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ABSTRACT 

EXPERIMENTAL STUDY 
OF THE RISE OF A LARGE SPHERE 

IN A VIBRATED BED OF MONODISPERSE SPHERES 

by 
Lac Vanel 

As a simplified way to study size segregation mechanisms, the rise of a single large 

sphere in a vibrated bed of smaller monodisperse spheres is investigated. The time it takes 

for the ball to rise from the bottom of the bed to the surface is measured in a very wide 

range of vibration amplitude, frequency and acceleration. Rise regimes are identified and 

are classified according to the macroscopic behaviors displayed by the granular bed: 

heaping, convection without heaping and crystallization. The influence of the large 

sphere's size on the rise velocity is described. The scaling features of the vibration 

amplitude dimensioned by the diameter of the bed particles are presented. 

A tracking technique has been used to follow the three-dimensional motion of the 

large sphere inside the bed. Trajectories corresponding to various vibrational states of the 

granular bed are described. Possible adaptations of the tracking technique are suggested. 



EXPERIMENTAL STUDY 
OF THE RISE OF A LARGE SPHERE 

IN A VIBRATED BED OF MONODISPERSE SPHERES 

by 
Lac Vanel 

A Thesis 
Submitted to the Faculty of 

New Jersey Insitute of Technology 
in Partial Fulfillment of the Requirements for the Degree of 

Master of Science in Mechanical Engineering 

Department of Mechanical Engineering 

January 1997 



 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPROVAL PAGE 

EXPERIMENTAL STUDY 
OF THE RISE OF A LARGE SPHERE 

IN A VIBRATED BED OF MONODISPERSE SPHERES 

Loïc Vanel 

Dr. Anthony D. Rosato, Thesis Advisor 	 Date 
Associate Professor of Mechanical Engineering, NJIT 

Dr. Rajesh N. Dave, Committee Member 	 Date 
Associate Professor of Mechanical Engineering, NJIT 

Dr. Pushpendra Singh, Committee Member 	 Date 
Assistant Professor of Mechanical Engineering, NJIT 



BIOGRAPHICAL SKETCH 

Author: 	Loïc Vanel 

Degree: 	Master of Science 

Date: 	 January 1997 

Undergraduate and Graduate Education: 

• Master of Science in Mechanical Engineering 
New Jersey Institute of Technology, Newark, NJ, 1996 

• DEA de Physique des Liquides, 
Université de Paris VI, Paris, France, 1995 

• Maîtrise de Physique, 
Université d'Orsay, Orsay, France, 1993 

• Licence de Physique, 
Université d'Orsay, Orsay, France, 1992 

Major: 	Mechanical Engineering 

Presentations and Publications: 

E. Clement, L. Vanel, J. Rajchenbach, and J. Duran, "Pattern formation in a vibrated 
granular layer," Phys. Rev. E 53, 2972 (1996). 

L. Vanel, R. J. Dave, and A. D. Rosato, "Experimental observations of a rise of a single 
large sphere in a bed of granular material subjected to vertical vibration," World Congress 
of Chemical Engineering, San Diego, CA, July 1996. 

L. Vanel, A. D. Rosato, and R. J. Dave, "Rise regimes of a large sphere in vibrated bulk 
solids," submitted to Phys. Rev. Lett. (1996). 

iv 



This thesis is dedicated to 

my family 
my friends 

and especially 

Linda  



ACKNOWLEDGMENT 

I wish to express my gratitude to Dr Anthony D. Rosato for inviting me to work 

with him. I thank Dr Rajesh N. Dave for his support while Dr Anthony D. Rosato was in 

sabbatical year. I also thank Dr Pushpendra Singh for accepting to be a committee 

member. 

I acknowledge Songyao Ren, Don Rosander, Joe Glaz and Dave Singh for their 

support during the course of this research. 

I am grateful to the National Science Foundation and the Department of Energy 

for having funded this project. 

vi 



TABLE OF CONTENTS 

Chapter 	 Page 

I INTRODUCTION 	  1 

1.1 General Overview  	1 

1.2 Segregation of Dry Granular Materials 	  

1.3 Oultine of Remaining Chapters  	3 

2 LITERATURE REVIEW 	  4 

2.1 Early Work Describing Basic Properties  	4 

2.2 Phenomenology of a Vibrated Bed  	5 

2.3 Experimental Observation of Segregation in Vibrated Beds  	8 

2.4 The Contribution of Computer Simulations 	  11 

2.5 Motivation 	  14 

3 EXPERIMENTAL PROCEDURES 	  15 

3.1 Objective of the Experiment 	  15 

3.2 Description of the Experimental Setup 	  16 

3.3 Experimental Parameters 	  17 

3.4 Measurement Techniques 	  18 

3.4.1 Tracking System 	  18 

3.4.2 Use of a Simple Device: the Stopwatch 	  20 

4 RESULTS : STUDY OF THE RISE TIME 	  21 

4.1 Limitations 	  21 

4.2 Rise Regimes 	  24 

4.2.1 First Regime: Heaping and Convection 	  25 

4.2.2 Second Regime: Convection in the Absence of Heaping 	  26 

4.2.3 Third Regime: Crystallization 	  28 

4.3 Scaling Properties of the Vibration Amplitude 	  32 

4.4 More Observations on the Role Played by the Relative Acceleration 	 34 

4.4.1 Rise Time at Fixed Fequency as a Function of Relative Acceleration 	 36 

vii 



TABLE OF CONTENTS 

(Continued) 

Chapter 	 Page 

4.4.2 Rise Time at Fixed Amplitude as a Function of Relative Acceleration 	37 

4.4.3 "Inverse" Convection at High Relative Acceleration 	  37 

5 RESULTS: TRACKING THE MOTION OF THE LARGE SPHERE 	  39 

5.1 Phenomenology of Trajectories 	  39 

5.2 Analysis of the Three-Dimensional Motion 	  51 

5.3 Problems and Possible Improvements 	  61 

6 CONCLUSION 	  64 

REFERENCES 	  66 

viii 



LIST C? FIGURES 

Figure 	 Page 

3.1 	Granular bed surrounded by an antennae cage 	  19 

4.1 	Successive measurements of rise time for fixed vibration conditions 	 22 

4.2 Correlations between temperature and rise time fluctuations 	  23 

4.3 	Dimensionless rise time Tf as a function of frequency f for several values of 
relative acceleration F. 	  

4.4 	View of the top surface when the bed crystallizes 	  29 

4.5 	Dimensionless rise time Tf as a function of frequency f for several values of 
relative acceleration F. 	  30 

4.6 	Average rise velocity as a function of size ratio Φ. 	  31 

4.7 	Dimensionless rise time 77 as a function of dimensionless amplitude a/d for 
several values of relative acceleration F. 	  33 

4.8 	Dimensionless rise time Tf as a function of dimensionless amplitude aid for 
several values of vibration velocity cm   35 

4.9 	Dimensionless rise time Tf as a function of relative acceleration F for several 
values of amplitude a/d.   36 

5.1 	Plot of the vertical position z as a function of time, in the case of heaping at 
large amplitude (a/d =1.8) and f = 7.5 Hz. 	  40 

5.2 	Plot of the vertical position z as a function of time, in the case of heaping at 
small amplitude (a/d =1.12) and f = 12 Hz. 	  41 

5.3 	Plot of the vertical position z as a function of time, in the case of convection 
without heaping at large amplitude (a/d =1.8) and f = 18 Hz. 	  42 

5.4 	Plot of the vertical position z as a function of time, in the case of convection 
without heaping at small amplitude (a/d =1.12) and f = 18 Hz. 	  43 

5.5 	Plot of the vertical position z as a function of time, in the case of inverse 
convection at large amplitude (a/d =1.8) and f = 27 Hz. 	  45 

5.6 	Plot of the vertical position z as a function of time, in the case of inverse 
convection at small amplitude (a/d =1.12) and f 27 Hz. 	  46 

5.7 	"Whale" effect: Plot of the vertical position z as a function of time for a/d =1 
and f = 25 Hz 	47 

5.8 	"Whale" effect: Plot of the vertical position z as a function of time for a/d =1 
and f = 30 Hz. 	  48 

ix 



LIST OF FIGURES 
(Continued) 

Figure 	 Page 

5.9 	Power spectrum corresponding to the trajectory of Fig. 5.5. 	  49 

5.10 Power spectrum corresponding to the trajectory of Fig. 5.6. 	  50 

5.11 Position of the large ball (r, 0, z) in a cylindrical coordinate system (ur, uθ, uz). 	 52 

5.12 Plot of the vertical position z as a function of time for a/d =1 and f = 15 Hz. 	 53 

5.13 Plot of the radial displacement r as a function of time for a/d =1 and f = 15 Hz 	 54 

5.14 Plot of the angular motion Teta as a function of time for a/d = 1 and f  = 15 Hz 	 55 

5.15 Plot of the rotational motion Alpha as a function of time for a/d = 1 and 
f = 15 Hz. 	  56 

5.16 Plot of the rotational motion Psi as a function of time for a/d = 1 and 
f = 15 Hz. 	  57 

5.17 Plot of the rotational motion Khi as a function of time for a/d = 1 and 
f = 15 Hz. 	  58 

5.18 Plot of the vertical position z as a function of time for a/d = 1 and f = 15 Hz 	 
The ball is initially touching the side walls. 	  59 

5.19 Plot of the radial position r as a function of time for a/d = 1 and f = 15 Hz. 
The ball is initially touching the side walls. 	  60 

5.20 Amplitude spectrum for a/d = 1.8 and f= 27 Hz showing a high frequency 
peak whose origin is undetermined. 	  

• 
62 



CHAPTER 1 

INTRODUCTION 

1.1 General Overview 

The term granular material refers to a mixture made up of discrete solid particles. In 

nature, some examples are sand, pebbles, heaps of rock, heaps of earth, sediments or 

granular snow. The processing of natural resources, ore extraction and harvesting of 

cereals, vegetables and fruits produce huge quantities of granular material. Flour, sugar, 

salt are commonly found in a kitchen ! The industry is also a big producer of synthesized 

products, such as pharmaceutical powders or plastic grains. 

Geophysical and environmental considerations are worth noting. There are 

undesirable natural disasters such as mud slides and rock or snow avalanches. Some 

ecological problems involve deposition of waste in water or pollution clouds. Even 

earthquakes involve dynamics of rocks which are submitted to very high stresses and 

suddenly break apart. At a much larger scale, asteroids' belts in the solar system liberate 

pieces into space which may impact the Earth. 

In industry, granular materials are used in almost any field. Common technical 

problems are related to manufacturing, handling and processing in areas such as 

pharmaceutical, foodstuffs, detergent and chemical industries as well as high tech 

processing of ceramics and powder metal forming. Granular materials are used mainly in 

mixing, segregation, storage, flow, gas fluidization, conveying, size enlargement and size 

reduction operations. Despite the ubiquity of granular materials, the understanding of their 

behavior is so poor that fundamental research became a crucial economical issue for 

industry. Since engineers started to extensively investigate this field, more than forty years 

ago, progresses have been slow. The efficiency of recently built factories is still far off the 

predictions made by available models. Too often, scale-up of small model tests to the full 

scale industrial prototype is fraught with uncertainty. Engineers are reduced to trial and 

error methods, usually simple, but expensive in time and money. Obviously, granular 

materials present enormous difficulties to master because the knowledge of these materials 

remains elusive. 

1 
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In recent years, the body of theoretical work has been increasing very fast, in part 

due to the new interest of the physics community in this field. A distinction has been made 

between dry and wet granular materials. Dry granular materials display double-faced 

behavior, either similar to a solid or a fluid. When at rest, they form heaps but if perturbed, 

they begin to flow. Wet granular materials are called slurries or suspensions and their 

behavior is strongly dependent on the fluid characteristics. Available theoretical tools 

generally fail to properly describe the behavior of dry or wet granular materials. In the 

case of dry granular materials, one could think it is sufficient to use mechanics concepts 

since the laws of solid dynamics are well established. However, the resolution of 

Newtonian equations for a system with a large number of bodies becomes mathematically 

unfeasible. Statistical theory is also not directly applicable, because there is no equivalence 

with the concept of temperature and because there is dissipation of energy by collisions 

and friction between the particles. Some important efforts have been made to develop 

adapted kinetic theories [1-2-3] but there are not enough experimental results to determine 

the relevance of these theories. Computer simulations are also a powerful tool. Though 

they can not replace experiments, they provide some interesting insights and allow the 

testing of old and new models. In the case of wet granular materials, parts of the 

phenomenon are explained through the use of fluid dynamics equations, especially when 

the concentration of particles is very low, but at high concentrations granular interactions 

become dominant and difficulties show up again. The study of dry granular materials is 

usually carried with the hope that the gas effects are avoided. Most important is the fact 

that a granular material is a highly non-linear and dissipative medium, which possesses 

characteristic features commonly found in non-linear dynamical systems. 

1.2 Segregation of Dry Granular Materials 

The term segregation refers primarily to the unmixing of an originally homogeneous 

granular mixture. This can happen whenever the granular material is made to move. 

Important efforts have been made to understand this usually unwelcome effect in the 

industrial processing of granular materials (see Ref [4] and [5] for a review on mixing 

problems). Segregation is typically observed when pouring a heap, and when stirring, 
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shearing or vibrating a mixture [6]. It appears that discrepancy in sizes is the most 

important cause of segregation. Segregation is often explained as the result of the 

"percolation" of small particles through the spaces between larger particles. When 

vibration is used, segregation has been described as the consequence of a convective flow 

and a trapping mechanism of the larger balls on the bed surface. Other mechanisms 

involving geometrical considerations, local reorganizations of the bed structure and/or 

collective effects such as arching or bridges have also been proposed. 

In this thesis, we propose a study of the rise of a large ball placed at the bottom of 

a vibrated bed, which is a simple example of size segregation process. The starting point 

of our study is to describe the evolution of the rise time with the vibration parameters and 

the possible connections with other commonly observed phenomenon in vibrated beds 

such as heaping, surface waves, subharmonic instabilities, convection and compaction. The 

hope is to be able to identify more clearly the conditions for segregation. Besides the 

measurements of rise time, it is possible to obtain the full three-dimensional trajectory of 

the large ball during its rise. This can be done with the use of an advanced tracking 

technique developed at the Particle Technology Center, which is based on magnetic 

induction and involves electronics and software. The knowledge of the ball trajectory is 

likely to give additional understanding of segregation. 

1.3 Outline of Remaining Chapters 

Chapter 2 is a detailed literature survey on the phenomenology of vibrated beds, with a 

focus on segregation problems, for which both experimental and computer simulations' 

results are presented. Chapter 3 describes the experimental setup and explains the two 

types of investigations carried : the measurements of rise time and the recording of rise 

trajectories. The results are presented in Chapter 4 for the rise time measurements and 

Chapter 5 for the description of trajectories. Chapter 6 discusses briefly the results before 

the concluding remarks. 



CHAPTER 2 

LITERATURE REVIEW 

The following literature review is mainly restricted to the study of dry granular materials. 

Basic experiments are described and some simulations closely related to our work are 

presented. A large place is given to systems submitted to vibrations because it is relevant 

to the subject of this thesis and very rich in phenomena. 

2.1 Early Works Describing Basic Properties 

Some of the earliest studies of granular flows were performed by two fluid mechanicists, 

G. Hagen and 0. Reynolds. In 1852, Hagen [7] performed experiments which showed that 

for granular flow, the flow rate through an orifice is independent of h, the head of material 

above the orifice, in contrast with the flow of a fluid where it depends upon √h. In 1885, 

Reynolds [8] introduced the idea of dilatancy which he defined as the property possessed 

by a granular media to alter its volume in accordance with a change in arrangement of its 

grains. To illustrate the phenomenon of dilatancy, Reynolds put together an apparatus 

consisting of a rubber bag filled with a mixture of granular material and water which was 

purged of any bubbles and then tied to a glass tube. When the bag is squeezed, one's naive 

intuition suggests that the water level in the tube would rise. But, instead, it goes down. 

What happens is that when squeezing the bag by hand, it is not possible to apply uniform 

pressure all around the outside and shear deformations develop. From geometrical 

considerations the bulk has to expand and water rushes in to fill the void spaces created. 

In the initial state the spherical grains are closely packed, then when the bulk is sheared, 

particle riding over each other and a vertical expansion occurs. Reynolds used these ideas 

about dilatancy to explain a phenomenon which can be observed when walking along the 

seashore. When one's foot is planted on the moist sand, shear and dilatation occur and the 

area around the foot immediately becomes dry. But, when the foot is raised, water is 

drawn in to occupy the additional voids created, and a pool of water soon collects in the 

footprint. 

4 
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2.2 Phenomenology of a Vibrated Bed 

In this section, we give an overview of the various behaviors observed in a vibrated bed of 

mainly monodisperse (uniform size) spheres. 

The behavior of a vibrated granular bed is conditioned by the existence of two 

opposite energetic fluxes. The vibration acts as an energy reservoir while the collisions and 

frictional contact between the particles dissipate energy. Generally, a steady state arises in 

a system when the input and output energy flux become equal. The phenomenology of 

granular behavior is thus strongly dependent on the vibration parameters and on the 

dissipative properties of the particles, the container and sometimes the ambient gas. 

Besides the vibration amplitude a and frequency f, a parameter used frequently is 

the relative acceleration F = aω2/g, where ω  = 2πf and g is the gravity. The relative 

acceleration is a parameter which arises naturally in the description of the motion of a 

particle on a loud-speaker. A particle initially at rest will separate from the loud-speaker 

plate only if F > 1, i.e. if the plate acceleration can become bigger than gravity. The 

particle starts a free flight when the plate acceleration is equal to gravity, and later collides 

again with the plate. It can be shown that the larger is the relative acceleration, the longer 

is the flight time in unit of vibration cycle, or the larger is the launch velocity in unit of 

maximum plate velocity. For low acceleration, the motion of a completely inelastic ball has 

simply the vibration periodicity T, but as acceleration is increased, a cascade of flight time 

bifurcations starts, leading to a 2T, 4T, 8T... periodicity, until the flight time becomes 

again single valued and the motion periodicity 2T. When the acceleration is further 

increased, similar scenario of flight time bifurcations are observed, ending successively by 

a 3T, 4T, 5T ... periodic motion. When a granular bed is slightly vibrated, there is no 

relative motion between the particles and the bed behaves as a solid. Furthermore, due to 

the multiple collisions occurring in a dense packing of inelastic grains, granular agitation 

can be quickly damped for small enough vibrations and the bed will behave as a single 

inelastic body. In a first approach, the relative acceleration has been used to characterize 

the bed behavior, even in the cases where the behavior is much more complex than the 

motion of one single particle. 
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In 1831, Faraday [9] observed that vibrated powder forms a heap generated by a 

convective motion : "...the particles of the heap rise up at the centre, overflow, fall down 

upon all sides, and disappear at the bottom, apparently proceeding inwards". Much later, 

because of many potential applications in chemical engineering, this phenomenon has been 

studied in various geometries and with different types of periodic excitations by Kroll [10] 

in 1955, Rátkai [11] in 1976, or Savage [12] in 1988. All the fundamental studies 

enumerated now concern vertical sinusoidal vibration of a flat floor. In 1989, Evesque et 

al [13] established experimentally that the relative acceleration is the threshold parameter 

of convection. Laroche et al [14] showed that convection was a result of the interaction 

between the granular and the surrounding gas, but Pak et al [15] found that the gas effect 

occurs only for small particles. For larger particles, Clément et al [16] observed the 

formation of a heap (referred as heaping) driven by small convective rolls generated at the 

container walls due to frictional contacts, with the additional condition that the particles 

inelasticity and friction is sufficiently high. Rajchenbach [17] proposed a model based on 

the Reynolds'concept of dilatancy [5] and described the existence of an internal flux of 

matter from more agitated to less agitated regions. Knight et al [18] studied convection as 

a segregation mechanism (see also 1.2.4), and gave recently a precise description of the 

flow field [19]. 

In the literature, fluidization is a term which most often refers to the granular 

agitation induced by an upward high velocity gas flow. By analogy, in vibrated bed, 

fluidization refers to the agitation of grains due to collisions with the vibrating plate. 

Kinetic theories [20] have predicted that kinetic energy, and thus fluidization, is bigger at 

the bottom of the bed where is the vibrating plate, i.e. the source of energy. In contrast, 

the experiments of Evesque et al [21] showed that fluidization is confined in the upper 

layers of the material. In a study of surface fluidization, Clément [22] observed that the 

top particles reach a state of random agitation, while the lower part of the bed remains 

compact. The bed structure was observed to be independent of the vibration phase, but 

not the internal agitation of grains. When the vibration is strong enough for the whole bed 

to be fluidized, Warr et al [23] found a velocity distribution close to a Boltzmann 
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distribution and measured a granular temperature following a power law dependency on 

the maximum velocity of vibration. 

Wave-like patterns are commonly observed in vibrated granular materials. Douady 

et al [24] described a subharmonic instability where dense regions of particles oscillate out 

of phase, creating a pattern of periodic arches. This is due to the coexistence of two 

solutions (degenerated solutions), each of which has a periodicity double that of the 

vibration period. Note this is different from period-doubling where there is alterrance 

between two solutions, from one period of vibration to the other. Pak et al [25] observed 

a wave traveling up the slope of a heap. Clément et al [26] studied the formation of 

parametric waves, observed only in a very dissipative medium and showing a wavelength 

saturation at high frequency. Melo et al [27] observed the formation of surface patterns 

such as stripes, squares or hexagons, due to a parametric excitation of the layer, just as in 

experiments with fluids [28]. The transitions between theses patterns were well 

characterized by the relative acceleration, and were understood as a combination of 

period-doubling, parametric instability and subharmonic response. Recently, Metcalf et al 

[29] observed also a gas effect on the onset of wave formation. 

At the opposite of fluidization or waves which require a strong agitation of grains, 

the bed can be made to compact itself when the vibration induces small fluctuations of the 

particles positions. Compaction of particles has been studied for its wide application, 

ranging from the ceramic ware [30] to the loading of packed towers [31]. One of the first 

complete works on this subject was published in 1930 by Westman et al [32] where 

mixtures of particles were studied. Idealized mixtures of spherical particles have been used 

by Ayer et al [33] to determine the effects on size ratio on compacity, but the difficulties 

encountered lead to use simply uniform spheres. In 1969, Owe Berg et al [34] found that a 

bed of uniform steel spheres could be compacted in a hexagonal structure provided that 

the vibration applied is three-dimensional. Recently Knight et al [35] were able to make 

some comparisons between the experimental time evolution of density and a model 

proposed by Barker et al [36]. 
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2.3 Experimental Observations of Segregation in Vibrated Beds 

Mixtures of particles with different properties are known to segregate when handled, 

particle with similar properties tending to collect together in some part of the system. The 

properties which can lead to such segregation include the density, size, shape and surface 

properties of the particles. 

One of the first explanation of segregation was proposed by Weymouth [37] in 

1933. Interested in the study of concrete, he varied the proportions of materials in a binary 

mixture of sand and pebbles and observed how the packing was affected. When the 

proportion of pebbles is such that the void space between two consecutive grains is 

smaller than the size of one grain of sand, segregation is observed simply by stirring the 

mixture. The cause of segregation was attributed to the large voids fraction of the 

packing when only small proportions of sand are mixed with pebbles. In 1939, R. L. 

Brown [38] also suggested that the mechanism of segregation under vibration occurs 

because of locally abnormal packing conditions in the neighborhood of large particles. 

Between 1964 and 1965, J. L. Olsen, E. G. Rippie and M. D. Faiman published 

fundamental studies of segregation parameters [39-40-41]. Steel or glass spheres are 

vertically vibrated in a cylindrical container. Binary and ternary mixtures of various 

composition are prepared by changing the size, density and amount of particles. Any given 

mixture is observed to reach an equilibrium state whatever is its initial state. In a 

segregated state, the large spheres are on the top and the small at the bottom. The rate of 

segregation is observed to increase with the ratio of particle size in binary mixtures. Binary 

mixtures of particles differing only in density do not segregate. When the small spheres are 

denser than the large ones, segregation is much faster than when the large spheres are 

denser than the small ones. The segregation process is considered analogous to a 

reversible chemical equilibrium, with a rate constant of segregation and one of mixing. The 

variation of rate constants with amplitude and frequency suggest to the authors an analogy 

between the granular agitation and molecular temperature. The energy transfer in the 

granular depends on the spheres inelastic properties, and this must have an effect on 

segregation. 
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In 1963, J. C. Williams [42] performed experiments showing that the effect of size 

is dominant. If a large metal ball is placed at the bottom of a container filled with sand and 

subsequently shaked, it will be found that the ball appears on the surface of the sand, 

despite the fact that the density of the metal sphere is about four times that of the sand. In 

fact, the density of the ball has little effect on the process. A table tennis ball filled with 

mercury and one empty will both rise. Williams was not surprised to see rising a sphere 

less dense than the bed particles because he was thinking in term of hydrostatics. 

However, the comparison is not straight; the ball will never move if the container is not 

shaken, while in a liquid, the ball moves spontaneously upward, pushed by Archimedes 

force, which results from the variation of hydrostatic pressure with height. In the case of a 

sphere more dense than the bed, he considered that the vibration creates a field of pressure 

increasing with the bed depth and that the weight of the large ball induces locally an 

additional pressure on the particles below it. Then he concludes that the mobility of the 

spheres below the ball is small such that a "stationary mass of particles forms" and grows 

each time a void allows particles to go beneath the ball. 

In 1973, K. Ahmad and I. J. Smalley [43] described quantitatively some of the 

parameters which affect the motion of a single large particle through a dry granular bed. 

A wide range of frequencies 50-150 Hz and of accelerations 1-10 g was selected. The 

large ball was introduced at the base of a cylindrical container vibrated vertically and filled 

with a known height of sand. It was found that at a constant frequency of vibration, the 

rise velocity increased with increase in acceleration; however, at a constant acceleration, 

rise velocity was decreased with increase in frequency. It was also shortly concluded that 

the rise time increases with increase in bed depth, particle density and size, and depends on 

the particle shape. 

In 1993, J. B. Knight [15] proposed that the vibration-induced rise of the large 

sphere arises from convective processes. A cylinder was filled with glass beads and one 

larger glass sphere. A tracer technique was used to visualize the flow. It was observed that 

an inner core of beads together with the sphere travels to the bed surface. After reaching 

the top, the small background beads move towards the outer walls and begin to move 

along the walls towards the bottom of the cylinder. Because the width of the downward 
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flow is small, a sphere too large will be trapped on the surface, resulting in size 

segregation. The convective flow pattern exists if there are frictional contacts between the 

beads and the walls, and the flow direction can be reversed if the walls slant outwards 

from the base. Additional results show that the rise velocity increases when the beads get 

closer to the surface. A much more detailed study of the convective flow has been carried 

by the same authors recently [16]. 

The influence of size ratio (intruder diameter relative to the diameter of a bed 

particle) has been observed in a two-dimensional bed by Duran et al [44]. They used a 

container made of two rectangular glass plates separated by rectangular plastic wedges. 

The oxidized aluminum balls used in this experiment have a high solid friction coefficient 

at the lateral walls and high momentum loss on collision. The pile is prepared to match as 

closely as possible a compact triangular lattice, except around the intruder that induces 

local perturbations in the array. Convection rolls associated with heaping show up when 

the cell is shaken with relative accelerations between 1 and 2. At F 	2, the intruder is 

carried by a convection flow of the small balls. But at F = L25, the rise velocity is 

dependent on the intruder diameter. Typically, the rise velocity increases linearly with the 

intruder diameter. For small diameters, an intermittent rise is observed, i.e. the trajectory 

of the intruder shows period of time with rise and period of time with rest. The authors 

also observed density microfluctuations inside the bulk, occurring during the free flight of 

the bed. These fluctuations take the form of cracks, i.e. a rupture along an irregular path 

between two dense phase. It was hypothesized that cracks could be a leading mechanism 

for the motion of the intruder. The same authors introduced an arching effect model [45], 

which describes the existence of a critical size ratio separating a regime where the rise is 

intermittent from a regime where the rise is continuous. First, they show the existence of 

arches or vaults which sustain the intruder from the sides while the balls laying beneath the 

intruder are not in contact with itself. When the intruder is lifted up, the bed geometry 

changes and the intruder find a stable position whenever vault clamping occurs. The 

distribution of stable positions along height is shown to depend on the size ratio. There is 

a critical size ratio separating a discrete and a continuous distribution of vaults, which is 

thought to be the same than the one separating intermittent and continuous rise. 
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The influence of size ratio has also been observed by Cooke et al. [46] with an 

experimental set-up mainly identical to the one used by Duran et al. However, Cooke et al. 

came up with a different interpretation of the ball rise. When a crack occurs, a global 

upwards shift of the surrounding balls pushes from below the intruder. From this fact, the 

conclusion is that the rise mechanism is convective since the intruder rises at the same 

speed than the particles around it. Nonetheless, Cooke et al observed also a size 

dependent rise velocity, a priori in contradiction with the features of a convective flow. 

The difficulty is avoided by considering that the frequency of the density fluctuations 

(which create the cracks) depends on the size of the intruder, such that the larger is the 

intruder, the more perturbed is the regular lattice of background particles, the more often 

cracks occur and the faster is the rise. Eventually, the frequency spectrum of the 

intermittent and continuous rise regimes are very similar, which suggests to the authors 

that there is no fundamental difference between the two regimes. 

Note that all the experimental works described here make few connections 

between all the possible behaviors presented in 1.2.2 and the rising phenomenon. 

2.4 The Contribution of Computer Simulations 

With the extraordinary development of workstation ten years ago, simulations became a 

way for scientists to study granular properties that are usually very difficult to observe 

experimentally. Of course, simulations do not replace experiments, but are a good tool to 

test our understanding of phenomena by finding the minimum necessary ingredients to 

describe them. The following review of simulations focuses on the rise of a large sphere. 

In 1986, P. K. Haff et al [47] performed molecular-dynamics simulations and 

identified a segregation mechanism associated with shear motion in a two-dimensional bed 

of inelastic frictional disks. Simulation results show that it is difficult to make a large disk 

rise in a box with vertical walls, vibrated both vertically and horizontally. If the horizontal 

vibration is chosen properly or if inclined walls are used, the segregation strength is 

significantly increased. The large disk is observed to roll up over adjacent smaller 

particles. In this process, the friction between the large disk and the bed particles must be 

large enough. 
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Almost at the same time, A. Rosato et al [48-49] conducted simulations based on 

an adaptation of the Monte-Carlo method. In a two-dimensional system, shaking is 

modeled as a process in which all the particles are first lifted and then dropped to the 

bottom of the container. The effect of interparticle collisions, collisions with the walls, and 

the slight horizontal jostlings of the container are modeled as random movements of the 

particles with respect to one another. The segregation mechanism is described as follow : 

(1) as the particles fall during a shake, small particles easily move in beneath a large 

particle whenever gaps open up; (2) a large particle may move back down if many small 

particles simultaneously move from beneath it; (3) this is an unlikely event, and therefore 

large particles move up relative to small particles. Thus, segregation is the consequence of 

a geometrical effect, Other results show that the rise of the large disk is approximately 

linear and that the rise velocity increases with the size of the large disk as well as with the 

shaking amplitude. Also, anticipating the results of future experimental works, it is 

observed that at small shaking amplitudes (smaller than about one quarter the small 

particle size) the disk motion occurs in a step-like-jumps, with the step approximately 

equal to the height of one row of small particles. 

R. Jullien et al [50] presented three-dimensional simulations where a deposition 

algorithm leads to size segregation. Particles are dropped, one at a time, via randomly 

located vertical trajectories onto a horizontal substrate where they form a deposit. After 

they contact the deposit, they follow the path of steepest descent until either they reach a 

local minimum on the surface of the deposit or they contact the substrate. At this stage, 

particles are incorporated irreversibly in the growing deposit. Initially used to model 

segregation when pouring a heap [51], this algorithm can be used to simulate the rise of a 

large sphere. During the deposition process, a hole forms below the large particle. At the 

next deposition cycle (or shake), some small spheres fall in the hole and the large sphere is 

consequently raised. The mechanism described is similar to the one proposed by Rosato et 

al. Then, it is not very surprising that the rise trajectory is linear. In addition, there is a 

critical size ratio 0, below which the large ball will stop its rise at an height of a few small 

particle diameters. It is shown that D, depends on the angle of repose of the granular, 

which has an effect on the shape of the hole [52]. 



13 

S. Dippel et al [53] used a modified version of the algorithm introduced by Rosato 

et al [45-46] to compare with segregation experiments at low vibration amplitude. The 

simulations show avalanches of small particles falling in a very stable triangular hole below 

the large particle. The averaged rise speed is observed to vary with Φ irregularly and not 

linearly like in experiments [41]. 

G. C. Barker et al [54] criticized the relevance of the critical size ratio 4 found by 

R. Jullien et al [47], as a result of sequential and deterministic simulations of segregation. 

Collective behavior of particles, such as the formation of arches or bridges, and non-

deterministic effects due to the complex coupling with the vibration can be reproduced in 

simulations involving a combination of Monte Carlo dynamics and non-sequential random 

close packing [55-56]. In such simulations, no critical size ratio is observed [57]. 

T, Ohtsuki et al [58] performed molecular dynamics simulations of inelastic hard 

disks to study the influence of particle size and density. In all cases, the large particle 

reaches an asymptotic height independent of initial positions. When the size ratio is smaller 

than one, no rise is observed. When the size ratio is bigger than one, the ball rises if the 

density is small enough; if the density is about five times the density of the bed particles, 

the ball does not rise. 

Y. Taguchi [59] and J. A. C. Gallas et al [60] were able to obtain simulations of 

granular convection. Afterwards, T. Pöschel et al [61] studied the effect of convection on 

the rise of a large sphere by molecular-dynamics simulations of a two-dimensional bed. 

The particles have a radii uniformly distributed between ± 15 % of the average radius and 

the large sphere is four times larger than the average radius. There is a characteristic 

frequency above which convection starts and below which only fluctuations are observed. 

This characteristic frequency depends on the initial depth of the large particle. Whenever 

segregation is observed, it is associated with convection. At the convective transition, the 

presence of the large particle increases the strength of convection comparatively to the 

case without the large particle. This effect is thought to be related to the fact that "in the 

region around the large particle, the accelerations are higher because the momentum is 

transferred with less dissipative loss through the larger particle than through a 

corresponding pile of smaller particles with the same volume". When the size ratio is 
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decreased, the large particle goes up and down in a "whale effect", apparently following  

the convection rolls. An extension of this work has been done by J. A. C. Gallas et al [62] 

in a three-dimensional system. The "whale effect" is again observed and presented as a 

consequence of an increase in convection strength coupled with a decrease in bed 

compacity. Also, changes in dynamic behavior are observed when the energy dissipation is 

modified. 

Y. Lan et al [63] used the discrete element method to simulate convection and 

observed the effects on a large sphere. A thin cell with periodic boundaries represents the 

container. Surprisingly, the ascent speed increased when the coefficient of restitution was 

decreased. A small sphere just below the large sphere and the large sphere itself are 

observed to have almost the same history of displacements and velocities, indicating the 

convective nature of the rise. The "whale effect" is observed only when the width of the 

cell is large enough. 

2.5 Motivation 

Many questions concerning the mechanism of segregation are still open. Most of the 

experiments show that convection is the driving force [15-41-43], but Duran et al were 

able to observe a non-convective rise [41]. Simulations described either a convective rise 

or the geometrical mechanisms involved in a non-convective rise, but never both. The role 

played by the size ratio Φ is particularly unclear. The "whale effect" has never been 

described experimentally. A major problem is that the basic behavior of a vibrated bed of 

uniform particles is already very rich (as described in 1.2.2) and that this complex 

phenomenology has never been related to the ubiquitous segregation effect. As pointed 

out by G. C. Barker et al [64], "the competing domains of amplitude and frequency need 

to be investigated experimentally in order to find better control parameters". The aim of 

this thesis is precisely to explore the vibration domain as fully as possible hoping that it 

will give a better understanding of the segregation process. 
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CHAPTER 3 

EXPERIMENTAL PROCEDURES 

3.1 Objective of the Experiment 

The experiment is designed for the observation of a large ball rising in a vibrated granular 

medium. Two different approaches are adopted. In the first one, the trajectory of the ball 

in the medium is recorded by using a tracking system, which allows the determination of 

the position and the rotation of the ball. This approach could be called Lagrangian since it 

consists in following the motion of a given particle in the granular material. In the second 

approach, the observation is restricted to the location on the surface where the ball finally 

emerges. This emergence is characterized by the time it takes for the ball to go there from 

an initial position. The second approach is Eulerian since we always look at the same 

spatial location of the granular material. In all the performed experiments, the ball is 

placed at the center of the bottom plate. Other initial positions are not considered in order 

to focus on an elementary understanding of the rise time dependence on the vibration 

parameters. The influence of the initial height or radial position is beyond the scope of this 

thesis. Results concerning the effect of initial position are described in recent publication 

[46]. 

In addition to the analysis of the sphere's rise, an observation of the global bed 

response to the input vibration is carried. When a wide range of excitation parameters is 

involved, it is possible to observe most of the common features displayed by a vibrated 

granular bed, such as heaping, subharmonic instabilities such as arching, surface waves, 

convection, fluidization or compaction. The apparent bed behavior is observed visually, 

sometimes with the help of a stroboscope and sometimes by following the motion of 

tracers. The synthesis of the complementary observations of the ball motion and the bed 

behavior will be presented in Chapter 6. 

An important goal of the investigation is to find the relevant vibration parameters 

able to properly describe the segregation process. The obvious parameters are the 

amplitude and the frequency, but the vibration velocity or the relative acceleration are two 

other parameters which may be meaningful. Consequently, series of measurements have 
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been made by fixing either the amplitude, the frequency, the velocity or the relative 

acceleration and varying the three remaining parameters. Hence, there are twelve possible 

combinations of fixed and variable parameters. It appeared that the most interesting cases 

are the variation of rise time with frequency and amplitude at fixed relative acceleration, 

and the variation of rise time with relative acceleration at fixed amplitude or fixed 

frequency. 

3.2 Description of the Experimental Setup 

The granular bed is made with monodiperse acrylic spheres. The spheres fill a cylindrical 

container whose walls are made of plexiglass and whose floor is a piston. The piston is 

mounted on a vibration exciter which is a combination of a B&K†  general purpose head 

type 4812 and a B&K exciter body type 4801. The vibration exciter is driven by a B&K 

power amplifier type 2707. An accelerometer B&K is fixed on the piston base and is 

connected to a B&K vibration exciter control type 1050. The vibration exciter control is a 

device containing a digitally controlled generator which provides an input signal to the 

power amplifier, a vibration meter enabling accurate measurement and control of any 

vibration parameter, and a compressor for regulation of the vibration exciter excitation. 

During an experiment, the vibration exciter control permits an easy variation of the 

vibration frequency at fixed amplitude, velocity or acceleration. 

A granular bed is a complex material. Its properties are very dependent on the 

environment and are not easily predictable. The temperature and the humidity level in the 

room have significant effects on the bed response. It is important to be able to control 

these parameters. A fan is used to reduce the temperature increase caused by heating of 

the vibration exciter while an air conditioner helps to reduce the humidity level in the 

room. A digital meter gives measurements of the temperature and humidity. In Chapter 4, 

the effects of temperature on the measurements will be discussed. Another undesirable 

event is the formation of static electricity on the particles' surface created by the numerous 

collisions during shaking. When the particle are charged, they repel each other and usually 

stick on the container walls whose charge is opposite. Then, the particle-particle and wall- 

Bruel & Kjaer 
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particle interactions are not simply frictional or collisional interactions, but also include 

long distance electrostatic interactions, which are too difficult to master and can lead to 

the disparition of previously observed behaviors. To avoid the build-up of static electricity, 

the particles are treated with an anti-static sheet, used usually to prevent the formation of 

static cling on clothes. After several months, this treatment is still effective. 

For most of the experiments, the large ball used is the one specially designed for 

the tracking system as detailed in section 3.4. In some cases, to study the dependence on 

the large ball size, other spheres of the same material as the bed particles are used. 

3.3 Experimental Parameters 

The cylinder has a diameter Dcyl  of 4.5". The diameter of the piston is slightly smaller so 

that it can move without rubbing on the cylinder's walls. The bed particles have a diameter 

d = 1/8 ". The initial bed depth H is smaller than Dcyl, so that the bed aspect ratio H/Dcyl  is 

smaller than unity. The results are obtained for H/Dcyl  = 0.44. The bed is rather shallow so 

that bulk and surface phenomena are likely to interact strongly. The bed particles have a 

low coefficient of friction, estimated at about 0.2, and a high coefficient of resitution, 

greater than 0.9. To measure the coefficient of friction, three balls are stuck together, 

deposed on a plexiglass surface which is raised to determine the angle of static friction. 

The large ball to bed particles size ratio is defined as Φ  = D/d, where D is the large ball 

diameter, and varies from 1 to 12. The large ball is placed initially at the center of the 

piston surface and is usually seen to remain centered during its rise. The temperature and 

humidity of the room are noted before starting to shake the piston. A sinusoidal vibration 

asin(cot) is apllied to the piston, where co = 2πf. The frequency f has been varied between 

5 and 75 Hz. The highest amplitude the vibration exciter can provide is a = 0.25 ", or 

equivalently a = 2d. Commonly used as a control parameter in vibrated granular 

experiments, the relative acceleration I-  is defined as the ratio of the maximum vibration 

acceleration to gravity, i.e. Γ=aω2/g. With the amplitudes and frequencies used, values 

of Γ ranged between 0 and 13. 
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3.4 Measurement Techniques 

3.4.1 Tracking system 

A non-intrusive tracking system developed at the Particle Technology Center [65-66-67-

68] can be used to find the three-dimensional position and rotation of the large ball during 

its rise in a nontransparent bed. The technique is based on the principle of magnetic 

induction coupling. The particle being tracked contains three small perpendicular 

transmitters, associated electronics and a battery. The experimental space is surrounded by 

receiving loop antennae, in each of which voltages are induced due to the coupling 

between the transmitters and the antennae. From these voltage readings, the three 

dimensional position and orientation of the tracked particle is determined. A picture of the 

antennae surrounding the experimental system is shown in Fig. 3.1. 

Before running an experiment, the ball to be tracked must go through calibration 

procedures. The ball is placed in the middle of the antennae cage, is oriented such that 

each transmitter is successively perpendicular to each antennae, and the corresponding 

voltages are measured. Because the transmitters are perpendicular to each other, only four 

positions of the ball, also called correlation points, need to be recorded. When this has 

been completed, the bed is vibrated and the acquisition of the induced voltages is started. 

Due to the limited lifetime of the battery, experiments longer than 20 minutes are not 

possible without uncontrollable loss of accuracy. Once the acquisition is stopped, the data 

is processed using a software designed to compute the coordinates of the ball. The 

correlation points are used as a reference for the calculation, and the user can modify the 

coordinates system through the definition the antennae' position. Eventually, the three-

dimensional trajectory of the ball can be plotted as a function of time. 

The computation time required for processing is long. In average, it was possible 

to obtain one complete position per second. Furthermore, the acquisition rate is of about 

900 Hz, which means that one second of experiment will be processed in about I5 mn. 

When the observed phenomenon last for several minutes or even hours, it becomes 

impracticable to use the tracking system. At the writing of this thesis, improvements 

designed to reduce the acquisition rate are under construction. 
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Figure 3.1. Granular bed surrounded by an antennae cage. 
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The shell constituting the external part of the ball is made of polyethylene. 

Although this material is not the same as the bed particles', only small deviations in the 

results have been observed when comparing with an acrylic ball of the same size. Besides 

the surface properties, the density of the ball can change the results. Due to the structure 

of the tracking ball, its density is inhomogeneous and larger than the density of the bed 

particles. The inhomogeneity of the ball density makes it difficult to interpret the otations 

observed, which could be attributed either to an effect of the ball unbalance or to the 

physical mechanism causing the ball to rise. 

3.4.2 Use of a Simple Device: The Stopwatch 

When our knowledge of things is inadequate, it is often productive to simplify the 

problem. Instead of looking for a complete description of the ball motion at given 

vibration parameters, we can study the variation with the vibration parameters of a single 

variable, the rise time, characteristic of the average ball motion. The rise time is a measure 

of the time the large ball will need to go from its initial position to the bed surface after the 

vibration starts. A simple tool to measure the rise time is the stopwatch. When the 

vibration starts, we start the stopwatch, and when the ball reaches the surface, we stop the 

stopwatch. The time when the vibration starts is well defined, but the time when the ball 

reaches the surface depends on the criterion used. Three different times has been 

considered. There is a time when the top of the ball just reaches the level of the bed 

surface. There is a time when the ball is half in the bed, half outside. There is also a time 

when the ball reaches its highest altitude above the piston floor. In general, the last 

criterion is used to determine the rise time. When more appropriate, the first or second 

criterion is employed, and this will be explicitly mentioned in the text. 
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RESULTS: STUDY OF THE RISE TIME 

This chapter begins with a discussion on the problems encountered to obtain repeatable 

results. The main part of the results is the identification of several rise regimes. One of the 

regimes can be described using a new non-dimensional parameter, which appears as a 

necessary scaling parameter to connect with the results of Ahmad et al [43]. The role of 

the usual non-dimensional acceleration or relative acceleration is also addressed. 

4.1 Limitations 

The results presented in this chapter are limited by the fact that measurements are very 

sensitive to the experimental conditions. Structural disorder, external parameters such as 

temperature or humidity, internal parameters such as bead-bead or bead-wall friction have 

all a contribution very ill-defined and often fluctuating with time. 

Interparticle contacts are known to create a disordered network. This effect is 

attributed mainly to inhomogeneity in size or shape between particles, as small as these 

inhomogeneities might be. The straightforward consequence of this disorder is the 

remarkable difficulty to understand the equilibrium of a simple sandpile. In a dynamical 

situation, how much can contacts disorder affect the behavior of the granular ? This 

question has to our knowledge no answers. When submitted to a strong forcing, a 

granular looses quickly the memory of its earlier configurations. Then, the common hope 

is that the macroscopic behavior depends only on an average of local properties. In this 

case, the initial configuration of the bed structure should have little effect on the outcome 

of the vibration process. In fact, it is very often the case in systems with large degrees of 

freedom as pointed out by Cross et al [69]. However, it has been judged important to 

prepare the bed the same way for all experiments. The bed was obtained by pouring gently 

the spheres on the surface of the piston so that the resulting packing is loose. 

During the early steps of the investigation, it appeared that it was difficult to obtain 

repeatable results, from one day to the other. A more attentive observation finally lead to 

the conclusion that temperature fluctuations and humidity can have a strong effect on the 
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bed response to vibration. For example, it was striking that at the end of a day the 

convection strength was much lower than in the morning for the same experiment, and 

that at the beginning of the following day, convection was recovering its original strength. 

In fact, after a long time, the heat released by the vibration system may increase the room 

temperature of about 5°C while over night, the vibration system cools down. Fig. 4. 

shows shows the rise time measured when f = 20 Hz and Γ  = 4 for 56 runs: 

Figure 4.1. Successive measurements of rise time for fixed vibration conditions. 

After the first consecutive 27 runs, the vibration system is allowed to cool down during 2 

hours, and then 29 other consecutive runs are performed. Despite the large fluctuations 

observed, there is a clear tendency of the rise time to increase with the number of runs 

performed. After the system cools down, the values of rise time are much lower than 
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before but again, there is an increase with the experiment number. Some repeated 

measurements of rise time and the corresponding room temperature have been made in 

order to clarify the role of temperature on the rise time. The bed is now vibrated at f = 12 

Hz and F = 4. In Fig. 4.2, room temperature and rise time are plotted on the same graph 

as a function of the experiment number: 

Figure 4.2. Correlations between temperature and rise time fluctuations. 

While the variation in temperature is only of about 2°C, the rise time varies between about 

1 Os and 50s. Moreover, the fluctuations of rise time follow approximately the fluctuations 

of temperature, except during the first 10 runs. Thus, we conclude with some confidence 

that temperature has a very significant effect on our results. Consequently, as already 

mentioned in chapter 2, a fan has been used to reduce the effect of temperature 
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fluctuations on the experiment. The reason why temperature is so important is not clear. 

For example, a change in temperature may affect the contact properties or the size of 

grains due to dilatation. The effect of humidity has also been observed. An increase in 

humidity leads to a longer rise time. When humidity is high, the water adsorbed on the 

particles' surface change the contact properties, and the granular cannot be considered as 

dry anymore. The control of temperature as well as humidity is a crucial issue that we 

were able to address only partially by approximate methods. It deserves certainly a better 

attention. 

Convection in a granular bed composed of sufficiently large particles is strongly 

dependent on the amount of friction at the walls, as many authors already mentioned 

[16,18]. One problem is that the surface of the wall can easily be damaged by the rubbing 

of bed particles and its frictional properties will be altered. One solution is to cover the 

wall with particles stuck on its surface so that the rugosity will remain high and hopefully 

stable for a long period of time. This technique has also the advantage to enhance the 

frictional mechanism of convection. Unfortunately, it was not possible to apply easily this 

technique to our experiment since the piston need to slide along the wall, close enough to 

prevent particles from falling but without hitting the wall coating. The control of wall 

friction is consequently very poor. 

4.2 Rise Regimes 

If the rise time T is plotted as a function of frequency for several values of fixed relative 

acceleration, it is possible to distinguish three main domains, where the rise time variation 

is different. In fact, it was chosen to plot If, i.e., the rise time dimensioned by the 

frequency, which physically measures the number of vibration cycle applied. We stress out 

that this choice does not change the qualitative features observed. Each variation domain 

corresponds to a different macroscopic behavior of the bed. The regimes have been 

classified according to the observed behaviors: heaping and convection, convection in the 

absence of heaping, and crystallization. 
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4.2.1 First Regime: Heaping and Convection 

Heaping has been observed only for low frequencies when f < 15 ± 1 Hz. In Fig. 4.3, Tf is 

plotted on a logarithmic scale as a function of frequency and the curves correspond to a 

fixed relative acceleration. 

Figure 4.3. Dimensionless rise time Tf as a function of frequency', for a range of 

relative acceleration Γ: (♦)= 1.5, (■) = 2, (•) = 2.5, (▲) = 3, (X) = 3.5, (○) = 4.5, 

(◊) = 5, (▬) = 6, (□) = 7, (+) = 8, (∆) = 9. The vertical line delimits the first and 

second regime. Each curve connects data of same r.  
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When f < 15 ± 1 Hz and at fixed acceleration, the logarithm of Tf increases 

linearly with f. The curves obtained when the acceleration is varied, stay mainly parallel to 

each other. The data can be fitted with a linear law as: 

ln(Tf) = α(Γ)f + β(Γ) 

The coefficient α(Γ) is a constant almost equal to unity for 1.5 < Γ  < 3.5. The coefficient 

β(Γ) is very small, but its value describes the variation of Tf with Γ. When/ is fixed, if 

decreases with Γ, as well as β(Γ)  

In this first regime, a strong internal convective flow, coupled with surface 

avalanches, carries the intruder upwards. The increase of rise time is associated with a 

decrease in the convective speed. When the frequency is close to 15 Hz, the flow is very 

slow. Then, the heap is seen to start near the walls and to expand towards the middle of 

the cylinder in a similar way than the two-dimensional observations of Clement et al. [16]. 

Heaping has also been observed when Γ  < 1, which is rather unusual. Indeed, the heaping 

threshold most commonly reported in the literature is Γ =~ 1.2. The reason why heaping 

has been observed below this value is quite simple. If a piston continuously pushes upward 

a granular bed and if there is enough friction on the side walls, then heaping associated 

with convective rolls is forming (private communication). The imposed relative motion 

between the bed and the fixed walls creates a shearing force responsible for that. When a 

vibration is applied, heaping will be seen as soon as a relative motion between the bed and 

the walls occurs. If the walls are fixed, there will always be relative motion, while if the 

whole container moves, relative motion occurs when the bed starts to fly, which is 

possible only if Γ > 1. 

4.2.2 Second Regime: Convection in the Absence of Heaping 

The second regime is observed for f > 15 Hz, where there is no more heaping. The top 

surface is flat but observations of the bulk motion show that convection still exists. A 

black tracer, introduced in the bed and placed at the center of the container, will rise and 

move towards the wall; then it will go down along the wall, move away from the wall at 

an undetermined depth and some time later will appear again on the top surface. The 
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width of the downward flow is of 2 to 3 bed particles' diameter. The large sphere is 

carried towards the walls by the flow but stay on the bed surface, obviously because the 

width of the downward flow is too small. 

The rise time variation is now different from what was observed in the first regime. 

Fig. 4.3 shows that the rise time on curves of fixed relative acceleration, varies slowly 

close to f = 15 Hz, but increases faster and faster as frequency is increased. For F = 2.5, 3 

and 3.5, the rupture between the first and second regime is clearly pictured by the change 

in shape of the rise time curves before and after the transition. Like in the first regime, at 

fixed frequency, there is a general decrease of Tf when F is decreased. 

For Γ ≥ 3.5, the curves have all essentially the same shape. The following 

equations have been used to fit the curves: 

The form of equation (1) is a simplified version of Knight et al. phenomenological law 

[19]. Equation (2) has been introduced to account for the fact that, close to the transition, 

the rise time varies slowly. Indeed, equation (2) expresses clearly the additional condition 

that d(Tf)/dt = 0 for f = f c, where f c  is expected to be close to 15 Hz. Both equations agree 

with the fact that the shape of the curves is independent Γ, i.e. f c  is a constant, and the 

fact that at fixed frequency, Tf decreases with r, whose variation is given by the term 

[Γ  - Γc]-β. Equation (1) is well fitted when Fa 1, f, a. 15.7 Hz, 13 a- 1.39 and a a- 300. It 

is very interesting to note that the value off, corresponds quite well to the demarcation 

between the regimes with and without surface heaping. Equation (2) is well fitted when 

Γc  =~1, fc =~11.7 Hz, β =~ 1.21 and a α =~ 570. In this case, the value off,  underestimates the 

frequency of transition. The exponent β  describing the decreasing behavior is similar in 

both fits. 
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The original phenomenological law proposed by Knight et al. [19] is: 

where it was found that: 

Equation (3) has initially been used to fit the data of Fig. 4.3. However, it appeared that 

many of the parameters (γ, δ, λ ) were negligible and that s was independent of r, in 

contrast with Ref. [19]. This is the reason why equation (1) has been used instead of 

equation (3). Several characteristics of the experimental procedure we used may be at the 

origin of the different scaling: 

1. The walls are fixed, while in Ref. [19] the walls move with container. 

2. The vibration is continuous, while in Ref [19] taps followed by rest time were applied. 

3. The bed aspect ratio is smaller than unity (H/Dcyl= 0.44), while in Ref. [19] it is bigger 

than unity (H/D

c

yl  = 1, 2, and 3). 

4. The bed depth is H/d = 12, and MRI experiments in Ref. [19] show that the top 10 to 

15 layers do not follow well equation (3). 

However, despite the differences between the two experiments, both scalings obtained 

with equation (1) and (3), contain a contribution growing like exp(f 2 ), which is the 

essential term describing the quadratic shape of the curves appearing in Fig. foil> 15 Hz. 

4.2.3 Third Regime: Crystallization 

The third regime is observed at small vibration amplitude, where there is no more 

convection. The first effect of the small amplitude shaking is to compact the bed. Because 

the bed is composed of monodisperse spheres, the initial random and loose packing 

reaches a very ordered state, where the structure is mainly hexagonal compact: this 

phenomenon will be called crystallization. Fig. 4.4 shows a view from the top of the bed 

where the "crystal" structure is clearly seen. Most of the particles are frozen in position by 

the structure, but still have a significant rotational motion. There are still very small 
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convection rolls at the walls, where particles are either absorbed or ejected. Sometimes, 

absorbed particles are seen to follow a convection roll about 3d wide and 3d deep. Some 

"free" particles move randomly on the crystallized surface looking for a potential well, for 

example a hole in the structure or a place very close to the walls where the rolls prevent 

the formation of a crystal. 

Figure 4.4. View of the top surface when the bed crystallizes. Note the regular 
packing typical of an hexagonal structure. 
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Crystallization is clearly observed when aid < 0.25, that is when the amplitude is 

much smaller than the diameter of the bed particles. The rise time corresponding to the 

crystallized regime appears in the high frequency domain of Fig. 4.5, which also shows 

roughly the first and second regimes. For F > 4 and f > 40 Hz, the spread with F is 

minimal and the points almost lie on a straight line. Thus, like in the first regime, the rise 

time variation with frequency is exponential. The data can be fitted with a simple linear 

equation: 

ln(Tf) = α f +β , 

where α  and β  are independent of F. It was found that α  = 0.107 and (β  = 4.02. 

Figure 4.5. Dimensionless rise time Tf as a function of frequency/ for a range of relative 
acceleration Γ:(♦) = 0.6, (■) = 0.8, (▲) = 1, ([x]) = 1.25, (*) = 1.5, (●) = 2, (®) = 

(ms) = 4, (▬) = 5, (◊) = 6, (□ ) = 7, (∆) = 8, (X) = 9, (+) = 10, (○ ) = 11. For clarity, 
symbols are not connected in the third regime; only a single line shows the linear trend. 
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Figure 4.6. Average rise velocity (µms-1) as a function of size ratio Φ, when f = 50 Hz 
and a/d = 

Despite the existence of very small convection rolls, the rise mechanism is believed 

to be "non-convective". A clear distinction from the convective regimes appears when one 

look at the motions of the particles around the intruder. Indeed, the particles are falling in 

the voids created below the intruder showing up on the surface, while they would rise 

together with the intruder in the case of a convective flow. In addition, the mean velocity 

of the large ball depends on the size ratio Φ = Did, as shown in Fig. 4.6, for f = 50 Hz and 

aid = 0.1. The larger the ball, the faster it rises to the surface. A priori, this result is in 

contradiction with the occurrence of a convective flow which drags all the particles at 

nearly the same velocity, whatever their size, density or shape is. Previously, effects of size 

ratio had been seen in a two-dimensional bed [19,20], but the extension of this result to 

three dimensions was until now not straightforward. In a two-dimensional (2D) system, 
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the spheres tend naturally to pack in a triangular mesh which is not the case for a three-

dimensional (3D) system. As a result, in 2D, two rising behaviors have been observed, one 

purely convective and the other dependent on the size ratio [19-20], while in 3D only 

convection has been described as the mechanism causing a large sphere to rise [8-9]. 

However, since it is possible to obtain a strongly ordered structure by shaking at very 

small amplitude in a 3D system, it is possible to observe a size ratio dependent and 

apparently "non-convective" regime. In 2D, this behavior is observed when an initially 

regular packing is sustained by using low accelerations [19]; in contrast, in 3D, the regular 

packing is created by the vibration itself, at low amplitude and high accelerations. Far from 

being in a quasistatic state, the particles fixed in position by the "crystal", still have a 

significant rotational motion. Thus, they can feel the repeated action of their neighbors and 

may eventually feel the presence of the intruder. 

4.3 Scaling Properties of the Vibration Amplitude 

In order to examine the effect of vibration amplitude, the same data as in Fig. 4.3 is shown 

in Fig. 4.7 replotted against normalized amplitude a/d for fixed values of Γ. There is a 

general decay of Tf with a/d, and for Γ  greater than approximately 4, the data tends to 

collapse on a single curve, while for Γ  < 4, there is more scatter. The curve exhibits the 

important feature that Tf increases quickly as a/d is reduced. The most important part of 

the data scattering corresponds to the first regime. Fig. 4.7 does not show data 

corresponding to the third regime. Similarly, the data in Fig. can be replotted as a function 

of a/d, where the same general trend is observed and where all the regimes are 

represented. The results of Ahmad et al. [43] imply that Tf decreases with the vibration 

amplitude, but they did not notice the scaling role of the amplitude, neither of the 

dimensionless amplitude a/d. 
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Figure 4.7.  Dimensionless rise time Tf as a function of dimensionless amplitude aid, for a 

range of relative acceleration Γ: (♦) = 1.5, (■) = 2, (●) = 2.5, (▲) = 3, (X) = 3.5, 

(○) = 4.5, (◊) = 5, (▬) = 6, (□) = 7, (+) = 8, (∆) = 9. 

The idea that a/d is a good control parameter is discussed now. The objective is to 

characterize the rapid increase of Tf when a/d is decreased. Ahmad et al. placed a large 

sphere in a vibrated bed of sand having a mean diameter d = 0.5 mm (the subscript A 

refers to Ahmad) contained within a cylinder of 20.32 cm in diameter. The bed aspect 

ratio was H/Dcyl  = 0.625 (similar to H/Dcyl  = 0.44, which has been defined in Chapter 3). 

From Ahmad's results, one can try to compute the a/d A  values at which there is an 

increase of about an order of magnitude in T, from where T varies slowly with f (see Fig. 4 
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in Ref [43]). This gives us a measure of the change in the rise behavior caused by the 

decrease of vibration amplitude. For a range of F values between 4 and 10, the values 

obtained are very consistent and have a mean of a/ d A  =~ 0.37 ± 0.08. It is already striking 

that, while there is more than a factor two between the smallest and largest value of r, the 

distribution width of a/d A  values is only 20% around the mean value. By following the 

same procedure with data of Fig. 4.7, it was found that a/d 0.4 ± 0.1. Since comparable 

values of a/d are obtained, it seems that the value of the amplitude alone is not enough to 

describe the response of the system but that it is a/d which correctly characterizes the 

divergence of T towards the small amplitude. Another striking result is that the frequencies 

corresponding to the computed a/d values are completely different in the two experiments. 

In fact, it can be shown that they depend on the diameter of the bed particles. First, it is 

clear that the vibration state is well defined by the values of a/d and Γ. Then, it is assumed 

that the experiments of Ahmad and ours are comparable and even equivalent if the values 

of a/d and of Γ  are the same in both experiments. Consequently, there is a relationship 

between the frequencies and the ratio of bed particle diameters given by, 

(f / f A ) = √d/dA . A substitution of the numerical values of the diameter leads to 

fA 	=~ .5f , which agrees reasonably well with the actual scaling between the two systems. 

This last result enforces the idea that the amplitude must be scaled by the diameter of the 

bed particles. The validity of the previous analysis relies on the hypothesis that disparities 

in particle properties or in geometry can be neglected, as well as the additional effect of 

shearing at the walls caused by the motion of the piston. 

4.4 More Observations on the Role Played by the Relative Acceleration 

The rise time curves of fixed relative acceleration have particularly interesting properties. 

On these curves, there is a monotonous variation of 'If with frequency, and when F is 

varied, they are deformed regularly, in a continuous fashion. It was impossible to meet 

both of these properties when curves of fixed amplitude or velocity were plotted. It gives 

obviously a special status to the relative acceleration F. It is not so much a surprise since 

most of the other experimental and theoretical works described F as a control parameter. 
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However, it appears that the meaning of F is not as simple, since the rise time can be very 

different with the same relative acceleration, The role of the non-dimensionless amplitude 

aid has been put forward, as well as the importance of frequency as a transition parameter, 

but it makes the role of F more confusing. This section will describe what is the effect of 

F when either the frequency or amplitude is fixed. The case of high F is also addressed.  

Figure 4.8. Dimensionless rise time If as a function of dimensionless vibration amplitude 
aid for three different vibration velocity aω: (∆) = 0.27 ms-1, (□) = 0.3 ms-1, 

(◊) = 0.5 ms-1, Note the irregularity of the constant velocity curves. 
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4.4.1 Rise Time at Fixed Frequency as a Function of Relative Acceleration 

When the frequency is fixed, the rise time decreases with an increase of relative 

acceleration as can be deduced from Fig. 4.3 or Fig. 4.5. It is equivalent to say the rise 

time decreases with an increase of amplitude. However, it is not an obvious result. In 

section 4.3, F is kept fixed while here f is kept fixed. This result seems to suggest that the 

rise time will always decrease with an increase in amplitude whatever is the fixed 

parameter. It is true when frequency, or acceleration is fixed, but not when velocity is 

fixed as shown on Fig. 4.8. Alternatively, the rise time will always decrease with an 

increase in relative acceleration at fixed frequency, but not at fixed amplitude as described 

in the following section. 

Figure 4.9. Dimensionless rise time Tf as a function of relative acceleration F for a range 
of fixed dimensionless vibration amplitude a/d: (○ ) = 0.1, (□ ) = 0.25, (∆ ) = 0.5, (▲ ) = 1, 
(■) = 1.5, (● ) = 2. 
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4.4.2 Rise Time at Fixed Amplitude as a Function of Relative Acceleration 

When the amplitude is fixed, the rise time variation with relative acceleration appears as in 

Fig. 4.9. For a/d ≥ 1, if decreases with Γ, but when a/d < 1 and Γ > 4, Tf increases with 

F. No clear explanation has been found to account for this strange behavior. However, it 

appears that this irregularity is a consequence of the heaping-non-heaping transition. 

Indeed, in Fig. 4.9, the condition to observe the irregularity is: 

A necessary condition is thus that a/d < 1 and f > f min  where f min  = 1/π √g / d = 17.7 Hz. 

Interestingly, the irregular behavior appears only when there is no heaping. In Fig. 4.8, the 

jump observed in the curves of fixed velocity has the same origin. When aω  = 0.3 ms-1 , the 

irregularity occurs for a/d =~ 0.7, and it corresponds also to a value of the relative 

acceleration Γ  =~ 4.1. 

4.4.3 "Inverse" Convection at High Acceleration 

When Γ  > 13, a new regime with an inverse convection pattern is observed. The large ball 

will not rise, but instead will sink when it is placed at the center of the top surface. In this 

regime, an upward flow occurs at the walls while a downward flow shows up towards the 

center of the container. This new behavior is concomitant with a subharmonic bifurcation 

of the bed response. Two distinct parts of the bed are delimited along a line corresponding 

to a diameter of the cylinder, and oscillate out of phase with a defect connecting them. 

This behavior is reminiscent of the subharmonic response of a vibrated bed observed by 

Douady et al. [24]. 

At the defect location, the opposite motion of the two parts of the bed creates a 

shearing much bigger than the single motion of one part of the bed relative to the walls. 

Thus, the downward flow occurs where the shearing is maximum. It is a very interesting 

conclusion since it helps to understand the usual convection pattern where the downward 

flow appears at the walls. Indeed, when the whole bed layer oscillates in phase, the walls 

are the major source of shearing and the shearing effect will decay towards the bed center. 
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Then, it is logical to observe a downward flow at the walls where the shearing is 

maximum. The remaining question is why ? 



CHAPTER 5 

RESULTS: TRACKING TEE MOTION OF THE LARGE SPHERE 

These results are the first application of the tracking technique to an experimental 

investigation. A panorama of the possible trajectories is presented. It is followed by a 

description of the three-dimensional motion where is shown the main effect of the initial 

radial coordinate of the ball. At last, the problems encountered and possible developments 

are discussed. 

5.1 Phenomenology of Trajectories 

In this section, only the vertical displacement is considered. Various shapes of trajectories 

have been observed. The ball is seen rising up, sinking down, moving up and down and its 

motion shows period doubling depending on the vibration parameters but also the height 

of the granular layer. This diversity is partly due to the diversity of macroscopic behaviors 

displayed by a granular bed. 

With the experimental setup used, heaping can be observed either for F <1 or 

> 1. When F = 1.29 and for f = 7.5 Hz, the trajectory of the ball is composed of single 

flights with a rise mostly linear with time, except at the very beginning and at the very end 

of the rise (see Fig. 5.1 ). After reaching the top of the heap, the ball falls along the slope 

towards the walls and its altitude dwindles as seen on Fig. 5.1. Another trajectory is 

shown for F = 2.06 and f = 12 Hz in Fig. 5.2. The first part of the trajectory, before the 

ball starts to rise, is very similar to the previous case, simply because it corresponds to the 

establishment of the permanent vibration regime. The last part of the trajectory in Fig. 5.2 

is qualitatively different. The ball slows down earlier and it results in a more pronounced 

curvature of the trajectory. In addition, the rise time is slower in this case, even though the 

relative acceleration is bigger. It is due to the fact that the amplitude is smaller in Fig. 5.2 

(a/d = 1.12) than in Fig. 5.1 (a/d = 1.8). Thus, it seems that the amplitude has an effect on 

the shape of the ball trajectory, especially far from the vibration source. 

When f>  15 Hz, it has been explained in Chapter 4 that a convective regime 

without heaping is observed. Fig. 5.3 shows the trajectory of the ball in this regime when 
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Figure 5.1. Plot of the vertical position z as a function of time, in the case of heaping at 
large amplitude (a/d =1.8) and f = 7.5 Hz. 
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Figure 5.2. Plot of the vertical position z as a function of time, in the case of heaping at 
small amplitude (a/d =1.12) and f = 12 Hz. 
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Figure 5.3. Plot of the vertical position z as a function of time, in the case of convection 
without heaping at high amplitude (a/d =1.8) and f = 18 Hz. Period doubling is observed 
clearly above z =~ 3.5 ". 



Figure 5.4. Plot of the vertical position z as a function of time, in the case of convection 
without heaping at small amplitude (a/d =1.12) and f = 18 Hz. There is almost no period 

doubling. 
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Γ  = 7.45 and f = 18 Hz. Again, the average trajectory is highly linear with time. The 

motion is initially composed of single flights, but before reaching the surface a period 

doubling of the motion occurs. Period doubling is characteristic of a non-linear and 

dissipative system and is consequently strongly dependent on the dissipative properties of 

the medium. When a granular layer is fluidized, the upper part of the layer is less dense 

than the bottom, and the energy dissipation will be more important in a dense region, due 

to the greater probability of collisions. Furthermore, for given control parameters, period 

doubling will occurs preferentially where the dissipation is smaller. It is probably what 

happens in Fig. 5.3. When  f = 18 Hz and Γ  = 4.64, the trajectory observed is as shown in 

Fig. 5.4. Mainly the same observations can be made than in the previous case. However, 

the period doubling is much less important and the trajectory displays a more pronounced 

curvature when the ball approaches the top surface. The different amplitudes, aid = 1 .8 in 

the first case and aid = 1.12 in the second, are responsible for the change in shape, like 

already shown for heaping trajectories, but are also responsible for the different period 

doubling behavior. Indeed, a smaller amplitude will result in a denser upper layer, which 

increases the dissipative properties of the medium, and thus, will not facilitate period 

doubling. 

In some cases, an inverse convection is observed. It seems to occur only for high 

acceleration. Fig. 5.5 shows the trajectory of the ball sinking to the bottom of the 

container, when f = 27 Hz and Γ  = 16.7 (a/d= 1.8). In first approximation, the average 

trajectory looks linear. The details of the ball motion shows that the motion is composed 

of irregular flights. An analysis by Fourier transform of the trajectory gives a very noisy 

spectrum with three dominant frequencies at f, f/2 and f/4 (see Fig. 5.9). Fig. 5.6 shows 

another trajectory for f = 27 Hz and Γ  = 10.4 (a/d = 1.12). The ball sinks more slowly, 

and the trajectory is slightly curved at the top. Again, the amplitude seems responsible for 

the more pronounced curvature of the trajectory. In addition, the downward motion of the 

ball is dominated only by the vibration frequency f, as shown by the Fourier analysis in Fig. 

5.10. 

A few trajectories correspond to a motion similar to the "whale" effect described 

in Chapter 2. The ball goes up and down, but unlike in the "whale" effect, the ball never 



Figure 5.5. Plot of the vertical position z as a function of time, in the case of inverse 
convection at large amplitude (a/d =1.8) and f = 27 Hz. Fourier analysis shows that the 
oscillatory motion is dominated by three frequencies : f, f12, f/4. 
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Figure 5.6.Plot of the vertical position z as a function of time, in the case of inverse 
convection at small amplitude (a/d =1.12) and f  = 27 Hz. Fourier analysis shows that the 
oscillatory motion is associated with only one frequency : f 

46 



Figure 5.7. Plot of the vertical position z as a function of time for a/d =1 and f = 25 Hz. 
The motion qualitatively corresponds to the "whale" effect. 
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Figure 5.8. Plot of the vertical position z as a function of time for a/d =I and f = 30 Hz. 
The motion qualitatively corresponds to the "whale" effect. 
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Figure 5.9. Amplitude spectrum corresponding to the trajectory of Fig. 5.5. There are 
three dominant frequency in this spectrum, at f, f/2, f/4. The frequencies higher than the 
vibration frequency are not physically significant. 
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Figure 5.10. Amplitude spectrum corresponding to the trajectory in Fig. 5.6. There is only 
one dominant frequency in this spectrum, at f = 27 Hz. The frequencies higher than the 
vibration frequency are not physically significant. 
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reaches the surface and does not seem to follow a convection roll. Fig. 5.7 and Fig. 5.8 are 

two examples of this type of trajectory. In both cases, the amplitude of the oscillation is 

about 0.6 inches and the ball goes down more easily than it goes up. The physical meaning 

of these trajectories is very unclear. Moreover, it is difficult to predict what are the 

required conditions to observe them. In the present state of the experiment, the ball would 

rise to the top with the same vibration conditions than in Fig. 5.7 and Fig. 5.8. 

5.2 Analysis of the Three-Dimensional Motion 

The trajectories described in this section are obtained in a cylindrical coordinate system as 

shown in Fig. 5.11. The main displacement occurs in the vertical direction and the 

rotational motions are insignificant. The effect of the initial radial position is illustrated 

using two examples. The vibration amplitude used is a/d= 1 and the frequency f  = 15 Hz. 

In the first example, the ball is initially positioned at the center of the piston 

surface. The vertical coordinate z is plotted in Fig. 5.12, and the rise appears very regular 

and the oscillatory motion has a frequency f/2. In Fig. 5.13, the radial displacement r 

during the first 20 seconds (when the ball rises) is about one bed spheres diameter. Just 

before the ball reaches its maximum altitude, r increases significantly because the ball is 

moving towards the walls. There is also a curious periodic oscillation of the radial 

displacement at f/2, which can be seen on all the other coordinates. In Fig. 5.14, the angle 

θ varies very little, which means there almost no orthoradial motion. There are also 

rotational motions, but they appear small in comparison with a complete rotation of 360 °, 

as shown in Fig. 5.15, 5.16 and 5.17. 

In the second example, the ball is initially positioned on the piston surface, but is 

now touching the cylinder walls. The vertical motion z, shown in Fig. 5.18, is qualitatively 

similar to Fig. 5.12. All the rotations and the orthoradial displacement are very small. The 

only important difference is the radial displacement, shown in Fig. 5.19 : r goes down, 

reaches a minimum, and slightly increases at the end. In order to rise, the ball must avoid 

the downward flow along the walls. Consequently, the ball is pushed inside the bed while 

rising, and close to the surface, the ball start moving back towards the wall. The maximum 

distance from the walls reached by the ball surface is about 5d. This value is bigger than 



Figure 5.11. Position of the large ball (r, θ, z) in a cylindrical coordinate system 
(ur, uθ, uz). Alpha (α) is the rotation around uz. Psi (ψ) is the rotation around ur.Khi (κ) is 
the rotation around u0. 
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Figure 5.12. Plot of the vertical position z as a function of time for a/d = 1  and f = 15 Hz. 

Heaping is observed, the rise is linear with time, and the ball oscillates at f/2. 
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Figure 5.13. Plot of the radial displacement r as a function of time for a/d =1 and 
f = 15 Hz. A residual oscillation at f2 is observed. 
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Figure 5.14. Plot of the angular motion Teta as a function of time, for aid = 1 and 

f 15 Hz. A residual oscillation at f/2  is observed. 



Figure 5.15. Plot of the rotational motion Alpha as a function of time for aid = I and 

f= 15 Hz. A residual oscillation at f/2 is observed. 
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Figure 5.16. Plot of the rotational motion Psi as a function of time for a/d = 1 and 
f = 15 Hz. A residual oscillation at f/2 is observed. 
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Figure 5.17. Plot of the rotational motion Khi as a function of time for a/d = 1  and 

f= 15 Hz. A residual oscillation at f/2 is observed. 



Figure 5.18 . Plot of the vertical position z as a function of time for a/d = 1 and f = 15 Hz. 
The ball is initially touching the side walls. The rise is linear with time, and the ball 
ascillates at f/2. No major differences with Fig. 5.12 are observed. 



Figure 5.19. Plot of the radial displacement r as a function of time, for a/d = 1 and 
f = 15 Hz. First, the ball is observed to move from the walls towards the center of the 
cylinder. Before reaching the bed surface, the ball starts to move back towards the walls, 
apparently following the bulk convective flow. 
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the width of the downward flow (3d) observed on the bed surface. One could think the 

width of the downward flow can actually be 5d in some place. However, there must have 

an horizontal flow to allow the circulation of mass from the downward to the upward 

flow, and most probably, this horizontal flow is carrying the ball farther away from the 

walls than 3d. 

5.3 Problems and Possible Improvements 

All the trajectories analysed by Fourier transform show a peak at high frequency, usually 

around 250 Hz. An example is given in Fig. 5.20. This peak can not be considered as 

noise, since the amplitude of noise usually decrease with frequency. The explanation for 

the existence of this peak certainly deserves to be found since it introduces unphysical 

fluctuations in the actual motion of the ball and affect the precision of the tracking 

technique. 

Numerous computations of velocity and acceleration have been tested, and it 

appeared there was a huge sensibility to the noise. A time derivative in actual space results 

in a multiplication by frequency in Fourier space, and consequently the noise at high 

frequencies is amplified. To solve this problem smoothing techniques have been employed. 

One technique is the convolution of the trajectory by a Gaussian. The major disadvantage 

of this technique is the loss of energy in the signal. The suggested solution to this problem 

is to apply several times the Gaussian convolution to the difference between the original 

signal and the previously smoothed signal to gather some of the lost energy, but then a lot 

of details of the trajectory are lost. Another technique is to remove the high frequency 

noise in Fourier space, but then the sharpness of a collision may be lost. 

The analysis of the trajectory itself is also a difficult task. For example, it is very 

difficult to obtain a phase "portrait", i. e. the evolution of the ball position at a fixed 

vibration phase. This type of analysis is a major tool to understand the behavior of non-

linear system. The main problem is that there is no reference between the trajectory and 

the motion of the piston. Consequently, a true time reference is missing, and the motion of 

the ball relative to the piston is unknown. If one want to find any kind of correlations in 

the motion of the ball from one period to the other, it is definitely important to include the 
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Figure 5.20. Amplitude spectrum corresponding to the trajectory of Fig. 5.5, when 
a/d = 1.8 and f = 27 Hz, showing at high frequency a peak around 250 Hz, whose origin 
is undetermined. Otherwise, there is three dominant peaks at f, f/2 and f/4, and there is a 
profile in 1/ f  corresponding to the FFT of the almost linear average motion. 
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motion of the piston in the acquisition procedure. For example, it could be a good idea to 

collect the signal coming from the accelerometer as a reference. To establish a phase 

"portrait", it is also interesting to be able to fix the phase precisely. Since the acquisition 

rate of the data has nothing to do with the vibration frequency, the possibility to have a 

point at the same phase each period becomes fortuitous. Thus, it would be interesting to 

lock the acquisition on the vibration frequency with a variable waiting time between each 

data points. Each data points is constituted of 18 voltages readings which have to be read 

in a short period of time at the acquisition rate while the waiting time between the points 

can be much longer. With the actual acquisition board which possesses 16 channels, it is 

impossible to realize this goal because it requires to read in one sequence at least 18 

channels. 

A major problem is due to the tracking technique itself The calibration procedures 

consist in taking the voltages induced when the ball is placed at the center of the cage and 

then rotated to obtain four different positions. Because the antennae cage used is small, 

there are important errors in the determination of the actual positions when the ball will be 

close to the antennae and not on a symmetry axis. One possible explanation is that the 

dipolar approximation is not valid anymore because the current loops (the transmitters) 

are too close to the antennae. Furthermore, one of the loops is very big in comparison to 

the others, and it is more difficult to fulfill the conditions for the dipolar approximation. It 

should be recalled that the magnetic field, created by the loop itself, may have some non 

negligible components in the loop plane. These components are clearly not taken in 

account in the model used for the determination of position from the induced voltages. 

The additional limitation for the study of segregation is that the amount of rising from one 

period to the other is often very small in comparison with the amplitude of the oscillatory 

motion of the ball. It means that the precision of the recorded trajectory must be extremely 

good to localize very tiny variations of the trajectory. 



CHAPTER 6 

CONCLUSION 

The main conclusion is the existence of three rise regimes in which a single large sphere 

can rise to the surface of a vibrated bed of uniform particles. The first regime corresponds 

to the formation of heap, which coexists with convection, and the rise time is observed to 

increase exponentially with frequency when the relative acceleration is kept fixed. This 

first regime is observed for a frequency smaller than a critical frequency. In the second 

regime, the rise time is also increasing with frequency at fixed relative acceleration, but the 

variation is now dominated by an exponential of the square of frequency. Also, the large 

ball is carried upward by a convection flow where heaping is no more observed. Thus, a 

distinction must be made between a convective regime where heaping is observed, and a 

convective regime without heaping. In the third regime, the bed crystallizes and the rise 

time varies again exponentially with frequency. The third regime is called "non-

convective" in the sense that the rise velocity depends on the size ratio. Because the 

particles are confined in a very stable crystal-like structure, it is likely that the rise 

phenomenon is controlled by structural defects due to the presence of the large ball (or 

intruder). Then, the more perturbed the structure, i. e. the larger the intruder, the faster is 

the rise. 

The rise of a large sphere in a vibrated bed appears to be strongly dependent on the 

amplitude of vibration. For fixed relative accelerations, the smaller the amplitude, the 

longer the rise time. More important is the fact that a decrease in amplitude leads to the 

same relative increase of rise time whatever is the relative acceleration. In fact, the 

comparison with Ahmad's experiments strongly suggests that aid, the amplitude 

dimensioned by the diameter of the bed spheres, is the appropriate control parameter. 

Then, the rapid increase of rise time when the amplitude decreases can be understood as a 

finite size effect due to the discrete nature of the bed. 

The observation of the trajectories reveals more on the dynamic of the rise. 

Trajectories have been described when there is heaping and where there is no heaping. No 

conclusive differences have been observed between the trajectories. An inverse convection 
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pattern has been observed when the bed undergoes a subharmonic bifurcation. It must be 

emphasized that this inverse convection is not simply a reversal of the usual convective 

pattern. A "whale" effect has been observed, but its physical nature is not understood. 

However, it is interesting that a single experimental configuration leads to the observation 

of so different behaviors. The analysis of the ball trajectory during the rise shows that no 

significant rotation of the ball occurs. Only two components of the motion are relevant 

the vertical motion and the radial displacement. The radial displacement is nonexistent 

when the ball is situated at the center of the container, while it is maximum when the ball 

is positioned initially at the walls. 

To date, more investigations need to be done. To be able to obtain more 

information from the trajectories, it is necessary to improve the tracking technique. The 

least is to simplify the data acquisition and make it more flexible so as to be able to 

measure physical parameters such as the motion of the ball at fixed phase. The 

experimental investigation of the rise time needs also more attention. The borders between 

the different regimes must be defined more precisely as a function of the vibration 

parameters, and their physical meaning needs to be understood. Recent observations of 

the piston acceleration have shown that the form of the vibration is not always sinusoidal 

as expected. In particular, the vibration is far from a sinusoid when the frequency is low. 

There is a non negligible possibility that the transition observed between the first and the 

second regime is an "artefact" due to the dependence of the vibration shape on the 

frequency. This last point absolutely needs to be clarified. 
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