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ABSTRACT

THE FATIGUE PROBLEMS OF CRACKS SUBJECTED TO 
OBLIQUELY INCIDENT STRESS WAVES 

by 
I-Chung Weng

Catastrophic failure of aircraft and other structures are often caused by undetected cracks. 

Fracture mechanics has been developed to augment traditional static and fatigue design. 

In the static theory of fracture mechanics, extensive treatment has been given to the stress 

distribution around sharp cracks and notches under various loading conditions. Previous 

works on the problems of dynamic loadings are not accurate in dealing with singularities 

at high frequencies. The numerical solutions become unrealistic at high frequencies in 

many practical applications.

To address the need to obtain the stress intensity factor in high frequency dynamic 

loading situations, we studied the use of dislocation to represent a crack by a continuous 

distribution of dislocation singularities. This study focused on the configuration of finite 

crack located in an infinite isotropic elastic solid which is subjected to harmonic shear 

waves. The most important contribution of this thesis is a new approach which is based 

on the development of dynamic dislocation model to investigate the dynamic problems of 

cracks, particularly the dynamic interaction between a surface crack and screw 

dislocations; dynamic interaction between a free surface and an internal crack; crack 

propagation under dynamic loadings. With this approach, we are able to derive the exact 

analytical expression for stress intensity factor at any given frequencies.
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Results of the present investigation show the dynamic stress intensity factors will 

increase as the wave number (a measure o f frequency of loadings) increases and the 

maximum value is about 25% more than the static stress intensity factor. At relatively 

high frequencies, the stress intensity factor drops rapidly beyond the first maximum value 

and exhibits oscillations of approximately constant period as wave number increases. 

This conclusion can be used to predict the useful life of a component at which consists of 

the crack propagation phase. The stress intensity factors at both sides of a finite crack 

have been performed for different inclined angle 6. The results show the right side stress 

intensity factor is bigger than the left side’s when 0 < 0 < 7t/2 or 3rc/2< 0 < 2n.

The dynamic interaction between screw dislocations and a surface crack has been 

investigated. It has been found, under the periodic dynamic stress, the surface crack can 

be repelled by the dislocation with proper direction of the applied stress and the negative 

Burgers vector of the dislocation.

Simulation results of the dislocation model for an internal crack show that free 

surface effect plays a very important role in crack propagation. The stress intensity 

factors at crack tip which is nearest to the free surface suffer a sharp increase. It indicates 

that an internal crack close to a free surface could easily be extended to a surface crack.

At the end, an analysis of the scattering of horizontally shear waves by a finite 

extending uniformly crack has been carried out by using the dislocation method. It is 

found that the peaks of dynamic stress intensity factor decrease at normal incidence and 

almost the same magnitude for incident angles equal to 0 and 7i as propagation velocity 

increases.
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PREFACE

In traditional material science and machine design, materials are normally assumed to be 

homogeneous, especially for the purpose of predicting the life cycle of structures. 

However, the engineering materials do contain microcracks from which failure starts. In 

general, there are many factors that cause the cracks to grow in machine body, such as 

high temperature, continuous loading or impact loading etc. Sometimes, the growth of 

crack may destroy the machine structure during general use. So design based on 

homogeneity assumption of material is not sufficient when the failure caused by the 

growth of cracks is to be considered. Therefore, most of the times, the traditional material 

science can deal with most of the engineering problems, but the fracture mechanics must 

be considered when the machine structure contains the microcracks.

Previous works on the crack problems have been focused mostly on the specific 

configurations with static loadings - infinite crack, semi-infinite crack, Griffith crack and 

so on. Early experimental work points to strong correlation between the growth of cracks 

and cyclic stress intensity factor range. Since loadings in most of the practical 

applications are dynamic, solutions for the static problems have limited usage.

The present research work uses the dislocation models to simulate the cracks 

under dynamic loading conditions. Under harmonic loading, a crack is known to extend 

in an unstable manner whenever the stress intensity factor exceeds a critical value. The 

stress intensity factors are calculated based on the crack size and location, stress 

magnitude and direction, and material properties such as shear modulus and mass density. 

The result can be used to predict the useful life of a component at any frequencies.

xviii
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Simulation results of the model are compared with that other previous works at low 

frequencies to ensure its correctness. This dissertation is organized as follows:

Chapter 1: A brief introduction on research in fracture mechanics including scientific and 

historic background.

Chapter 2: Development of dislocation model for the surface crack and finite crack 

subjected to dynamic loadings.

Chapter 3: Extension of the concept of dislocation model to analyze the dynamic 

interaction between a surface crack and multi screw dislocations.

Chapter 4: Extension of the concept developed in Chapter 2 to analyze the dynamic 

interaction between an internal crack and the free surface.

Chapter 5: Extension of the concept of dislocation model to derive stress intensity factors 

of a moving crack (crack propagation).

Chapter 6: Conclusion of the present research work and includes recommendations for 

further research and improvements are discussed in this chapter.

x ix
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CHAPTER 1

INTRODUCTION

Fracture mechanics methodology is based on the assumption that all engineering 

materials contain cracks from which failure starts. Cracks result in high stress elevation in 

the neighborhood of the crack tip, which should receive particular attention since it is at 

that point that further crack growth takes place. Many of the conventional criteria, such as 

maximum normal stress, critical stress intensity factor or energy release rate, etc., had 

some limited success in analyzing the simpler crack problems, but are found to be 

inadequate and often invalid for the more complex situations. Their works are limited in 

the elasticity and linearity of material or structure behavior and symmetry between load 

and crack orientation. There remains much to be done in dynamic problems that can be 

employed to assure the safety of engineering structures.

1.1 Background of Research

From the viewpoint of fracture mechanics, the knowledge of the state of the stress and 

displacement around the crack point is one of the key requirements for a fracture strength 

analysis of structural members weakened by flaws. First, Irwin (1957) proposed a 

mathematical crack model classifying the near stress field into three fracture models. Any 

deformation of the crack surface can result from a superposition of these basic 

deformation modes. He is also the first to recognize the general applicability of the

l
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singular stress field and introduced the concept of the stress intensity factor to measure 

the strength of the stress field.

In the static elasticity, extensive treatment has been given to problems involving the 

stress distribution around sharp cracks and notches under various loading conditions. As 

an instance of application to fracture mechanics, the two dimensional elliptical hole 

solution became the basis of almost all present day theories of brittle fracture. For 

example, Mai, Loeber and Sih (1969) made a detailed study of the displacement and the 

stress fields in the vicinity of the crack due to an incident antiplane shear wave. Although 

Mai showed that his method can be extended to yield information on the near field as 

well as the far field at any given frequencies, it is still very difficult to derive the exact 

solutions due to mathematical complexity. Thesher and Smith (1972) computed the stress 

intensity factor of a part-through circular segment in a plate. Also due to mathematical 

complexity, previous works on the dynamics problem have been limited mostly to some 

special configurations, such as a semi-infinite crack or an array of infinite collinear 

cracks. Jain and Kanwal (1972) used the approximation method to find out the stress 

distributions of two cracks of equal length, which lied on the same plane under SH 

loading. Their results are valid only at low and intermediate frequencies (wave number 

a<2, see section 2.3 for the definition of wave number) where a  is the wave number. 

Takakuda (1983) used the Boundary Integration method to derive the stress intensity 

factors from two randomly located parallel cracks. Ju and Chen (1992) presented 

statistical micromechanical formulations to investigate effective elastic moduli of two 

dimensional brittle solids with interacting slit microcracks. Karim and Awal (1992) used
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3

a hybrid finite element method to analyze the guided waves scattering in a plate 

containing multiple cracks at arbitrary orientations. Numerical results show the effects of 

cracks in a form of changes impulse shapes of the displacements on the surface of the 

plate. But the size of the finite element zone to be considered has been found to be 

independent of the wavelength of the input waves within the low frequency considered. 

Mikata (1993) investigated reflection and transmission of elastic waves by a period array 

of coplanar cracks. The results are limited to this special configuration and valid at low 

frequencies (a  < 1.9). Although Meguid and Wang (1994) analyzed the dynamic 

interaction of a main crack with an arbitrary located and oriented microcrack based upon 

the use of self-consistent iterative procedure and integral transform techniques which 

were performed by previous application, the procedure showed the difficulties with 

solving the Fourier transforms resulted from the wave equations.

Freund (1974) presented the Wiener-Hopf method to derive the stress intensity 

factors due to normal impact loading of an semi-infinite crack. He divided the 

displacements o f the semi-infinite crack surface into two parts. One comes from the stress 

distribution along the crack surface and second is due to the displacements of dislocation 

climbing. From the stress distribution of the semi-infinite crack, he found out that the 

displacements due to stress distribution along the crack surface is not equal to zero. This 

result contradicts with the boundary condition that requires displacements to be zero at 

the crack surface because of symmetry. Thus, Freund used a superposition method to 

adjust the displacements of dislocation climbing so that the total displacements at that 

position satisfy the boundary condition. This superposition method is used as a
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foundation in this dissertation for developing an effective method to get the solutions of 

the stress intensity factors for cracks located in an elastic infinite isotropic elastic solid 

which is subjected to harmonic shear waves.

1.2 Classical Concepts in Fracture Mechanics

One of the important items to be considered in the design of engineering structures is 

stress analysis. Through this analysis, the magnitude and direction of the stresses and 

strains at various points of the structure are known. Then criterion of failure is selected 

for determining the type of material to be used for each element of the structure. The 

traditional approach is to design the structural element such that the applied stresses are 

kept below the yield strength of the material with proper safety factor. Such an approach 

is adequate for low strength and medium strength material provided that the materials are 

free from mechanical defects. It is now a common knowledge that the conventional 

design criteria cannot adequately describe the failure of high strength material because 

they are particularly sensitive to the presence of flaws or mechanical defects that are 

inherent in the material. Although the concept of stress concentration has been 

acknowledged in the calculation of stresses in the vicinity of holes, notches and other 

types of geometric discontinuities, nevertheless, the “stress concentration factor” itself is 

not a criterion of failure. This factor merely indicates the ratio of the elevation of the local 

stress to that of the applied stress.

In the case of a mathematically sharp crack, the stress concentration at the crack tip 

is very high and becomes infinite. This result is obviously of no use to the designer who
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adopts the traditional failure criterion since the magnitude of the crack tip stresses is 

always many times greater than that of the yield stress. The estimation on the remaining 

life of cracked parts requires a new discipline which is not covered by the conventional 

theories of failure. In practice, many structures have failed by unstable crack propagation 

at normal stress levels considerably less than the yield strength of the material. Such 

failures indicate that flaws can greatly influence the load carrying capacity of the 

structure. The cause of the problem is that many of these flaws cannot be detected either 

during the time of manufacturing or the life span of the structure. It is apparent that 

defects which cannot be avoided in many of the engineering materials cause a distribution 

of the stresses which must be accounted for in the prediction of the load at failure.

1.2.1 Stress Concentration

The first attempt to put forth a rational theory of fracture mechanics was made by Griffith 

(1921) who laid down the condition under which a small crack in a solid becomes 

unstable. His analytical model is based on the elasticity solution of an elongated cavity in 

the form of an ellipse. The idea is to focus attention on the stress distribution around a 

cavity. Referring to Figure 1.1, the maximum stress <rm occurs at the apex of the major 

axis.

1.2.2 Stress Intensity Factor

Linear fracture mechanics technology has been rapidly gaining acceptance as an effective 

tool in design for the prevention of brittle fracture. A basic assumption in applying this 

technology is that all engineering materials possess flaws or mechanical defects no matter
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how carefully they were fabricated. The idea is to focus attention in a small region around 

the tip of the crack where fracture is most likely to take place and to ensure that the 

surrounding material has adequate toughness. This provides the designer with an extra 

material parameter for measuring the resistance of a material against fracture in addition 

to the conventional material property data such as yield strength. Such quantity was 

briefly refereed to as fracture toughness. The stress intensity factor can be interpreted as 

the critical value of the intensity of the stress field in the immediate vicinity of a sharp 

crack tip as shown in Figure 1.2. When the load or crack size is kept below the point of 

unstable crack extension, the magnitude of this stress field is measured by the so-called 

“stress intensity factor” K:

K 0 „  . 0 . 30,CTX =   cos—(1-sin—sin— )+ . . . .
V S  2 2 2

K e „  . 0 . 30.cos-(1+ sin -sin — )+  . . . .  
V27tr 2 2 2

CJy =

T xy =
K 0 . 0 30cos—sin—cos— + .

V S  2 2 2

( 1.1)
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Figure 1.1 Elliptical cavity
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Line Crack

Crack tip region

Figure 1.2 Stress element near crack tip

1.2.3 The Strain Energy Density Concept

Sih (1973) proposed a theory of fracture mechanics based on the field strength of the 

local strain energy density which marks a fundamental departure from the classical and 

current concepts. The theory requires no calculation on the energy release rate and thus 

possesses the advantage of being able to treat all mixed mode crack extension problems. 

Also it is for the description of failure of a material element by yielding . However, it was 

later realized many materials failure is due to fatigue damage. As a result, it is limited on 

the applications of dynamic loadings. This theory is developed on the basis of a strain 

energy density factor S for a material element at a finite distance r0 from the point of 

failure initiation (Figure 1.3). Note that S is defined by:

dWwhere is the strain energy density function per unit volume. The strain energy 

density concept displays two fundamental hypotheses on crack initiation and direction.
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Hypothesis (1): The crack will spread in the direction of maximum potential energy 

density.

Hypothesis (2): Crack extension occurs when the strain energy density factor reaches a 

critical value.

Point of fracture initiation

Figure 1.3 Spherical core region surrounding point O of failure
initiation and a material element outside the core region.

1.3 Crack Modeling

Consider a plane crack extending through the thickness of a flat plate and let the crack 

plane occupy the plane XZ and the crack front be parallel to the Z-axis. Place the origin 

of the system OXYZ at the midpoint of the crack front. It was first pointed out by Irwin 

(1957) who proposed a mathematical crack model classifying the near stress field into 

three fracture models. Any deformation of the crack surface can result from a 

superposition of these basic deformation modes, which are defined as follows:

(a) Opening mode, I. The crack surfaces separate symmetrically with respect to 

the planes XY and XZ (Figure 1.4a).
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(b) Sliding mode, II. The crack surfaces slide relative to each other symmetrically 

with respect to the plane XY and skew-symmetrically with respect to the plane XZ 

(Figure 1.4b).

(c) Tearing mode, III. The crack surfaces slide relative to each other skew- 

symmetrically with respect to the plane XY and XZ (Figure 1.4c).

r
-♦
Xi X

(a) (b) (c)

Figure 1.4 The three basic modes of crack extension, (a) Opening mode, I.
(b) sliding mode, II, and (c) tearing (or antiplane) mode, III.

1.3.1 J-Integral Fracture Criterion

The mathematical formulation of conservation laws applicable in elastostatics in the form 

of path independent integrals of some functions of the elastic field over the bounding 

surface of a closed region originates from the work of Rice (1968). The path independent 

nature of the integral allows the integration path to be taken close to or sufficiently far 

from the crack tip. For the particular case of the two-dimensional plane elastic problem, 

consider the integral:
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Where W is the strain energy density, T; and nj are the traction vector and normal vector 

directed at a point on the contour c surrounding the crack tip respectively, U; and x; are 

displacement components and s is a measure of arc length along c. The path 

independence of J implies that plastic deformation being an irreversible process must be 

excluded from the system. For ductile fracture, there are too many fundamentally 

unsolved difficulties concerning the association of J. Even for the elastic case, it is 

limited to two dimensions.

1.3.2 Crack Opening Displacement Criterion

The critical crack opening displacement (COD) was proposed by Wells (1961) for the 

study of crack initiation in situations where significant plastic deformation precedes 

fracture. Under such conditions it is argued that the stresses around the crack tip reach the 

critical value and therefore fracture is controlled by the amount of plastic strain. One 

measure of the crack tip plastic strain is the separation of the crack faces or crack opening 

displacement. It is expected that crack extension begins when the crack opening 

displacement reaches some critical value which is characteristic of the material at a given 

temperature, plate thickness, strain rate and environmental conditions. Early experimental 

evidence suggested that COD gives a reasonable prediction of global instability if the 

amount of yielding near the crack tip is sufficiently small. In general, this criteria seems
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to be applicable only when the crack tip stress is perturbed only slightly from linear 

elasticity.

1 J J  Eigenfunction Expansion Method

The method o f eigenfunction expansion introduced by Williams (1957) is the most direct 

way of finding the structure of the stress field in the neighborhood of the crack tip. 

Followed the method of complex potentials, he expressed the displacements and the 

stresses components in plane elasticity problems as two unknown complex potentials and 

solved them from strain energy concepts. Stress intensity factors for a number of edge 

crack specimens are obtained by Strawley and Gross (1966), using the eigenfunction 

expansion solution.

1.3.4 Conformal Mapping Method

In many crack problems involving complicated geometry, it is convenient to use 

conformal transformation where the physical problem is mapped to a region with a unit 

circle or to a half plane. The method was used extensively by Bowei (1964) who 

developed polynomial mapping approximations to complicated configurations involving 

cracks in finite plates and emanating from the boundary of circular holes.

1.4 Interaction of Elastic Waves with A Crack

There are two closely related crack problems in elastodynamic which are important in the 

field of fracture mechanics. These are the problems of a stationary and moving crack 

subjected to loads that vary with time. The load may be periodic in time or applied
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suddenly to the elastic body. As in all crack problems, the detailed stress field near the 

crack tip must be known before any fracture analyses could be performed. If the crack is 

stationary, it is desirable to predict the level of applied stress at which the crack begins to 

spread.

Ang and Knopoff (1964) obtained approximate expressions for the displacement 

produced at large distances from the crack due to obliquely incident longitudinal and 

shear waves under the assumption that the wave lengths are large compared to the crack 

width. Loeber and Sih (1968) made a detailed study of the displacement and the stress 

fields. Unfortunately, their results are valid only at low and intermediate frequencies. 

Although Mai (1969) used two Helmholtz equations which satisfied the Riemann-Hilbert 

problem to determine the diffraction of normally incident longitudinal and antiplane shear 

waves on a Griffith crack and showed his method can be extended to yield information on 

the near field as well as the far field at any given frequencies, it is still very difficult to 

derive the exact solutions due to mathematical complexity. Jain and Kanwal (1972) used 

the approximation method to find out the stress distributions of two equal length of 

cracks which lied on the same plane under SH (antiplane shear wave) loading.

Freund (1974) presented the Wiener-Hopf method to derive the stress intensity 

factors due to normal impact loading of an semi-infinite crack. Stone and Ghosh (1980) 

found out the diffraction of antiplane shear waves by an edge crack. They inserted the 

displacements due to the incident, reflected, and scattered waves into wave equation to 

satisfy the boundary conditions. Furthermore, Takakuda (1983) used the Boundary
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Integration method to derive the stress intensity factors of two randomly located parallel 

cracks.

1.5 Objective and Scope of Research

In contrast to static mechanics, both mathematical and experimental difficulties are 

encountered in the efforts to understand dynamic fracture phenomena. In recent years a 

considerable amount o f research has been directed towards the solution of problems 

involving wave reflection by cracks in elastic media in an effort to improve an 

understanding of the behavior of material failure under dynamic loadings. In conventional 

studies of a single surface crack subjected to uniformly dynamics loading, the solution 

can be obtained by integral transform methods together with the direct application of the 

wave equations which satisfy the boundary conditions. However, the wave equations can 

not be applied to an internal crack due to the effect of the free surface. In other words, 

earlier works on dynamics problems are limited to the special configurations.

The main approach of the present study is to provide a dislocation model based on 

the mirror image with respect to the free surface of a surface crack or an internal crack, 

and verify these models by appropriate other works and computer simulation. It has been 

developed to determine the stress intensity factors at the crack tip in a semi-infinite 

isotropic elastic solid which is subjected to periodic cyclic loadings. This model 

represents a crack by a continuous distribution of dislocation singularities. With this goal, 

a few applications to solve the interaction between a crack and dislocations under 

dynamic loadings have been developed. Dynamic results obtained for these dislocation
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models have been compared with the earlier work at low frequencies. Following research 

results are presented in this thesis:

•  Considering the dislocation concept applied to static crack problem and the works of 

Lee (1986), we represent a mirrored surface crack subjected to SH (horizontal polarized 

shear waves) with an array of screw dislocations. Similarly, we model the cracks 

subjected to P (primary waves) or SV (vertical polarized shear waves) with two arrays of 

edge dislocations: one vibrates on its glide plane and the other along its climbing 

direction. By using the conformal mapping technique and the numerical solution for edge 

crack subjected to anti-plane shear and inplane waves, the distribution densities of the 

dislocations as well as the phase lags are expressed as a system of singular integral 

equations, which contains Bessel functions.

• The above dislocation model is extended to investigate the dynamic interaction 

between the surface cracks and screw dislocations. The effects of the wave number, the 

input incident angle and the dislocation on the stress intensity factor are presented. In this 

model, the stable position as well as the strain energy’ are also considered in analyzing the 

drag and repelled forces between cracks and dislocations.

• Dislocation model for a moving crack has been developed. The effects of the wave 

number, the input incident angle and Mach number on the stress intensity factors are 

studied.

• Computer simulations: A crack model has been developed in NISA ENDURE program 

for analyzing the fatigue performance and fracture characteristics of engineering 

structures which operates on Crack Opening Displacement and J Integral theories. The
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singularities of the crack tip are also presented from the results of displacements and 

stress distributions. This results can be used to verify the results of dislocation models 

developed on superposition method. Some results reported in previous works have also 

been used for comparing the presented models and NISA simulations.
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CHAPTER 2

STATIONARY DYNAMIC DISLOCATION MODEL

2.1 Introduction

Early fracture mechanics researchers considered dynamic effects, but only for the special 

case of single crack problem. More recently, fracture mechanics has been extended to 

include the interaction of two randomly oriented and located crack problems. Most of 

newer approached are based on generalizations of the wave equations. Loeber and Sih 

(1968) displayed a detailed study of the displacement and the stress fields in the vicinity 

of the crack due to an incident antiplane shear wave. Their studies provided two 

Helmholtz equations which satisfied the Riemann-Hilbert conditions. They obtained two 

dual integral equations through Fourier transformation. Then a Fredholm integral 

equation of the second kind was derived for the two dual equations to determine reflected 

field. Due to mathematical complexity, previous works on the dynamics problem have 

been limited mostly to the special configurations, like the model of a semi-infinite crack 

or an array of infinite collinear cracks. Problems become more complicated when the 

equations of static equilibrium are replaced by the dynamic equations of motion. A part 

of the present study is focused to develop an analytical model to calculate the dynamic 

stress intensity factors at the crack tips. This study is an extension of previous work on 

static problems (see Chapter 2.2.1) which investigates the reflected waves for a screw 

dislocation under inclined shear waves. These reflected waves are due to the

16
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inhomogeneity o f dislocation density. Previous works on this subject showed that if the 

input stress waves are SH waves, the reflected waves would also be SH waves. This 

result is equivalent to that produced from a crack. Thus the deformation at a crack can be 

modeled as a continuously distributed screw dislocation under SH waves.

The key problem is to find the proper density function of dislocation such that the 

fundamental solutions satisfy the boundary condition. The above discussion shows that 

the chosen dislocation model depends primarily on the type of input dynamics waves. 

From Eshelby’s study (1949), we model the cracks subjected to P (primary waves) or SV 

(vertical polarized shear waves) shown in Figure 2.1 with two arrays o f edge dislocations: 

one vibrates on its glide plane and the other along its climbing direction.

z

P-wave

SV-wave

SH-wave

Figure 2.1 Three distinct types of input waves
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Unfortunately, there are still many unsolved stress and displacement fields of 

reflected P and SV waves for edge dislocations. In this thesis, we consider a crack 

modeled as a continuously distributed screw dislocation under SH waves. This chapter 

presents a dislocation model based on the mirror image with respect to the free surface of 

a surface crack has been developed to determine the stress intensity factors at the crack 

tip in a semi-infinite isotropic elastic solid which is subjected to periodic cyclic loadings. 

The theoretical concepts developed in this study can be extended to derive the stress 

intensity factors of a surface crack interacting with multi screw dislocations and a moving 

crack problems. The research presented in this chapter has been partly reported in (Weng 

andJi, 1997a).

2.2 Dislocation Concept

The best description of a dislocation is obtained from a study of its formation in the 

crystalline. As shown in Figure 2.2, (a) is a perfect, undeformed simple cubic lattice. Cut 

this lattice along any of the planes indicated in the auxiliary cubes. Let the atoms on one 

side of the cut shift in a direction parallel to the cut surface through a distance equal to 

one atom spacing. Then rejoin the atoms on either side of the cut. The lattice structure 

itself actually is almost perfect except near the lines AA. The line imperfections AA in 

the lattice are dislocation lines. The various types of dislocation lines are shown in Figure 

2.2(b), (c), (d). If the atoms over the cut surface are shifted in a direction perpendicular to 

the line AA, an edge dislocation is created in the lattice (see Figure 2.2b); if the shift is 

parallel to AA, a screw dislocation is produced (shown in Figure 2.2c). The stress around 

the screw dislocation is everywhere a pure shear.
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In order to describe the character of dislocation lines, a Burgers vector was 

introduced by J. M. Burgers (1932). Consider a screw dislocation shown in Figure 2.3. 

The starting point and the end point (the atoms shown solid) are one and the same atom in 

the case of the circuit that does not include the dislocation. However the starting point 

and ending points will not the same if the circuit enclose the dislocation. Thus there is 

closure failure in this circuit. The Burgers vector, pointing from the end point of the 

circuit to its beginning point, is defined to be the closure failure. In this case the closure 

failure leads to a vector ‘b’ parallel to the dislocation line. The dislocation loop could 

have been in any arbitrary shape, the only requirement is that the loop be closed. If a 

circular dislocation loop is made by shifting the atoms parallel to the plane of the loop, 

the character of each dislocation segment of the loop varies continuously from pure edge 

to mix to screw dislocation. It should be noted that segments on opposite sides of the loop 

are the same type of dislocation but have opposite sign.

2.2.1 Static Dislocation Model

When the concept of dislocation method applied to static problem, the crack is modeled 

by a continuous distribution of dislocations with the density function D(s). The density of 

the distribution is determined by satisfying boundary conditions. For cracks within elastic 

medium, a Burgers vector of D(s)ds is used as the Burgers vector of an infinitesimal 

dislocation of density D(s) at location x = s. By analogy with the definition of a physical 

dislocation, the Burgers vector of a continuous dislocation is given by :

b = [D(s)ds (2.1)

where s is a path around the dislocation distribution.
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Edge Screw

Figure 2.1 The creation o f an edge, a screw dislocation

Figure 2.2 Burgers circuit around screw dislocation
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Consider a crack in an infinite solid opened by an internal pressure p(x). The opening of 

the crack can be represented by an continuous dislocation of density D(s) lying along y = 

0, |x| < a and having a Burgers vector b = jD(s)ds. The dislocation causes stresses along 

y = 0 of

_ _ 2p 7D(s)ds 
ctv = - ctx = ----------  I-------- (2.2)

* (1+K) .a (X-S)

where k = (3 - 4v) in plane strain or (3 - v)/(l + v) in plane stress, v is Poisson ratio, and 

(a. is shear modulus. The boundary conditions on y = 0 are ay = -p(x) for |x| < a and xxy = 0 

for all x. These conditions can be satisfied, using Eq. 2.2 by ensuring that

p( x) + (2.3)
* (1+K) .a (X-S)

The solution of Eq. 2.3 for D(s) enables us to determine the stress intensity factor.

2.3 Theory of Dynamic Model

Surface cracks have been subjected to many studies and are well understood. For 

comparison purpose, we start our dynamic dislocation model with a surface crack. 

Consider a rectangular Cartesian coordinate system located at a free surface and 

normalize all lengths with respect to the width of the surface crack such that the surface 

crack occupies the region 0 < x < l , y  = 0, -oo<z<°o,  as shown in Fig. 2.4. The crack 

under investigation is defined as: A surface crack of infinite length (-00 < z < 00 ) and 

finite width lied in the xz plane of a homogeneous, isotropic, elastic, semi-infinite solid. 

It is assumed that the displacement components u; and Vj. in the x and y directions are
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quite small compared to that in anti-plane direction (z direction) and are considered to be 

negligible. Normally, the harmonic shear wave has a displacement field polarized in the 

plane perpendicular to y direction, i.e., the xz-plane. The shear wave can be further 

decomposed into two waves, one with a displacement vector parallel to the x-axis (SV), 

and the other with displacement vector parallel to the z-axis (SH).

input shear 
waves

Figure 2.4 Surface crack (0 < x < 1)

For the case of harmonic shear waves (SV, SH) impinging on a semi-infinite crack 

lying along the x-axis, Sih (1968) found out the in anti-plane displacement component of 

the incident field at point (x, y) can be expressed as: 

wk = w0exp {-i[a(xcos0+ysin0)-a>t]}

= wocos[a(xcos0+ysin0)-(ot]-iwosin[a(xcos0+ysin9)-<nt] (2.4)

where w0 and © are the amplitude and frequency of the applied wave, wk is the anti-plane 

displacement component, 0 is the angle of incidence measured from the x-axis and a  = 

co/c is the wave number, with c being the shear wave velocity given by (p/p)1/2. p. is the 

shear modulus and p the mass density. Table 2.1 gives the shear wave velocity of three
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materials for example. The displacement wk can be decomposed into real (SV) and 

imaginary (SH) components which are parallel to x-axis and y-axis respectively. This 

study concentrates on the stress intensity factor of mode HI. The anti-plane stress under 

SH waves can be derived from the equation x = w /3y and w by taking the imaginary 

component of Eq. 2.4:

o* = CTosin0cos[a(xcos0+ysin0)-©t] (2.5)

where o0 = w0pa, a * is the anti-plane stress. According to the theories of dislocation- 

modeling technique and complex variable method (Juang and Lee, 1986), the problem is 

now equivalent to that of a mirror image of the surface crack with respect to the free 

surface. The problem is now changed to a finite crack of length 2 in an infinite medium as 

shown in Fig. 2.5.

Table 2.1 Shear wave velocity of materials

Material steel(mild) titanium iron(cast)
c (km/sec) 3.2 3.1 3.2

SH wave on xz plane

Figure 2.5 A surface crack and its image
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Now, the surface crack is modeled by a continuous distribution of a screw dislocation 

parallel to the z axis. When the input shear waves meet this dislocation, these waves are 

reflected due to the inhomogeneity of dislocation density. Previous works on this subject 

showed that if the input stress waves are SH waves, the reflected waves would also be SH 

waves. This result is equivalent to that produced from a crack. Thus the deformation at a 

crack can be modeled as a continuous distribution of screw dislocation under SH waves. 

From Eshelby’s study (1949), the total displacement at point (x, y) when a shear wave is 

incident normally on the screw dislocation is:

d(r) = 1/2 cos[cot+p(r)]sin0 (2.6)
4 7iar

where r = (x2+y2)1/2, u is the amplitude of the screw dislocation and b is the Burger’s 

vector. Another approach related to the interaction of screw dislocations and sound 

waves was studied by Nabarro (1951). He derived the total displacement as follows:

d(r) a  (—̂—) 1/2 Aucos[a>t+p(r)]sin0 (2.7)
nar

Comparing Eqs. 2.6, and 2.7, we can get A % ab/4. Nabarro showed that the scattered 

wave may be represented by Bessel functions of order 1. The anti-plane displacement is: 

w(r) = Ausin0{J,(a|r|)cos[cot+p(r)] + Yi(a|r|)sin[cot+p(r)]} (2.8)

Since the total surface traction should be zero along the crack surface, the input 

inclined shear stress must equal to the scattered stress. Inserting Eq. 2.8 into t  = - 

pdw(x)/5y, the anti-plane stress wave released along y = 0 plane as : 

a d(x) = Ba2{[J0(a|x|) + J2(a|x|)]cos[cot+p(x)] + [Y0(a|x| + Y2(a|x|)]sin[cot+p(x)]} (2.9)
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where B = -bup/8, p(x) is the phase lag, and J0 and J2 are the zeroth order and the second 

order of the first kind of Bessel function respectively. Similarly, Y0 and Y2 are the zeroth 

order and the second order of the second kind of Bessel function.

Using the concept o f dislocation method applied to static problem, similar 

formulations can be made for dynamic problems. The total stress wave released from the 

screw dislocation from -1 < x < 1 can be expressed as the convolution of the density 

function and the released stress wave: 

i l
a T = |D(s) cjd(x-s)ds= jb(s) Ba2{[J0(a[x-s|)+J2(a|x-s|)]cos[©t+p(s)]+[Y0(a|x-s|)

-l -l

+Y2(a|x-s|)]sin[©t+p(s)] }ds (2.10)

From Eq. 2.5, stress <r* along the crack surface (y=0 plane) is o*= 

a osin0cos(axcos0-©t). Since the total surface traction should be zero along the crack 

surface, we have <rT + <r* = 0  along the y = 0 plane. Therefore, 

l
jb  Ba2{[J0(a!x-s|) + J2(a|x-s|)]cos[cot+p(s)] + [Y0(a|x-s|) + Y2(a|x-s|)]sin[©t+p(s)]}ds 

-l

= -CTosin0cos(axcos0-cot) (2.11)

After expanding cos[cot+p(s)], sin[©t+p(s)], and cos(axcos0-©t), Eq. 2.11 may be 

expressed as: 

l
JD (s)Aa2 [ Jcosotcosp(s) + Ysincotcosp(s) - Jsin©tsinp(s) + Ycos©tsinp(s) ]ds 

-l

= -CTosin0cos(axcos0)cos©t - oosin0sin(axcos0)sin©t (2.12)

From the coefficients of sin©t and cos©t, we divide Eq 2.12 into two parts:
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1
Jt)(s) Ba2[Ycosp(s) - J sinp(s)]ds = -aosin0sin(axcos0) (2.13a)

-l

l
jD(s) Ba2[Jcosp(s) + Ysinp(s)]ds = -<iosin0cos(axcos0) (2.13b)

-i

where J = J0(a|x-s|) + J2(a|x-s|) and Y = Y0(a|x-s|) + Y2(a|x-s|). There are two unknown

functions D(s) and p(s) in Eqs. 2.13a, 2.13b. To make the problem easier to solve, we

replace D(s) and p(s) with another two functions, A^s) = D(s)Bcosp(s) and A2(s) = 

D(s)Bsinp(s). Since there is singularity in Y when the value of x approaches to s, we must 

separate Y into singular and regular parts. Expanding Eq. 2.13a and 2.13b (Appendix A), 

we have:

l l l
-4/71 ( s ) JAj /(x-s)2ds + 2cc2/7i Ja , (s)Jln(a|x-sj)ds + j a 2 [A,(s)f(x,s) - A2(s)J]ds 

-i -l -l

= -oosin0sin(axcos0) (2.14a)

l l l
-4/tt Ja 2 (s)(/(x-s)2ds + 2 a 2/7t Ja 2 (s)Jln(a|x-s|)ds+ J a 2 [A2(s)f(x,s) + A,(s)J]ds

-i -i -i

= -aosin0cos(axcos0) (2.14b)

where f(x,s) = -1/n + 2/7i[(y-ln2)J0(a|x-s|) - ln2J2(a|x-s|)]

(- i ) j  ( a g )^ - s ) ^ y ( j ; ; > 7 ^ 3)---T -(^ i. 
j=o 2j!(2+j)! [(j+1)!]

J'" 1with the Euler constant y = 0.577215665, and ^(j) = -y + £ ( l / k ) , j >1. Our problem is
k=l

now to find unknown functions Aj(s) and A2(s) that satisfy Eqs. 2.14a, 2.14b and would 

converge when x approaches s. The dynamic stresses around a small circle centered at the 

crack tip (r2 -» 2a and <j>2 -► 0) under shear waves can be expressed as:
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T v , =  —̂ ==r COS(<j>i /2 )
"  V2FT

-  K ni
*XZ = v*r

(2.15a)

(2.15b)

where r{ and <f>| (i = 1,2) are shown in Fig. 2.6. Kin is the stress intensity factor for tearing 

mode. That means the stress intensity factors at the tip of the crack rely on existence of

the r ,/2 stress singularity.

Figure 2.6 Definitions of q and <j)j

To determine the A,(s) and A2(s) in Eqs. 2.14a and 2.14b, it is necessary to solve 

l l
the singularities in both jAj (s)/(x-s)2ds and Ja 2 (s)/(x-s) ds. According to the Simpson

- l  - l

integration method, the integration of f(x) can be expressed as follows:

Jf(x)dx * £ f ( x k )(Ax)k
a k = i

(2.16)

„ „ , , ^ ^ ,nisodd Sn =(b-a){—,1,1,---- ,-} . . . . .
where ( Ax)k = Sn (b-a), and S„ is defined as: { 2 2 > • With

n is even S n =(b-a) {1,4,2,4,—2,4}

this observation, the At(s) and A2(s) can be expressed in terms of the (l-s2)n. From above
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equations, we can assume Aj(s) and A2(s) contain the term (l-s2)1/2. In order to converge 

the values of A^s) and A2(s), we express the Aj(s) and A2(s) in power series forms:

A , ( s ) = ( I - s 2 ) i / 2  I a nU n (s) ( 2 . 1 7 a )
n=0

A 2( s ) = ( l - s 2 ) i / 2  £ b nU n (s) ( 2 . 1 7 b )
n=0

where U„(s) is the second kind of Chebyshev Polynomial. The definitions of U„(s) is 

based on Rivlin (1974):

Tn(coscp) = cos(ncp), x = cos(tp), Un.,(s) = —  -  = - - - n(P- (2.18)
n sm((p)

where Tn(x) is the first kind of Chebyshev Polynomial. According to Eq. 2.18, the Un(s)

converges faster than traditional power series method. With this method, we can deal

with more complicated power series problems. Integrating both sides of Eqs. 2.14a and 

2.14b and substituting A|(s) and A2(s) from Eqs. 2.17a and 2.17b, we have:

00 ' i U fsl i
l a  „ {—4/at JU m (x)( l-x  2)1/2 / ^ L L i (1_ s 2 } 1/2 dsdx V  JUm (x ) ( l -S2 ) 

n=0 -1 - l(x -S ) 2

f[-Jln (a |x -s |) +f(x£)]Un(sXl-s2) 1/2 dsdx}- I b na 2 | U m ( x ) ( l - x 2 ) 1/2 | JU n (s)(l- 
-1 X n=0 -1 -1

s2)1/2dsdx= -  JU m ( x ) ( l - x 2 )*/2 [ a osin0sin(axcos0)]dx (2.19a)
-1

00 1 1 u  Is) ,1I b n {-4/71 / U m (x ) ( l -X2)l/2 J ^ L L l ( l_ s 2 ) l/2dsdx+a2 jUm(x)(1_s2)l/2
n=0 -1 — I (x—s) 2 -1
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/ [ —Jln(a[x—s[) +f(x^)]Un(sXl-s2)1/2dsdx}+ na 2 j u m(x)(l-x2 ) 1/2 fJUn (s)(l -
-1  *  n=0 -1  -1

s2),/2dsdx = -  |U m (x)(l-x2 ) 1/2 [ a  0 sinOcos (axcosO)] dx (2.19b)
-l

where m = 0, 1, 2, 3,..., M, ...oo and n = 0, 1 ,2  3,..., N , ..., oo. Since Un does not vanish 

when n approaches oo, a„ and bn should converge to zero as n approaches oo. Therefore we 

assume that the problem can be approximated with the following series:

Z [ ( A mn +  B m n ) a n '  O n A  ]=Tlm (m = 0, 1,..M) (2.20a)
n=0

Z [C mna n + (Amn + B mn)bn ] = v m (m = 0,l,. .M) (2.20b)
n=0

where Amn = - 4 / n  JU m (x ) ( l -x 2 ) 1/2 \ U n (S) (1 -s2 ) »/2 dsdx = ( °
_l - i ( x - s ) 2 |2(n+I)7t m = n

Bmn = a 2 fUm(xXl-s2)1'2 1 [ —Jln( a  [x-sD+ f(x^)]Un (sXl^ 2)V1 dsdx 
-l -1 n

c™ = a 2 |U  m ( XX l-x  2 ) >'2 j ju  „ (s)( l - s  2 ) w  dsdx 
-1 -1

rim= -  j U m (x ) ( l -x 2 ) 1/2 [CTosinOsin(axcos0)]dx

vm= -  jU m (x ) ( l -x 2 ) 1/2 [crosin0cos( axcosO )]dx

Appendix B provides the Eqs. 2.20a and 2.20b of integral terms in the above 

equations. Eqs. 2.20a and 2.20b contain 2(N+1) unknown coefficients a„ and bn with
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2(M+1) equations. To solve for a„ and bn (n = 0,1, let M = N. The above equations 

can be put into matrix form as :

(A + B) a - C b = q  (2.21a)

Ca+(A + B)b=v (2.21b)

—* _ —» -j-
where vectors a = [ ao, a , , a2   aN ] and b = [ b0 , b ! , b2 ,....,1^ ] . Matrices A, B, C,

—► —►

and vectors q , v can be found numerically once M and N are selected. Our problem is 

now to find positive integers M and N such that a„ and bn converge to zero. As a first 

approximation, let M and N equal to 9. In evaluating a„ and bn , we find out the values of 

a„ and bn would converge to zero if M, N > 5. Thus, let M and N equal to 5. Substituting
— ► — ►

Eq. 2.18 into Eqs. 2.20a and 2.20b, we can express matrices A, B, C, and vectors q , v as 

follows (Appendix B):

2-n-L2 0 0 0 0

0 4-ti-L2 0 0 0

0 0 6-tt-L2 0 0

0 0 0 8-rr-L2 0

0 0 0 0 lOn-L2

0 0 0 0 0

B oo 0 B 02 0 B 04 0
0  ^1 1  0  B  |3 0  ^ 1 5

B 20 0  B  22 0 B 24 0
0  B 3, 0  B 33 0  B 35

B  40 0  B 42 0 B 44 0

0  B 51 0  b 53 0  b 55

0

0

0

0

"•L2. (2.22)

Coo 0 C(J2 0 0

0 C ji 0 C 13 0 C 15
C 20 0 C 22 0 c 24 0

0 C 3I 0 C 33 0 C 35

C 40 0 C 42 0 C 44 0

0 C 5I 0 C 53 0 C 55.
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where L = 1 and the elements of matrices A, B, C, and vectors Ti,vare listed 

following:

B00 = -1.481492-ct2-L4 -  .0587599-a4-L* + .0119351 -a-L8 -  59201-10*4-a-L10 + 23205-10' W 2

-9675027-Ot2-L4 + .1341-cc4-L*-9.1149-10' 3-Ot4-L8 + 3.8671-10*4 o -L10-  1.1252-ID' 5 <x*-LU

, 21n(aL) r
+  '-00

n

B20 = .7853982-a-L4 + .0197076-a - L ^  .010776-a-L8- 4.1084-10' 4-Ot8-L10 + 1.4488-10* V °-L 12

+  .06705-Ot4-L4-  82034-10‘3V -L 8 + 4.6405-10’4-Ot8-L10-  l .6074-10' 3- ( /- L 12*  21n-(a- - ) c 20
7t

B40 = - 4.0906-10' V-L* + 13585-10‘3-a-L8 -  1.1743-10"4 Ot8-L10 + 5.4453-10' <-Oc1°-L13

.9.1149-10*4-ft-L8 + 1.1048-10'4-ot8-L10-  5.741-10'<-ot1°-L12+ ^ 5 ^ c-rr 407t

B u  =  -1.8325958-Of2-L4 + .1242094-a  -L*- .0117654-a-L 8 + 7.4239-10'4- a V °  -  2.6978- 10'5-Otl° L12 

- .1341 a h *  + .145839-a -L 8 -  7.7292- 10*4-Ot8-L10 + 2-5689-l O ' W - h
7t

B3, = 3.646-10'V -L 8-  3-5356 10' 4-oc®-L1O+ 1.6068-10' V 0L12+ ^ 5^ c 3,

+ -5235988-a-L4 + ,0253618-a -L4 -  3.5932-10'V-L8 +8.309-10'V -L 10 -  7.7505 lÔ -oĉ -L12
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B S1 =  -1.6363-10* V-L4- 1.7291 10'3 Ot< L8 + 25047 10'3 a 8 L1O-25 4 4 9  10'< oc  ̂L12 

-33412 10'5 ot8 L10 +  3.0715-lO^-a10- ^  2l ni?*r> c 5,
7C

B 02 =  .06705-a-L4-  83J34-10*3-ot<L8 +  4.6405-10*4 a8 L10-  1.6074 10*5 a1°L I2+ l ! n ^ c 2o
71

+392699ot2-L4 + 33451-lO'V-L4 + 93506-10*V-L8 -  7.4002-10'V-L10 + 3.1957-10*V0-LU 

822 =  -5817478-»2-L4 -  ,040^72-Ot4-L< + 62847-10*3-O<<L8 -  4_5629-10*4-Ot8-L1O +1.9495-10*3-oc10-L12

- 5.4689-10*3- ot*-L® +  4.972-10*4- a -L 10 -  2.1701 • 10*3- ocl°-L12 

B42 =  32868-10*3-oi8-L10 -  g.g975-10*<-ft10-L12+  21*K °R c 42
71

+392699-a-L 4 + .0323159-Ct4-L4 -  2374410*4-a-L8 -  8.4898-10*3-a-L10 + 8342-10*‘-a10-!,12 

B 13 =  2617994-oc2 L4 + .0212712-a V -  3.8489- 10*V -L 8 +  25795-lO 'V -L 10-  13767 lO^-Oe^-L12 

+3.646-10* V - L 8 -  3J356 10*4 o -L10 + 1.6068-10'5 Oc10-L12+ l l l ^ )  ^
7t

B33 = - 1.1048-10~4-oc8 L10 + 8i732-10*<-Oi10-Lu+  21i ^ i  c 33
7t

- .6806784- ot2-L4 -  ,0114537-ot4-L4 -  1.7532-10*V-L8 + 7.4518- 10*V -L 10-  1.8524-10"<S-oc1°-L12 

B 53=  3141592-Oc2-L4 + 3 J062-lO'V-L* + 8.1934-10* V - L 8 -  4.7929- 10‘V - L 10 + 2.5555-lO’W

+1.0802- 10*<-Oi1O-L12+  2in(aL)
71

Bm  =  •9.1149-10*4-ot<-L8 + 1.1048-10'4-a-L10-  5.741-10'4-oil0-L12+ ^ ^ c (M
7 t

+.0224985-a -L 4 + 4.7644- 10* V - L 8 -  1.6884-10* V - L 10 -  8.112410"tf a 10 Lu
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B24= .1963496-a2-L4 + 6.1359-10*3-a -L 1 +  7_5332-10‘V - L 8 -  lU109-10‘4-ot*-L10 + 6.7978-10'V 0! 12

+ 32868-10*3-a8-L10 -  6.6975-10'<-a10LU+ ?ln(aL) c 24
7t

«  1 r*o< in-* ^10 t 12 2In(aL) _B4 4  =  -1-3395-10 -a  -L + — i
71

+3141592-a2-L4 + 3.5062-lO 'V -L *  + 8.1934-1 0 'V -L 8 -  4.7929-lO 'V - L 10 + 2-5555- 1 0 ' V ^ L 1 2  

B 1S =  -8.18110*4 o4-L<-  13879-10'4-ft, -L8 + li)663-10'3-o8-L10 -  2.8634-10'8-a10-L13

-33412 10'3-a8-L10 + 3.0715-10'<-a10-Lu-f c
71

B 3 5  =  1.0802 1 0 ' <-a 1OL1V  c 3 5

+ .1570796-a2-L4 + 2.6681-lO'V-L* + 9.135- 10'V-L8 + 6.4375-10'V -L 10 -  1.7028-10'8-o1°-L12 

_ 21n(aL)
° 5 5 --------- 1  C 5 5

71

- .426359-a2-L4 -  2.6297 10'3-a4-L< + 4.1019- 10'V-L8 -  72087-10'3-a8-L10 + 43102-10'V0-LU 

C00 = .1542126-a4-L< + 8.0319-10*3-a<L8 -  2.9283-10*4-a8-L10 + 7.6868-10* <-a10-LU

C20 = - .0771063-a4-L4 + 72287-10'3-a<-L8-  3_514-10'4-a8-L10 + l^ l-lO ^ -a^ -L 12

C40 = 3.0319-10'4- a V -  8.3666-10'3-a8-L10 + 3.9219-10'<-a10-L12

C„ = .1542126-a4-L4-  .012851-a<-L8 + 5.8526 10'4-a8-L10-  1.755 10'3 a1°-L12

C3I = -32128-10'3 a<-L8 + 2.6773-iO'4 a V 0- l l ^ - l O 'W

C51 = 2-53-10*3- a8-L10 -  2.0984-10* *■ a^-L12
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C02 = - J3771063 ot4 L‘ + 7-2287-10'3 a  -L* -  3514-10*4 a -L10 + l ^ l - l O ' W

Cn  = 4.8191-i0'3-OcV - 3.765 10'4-ot8Ll° +1.4824-10'W

C42 = -6375-10*3-oc8-L10 + 45755-10* 4-al°-LU

C13 = - 37128-10*3-ot4-L8 + 2.6773-10‘4-oc8-L10 - 1.0977 10*3-ocl°-L12

C33 = 33666-10*5 ot8 L10- 5.8566-10'W

C53 = - 73793-l O ' W

= 3.031910*4-O(<-L8-  83666 10'5-Oi8 L10 + 35219-10'< O(10-L12 

C24 = -6775-10‘3-O(8-L10 + 45755 10'6 ot10-L12 

= ?.1509 10'7 Ot10L12 

C 15 = 2-53-10"5-oe8-L10 -  2.0984-10'W 2 

C„ = • 73793- l O ' W 2'- '3 5

C55 = 0

^ =o- a-L3-sin( 0) • cos( 9)*

[-.785398 + .0654«8(Loc)2 co<ff)2 -  2.042-10'3-(L-Of)4-co<ff)4 + 3.4127-10'5<L-0()<co<  6)#]

^ 3() =<T- Ot-L3 • sin( 9) • cos( 8)

[.03272^-(L-a)2-cos(tf)2-  1.6362-10~3-(L-o04-cos(^4 + 3.4127-10"5-(L-Ot)<'Cos(ff)#]

^ j0= <7-Of-L3-sin(?)cos((ty*[4.1233 10"4-(Loc)4-cos(0)4 + 1.4492-1O'5-(Loc)<-cos(0)#]
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2 4 2V(X)= a a  L sin(0)cos(0) ♦

[.1963495- lB81812 (L a)2 cos(fl)2 + 1.704410‘4 (L a)4-cos(ff)4-  2.1305 10‘< (L a)< coî ff)*]

v 2o= <7-a2 L4-sin(0)-cos(ff)2*

[.1963495 -  J3122718 (Lo)2co<ff)2 + 3.068 10*4<Lot)4co<J)4 -  4^61110'4<La)‘ co<ff)‘]

v40= a-oi2 L4-sio(ff)cos(^)2*

[-4.0906 10‘3(Lct)2 co<ff)2 + 1.7044-10‘4CLo)4 cosCff)4 -  3.0436-10' tf-CL- Oc)6-cos( 6)#] 

where cr = a 0 .

2.4 Dynamic Stress Intensity Factor

It is important to note that while calculating the a„ and bn , the stress intensity factor, Kni 

is not an independent constant, and it can be derived from Eq. 2.15a for given values a , 0. 

In order to perform the accurate KIn , it is noted to make sure the convergence of and 

bn . The results are listed in Table 2.1.

The values of the unknown functions in Eqs. 2.17a, 2.17b can now be solved. They 

are used to calculate the stress intensity factor from stress distribution along the 

dislocation. According to the definition of the stress intensity factor, one can define stress 

intensity factor at the crack tip from Eq. 2.15a as follows:

|K,„| = |lim [2 (x -l)] 'V | (2.23)
X—>1

where |Km| is the stress intensity factor at the crack tip.
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Table 2.2 The values of a„ and b„ vs a , 0
a  =
e  =

0.5
nil

a  = 
0 =

= 1 
7t/3

a  = 
0 =

= 1 
it/4

b„ b„ • 3n bD
-0.032 -0.287 -0.149 -0.25 -0.118 -0.198

0 0 -0.031 4.017-lff4 -0.035 4.543-lff*
4.259-Iff4 0.003 0.008 0.014 0.007 0.013

0 0 8J23-10-4 -1.274-1O'4 0.001 -1.44-10“*
-1.725-10^ -1.236-10*5 -1.38-10“* -2.259- Iff* -1.093-10“’ -2.225-10°

0 0 -9.584-Iff0 1.643-Iff' -1.118-10‘s 1.858- Iff'

Knowing that |Km| = | lim [2(x-l)1/2o*|, all factors with the regular parts can be neglected
X—»1

1 1 ( l - i ) i  2because of the limiting progress, except — £ ------( -------)2'2J in Y. Thus at regular points,
7tj=o j! a(x-s|

the stress intensity factor will be zero. For the singular points, the stress intensity factor is 

expressed as (Appendix C):

lim [2(x-l)]1/2(-4/tt) j — [A,(s)sincot + A2(s)coscot]ds (2.24)
x->i -i|x-s|2

. 5  (l-s2 '),/2 5 n -s2 'l1/2
= lim [2(x-l)] (-4/:t) j ,  £ [a  n U (s)—— —-sin o t + l b  n U n (s) - - coscot] ds

x-»l n=0 |x-s|2 n=0 |x-s|2

From Gradshteyn and Ryzhik (1965), we have:

j ( l —S2 ) 1/2 j_ _ X7l

-1

Substituting the Eq. 2.25 into above Eq. 2.24, the stress intensity factor can be expressed 

as follows:

Km = 4{[ z  +E s - ^ r ] 2 }l/2cos(o>t-e„)= |K„,|cos(0)tA ) (2.26)
n=on+l n=on+l

— ds = ------ —----- , x >1 (2.25)
_J, (x -s )2 (x2-l)>/2
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I a „ ( n + 1 ) - '
where 9„ = tan'1 --------------- and Km is the stress intensity factor of mode III.

I  b„ (n+1)-'
n=0

2.5 Results and Comparisons

The normalized stress intensity factor is plotted against the wave number a  in Fig. 2.7 for 

several values of the incident angle 0. In Fig. 2.8, we compare the SIF curve for 0 = n/2 

with that given in Mai (1969). He considered the jump discontinuity in the displacement 

vector that developed approximate techniques for the determination of the field on the 

crack surface. In that case, the approximate solutions are only valid at low frequency (a < 

2). He also showed the dynamic stress intensity factor exceeded the corresponding static 

value by about 28%. A comparison is made for 0 = n/4 with that of Stone (1980) in Fig. 

2.9. It shows the dynamic stress intensity factors (a * 0) will increase at low frequency 

when the a  increases and reach the maximum value (when a  = 0.9) which is about 25% 

more than the static stress intensity factor (a  = 0). At relatively high frequencies, the 

stress intensity factor drops rapidly beyond the first maximum value and exhibits 

oscillations of approximately constant period as a  increases which is shown in Fig. 2.10. 

In above cases, the values of the dynamic stress intensity factors are always bigger than 

the static stress intensity factors at low frequency and increase to maximum values when 

a  a  1. The normalized stress intensity factor is also plotted against the depth of surface 

crack in Fig. 2.11. As we mention in previous research, the surface crack of infinite 

length and finite width, lied in a homogeneous, isotropic, elastic, semi-infinite solid, is
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equivalent to the mirror image of the surface crack with respect to the free surface. It is a

n=0

are presented as K^, - a , Kfj, -0, as shown in Fig. 2.12, which show that stress intensity 

factor will increase at low frequency when the a  and 0 increase. In Fig. 2.13, the curve

beyond the first maximum value and exhibits oscillations of approximately constant 

period as a  increases. This result agrees with the right side stress intensity factor. At high 

frequency, the interference between the incident and reflected waves may reduce the 

dynamic stress intensity factor which can be clearly seen in the curves for incident angles 

different from zero. As a special interest, both sides of the stress intensity factors have 

been performed for different inclined angle to investigate and analyze the effect of 0. It 

shows both stress intensity factors will reach maximum value when the input shear waves 

are incident normally on the surface crack. At 0 < 0 < tc/2 or 37t/2 < 0 < 2n, the right side 

stress intensity factor is always bigger than the left side (Fig. 2.14). A comparison 

between the left side and right side stress intensity factors has also been made showed in 

Fig. 2.15. It is note that the right side SIF are bigger than the left side at high frequencies.

finite crack of length 2 in an infinite medium. Applying the dislocation model, the left 

side stress intensity factor K ̂  can be expressed as:

K-Jj| == | lim [2(x + l)% y'|
X - > - I

= 4 { [ I
n=0 n+1
N M -

]2 }l/2cos(oit-0 Ln)= |K|„|cos(wt-6 Ln) (217)
n=0 n+1

I a n ( - l ) " (n + l) - i
where 0 Ln = tan'1

I  b n (-1 )"  (n+1)-1
. The results for left side stress intensity factor

shows the left side stress intensity factor drops rapidly at relatively high frequencies
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The conclusions can be considered as fundamental concepts in practical cases. 

Furthermore, the comparisons of normalized stress intensity factor is made between the 

presented dislocation model and NISA program at very low frequency ( a  « 0 )  shown in 

Fig. 2.16, 2.17. They show that the dislocation model is in a good agreement with NISA 

simulation.

2.6 Summary

In this chapter, an analytical dislocation model has been developed for a surface subjected 

to the inclined shear waves. The effects of dynamic loading on the distribution of stress 

around a surface crack and a finite crack are considered in this paper. When the input 

shear waves meet this dislocation, these waves are reflected due to the inhomogeneity of 

dislocation density. Previous works on this subject showed that if the input stress waves 

are SH waves, the reflected waves would also be SH waves. This result is equivalent to 

that produced from a crack. The surface crack can be represented by an continuous 

dislocation of Density. Unlike the static case, the stress intensity factor to the dynamic 

problem is more difficult to obtain. The object of the present paper is to discuss the stress 

intensity factor of a surface crack subjected to SH waves. The Chebyshev Polynomials, 

based on the stress boundary condition of the crack surface, are also presented for 

obtaining the stress intensity factor at the crack tip. The results are compared with those 

of Stone (1980) and Mai (1969) at low frequency (a < 2). At high frequency the higher- 

order terms in a„ and bn become very important in calculating the stress intensity factor. 

To overcome the limitation of the current model, the M and N must be considered as

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



40

higher values. In other words, the choice of the M, N must be based on the wave 

numbers. Then the results of the present model will be valid at any frequency and would 

be useful for further investigations. The concepts of the current model have been used to 

developed an analytical dynamic model for interaction between a surface crack and a 

screw dislocation in chapter 3. Furthermore, the basic mathematical technique established 

in this chapter for solving elastodynamic problems of the surface crack, is extended to 

provide useful information to the internal crack interacted with the free surface in chapter 

4.
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CHAPTER 3

DYNAMIC INTERACTION BETWEEN A SURFACE CRACK 
AND SCREW DISLOCATIONS

3.1 Introduction

The analytical model developed in the previous chapter is based on the mirrored 

dislocation model for investigating the stress intensity factor at crack tip. In this chapter, 

immediate objective of this study has been extended to the dynamic interaction between a 

surface crack and multi screw dislocations. It has been observed in silicon wafer that the 

dislocations near the free surface can be generated by introducing surface damage 

followed by a proper heat treatment. The surface damage, caused by grinding, scratching, 

etc., on brittle material usually introduce surface microcrack along with dislocations. It is 

believed that the dislocations are generated by surface microcracks during the heat 

treatment. It is therefore important to understand the interaction between a surface crack 

and a dislocation.

The general problem of the interaction of a dislocation with a surface notch has 

been studied by Warren (1970). However, due to the complexity of the potential he 

obtained, only an approximate solution for the force on the dislocation was reached. Chu 

(1982) solved the coplanar screw dislocation and sharp surface crack interaction. Li 

(1981) used dislocation modeling of the crack tip stress field to study the nucleation of 

dislocation near the tip of the crack. Lee (1985) also studied the same problem and 

compared the dislocation distributions in the crack, the total Burger vector, and the stress

47
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intensity factors with that of Li’s models. However, until now the dynamic interaction 

between the general parallel screw dislocations and the surface crack has not been solved.

In this chapter, the method used in previous chapter (chapter 2) is extended to 

analyze the screw dislocation in the neighborhood of a surface crack. An analytical 

solution is presented and compared with those already obtained by other authors for a  »0 

case. Besides the stress intensity factors of the surface crack tip, the crack extension force 

is also discussed.

3.2 Problem Definition

The problem considered in this chapter is as follows: A surface crack of unit length lying 

in the xz plane with an infinite z dimension and a screw dislocation parallel to the z axis 

is situated at (xq, 0) in the xz plane (Fig. 2.3). Both the crack and the dislocation are 

subjected to horizontal polarized shear waves (SH waves). The screw dislocation has a 

Burgers vector b. The problem is to calculate the stress intensity factor at the crack tip 

due to both the applied shear waves and the screw dislocation. Owing to the nature of 

geometry, the stress on the free surface is zero. According to the theories of dislocation- 

modeling technique and complex variable method proposed by Lee (1986), the problem 

is equivalent to the mirror image of the surface crack with respect to the free surface. The 

problem is now changed to simply a finite crack of length 2 interacting with two screw 

dislocations in an infinite medium as shown in Fig. 3.1.
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3 3  Problem Formulation

Previous method is extended to express the stress distribution along the crack surface for 

the case of harmonic shear waves (SV, SH) impinging on a semi-infinite crack and a 

screw dislocation both lying along the x-axis. Since the total surface traction should be 

zero along the crack surface, we have:

jD(s) Ba2{[J0(a|x-s|) + J2(a|x-s|)]cos[©t+p,(s)] + [Y0(a|x-s|) + Y2(a|x-s|)]
-i

sin[©t+p,(s)]}ds + Ba2{[J0(a|x-Xo|) + J2(a|x-x0|)]cos[wt+p2(x0)] + [Y0(a|x-Xo|) + Y2(a|x- 

x0|)]sin[©t+p2(x0)] - [J0(a|x+xo|) + J2(a|x+x0|)]cos[©t+p2(x0)] - [Y0(a|x+x0|) + 

Y2(a|x+Xo|)]sin[©t+p2(Xo)] }= -arosin0cos(axcos0-©t) (3.1)

where the pi(s) and p2(x0) are phase lags of the surface crack modeled by a continuous 

distributed screw dislocation and the dislocation at (x0 , 0) respectively. It is noted that 

when x0 equals to zero then the problem is reduced to the case of a surface crack.

s  —

l l
—  S

,— 5a— , X°

SH wave on xz plane plane

Figure 3.1 A positive screw dislocation, its image and 
a finite crack of length 2.
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Expanding Eq. 3.1, we get the following two equations:

JD(s) Ba2[Ycosp](s) - Jsinp[(s)]ds
-i

2 2 = -aosin0sin(axcos0) + Ba (q-ejcosp^xo) + Ba (x*4)sinp2(x0) (3.2a)

/D(s)Ba2[Jcosp!(s) + Ysinp^sJJds
-l

= -aosin0cos(axcos0) + Ba2(Ti-e)sinp2(xo) + Ba2(£-x)cosp2(xo) (3.2b)

where J = J0(a|x-s|) + J2(a|x-s|), Y = Y0(a|x-s|) + Y2(a|x-s|)

X = J0(a|x-xo|) + J2(a|x-Xo|), e = Y0(a|x-Xo|) + Y2(a|x-Xo|)

4 = J0(a|x+xo|) + J2(a|x+Xo|), r\ = Y0(a|x+Xo|) + Y2(a|x+Xo|)

Each of right sides of Eqs. 3.2a, 3.2b includes three terms: first term is due to the applied

SH waves, the second and third are due to the screw dislocation at (x<j, 0) and its image

respectively. There are two unknown functions D(s) and p,(s) on the left side of Eqs. 

3.2a, 3.2b. We replace them with another two functions, Aj(s) = D(s)Bcosp](s) and A2(s) 

= D(s)Bsinpj(s). Since there is singularity in Y when the value of x approaches to s, we 

must separate Y into singular and regular parts. Eqs. 3.2a, 3.2b can be expressed in the 

following forms:

1 1 1
-4/71 Ja  j (s )/(x-s)2ds + 2a In jAj (s)Jln(a|x-s|)ds + j a 2 [Aj(s)f(x, s)-A2(s)J]ds 

-i -l -l

= -aosin0sin(axcos0) + Ba2(ri-e)cosp2(x0) + Ba2(x-£)sinp2(xo) (3.3a)

i l l
•Ain JA2 (s)/(x-s)2ds+2a2/7t |A 2 (s)Jln(a|x-s|)ds + | a 2 [A2(s)f(x, s)+A,(s)J]ds 

-l -l -l

= -aosin0cos(axcos0) + Ba2(ri-s)sinp2(xo) + Ba2(4-x)cosp2(x0) (3.3b)
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From previous chapter, we know the stress intensity factors at the tip of the crack 

rely on the existence of the r,/2 stress singularity. We therefore expect that A,(s) and A2(s) 

contain the term (l-s2)1/2. We choose to express A,(s) and A2(s) as A^s) =

(1—s2)1/2 £ a nU n (s) and A2(s) = (1—s2)1/2 £ b nU n (s). Substituting A,(s) and A2(s)
n=0 n=0

into Eqs. 3.3a, 3.3b, we have:

00 i i U (si •> i
£ a „  {-4/nr /U m ( x ) ( l - x 2 )>'2 f " ( i - s 2 ) l/2 dsdx+ a2 JU m (x )( l-s2 ) ' '2

n = 0  - 1  - l (x -s )2 - 1

f [-Jln(a|x-s[) +f(xs)]Un(sXl-s2)1/2dsdx}- Z bna 2 JUm(x)(l-x2 ) ,/2 /JUn (s)(l-s2)I/2dsdx 
- i  n n=o - i  - i

l i
= -  |U m (x)(l-x2 ) 1/2 [aosin0siii(axcos0)]dx + JUm (1-x2 ) 1/2 Ba2 (q-e)cosp2 (x0 )dx 

-l -l

l
+ JUm(l-x2 ) ,/2 B a 2 (x-4)sinp2 (x 0 )dx (3.4a)

-i

00 ■ i U (si •> i
I b n {-4/71 J U m ( x ) ( l - x 2 ) " 2 J _ i L L l ( l _ s 2  ) 1/2 dsdx-NX2 J U m ( x ) ( l - s 2 ) I/2 

n = 0  - I  - l ( x - s ) 2 _1

) [—Jln(a|x-sO} +f(x^)]Un(sXl-s2)1/2dsdx + Xjana 2 ju ^x X l-x 2)"2 jjUn(s)(l-s2),/2dsdx
-1 7t n=0 -1 - I

1 I
= -  jU m (x)(l-x2 ) ,/2 [ a osin0cos(axcos0)]dx + JUm(l-x2) ,/2B a2(ri-£)sinp2 (x0)dx 

-i -i

+ JUm(l-x2 ) ,/2 B a 2 (^-x)cosp2 (x 0 )dx (3.4b)
-l

where m = 0, 1,2, 3,..., M ,...» and n = 0, 1, 2, 3,..., N , ..., » . The integrals in Eqs. 3.4a,

3.4b are evaluated with the help of Chebyshev Polynomials (see Appendix 2). Since Un
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does not vanish when n approaches oo, a„ and bn should converge to zero as n approaches 

oo. Therefore we assume that the problem can be approximated with the following series: 

N
I [ (A mn+ Bmn )an - C n A  ]=Tim + fmcosp2(xo) + gmsinp2(xo) (m = 0,1, ..M) (3.5a)
n=0

N
STCmnan + (A mn + Bmn )b r> ] =vB + fmsinp2(Xo) - gmCOSp2(Xo) (m = 0, 1, ..M) (3.5b)
n=0

where

Amn= - 4 / 7 t } u rn(x )( l-x2) i /2  } - ^ - (4 (1~s2 ) 1/2 dsdx = 1  ®
_i _j (x—s )2 [2(n+l)7t m=n

Bmn = ct2 JUm(xXl-«2)I/2 J[-Jln(a|x-sD +f(x )̂]Un(sXl-s2)1/2dsdx
-I -I 7t

c „  -  a 2 JUm ( x X l - x 2 ) 1/2 fJU„ (s)(l-s2 ) I'2 dsdx
-1 -1

tlm = -  JTJm (x ) ( l - x 2 ) 1/2 [ a osin0sin(axcos0)]dx 
-l

l
vm= -  |U m (x )( l-x 2 ) 1/2 [ a osin0cos(axcos0)]dx

-l

fm = JU m (1-x 2 ) 1/2 Ba 2 (ri-s)dx , gm = JU m (1-x2 ) 1/2 Ba 2 (x-^)dx 
- i  - l

Eqs. 3.5a, 3.5b contain 2(N+1) unknown coefficients a„ and bn with 2(M+1) equations. 

The above equations can be put into matrix form as:

—► —► —► —► —►
(A + B )a -C b = n  + fcosp2 (x 0 )+gsinp2 ( x 0 ) (3.6a)

—► —► —> —► —►
C a +(A + B)b=v + f  sinp2 (x 0 )-gcosp2 (x0 ) (3.6b)
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—► _  —> -T-
where a = [ a© , a, , a2 ,...,aN ] and b = [ b0 , bx , b2 ] • Matrices A, B, C, and

vectors q , v and f , g can be found once M and N are selected. Since all quantities in 

Eqs. 3.5a, 3.5b are constants except \  and bn, we deal with them as linear equations. 

Separating them by superposition method, Eqs. 3.6a, 3.6b become:

(A + B)a^ -CV =r\ (3.7a)

C a'+(A  + B)b'=v (3.7b)

and

— —> —> —»
(A + B)a" -Cb" = fcosp2 (x 0 )+gsinp2 (x 0 ) (3.8a)

_M ~Jj —> —*
Ca" +(A + B)b" = fsinp2 (x 0 )-g co sp 2 (x0 ) (3.8b)

—> —► “► —> —► “> 
where a = a ' +a" and b = b' +b" . To solve for a„ and bn (n = 0, 1,..., N), let M = N.

Our problem is now to find positive integers M and N such that and bn converge to

zero. As a first approximation, let M and N equal to 9. Evaluating a a n d b 'n in Eqs. 3.7a,

3.7b, we find out the values of a'n andb’n would converge to zero if M, N > 5. The results

are listed in Table 3.1. Let

—► —► —►
f cosp2 (x 0 )+gsinp2 (x 0 )=  Rcoscp (3.9a)

—► —► —►
fsinp2 ( x 0 )-gcosp2 (x0 )=  Rsincp (3.9b)

where 0 < cp < 2n. We now have

R = ( f 2 + g 2 ) ,/2 (3-10)
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where matrices A, B and C can be derived from Eq. 2.22 in Chapter 2. The corresponding 

a 'p and b '„ defines the maximum value of the stress intensity factor at the crack tip. In 

general, only the maximum value of the stress intensity factor is of interest. It means that 

<p can be defined when KIn reaches the maximum value. With the same method used to 

solve Eqs. 3.7a, 3.7b, we find the solutions as listed in Table 3.2. The solutions can now

be used to get A,(s), A2(s) and P2(Xo). The results may be used to calculate the stress

intensity factor from stress distribution along the dislocation.

3.3.1 Stress Intensity Factor

The stress intensity factor at the crack tip from Eq. 2.15a may now be defined as follows: 

|K „ ,|- |I im [2 (x -l)] 'V | (3.11)
X -> 1

where |Km| is the stress intensity factor at the crack tip. The stress intensity factor Km at 

the crack tip for a mode III surface crack is defined as follows:

Kni= K s + K c  (3.12)

where the first term, Ks , is due to stress field of the dislocation and the second term, , 

is due to the applied SH waves. Both of them derive from Eq. 2.26. Eq. 3.12 is plotted in 

Fig. 3.2 for some arbitrary values of a  and Xq. It is seen that the net stress intensity factor 

K,u can be drastically reduced by a screw dislocation generated in the vicinity of the 

crack tip. It also can be shown that Km = 0 when Xq > 20.

3.3.2 Crack Extension Force

From Eqs. 3.12, we know the stress intensity factor can also be increased by the presence 

of the dislocation depending upon the relative sign of the applied SH waves and the
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Burgers vector of the dislocation. By holding the screw dislocation stationary, the strain 

energy release rate corresponding to the virtual displacement of the crack tip gives the 

crack extension force Gm under the stress fields of the screw dislocation and the applied 

SH waves. The Gm is defined as:

(3.13)
2n

The change of Gin as the surface crack propagating towards the screw dislocation is 

illustrated in Figs. 3.2a, 3.2b. Without the applied SH waves, the dislocation stress fields 

tends to drag the surface crack to the dislocation where the strain energy can be relaxed. 

Under the applied SH waves, the surface crack can be repelled by the dislocation 

depending upon the direction of the applied SH waves and the Burgers vector the screw 

dislocation. There is a stable position x0 where the crack extension force G,n is zero. In 

Fig. 3.3, the SIF curve for a  = 0 (static) is compared with that given in Chu (1982). In 

Fig. 3.4, it shows the dynamic stress intensity factors will increase at low frequency when 

the a  increases and reach the maximum value. At relatively high frequencies, the stress 

intensity factor drops rapidly beyond the first maximum value and exhibits oscillations as 

a  increases. To extend the study further to include the relation between the input angle 0 

and stress intensity factor shown in Fig. 3.5. It shows that the stress intensity factor 

increases with increasing the input angle 6 at low frequencies. It is noted that the stable 

position Xo will decrease when the input angle 0 increases as shown in Figs. 3.6a, 3.6b.
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3.4 Two Dislocations on the Crack Plane

As this model is an extension of the dislocation model developed for dynamic 

interactions between a screw dislocation and a surface crack in previous sections, the 

concepts developed in Eq. 3.1 is valid for the present analysis, with a minor modification 

in screw dislocations. In this model, derivation of the stress distribution is similar to the 

Eq. 3.1, but it includes an extra part from the second screw dislocation. To extend the 

study a step further to include the dynamic interactions between the dislocations and the 

surface crack. The case of two screw dislocations o f Burgers vector bt and b2 o f the same 

sign is situated at (xb 0) and (x2, 0) respectively. By using the dislocation model for the 

surface crack and images for the free surface, The problem is now changed to simply a 

finite crack of length 2 interacting with four screw dislocations in an infinite medium as 

shown in Fig. 3.7.

SH wave on xz plane

Figure 3.7 Two positive screw dislocations, their images 
and a finite crack of length 2.
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For applying Eq. 3.1, we have:

JD(s)Ba2{[Jo(a|x-s|) + J2(a|x-s|)]cos[ot+p,(s)] + [Y0(a|x-s|) +Y2(a|x-s|)]sin[a)t+pI(s)]}ds
-l

+B1a 2{[J0(a|x-x,|) + ^(alx-x^Jcostmt+p^x^+IYotelx-x,!) +Y2(a|x-x,|)]sin[o>t+p2(xl)]

- [J0(a|x+x,|) + J2(a|x+XlDJcoslpt+pzCx!)]- [Yofclx+x,!) + Y2(a|x+xl|)]sin[cot+p2(x1)]}

+ B2a 2{[J0(a|x-x2|) + J2(a|x-x2t)]cos[cot+p2(x2)]+[Y0(a|x-x2|) +Y2(a|x-x2|)]sin[cot+p2(x2)]

- [J0(a|x+x2|) + J2(a|x+x2|)]cos[cDt+p2(x2)]- [Y0(a|x+x2|) + Y2(a|x+x2|)]sin[©t+p2(x2)]}

= -aosin0cos(axcos0-cot) (3.14)

where Bj = -b^p/8, B2 = -l^up/8. The p,(s), p2(x,) and p2(x2) are phase lags of the 

surface crack modeled by a continuous distribution of screw dislocation and the screw 

dislocation at (x,, 0) and (x2, 0) respectively. Expanding Eq. 3.14, we get the following 

two equations: 

i ,
JD(s)Ba [Ycosp,(s) - Jsinp!(s)]ds 

- l

= -crosin0sin(axcos0) + B ^V ii-e^cosp^x,) + B^^Xr^Osinp^x,) 

+B2a 2(r|2-e2)cosp2(x2) + B2a 2(x2-^2)sinp2(x2) (3.15a)

i ,
JD(s)Ba [Jcospi(s) + Ysinpi(s)]ds

- l

= -aosin0cos(axcos0) + B ja^ripe^sinp^x,) + B[a2(4i-Xi)cosp2(x,)

+ B2a 2(q2-e2)sinp2(x2) + B2a 2(^2-x2)cosp2(x2) (3.15b)

where J = J0(a|x-s|) + J2(a|x-s|), Y = Y0(a|x-s|) + Y2(a|x-s|)

X, = J0(a|x-x,|) + J2(a|x-X!|), e, = Yofclx-x,!) + Y2(a|x-x,|)

Si = J0(a|x+x,|) + J2(a|x+X||), ri, = Y0(a|x+x,|) + Y2(a|x+x,|)

X2 = J0(a|x-x2|) + J2(a|x-x2|), e2 = Y0(a|x-x2|) + Y2(a|x-x2|)
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S2 = J0(a|x+x2|) + J2(a|x+x2|), q2 = Y0(a|x+x2|) + Y2(a|x+x2|)

Each of right sides of Eqs. 3.15a, 3.15b includes five terms: first part is due to the applied

SH waves, others are due to the screw dislocation at (Xi, 0) and (x2, 0) and their images

respectively. Following the proceedings in previous sections, we separate them by 

superposition method, Eqs. 3.15a, 3.15b become:

(A + B)a -C b ’=ri (3.16a)

Ca*+(A + B ) ? = v  (3.16b)

and

M *»(A + B)a -Cb =f j cosp 2 ( x i )+g j sinp 2 ( x i ) (3.17a)

—jj -* —* —»
Ca" +(A + B)b"=f, sinp2 (X] )-giCosp2 ( x j ) (3.17b)

(A + B)a"'-Cb'"=f2cosp2 (x 2 )+g2sinp2 ( x 2 ) (3.18a)

Ca'" +(A + B)b'"=f2 sinp 2 ( x 2 )-g  2 cosp 2 (x 2 ) (3.18b)

=JU m(l-x2)i'2B,a2(T1l -El )dx g % J U m(l-x2) ' '2B,a2(xi-4,)<ix
-1 -I

f 2 = JUm(l-x2)i/2B2a 2(Ti2-E2 )dx g 2 = JUm(l-x2 ) 1/2B2a 2 ( x 2-4 2 )dx
- i  - i

where a =a’ +a" +am and b = b’ +b" +bm.

Let

—► —► —►
fjCOsp2 (xj )+g]Sinp2 ( x 1 )= Rj coscp! (3.19a)

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



f 2cosp2 (x2 )+g2sinp2 (x 2 )= R 2 cos<p2 (3.20a)

f 2sinp2 (x2 ) -g 2cosp2 (x2 )= R 2 sinq>2 (3.20b)

where 0 < q>, < In  and 0 £ <p2 -  2tc. We now have

(3.21a)

(3.21b)

where matrices A, B and C can be derived from Eq. 2.22 in Chapter 2. The corresponding

tip. In general, only the maximum value of the stress intensity factor is of interest. It 

means that cp,, cp2 can be defined when Km reaches the maximum value. The Fig. 3.8a, b 

have been presented as stress intensity factor versus x , , x2 for given shear modulus, wave 

number and Burgers vectors ^  and b2.

By using the dislocation model for the surface crack and images for the free surface, an 

analytical solution for interaction between a screw dislocation near a mode III surface 

crack, subjected to the dynamic antiplane stress, has been derived. The change of the 

crack extension force as the surface crack propagation towards the dislocation is also 

presented in present chapter.

a ” b„ and a„ ,b„ define the maximum value of the stress intensity factor at the crack

3.5 Summary
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Without the applied stress, the dislocation stress field tends to drag the surface crack 

to the dislocation where the strain energy can be relaxed. Under the periodic dynamic 

stress, the surface crack can be repelled by the dislocation depending upon the direction 

of the applied stress and the Burgers vector of the dislocation. The effects of the wave 

number, the input incident angle and the dislocation on the stress intensity factor are also 

discussed in 3.3.2.

In absence of the applied SH waves, dislocations are always attracted towards the 

crack. When the SH waves are in the direction of driving the dislocation into the medium, 

a stable position is created at some distance from the crack tip beyond which the 

dislocations will be repelled by the crack. The stable position decreases with increasing 

input angle 0. At low frequencies, the stress intensity factor increases with increasing the 

input angle 0. The stress intensity factor can also be increased by the presence of the 

screw dislocation depending upon the relative sign of the Burgers vector of the 

dislocation.

Theses solutions obtained in this chapter are valid for the time interval from initial 

loading until first wave scattered at surface crack tip to the same crack tip after being 

diffracted by the screw dislocation. Ma and Tsai (1991) showed that the stress intensity 

factors due to the diffracted waves emitted at another crack are much less influential than 

the incident waves. In this study, we neglect the effects of diffracted waves.

The advantage of the present model is demonstrated when dealing with two or more 

screw dislocations because the dislocation distribution inside the crack is additive. A 

numerical example with multi dislocation is used to illustrate our method.
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Table 3.1 The values o f a„and b'n vs a , 6

a  = 0.5 a  == 1 a  == 1
0 = 71/2 0 = 71/3 0  = 7C/4

b„ 3d b„ 3n b„
-0.032 -0.287 -0.149 -0.25 -0.118 -0.198

0 0 -0.031 4.017-10"* -0.035 4.543-10"*
4.259-io"* 0.003 0.008 0.014 0.007 0.013

0 0 83231 O'4 -1.274-10"* 0.001 -1.44-10"*
-1.725-1 O'0 -1.236-10"4 -1.38-10"* -2.259-1 O'5 -1.093-10"* -2.225-1 O'4

0 0 -9.584-1 O'6 1.643-10"' -1.118-10° 1.858-10"'

Table 3.2 The values of a„ and b„ vs a , 0, x0

a  = 1, x0 =  2 
0 = 7T/2

a  = 1, Xq = 2.5 
0 = 71/3

a  = 1, x0 = 3 
0 = 71/4

3n b„ 3n bn 3n b„
0.027 0.026 0.023 0.021 0.017 0.022
0.001 0.003 0.002 0.001 0/001 0.003

-6.015-10"4 9.986-10"* -4.011-10“* 7.686-10"4 -3.341 • 10~* 5.346-10"*
1.578 10-* 5.946-10"* 3.478-10"* 2.556-10"* 1.238-10"* 1.998-10"*
4.003-10"4 3.768-10° 7.24-10"4 5.763-10° 6.254-10° 5.433-10"4

0 1.493-10"* 2.003-10‘4 2.462-10° 1.034-10° 2.462-10"4

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



str
es

s 
in

ten
sit

y 
fa

cto
r 

str
es

s 
in

ten
sit

y 
fa

ct
or

62

— Ks(screw dislocation) 
* - K=Ks+Kc

—  Kc(crack)

J  ; I ;-----1_____ i J . 1 .  . J  . I .  — , 1 — . . J —

-1

-2

' . - f  4 6 8 10 12 14 16 18 20

'/

Xo
H=0.3

a = 0 .5

Figure 3.2a Effect of a screw dislocation on the SIF for a

1 -

Ks(screw dislocation)

K=Ks+Kc

Kc(crack)

i ' l l  l - l - - I - - -I_________ I_________ L

2' 4 6 8 10 12 14 16 18 20

Xo
-1

-2

-3

|i=0.3

a=1.0

Figure 3.2b Effect of a screw dislocation on the SIF for a  = 1.0
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2.0

1.6

1.4
Chu

Presented method

1.0

0.8

0.6

0.4

0.2

0.0
3.63.1 4.11.6 2.1 2.61.1

Xo

Figure 3.3 Comparison of dislocation and Chu model

1.2

0 = 90

p. =  0 .3
0.9

Xo = 50.8
0.7

0.6
0.5

0.4

0.3

0.2
0.1
0.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
wave number 

Figure 3.4 Effect of wave number on the SIF
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1.2 0 = 90 
0 = 60 
0 = 30

1.1
1.0

0.9

o 0.8

Xo = 5

~ 0 .5(O(0
2  0.4
UJ

0.3

0.2
0.1
0.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
wave number

Figure 3.5 SIF vs wave number and incident angle

■E -1 9 = 90 

0 = 60 

0 = 30

a  = 0.5

1 3 5 7 9 13 15 17 1911
Xo

Figure 3.6a SIF vs Xo and incident angle
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2

1

0

-1
0 = 90 
0 = 60 
0 = 30

a =  1.0

-2

-3

5 9 17 193 7 13 151 11
Xo

Figure 3.6b SIF vs x0 and incident angle
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co>
c
10
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Si(0

1.11

1.01

■5 0.91

0.81

0.71

X1 = 4 (single dislocation)

X1 = 3 (single dislocation)

'X1 = 2 (single dislocation)

H = 0.3 

a = 0.5

  X1 = 2
  X1 = 3
-  -  X1 = 4

12 14 16 180 2 4 6 8 10
X2-X1

Figure 3.8a SIF vs x2 - Xj for interaction between two screw dislocations (b! = b2) 
and a surface crack
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X1 = 4 (single dislocation)

X1 = 3 (single dislocation) __________ _ _ - --  - — ----- -- — ‘
__- ----

p = 0.3
/

a =  1.0

---------  X1 = 2
---------- X1 = 3
----------X1 = 4

. . 1 . 1  _ J . : 1_ _l______ i_______i___
0 2 4 6 8 10 12 14 16 18

X2-X1

Figure 3.8b SIF vs x2 - X! for interaction between two screw dislocations (bt = b2) 
and a surface crack
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CHAPTER 4

DYNAMIC STRESS INTENSITY FACTORS FOR A CRACK 
NEAR FREE SURFACE

4.1 Introduction

A dislocation model based on the mirror image with respect to the free surface of a 

surface crack has been developed in Chapter 2 to determine the stress intensity factor at 

the crack tip in a semi-infinite isotropic elastic solid which is subjected to period cyclic 

loadings. The investigations stated above treated a surface crack in a semi-infinite 

medium and a finite crack in an infinite medium respectively. In fact, the internal crack 

also played an important role in fracture mechanics because of its practical applications. 

Among all the available methods, the Fourier Transform and Laplace Transform methods 

are mostly used to solve the integral equations derived form the wave equations and 

boundary conditions. But, in order to consider the necessary boundary conditions, they 

must convert the integral equations to Fredholm’s equations which are not convenient for 

numerical solutions because of the associated improper integrals.

In an earlier paper, Achenbach (1981) has considered the two dimensional scattering 

of Rayleigh waves by a subsurface crack. The boundary value problem for the scattered 

field was stated in mathematical terms and an integral representation for its solution 

derived. The problem was reduced by standard methods to the solution of an uncoupled 

system of strongly singular integral equations which were solved numerically using a 

method due to Erdogan and Cupta (1976). Formulas were given for the far field

67
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amplitudes of the waves in the scattered field and for the near field quantities of the crack 

tip. The data in the integral equations were the values taken at the location of the crack by 

the stress components of the incident field. Applying previous research, Achenbach also 

considered the elastodynamic Mode I and Mode II stress intensity factors for a crack near 

a free surface. He derived the equations of stress components of the incident field along 

with boundary conditions (stress on the surface of the half space) and side conditions ( 

displacements along the crack surface) then the elastodynamic field generated by the 

integral equations satisfied all the required conditions. Although the integral equations 

and together with the side conditions can be solved by standard methods, but they 

preserved the incorrect form of the singularities of the solution at the crack tip.

The objected of the present study is to developed a dynamic model based on the 

previous surface crack model for an internal crack subjected to SH dynamic loadings. The 

model, with proper integration, can be expected to get the stress intensity factors at both 

sides of crack tips at any frequencies. In fact, the model shows that the cases of the 

surface crack and the finite crack in an infinite medium are special cases of the internal 

crack. With the known coefficients of the model, the model can be applied for static 

problems. This can be achieved by setting the wave number to zero. Research shows that 

there is an interesting relation between the internal crack and surface crack model, in the 

sense that the internal crack is affected by the free surface within certain region. In fact, 

an internal crack will be easily extended to a surface crack when the internal crack is very 

close to the surface crack. In the other hand, an internal crack can be considered as a 

finite crack in infinite medium if the internal crack is out of the certain region. The
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present model not only can offer a better insight into the dynamic behavior of the internal 

crack but present new areas of the effects of the inclined angle. A set of integral equations 

relating singularities of the crack tip have been developed. The results have been 

presented in the form of stress intensity factors versus wave number, crack position and 

inclined angle. The proposed model shows the dynamic stress intensity factors will 

increase at low frequency when wave number increases and reach the maximum value. At 

relatively high frequencies, the stress intensity factor drops rapidly beyond the first 

maximum value and exhibits oscillations of approximately constant period as wave 

number increases. However, this study shows, that the effect of free surface is significant 

for the stress intensity factors at the crack tips.

4.2 Derivation of Equations

The dislocation model developed in Chapter 2 can be extended for the internal crack near 

a free surface subjected to dynamic SH loadings. Consider the configuration in Fig. 4.1, 

the crack of Fig. 2.3 is now moved in the x direction by b + 1. The stress released from 

the crack is equal to the anti-plane shear waves at b < x < a, which satisfies a T + a  = 0  

along the crack surface.

X’

b X■V
a

Figure 4.1 Internal crack
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Again, the internal crack can be simulated by a distribution of continuous screw 

dislocation and the method is same as that derived in previous chapter. Now, consider a 

surface crack subjected to applied stress a ,  is modeled by a continuous distribution of a 

screw dislocation all parallel to the z axis. The stress field in the medium is induced by 

the screw dislocation. Using the method of Juang and Lee (1986), we obtain the stress 

field S(x) of normalized length of a surface crack :

S(x) = oa x/(x2- l) I/2 (4.1)

Where oa is applied stress. In order to satisfy the boundary condition along the crack 

surface, the S(x) must equal to the stress released from the screw dislocation (crack). The 

stress released from the surface crack can be expressed as:

1 1 7aT = JD(s) a d(x-s)ds = JD(s) Ba {[Jo(a|x-s|) + J2(a|x-s|)]cos[cot+p(s)] + [Y0(a|x- 
-l -l

s|) + Y2(a|x-s|)]sin[cot+p(s)]}ds

l
= J a 2 {[Jo(a|x-s|) + J2(a|x-s|)][A,coscot - A2sincot] + [Y0(a|x-s|) + Y2(a|x-s|)]

-i

[A]Sincot + A2coscot]}ds = 4{[ I  — ]2 + [ I  - ^ - ] 2 }I/2cos(cot-6n) x/(x2-l) (4.2)
n=on+l n=on+l

In order to satisfy the boundary condition along the crack surface, we can express the

equation a T + o* = 0 as S(x) + cr* = 0. Thus

l i ,

S(x) = -oT = - JD(s)od(x-s)ds = - /D(s)Ba {[Jo(a|x-s|)+J2(a|x-s|)]cos[cot+p(s)]
-l -l

+ [Y0(a|x-s|)+Y2(a|x-s|)]sin[cot+p(s)]}ds 

= - 4 { [ I - ^ r ] 2 + [ S - ^ - ] 2 ) l/2cos(cot-0„)X/(x2- l)1'2 (4.3)
n=on+l n=on+l
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Comparing Eqs. 4.1 and 4.3, the o , can be expressed in the following form:

= + [ £ -^ t ]2 f '“cos(o)t-ej (4.4)
n=on+l n=0 n+1

It is noted that the Eq 4.4 is applied to analyze the surface crack. Based on the same 

method used by Juang and Lee (1986), Shiue and Lee (1991) have investigated the elastic 

interaction between screw dislocation and the internal crack near a free surface also the 

stress intensity factor at the crack tip, crack extension force, the image force on the 

dislocation. They found out the stress field S’(x) arised from the dislocation distribution 

inside the crack, the screw dislocation and its image, and the applied stress. Using the

method of Juang and Lee, we express the stress field S’(x) derived from the applied stress

of normalized length of internal crack as:

S’(x) = o a [x2-a2E(K)/G(x)]/(x2-a2)1/2(x2-b2)1/2 (4.5)

where k2 equals to (a2-b2)/a2. G(k) and E(k) are the first and second kinds of complete 

elliptic integrals as defined as:

n'} dp
e (k) = f i (4-6a)

o VI-K sm P
i r / 2 ______________

G(k) = j\/l-K 2sin2pdp (4.6b)
0

where 0 < p < 2n. These equations together with Eq. 4.4 constitute the dynamic stress 

intensity factors being sought for the dynamic interaction between an internal crack and a 

screw dislocation. In order to derive the dynamic stress intensity factors of the internal 

crack, the equations presented in Chapter 2 are listed below:

|K,„| = |Iim[2(x-a)]'V| (4.7)
x - » a
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From above equation, all factors with the regular parts can be neglected because o f the

1 1 (1-i)! 1
limiting progress, except—£ ------(------- ) 2‘2J in Y. Substituting Eqs. 4.4,4.5 into Eq.7tj=o j! a|x-s|

4.7, the stress intensity factors at the right-hand and left-hand side crack tips are obtained 

as:

|Hni|R = | lim [2(x-a)]I/2xyz|=  | lim [2(x-a)] [x2-a2E(K)/G(K)]/(x2-a2)I/2(x2-b2)1/2 -
x—»a+ x—»a+

4 { [ I -?=-]2 + tX - ^ - ] 2 }lacos(a>t^O| = ( - ^ - ) W [ l . E ( KyG(K)]a,'J|KIn| (4.8a) 
n=orr+-l n=on+l a2-b 2

|Hm|L = | lim P(x-b)],/2T„ | = | lim [2(x-a)] [x2-a2E(K)/G(K)]/(x2-a2)I/2(x2-b2)I/2 -
x - > b -  x - * b -

4{[X “ ]2 + [X -^ -]2 }lncos(0) t ^ |= ( - ^ - ) » 2 [a2E(Kyb2Q(K>l]bl/2|K„,| (4.9b) 
i»=on+-l r»=onfl a2-b?

where |Km| is derived from Eq. 2.26.

In order to understand the effect of free surface on the stress intensity factor, the Fig. 4.2,

4.3 are plotted (0 = i t /2) to analyze the relation between the distance b and the stress 

intensity factors. In Fig. 4.2, the |Hm|R decreases with increasing b. When b approaches 

infinity, the |Hn,iR will approach to |Kni|. Then crack near a free surface can be known as a 

crack embedded in an infinite solid. When we increase b, the |Hin|L will decrease and 

approaches |Kni| while b approaches infinity. In Eq. 4.9b, the |Hin|L will become infinity 

when b close to zero (but not zero). It means an internal crack which is very close to a 

free surface will be easily extended to a surface crack. Therefore, there are two special 

cases worthy of mention. First, when b is equal to zero, the problem becomes that of a 

surface crack. Secondly, when b approaches infinity, then the problem is reduced to the
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case of an internal crack. The effect of interference between the input incident angle 6 

and the stress intensity factors also can be clearly seen in Fig. 4.4,4.5. Figure 4.6,4.7 4.8, 

4.9, 4.10, 4.11 display the interference between the input incident angle 6 and the stress 

intensity factors with various values of a. The proposed model reveals that there is an 

interesting relation between the stress intensity factors and the distance from the left side 

of crack tip to free surface. At b > 2, the left side stress intensity factor can be considered 

as same as a finite crack in an infinite medium. The dynamic stress intensity factor curve 

in Fig. 4.6, 4.7, 4.8, and 4.9 exhibit the above conclusions. From the left side stress 

intensity factor curve, it appears that the condition, b/a > 0.5 in the case of an internal 

crack, is sufficient to insure that results do not depend greatly on the distance from the 

free surface to the nearest crack tip. It should be noted that the intensity factors derived 

from Eqs. 4.9a and 4.9b are in good agreement with the results of Murakami (1987). It 

means that Eqs. 4.9a and 4.9b not only satisfy the dynamic problems also agree with 

static’s.

4.3 Free Surface Effect

In this chapter we examine the dynamic results of a surface crack, dynamic interaction 

between a surface crack and a screw dislocation to the application at the surface of a 

uniform traction that varies harmonically with time. Attention is directed toward the 

quantities that are of interest in fracture mechanics, namely stress intensity factors at the 

crack tips. In particular, in a mechanical structure, an internal crack may induce 

undesirable crack propagation, failure. The negative effect of an internal crack is more
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significant when this internal crack is very close to free surface. The precision of stress 

intensity factors of the internal crack can improve the engineer’s abilities to prevent the 

failure occurs.

Eqs. 4.9a and 4.9b show that stress intensity factor at the left side of an internal crack, 

that is eventually propagating towards a suffice under the influence of SH waves, suffers 

a sharp increases when the crack almost broken the surface. It means an internal crack 

which is very close to a free surface will be easily extended to a surface crack. It may be 

expected that the effect o f the free surface diminishes as the crack moves away from it. 

The stress intensity factor should then approach the values for a crack in an infinite
n

medium. In other words, the |Hnil decreases with increasing b. When b approaches 

infinity, the |Hn,|R will approach to |Knl|. To determine more precisely in what 

circumstances the effect o f the free surface is negligible, the graphs of the stress intensity 

factors of a finite crack in an infinite medium are compared to those for an internal crack 

with various values of a and b. The finite crack in an infinite medium is the limit of an 

internal crack as aa  -» oo but a(b - a) remains constant, or equivalently a/b —► 1 with a(b 

- a) fixed. We expect that the internal crack curves will lie close to the finite crack curve. 

From the left side stress intensity factor curve, it appears that the condition, b/a < 0.5 in 

the case of an internal crack, is sufficient to insure that results do not depend greatly on 

the distance from the free surface to the nearest crack tip. This result can be used to test 

each of the parameters (wave number, incident angle) affecting stress intensity factors so 

that the role of each can be defined separately to insure the effects of free surface is 

negligible. Therefore, there are two special cases worthy of mention. First, when b is
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equal to zero, the problem becomes that of a surface crack. Secondly, when b approaches 

infinity, then the problem is reduced to the case o f an finite crack in an infinite medium.

4.4 Summary

A dislocation model for an internal crack, based on the dislocation model for the surface 

crack and the applications of previous studies on the internal crack has been developed. 

The model considers the stress intensity factor both sides of an internal crack as well as 

the effects of free surface. Simulation results of the model show that free surface effect 

plays a very important role in crack propagation. Also, the results determine more 

precisely in what circumstances the effect of the free surface is negligible. The graphs 

show that the stress intensity factors at crack tip which is nearest to the free surface suffer 

a sharp increase. It means an internal crack which is very close to a free surface will be 

easily extended to a surface crack. It may be expected that the effect of the free surface 

diminishes as the crack moves away from it and larger when a/b approaches unity. In fact, 

the right side stress intensity factor will also increase with decreasing b. When b 

approaches infinity, the internal crack curve will lie very close to the finite crack curve. 

The effect of interference between the input incident angle and stress intensity factors 

also presented.
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Figure 4.2 Effect of b on |Hm|R for 0 = rr/2
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Figure 4.3 Effect of b on |Hm|L for 0 = nil
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Figure 4.4 |Hnl|R vs a  and 0 for a = 5
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Figure 4.5 |Hm|L vs a  and 0 for a = 5
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Figure 4.6 |Hm|R vs a  and 0 for a = 4
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Figure 4.7 |Hm|L vs a  and 0 for a = 4
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Figure 4.8 |Hm|R vs a  and 0 for a = 3
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Figure 4.9 |H,n|L vs a  and 9 for a = 3
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Figure 4.10 |Hni|R vs a  and 0 for a = 2.2
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Figure 4.11 |Hni|L vs a  and 0 for a = 2.2
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CHAPTER 5

DYNAMICS STRESS INTENSITY FACTOR OF A MOVING CRACK

5.1 Introduction

The assessment of crack initiation and propagation has been the subject of many past 

discussions on fracture mechanics. Depending on how the chosen failure criterion is 

combined with the solution of a particular theory of continuum mechanics, the outcome 

could vary over a wide range. As in all crack problems, the detailed stress field near crack 

tip must be known before any fracture analyses could be made. Once the crack is in 

motion, it is important to know the conditions under which it can be arrested. To avoid 

such phenomena, the wave numbers, inclined angle of input shear waves and velocity of 

the crack have to be calculated, which can be done by proper modeling of the moving 

crack.

Earlier works on moving crack shows that the velocity of a moving crack has a 

significant effect on the propagation at the crack tip. In particular, high velocity may 

induce undesirable failure occurs. The negative effect of the crack propagation is more 

significant at high velocity, where the moving crack will tend to bifurcate. Therefore, it is 

important to develop a suitable model to show the upper limit of the crack velocity to 

prevent failure occurs. The present study applies the dislocation model developed in the 

previous chapters as well as the works by Sih and Loeber (1970) to derive the stress 

intensity factor which serves as a useful parameter in studying the dynamics of crack

81
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propagation. It is noted that the dislocation model can be applied to moving coordinate 

system not just for stationary case. Therefore, a relatively simple dislocation model has 

been developed in the present study, in which the model can be derived by suitable 

modeling the moving crack as a moving screw dislocation.

By using the dislocation model for a moving crack subjected to the dynamic antiplane 

stress, the dynamic stress intensity factors at the crack tips have been derived. A brief 

description of this model is given for the case of an infinite elastic solid contained a finite 

crack of length 2 which is moving at a constant velocity c2. This paper derives the exact 

analytical solutions of the crack-tip stress intensity factor of mode III. Based on the 

dislocation concept applied to a stationary crack subjected to dynamic SH loadings 

(1997) and the works of Sih and Loeber (1970), we represent a moving crack subjected to 

SH (horizontal polarized shear waves) with an array of continuous distribution of screw 

dislocations, all parallel to z axis. The effects of the wave number, the input incident 

angle and Mesh number on the stress intensity factors are presented.

5.2 Development of Moving Crack Model

Limited by the available mathematical techniques, solutions to problems of cracks 

traveling at constant velocity are usually based on the assumption that the load is 

independent of time. The problem of a constant length crack moving at a uniform 

velocity was first considered by Yoffe (1951). She assumed that the crack is self sealing 

at the trailing end by an amount equal to the extended portion at the leading edge of the 

crack and investigated the dynamic stress field near the crack branching on basis of the
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maximum circumferential stress criterion. This model was improved by Broberg (1960) 

who considers the crack tips to move in opposite directions with constant velocities. The 

simpler problem of a semi-infinite crack extended by tractions applied to a finite segment 

of the crack surfaces was solved by Craggs (1960). The problem later extended by Sih 

(1968) to include general loading conditions and various crack geometries. He derived a 

path independent integral for calculating the energy release rate of cracks moving at a 

constant velocity. Instead of solving directly for the potential functions, Sih (1969) has 

reduced the dynamic crack problem to a Riemann-Hilbert problem as in static plane 

elasticity. He derived two wave equations of anti-plane deformation problems using the 

Riemann-Hibert formulation together with Schwartz-Christoffel transformation. 

Although Sih has solved a pair of wave equations involving two potential functions, it is 

still very difficult to derive the exact solutions due to mathematical complexity. This 

paper presents an effective solution with less complexity for the stress intensity factor of 

a moving crack located in an elastic infinite isotropic solid which is subjected to 

harmonic shear waves.

S3 Deriving Equations of a Moving Crack

Consider a moving coordinate system (X, Y, Z) located at middle of a crack moving at a 

uniform velocity c2 along the X axis and normalize all lengths with respect to the width 

of the crack such that the moving crack occupies the region -1 < X < 1, Y = 0, -oo < Z < oo 

as shown in Fig. 5.1. It is assumed that the crack reseals itself spontaneously, i.e., the 

crack length remains constant at all times. This is justified by the fact that the stress
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distribution close to one end of the crack is not influenced by its distance from the other 

end, as is shown by Yoffe [1951]

y

X, x

SH wave on xz plane

Figure 5.1 Moving crack in an infinite elastic medium

The position of the moving crack at a given time t is refereed to the stationary 

coordinate system (x, y, z) which are related to the moving axes attached to the crack as: 

x = X + c21, y = Y, z = Z (5.1)

The ratio M*= c2/c is referred to as the Mach number, which is always smaller than 1 

since the crack cannot run any faster than its limiting speed beyond which the crack will 

tend to bifurcate. Sih and Han (1974) explained bifurcate based on the strain energy 

theory in which the crack is assumed to run along the path where energy density due to 

volume change exceeds that of shape change. The apparent circular frequency co , 

apparent wave number X and apparent incidence angle cp , as the results of crack 

movement, are related to ©, 0, a  and M* as:

co* = e co, tancp = — —, X = e a /p2 (5.2)
M*+cos0

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



85

where e = 1 + M*cos8 and P = (1 - M*2)1/2. Our previous study shows that the total stress 

wave released from the stationary dislocation from -1 < x < 1 is the convolution of the 

density function and the released stress wave:

1 1 iaT = /D(s) od(x-s)ds = JE(s)Ba {[J0(a|x-s|)+J2(a|x-s|)]cos[cot+p(s)]+[Y0(a|x-s|)
- i  - l

+Y2(a|x-s|)]sin[(nt+p(s)]}ds (5.3)

Since the total surface traction should be zero along the crack surface, we have a T + 

a* = 0 along the y = 0 plane. Therefore,

i ,
JD(s)Ba {[J0(a|x-s|) + J2(a|x-s|)]cos[cot+p(s)]+ [Y0(a|x-s|) + Y2(a|x-s|)]sin[cot+p(s)]}ds 

- i

= -aosin0cos(axcos0-cot) (5.4)

It is expected that Eq. 5.4 is solved with reference to the moving coordinate system X, Y, 

Z. We assume the total stress wave released from the moving dislocation can be 

expressed in the form of stationary’s in Eq. 5.3. Inserting Eq. 5.2 into Eq. 5.4 in terms of 

the translating coordinates and apparent parameters, Eq. 5.4 is expressed as:

Jd (S)B>l2{[Jo(X|X-S|) + J2(X|X-S|)]cos[co’t+p(S)]+ [Y0(X|X-S|) + Y2(X|X-S|)]
- i

sin[<o*t+p(S)]}dS= -cti sin<pcos[X(coscp - M*)X - co* t] (5.5)

where S = s - c2t and c , = w0pA... After expanding cos[co*t+p(S)], sin[co't+p(S)], and 

cos[X.(coscp-M*)X-co*t], Eq. 5.5 may be expressed:

|D(S)BX.2 [ Jcosoo*tcosp(S) + Ysin©*tcosp(S) - Jsinco*tsinp(S)+ Ycosco*tsinp(S) ]dS
- i

= -Cisincpcos[X(coscp - M*)X]cosw*t- <T1sincpsin[X.(coscp - M*)X]sinco*t (5.6)
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From the coefficients of sin© t and cos® t, we have:

1 ,
JD(S) BA. [Ycosp(S) - Jsinp(S)]dS = -cr1sin(psin[A.(cos<p - M*)X] (5.7a)

- l

JD(S) BA-2[Jcosp(S) + Ysinp(S)]dS = -a 1sin<pcos[A.(coscp - M*)X] (5.7b)
- i

where J = J0(X|X-S|)+J2(A.|X-S|) and Y = Y0(A.|X-S|)+Y2(A.|X-S|). We replace D(S) and

p(S) with another two functions Aj(S) = D(S)Bcosp(S) and A2(S) = D(S)Bsinp(S). Since

there is singularity in Y when the value of X approaches to S, we must separate Y into

singular and regular parts. Eqs. 5.7a, 5.7b can be expressed in the following forms:

l l l

-4/ti jA , (S )/(X-S)2dS + IX2It: Ja , (S)Jln(A.|X-S|)dS+ jA.2 [A,(S)f(X,S) - A2(S)J]dS 
- l  - l  - l

= -c,sincpsin[A.(cos9 - M*)X] (5.8a)

i i i
- 4/ t i  Ja 2 (S)(/(X-S)2dS + 2A.2/n Ja 2 (S)Jln(A.|X-S|)dS+ jA.2 [A2(S)f(X,S) + A,(S)J]dS

- l  - i  - l

= -ajsincpcosfA^coscp - M*)X] (5.8b)

where f(X,S) = -l/n + 2/7t[(y-ln2)J0(X|X-S|) - ln2J2(A.|X-S|)]-2/7t f ( - l )  J ( AJ2)2j+2(X-S)2j+2
j=o

u / / :. 1 \ . u / / : . ■ vpf  i+2W v 
[— -—  ---- —--------------   -1. From previous chapter, we know the stress intensity

2j!(2+j)! [(j+1)!]2

factors at the tip of the crack rely on the existence of the r ,/2 stress singularity. We 

therefore expect that A,(S) and A2(S) contain the term (1-S2)I/2. We choose to express

A,(S) and A2(S) as Aj(S) = (1-S2 ) 1/2 | a nU n (S) and A2(S) = (1-S2 ) 1/2 f b nU n (S).
n=0 n=0

Substituting Ai(S) and A2(S) into Eqs. 5.8a, 5.8b, we have:
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S a „  (-4/71 {u m (X )(l-X 2 ) W j £ a i ! L i - S 2 ) ' '2 dSdX +».2 ju m (XX 1-S 2 ) I'2 
n=0  - l  -i(X -S )^  -1

}[—Jln(XpC—SQ +f(X£)]Un(SX1-S2)1/2dSdX}- fjbnA? fUmQQ(l-X2)i'2 fJUn(S (l-S2),/2dSdX
- i n  n=c -i -i

= -  JU m (X)( 1-X 2 ) 1/2a,sin<psin[A.(cos<p - M*)X]dX (5.9a)
- l

00 l l u  fS) •> i
I b „  (-4/7! JU m (XX 1 -X 2 ) l/2 f 7 ~ “ t t- (1 -S 2 ) I/2 dSdX+X JUm (XX1-S2 ) 1/2 

n = 0  - l  - l ( X - S ) ^  -1

}[-Jln(A.pC-S|+ f(XS)]Un (SX1-S2)1/2dSdX+ f a n>-2 ju m(X)(l-X2)i'2 jjUn(S)(l-S2),/2dSdX
-] 71 R=0 -i -I

= -  } u m (X )(l-X 2 ) 1/2a,sincpcos[A.(cos(p - M*)X]dX (5.9b)
- l

where m = 0, 1, 2, 3, ..., M, ...oo and n = 0, 1, 2 3, ..., N, ..., co. Following previous

method, we simplify above equations as follows:

B ( A mn + B mn)an -C mnbn ]=rim (m = 0 , 1, ..M) (5.10a)
n=0

i [ C n„ a „ + ( A ml, + Bm„ ) b n ] = v „  (m = 0,l , . .M) (5.10b)
n=0

where

An,,, = —4/tc }u m (X)(l-X 2 ) 1/2 } U " ~S  ̂ ( 1-S 2 ) 1/2 dSdX = L ,  ° ***Mnn j ,  m 7 _](X-S)2 [2(n+l)7t ro=n

Bra= JUnl(X)(l-S2)l/2 } [^Jln(X|X-SD + f(XS)]U„(sXl-S2)'/2dSdX
-1 -I 71

c „  = X2 } u m (X )( l -X 2 )I'2 pU„ (SX1-S2 )!'2 dSDdX
-I -1

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



88

Tim= -  ju m ( X X l- X 2 ) 1/2 0 ]Sin(psin[X(coscp - M*)X]dX
-l

v m= -  ju m (X )(l-X 2 ) ,/2o,sinq>cos[X(cos<p - M*)X]dX
-l

Eqs. 5.10a, 5.10b contain 2(N+1) unknown coefficients a„ and bn with 2(M+1) equations. 

To solve for a„ and bn (n = 0, 1, ...,N), let M = N. The above equations can be put into 

matrix form a s :

(A + B)a-Cb=Ti (5-lla)

C a+(A  + B)b=v (5.11b)

Our problem is to find positive integers M and N such that a„ and bn converge to zero.

5.3.1 Dynamic Stress Intensity Factor

The stress intensity factor at the crack tip from Eq. 2.15a may now be defined as follows: 

|KnI| = |lim [2 (x -l)] 'V | (5.12)
X -+ 1

At regular points, the stress intensity factor will be zero. For the singular points, the 

stress intensity factor is expressed as :

i n  N  1 n - S 2 l 1/2
|Ktn I = lim [2(X-1)J (-4/rc){ + b ^ o s o ' t ]  JU„ (S)i— f— dS>X—>1 n=0 P (-S |2

= 4 { [ Z ^ ! - ] 2  + t S ^ - ] M ' /2cos(o),t ^ 1,)-|K|„|cos(oVe„) (5.13)
n=on+l n=on+l

In order to explain the effects of the wave number, the input incident angle and Mach 

number on the stress intensity factor, we focused in a small region about the left side of 

crack tip.
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53.2 Crack Bifurcation

The phenomenon of crack bifurcation is one of the most intriguing features of crack 

propagation at high speed. Here, the crack, when traveling at a high velocity, suddenly, 

and for no obvious reason, divided into two branches. In glass or hard plastic, this process

occurs in crack bifurcation is undoubtedly associated with the empirical fact that a high 

speed crack tends to change its path abruptly when encountering an obstacle in the 

material. The excess energy in the vicinity where the original crack turned initiates a new 

crack. This event occurs so quickly that the crack appears to have been split in two or 

bifurcated.

Many attempts have been mode to explain the crack bifurcation phenomenon. As 

mentioned earlier, Yoffe (1951) assumed the prospective sites of crack branching to 

coincide with the maximum of the local circumferential stresses ahead of the moving 

crack.

5.3.3 The Critical Mach Number

The stress distribution along the crack surface can be derived from Eqs. 2.15a, 2.15b and 

Sih (1970). This gives:

may continue until a pattern of multiple crack divisions is obtained. The instability that

sin(<j»212) =

Km , V1-M*2 sin2 d +cos$
cos((J>2 /2) (5.14b)

where r2 = p[ 1 - M*2sin2 9 ]112, p = [(X-1 )2 + Y2]1/2, 9 = tan'1 [Y/(X-1)] and
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. ... V l-M  *2 sin2 & -cos& ,, V1-M*2 sin2 9 +cos3sin(<|»212) = ------ --: 1 : , =— , cos(<|»212) = ------ = = = = = —  (5.15)
2>/l-M*2 sin2 3  2Vl-M*2sin2 3

Note that the crack cannot run any faster than its limiting speed beyond which the crack 

will tend to bifurcate It is important to know the critical Mach number at which the crack 

may start to branch. This limit can be found by calculating the maximum circumferential 

shear stress , from

Km (V 1-M*2 sin2 S-M*2 cos3)sin9
T.. = -TxzSin a + T̂ COS 9 = —----- ;----  - ■ : - - ~ '   ~ (5.16)

\1-M *2 V'2(I-M*2 sin2 3) V 1-M*2 sin2 3-cosS 

By differentiating t,, with respect to s and setting the result equal to zero, the critical 

Mach number M is obtain = 0.6. Loeber and Sih (1970) derived the critical Mach number 

from two complex functions which were determined from the system of Fredholm 

integral equations. Although they have overcame the mathematical difficulty in the 

application of the Wiener-Hopf technique, it is still not clear and easy to solve the kemal 

in Fredholm integral equations. The present method has led to effective solutions in this 

dynamic problem.

5.4 Comparison of Normalized SIF Curves for Various Parameters

The stress intensity factor K[n is a useful parameter in studying the moving crack 

problem. Numerical results have been obtained for the dimensionless quantity of the 

stress intensity factor as a function of a, 0 and M*. In Figs. 5.2-5.4, graphs for 0 = 0, 90. 

180, deg and various values of M* are given. Fig. 5.2 shows that all the peaks are almost 

the same magnitude and their locations move into the higher frequency range as M* is
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increased. At normal incident angle 0 = 90 deg, Fig. 5.3 gives the variation of normalized 

stress intensity factor with the wave number for different values of the crack velocity. As 

M* increases, the peaks of the curves decrease in magnitude and occur at lower 

frequencies. The curve corresponding to M* = 0.8 in Fig. 5.3 is physically implausible 

since the crack cannot run any faster than its limiting speed. The curves in Fig. 5.4 

display that all peaks are almost same magnitude and their locations move into the lower 

frequency range as M* is increased. A set of parametric curves for a  = 0.5 is given in Fig. 

5.5 to illustrate the variation of the normalized stress intensity factor with the incident 

angle 0 of the input SH waves. It is noted that the peaks in Fig 5.5 are moved toward 

larger values of incident angle when M* is increased.

5.5 Summary’

An analysis of the scattering of horizontally shear waves by a finite extending uniformly 

crack subjected to anti-plane shear waves has been carried out by using the dislocation 

method. It is based on dislocation model used by in chapter 2 in wave diffraction 

problems dealing with stationary surface crack. The Chebyshev Polynomials, based on 

the stress boundary condition of the crack surface, are also presented for obtaining the 

stress intensity factor at the crack tip. It is found that the dynamic stress intensity factor of 

the singular stresses depends upon the speed of crack propagation, the frequency of the 

incoming shear waves, and the angle of incidence. As the crack speed is increased at 

normal incidence, the peaks of the dynamic stress intensity factor curves tend to decrease 

and occur at lower wave numbers. The significant result is that the dynamic stress
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intensity factors can be higher than the static ones depending upon the frequency of the 

incoming shear waves and speed of crack propagation. At high frequency, the higher- 

order terms in a„ and bn become very important in calculating the stress intensity factor. 

The choice of the M, N must be based on the wave number. Although the present paper 

deals only with the diffraction of SH waves by a running crack, the same method may be 

used to treat the scattering of plane harmonic compressional waves (P-waves) and 

vertically polarized shear waves (SV-waves).
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Figure 5.2 Stress intensity factor as a function of actual wave number 

for incident angle of 180 deg
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Figure 5.3 Stress intensity factor as a function of actual wave number 
at normal incidence
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Figure 5.4 Stress intensity factor as a function of actual wave number 
for incident angle of 0 deg
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Figure 5.5 Stress intensity factor against actual incident angle for a  = 0.5
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The dynamic dislocation models for a surface crack and finite crack have been developed 

for both the stationary and moving types. The normalized stress intensity factor serves as 

a useful parameter in studying the characteristics of a stationary crack or a moving crack 

since it can be associated with the strain energy release rate corresponding to crack 

extension force. The following are the results of this research:

1. A dislocation model based on the mirror image with respect to the free surface of a 

surface crack has been developed to determine the stress intensity factors at the crack tip 

in a semi-infinite isotropic elastic solid which is subjected to periodic cyclic loadings. 

This model represents a crack by a continuous distribution of dislocation singularities. A 

brief description of this model is given for the case of a surface crack lying in the xz 

plane with an infinite z dimension extended to the yz free surface. This paper derives the 

exact analytical solutions of the crack-tip stress intensity factor of mode III. Based on the 

dislocation concept applied to static crack problem, we represent a mirrored surface crack 

subjected to SH (horizontal polarized shear waves) with an array of screw dislocations. 

Similarly, we model the cracks subjected to P (primary waves) or SV (vertical polarized 

shear waves) with two arrays of edge dislocations: one vibrates on its glide plane and the 

other along its climbing direction. By using the conformal mapping technique and the

95
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numerical solution for edge crack subjected to anti-plane shear and inplane waves, the 

distribution densities of the dislocations as well as the phase lags are expressed as a 

system of singular integral equations, which contains Bessel functions. Galerkin method 

is applied to find out the dynamic stress intensity factor of an internal crack near a free 

surface under SH loadings. The results show the dynamic stress intensity factors (a * 0) 

will increase at low frequency when the a  increases and reach the maximum value (when 

a  = 0.9) which is about 25% more than the static stress intensity factor (a  = 0). At 

relatively high frequencies, the stress intensity factor drops rapidly beyond the first 

maximum value and exhibits oscillations of approximately constant period as a  increases. 

The values of the dynamic stress intensity factors are always bigger than the static stress 

intensity factors at low frequency and increase to maximum values when a  ~ 0.9. The 

simulation results have been compared and verified with works of Mai (1969) and Stone 

(1980). The comparison show's a qualitative agreement in the dynamic behavior.

2. By using the dislocation model for the surface crack and images for the free surface, an 

analytical solution for interaction between a screw dislocation near a mode III surface 

crack subjected to the dynamic antiplane stress has been derived. The change of the crack 

extension force as the surface crack propagation towards the dislocation is presented. 

Without the applied stress, the dislocation stress field tends to drag the surface crack to 

the dislocation where the strain energy can be relaxed. Under the periodic dynamic stress, 

the surface crack can be repelled by the dislocation depending upon the direction of the 

applied stress and wave number and the Burgers vector of the dislocation. The effects of 

the wave number, the input incident angle and the dislocation on the stress intensity
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factor are also presented. The results showed this problem can be reduced to a crack 

embedded in an infinite solid when the distance between the dislocation and the free 

surface is > 20. It is noted that the stress intensity factor increases with increasing the 

input angle 0 at low frequencies and the stable position x0 will decrease when the input 

angle 0 increases. The SIF curve for a  = 0 is in a good agreement with that given in Chu 

(1982).

3. A dislocation model for an internal crack (b < x < a ) , based on the dislocation model 

for the surface crack and the applications of previous studies on the internal crack has 

been developed. The model considers the stress intensity factor on both sides of an 

internal crack as well as the effects o f free surface. Simulation results of the model that 

free surface effect plays a very important role in crack propagation. Also, the results 

determine more precisely in what circumstances the effect of the free surface is 

negligible. The contours near the free surface for both left and right side stress intensity 

factors are almost parallel to the y-axis due to the effect of free surface. The results show 

that the stress intensity factors at crack tip which is nearest to the free surface suffer a 

sharp increase. It means an internal crack which is very close to a free surface will be 

easily extended to a surface crack. It may be expected that the effect of the free surface 

diminishes as the crack moves away from it and larger when a/b approaches unity. In fact, 

the right side stress intensity factor will also increase with decreasing b. When b 

approaches infinity, the internal crack curve will lie very close to the finite crack curve. 

The effect of interference between the input incident angle and stress intensity factors 

also presented in this research. It is noted that the stress intensity factor increases with
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increasing the input angle 0 at low frequencies. At relatively high frequencies, the stress 

intensity factor drops rapidly beyond the first maximum value and exhibits oscillations of 

approximately constant period as a  increases, values of the dynamic stress intensity 

factors are always bigger than the static stress intensity factors at low frequency.

4. An analysis of the scattering of horizontally shear waves by a finite extending 

uniformly crack subjected to anti-plane shear waves has been carried out by using the 

dislocation method. It is found that the dynamic stress intensity factor of the singular 

stresses depends upon the speed of crack propagation, the frequency of the incoming 

shear waves, and the angle of incidence. As the crack speed is increased at normal 

incidence, the peaks of the dynamic stress intensity factor curves tend to decrease and 

occur at lower wave numbers. The significant result is that the dynamic stress intensity 

factors can be higher than the static ones depending upon the frequency of the incoming 

shear waves and speed of crack propagation. Numerical results have been obtained for the 

dimensionless quantity of the stress intensity factor as a function of a, 0 and M . At 

incident angle 0 = 180 deg, the figure shows that all the peaks are almost the same 

magnitude and their locations shift into the lower frequency range as M* is increased. At 

normal incident angle 0 = 90 deg, the peaks of the curves decrease in magnitude and 

occur at lower frequencies as M* increases. A set of normalized stress intensity factor 

curves for a  = 0.5 is given to illustrate the variation of the normalized stress intensity 

factor with the incident angle 0 of the input SH waves. The results show the peaks are 

moved toward larger values of incident angle when M* is increased. The simulation 

results are in good agreement with that of Sih and Mai (1970).
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6.2 Application

Recent cases of catastrophic failure of primary structure in aircraft due in part to the 

presence of undetected cracks has emphasized the need for. fracture control procedures to 

augment traditional static and fatigue design. Such procedures, when effectively 

implemented, would insure the safe operation of the air vehicle within the prescribed 

service period. With regard to aircraft structure design, fracture control implies the 

intelligent selection, usage and control of structure materials, the design and usage of 

highly accessible, inspectable and damage tolerant structure configurations, and the 

control of safe operating stresses.

The basic elements of fracture 
control

Fracture
control

Material
selection

Inspection
procedure

Safe operation 
stresses

Structure
configuration

Damage
tolerant
design

6.2.1 Example

The following document prescribed a technical plan of implement rational fracture 

mechanics theory into design criteria, material selection, analysis, qualification and 

utilization of aircraft structure system.
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I. Criteria

(a) Chemical and thermal environment (b) Review of past experience, structural review 

(c) Establish fracture criteria for material selection (d) Mission definition and analysis

II. Data Requirements and Applications

(a) Establishment of measurable parameters K, K,. (b) Fatigue crack growth data (c) 

Effect of loading sequence (d) Effect of stress state on fracture (e) mixed mode fracture 

study.

III. Fracture analysis methodology

(a) Development of K for complex cases (b) Analytical crack model under dynamic 

loadings (c) Plasticity and free surface effects (d) Residual strength

IV. Qualification fo r  fracture resistance

(a) Real-time flaw growth testing (b) Crack growth resistance and crack arrest testing (c) 

Proof testing

V. Utilization - structural concept

(a) Concepts for flaw and crack arrest (b) Performance and weight trade off studies (c) 

Fabrication of structural concept and full scale testing (d) Inspection

6.3 Recommendations for Future Works

All the above models have been focused on a mode III crack subjected to the dynamic 

antiplane stress. Further investigation is required to determine the stress distribution of a 

mode I, II crack when it is subjected to plane harmonic compressional waves (P- waves) 

or vertically polarized shear waves ( SV-waves). As we mentioned earlier, the cracks
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subjected to P or SV waves can be simulated by two arrays of edge dislocates: one 

vibrates on its glide plane and the other along its climbing direction. When the input P or 

SV waves meet the edge dislocation, these waves are reflected due to the imhomogeneity 

of dislocation density and will generate mixed mode I and II deformation fields. In order 

to determine the stress intensity factors of a mode I or II crack, the reflected waves 

emitted from two array of edge dislocations are recommended. The analysis will be very 

useful for improving an understanding of the behavior of material failure under dynamic 

loadings.

Further, the stress along the crack is expressed as a system of singular integral 

equations containing Bessel functions and the distribution densities D(s) and the phase 

lags p(s) of the dislocations. From the Simpson integration method, we expressed the 

unknowns D(s) and p(s) in the form of the Chebyshev Polynomials. In evaluating and 

bn , we find out the values of a„ and bn would converge to zero if M, N > 5 at low 

frequency. At high frequency, the higher-order terms in \  and bn become very important 

in calculating the stress intensity factor. In order to determine the precise solutions, the 

choice of the M, N must be based on the wave number a. The relationship between a  and 

the convergency of M, N needs to be established.
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APPENDIX A

DERIVATION of EQUATIONS 2.14a and 2.14b

From Eqs. 2.13a and 2.13b

( * ) *
W -  i  V T ^ ( f ) n+ j- YoW =j=oj!(n+j)! 2 7t 2 7tj=i O'-)2 2 j

, ,  . , v ,  ( - l ) j ( - ) n+2j [v (n +j+ l)+ vO + l)]9 y 1 n-ifn-i-1)! 9 1 * 9
Yn(x) = £ ln (J )J  --------------- rr- ttt;---------------

n 2 11 7i j=o j! x 7rj=o j!(n+j)!

In Y0(x), 1+-U--—+- = vj/(j+l)+y , then Eq. 2.13b gives:
2 3 j

J a  2 [A,(s)J + A2(s)Y]ds = Ja  2 Aj(s)Jds + 2/k  j a  2 A2(s)ln(a|x-s|)J0(a|x-s|)ds +
- I  - l  - i

l l l
2 /n  ja 2 A2(s)(y-ln2)J0(a|x-s|)ds + 7t/2 jx2 A2(s)ln(a|x-s|)J2(a|x-s|)ds- l/7t ja2A2(s) ds 

- l  - l  -l

I 00 ( Y-Ĉ  2j+2 J
+n/2 fa 2 A 2(s) £ ----------—( —) 2j+2 [vO +2)+y ]ds- n i l  f a 2 A2(s)ln2J2(a|x-s|)ds -

-i j=o[0+l)!]2 2 _Jj

1/7C Ja 2 A2(s) -4- - - d s -  1/tc Ja 2 A2(s) I  - y   ------ |>(j+l)+v|/(j+3)]
a 2 |x-s|2 _j j=o j!(2+j)!

Eq. 2.13a can be manipulated in exactly the same way.
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APPENDIX B

CALCULATION of INTEGRAL TERMS in EQUATION 2.20

The problem is to change the xm and ln|x-s| into the Chebyshev Polynomial, with -1 < x < 

1, -1 < s < 1. Suppose that x = cos p and s= cosS, 0 < P, 8 < n. From Rivlin (1974), we 

have:

} U n ( s ) ( l- s 2  ) ds= -<n+l)nUn -  -n T ^ , (x)
— Q 1 2- i (x -s )

and xq= I B (iq)T ;(x ), with . 
j=o J

Biq,2k = 2 ,“»[— - — ]Q-2k L trm lmui J(q-k)!k!

Bjq) =0

k=0, 1,2,  —[ J ]  

if j*q-2k

where Tn(x) is the first kind of Chebyshev Polynomials

Thus Amn= -4/71 JU m (x )(l-x2  ) 1/2 -7tTn+) (x) dx =
0

-i
m*n

2(n+l)7i m=n

1 q n
So, [Um (x)(l-x2)1/2xqdx = £  B ; f sin(m+l)0sin0cosj0d0

-i J=o J o

q n n
-  I B (.q) [ j  cosm0cosj0d0 - J cos(m+2)0cosj0d0] 
2 J=° o 0

■- I B (q)
2 j=0

-  m = j  *  0 
2
it
0

m = j = 0 
other

71— m -j = -2 
2

0 other

1 l q
and J U m (x)(l-x2)1/2ln|x-s|xqdx = J U m (x)(l-x2)l/2ln|x-s| I B ^ T j  (x)dx 

- i  - l  J = °

q n.
= ^ B (-q) }ln|s-cosp|sinPsin(m+l)Pcosjpdp 

j=0 J 0
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and I /7 1  Jin |s-cosp|sinPsinrpdp = 
0

~ In2+ -T , (s)
2 4

1 Tr+i (s) Tr.i (s)
2 r+1 ~ r-1

r=l

r>2
let r = m +j +1

then JU m (x)(l-x2)l/2ln|x-s|xqdx = — Z B jq) wmj » ^ d  wmj is defined as following:
2 j=0-l

In2 +—T 2 ( s )
2 4

ill-1 m + j  i!l
2 m + j+2 m + j

l n 2 + —T i  ( s )
2 4 ‘

1 T m - j + 2  ( s ) i "m- j

2 m - j^ 2  m-j

0

i | n 2 - - T ,  (s) 
2 4 '

1 ”̂ j - m  ( s ) f j - m - 2

2 j-m j-m-2

m = j  =0

m + j  S 1

m - j =0

m - j > 1 

m -*-l- j =0

m - j  =-2

j - m > 3

1   i - 1
then JUm (x)(l-x2),/2siTg(s)ds= I  B(bn JUm (x)(l-x2)1/2Tb(s)Tg(s)ds

b=0 _i- I

b=0

7t̂
8

n_
4

7t_

~8

g + b = m * 0

g t  b = m = 0 +

g + b - m = 2 

o ther

8

Ig - bi = m # 0

|g - b| = m = 0

|g - bi - m = 2 

other

1 2
Substitute above equations into J [ —Jln( a  |x-s[) +f(xs)]Un (sX 1-s2)12 ds and

-l n
l
JJU n (s)( 1—s2 ) 1/2 dsdx, Bmn and C^, can be solved.
-l
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APPENDIX C 

CALCULATION of DYNAMIC SIF (EQUATION 2.26)

Knowing that |Km| = | lim [2(x-l)I/2c* |, all factors with the regular parts can be neglected
x -* l

because of the limiting progress, except—£ ----- -(------- ) 2*2J in Y. The Eq. 2.23 may be
7tj=0 j! o|x-s|

expressed by:

lim [2(x-1 ) ]1/2(-4 /k ) j — -—  [A,(s)sincot + A2(s)coscot]ds 
x-»l _i|x-s|2

, 5  fl-S2 '>1/2 5 n -s2 ) ,/2
= lim [2(x-l)]1/2(-4/*)/l, S[anUn (s) -̂ - - ■ - sincot + I b nU n (s)^— cosot]ds

x-»l n=0 |x-s|2 n=0 (X-s|-

Substituting the Eq. 2.25 into above equation, we can get the Eq. 2.26.
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APPENDIX D 

NISA COMPUTER PROGRAM

The dislocation model of a surface crack discussed in Chapter 2 has been simulated using 

a different software tool to compare the analytical results. The NISA for a "family of 

general purpose finite element program" has been used for the simulation purpose. The 

data (geometry, displacement, force) required for simulation stored in a file named 

FRACTURE.nis, so that it can be supplied to the program before running ENDURE 

analysis. In earlier work, extensive refinement around the crack tip was the only 

technique used to capture the high stress distribution. Subsequently, several special crack 

tip elements incorporating the singularities are developed. While some of these special 

elements provide accurate estimates of the stress intensity factors, they need special 

treatment and modification of standard finite elements. In this research, the methods of 

Barsoum (1976) and Henshell and Shaw (1975) are applied to develop a scheme of 

generating singularities in elastic elements by simply relocating the side nodes shown in 

Fig. D.l. All outputs from FRACTURE.nis are saved in two binary files : the basic data 

file (geometry, boundary conditions) and the post data file ( displacement, stress, 

temperature, etc.). The post results are show in Figs. D.2 to D.5. Fig. D.2 and D.3 show 

the shear stress singularity at the crack tip. The flow chart shown in Fig. D.6 indicates the 

path of ENDURE analysis. From the viewpoint of execution, Endure may be divided into 

two main parts. The first part involves input of all the necessary information such as the 

execution mode, stress file names from FEA ( FRACTURE.nis), stress locations for 

fatigue analysis, material file name, load history file names, scale factor, output filename.
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etc. This part will be referred to as "the input stage". The second part involves the actual 

fatigue damage calculations and output of results, and it will be referred to as "the 

execution stage". Furthermore, the comparison of normalized stress intensity factor is 

made between the presented dislocation model and NISA simulation program at very low 

frequency ( a  » 0 ) as shown in D.7. It show that the dislocation model is in a good 

agreement with NISA simulation. Following are the NISA input file (*.nis), NISA output 

file (*.out), NISA ENDURE input file (*. end) and NISA ENDURE output file(*.eou).
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APPENDIX D
(Continued)

D.l NISA Input File (*.nis)

ANALYSIS =DYNAMIC 
BLANK COMMON = 53410 
FILE = FRACTURE 
SAVE=26,27 
♦TITLE
3-D EDGE CRACK SUBJECTED TO PURE SHEAR LOAD 
♦ELTYPE 

I, 4, 11 
2 4 2

♦NODES
1 „„ 3.50000E+00, 8.00000E+00, 0.00000E+00, 0
2„„ 3.50000E+00, 8.00000E+00, 1.00000E+00, 0
3„„ 3.50000E+00, 8.00000E+00, 2.00000E+00, 0
4.,„ 3.50000E+00, 8.00000E+00, 3.00000E+00. 0
5.,„ 3.50000E+00, 8.00000E+00.4.00000E+00. 0

6421 ,„. 2.1OOOOE+01 1 .43000E+01, 1 .OOOOOE+O1. 0
6422..., 2.1OOOOE+01,-1.43000E+01,1.10000E+01, 0
6423..., 1.92500E+01,-1.43000E+01,9.00000E+00. 0
6424..., 1.92500E+01,-1.43000E+01,1.1 OOOOE+01. 0 

♦ELEMENTS
1, 1, 2, 1. 0
1, 2, 3, 7, 11, 10, 9, «6, 22., 23.i

26. 25, 31, 32, 33. 37, 41, 40. 39, 36,
2, 1, 2, 1, 0
3, 4, 5, 8, 13, 12, 11, 7, 23, 24

27, 26, 33, 34, 35, 38, 43, 42, 41, 37,
3, 1, 2. 1, 0
9, 10, 11, 15, 19. 18, 17, 14. 25. 26,
29, 28, 39, 40, 41, 45, 49, 48, 47, 44,
4, 1, 2, 1. 0
11, 12, 13, 16, 21, 20, 19, 15, 26, 27.
30, 29, 41, 42, 43, 46, 51, 50, 49. 45.
5. 1, 2, 1, 0
31, 32, 33, 37, 41, 40, 39, 36, 52, 53,
56, 55, 61, 62. 63, 67, 71, 70, 69, 66.
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5, 1, 2, 1, o

1486, 1, 2, 1, o
6398, 6399, 6400, 6402, 6406, 6405, 6404, 6401, 6409, 6410,
6412, 6411, 6414, 6415, 6416, 6418, 6422, 6421, 6420, 6417.
1487, 1, 2, 1, o
6383, 6403, 6404, 6407, 6306, 6305, 6288, 6384, 6386, 6411.
6317, 6293, 6391, 6419, 6420, 6423, 6322, 6321, 6296, 6392,
1488, 1, 2, 1, o
6404, 6405, 6406, 6408, 6308, 6307, 6306, 6407, 6411, 6412.
6318, 6317, 6420, 6421, 6422, 6424, 6324, 6323, 6322, 6423.

♦MATERIAL
E X , 1,0,2.06850E+05,
NUXY, 1,0,3.00000E-01, 
♦LDCASE, ID= 1 
0, 1, 1, 0, -1, 2, 0 , 0 .000, 0.000 
♦SPDISP
♦♦ SPDISP SET = 1
4616,UX , O.OOOOOE+OO,,,,,,,, 0
4616,UY , O.OOOOOE+OO,,,,,,,, 0
4616,UZ , O.OOOOOE+OO,,,,,,,, 0
4617,UX , 0.00000E+00,,,,,,,, 0
4617,UY , 0.00000E+00,.,,,,,, 0
4617,UZ , O.OOOOOE+OO,,,,,,,, 0
4618,UX , O.OOOOOE+OO,,,,,,,, 0
4618,UY , 0.00000E+00,,,,,,,, 0
4618,UZ , O.OOOOOE+OO,,,,,,., 0
4619,UX , 0.00000E+00,,,,,,,, 0
4619,UY , 0.00000E+00,,,,,,,, 0
4619,UZ , 0.00000E+00,,,,,,,, 0

6391,UY , O.OOOOOE+OO,,,,,,,, 0
6391,UZ , O.OOOOOE+OO,,,,,,,, 0
6392,UX , O.OOOOOE+OO,,,,,,,, 0
6392,UY , O.OOOOOE+OO,,,,,,,, 0
6392,UZ , 0.00000E+00,,,,,,,, 0
6413,UX , O.OOOOOE+OO,,,,,,,, 0
6413,UY , O.OOOOOE+OO,,,,,,,, 0
6413,UZ , O.OOOOOE+OO,,.,,,,, 0
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6414,UX 0.00000E+00 0
6414,UY O.OOOOOE+OO 0
6414,UZ O.OOOOOE+OO 0
6415,UX O.OOOOOE+OO 0
6415,UY 0.00000E+00 0
6415,UZ 0.00000E+00 0
6416,UX 0.00000E+00 0
6416,UY 0.00000E+00 0
6416,UZ O.OOOOOE+OO 0
6417,UX 0.00000E+00 0
6417,UY 0.00000E+00 0
6417,UZ 0.00000E+00 0
6418,UX 0.00000E+00 0
6418,UY 0.00000E+00 0
6418,UZ 0.00000E+00 0
6419,UX O.OOOOOE+OO 0
6419,UY 0.00000E+00 0
6419,UZ 0.00000E+00 0
6420,UX 0.00000E+00 0
6420,UY 0.00000E+00 0
6420,UZ 0.00000E+00 0
6421,UX 0.00000E+00 0
6421.UY 0.00000E+00 0
6421.UZ 0.00000E+00 0
6422,UX 0.00000E+00 0
6422,UY 0.00000E+00 0
6422,UZ 0.00000E+00 0
6423,UX 0.00000E+00 0
6423,UY 0.00000E+00 0
6423,UZ O.OOOOOE+OO 0
6424,UX 0.00000E+00 0
6424,UY 0.00000E+00 0
6424,UZ 0.00000E+00 0

♦PRESSURE
** PRESSURE SET = 1

117,,,4,0, 0,1.0, 0
119,„4,0, 0,1.0, 0
121,,,4,0, 0,1.0, 0
123,,,4,0, 0,1.0, 0
125,,,4,0, 0,1.0, 0
157,,,4,0, 0,1.0, 0
159,„4,0, 0,1.0, 0
161,„4,0, 0,1.0, 0
163,,,4,0, 0,1.0, 0
165,„4,0, 0,1.0, 0

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



I l l

167, ,4,0, 0,1.0,
169, ,4,0, 0,1.0,
171, ,4,0, 0,1.0,
173, ,4,0, 0,1.0,
175, ,4,0, 0,1.0,
192, ,4,0, 0,1.0,
194, ,4,0, 0,1.0,
196, ,4,0, 0,1.0,
198, ,4,0, 0,1.0,
200, ,4,0, 0,1.0,
217, ,4,0, 0,-1.0,
219, ,4,0, 0.-1.0,
221, ,4,0, 0.-1.0,
223, ,4,0, 0,-1.0,
225, ,4,0, 0,-1.0,
257, ,4,0, 0,-1.0,
259, ,4,0, 0.-1.0,
261, ,4,0, 0,-1.0,
263, ,4,0, 0,-1.0,
265, ,4,0, 0,-1.0,
267, ,4,0. 0,-1.0,
269, ,4,0, 0.-1.0,
271, ,4,0, 0,-1.0,
273, ,4,0, 0.-1.0,
275, ,4,0, o,-i.o,
292, ,4,0, 0.-1.0,
294, ,4,0. 0.-1.0,
296, ,4,0, 0,-1.0,

♦ENDDATA

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
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APPENDIX D
(Continued)

D.2 NISA Output File (*.out)

*** EMRC NISA *** -  Version 94.0 (12/31/94-80387/32MEG) LOAD CASE ID 
NO. 1 OCT/28/1996 16:48:0

-D EDGE CRACK SUBJECTED TO PURE SHEAR LOAD

***** REACTION FORCES AND MOMENTS AT NODES
* * * * *

LOAD CASE ID NO. 1 

NODE FX FY FZ MX MY MZ

4617 1.54638E-03
O.OOOOOE+OO

4618 -5.62040E-02 -1.19051E-03 
O.OOOOOE+OO O.OOOOOE+OO

4619 8.05290E-02 1.21170E-02
O.OOOOOE+OO O.OOOOOE+OO

4620 -1.53954E-02 -3.04430E-02 
O.OOOOOE+OO O.OOOOOE+OO

4621 8.8441 IE-02 3.10142E-02
O.OOOOOE+OO O.OOOOOE+OO

4622 1.20667E-01 2.58774E-02
0.00000E+00 O.OOOOOE+OO

4623 4.95167E-02 9.75979E-02
0.00000E+00 0.00000E+00

4624 -2.09988E-02 -3.91542E-02 
O.OOOOOE+OO O.OOOOOE+OO

4625 1.26482E-01 4.61431E-01
O.OOOOOE+OO O.OOOOOE+OO

4626 -3.85915E-02 -1.56870E-03 
O.OOOOOE+OO O.OOOOOE+OO

4627 6.34548E-02 1.70969E-01
0.00000E+00 0.00000E+00

4628 -9.87622E-03 -4.87547E-02 
O.OOOOOE+OO 0.00000E+00

4629 3.69809E-02 3.87678E-01
O.OOOOOE+OO O.OOOOOE+OO

O.OOOOOE+OO

5.4346 IE-01 0.00000E+00

-1.28641E-01 0.00000E+00

8.16139E-01 0.00000E+00

-1.17558E-01 0.00000E+00

-1.61549E-01 0.00000E+00

-2.16326E-01 0.00000E+00

8.18694E-01 0.00000E+00

-1.63472E-01 0.00000E+00

9.13787E-01 O.OOOOOE+OO

-2.27923E-01 0.00000E+00

1.43158E-01 0.00000E+00

-1.64338E-01 O.OOOOOE+OO

3.22244E-03 -9.84554E-01 0.00000E+00
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4632 -2.26602E-02 -2.54808E-02 1.03231E-01 O.OOOOOE+OO O.OOOOOE+OO
O.OOOOOE+OO

4633 2.90923E-03 2.24988E-02 -1.01270E-01 O.OOOOOE+OO
O.OOOOOE+OO O.OOOOOE+OO

4634 -1.93575E-02 -9.79027E-02 5.20309E-01 O.OOOOOE+OO
O.OOOOOE+OO O.OOOOOE+OO

4635 5.02326E-03 7.30489E-02 -1.53369E-01 O.OOOOOE+OO
O.OOOOOE+OO O.OOOOOE+OO

4636 -7.76024E-03 -3.37274E-02 8.24684E-01 O.OOOOOE+OO
O.OOOOOE+OO

****** DISPLACEMENT SOLUTION ******

LOAD CASE ID NO. 1 

NODE UX UY UZ ROTX ROTY ROTZ

1 -2.31846E-07 -8.2661 IE-08 
O.OOOOOE+OO

3.15523E-06 0.00000E+00 O.OOOOOE+OO

2 -I.80581E-08 -5.25978E-08 
O.OOOOOE+OO

3.16287E-06 O.OOOOOE+OO O.OOOOOE+OO

3 -1.36021E-08 -3.48556E-08 
O.OOOOOE+OO

3.16296E-06 O.OOOOOE+OO O.OOOOOE+OO

4 -9.52678E-08 -2.57397E-08 
0.00000E+00

3.16623E-06 0.00000E+00 O.OOOOOE+OO

5 -5.63139E-08 -2.093 74E-08 
0.00000E+00

3.17547E-06 0.00000E+00 O.OOOOOE+OO

6 -2.68403E-08 -1.34512E-08
0.00000E+00

4.20086E-06 O.OOOOOE+OO O.OOOOOE+OO

7 -1.56217E-07 -6.33820E-08 
0.00000E+00

4.23048E-06 0.00000E+00 O.OOOOOE+OO

8 -6.20340E-07 -3.9405 IE-07 
0.00000E+00

4.26488E-06 0.00000E+00 O.OOOOOE+OO

9 -2.94894E-08 -1.91580E-07 
O.OOOOOE+OO

5.37647E-06 O.OOOOOE+OO O.OOOOOE+OO

10 -2.29109E-07 -1.31073E-07 
O.OOOOOE+OO

5.40224E-06 0.00000E+00 O.OOOOOE+OO

11 -1.69796E-07 -9.34940E-07 
O.OOOOOE+OO

5.41625E-06 0.00000E+00 O.OOOOOE+OO

12 -1.14921E-08 -7.22868E-07 
O.OOOOOE+OO

5.43493E-06 0.00000E+00 O.OOOOOE+OO
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13 -6.23180E-07 
O.OOOOOE+OO

14 -3.07018E-07 
O.OOOOOE+OO

15 -1.7421 IE-07 
O.OOOOOE+OO

16 -5.65130E-07 
O.OOOOOE+OO

17 -3.10762E-07 
O.OOOOOE+OO

18 -2.40109E-07 
O.OOOOOE+OO

19 -1.71578E-07 
O.OOOOOE+OO

20 -1.06685E-07 
O.OOOOOE+OO

21 -4.52528E-07 
O.OOOOOE+OO

22 -2.43409E-08 
O.OOOOOE+OO

23 -1.42174E-07 
O.OOOOOE+OO

24 -5.94180E-07 
O.OOOOOE+OO

25 -3.15620E-07 
O.OOOOOE+OO

26 -1.80717E-08 
O.OOOOOE+OO

27 -6.60024E-07 
O.OOOOOE+OO

28 -3.37372E-07 
O.OOOOOE+OO

29 -1.84871E-07 
O.OOOOOE+OO

30 -4.70306E-07 
O.OOOOOE+OO

31 -2.53716E-07 
O.OOOOOE+OO

32 -1.96314E-07 
O.OOOOOE+OO

33 -1.47573E-07 
O.OOOOOE+OO

34 -1.03736E-07 
O.OOOOOE+OO

-6.02289E-07

-2.36028E-07

-1.09618E-08

-7.70058E-07

-2.09571 E-07

-1.23115E-07

-8.5101 IE-07

-7.44983E-07

-7.90113E-07

-6.93721E-07

-2.88783E-07

-1.94250E-07

-1.81132E-07

-9.06909E-07

-6.17307E-07

-2.06290E-07

-8.82094E-07

-8.52321E-07

-5.35596E-07

-3.25029E-07

-2.15601 E-07

-1.76175E-07

5.46461 E-06

6.60221 E-06

6.63611 E-06

6.69138E-06

7.83373E-06

7.83592E-06

7.82520E-06

7.81984E-06

7.83218E-06

3.31795E-06

3.34731 E-06

3.38588E-06

5.71360E-06

5.78398E-06

5.87596E-06

8.39627E-06

8.40840E-06

8.46156E-06

3.45721 E-06

3.48753E-06

3.50763E-06

3.53460E-06

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO
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O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO

O.OOOOOE+OO
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35 -6.23613E-07 -1.69262E-07 3.57435E-06 O.OOOOOE+OO O.OOOOOE+OO
O.OOOOOE+OO

36 -2.99824E-07 -1.05775E-07 4.65440E-06 O.OOOOOE+OO

**** AVERAGE NODAL STRESSES - LOAD CASE ID NO. 1 ****

NODE SX SY SZ SXY SYZ SZX

1 3.61064E-04 -4.44459E-04 -1.40080E-04 4.27124E-02 -1.86503E-
03 -9.63685E-04

2 3.02158E-04 -2.81793E-04 1.41111E-03 3.12476E-02 -1.37477E-
02 -6.81472E-03

3 2.33987E-04 -1.67147E-04 1.65321E-03 2.33759E-02 -2.54405E-
02 -1.23645E-02

4 1.80555E-04 -6.82697E-04 4.66175E-03 1.76638E-02 -3.09432E-
02 -1.41091E-02

5 1.21286E-04 5.41158E-04 6.82684E-03 1.32437E-02 -3.72387E-
02 -1.64839E-02

6 2.28258E-04 -4.61731E-04 -1.94391E-03 5.41859E-02 -2.07813E-
03 -6.22596E-04

7 1.66035E-04 -1.35444E-04 2.35230E-03 2.90749E-02 -3.47010E-
02 -1.19844E-02

8 8.57967E-04 6.09425E-04 1.06766E-02 1.54915E-02 -5.17352E-
02 -1.62986E-02

9 1.00543E-04 -3.88123E-04 -2.08247E-03 6.89730E-02 -4.35058E-
03 -1.0851 IE-03

10 1.21695E-04 -1.89226E-04 2.08800E-03 4.91806E-02 -
2.54475E-02 -6.453 80E-03
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APPENDIX D
(Continued)

D3 NISA Endure Input File (*.end)

************* Start EXECUTIVE cards ************** 
* *

PROBLEM=FRACTURE
FILE=FRACTURE.eou
APPROACH=SIFS,7
FEATYPE=NISA2,STATIC,LINEAR
UNIT=MM
♦TITLE
papertest
**
*********** Start MATERIAL data group ************ 
**
♦MATERIAL,steel
E,206850.0
POE,0.3
SY,324.0
AKC, 121.0 
**
*********** Start STRSDATA data group ************ 
**
* STRSDATA
1,fracture26.dat,fracture27.dat, 1
♦  *

*********** Start FMODEL data group ************
**
♦FMODEL, 1
FULL,QNODE,SOLID 
**
*** start FRCRACK data ****
**
♦FRCRACK, ID=1 
♦ANGLEA 
0.0,90,90 
*ANGLEB
90,90,0.0 
*NTIP,1786 
*JCFRONT 
1801,0
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APPENDIX D
(Continued)

D.4 NISA Endure Output File (*.eou)

NUMBER OF LOAD STEPS. = 1

COMPUTING FRACTURE PARAMETERS FOR STEP NO = 1 

CRACK SLIDING, OPENING AND TEARING DISPLACEMENTS:

0.7S32E-11 0.8527E-12 0.1149E-04

TITLE FOR THE PROBLEM: THE STRESS INTENSITY FACTOR OF A MODE
III

SURFACE CRACK FOR L=3.5

FILES USED IN THIS RUN ARE :
INPUT DATA FILE (FINPUT).... = FRACTURE.NIS
OUTPUT FILE (FOUT) = FRACTURE.EOU
MATERIAL FILE (FMAT) =

Names of FILE26 and FILE27 :
FILE26..........= FRACTURE26.DAT
FILE27..........= FRACTURE27.DAT

LOAD CASE NUMBER = 1

LAYER NUMBER.............= 1

VALUE OF THE MODEL SYMMETRIC CONTROL-VARIABLE : ISYM= 1
1, FULL MODEL USED
2, ONE HALF SYMMETRIC MODEL USED

VALUE OF THE MID-NODE/QUARTER-NODE CONTROL VARIABLE : INQM 
= 1

1, QUARTER-POINT NODE MODEL USED
2, MID-POINT NODE MODEL USED

THE DIMENSION OF THE ANALYSIS : NDIM = 3
1, AXISYMMETRIC
2, 2-D PLANE STRESS OR PLANE STRAIN
3, 3-D GENERAL SOLID
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VALUE OF NT AN = 7 ; MEANING AS FOLLOWS :
1...Mode I analysis only
2...Mode II analysis only
3...Mode III analysis only
4...Mixed Modes I and II
5...Mixed Modes I and III
6...Mixed Modes II and III
7...Mixed Modes I, II, and III

OTHER CONTROL VARIABLES ARE...:
NSTR = 2
NLOCS = 1

VALUE OF NCAL = 1 ; MEANING :
1.... SIFSONLY
2.... J-INTEGRALS ONLY
3.... SIFS AND J-INTEGRALS

MATERIAL PROPERTIES 
*******************

YOUNGS MODULUS...............E = 0.20685E+06
POISSONS RATIO ANU = 0.30000
YIELD STRENGTH.............. SY = 0.32400E+03
FRACTURE TOUGHNESS AKC = 121.00000

ELEMENT OR NODAL DATA FOR LOCATION NO.= 1

ANGLES OF LOCAL xl AXIS WRT GLOBAL AXES...: 
0.00000E+00 0.15708E+01 0.15708E+01

ANGLES OF LOCAL x3 AXIS WRT GLOBAL AXES...: 
0.15708E+01 0.15708E+01 O.OOOOOE+OO

THE FOLLOWING INFORMATION IS FOR CTOD CALCULATION : 

CRACK TIP NODE NUMBER USED IN CTOD CALCULATION : 1786 

NODE NUMBERS OF LOWER CRACK FACE : 1782 1833 1780 1835 1781 

NODE NUMBERS OF UPPER CRACK FACE : 931 1799 929 1803 930 

ETA value in CTOD calculations : -0.10000E+01
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THE FOLLOWING INFORMATION IS FOR EDI CALCULATION :

CRACK TIP NODE NUMBER FOR EDI CALCULATION : 1786

NO. OF ELEMENTS ARROUND THE CRACK FOR LOCATION 1 =

ELEMENT NUMBERS INVOLVING EDI CALCULATIONS :
304 309 314 319 324 329 334 339

NO. OF QUARTER-POINT NODES ON EDI CALCULATION = 9

QUARTER-POINT NODE NUMBERS ON EDI CALCULATION :
1800 1799 1815 1814 1822 1833 1832 1840 1846

NO. OF ELEMENTS USED FOR AREA CALCULATION : 1

ELEMENT NUMBERS FOR AREA CALCULATION : 304

CRACK FRONT NODES FOR AREA CALCULATION : 1786 
CRACK FRONT NODES FOR AREA CALCULATION : 1801 
CRACK FRONT NODES FOR AREA CALCULATION : 1802

UNITS OF QUANTITIES................ : MM

**** OUTPUT FOR LOCATION NO. = 1 , STEP NO. = 1 ****

STRESS INTENSITY FACTORS:
FROM DISPLACEMENT-BASED CTOD CALCULATIONS

0.IS426E-06 0.13628E-07 0.18114E+01

J-INTEGRAL VALUES:
FROM DISPLACEMENT-BASED CTOD CALCULATIONS

0.30793E-10 -0.23026E-11 0.20622E-04
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Figure D.l Modeling a crack tip
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APPENDIX E 

MATHCAD PROGRAM

The analytical model discussed in Chapter 2 and 5 have been solved with the help of 

MathCad. As discussed in the Appendix A, B, and C, the integral equations and data 

required for simulation are stored in *.mcd file. Following are the MathCad functions and 

data file.

E.l MATHCAD Program for a Finite Crack

The stress intensity factors of a crack located in an elastic infinite isotropic soli 
to harmonic shear waves

n 0 5 0 7t
L 1

2

0 0 0 0

0 4-tt-L2 0 0 0

0 0 6-ti-L2 0 0

0 0 0 8-jt-L2 0

0 0 0 0 10-jt L2

0 0 0 0 0 12-

00 o o 0 B 02 0 B 04 0
0 B „ 0 B 13 0 B,s

= B 20 0 b 22 0 B 24 0
0 B 31 0 B 33 0 B 35

B 40 0 B 42 0 B 44 0
0 Bs. 0 B 53 0 B 5 5 .

B 00 =  -1.481492-a2-L4 -  .0587399 a -Lj + ,0119351-a -L8 -  5i>20M0'4 a 8 L10 + 23205-10'5-oc10 L12

- 9675027-q2-L4 + .1341-o4-L<- 9.1149-10‘V -L 8 + 3.8671-10*4-ot8-L10-  1.1232-10'5-o1°-L12

^  21n(aL) ^
+  '-007C

126

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



127

B20 =  .7853982-a -L 4 + .0197076-a -L 4 + ,010776-a-L8 -  4.1084-10'4 Oc8 L10+ 1.448810'5 a 10-L12 

+ .06705-a-L4-  8J034-10'3-o<-L8 + 4.640510'4-Oi8-L10-  1.6074 10*5-otIO-LU+ 2jn(aL) ^
71

B40 = -4.0906*10'3 O{+-Ltf + 13585-10'3-oc<-L8 -  1.174B-10‘4-Ot8-L10 + 5.4453-10"<-O(10-L12 

-9.1149-10'V-L8 + 1.1048-10*4-ocV 0-  5.741-10'4-Oc1°-L12+ 21n(aL)
71

B ,, = • 1.8325958 a -L4 + .1242094-OiV -  .0117654-a'-L8 + 7.4239 10'4 a8-L10 -  2.6978- 10'3-o!10-L12

- .1341-a V  + .145839-Ot4-L8 -  7.7292-10'V-L10 + 2_5689-10'3-oc1°-L12+ 21n(aL) C,,
71

B31 = 3.646- lO'V-L8- 3J356-10'4-Ot8-L10 + 1.6068-iO'V°-L12+ ^ i )  C3I
71

+ 5235988-Oc2 L4 + .0253618-Ô-L* -  3_5932-10'3-ot4-L8 + 8309-10’3-oc8-L10 -  7.7505 10’<-O(10-L1J 

B?1 = -1.6363-lO'V-L4- 1.7291-10"3-Oc6-L8 + 2.9047-10'V -L 10 - 2.9449-10'4- o /V 2

.33412-10*3-ft-L10 + 3.0715-10'4-o10-LU+ 2! ! l^ C s 1
7C

B02 = .06705-Cx -LS -  8.2034-10'3-a4-L8 + 4.6405-10'4-a L10 -  1.6074-10'3-ocl°-L12+ 2-ln-(g 9  C20
71

+392699-oc2-L4 + 33451-10’3 Ct4-L4 + 93506 10"3 a -L8-  7.4002-10‘4-oc8 L10 + 3.1957-10'5 Ot10 L12 

B22 = -5817478-a-L4 - .0404972• a4 - L4 + 6-2847-10"3 - Ot4 • L8 -  4.5629■ 10’4 - a8 - L10 + 1.9495-10’3 - a10 - L12

- 5.4689-10' 3-of l? + 4.972-10'4- oc8-L10 -  2.1701 • 10'3-al0L12 

B42 = 32868-10'3-a -L10 - 6.6975-10'4-a10-LU+ 21n(aL) C42
71

+392699 a-L* + .0323159-a -L4 - 23744-10'4a4-L8 -  8.4898• 10'3 • a8 L10 + 8.342 10‘4 ot10 L12
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B 13 = -2617994-a2-L4 + .0212712-a V -  3.8489-10'3-a4-L8 + 2.9795 10'4-a8-L10-  1J767-10'3-o“ -LB

+3.646-10*3-a4-L8 -  35356-10'4-a-L10 + 1.6068 10'5-a1°-Ll2+ 21l?(lxL> C l3
n

B33 = -1.1048-10*4-a8-L10 + 8J732-10'<-O!l0-L12+ 2|n(aL)
7 t

-,6806784-Ot2-L4-  ,0114537-Oi4 l ‘ -  1.7532-10‘V - L 8 + 7.4518-10'V-L10-  1.8524-10'V ’-L12 

B53= 3141592 a2-L4 + 35062-10'3-Ot4-L< + 8.1934-10'4-Ot4-L8 -  4.7929- lO 'V -L 10 + 25555-10'7-a10-L12 

+1.0802-10*‘-ot°-Lu+ 2}n(aL) c
71

B04 = -9.1149-10‘4-Of<-L8 + 1.1048-10'4-O!8 L10- 5.741-10* It

+.0224985-a-L6 + 4.7644- 10*4-cc‘-L8 -  1.6884 10_+-oc®L10 -  8.1124-10*4-Oe10-L12 

B24= .1963496- a-L4 + 6.1359 10'3- a-L6 + 75332-10'4- ot4-L8 -  1.0109-10"4 Ot®-L10 + 6.7978-10'*-a10 L12

+ 33868-10'3- a V ° -  6.6975-10'<-Oi10-Ll2+ ^ ^ t l c 24
71

B44 = -13395-10'<-a10-LI2+ 2!n(aL>
71

+3141592-a-L4 + 35062-10'3-o4-L‘ + 8.1934 10'4-a*-L8 -  4.7929-10'V-L10 + 25555-10'7 a10 L12 

B 1S = •8.181-10*4-a4-L<-  13879-10'V-L8 + 1.0663-10'3-a8-L10-  2.8634-10'8-oc10-L12 

- 33412-10'3 a8-L10 + 3.0715-10*4- a10-L12+ 21n(aL) c ^
71

B35 = 1.0802-10'<-a10-L12+ 21rj(_aL) c 35
It

+ .1570796-a2 L4 + 2.6681-lO'V-L4 + 9.135-10'3-a4-L8 + 6.4375-10'14-a-L10 -  1.7028-10'8-a10-L12
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- .426359-a2 L4 -  2.6297-10'3-Ot4-L< + 4.l019-10'4- a V  -  72087-10'3-ot8-L10 + 4.3102- l O ' W

C o o 0 C 0 2 0 C 04 0

0 C ,1 0 C I3 0 C 15

C 2 0 0 C 22 0 C 24 0

0 C 3 I 0 C 3 3 0 C 3 5

C 4 0 0 C 4 2 0 C 4 4 0

0 C 51 0 C 53 0 C 5 5 .

C00 = .1542126-tt-L 4 + 8.0319 10‘3 Oe6L8 -  2.9283-10'4-Ot8-L10 + 7.6868-10* W 2 

C20 = - .0771063-0(4-L4 + 72287-10'V-L8-  3_514-10'4-ft8-L10 + 1.0981-10'V°L12 

C40 = 3.0319-10"4-Oe4-L8 -  8.3666-10‘3-Ot8-L10 + 3.9219-10'4-Ct1O-L12 

C,, = .1542126-ot4-L<-  .012851 a -L8 +5.8526-10'4 a -L10 -  1.755-10'5-Of10 L12'“ i i

= -  32128- 1 0 'V -L 8 + 2.6773- 10'4-C cV °- 1.0977-10'W 2'-si

C5, = 2.53-10'5-Oc8 L10-  2.0984-10'4 a 10-L12

CQ1 = -.0771063 ot4-L< + 72287-10'3 O!4L8-  3_514-10'4 Ot8-Ll0 + 1.0981 10_5-oe10L12

C „ = 4.8191-10-3 oe* L8 -  3.765-10"4 Ot®-L10 + 1.4S24-10*5 Oel° L12 '-22

C42 = - 6.275-10* V - L 10 + 4.5755-10'V ° - L 12

C 13 = - 3.2128-10'3-Ct4-L8 + 2.6773-lO'4-a-L10 -  1.0977-10'5-a1O-L12

c , ,  =  3.3666- 10'3-ot8-L10 -  5.8566-10'V ^ L 12^33

C „ = -7 3793-lO -̂Ot -̂L12 '-ss

r ft, =  3.0319-1 0 'V -L 8-  8.3666-10'5 0 -L10 + 3.921910'4 Oc10 L12
'- (M
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C24 = -6.275 10‘3 Ot8 L10 + 4_5755-10'<ot1°-L12 

C44 = ?.1509.10-7 o1°L 13 

C,5 = 2J310'V -L 10-  2.0984 10'<Ot10L12 

C35 = • 73793-l O ' W

c 55 = o
'  0 ■

moon = _
*130o

.^50 .

=<7- ot-L3-sin( 9) ■ cos( §)*

[• .785398 + ,0654498-(L- a)2 cos( 0)2 -  2.042 10'3 (L- Cc)4 co<0)4 + 3.4127 10‘5<L-a) ‘ cos( 0)#] 

n3o =^-*L3-«<9)-coaCfl)

[,0327249 (L oc)2 cos(ff)2 -  1.6362- 10'3 (L- Ot)4-co<6)* + 3.4127- 10'5-(L-Oc)6 cos( ff)#] 

njo= OOt-L3-sin(ff)cos(ff)*[4.1233-10'4 CLOf)4 co<8)4 + 1.4492-lO‘3<L-cc)<-cos(0)*]

v00
0

v 40 
0 _

Voo= a-Ot2 L4-sin(0)cos(0)2*

[.1963495- ,0081812-(L ot)2 cos(ff)2+ 1.7044 10‘4<L-ot)4-cos(fl)4-  2.1305-10‘4-(L q ) < c o s ( 6 ) #]
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2 4 2v 2o= o a -L sin(ty-cos(0) *

[.1963495 -  ,0122718<L-ft)2-co<?)2 + 3.068-10*4<L O()4 c o < 9)4 -  4^611 10'‘-(L o t)co<  ff)

2 4 2Vw= aa  L sin(ff)cos($ *

[-4.0906 10'3 (Lot)2 co< ^ 2 + 1.7044 10'4-(L-C()4 co<5)4-3.0436 10'<CLO!)<co<9)‘]

E A -B (a ) F E-C -E- C

\(0 ,a ) ri(0,a) a C ‘-v(0,a) - C ‘-E b

5.665 0 0.066 0 5.72? 10 4 0

0 12.271 0 0.042 0 2.15410

0.129 0 18.691 0 0.032 0
A B (a) =

0 0.084 0 25.024 0 0.025

1.048*10 4 0 0.064 0 31.332 0

0 4.89810 5 0 0.05 0 37.631

_D________
0.019

_Q_______
0.276

0 0

1.60210 4 0.002

0 0

3.59610 7 4.78810 6
00

2  V C  ' »
?i :aan

E  b-<" "
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2 ' 5
.5

K, =* £ a , - ( n - l )  -

n = 0  n = 0

Kj r K.,- cos co-t -  ^

£  V ( n - I H - I ) ”
_ n = 0
Qj ' a t a n -----------------------------------

£  b„-(n -  1) ( 1)"

n = 0

K2 4’ S  V ( n - I ) (  1)n ‘ 2  bn {n 1) ( 1)n
n = 0 n = 0

K4 Kj • cos co-t

Kj = 1.084 The right side stress intensity factor

K_, = l .084 The left side stress intensity factors

K3 =0.728

K. = 0.7284
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APPENDIX E
(Continued)

E.2 MATHCAD Program for a Moving Crack

The stress intensity factors of a moving crack subjected to harmonic shear wa

3-1t 2 0 5M =0.6 n -0..5 0 ^ -  P - 1 - M L - 1 A .
10

e - 1 -  M-cos(0) <t> =acos ——C-S- -  ̂ X (cos(«j)) M)- e--—
e P*

2-n-L2 0 0 0 0 0

0 4-Jt-L2 0 0 0 0

0 0 6-n-L2 0 0 0
A

0 0 0 8-JtL2 0 0

0 0 0 0 10-tc-L2 0

0 0 0 0 0 12-Tt-L2

Boo 0 B02 0 Bq4
0 B,, 0 B ,3 0

q  _  Bjo 0 Bji 0 B24

0 B3i 0 b 33 0
B40 0 B42 0  b 44
0 B51 0 B53 0

B00 = -1.481492-a -L4 -  .0587399-a -L4 + .0119351 a-L8 -  55201-10'4-Ot8 L10 + 2.3205-10* V ° -L 12

-■9675027-a-L4 + .1341ft-t‘ -  9.1149-10*V-t8 + 3.8671 -lO^ft-L10 -  1.1252-10'5-Ot10-L12

^ 2ln(aL) n+ —-— ^00 
7t

B20 = .7853982 Ot2-L4 + .0197076-C(4-l‘ + .010776-o‘ L8 -  4.1084-10*4 Ot8-L10+ 1.4488-10*3 ot10 L12

+  .06705-O(4-L6-8 2 0 3 4 -1 0 '2-a-L 8 + 4.6405-10*4 a8 -L10-  1.6074-10*5 O(10-L12+ “* n ^ k l c ,0

133

0
B15 
0

B 35

0
B55
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B40 = •4.090610'3-tt L< +13585-10"3 0e‘-L8-  1.1743-10'4-a-L10 + 5.4453-10"V °-LU 

-9.1149-10'* a -L* + 1.1048-10'4-a8-L10 -  5.741-10'W - t -  2jn(aL)
It

B ,, = - 1-8325958-oc2 L4 + .1242094-a4-L*-  ,0117654 ot< L8 + 7.4239-lO 'V-L10 -  2.6978- 10"5-Ot10 LU

- .1341 -a-L* + .145839-a‘-L8 -  7.7292- 10'4-a8-L10 + 25689-10*5 a1°-L12+ .2ln(.a_L2 C,,
7t

B,. = 3.646-10'3-a -L8 -  3J356-10'4-a -L10 +1.6068-10'5 a10 L12+ ÎnCctL) c
jr

+ 5235988-a2-L4 + .0253618-a4-L4 -  35932- 10'3V-L8 + 8.309-10'5-a V 0 - 7.7505-10'‘-a^-L12 

B5] = -1-6363-10'3-a L*-  l.?29110'3-a4-L8 + 2.9047 10‘5-a8 L10 -  2.9449-lO',i a10 L12

-33412 1O'5-a8-Llo + 3.0715-10*<-a10-Lu+ l! n ^ 2 c 5,
7t

B0, = 06705■ a4• L6 -  8.2034-1O'3 - a‘ -L8 + 4.6405• 1 O'4 • a8• L10 -  1.6074-10'i -a1° L12+ 2ln(aL) c
71

+392699 a2-L4 + 33451-l0'3-a4-L< + 93506-10*3 a*-L8 -  7.4002- 10'4-aV ° + 3.1957-10'5-a1 V 2 

B22 = - .9817478-a2-L4 -  .0404972-a4-L6 + 6.2847-I0'3 ot‘-L8 -  4.5629-10'4-a8-L10 + 19495-10'5-al° L12

- 5.4689-10'3- a‘-L8 + 4972-10'4- a8-L10 -  2.1701 10'5 a10-L12 

B42 = 33868-10'5-a8-L10 -  6.6975-10'6-aIO-L12+ 2j n_(?k2 C42
71

+392699-0?-L4 + .0323159 a4-L4 -  23744- 10'4-a4-L8 -  8.4898-1O''5-a8-L10 + 8 3 4 2 - 1 0 'W 2 

B i3 = 2617994-a2-L4+ 02127l2-a4-Ll>-  3.8489-10'3-a<-L8 + 29795-l0'4-a8-L10-  15767 10'5 a10 L12 

+3.646-10'3-a<-L8 -  35356-10'4-a8-L10 + 1.6068-10'3-a10-Ll2+ ^ C a U  C[3
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B33 = • 1.1048- lO 'V-L10 + 8.573210~<-a10-Ll2+ 2ll}fe-k> c 33
7 t

..6806784-a -L4-  .0114537-a4-L4-  1.7532-10*V-L8 + 7.4518-10'V -L 10-  1.8524-10'V 0-LU 

B 53=  3141592-Oc2-L4 + 3.5062-10'V -L 4 + 8.1934-10*4-a -L8 - 4.7929- 10'5-Ot® L10 + 2-5555-10* V °-L 12

+1.0802-10'V °-L 12+ 21n(aL)
It

Bm = .9.1149-10'4-Ot4-L8+ 1.1048-10'4-OC8-L10-  5.741-10*<-Ot10 L12+ 2! l ! ^ C O4
71

+.0224985-a V  + 4.7644- 10'V-L8 -  1.6884-10'V-L10 - 8.1124-10'V °-L12 

B24= .1963496-a2-L4 + 6.1359-10'V -L 4 + 7.5332-10'V-L8 - 1.0109-10'4-aV ° + 6.7978-10'V ’-L12 

+ 33868- 10'V-L10 -  6.6975-10* W 2+ 21n(aL) c
7T

B44 = -13395-10'4 ot10 L12+2ln(aL) c
71

+3141592 a -L4 + 3.5062- 10'V-L6 + 8.1934-10'V l8 - 4.7929-10'V-L10 + 2.5555-10'7 a1 V 2 

B,5 = -8.181 10"4-a4-L4 -  13879 10'V-L8 + 1.0663-10'V -L 10 - 2.8634-l O 'W 2 

• 3.3412 10'V-L10+ 3.0715-10'V °-L 12+ 21n(aL) q
71

B35 = 1.0802-10' V °-L12+ 21n(aL) c 35
71

+ .1570796-a2-L4 + 2.6681-10'V -L 4 + 9.135-10'V -L 8 + 6.4375-10"V -L 10 -  1 .7028-10 'W 2

d   21n(aL) p
“ 5 5 ---- - - - - - - - - - - - - - ' - '5 5

71

..426359-a2-L4- 2.6297-10'V -L 4+ 4.1019-10'V-L8- 7.2087-10'V -L 10 + 43102 10'W 2
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^ 0 0 0 C 02 0 C 04 0

0 C „ 0 C ,3 0 C)5
C 20 0 C 22 0 C 24 0

0 C 3I 0 C 3 3 0 C 35
C 40 0 C 42 0 C 44 0

0 C 51 0 C 53 0 C 55.

Coo = •1^2126 *4 L‘ + 8 031910'3.ot, L8-  25283 10*4 a •LIO + 7.6868 10*< oc1° L12

C20 = •.0771063 o L < + 7228710*3 ot<L8-  3J1410*4 o L 10 + 1.098110'5 oel0LU

C40 = 30319- 10'V -L 8-  83666 10' 3-a-L10 + 35219-10“W

C n = .1542126-C c V -  .012851 V-L8 + 5.8526- 1 0 ‘4 -Ot8 -L10-  1.755- 1 0 ‘V ° - L 1 2

C31 = -3J2128 10‘3 ot* L8 + 2.6773 10"4 Oc® L10 -  1.0977 l O 'W 2

C51 = 2_53-10'5-Oc® L10 -  2.0984-10_< « l° L12

C02 = -.0771063-OtV + 7.2287-1 0 'V -L 8-  3.514-I0'4-Oc8-L10 + 1.0981 -1 0 ' 5 -O(1 0 -L1 2

C22 = 4.819110"3-Ot6-L8-  3.765- 1 0 'V - L 1O+ 1.4824-10’3 Of1 0 LU

C42 = - 6375-10'3- OtV0 + 4.5755-10' C<10-L12

C 13 = • 33128-10'V -L 8 + 2.6773-10'V -L 10- 1.0977 lO -̂oĉ -L12

C33 = 33666- 10‘V -L 10 -  5.8566-10'‘-O cV

C53 = • 73793- l O 'W 2

Cw = 3.0319-lO'4 ^ ^ 8 -  83666-10'3-Ot8-L10 + 33219-10'6-Of10-L12 

C24 = •6375 10'V -L10 + 4J755-10'‘V ’-L12 

= 5.1509-l O ' W 2
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C 15 =  2_53-10'5 tt-L 10 -  2.0984 10'< Ot1°-LU

C35 = -73793- l O ' W

C55 = 0

nio
o
3̂0
0
5̂0

n ]o = a-\-L3-sin(£) • | - .785398 + .0654498 (L-K)2 -  2.042- 10'3 (L-\)4 + 3.4127- 10‘5 (L- K)6 \ 

r)3o = <7-U.3-sin(£)-| ,0327249-(L-\)2-  1.6362-10'3-(L \ ) 4 + 3.4127-10'-5-(L-\)< |

nso= a-\-La-sinC$ •  14.1233 10'4-(L \ ) ’ +1.4492 10*J-(L X)r> -S

V =

V00
0

v20
0

v 40
0

a X2-L4 • sinC <p) ■ L5707963 + 1963495 _ .0081812 (L \ ) 2 + 1.7044 10'4 (L \ ) 4-  2.1305 10'‘-(LA)11
CL xy

v 20=  a-\2-L4-sin($-| .1963495- .0122718-CL-K)2 + 3.068- 10'4<L-\)4-  4.2611-10“‘<L |

v n= a-\2-L4-sin(^)-|-4.0906 10'3-CL \ ) 2+ 1.7044 10'4<L-\)4-  3.0436-10'

C C(a) E - A - B(a) F EC -E- C

b F '• E-C '-v(0.a) r|(0.a) a C ‘-v<0,a) C '-E-b
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A - B(a) =

C - atan

3.736 0 0.525 0 0.027 0
0 1C.7 0 0.318 0 -0.001
0.986 0 17.704 0 0228 0

0 0.616 0 24.356 0 0.179
-0.004 0 0.479 0 30.826 0
0 -0.004 0 0.356

an

0 3722

bn

0.005 - 0.004

7.377-10'4 2.391-1 O' 5

4.37910 4 3.573-10 4

3.02-10 5 120310 6

1.151-10 5 8.91610 6

6.13510 7 2.57610 8

= 0

(n -  1)

K1 z4> ' E bn'(n' 1}
. n = 0 

Kj Kj- cos co-t ^

5

n = 0

-atan
n = 0

Y  M "  -1)  •( •>"
n = 0
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5 2 ' 5 2 ’

Kj =4- £  an- ( n - l H - l ) n -  bn ( n - l ) ( l ) n

n = 0 n = 0

K4 ^  cos f f l t -q  

K,
= 1.241 The normalized right side stress intensity factors

a-sin(ij>)

K_2_  
cc-sin ( )

= i .064 The normalized left side stress intensity factors
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