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ABSTRACT 

COMPUTER SIMULATION OF CEREBROVASCULAR CIRCULATION. 
ASSESSMENT OF INTRACRANIAL HEMODYNAMICS DURING 

INDUCTION OF ANESTHESIA. 

by 
Steven D. Wolk 

The purpose of this project was to develop a computer model of cerebrovascular 

hemodynamics interacting with a pharmacokinetic drug model to examine the effects of 

various stimuli during anesthesia on cerebral blood flow and intracranial pressure. 

The mathematical model of intracranial hemodynamics is a seven compartment 

constant volume system. A series of resistances relate blood and cerebrospinal fluid 

fluxes to pressure gradients between compartments. Arterial, venous, and tissue 

compliance are also included. Autoregulation is modeled by transmural pressure 

dependent arterial-arteriolar resistance. 	The effect of a drug (thiopental) on 

cerebrovascular circulation was simulated by a variable arteriolar-capillary resistance. 

Thiopental concentration, in turn, was predicted by a three-compartment 

pharmacokinetic model. The effect site compartment was included to account for a 

disequilibrium between drug plasma and biophase concentrations. The model was 

validated by comparing simulation results with available experimental observations. The 

simulation program is written in VisSiM® dynamic simulation language for an IBM-

compatible PC. 



The model developed was used to calculate cerebral blood flow and intracranial 

pressure changes which occur during the induction phase of general anesthesia. 

Responses to laryngoscopy and intubation were predicted for simulated patients with 

elevated intracranial pressure and nonautoregulated cerebral circulation. Simulation 

shows that the induction dose of thiopental reduces intracranial pressure up to 15%. The 

duration of this effect is limited to less than three minutes by rapid redistribution of 

thiopental and cerebral autoregulation. 	Subsequent laryngoscopy causes acute 

intracranial hypertension exceeding the initial intracranial pressure. Further simulation 

predicts that this untoward effect can be minimized by an additional dose of thiopental 

administered immediately prior to intubation. 

The presented simulation allows comparison of various drug administration schedules 

to control intracranial pressure and preserve cerebral blood flow during induction of 

anesthesia. The model developed can be extended to analyze more complex 

intraoperative events by adding new submodels. 
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CHAPTER 1 

INTRODUCTION 

Quantitative understanding of how hemodynamic changes influence cerebrovascular 

responses in neurosurgical patients is essential to prevent untoward changes in 

intracranial pressure (ICP) and cerebral perfusion pressure (CPP). This information is 

usually obtained from studies in which all variables except the one under investigation 

are controlled. During administration of anesthesia, however, multiple pharmacological 

and mechanical interventions may take place simultaneously. The resultant effect of 

these manipulations on cerebrovascular hemodynamics is difficult to predict despite an 

abundance of detailed information about mechanisms of drug actions. In other words, 

there are large number of analytical investigations but a scarcity of significant synthetic 

studies at present. A computer model of the cerebrovascular circulation combined with a 

pharmacokinetic and pharmacodynamic model of a particular drug is a method which 

potentially allows systematic examination of the whole system. 

The aim of this study is to develop a model of cerebrovascular circulation which 

interfaces with a pharmacokinetic drug model. This objective requires linking of blood 

flow and drug distribution kinetics, and is used in anesthesia simulators and studies of the 

cardiovascular system [1-5]. The model developed can simulate the effects of drug(s) on 

intracranial hemodynamics. The changes in cerebral blood flow (CBF) and 1CP were 

calculated during induction of general anesthesia. 	Hemodynamic responses to 

laryngoscopy and endotracheal intubation were predicted for simulated patients with 
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autoregulated and non-autoregulated cerebral circulations. Because thiopental is a 

widely used and extensively studied induction agent in neuroanesthesia, it was chosen as 

the sole induction agent in our analysis in order to validate the simulation. Computed 

results were then compared to available experimental data. The model was also used to 

suggest a drug administration regimen which minimized intracranial pressure increases 

associated with endotracheal stimulation. 



CHAPTER 2 

MODEL DEVELOPMENT 

The overall simulation program structure is shown in Figure I . The sub-model of the 

cerebrovascular system was constructed using a lumped-parameter method, in which the 

variables (e.g. pressure, flow, etc.) are assumed to be uniform within defined zones or 

control volumes. This approach is widely used in modeling physiological systems [6-9]. 

It enables prediction of average trends and responses of the system when subjected to 

pressure and flow perturbations. 	The other submodel is a three-compartment 

pharmacokinetic model of thiopental transport and metabolism linked to the biophase 

compartment by the first order rate process. Thiopental primarily affects mean systemic 

arterial pressure which secondarily influences CBF and ICP. This is used as an input 

parameter to the cerebrovascular circulation sub-model. Action of the pharmacokinetic 

model on hemodynamic model also occurs through regulation of the drug concentration 

dependent arteriolar-capillary resistance. The model developed does not include the 

effect of hemodynamic perturbations on pharmacokinetic parameters. 

3 
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Figure 1 Overall structure of the model. κ12, κ21, κ13, κ 31  = first-order, inter-compartment 
rate constants; K10=first-order elimination constant; Keo= first-order equilibrium constant 
between central and effect site compartments; Ce  = apparent thiopental concentration at the 
effect site; Pa, Par  = arterial and arteriolar pressures; Pc, Pv  = capillary and cerebral venous 
pressures; Pvs  = venous sinus pressure; P, = central venous pressure; Caf, Cvf = cerebral 
arterial and venous compliances; Cr  = brain tissue compliance; Cve  = extracranial venous 
compliance; Raar  = variable arterial-arteriolar resistance (transmural pressure-dependent); Rarc  
= arteriolar-capillary resistance (thiopental concentration dependent); Rev, Rvvs = capillary-
venous system-venous sinuses resistance; Ref, 

R
fvs  = resistance to cerebrospinal fluid 
formation and cerebrospinal fluid outflow; Rvsce  = resistance to the extracranial venous 
outflow.  



2.1 Intracranial Hemodynamics Model 

During the last decade various biophysical and mathematical models of intracranial 

hemodynamics have been developed [9-15]. Depending on the aim of the study, authors 

focused their attention on a particular aspect of CBF or CSF dynamics. The most 

complete model of cerebral circulation was formulated by Ursino [15,16]. The unique 

aspect of this model is its ability to combine many specific attributes of cerebral 

hemodynamics. In particular it includes CBF autoregulation, simulates CSF formation 

rate as a function of transmural pressure, and calculates model parameters using 

physiological and recent anatomical data. A modified version of this model was used in 

our simulation. Modification of the original model was required to introduce drug 

concentration dependent parameters to predict system behavior in clinical situation. 

The equations and parameters for the intracranial hemodynamics model are presented in 

detail and are justified in the original articles [15,17]. Only general principles and our 

modifications will be discussed in this paper. In its present form the model is a constant 

volume system consisting of seven compartments: cerebrovascular arterial and arteriolar 

beds, intracranial capillary compartment, venous vascular bed, venous sinuses, 

cerebrospinal fluid compartment (brain tissue), and a central venous compartment. The 

behavior of each compartment is represented by a single pressure value and by values of 

mass flux exchanged with adjacent compartments. A series of resistances relate blood 

and CSF fluxes to the pressure gradient between compartments: 



6 

where Vn  is the volume of compartment n surrounded by m compartments, qmn  denotes 

the flux between compartments in and n, (Pm  - Pn) is the pressure difference between the 

n-th and m-th compartment, and Rmn  is the resistance of the compartmental boundary. 

CSF production is directly proportional to capillary transmural pressure and inversely 

proportional to choroid plexus resistance to CSF secretion. CSF re-absorption depends 

on the difference between CSF and dural sinus pressure and is inversely related to 

arachnoid viii resistance to fluid flow. Temporal changes of cerebral arterial and venous 

blood volumes are taken into account with the two lumped parameters, arterial and 

venous compliance. An exponential pressure-volume relationship has been assumed. 

This implies that compliances of these compartments are inversely proportional to the 

corresponding value of distending pressure where Cai  and Cvi  are arterial and venous 

compliances respectively, Ka  and Kv  arterial and venous elastance coefficients; values 

for these parameters were computed based on anatomical data on major human 

intracranial vessels. Pa, Pic, Pv  are pressures in arterial, intracranial, and venous 

compartments respectively. Pvi denotes the transmural pressure value at which the large 

cerebral veins would collapse. 
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Compliance of cerebral tissue is described by the following equation: 

where Ke  is an elastance of cerebral tissue and P1  is a constant. According to this 

equation tissue compliance is fairly linear at low ICP, but decreases dramatically as 

intracranial pressure increases (quadratic term in the equation become relevant). 

Detailed explanations and derivations describing the pressure dependency of arterial, 

venous, and cerebral tissue compartments are presented elsewhere [15]. 

Differential equations describing intracranial dynamics can be written by imposing a 

mass balance for each compartment. Compact form of these equations for all cells is: 

where Cmn(Pm, Pn) is the pressure dependent compliance of the nth compartment. 

The constancy of intracranial volume (Monro-Kelly principle) is expressed by the 

following equation: 

where Q denotes rate at which the CSF compartment can expand. This can be used to 

simulate the injection of liquid into the CSF space ( used clinically to test intracranial 

compliance in neurosurgical practice) as well as certain pathologic conditions (e.g. 

subarachnoid hemorrhage). 
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Cerebral autoregulation is represented by a transmural pressure dependent arterial- 

arteriolar cerebrovascular conductance. 	In the original model, an S-shaped 

autoregulatory curve was assumed and simulated using characteristics of the arctangent 

function. The regulatory mechanism gain is an argument in the equation. The gain, in 

turn, was determined by solution of a first order differential equation which includes a 

time constant and a perfusion pressure percent change. This allows study of the partially 

autoregulated circulation by changing equation parameters. Although satisfactory for 

theoretical analysis of cerebrovascular physiology, the resulting autoregulatory curve 

correlates poorly with the well described cerebral blood flow vs arterial pressure 

relationship based on experimental measurements in humans reported in numerous 

publications [18-20]. The data from [20] were used in our model to develop a table 

function of arterial-arteriolar conductances (inverse of resistance) vs transmural pressures 

across arterial wall. Figure 2 shows calculated conductances that were used in the 

present model. The shape of the curve is consistent with experimentally observed 

changes in autoregulatory resistance [19]. During the computational cycle the program 

chooses a conductance corresponding to the transmural pressure value at any given time. 

A six second time delay following a step change in arterial blood pressure was 

introduced to reflect the dynamic nature of the autoregulatory response, as was 

experimentally determined by Aaslid, et al.[21]. 
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Figure 2 Variations of arterial -arteriolar conductance (Ga-ar) with blood pressure; Ga-ar  is 
calculated from cerebral blood flow versus mean arterial pressure data reported by Harper 
and McCulloch [20] 

Figure 3 compares autoregulatory curves generated by the original model, by our 

modification, and experimental points from several studies reported by Lassen [18]. 

A table function describes only one autoregulatory curve. It lacks the flexibility of 

differential equation in constructing a series of partially autoregulated curves offered by 

the original model. Our choice of a table function was dictated by poor correlation of the 

equation generated curve with experimental data and an inability to find an experimental 

verification of partial autoregulation. The absence of autoregulation in our model was  



10 

studied by assuming fixed arterial-arteriolar conductance (conductance at mean arterial 

pressure of 100 mmHg) at all pressures. 

Figure 3 Autoregulatory curves predicted by the present model and calculated using 
solution of differential equations as described by Ursino [15]. Experimental points are from 
Lassen [18]. Mean values of 9 groups of subjects have been plotted. 

The effect of thiopental on cerebrovascular circulation was simulated by a 

concentration dependent arteriolar-capillary resistance. Postulating that this resistance is 

the only site of thiopental action in the brain, the model can be used to develop a 

conductance (reverse of resistance) versus concentration function from experimental data 
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relating thiopental concentration and CBF [22]. Calculated conductance values were 

regressed using exponential equation: 

where x is thiopental concentration in ptg/mL. Product moment correlation coefficient 

for this equation, r, equals 0.95. 

Following a bolus intravenous injection, thiopental decreases systemic arterial 

pressure by reducing cardiac output and by venodilation [23]. Experimental data from 

several investigations studying the cardiovascular effects of thiopental during induction 

of anesthesia, were regressed to develop a relationship between thiopental concentration 

and mean systemic arterial pressure: 

where x is thiopental concentration in µg/mL and MAP is mean arterial pressure in 

mmHg. There is good correlation between experimental data and the above equation (r = 

0.96). 

2.2 Pharmacokinetic Model 

The three compartment model was used to calculate plasma concentration of thiopental at 

various times. Pharmacokinetic parameters reported by Stanski et al. [25] were used in 

our simulation. Plasma concentration was linked to the apparent effect-site concentration 



with a first-order rate constant, Ke0. Effect-compartment was introduced to account for 

temporal dissociation between serum (central compartment), thiopental concentration and 

EEG effect. Numeric integration of the system of three linear differential equations can 

predict plasma concentration of thiopental following bolus injection. However, the 

simulation language structure used to solve the model equations (VisSim®) does not 

permit interruption of the numerical integration when the additional drug boluses are 

studied. To simulate a clinical setting when two or more injections are required, an 

analytical solution of the system of three linear differential equations proposed by Hull et 

al. [26] was used in our model. The solution allows simulation of multiple injections as 

well as the continuous infusion of drug [27]. 

2.3 Operation of the Computer Model 

The simulation program was written in VisSim®, a simulation programming language for 

an IBM compatible PC. In VisSim®, models are constructed in the form of block 

diagrams. Each interconnected block represents and describes a portion of the system. 

The specifics of programming using block diagram languages are discussed by 

Karayanakis [28]. Fourth-order Runge-Kutta integration blocks with a time interval of 

50 msec were chosen for a solution of the model equations. A 32-bit PC microcomputer 

was used to realize real-time simulation. 



CHAPTER 3 

RESULTS 

Simulation results include computation of cerebral blood flow as a function of mean 

arterial pressure at different intracranial pressures and prediction of cerebrovascular 

responses during the induction phase of general anesthesia. Changes in cerebral blood 

flow and intracranial pressure are calculated for simulated patients with and without 

autoregulation. The predictions of the model are compared with available experimental 

data. 

Figure 4 Cerebral blood flow as a function of cerebral perfusion pressure and intracranial 
pressure (10, 30 and 50 mmHg); it is assumed that autoregulation is intact at all times. 

13 
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3.1 Effect of ICP on CBF 

Figure 4 compares CBF calculated for MAP up to 170 mmHg for simulated patients with 

ICP of 10, 30, and 50 mmHg. The model predicts that an ICP increase shifts the 

autoregulatory curve to the right. A higher cerebral perfusion pressure is required to 

maintain cerebral blood flow in these patients. ICP elevation was accomplished by 

increasing resistance to CSF re-absorption. The original model used liquid bolus injected 

into the CSF space to simulate intracranial hypertension. This results in a transient 

response and could not be used for our simulation. 

Autoregulation is modified or impaired in areas surrounding a space occupying, 

traumatic, or inflammatory lesion and may be completely lost in severe head injury 

[18,29]. Loss of autoregulation may leave surviving brain tissue unprotected against the 

potentially deleterious effects of significant blood pressure changes. Figure 5 shows that 

absence of autoregulation results in a passive CBF increase if systemic blood pressure is 

increased. Sengupta et al. [30] demonstrated a similar relationship between MAP and 

CBF in primates with compromised cerebral circulation. Intracranial hypertension 

reduces transmural pressure and increases vascular resistance. This is reflected in a 

decreased slope of CBF versus ICP with the elevation of ICP. 

3.2 Clinical Applications 

The induction of general anesthesia was modeled using a bolus thiopental injection 

followed by laryngoscopy and incubation. ICP and CBF changes were compared for 

cerebral circulation with intact and compromised autoregulation. Simulation is initiated 

by injecting a typical induction dose of thiopental (5 mg/kg). It is assumed that a 
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hemodynamically stable nondepolarizing neuromuscular agent is administered essentially 

at the same time (e.g. vecuronium). Under normal conditions hemodynamically stable 

relaxants do not alter CBF or 1CP and their influence on intracranial hemodynamics is 

expressed primarily by determining a time for laryngoscopy and intubation 

(approximately two minutes). 

Figure 5 Cerebral blood flow as a function of cerebral perfusion pressure in non-
autoregulated cerebral circulation. 

Laryngoscopy and tracheal intubation are associated with sympathetic discharge 

which may lead to a hypertensive response [31,32]. If thiopental is used as the sole 

induction agent, endotracheal stimulation may increase MAP by 35 ± 10 mmHg 
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compared to preinduction values and by 60 ± 20 mmHg compared to preintubation 

values [33,34]. In our model, systemic hypertension was simulated by adding 60 mmHg 

to the value of MAP 120 seconds following the induction dose of thiopental, Stimulation 

persisted for 30 seconds. 

Figure 6 Changes in intracranial pressure during induction of anesthesia in a simulated 
patient with intact autoregulation; A) thiopental, 5 mg/kg bolus is injected; B) laryngoscopy 
begins. 

ICP and CBF changes during induction of anesthesia were computed for initial ICP 

values of 10, 30 and 50 mmHg. Figure 6 shows that an induction dose of thiopental 
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decreases ICP. The model predicts that ICP reduction is more pronounced in patients 

with increased intracranial pressure (7% for patients with ICP of 10 mmHg and 15% for 

patients with ICP of 50 mmHg). This effect, however, lasts less than three minutes. 

Autoregulation and rapid redistribution of thiopental resulting in systemic pressure rise 

lead to ICP elevation almost to preinduction level. Subsequent laryngeal stimulation 

raises ICP by 5 mmHg. 

Figure 7 Changes in intracranial pressure during induction of anesthesia in simulated 
patient without autoregulation: A) thiopental, 5 mg/kg bolus is injected; B) laryngoscopy 
begins. 
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Figure 7 shows simulated ICP changes after a thiopental bolus and endotracheal 

intubation in a patient without autoregulation. 	Simulation demonstrates that 

laryngoscopy and endotracheal intubation may dangerously increase ICP by an additional 

14 and 26 mmHg in compromised patients whose intracranial pressure begins at 30 and 

50 mmHg, respectively. The duration of ICP increase is deteiniined by the length of 

laryngeal stimulation (30 seconds in our simulation). 

Figure 8 Changes in cerebral blood flow during induction of anesthesia in a simulated 
patient with intact autoregulation: A) thiopental, 5 mg/kg bolus is injected; B) laryngoscopy 
begins. 
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Figure 9 Changes in cerebral blood flow during induction of anesthesia in a simulated 
patient without autoregulation; A) thiopental, 5 mg/kg bolus is injected; B) laryngoscopy 
begins. 

Figures 8 and 9 show simulated CBF changes during induction of general anesthesia 

with thiopental for patients with and without cerebral autoregulation. Similar to 1CP 

responses, CBF changes are exaggerated in simulated patients with increased 1CP and no 

autoregulation. 



CHAPTER 4 

DISCUSSION 

The mathematical model described in this paper is being developed to simulate clinical 

behavior of the cerebrovascular circulation. The model is constructed by connecting sub-

models of intracranial hemodynamics and drug pharmacokinetics. The complexity of the 

model can be reduced by using a multiple modeling technique. Simplification is 

achieved by setting up and testing individual units separately and then combining them 

into a complete model [35,36]. The modular approach also allows addition of new units 

to the model as needed. The multiple modeling technique is used to study performance 

of systems with two or more kinds of transport (e.g. momentum, mass, etc.) taking place 

simultaneously [2,3,5,37]. 

In building a model a compromise must be made between model simplicity and 

accuracy of results. Approximations and assumptions are always involved. This model 

was developed to study the effect of phaimacologic and mechanical intervention on the 

cerebrovascular circulation during administration of anesthesia. 	Three sets of 

assumptions were used: assumptions related to development of the intracranial 

hemodynamic model, assumptions related to pharmacokinetics of thiopental, and 

assumptions concerning the simulated example - induction of anesthesia with thiopental. 

Limitations related to these assumptions should be evaluated in order to appreciate the 

results of the simulation. 

20 
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4.1 Circulation Model Limitations 

The lumped parameter model of cerebral circulation was constructed by grouping 

cerebral vessels and brain parenchyma into distinct functional compartments. The 

equations that ensue are linear ordinary differential equations (as opposed to partial 

differential equations for distributed systems). This method does not allow evaluation of 

the relative role of different cerebral regions in regulation of blood flow. Consequently 

pathologic conditions which are associated with regional CBF differences (cerebral 

ischemia, steal phenomena, etc.) can not be studied with this model in its present form. 

Including the arteriolar compartment and thiopental dependent resistance was 

necessary to study the effects of drug concentration on intracranial hemodynamics. A 

dose-dependent reduction of metabolism (CMRO2) with thiopental administration in 

humans and animal experiments is well documented [20,38,39]. Functional depression 

of brain activity leads to a corresponding CBF decrease. Although the exact mechanism 

linking flow and metabolism is unclear, it appears that coupling occurs at the level of 

small arterioles [40]. Thus, arteriolar-capillary resistance was chosen as the model site of 

thiopental action. 

The goal of any particular study deteimines the degree of simplification necessary. 

Metabolic and respiratory factors have been omitted, although they can be added in 

modules as needed. The level Of CO2, H', and 02  profoundly affect CBF and ICP, but it 

was assumed that these parameters were unchanged in order to compare the effects of 

thiopental administration and intubation under various simulated clinical situations. 

Simple "experimental" design was necessary at the initial stage of model development to 

validate simulated results with the available clinical observations. 
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Our model includes intracranial arterial, venous, and tissue compliances. Pressure 

difference between adjacent compartments and elastance coefficients determines their 

numerical values. Although it is very likely that elastance coefficients would be affected 

by thiopental concentration, there is no experimental verification of this relationship. 

Thus, only the effect of pressure changes on compliance is included in the model. 

1CP elevation in our simulation was accomplished by increasing a resistance to CSF 

re-absorption. Intracranial hypertension can be produced also by increasing the brain 

tissue elastance coefficient. Comparison of the various ways of decreasing intracranial 

compliance and examination of compliance changes on cerebral blood flow and 

intracranial pressure was not part of this study, but will be addressed in the future. 

4.2 Limitations of Pharmacokinetic Model 

Rigorous determination of thiopental uptake by brain tissue requires knowledge of 

cerebral blood flow, volume, and blood-tissue partition and diffusion coefficients 

(assuming uniform thiopental concentration in various brain regions). To construct a 

complete physiological model of drug distribution this information should be also 

available for other organs. Perfusion-limited models of thiopental disposition have been 

developed by Price [41] and Saidman and Eger [42]. 	Although valuable in 

understanding the general principles of thiopental distribution, these models never gained 

widespread acceptance because of their complexity, arbitrary selection of organ volumes 

and flows, and inherent inability to determine partition and diffusion coefficients in 

humans. 
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An alternative analysis of drug disposition consists of formulating a model containing 

the minimum number of compartments that adequately fit the observed data. Although 

compartmental analysis gives little insight into the physiological determinants of 

phaimacokinetics, these models are widely used in clinical pharmacology and 

anesthesiology due to their simplicity and easy experimental verification. A three 

compartmental model (e.g. tri-exponential equation) is commonly used to describe the 

thiopental concentration-time curve during the first 30 minutes following an intravenous 

bolus administration [23,43] and was used in our simulation. The degree of 

disequilibrium in drug concentration versus time and effect versus time was evaluated by 

adding an effect compartment (biophase) to the three-compartmental model [44]. The 

apparent drug concentration at the effect site was calculated using first order kinetics and 

plasma concentration predicted by the three-compartmental model. The rate constant of 

blood-brain equilibration used in our simulation (k=0.58 mind) was estimated by Stanski 

and Maitre [25] from EEG versus thiopental plasma concentration data. We assumed 

that cardiovascular and central nervous system effects are kinetically indistinguishable. 

Limitations of compartmental analysis in describing early distribution of thiopental 

are well recognized [45]. Compartmental kinetics assumes instantaneous mixing of a 

drug in the central compartment following intravenous injection. Speed of injection, 

however, may influence the drug dose-concentration-effect relationship. Following 

intravenous drug administration, the injected bolus travels along the venous vasculature 

to the right heart. Using a sheep model, Upton and Huang [461 determined that the 

maximum concentration of indocyine green injected into the inferior vena cava occurred 

7 to 18 seconds after injection ( injection time 1 to 10 seconds). Although it is possible 



to study this delay by introducing an additional central compartment [47], it is unlikely 

that a delay of this magnitude will significantly alter model predictions. 

There are several other factors that influence thiopental kinetics, which have not as 

yet been studied. The effects of disease states, can be simulated by changing inter-

compartmental and elimination kinetic constants, but were not evaluated. Thiopental 

protein-binding and the extent of thiopental ionization are not included in this model. 

Thiopental pharmacokinetics determines hemodynamic changes in our model. The 

effects of altered hemodynamic parameters on drug distribution cannot be accounted for 

by the model in its present form. "Closing the loop" will be an important feature of 

future studies. 

4.3 Concerning Simulation 

Laryngoscopy and endotracheal intubation may elevate systemic pressure and ICP [48, 

49]. Although this transient increase is probably unimportant in patients with intact 

autoregulation, brain edema and trans-compartmental brain tissue shifts may occur in 

patients with already compromised intracranial hemodynamic [50,51]. Our computations 

show that a single bolus of thiopental is insufficient to prevent an ICP elevation 

associated with 	intubation carried out 3 min after thiopental administration. 

Cerebrovascular effects of thiopental may be attributed to two basic mechanisms; direct 

arteriolar vasoconstriction and reduction of systemic mean arterial pressure [52]. Both 

effects are dose-dependent. Rapid redistribution of thiopental decreases its plasma 

concentration from 65 ug/mL to 20 ug/mL in 2 minutes. Consequently, systemic arterial 

pressure and cerebrovascular conductance rise, negating the initial desirable action of this 

drug. If cerebral autoregulation is absent, exaggerated elevation of ICP occurs during 

laryngeal stimulation. 
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The pattern of ICP and CBF changes produced by our simulation closely resembles 

experimental in vivo observations. Shapiro et al. [53] and Greenbaum et al. [54] 

demonstrated that patients with preoperative signs of elevated ICP had a significant ICP 

increase (30 to 80 mmHg) during intubation using thiopental. Transcranial Doppler 

ultrasonography of middle cerebral artery blood flow velocity suggests that hypertensive 

responses during laryngoscopy and intubation increase CBF [55,56]. Due to variations in 

experimental conditions, the simulated and experimental results can only be compared 

qualitatively. 

Prevention of hypertensive responses in neurosurgical patients is the subject of 

numerous investigations [57-59]. Our computer model looked at the effect of a second 

dose of thiopental (4.0 mg/kg) prior to intubation. The simulation shows that this will 

attenuate increased ICP and CBF in simulated patients with non-autoregulated cerebral 

circulation (Figures 10 and 11). The additional dose of thiopental reduces MAP and 

extends the time period of cerebral vasoconstriction. 
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Figure 10 Changes in intracranial pressure during induction of anesthesia in a simulated 
patient without autoregulation and a second dose of thiopental administered prior to 
intubations; A) thiopental, 5 mg/kg bolus is injected; B) laryngoscopy begins; and C) 
thiopental 4 mg/kg is injected. 
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Figure 11 Changes in cerebral blood flow during induction of anesthesia in a simulated 
patient without autoregulation and a second dose of thiopental administered prior to 
intubation; A) thiopental, 5 mg/kg bolus is injected; B) laryngoscopy begins; and C) 
thiopental, 4 mg/kg is injected. 



CHAPTER 5 

CONCLUSION 

The primary purpose of this work is to synthesize cerebrovascular physiology and 

pharmacology to allow analysis of complex effects of drugs and mechanical interventions 

on CBF and ICP occurring during the administration of anesthetics. The overall model 

was constructed from two constituent sub-models: a lumped parameter compartmental 

model of intracranial hemodynamics and a pharmacokinetic model of thiopental 

distribution. Interaction of the two sub-models was accomplished through concentration 

dependent resistance and MAP (mean arterial pressure). The model was tested by 

comparing simulation results to available experimental data. Although many aspects of 

the mathematical formulation and the values assigned to the variables are controversial, 

the important consideration is whether this overall approach is useful to examine the 

behavior of the cerebrovascular circulation in vivo. Some merits of our approach are: 

1. We analyzed the effect of autoregulation on intracranial hemodynamics; this can 

be extended to examine the effect of brain pathology on the cerebral circulation. 

For example, a brain tumor may be modeled by decreasing brain parenchyma 

compliance and/or increasing vascular resistance to CSF reabsorption. 

2. The model was used to study responses of the cerebrovascular system to 

thiopental and endotracheal intubation. There is no limitation on the variety or 

28 
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combination of drugs which can be studied using this model. The relationship 

between plasma drug concentration and at least one cerebrovascular parameter 

must be available (or derived from the experimental data). 

3. We have examined hemodynamic responses of an intact and compromised 

cerebral circulation during the induction of general anesthesia; with appropriate 

modifications the model can be used to analyze other clinical situations. 

4. A drug administration regimen which prevents ICP increase associated with 

laryngoscopy and intubation was proposed using our model; this can be extended 

to develop optimum drug(s) therapy to achieve specific clinical goals. The model 

is also useful to conceptualize the problem and examine the interaction between 

various parts of the system. Areas that require further studies can be identified as 

well. 



Cerebrovascular System Model 

The appendix contains a listing of the VisSim®  code for the Cerebrovascular System Model 

developed. 

Figure 12 Intracranial hemodynamic compound 
block with outputs 
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Figure 13 Intracranial hemodynamic compound 
block expanded 
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Figure 14 Pressure equations compound block 
expanded 
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Figure 15 Pv cerebral venous pressure compound 
block expanded 



Figure 16 Pic intracranial pressure compound 
block expanded 
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Figure 17 Pvs venous sinus pressure compound 
block expanded 



Figure 18 Pc cerebral capillary pressure compound 
block expanded 
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Figure 19 Par arteriole pressure compound block 
expanded 
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Figure 20 Conductance equations compound 
block expanded 
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Figure 21 Gvs hydraulic conductance compound 
block expanded 

Figure 22 Compliance equations compound block 
expanded 
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Figure 23 Cai arteriolar compliance compound 
block expanded 

Figure 24 Cic intracranial compliance compound 
block expanded 
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Figure 25 Cvi intracranial venous compliance 
compound block expanded 

Figure 26 CBF equation compound block 
expanded 
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Figure 27q cerebral blood flow compound block 
expanded 
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