the quadratic 

stabilizability of (4.34) (Petersen, 1987). But for decomposition 1, we can only say 

that the existence of the positive definite solution of the ARE is a sufficient condition. 

These are given by the following theorems.

Theorem 3 (Petersen and H ollot, 1986) Consider the system  (4-34) with the 

decomposition 1.

Suppose Aj be decomposed as the following form :

Aj  =  djej (4.38)

where dj and ej are “rank 1 ” vectors.
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Let

3=1

E\ =  f X > ;eJ
3=1

Given the positive definite matrices R  and Q, if  for some positive scalar 7 , 

there is a positive definite solution P for the following algebraic Riccati equation:

P A0 4" Aq^P — P[—BoR 1 — D\)P  +  E\ +  7 Q =  0 (4.39)
7

Then, the control law

u =  - - R ~ lBor Px  (4.40)
7

stabilizes the system  (4-34) for all the possible values o f  q.

Proof: Under the control law (4.40), the closed loop system becomes

x  =  (A0 4- AA(g) -  —BoRT1 B0t P)x  
7

Constructing the Lyapunov candidate

V{x) =  xTPx

(4.39) and (4.40) can also be written as

P Ao +  Ao^ P  — P{2BoR l B0T — ~fE i)P  H— Ei 4* Q =  0 (4.41)
7

and

u = —R~1BoTPx  (4.42)

Theorem 4 (Petersen, 1987) Consider the (4-34) with the decomposition 2

Let Q ,R  be given positive definite sym m etric  weighting matrices. (4-34) is

quadratic stabilizable i f  and only if  there exists a constant 7  > 0 such that the R iccati

equation

A 0t P  +  PAo -  P(B0R - lB0r  -  j D D t )P + - E TE + Q = 0 (4.43)
7

The stabilizing control law is given by u = —R 1BqTPx.
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With the above theorems, the quadratic stabilization problem is reduced to the 

existence of the positive definite solution of an algebraic Riccati equation(ARE).

Remark 1 (Petersen, 1987): The existence of the positive definite solution of 

(4.43) is independent of the choice of the weighting matrices Q and R.

Remark 2 : In either decomposition 1 or decomposition 2, the choices of d y ,  e y  

and D, E  are not unique.

(4.43) plays an important role in the quadratic stabilization. Let’s look at this

ARE.

P A  +  ATP -  P RP  + Q = 0 (4.44)

Here, we assume (A, B)  is controllable and R, Q are symmetric.

(4.44) is associated with a Hamiltonian matrix H  defined as:

H = A - R  
- Q  - A t

(4.45)

H  has some properties.

P ro p e r ty  1: If A 6  eig(H), then —A 6  eig(H).

P ro p e rty  2 : If H  has no eigenvalues on j u - axis, then (4.44) has a positive

definite solution.

It seems that whether H  has eigenvalues on jui-axis or not is closely related to 

the matrix R. When R  is not sign definite, H  generally has eigenvalues on juj-axis. 

In the algorithm of quadratic stabilization, R = B R~lB T — ~fDDT , decreasing 7  has

two meanings. The first one is reducing the effect of the uncertainty. The second

one is rendering H  be sign definite (here nonnegative definite).

Back to our problem. Let’s consider the dual system of (4.33).

I  =  (Ao +  AA(q) + BQK ) t  (4.46)

where Ao +  AA(<?) =  F T(q), Bq = HT.
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We have

' 0 0 0 0 ‘ ' 0 0 0 0

-4q = h
0

0
0

0
0

0 
_L T , AA(?) = 0

0
0
0

0
0 0

II

. 0 0 - r D 0 . 0 0 0

I2 0 
0 0 
0 0 
0 u

In our problem, q is known in real time, we can capitalize on this and use 

a feedback control to cancel the term ^ B T(q) (however we can not cancel all the 

uncertainties due to the constraint of the matrix B).

u  =  K \X (4.47)

where K x € A6*12.

A'i = 0 0 0 0 
0 - ± B T(q) 0 0

After cancelling the term £ B T(q), AA(q) becomes

AA(?) =

0 0 0 0
0 0 0 — jjB(q) 
0 0 0 0
0 0 0 0

It can be decomposed as

A A{q) =  DF(q)E (4.48)

where

F(q) = dza^cos/Jnsin& jCos& jSin& jCOs/^sin#*, cos/?4,sin/?4}, (4.49)
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1

£ *

1

£ 2
0 0 0 0 0 0

0 0
1

? ■

1
0 0 0 0

0 0 0 0
1

?

1

p -
0 0

0 0 0 0 0 0
1

p

1
7 ?
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E=

0 0 
0 0 
0 0 
0 0 0 
0 0 - 1

- 1 0  0 0 0 0

0 0 
0 0 
0 0

0 1 0 0 0 0 
- 1 0  0 0 0 0

1 0 0 0 0
0 0 0 0 0
1 0 0 0 0

- 1 0  0 0 0

0
0
0
0
0
0
0

1 0 0 0 0 0

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0

With decomposition 1, we have

(4.51)

4 4 9 9 2 0
Di = diag{0,0, — , — , 0,0,0,0, - ,  , A-},m* m £ e* sH e* e*

Ex =  diag{ 0 ,0 ,4 ,4 ,0 ,0 ,0 ,0 ,2 ,2 ,2 ,2}

We can’t render R  be sign definite. If we cancel the term ^ B T{q) by feedback, 

then we obtain the new decomposition matrices:

92 2 2 
Dr = diag{0,0 ,0 ,0 ,0 ,0 ,0 ,0 , — , -A

m2’ m2’ m2’ m2
Ei =  diag{ 0 ,0 ,4 ,4 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0}

The original uncertainty matrix AA(q) does not satisfy the matching condition 

A.4(g) =  BAN(q).  The matching condition is not a demanding condition imposed 

by the researcher to make the research easier. It basically means that the uncer

tainties in the system are not allowed everywhere. If the system does not satisfy 

the matching condition, it may still be stabilizable, but its stabilizability may not 

be established via quadratic stabilization method. Therefore the matching condition 

reveals the inherent mechanism for the success of the quadratic stabilization method. 

Specifically, when the system does not satisfy the matching condition, it may not 

be possible to render the matrix R  in (4.44) be sign definite, and the ARE may not 

have the positive definite symmetric solution.

• Control law design based on the LQG method:

As a simple and straightforward way, we can design the control law based on 

the nominal system with q =  0. We can use pole placement or LQG method to 

obtain the gain matrix (Friedland, 1986).
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VVe get the gain matrix K  as:

where

K  =  [ K I  K 2 ]

' 3.7775 0 2.1348 0 -2.1347 0
0 3.7775 0 2.1348 0 -2.134'

A'l = 0.0059 0 0.0136 0 0.2661 0
0 0.0059 0 0.0136 0 0.2661

-0.0059 0 -0.0136 0 0.2219 0
0 -0.0059 0 -0.0136 0 0.2219

■ 2.1347 0 0.0059 0 -0.0059 0
0 2.1347 0 0.0059 0 -0.0059

IIUS 0.2219 0 21.883 
0 0.2219 0

0
21.883

9.5204
0

0
9.5204

0.2661 0 9.5204 0 21.883 0
0 0.2661 0 9.5204 0 21.883

The simulation results are shown in chapter 5.
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CH APTER 5

PERFO R M AN CE EVALUATION B Y  SIM ULATION  

5.1 Centralized Control Strategy  
5.1.1 Stiff Case

To evaluate the effectiveness of the control law proposed in the chapter 3, a number of 

simulations have been carried out using ALSIM (ALSIM is a software package for the 

simulation of control systems described by linear or nonlinear differential equations. 

Inside ALSIM, variable stepsize fourth order Runge-Kutta integration algorithm is 

used. The matrix operations are made easy by the library functions. User-friendly 

interface and the graphical display of the simulation results make ALSIM very easy 

to use.)

In simulation, parameter values corresponding to an experimental apparatus 

under construction were used:

a =  8cm, m  =  lOg, r =  1cm, J  =  lOg — cm2

We choose the natural frequency uin =  125.6 rad/sec (20 Hz) and the damping 

factor £ =  0.707. Then, the gains in the computed torque controller axe:

kv = 2(u>n =  177.6 

kp =  cj2 =  15775.36

The bias level was set at

N  = 0.055

A circular trajectory was chosen. Typical performance is exemplified by the 

ability of the system to acquire and track a circular trajectory 8cm in diameter. The 

reference trajectory is defined by

xj. =  0.04cos(5i), yd = 0.04sin(5f)

60
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The results are shown in Figure 5.1 through Figure 5.4. Figure 5.1 shows how 

the control system acquires and follows the reference trajectory. It justifies the 

effectiveness and accuracy of the control algorithms. Figure 5.3 shows the control 

torques. Note that they are all positive, as required. After the system acquires the

circular trajectory, the control torques fluctuate periodically, as expected. Figure 5.4

shows the input voltages. The input voltages are all less than their maximum value 

24 volts.

In order to investigate the effect of friction, we add the friction force acting on 

the pulley. Consider the Coulomb friction: ctisgn(li)r, where a,- is the magnitude, 

is the velocity of the tendon.

/,- =  y sin & — x  cos /?,• (5.1)

The input torque becomes:

Ti -  oci(h)r (5.2)

where a,s^n(/,)r is the resistance torque induced by the friction.

The system dynamics becomes

M(q)q +  C(q, q)q =  rB(T  -  Tfric) (5.3)

where T/rtc is the friction torque.

Tfric =
a j ( / i  )r 
a 2(/2)r 

<*3((3 )r
. a 4(M r

Take the value a  = 0.2. Then the friction torque is a  x  r =  2 x 10-3. It is 

about 10% of the average value of the motor torque.

High gain is helpful for overcoming the effect of friction. In simulation, we 

choose the gains as: kv = 222, kp =  24649. The value of N  is set at N  =  0.05.
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Of course, the gains can not be chosen arbitrarily large. Otherwise, the motor will 

saturate.

Simulation results axe shown in Figure 5.5, Figure 5.6 and Figure 5.7 through 

Figure 5.9. When a t- is small enough, the effect of the friction is almost negligible. 

But as a,- increases, the friction force may seriously degrade performance.

Gererally, there axe two effects due to the friction:

#. The orbit discrepancy is increased. (The orbit discrepancy is defined as the 

difference between the actual radius and the desired radius of the circle).

•. The slip-stick phenomenon is observed.

Using an observer makes matters worse. From Figure 5.7, we see that the 

trajectory is not smooth. The reason is the dynamics of the observer does not 

incorporate the friction term. This makes the estimates of the velocity x, y deviate 

the true values of x, y. This is evident in Figure 5.9

Combining observer and friction force will leads to serious results: High 

frequency slip-stick is present and the tracking performance becomes poor.

The simulation results using passivity-based method are shown in Figure 5.10 

through Figure 5.11 (Same parameter and gain values used in the computed-torque 

method are used). Control law performance in the presence of friction are shown 

in Figure 5.12, Figure 5.13 for full state feedback control and in Figure 5.14, Figure 

5.15 for observer-based feedback control law.

Basically, there is no big difference between these two methods except in the 

passivity-based method with observer in the presence of friction, the control torques 

are smoother than the control torques in the same case when computed-torque 

method is used.

To test the robustness of the proposed control law, we changed some parameters 

in the simulation and observed that practically no change in tracking accuracy has
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trajectory

0.04

aoi

-0.04

aos
x

F igure  5.1 Trajectory of the workpiece tracking a circle with radius 4 cm. Computed 
torque method in the absense of friction.

• tO** ocW d«er*o«ncy

0.00 
tim# (mc)

0.1 0.12 0.14

F igure  5.2 Orbit discrepancy. The radial error converges to zero in 60 ms. 
Computed torque method.

occurred. For example, when we change the mass of the workpiece by 10%, the 

radius of the true trajectory is still 3.99 cm.
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control torque 1 control torque 2
0.08

0.06

0.04

0.02

t(sec)

control torque 3
0.1

0.08

0.06

0.04

0.02

t(sec)

0.08

0.06

0.04

0.02

0
0 1 2 3

t(sec) 

control torque 4
0.08

0.06

0.04

0.02

t(sec)

Figure 5.3 Control torques exerted on each motors. They are all positive.
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input voltage 1 input voltage 2
2 0

t(sec)

input voltage 3
2 0

t(sec)

2 0

15

10

5

0
10 2 3

t(sec) 

input voltage 4
2 0

15

10

5

0
21 30

t(sec)

Figure 5.4 Input voltages are less than the allowable level, 24 volts
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trajectory

0.04

0.02

- 0.02

-0.04

-0.06
-0.05 0.05

x

orbit discrepancyx 10
20

-5
0.5 1.5

time (second)
2.5

F igure  5.5 Trajectory of the workpiece in the presence of friction. Computed torque 
method with full state feedback.
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torque 1 torque 2
0.08

0.06

0.04

0.02

t(sec) 

torque 3
0.1

0.08

0.06

0.04

0.02

0.15

0.1

0.05

t(sec) 

torque 4
0.08

0.06

0.04

0.02

t(sec) t(sec)

F igure  5.6 Control torques exerted on each motors. Friction is present.
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trajectory

0.04

0.02

- 0.02

-0.04

-0.06
-0.05 0 0.05

20

15

x 10' orbit discrepancy
1 1 ---- j ---- - ------------

_ 1 . . _ 1 _ . . 1

* 1 0
2
o 5 
(0

2  0 

-5
0.5 1.5 

time (sec)
2.5

Figure 5.7 Trajectories of the workpiece in the presence of friction. Computed 
torque method with observer. High frequency slip-stick phenomenon is observed.
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control torque 1 control torque 2
0.08

0.06

0.04

0 .02

t(sec)

0.15

0.1

0.05

t(sec)

control torque 3 control torque 4
0.1

0.08

0.06

0.04

0 .02

0.08

0.06

0.04

0 .02

t(sec) t(sec)

F igure 5.8 Control torques exerted on each motors are not smooth. Friction is 
present. Observer is used
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Figure 5.9 True(solid line) and estimated (dashed line) velocities. The poor 
performance is the result of the unmodeled friction term in the construction of 
observer
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Figure 5.10 Trajectory of the workpiece tracking a circle with radius 4 cm. 
Passivity-based method in the absense of friction.
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Figure 5.11 Orbit discrepancy. The radial error converges to zero in 60 ms. 
Passivity-based method.
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Figure 5.12 Trajectory of the workpiece in the presence of friction. Passivity-based 
method with full state feedback.
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F igure  5.13 Control torques exerted on each motors. Friction is present.
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trajectory

0.04

0 .02

>*

- 0 .02

-0.04

-0.06
0.05-0.05

x

orbit discrepancyx 10
20

-5
0.5 1.5 

time (sec)
2.5

Figure  5.14 Trajectories of the workpiece in the presence of friction. Passivity-based 
method with observer.
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F igure 5.15 Control torques exerted on each motors. Friction is present. Observer 
is used
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5.1.2 E lastic  Case

The elastic modulus k  was taken as 1000N /m 2. This value is much lower than would 

be expected in practice but was taken to accentuate the effect of elasticity.

The desired trajectory is a circle with radius 4cm. We choose

A =  8 , a  =  10 ,6  =  0.05, N  =  0.05

The slow control gains were chosen to be kv =  177.6, kv =  15775.36 and the 

fast control gains were chosen as kv =  15, kp =  50.

The parameter N  controls the magnitude of the torque and hence the 

magnitude of the input voltage. N  should be chosen to ensure the input voltage is 

less than its allowable maximum value.

Two control laws are used, one without sliding mode control, the other with 

sliding mode control, In the first case, the true trajectory tends to a circle with 

radius 3.86cm. There is a discrepancy between the actual trajectory and the desired 

trajectory. This is due to the disturbance of the residue value of tj.

In the second case, the sliding mode control is used to overcome the disturbance, 

the radius of the true trajectory is 3.99cm. We see that significant improvement is 

achieved.

From Figure 5.18, we see that the fast variable 77 tends to zero rapidly under 

the action of the fast control u/.

Simulation results show that the sliding mode control works in the linear region 

most of time and acts as a high gain control. So the performance improvement is 

achieved through high gain control. This is consistent with the fact that in the 

feedback system, large loop gain can decrease the effect of the disturbance and reduce 

the sensitivity of the sytem performance to the parameter variation.

The stiff case of the agonistic control problem is the limiting form of its 

elastic case when the elastic modulus of the tendon approaches infinity. The new 

phenomenon appeared in the elastic case is the oscillations in the fast variables.
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F igure 5.16 Composite control law performance for the agonistic system with elastic 
tendons

F ig u re  5.17 Orbit discrepancy

This investigation shows that the effect of elastic tendons in agonistic control can be 

compensated for by appropriately modifying the control law designed for inelastic 

tendons. The elastic control entails more information than stiff control. In the 

elastic case, there is no one to one correspondence between the angular position of 

the actuator and the position of the workpiece, both axe required to be measured. 

This study assumes all the state variables are available. If, as would be expected, 

not all these variables can be measured, they must be estimated via observer.

Figure 5.23 through Figure 5.26 shows the simulation results when observer is 

incorporated into the system. We see that the observer gives good estimates and the 

system works well although the radial error increases a little bit.
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F ig u re  5.18 Behavior of fast boundary-layer state r}
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F igu re  5.19 Composite control developed in tracking circular trajectory
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Figure 5.20 Control law maintains positive tensions in the tendons
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F igure 5.21 Fast control is used to suppress the oscillations appeared in the fast 
variables
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F igure  5.22 Input voltages are less than allowable level, 24 volts
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Figure 5.23 Composite control law performance for the agonistic system in the 
elastic case. Estimated values from observer are used in the control law
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Figure 5.24 Radial error for tracking a circle in elastic case. Observer is incor
porated in the control law
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F igure  5.25 Control torques are positive, as physically required
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F igure  5.26 True and estimated velocities. The estimated values closely follow the 
true values
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5.2 D ecentralized  C ontro l S tra teg y  

To evaluate the performance of the decentralized control law described in Chapter 

3, we apply the decentralized control law to the actual dynamics model (2.50). The 

tension is estimated from the observer and the true tension is calculated from (2.14).

The base level for the bias torque was set at N  = 0.05

A number of simulations were performed. Typical performance is exemplified 

by the ability of the system to acquire and track a circular trajectory 8cm in diameter. 

The reference trajectory is defined by

Xd =  0.03cos(5t), yd =  0.03 sin(5f)

The desired trajectory is expressed in terms of the coordinates x  and y. It 

should be transformed to the requirements on the angular position of each motor.

The gains in the control law are taken as: kv =  177.6, kp =  15775.36. The 

initial position of the workpiece is x0 =  1 cm ,y0 =  1cm. N  is set to be 0.05. It 

determines the nominal magnitude of the torque. The result of the simulation are 

shown in Figure 5.27 through Figure 5.34.

They reveal that the decentralized control scheme has the good ability to track 

the desired trajectory and keep the tendon in tension at the same time.

However, through simulation, we also find one of the disadvantage of the decen

tralized control strategy: it can not operate over entire working space. The working 

domain is smaller than the available axea. If the trajectory extends too far from the 

center, the system may become unstable. Generally, the radius of the desired circle 

should be less than |  although theoretically its maximun value can be

To illustrate this point, we choose the radius of the desired circle as 0.04cm. 

The simulations axe shown in Figure 5.35. we see that the system works well at the 

initial period of time then goes into disorder.

The above results assume direct measurements of angular velocities of the 

motors. When such measurements are not available, estimation of the angular
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Figure 5.27 Decentralized control law achieves good performance for the agonistic 
system

oiMdtocrapancy
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Figure 5.28 Orbit discrepancy, decentralized control strategy, full state feedback

velocities can be included in the observer. When the estimated angular velocities are 

used in the control law, the gains in the PD portion should not be taken too large. 

This implies the decreased response speed. System bandwidth is sharply reduced. 

In addition, Use of observer will also result in increased orbit error. This can be seen 

from Figure 5.38. In that simulation, we choose the gains as kv = 15, kp = 50.

Incorporating observer into decentralized control law will lead to reduced 

system bandwidth and increased orbit discrepancy.
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Figure 5.29 Decentralized control law can also maintain the positive tensions in all 
tendons
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Figure 5.30 The base value in each torque, 
from equilibrium condition
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Figure 5.31 The correction part in each torque which is responsible for the 
movement of the workpiece
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F igure  5.32 Tensions in each tendon, solid line: actual value, dashed line: estimated 
value
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F igure 5.33 Input voltages don’t exceed the maximum value 24 volts
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Figure 5.34 True (solid line) and estimated (dashed line) angular velocities of the 
motors
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Figure 5.35 The radius of the desired circle is set to be 4 cm to illustrate the effect 
of decentralized control strategy on the working domain of the workpiece
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F igure 5.36 Control torques become unstable after some successful period of time
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Figure 5.37 True (solid line) and the estimated (dashed line) tensions become larger 
and larger as the system enters into disorder
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Figure 5.38 Trajectory of the workpiece. The estimated angular velocity is used in 
the control law
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Figure 5.39 True (solid line) and estimated (dashed line) angular velocity of the 
motor
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5.3 Bandwidth of the Agonistic System

Under the computed- torque control law, the nonlinear dynamics of the agonistic 

system can be linearized as the second-order linear dynamics.

From (Friedland, 1986), the bandwidth W  of the second-order linear system is 

related to the natural frequency u as:

(— )2 =  1 -  2C2 +  7 ( 1 - 2 C 2)2 +  1U?n

If we choose the damping factor £ as then, W  =  u;n.

The bandwith is limited by the following factors:

• unmodelled dynamics such as friction

• use of observer

• actuator saturation

• constraint on the controller such as positiveness

Under the physical parameters of the agonistic system, we choose the natural 

frequency as wn =  125.6 rad/sec (20 Hz) and the gains in the controller as

kv =  2Cwn =  177.6 

kp =  w2 = 15775.36

The parameter N  is selected as N  = 0.055 to prevent the torque from becoming 

negative.

Under these values in the controller, the input voltage will not exceed its 

allowble maximum value 24 volts.

The closed loop bandwidth is expected to reach 20 Hz.

In addition to the basic requirement on the controller to accomplish the control 

task such as point-to-point move, or tracking a given trajectory, there are other 

requirements imposed on the controller.

• The control torques exerted on each motors are nonnegative. This is required 

to keep the tendons in tension.
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F igure  5.40 The agonistic system has 20 Hz bandwidth

• The input voltage can not exceed its maximun value. In real actuators, there 

is physical limitation on the input energy.

Under these requirements, the agonistic control becomes a nonlinear multi- 

variable control problem with constraints on control input. Let u be the control 

input, then u must satisfies: 0 < u <  u where u is the maximun allowable value. A 

lot of work has been done on the energy constraints on the input. However, only a 

few work are seen on the nonnegative control. The general case is not easy.

5.4 Choice of th e  C ontrol Laws

In the above, we evaluated several control laws through extensive simulations. It 

is shown that both centralized control and decentralized control can achieve control 

task with high accuracy, have high bandwidth, and at the same time, satisfy the 

other requirements imposed on the control input (preserving positiveness and not 

exceeding maximum values). When observer is incorporated, centralized control still 

works well. However, the performance of decentralized control is severely degraded. 

Specifically, the bandwidth is sharply reduced and the tracking error is increased. In 

addition, decentralized control has a main disadvantage: the working domain of the
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workpiece is smaller than the available area. If the trajectory extends too far from 

the center, the system will become unstable. This is the price paid for using simple 

linear controller instead of complex nonlinear controller.

As for the comparison between computed-torque method and passivity-based 

method, their performances are essentially the same. But the passivity-based method 

has an advantage: its stability is guaranteed. Hence, larger uncertainties may be 

accommodated. The drawback of passivity-based method is that the error dynamics 

is very complicated and depends on the inertia matrix M(q), hence, the real-time 

position of the workpiece. Computed-torque method is not passive and may therefore 

suffer from instabilities in the presence of uncertainties. But its error dynamics is 

very simple and independent of the inertia matrix.

5.5 Comparison w ith Hummingbird System

Both agonistic system and Hummingbird system are minipositioners. It is interesting 

to make a comparison between these two systems.

• Cost: The Hummingbird is very high while the agonistic system is potentially 

very inexpensive.

• Speed: Hummingbird system is capable of making a 5 millimeter move in 11 

ms (Zai et al, 1992). Agonistic system is capable of making a 10 mm move in 100 

ms.

• Precision: The positioning accuracy of the Hummingbird system is in the 

order of a micrometer. The positioning accuracy of the agonistic system is in the 

order of micrometer for the set-point task and in the order of 10~4 meter for a 

tracking task. The actual accuracy depends on the unmodelled dynamics (such as 

friction), optical encoder and DC motor.

• Bandwidth: The agonistic system has the 20 Hz bandwidth. As of

Hummingbird system, we don’t know the exact value of its closed loop bandwidth.
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We only know that its servo motor has a bandwidth 273 Hz (Zai, et al, 1992). But 

from the Hummingbird’s rapid dynamic response, we infer that the Hummingbird 

system should have higher bandwidth than the agonistic system. Actually, this 

comparison is not fair, since larger motors are used in the Hummingbird system 

than one proposed for the agonistic control (In Hummingbird system, torque constant 

for actuators is 5.75 x 10-2 kg-m/A).

Conclusion:

Hummingbird system is an expensive, high speed and high precision miniposi

tioner.

Agonistic system is a cost-effective, high speed with moderate precision 

positioning device.
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C H APTER 6 

SUM M ARY A N D  CONCLUSIONS

In this dissertation, a new positioning method, agonistic control, is investigated. A 

thorough analysis of the system in both stiff and elastic cases are performed. The 

dynamic model is established. It is a highly nonlinear multivariable system. Based 

on this nonlinear model, a control law is synthesized. The specific requirement in 

agonistic system is that the control torque must be positive to keep the tendons in 

tension. Also, the control input can’t exceed its allowable level. Fine tuning the 

parameters in the control law can meet these different requirements.

In the stiff case, the control law is composed of two parts. The first part is 

a feedforward control to cancel the nonlinear dynamics. The second part is a PD 

control which is used to position the poles of the error dynamics at the desired 

locations.

The stiff case of the agonistic control problem is the limiting form of its 

elastic case when the elastic modulus of the tendon approaches infinity. The new 

phenomenon appeared in the elastic case is the oscillations in the fast variables. 

This resonant behavior imposes bandwidth limitations on the control algorithm that 

is designed assuming perfect rigidity and will cause stability problems. This can 

be dealt with effectively by use of singular perturbation method. This investigation 

shows that the effect of elastic tendons in agonistic control can be compensated for by 

appropriately modifying the control law designed for inelastic tendons. Specifically, 

the control law consists of the control law (slow control) designed based on rigid 

model, together with a correction term (fast control) to damp out the oscillations 

incurred by the finite elasticity of the tendon. The slow control drives the system 

to track the desired trajectory. Robustness of the controller is enhanced by using 

sliding mode control.
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The simulation results demonstrate the feasibility of designing a control law to 

coordinate the input voltages to four actuators for agonistic control.

The elastic control entails more information than stiff control. In the stiff 

case, due to the holonomic constraints, the position of the workpiece can be inferred 

from the angular positions of the motors which are measured with optical encoders 

mounted on each motor. In the elastic case, however, the position of the workpiece 

is independent of the angular positions of the motors. There is no one to one corre

spondence between two quantities. Therefore, additional position sensor is needed 

to detect the position of the workpiece.

For the need of the velocity information which is usually unavailable, an 

observer is used. Assuming that the geometric coordinates x ,y  of the workpiece 

are accessible for measurement, a nonlinear observer is constructed to estimate the 

corresponding velocities which are used instead of the actual velocities in the control 

law, based on “extended separation principle”. In the design of observer for elastic 

case, linear uncertain system theory is used. It is shown that the observer is globally 

stable.

For the real time implementation, a decentralized control law is designed. A 

simple linear second order model is used instead of complex nonlinear model used 

in centralized version. The control scheme presented embodies a key concept: the 

total torque is the superposition of the base value and the correction value. It 

has the desirable feature that the total torque and the tension in the tendon are 

always positive. The decentralized control strategy makes the implementation of the 

controller very easy and parallel processing architecture become possible.
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