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ABSTRACT 

CATALYTIC CONTROL OF NITRIC OXIDE 
WITH GASEOUS OR SOLID REDUCING MATERIALS 

by 
Xiaoyong Tang 

Air pollution from mobile sources is an increasingly serious problem throughout 

most of the industrialized would. Diesel powered vehicles, because of their higher 

thermal efficiency, tend to emit less carbon monoxide and unburned hydrocarbons than 

gasoline vehicles, but emit significant quantities of NO,. Therefore, it is essential to 

develop improved emission control equipment in diesel engines. A fixed bed catalytic 

reactor was used to study the decomposition of NO and the reduction of NO to N2  by 

different reductants that can be found in diesel exhaust, such as hydrocarbons, CO and 

elemental carbon over different catalysts. The effect of space velocity, feed 

concentrations, reaction temperature and catalyst deactivation were also investigated. A 

dual detector gas chromatograph equipped with a thermal conductivity and a flame 

ionization detection, a gas chromatograph with thermal conductivity detector and a 

chemiluminescent NO/Nx  analyzer were used for quantitative analysis of feed and 

product streams. 

The results show that both Cu-ZSM-5 and high surface area alumina are effective 

in promoting the desired NO reduction reaction, especially the reduction of NO by 

hydrocarbon. It was also determined that copper loaded carbon and alumina containing 

copper reduce NOx  at lower temperature than these substrates do without copper. The 

results can be explained qualitatively using the hypothesis that the catalyst promotes the 

soot-NOx  reaction by requiring an intermediate, possibly CO, produced from the soot to 

react with NO on the catalyst. This hypothesis helps explain how the catalyst improves 

soot oxidation without invoking the requirement that soot adsorb on catalytic active 



centers or diffuse into catalyst pores. The CO will rapidly reduce the NO to N2  while 

being oxidized to CO2. This research is part of an overall project directed at the 

development of a rotating fluidized bed reactor (RFBR) to catalytically promote the 

oxidation of diesel soot while reducing NO, to nitrogen gas. 
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CHAPTER 1 

INTRODUCTION  

Improving the quality of our environment has become a growing concern in this country 

and around the world. Acid rain and air pollution are very important problems that must 

be solved in the near future because such pollution has major effects on the terrestrial and 

aquatic ecosystem. Limiting the amount of pollution released into the atmosphere is an 

important part of that effort. The sources of air pollution are mainly industrial or 

stationary sources, which includes a wide variety of manufacturing facilities, power 

plants and automobiles. All fossil fuel burning automotive engines emit harmful 

emission. In many urban areas, due to their sheer number, automobiles are major 

contributors to air pollution. 

Air pollution is demonstrated dramatically by photochemical smog, although 

other pollution hazes hanging over urban areas are also observed quite often. 

Photochemical smog broadly refers to the interaction of nitrogen oxides, hydrocarbons, 

and sunlight to form oxidation products that cause eye irritation, respiratory irritation and 

disease, and plant damage. The effect of individual pollutants have been investigated, 

such as soot particulates, nitrogen oxides, carbon monoxide, sulfur dioxide and aromatic 

hydrocarbons. They have been found to contribute directly to photochemical smog and 

other forms of air pollution. 

The greater use of diesel-engine vehicles is a major trend observed worldwide. 

Co-generation systems using stationary diesel engines have also been under development. 

While the energy advantages of the diesel engine are unquestionable, concern began to 

grow over the environmental consequences. 
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1.1 Composition of Diesel Exhaust and their Harmful Effects 

Diesel exhaust is a complex mixture of organic and inorganic compounds and adsorbed 

gas, liquid, and solid phase materials. The organic or hydrocarbon compounds are made 

up of a continuous gradation of carbon-containing compounds that change from a 

hydrogen to carbon ratio of 2:1 down to eventually a ratio of 0:1. They include both 

oxygenated and non-oxygenated compounds such as aldehydes, alkanes and alkenes, 

(both straight and branched chain), and aromatic compounds (single rings, substituted, 

and polynuclear). Many of these compounds also contain functional groups such as 

carbonyl (C=0), hydroxyl (OH) and nitro (NO2). These organic compounds originate 

primarily from the unburned fuel and the lubricating oil, although some may be formed 

during the combustion process and/or reaction with catalysts. The inorganic compounds 

include sulfur, oxygen, carbon, and nitrogen-containing compounds such as sulfate 

(SO42), nitrate (NO3 ), elemental carbon, and water (H2O). Some of these compounds may 

also have their origins from the fuel, especially those containing sulfur and carbon (see 

SAE paper 940233). 

The gas phase emissions include components such as NOx, CO and sulfur oxides 

(SO2  and SO3) as well as the usual combustion products (CO2, H2O, CO). As shown in 

Figure 1, the solid phase emissions are made up primarily of small (10-80 nm), spherical 

carbon containing particles; these are variously termed the solids (SOL), solid particulate 

or soot component. The liquid phase emissions are composed of the organic or 

hydrocarbon component and sulfate (SO42 -primarily H2SO4  and some metal ion sulfates). 

As also shown in Figure 1, some of hydrocarbons may be found adsorbed onto the SOL 

and some may be in the gas phase; in the latter case, this component is often referred to as 

belonging to the vapor phase or as vapor phase organics. Diesel particulate matter is, 

therefore, a complex mixture of organic and inorganic solid and liquid compounds 

(Figure 1). Total particulate matter (TPM) consists of an agglomerate of SOL; adsorbed 

on the SOL are hydrocarbons that can be removed by an organic solvent (termed the 
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soluble organic fraction or SOF) and SO4 2 , that can be removed by water. Also 

associated with the TPM may be droplets of liquid, condensed hydrocarbons (Figure 1) 

and SO42  particles, These hydrocarbons collected with the TPM are not volatile enough 

to exist in the vapor phase and may not by adsorbed on the SOL due to low SOL levels 

but will also be removed by an organic solvent as SOF. 

Figure 1.1 Schematic of Diesel Particles and Vapor Phase Compounds 
(From SAE Paper 940233) 

Considerable research has been done on the effect of specific components of 

diesel exhaust on human health. A wide variety of potential effects have been reported 

from laboratory animal and human studies; most of the attention has focused on the 

carcinogenic potential of inhaled exhaust components, particularly the highly respirable 

TPM. About 90% of diesel particulates encompass a size range from 0.0075 to 1.0 µm 

and are therefore important in terms of potential health impacts due to the ability of 

particles to be inhaled and eventually trapped in the bronchial passages and lungs. The 

carcinogenic effect related to exhaust particles is now considered to have at least two 

components, one related to the inorganic "carbon core" or SOL portion and one to the 
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adsorbed organics or SOF portion (Figure 1). Several recent laboratory studies with rats 

have indicated that the SOL portion is a contributor to tumor formation. The associated 

SOF, particularly the polynuclear automatic hydrocarbons (PAH) and the nitro-PAH, 

seem to a contribute to the overall carcinogenic effect. 

At present, one of the most significant problems is removal of NOR, which are 

produced during high-temperature combustion and are an important group of air 

contaminants. The nitrogen oxides found in nature are N2 O, NO, NO2, N2O 3, N2O 4  and 

N2

O

5. Among these nitrogen oxides, NO (nitric oxide) and NO2  (nitrogen dioxide) 

predominate because they are emitted in large quantities from high temperature air 

oxidation processes. The term NO, is refers to all nitrogen oxides, but in air pollution 

jargon, NOx  refers only to NO (about 90% of the NON ) and NO2. NOx  is emitted in the 

United States at a rate of about 20 million metric tons per year, about 40% of which is 

emitted from mobile sources. NOx, once emitted to the atmosphere, becomes oxidized to 

nitrate through both gas and aqueous phase processes. In 1.5 days life time, it is 

transferred more than 1500 kilometers and removed by reaction with OH, dry deposition, 

or wet deposition. NO, emission has four major environmental impacts: acid deposition, 

photochemical smog, ozone formationtion in the troposphere, and ozone depletion in the 

stratosphere. NO, is a precursor to about 30% of acid rain and a major reactant in smog 

formation. NO, has been the most difficult and expensive pollutant to control. 

1.2 Control of Diesel Exhaust  

As early as in 1909, the need to control undesirable air emissions from automobile 

engines was recognized. In recent years, concern over our environment has led to 

substantial action by the executive and legislative branches of government on both the 

state and federal levels. In the United States, both the federal government and many State 

Governments are mandating large reductions in particulates, volatile organic compounds 

(VOC's) and nitrogen oxides (NOx) in order to stem the continuous increase in the 
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formation of smog, ozone and other chemical irritants. Diesel-powered vehicles tend to 

emit significant quantities of particulate matter (soot) and NOx. Therefore, it is essential 

to develop improved emission control in engines either by engine redesign or by 

treatment of the exhaust gases. During the 1980s and the early 1990s there have been 

significant advancements in the development of technology to control diesel particulate 

emissions. Effects have focused on internal control of the engine by design, the use of 

aftertreatment devices, and improvements in fuel formulations to reduce all of the diesel 

emissions. The research and development activities have been driven by the need to meet 

the US EPA heavy-duty vehicle standards. Efforts to reduce NOx  in diesel exhaust by 

combustion modifications have not been successful because decreases in NOx  have 

resulted in increases in hydrocarbons, CO and other products of incomplete combustion 

since NOx  is essentially a product of an efficient combustion process. Furthermore, 

combustion processes which decrease NOx  also tend to reduce fuel economy which is a 

major attraction of diesel engines. 

In the later 1960's, it was recognized that the national air quality standards would 

become more stringent and that substantial further reduction in auto exhaust emissions 

would be necessary. Thus, it became obvious that modifications to the internal 

combustion engine alone could not meet the anticipated standards. An auxiliary system 

was necessary and the catalytic converter was developed. Large cooperative efforts 

between petroleum companies and automobile manufacturers were organized. These 

cooperative programs were aimed at obtaining a low-emission vehicle in which catalytic 

converters are a part of the system. The catalyst's job is to mitigate the harmful emissions 

that automotive hardware cannot eliminate. 

Some of the most promising controls for air pollution involve the use of catalysts. 

Catalysts are used to control emissions from both mobile sources and stationary sources. 

Developing catalysts for the former application is a tremendous challenge for the catalytic 

scientist. In general, the catalyst must be able to withstand considerable exposure to an 
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environment that is not friendly to catalytic systems. This is a far cry from the usual mode 

of operation for catalytic reactors in chemical plants or petroleum refineries where the 

keyword is stability. The catalyst must exhibit high efficiencies under transient 

conditions; it must further be effective at temperatures from ambient to about 1 100°K, 

and it must withstand the poisoning action of additives in the fuel and combustion on 

products that are emitted with the exhaust. These specifications stress the chemical 

performance of the catalyst. Physically, it must be able to withstand thermal shock; be 

attrition-resistant to the highly turbulent exhaust gas through the converter; and last 

100,000 miles. 

Automotive exhaust emissions are controlled by catalytic converters located in the 

exhaust system so that all exhaust gases pass through them. The first large-scale effort to 

employ catalytic converters to control auto exhaust emissions began in the late 1950's. 

Most of the work was conducted by catalyst producers alone or jointly with muffler or 

converter manufacturers. This effort was directed at the California market and dealt with 

automobiles that had a high level of emissions. The catalytic converter was not adopted at 

this time because the auto manufacturers found it more economical and convenient to 

reduce the exhaust emissions by modifying ignition and to install devices to reduce 

venting emissions from the engine. Converters using oxidation catalysts were introduced 

in 1975 in response to the original Clean Air Act of 1970. They convert carbon monoxide 

and hydrocarbons produced by incomplete fuel combustion in IC engines into carbon 

dioxide and water. 

1.3 Removal of Nitrogen Oxide 

Basically, two different environments are required to purify the exhaust gases. For HC 

and CO control, an oxidation catalyst in a fuel-lean atmosphere must be used. For NOx  

removal, a reduction catalyst operating in a fuel-rich atmosphere is employed to effect 

reduction by CO, H2, and/or HC. With lean-burn spark-ignition engines, hydrocarbons in 
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the exhaust gas act as a reducing agent. Actually, the most straightforward way of 

removing NOx  is by simple decomposition into N2  and O2, a reaction that is 

thermodynamically favored except at very high temperatures. 

Nitrogen oxide pollutants are removed from auto exhaust emissions by "unfixing" 

nitrogen. In particular the decomposition or reduction of nitrogen monoxide (NO) is a 

major target to be achieved. In theory, nitrogen can be "unfixed" by 

1. Direct decomposition into nitrogen or oxygen; 

2. Reduction of the NO, to N2  with reducing agents such as CO, H2, and hydrocarbons. 

Nitric oxide is thermodynamically unstable relative to nitrogen and oxygen. The 

thermal decomposition of NO into N2  and O2  is thermodynamically favored up to 

1000°K, but the kinetics of the decomposition are extremely unfavorable. The catalytic 

decomposition of NO is the simplest and cheapest method for the removal of NO from 

exhaust streams. Most attempts to develop practical decomposition catalysts have dealt 

with a wide spectrum of transition metal oxide catalysts, noble metal catalysts, and alkali 

metal oxide catalysts. Some of the NO decomposition rates are too low to have practical 

significance in the treatment of auto exhaust. Some of these materials are active in the 

reduced state, but oxygen contained in the feed gas or released by the decomposition of 

NO competes with NO for the adsorption sites and poisons the activity. To remove 

surface oxygen and regenerate catalytic activity, high reaction temperatures and/or 

gaseous reductants are required. 

The reduction of NO with a wide variety of reducing agents is similar to NO 

decomposition in that it is favored thermodynamically. Unlike NO decomposition, the 

rates of reduction are sufficient to warrant practical consideration as catalysts for 

treatment of auto exhaust. 

There are three possible processes of reducing nitrogen oxide in an oxidizing 

atmosphere: 

1. Selective non-catalytic reduction (SNCR) 
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2. Non-selective catalytic reduction (NCR) 

3. Selective catalytic reduction 	(SCR) 

SNCR involves the reduction of NO, with NH3  or urea at temperatures of 900- 

1000°C without a catalyst. 

6NO + 4NH3   → 	5N2 + 6H2O 	(1-1) 

6NO2  + 8NH3   →   7N2  + 12 H2

O                             (1-2)    

At NH3:NOx  molar ratios of 1:1 to 2:1, about 40% to 60% NOx  reduction can be achieved 

[EPA, 1983]. Two major SNCR systems are commercially available: The EXXON 

Thermal DeNOx  ammonia injection system and the Fuel Tech NOxOUT urea injection 

system. A third system, the Emcotek Two-Stage DeNOx  urea/methanol injection system, 

has undergone extensive pilot testing and full scale demonstration. However, this 

approach is impractical for treating the oxygen-rich NOx  emissions, such as small-scale 

diesel engine exhausts, because it requires the on-board storage of NH3, a pollutant in its 

own right which is difficult to handle. 

In 1979, the Tree-Way-Catalyst (TWC) converter was first installed in gasoline 

burning IC vehicles, it belongs to the group of processes with non-selective reducing 

agents (NCR). The catalytic converter was designed to operate within a narrow air-to-fuel 

ratio in order to simultaneously reduce HC, CO and NOx. It was adopted widely in 1981 

to meet the federal 1.0 g/mile nitrogen oxides standard, catalyze these oxidation reactions 

and simultaneously reduce nitrogen oxides. The TWC converter is very successful in 

reducing pollutants from IC engines, but is not very effective for diesel engines. The 

reason is that under lean conditions, the removal efficiency for CO and HC is very high 

but NOx  is not affected. Moreover, particulate emissions tend to plug the channels of the 

catalytic converter and deactivate the catalyst. Therefore, TWC has not been applied to 

the exhaust from diesel engines.. 

Selective catalytic reduction (SCR) of NOx  was first discovered in 1957 in which 

NH3  was used as the reducing agent. Selective catalytic reduction (SCR) process with 



9 

ammonia is now widely used to remove NOx  from stationary sources such as industrial 

boilers and power stations. The general SCR classes of catalyst, were platinum for low 

temperature (175-250°C), vanadium for medium temperature (300-450°C), and zeolite 

for high temperature (350-600°C). The major desired reactions are: 

4NH3  + 4NO + O 2   → 	4N2 + 6H2O 	 (1-3) 

4NH3  + 2NO2  + 

O

2  →   3N2   + 6H2

O 

	 (1-4) 

The principal advantage of this process is its ability to reduce NOx  in the presence of 

oxygen. But also because of the toxicity of NH3, it is not used for automative exhaust 

cleaning. 

In recent years, the application of zeolites has been one of the most exciting 

developments in catalysis. Zeolites are crystalline aluminosilicates of the general formula Mv(A1O2)x(Si

O 2

)y·ZH2O in which M is either a monovalent or divalent cation. In the 

former case v is equal to x, whereas if M is divalent v is equal to one-half x. The cation 

can be exchanged reversibly without destroying the aluminosilicate framework. The 

water can also be removed without destroying the framework and can be replaced by 

other molecules whose molecular dimensions are smaller than the pore size of the cavities 

that are regularly distributed in the framework. The frame work is based on the 

combination of Al O4  and SiO4  tetrahedrons. Various structures with different properties 

can occur. The zeolites both occur naturally and can be made synthetically on either 

laboratory or industrial scale. Synthetically produced zeolites are used for the majority of 

industrial applications, including catalysts. 

Zeolites are available in a wide variety of types differing in structure from one 

another and each type of zeolite has a variety of coordination arrangements. Therefore. 

the performance of a catalyst for purifying exhaust gas depends on the type of zeolite 

which is employed and its coordination arrangement. 

Transition metal exchanged zeolites were found to be very active for reducing 

NOx. Among these, Cu-ZSM-5 is the most active one. Zhang et al.(1994), with no 
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reducing agent (soot) present, found a maximum NO conversion using Mg or Cu 

modified ZSM-5 of 80% in the absence of 

O

2, with a significant decrease in conversion in 

the presence of 5% 

O

2. Iwamoto and co-workers (1989) and Held and co-workers (1990) 

discovered that Cu-exchanged ZSM-5 Zeolites were the most active catalysts for this 

reaction. 

Bartholomew et al.(1992) reviewed selective catalytic reduction of NO with 

hydrocarbons and presented data to show that propane reduces NO by up to 95% over Cu 

ion-exchanged ZSM-5 in the temperature range of 200°C to 600°C and at space velocities 

of over 100,000v/v/hr. They showed that NO is converted to N2  with nearly 100% 

selectivity and water poisons the catalyst at all temperatures. In a kinetic study, they 

determined the overall reaction order to be between 1 and 2 and the activation energy to 

be approximately 20 kcal/mol. Bartholomew et al.(1992) also showed that the optimum 

reaction temperature was 350°C at 76,000v/v/hr and 1% oxygen in the reactant. 

Additional oxygen seemed to oxidize propane and reduce its availability for NO 

reduction. On the other hand, the reaction rate was essentially zero with no oxygen 

present. 

Tsutsumi et al.(1993, 1994), using a rotating fluidized bed to treat diesel engine 

exhaust gases, reported a considerably higher NO conversion over Cu-ZSM-5 catalyst 

than reported elsewhere in the literature(lwamoto et al., 1989;1991; Sato et al., 1991; 

Zhang et al., 1994). Conversion of NO at 693°K as high as 95% was reported at low 

superficial velocity (15 cm/s) but conversion decreased rapidly to 5% at a superficial 

velocity of 55 cm/s. They also found a significant decrease in conversion as the 

temperature of the gas is decreased to 623°K. The soot removal efficiency was also very 

high (99%) at a superficial velocity of 18 cm/s, decreasing to about 77-83% at higher gas 

velocities. 

Kintaichi et al.(1990) reported that the reduction of NO occurs highly selectively 

in the presence of about 10% oxygen by using H-form zeolite, alumina, silica-alumina 



catalysts and small amount of hydrocarbons as reducing agents. This study suggests that 

catalysts other than Cu-ZSM-5 can also show good performance for the removal of NO. 

The reduction of NO by coke deposited over CaO was studied at temperatures 

between 350°C and 700°C by Lai et al.(1988) Significant conversion of NO was 

observed above 500°C, with complete conversion at about 700°C. 

The C-NO reaction catalyzed by metal loaded on coal-char both in the presence 

and in the absence of oxygen was studied by Yamashita et al. (1991). They found that the 

C-NO reaction was remarkably promoted by the presence of oxygen at temperatures as 

low as 300°C. The ratio of the activity for NOx decomposition to that for carbon 

combustion in the coexistence of nitric oxide and oxygen depended on the kind of metal 

catalyst. The order of catalytic activity was Cu>Ca>Ni>none for the C-NO reaction. A 

high conversion for the C-NO reaction in the presence of oxygen was achieved by 

copper-loaded brown coal-char. 

Water vapor, present in the diesel exhaust from fossil fuel combustion, acts as a 

poison to the zeolite catalyst, because it tends to dissolve the alumina matrix. Also, the 

relatively small amount of sulfur present in automotive fuel influences the functioning of 

automotive catalysts to a greater extent than may be anticipated. During combustion, 

organosulfur compounds in the fuel are converted to SO2. Over automotive emission 

control catalysts, the SO

2 

 can be converted to other sulfur compounds such as SO3, COS, 

and H2SO4. The chemistry of sulfur over catalysts is a function of temperature, redox 

potential of the exhaust, composition of the catalyst, and presence of other impurities in 

the exhaust gas system. The sulfur dioxide can undergo a complex variety of interactions. 

In turn, these interactions can, influence the catalyst activity (Gandhi et al.1991). 

1.4 Objective of the Research  

The objective of this research is to obtain fundamental understanding of  the 

decomposition and reduction of NO over different catalysts and different reductants that 
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can be found in diesel exhaust, such as hydrocarbons, CO and elemental carbon. The 

effect of space velocity, feed concentrations, the reaction temperature and catalyst 

deactivation will also be studied. This will allow us to choose an appropriate catalyst and 

optimum operating parameters for the catalyst. Based on the literature, the suggested 

catalyst is copper ion-exchanged ZSM-5, a zeolite catalyst which has been shown to be 

the most active promoter of the reduction of NO with hydrocarbons. However, this 

catalyst may be poisoned by two products of diesel fuel combustion, water and SO2  and 

may not be an optimal choice. Thus, the activity of other types of catalyst will also be 

tested. 

We will also try to gain an understanding of how a solid substance like SOL in 

diesel soot that does not diffuse into catalyst pores can be influenced by catalytic sites 

that are present predominantly in pores. This research is part of the overall project 

"Simultaneous Removal of Soot and NOx  from Diesel Exhaust using Rotating Fluidized 

Bed Reactor". 

1.5 Basic Principles of Catalysis  

The use of catalysts to control rate and direction of a chemical reactions has captured the 

imagination of scientists and technologists since Berzelius in 1835. Ideas of what 

constitutes a catalyst and the mechanism of catalytic activity have undergone continuous 

refinement, spurred by the enormous industrial importance of catalysts as illustrated by 

the variety of catalytic processes used in modern petroleum refineries and in the chemical 

process industries, in general. Most of these processes involve heterogeneous catalysts, 

and an understanding of catalysis from both the theoretical and practical point of view is 

essential to chemists and chemical engineers (Bond, G.C., 1974). 

Catalyst:  The definitions of catalysis and of what constitutes a catalyst have gradually 

evolved as our understanding of the causes of catalytic phenomena has grown. Even 

today, there is no universal agreement on definitions; the point of view varies somewhat 
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depending on the investigators, for example, between the fundamental investigator and 

the practitioner, and among researchers concerned with heterogeneous catalysis, 

homogeneous catalysis, and enzymes. For present purposes, however. the definition is: A 

catalyst is a substance that increases the rate of reaction toward equilibrium without being 

appreciably consumed in the process (Bond, 1974). The phenomenon occurring when a 

catalyst acts is termed catalysis. The fundamental concept, stemming from the chemical 

approach to catalysis, is that a reaction involves a cyclic process in which a site on the 

catalyst forms a complex with one or more reactants, from which products are desorbed, 

thereby restoring the original site and continuing the cycle. 

Catalyst Activity:  The activity of a catalyst refers to the rate at which it causes the 

reaction to proceed to chemical equilibrium. The rate may be expressed in any of several 

ways. The rate of reaction depends on pressure, temperature, concentration of reactants 

and products, and other variables (Rideal, 1968). For a comparison of the activity of 

different catalysts, any of several methods may be used. For example, catalyst activity 

may be expressed as the temperature required for a given conversion at a fixed feed 

composition and pressure. 

Catalyst Selectivity:  The selectivity of a catalyst is a measure of the extent to which the 

catalyst accelerated the reaction to form one or more of the desired products, which are 

usually intermediates, instead of those formed by reaction to the overall state of lowest 

free energy . The selectivity of a catalyst may be related to its ability to direct one 

reaction essentially to equilibrium while having little or no effect on alternate pathways, 

so that the most stable products are not necessarily formed. Selectivity effects are 

intimately related to the selective chemisorption characteristics of the catalyst. 

Steps in Catalysis:  In a catalytic process, reactants must interact with the "active site" on 

the catalyst. The term "active site" is thought to be that site (or sites) on the catalyst 

surface on which chemisorption and reaction occur. Basically, a catalytic process 

includes: (Augustine et al.1988) 
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1. Bulk diffusion: reactants must pass through stagnant film from the gas or liquid phase. 

2. Pore diffusion: reactants diffuse or are transported through pore structures to the active 

sites. 

3. Chemisorption: a reactant chemically adsorbs on active sites i.e., by bonding. 

4. Chemical reaction: a reactant converts to a product on the active sites. 

5. Desorption: products desorb from the active sites. 

6. Product diffusion: products diffuse through pore from the active sites. 

7. Product diffusion: products diffuse through the film to the bulk gas or liquid phase. 

Steps 1 and 7 are controlled by mass transfer limitations; steps 2 and 6 are 

controlled by pore diffusion limitations; and steps 3, 4 and 5 are controlled by chemical 

reaction limitations. The physical and chemical properties of catalysts and operating 

condition that control the rate of reaction should be carefully chosen. Figure 1.2 

illustrates a conversion versus temperature profile. 

Figure 1.2  Conversion of Reactant as a Function of Temperature Showing Rate 
Controlling Regions 
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Catalyst Characterization:  The characterization of a heterogeneous catalyst is the 

quantitative measure of the physical and chemical properties assumed to be responsible 

for its performance in a given reaction. These measurements have value in the preparation 

and optimization of a catalyst and, even more importantly, in elucidating mechanisms of 

deactivation and subsequent catalyst design to minimize such deactivation. 

BET Surface Area  The most common method of measuring surface area, and one used 

routinely in most catalyst studies, is that developed by Brunauer, Emmett, and Teller in 

1938. This standardized procedure for determining the internal surface area of a porous 

material with surface areas greater than 1 or 2 m2/g is based on the adsorption of nitrogen 

at liquid nitrogen temperature onto the internal surface of the carrier. 

Each adsorbed nitrogen molecule occupies an area of the surface comparable to its 

cross sectional area 0.162 nm. By measuring the number of N2  molecules adsorbed at 

monolayer coverage, one can calculate the internal surface area. The BET equation 

describes the relationship between volume adsorbed at a given partial pressure and the 

volume adsorbed at monolayer coverage: 
P 	 1 	(C-1)P 

--------------- = --------------- + ---------------    V(P0-P) 	VmC 	VmCP0  

Where: 

P =  partial pressure of N 

P0  = Saturation pressure at the experimental temperature 

V =  volume adsorbed at P 

Vm  = Volume adsorbed at monolayer coverage 

C = constant 

If the above equation is obeyed, a graph of P/ V(P0-P) should give a straight line, the 

slope and intercept of which can be used to evaluate Vm  and C. 

Thermal Gravimetric Analysis:  Thermal gravimetric analysis (TGA) is a useful 

technique to measure microscopic weight changes. A few milligrams of catalyst are 
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loaded into a sample pan suspended from a microbalance inside a quartz tube. A 

controlled gas flow and temperature ramp is initiated, and a profile of weight change 

versus temperature is recorded. The weight versus temperature profile is helpful in 

establishing procedures for regenerating the catalyst in a process reactor. 

Catalyst Deactivation:  General reviews of catalyst deactivation have been given by Butt 

and Levenspiel and they have laid foundations of a better understanding of catalyst 

deactivation processes (John B. Butt et al.1988). A catalyst may lose its activity or its 

selectivity for a wide variety of reasons. The cause may be grouped loosely into: 

1. Poisoning 

2. Sintering 

3. Fouling 

Poison was once the generic name applied to all forms of catalyst deactivation. In 

this study, we defined a catalyst poison as an impurity present in the feed stream that 

reduces catalyst activity. It adsorbs on active sites of the catalyst and, if not adsorbed too 

strongly, is gradually desorbed when the poison is eliminated from the feed stream. The 

phenomenon is then temporary or reversible. If adsorption is strong, the effect is 

permanent or irreversible. 

Two general classes of poisoning: selective and nonselective can result in catalyst 

deactivation. Selective poisoning occurs when a feed compound specifically and 

discriminately interacts with a specific catalytic component resulting in a poisoning of the 

active sites. Nonselective poisoning can be caused by a number of reasons, all of which 

are nondiscriminating in that accumulations of foreign substances occur on both the 

carrier and active catalytic opponents (Hughes, 1984). 

Sintering is a physical process associated with loss of area of the catalyst which 

occurs when the catalyst is operated above its normal range of temperature. Two different 

kinds of sintering may be distinguished, depending on the type of catalyst employed. If 

the catalyst is a normal high-area support type material, operation at high temperatures 



17 

will cause a loss of specific surface with associated change in the pore structure, giving a 

corresponding loss in activity. The second type of catalyst deactivation occurs when the 

active ingredient, usually a metal, which is supported on a high-area oxide support 

becomes mobile at elevated temperature. Here, sintering can occur not only by reduction 

of the support area but by a "coalescence" or loss of dispersion of the metal crystallites 

(Peterson, 1987). This loss of area of the active constituent of the catalyst causes a sharp 

drop in activity. 

Fouling is a process of catalyst deactivation that may be either physical or 

chemical in nature. In general, much larger amounts of material are responsible for 

deactivation in fouling processes than in poisoning. The most typical of fouling processes 

is that of the carbonaceous deposit or "coke". The major fouling material in the 

automotive exhaust which deactivate the catalyst comes from unburned engine oil 

additive ZDP. 



CHAPTER 2 

EXPERIMENTAL 

2.1 Experimental Apparatus 

The experimental apparatus flow schematic is shown in Figure 2.1. This system consists 

of a laboratory-scale quartz tube reactor (Kontes Scientific Glassware, Inc.) residing in a 

vertical three zone controlled furnace (Applied Test System, Inc.) containing known 

volumes of powder catalyst. The flow rates of gases were measured by several calibrated 

rotameters. The inlet and outlet gases were analyzed by gas chromatography (GC) and a 

chemiluminescent NO/NOx  analyzer to determine the concentrations of each of them. 

Figure 2.1 Schematic Diagram of Experimental Apparatus 

1.

Cylinders (He, NO, NO2, C3H8, O2, CO, SO2), 2.Flowmeters, 3.3-Zone Furnace, 

4.Quartz Reactor, 5.Thermocouple, 6.Temperature Controller, 7.HP5890 GC-TCD, 

8.HP5890 GC-TCD, 9.GOW-MAC GC-TCD, 10.NO/NOx  Chemiluminescent Analyzer 

18 
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A tubular flow reactor is shown in Figure 2.2. The quartz tube reactor is 2.5 cm 

inside diameter, and 55 cm long. The bed materials consisting of catalyst or carbon black 

or a mixture of catalyst and carbon black were placed on a 90-150 p.m coarse porous 

quartz disk located at about two-thirds of the height of the reactor. The reactant gases 

enter into the reactor from the top and are discharged from the bottom (downflow). 

The quartz reactor is placed in a three zone electric furnace with three independent 

temperature controllers. The catalyst samples were contained in the middle zone of the 

furnace at various residence times and temperatures. The reactor temperature was 

monitored by a calibrated 0.16 cm Chromel-Alumel (K-type) thermocouple (Omega 

Engineering, Inc.) which is inserted at the top of the reactor and placed on the center line 

of the tube immediately before the solid sample. The thermocouple was calibrated using 

boiling water. 

2.2 Instrumental Analysis  

Analytical techniques were a very important part of this research. The catalyst surface 

area, the catalyst particle size, the concentrations of feed and product compounds were all 

measured. All of the analytical techniques that were used in this study are discussed in 

this section. 

2.2.1 Altamira (AMI-1) Catalysts Characterization Instrument  

The Brunauer, Emmett, and Teller (BET) surface area measurement method was used to 

determine the surface area of the catalysts. All the samples used were weighed and 

inserted in a quartz U tube. The U-tube was installed on the Altamira (AMI-1) catalyst 

characterization instrument to measure BET surface area. The AMI-1 is a computer 

operated catalyst characterization instrument, and is used to conduct standard catalyst 

characterization tests including BET surface area. 
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The operating manual for BET measurement was followed exactly. Figure 2.3 shows 

the BET operating procedure. The parameters used for a three point BET run are shown 

in Table 2.1. 

Table 2.1  Operating Parameters used for BET Surface Area Measurements 

Treatment  Treatment Gas Nitrogen 
Flow Rate 30 ml/min 
Hold Time 5 min 

1st 2nd 3rd 
Flow BET  Adsorbate Gas 

Flow Rate 
10% N2  in He 

20 ml/min 
20% N2  in He 

20 ml/min 
30% N2  in He 

20 ml/min 
Adsorption Time 4 min 4 min 4 min 
Desorption time 4 min 4 min 4 min 

1st 2nd 3rd 
Carrier Gas 
Flow Rate 

10% N2  in He 
20 ml/min 

20% N2  in He 
20 ml/min 

30% N2  in He 
20 ml/min 

Response Factor 1.00 1.333 1.280 
BET 

Calibration  
Adsorbing Gas 

Flow rate 
N
2 30 cm3  /min 

Time Between Pulse 1.5 min 
Initial Data Delay 12 sec 
Data Collection 

Interval 
60 sec 

2.2.2 MasterSizer X Laser Particle Sizer Instrument  

The MasterSizer X Particle Sizer measures the size of particles by means of laser 

diffraction. Laser light scattering is an exceptionally flexible sizing technique able, in 

principle, to measure the size structure of any one material phase in another. The 

instrument comprises an optical measurement unit which forms the basic particle size 

sensor, and a computer which manages the measurement and performs result analysis and 

presentation. 

The MasterSizer X can analyze continuous liquid sprays. The spray merely needs 

to be directed through the analyzer beam. The MasterSizer X optical laser particle sizer 

measurement unit comprises a transmitter, a receiver, sample area cover and an optical 

bench. The transmitter houses the laser, its power supplies and the beam expanding optics 
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that create the analyzer beam. The receiver houses the range lens, the detector and 

associated electronics and computer interfaces. 

The most important dispersion decision is the choice of the liquid type. The 

dispersant can be any clear optically homogeneous liquid that does not interact with the 

sample and change its size. In this experiment, water was used as the dispersant liquid. 

The essential steps in measuring a sample are: 

1. Prepare the sample. 

2. Check the optical alignment. 

3. Enter sample documentation. 

4. Measure the background. 

5. Add the sample to the system at a suitable concentration. 

6. Measure the sample. 

7. Calculate the size distribution. 

The results reported by the instrument have several meanings. The most common 

result from laser diffraction is that the fundamental size distribution derived by this 

techniques is reported based on volume. This means that when the result lists, for 

example, 10% of the distribution in the size category 5-6µm, this means that the total 

volume of all particles with diameters in this range represents 10% of the total volume of 

all particles in the distribution. 

It is useful to consider a numerical example. Suppose the sample consists of only 

two sizes of particle, 50% by number having diameter 1 µm and 50% by number 10 µm. 

Assuming spherical particles, the volume of each of the larger particles is 1000 times the 

volume of one of the smaller ones. Thus, as a volume distribution, the larger particles 

represent 99.9% of the total volume. 
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2.2.3 Gas Chromatography  

Gas chromatography (GC) is the most common analytical technique for the quantitative 

determination of chemical compounds. Two types of gas chromatography were used in 

the experiments, an HP5890A and a GOW-MAC. In both cases, the inlet reactant and 

outlet effluent products stream entered an on-line GC, flowed through a six-point gas 

sampling valve, from which it was picked up by the carrier gas to an on-line gas 

chromatograph. 

2.2.3.1 Hewlett Packard 5890A Gas Chromatograph:  The Hewlett Packard 5890A gas 

chromatograph has two detectors: a thermal conductivity detector (TCD) and a flame 

ionization detector (FID). TCD was used to measure the concentration of N2  and 02. The 

GC column used with the TCD was a 1/8 inch in diameter by 3 feet long stainless steel 

tube. The oven temperature of the GC was controlled at 25°C so that N2  and O2  peaks can 

be adequately separated. 

The CO, CO2  and propane concentrations were analyzed by flame ionization 

detector (FID). Generally, FID is not suitable for the measurement of CO and CO2. Due 

to the limitations of TCD sensitivity, the sample gas of CO, CO2  or propane was 

introduced into a nickel hydrogenation catalytic reactor to produce methane allowing the 

use of the very sensitive FID system. The operating method for the nickel hydrogenation 

catalyst system is shown in Figure 2.4. When the ten-point sampling valve is at the off 

position, the product effluents pass through the sampling loop and discharge to the hod. 

Once the valve is switched over to the on position, the effluents are carried out by Helium 

from the sampling loop into the column. The individual peaks are then hydrogenated with 

hydrogen to CH4  using the Ni-catalyst at 350°C. Thus, the CO and CO2  peaks are 

detected as CH4  and recognized based on retention time. The GC column used with FID 

is a 1/8 inch in diameter by 6 feet long stainless steel tube. 

The detailed operation conditions are listed in Table 2.2. 
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Table 2.2 Operation Conditions of HP 5860A 
Detector TCD, HP5890 FID, HP5890 

Detector Temperature 120°C 250°C 
Injection Temperature  120°C 350°C 
Column Temperature 	25°C 	25°C 

Carrier Gas Helium Helium  

Loop Volume 20µl 20µl 
Packing Materials Molecular Sieve 5A 60/80 Porapak Q 80/100 

Integrator HP3396A HP3396A 
TCD Carrier Gas Flowrate    20 ml/min -  

TCD Reference Gas 
Flowrate 

20 ml/min - 

Ni Catalyst Reaction 
Temperature 

- 350°C 

Air Flowrate of FID         - 400 ml/min 

H

2 Flowrate of FID - 35 ml/min 

2.2.3.2 GOW-MAC Gas Chromatograph: The purpose of using this GOW-MAC 

Series 550P was to measure the NO concentration in the inlet and outlet gas stream at low 

space velocity. The GOW-MAC GC was equipped with a thermal conductivity detector 

(TCD). The column used was a 1/8 inch in diameter by 12 feet in length stainless steel 

tube. To obtain a good separation of NO and O 2  peaks, the column was extended from the 

oven and was immersed in an ice bath to keep the column temperature at 0°C. 

The GC operating conditions are listed in Table 2.3. 

Table 2.3 Operation Conditions of GOW-MAC Series 550P 

Detector Temperature 200°C                              
Injection Temperature 150°C                                                                                                                
Column Temperature 	  0°C 

Detector Current 200 mA 
Carrier Gas Helium                                                                              

Loop Volume 1 ml 
Packing Material Porapak Q 80/100 

Carrier Gas Flowrate 26 ml/min 
Reference Gas Flowrate 26 ml/min 

Integrator HP3396A 
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2.2.4 Chemiluminescent NO/NOx  Analyzer  

A chemiluminescent Thermoelectron model 10A NO/NO, analyzer manufactured by 

Thermo Electron Corp. was used to measure gaseous NO and NO,. The 

chemiluminescent producing reaction of NO and O 3  provides the analysis signal for this 

technique. Specifically, 

NO + 

O 3 

 → NO2* + 

O2 

	 (2-1) 

NO2* → NO2  + hy 	 (2-2) 

Light emission results when electronically excited NO2  molecules revert to their ground 

state. 

To measure NO concentration, the gas sample to be analyzed is blended with 

O3 

 

in the instrument's reaction chamber. The O

3 

 is generated in situ by a high voltage arc 

ozone generator. The resulting chemiluminescence is monitored through an optical filter 

by a high sensitivity photomultiplier positioned at one end of the chamber. The 

filter/photomultiplier combination responds to light in a narrow wavelength band unique 

to the above reaction. The output from the photomultiplier is linearly proportional to the 

NO concentration. 

Basically, chemiluminescent analysis is only sensitive to NO. To measure NO, 

concentrations, the sample gas flow is diverted through a high temperature NO2  to NO 

converter. A temperature controller is used to maintain the proper temperature for NO2  

thermal conversion to NO which is 650°C. The chemiluminescent response in the 

reaction chamber to the converter effluent is linearly proportional to the NO, 

concentration entering the converter. By taking the difference between NO, and NO, one 

can obtain the quantity of NO2  in the gas stream. 

A minimum gaseous flowrate of 2 SCFH (about 1L/min) is required by the 

instrument to measure NO and NO,. 
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2.2.5 Thermal Gravimetric Analysis  

The TGA tests were conducted to study the catalyst and carbon black weight change with 

changing temperature. The TGA 7 is made up of two major components: a sensitive 

ultramicrobalance which permits the measurement of weight changes as small as 0.1 µg 

and a furnace element capable of achieving temperatures of 1000°C. With the PE 7500 

Professional Computer and UNIX operating system, the modular TGA 7 permits the 

measurement of weight changes in a sample material as a function of temperature or time 

resulting from chemical reactions, decomposition, solvent and water evolution, curie 

point transitions and oxidation of sample materials. 

2.3 Gases and Catalysts  

All gases were supplied by Matheson Gas Products. The concentration of the active gas 

in different gases is listed below: 

NO: 1180 ppm (in Helium) 

NO2: 1070 ppm (in Helium) 

C3H8: 1207 ppm (in Helium) 

CO: 1010 ppm (in Helium) 

SO2: 211 ppm (in Helium) O2

: 99.995% 

Helium: 99.995% 

Mobil Research and Development Company provided us with a sample of 100% 

Cu-exchanged ZSM-5 catalyst combined with a silica-alumina binder designed to resist 

attrition in the fluidized bed. The mixture was 50% by weight catalyst and 50% by weight 

binder. It is a solid powder with light-yellow color. Mobil also provided separate samples 

of SiO2/Al2O3, which is a solid powder with yellow color. The Al2O 3  is a white solid 

powder provided by the Alcoa Technical Center 
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2.4 Experimental Procedure 

2.4.1 Fixed Bed 

The experiments of NO decomposition and NO reduction by different reductants were 

carried out in the quartz fixed bed reactor described above. A volume of 3 ml of solid 

sample was first put on the porous quartz disk inside the reactor and heated to the desired 

temperature under helium flow for a short period of time in order to remove impurities 

such as water and oxygen which may be adsorbed on the solid materials. Then the 

experiment was started by switching different sample gases to flow through the reactor. 

Activity tests were carried out in a temperature range of 300°C to 600°C. The gaseous 

compositions were measured by the GC and NOx  analyzer. 

In order to know the effect of space velocity on the reaction, two different space 

velocities were used. The space velocity can be calculated as follows: 

Space Velocity = Total flow rate / Solid sample volume 	(2-3) 

The aging experiments were run to determine catalyst deactivation over time. A 

fresh catalyst was used to catalysis a reaction at a certain temperature. After this run, the 

catalyst bed was cooled down to room temperature. Then the furnace was heated and the 

activity of the catalyst was checked. 

2.4.2 Thermogravimetric Analysis 

In this experiment, the empty sample pan was first weighed to get a zero point reading. 

Then 4-6 mg of sample was loaded into the sample pan, and after the reading became 

stable, the initial weight was recorded. The next step was to set the desired temperature 

program, and start the experiment. During the experiment, flow of reactant gas was added 

at the required temperature. The procedure developed for conducting these tests was to 

heat the sample to the desired temperature, wait until the percentage weight reading 

stabilized, and then introduce the desired reactant gas into the furnace at the required 

temperature. Finally, a weight percentage versus temperature curve was obtained. 
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During the experiments a Helium purge gas flowed through the TGA to prevent any 

decomposition products or reactive gas sample from entering into the balance chamber. 

The experimental parameters used to operate the TGA 7 are listed in Table 2.4. 

Table 2.4  The Parameters Used in TGA Analysis. 

Sample Parameter  Sample weight: 
Sample Zero: 

Atmosphere Parameter  Purge Gas: Helium 
Temperature Rate 

Temperature Program 	Initial 120°C 40°C/min 
Final 800°C 
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Figure 2.4  Nickle Hydrogenation Catalyst System 



Figure 2.2  Design of Quartz Reactor 
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Figure 2.3  Procedure of BET Surface Measurement by AMI-1 



CHAPTER 3 

RESULTS AND DISCUSSION 

3.1 BET Surface Measurement 

The BET surface areas of the catalysts and powders used in the experiment were 

measured using the Altamira catalyst characterization instrument model AMI-1. A weight 

of 0.05 g of each catalyst was used to conduct the measurement. The procedure was 

described in Chapter 2. The results of the BET surface area measurements using the 

computer integrated system of the Altamira are given in Table 3.1. Figure 3.1 is a typical 

BET plot for the Cu-ZSM-5 used in this research (i.e., 50% Cu-ZSM-5 and 50% 

SiO2/Al2O3). 

Table 3.1 Surface Area of Catalysts and Powders used in This  Research (m2/g) 

Cu-ZSM-5 ZSM-5 A12O3  
SiO2/Al2O3 

 Calcined Al2O3 

ADS. 118 169 109 59 112 
DES 123 132 110 45 104 

AVERAGE 120.5 150.5 	109.5        52 108 

3.2 Measurement of Particle Size  

The particle size distributions of the powders and catalysts were determined using a 

MasterSizer X Particles Sizer described in Chapter 2. Table 3.2 shows the experimental 

results. It lists mean particle size in volume percent as well as in number percent. The 

mean particle size is based on volume and number distribution. In the case of Cu-ZSM-5, 

83.82 µm is the mean particle size for the Cu-ZSM-5 volume distribution. The volume 

particle size of alumina after calcining to 400°C is larger than before, this is because the 

agglomeration of the sample resulting from sintering. 
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Table 3.2  Particle Size of Different Particles (µm) 

Cu-ZSM-5 ZSM-5 A12O3  SiO2/Al2O3  Cal.Al2O3  
Volume 83.82 66.91 89.78 54.92 124.92 
Number 4.08 1.33 1.47  1.26 1.37 

3.3 Decomposition of NO  

A NOx decomposition catalyst, which would not require a reductant to destroy NON, 

would be ideal for diesel applications because of the low availability of engine exhaust 

hydrocarbon reductants. The NO, decomposition reaction is shown below: 

2NOx  → N2+ xO2 	(3-1) 

The catalytic activity of Cu-ZSM-5 for the NO decomposition was measured as a 

function of reaction temperature at a fairly low space velocity of 2,140v/v/hr. The 

temperature dependence of NO decomposition over Cu-ZSM-5 is shown in Figure 3.2. 

The maximum activity was observed around 400-450°C. Above this temperature, the 

percentage conversion decreased with increasing temperature. When the reaction 

temperature was again set at 400°C after the experiment at 500°C, the amount of 

conversion of NO into N2  and 

O

2  was the same as those of the original samples, within 

experimental error. Hence the decrease in the catalytic activity at higher temperatures was 

not attributable to the deactivation of the catalyst. It is presumably due to changes in the 

reaction mechanism as a function of temperature. 

In the absence of the catalyst, the formation of N2  and 

O

2  was not observed under 

these conditions, indicating the catalytic nature of the decomposition. As shows in Figure 

3.2, the percent (volume) conversion of NO was not equal to the percent (volume) 

formation of N2  and O2  based on stoichiometry. The difference between the amount of 

NO reacted and N2  and O2  produced can be attributed to: 

I. The formation of NO2, which could not be detected by usual gas chromatographic 

techniques. The reaction, 2NO -→ N2  + 

O

2, proceeds first on the catalyst, then part of 

O

2  produced reacts further with unreacted NO to form NO2  by reaction (3-2). 
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2NO + O2 → 2NO2 	 (3-2) 

2. N2

O 

 was detected by Iwamoto et al.(1991) at temperatures below 400°C. But in this 

experiment, N2O was not detected. 

3. Recent results by Y.Li et al.(1994) suggest that N2

O

3-like species formed on Na 

exchanged zeolites by co-adsorbing NO and NO2. This compound could also be formed 

on Cu-ZSM-5 which we used in our experiment. 

It is very important to conduct a material balance for this reaction. The nitrogen 

balance can be obtained from the inlet and outlet nitrogen concentration. Table 3.3 

summarizes the nitrogen balance. 

Table 3.3 Nitrogen Balance of NO Decomposition  

Temp. Inlet NO Outlet conc. (ppm) NO N 
(°C) C (ppm) NO N 2  

O
2  conv.(%) balance 

300 590 388 85 61 34.21 94.58% 
350 590 333 111 93 43.57 94.08% 
400 590 	246 154 136 58.30 93.90% 
450 590 262 145 118 55.59 93.54% 
500 590 346 110 98 41.36 95.93% 

As mentioned before, the quantity of nitrogen and oxygen recovered are lower 

than expected. If one assumes that the difference in nitrogen is due to NO2  formation, 

then NO2  concentration can be calculated. From this calculation, one can check the 

O2 

balance, which is listed in Table 3.4. 

Table 3.4 Oxygen Balance of NO Decomposition  
NO2  Concentration Required to Obtain 

100%N Balance (ppm) 

O

2  Balance 

32 97.3% 
35 99.8% 
36 106.1% 
38 97.3% 
24 100.0% 



34 

The temperature dependence of the catalytic activities of A12

O

3  and Si

O

2/Al 2

O

3  

are also shown in Figure 3.3. Cu-ZSM-5 displayed the best activity among the three 

catalysts at temperature below 450°C. Al2

O

3  shows the highest catalytic activity at 

500°C. It can be seen that NO conversion to N2  increases with alumina content. 

3.3.1 Effect of Space Velocity 

Conversion of NO to N

2 

 and O 2  is expected to be a strong function of space velocity. 

Consequently, tests were run at high space velocity in an attempt to test the catalyst 

performance in the practical application range. The degree of NO removal over Cu-ZSM-

5 was investigated at two space velocities: a low space velocity of 2,140/h and a high 

space velocity of 20,000/h. The desired space velocity was obtained by varying the flow 

rate of the reactant gas mixture through the catalyst in the quartz reactor. 

As shown in Figure 3.4, conversion to N2  was 52% at  2,140/h and 17% at 

20,000/h at 400°C. For NO decomposition, conversion to N, is lower at high gas space 

velocities. This is because at high gas space velocities, residence time and contact  time of 

NO with the catalyst is shorter, and thus rate of product formation is reduced. The results, 

nevertheless, demonstrate that the catalyst has activity for the catalytic decomposition of 

NO even at high gas velocity, which is important for  practical use. 

3.3.2 Effect of Oxygen 

To get further information concerning the activity of the catalysts under  practical 

conditions, the activity was reinvestigated in the presence of large excess of 

O 2

. When 

1% 

O 2 

 was introduced into the reaction system, the degree of decomposition of NO was 

greatly  decreased to about half of the values without 

O 2

. In the presence of 10% of 

O 2

. 

which corresponds to the exhaust gases from conventional diesel engines, the conversion 

did not exceed 10% 
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3.3.3 Effect of SO2  and Water  

SOx  poisoning of catalyst for NO decomposition is another problem that needs to be 

solved. The activity of the catalysts was measured after being treated with a mixture of 

SO2  (22 ppm), O2  (10%) and H2

O 

 (10%) at 400°C for 10 hr. In that period of time, the 

activity of Cu-ZSM-5 for NO decomposition decreased drastically. 

Then the deactivated catalyst was exposed to a helium stream at 500°C for an 

hour. After that, the catalytic activity of the catalyst was tested again. It was found that 

the catalytic activity of Cu-ZSM-5 was completely regenerated. That is, the SO2  was 

desorbed at the higher temperatures resulting in regeneration of the decomposition 

activity. This suggests almost no change in the active sites due to the SO2  treatment. SO2  

would compete with NO for the adsorption sites and prevent the catalytic reaction. 

3.4 Reduction of NO by CO  

As mentioned in the previous sections, Cu-ZSM-5 is very active for the decomposition of 

NO. But the catalytic activity is inhibited by O2, SO2  and H2O, all of which are always 

present in diesel exhausts. In light of the enormous challenges involved in developing 

viable NO, decomposition catalysts, an alternative approach of selective NOx  reduction is 

now under intensive investigation. 

The reducing gases have been classified into two groups, selective reductants (for 

example, C2H4, C3H6, C4H8  and C3H8) and non-selective reductants (H2, CO, CH4  and 

C2 H 6). The results of the propane NO reaction will be depicted in section 3.5 as an 

example of the former group. From the non-selective reductants, CO was selected to be 

used in these experiments. 

In diesel exhaust, CO concentration is relatively high. For a 1.8L diesel engine, 

the CO concentration in the exhaust is around 200 ppm. It is possible to use CO as a 

reductant for the NO removal in diesel exhaust. 
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3.4.1 Effect of CO Concentration  

In order to know if NO and CO can react in the absence of a catalyst, a stream of 590 

ppm NO and 505 ppm CO was passed though the quartz reactor at 500°C and a space 

velocity of 2,140/hr. The results showed no detectable NO or CO conversion. 

When Cu-ZSM-5 was used, N2  conversion can be detected. The experiment was 

conducted under different NO and CO concentrations. The result is shown in Figure 3.5 

From the figure, we can see that: 

1. NO conversion increases in the presence of CO as compare to without CO. 

2. NO conversion will increase when CO/NO ratio increases. 

3. The highest NO conversion can be achieved around 400°C . 

3.4.2 Effect of Oxygen  

When 10% 02  was added in this reaction system, the conversion of NO into N2  was 

inhibited in the temperature range examined (Almost no N 2  was found). It follows that 

CO is not an effective reductant for NO in the presence of O 2. 

3.4.3 Reaction Mechanism  

CO and NO adsorption on CuO was studied by Davydov and Budneva (1984). The 

original heterogeneity of the CuO surface was suggested to account for the presence of 

two states of surface copper cations with different effective charges. Interaction between 

NO and CO resulted in the formation of isocyanate (-NCO) structures, while CO and NO 

molecules were competing for the same active sites of Cu+. 

The rate of NO reduction into N2  with catalyst Cu-ZSM-5 is enhanced in the 

presence of CO. The improvement may be due to either a direct reaction of CO with NO 

catalyzed by Cu-ZSM-5, 

2N

O 

 + 2CO ----> 2CO2  + N2 	 (3-3) 

or a reaction of CO with 02  which comes from the direct decomposition of NO, 
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2N

O 

 ----> N2  + O2 	 (3-4) 

2C O  + O

2 

----> 	2CO2 	(3-5) 

which is equivalent to 

2C O  + O

2 

----> 2CO2 

+ N2. N2O may be a intermediate in this 

reaction. First, N2

O 

 is produced by the reaction by NO and CO. 

2N

O  + 

	

2C O 

----> 	N 2O + 2 CO2 	 (3-6) 

Then, CO + 

N2

O 

----> N2  + CO2. However, no N2O was detected in our experiments. 

Copper atoms and ions (Cu+, Cu2+) in Cu-ZSM-5 take part in the formation of 

isocyanate complexes and cabonyl compounds. There are surface oxygen molecules on 

the catalyst. At elevated temperatures, the catalyst can lose surface oxygen, plus the 

oxygen from NO. Thus Cu
2+ 

ions can be rather easily reduced to Cu

+

. 

The reason why oxygen inhibits the NO conversion in the (NO + CO) reaction 

system may be due to two factors. First, NO reduction is inhibited by active sites tied up 

by chemisorbed oxygen. Second, oxygen prevents the redox behavior of the copper ion in 

the catalyst. 

3.5 Reduction of NO by Hydrocarbon over Cu-ZSM-5  

Selective catalytic reduction (SCR) is presently one of the most technically advanced 

technologies for efficient removal of NOx  from large and small scale combustion 

processes. In general, hydrocarbons have a certain degree of selectivity for promoting NO 

reduction. The SCR process using hydrocarbons has potential applications in NO, 

removal from small to large-scale power plants and diesel engines. Based on previous 

studies, there are several factors that govern the overall performance of zeolite SCR 

catalysts. The nature of the metal ion, extent of metal loading, catalyst acidity, nature of 

hydrocarbons, hydrocarbon to NO ratio, space velocity of the feed gas, oxygen 

concentration, and the presence of water vapor and SO2  are some of the important factors 

that determine overall NO conversion and the temperature of maximum conversion. In  
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our experiments, propane (C3H8) is used as a reluctant. NO reduction was carried out 

over Cu-ZSM-5 and A12

O

3  respectively. 

As shown in Figure 3.6, nitrogen conversion in the (NO + C3H8) system in the 

absence of 

O

2  is low in the temperature range of 200°C to 500°C. The catalytic activity is 

samll. The N2  conversion that occurs is probably due to NO decomposition. 

3.5.1 Effect of Oxygen  

The effect of oxygen on the catalytic activity is also shown in Figure 3.6. The conversion 

level of NO rapidly increased with only 1% of oxygen. N2  conversion is very significant 

both at 

O

2 

 concentrations of 1% and 2%, indicating that O

2 

 is necessary for the catalytic 

reaction. When the 

O

2 

 concentration is raised from I % to 2%, there is a slight decrease in 

the maximum N2  conversion level. After that, a decrease in N2  conversion occurs in 2% 

O

2 

 compared to 1% 

O

2

. This is because at high 

O

2 

 concentrations, propane is consumed 

by direct oxidation by 

O

2 

 at high temperatures and its availability for NO reduction is 

reduced. 

Another experiment was run at 350°C, the temperature at which maximum 

conversion to N2  is attained. The system was consisted of (NO + C3H8) and different 

concentrations of 

O

2

. From Figure 3.7, it can be seen that when the 

O

2 

 concentration is 

around 1% to 2%, the highest NO reduction to N2  is attained. At higher concentration of 

oxygen, the catalytic activity decreased slightly. However, the catalytic activity at 12% 

oxygen is still 7 times greater than that without any oxygen. 

3.5.2 Effect of C3H8  Concentration  

Figure 3.8 shows the effect of NO and C3H8  concentrations on N2  conversion over Cu- 

ZSM-5 in 1% 

O

2

. Reactant concentrations and C3H8/

N

O ratio is listed in Table 3.5. 
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Table 3.5 Reactant Conc. and C3H8/NO Ratios of (NO + C3H8) Reaction System  

C3H8  (ppm) NO (ppm) C3H8NO 

295 590 0.5 
590 590 1 
708 354 2 

From the data, we can see that low propane/NO ratios result in low N2  conversion. 

On the other hand, high propane/NO ratios will increase 

N2 

 conversion. The increase in 

conversion with increasing propane concentration (NO concentration held constant) 

indicates a positive propane concentration dependence on the rate of reaction. The 

decrease in NO conversion above 350°C is consistent with the previous suggestion of 

competing reactions decreasing the conversion of NO. It should be noted that the amount 

of oxygen introduced was much larger than the amount necessary to oxidize 590 ppm 

propane completely. 

3.5.3 Effect of Space Velocity  

A high space velocity of 20,000/h was chosen for the reaction system of (NO + C3H8  + 

O2). As can be seen in Figure 3.9, a maximum N

2  

conversion of 85.1% is reached at a 

space velocity of 2,140/h and a temperature of 350°C. At the space velocity of 20,000/h, 

the conversion reaches a maximum of 83.0% at 400°C. 

For NO decomposition, an increase in space velocity will result in a decrease in 

N2 

 conversion, but things are quite different for NO reduction by propane. In both low 

space velocity and high space velocity cases, below the maximum 

N2 

 conversion 

temperature, the selectivity of hydrocarbons toward the reduction of NO increases with 

temperature, whereas the selectivity decreases with temperature above the maximum 

N2 

 

conversion temperature. From Figure 1.2, we can see that after the temperature reaches 

the light off point, the reaction rate increases dramatically. At certain temperature, the 

conversion curve begins to flat out. The higher curve slope, the faster the reaction rate. 
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So from Figure 3.9, we can say that the reaction rate is higher at low space velocity than 

high space velocity. 

3.5.4 Effect of Water  

Cu-ZSM-5 exhibits fairly good performance for NO reduction by hydrocarbons under 

oxidizing conditions. But catalytic deactivation is an area of vital importance in auto 

exhaust catalysis. Practical automotive emissions control catalysis involves very 

demanding conditions: highly exothermic catalytic redox reactions at high temperatures 

(over 800°C, sometimes over 1000°C) and in gas streams containing about 10% water 

which could poison the catalyst. The deactivation of Cu-ZSM-5 was studied in this 

section. 

The effect of water was studied by bubbling propane through water. The water 

temperature was controlled by a furnace in order to get different water partial pressures. 

Propane was bubbled through the water first before mixing with NO and 

O

2  as feed to the 

catalytic reactor. The experiment was carried out at three different water concentrations, 

5%, 10% and 15%. The partial pressure of the water was determined by the percentage of 

water vapor needed in the reaction system (See equation below, where X refers to water 

partial pressure at different water temperature, 760mmHg is the atmosphere pressure. 

Propane occupied 39.l% of the total gas volume). And then the water temperature can be 

found in chemistry handbooks according to water partial pressure. The result is shown in 

Table 3.6. 

XmmHg 
	 * 39.1% 

760mmHg 

	  * 100% = 5% (or 10%, 15%) 	(3-7) 
100% 
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Table 3.6 Concentration of Water Vapor in the Aging Experiment 

Conc. of Water Vapor Pressure 
(mmHg) 

Temp. of Water (°C) Conc. of Water 
(measured) 

5% 77.71 47 4.61% 
10% 155.42 61 9.73% 
15% 233.13 70 14.31% 

In order to know the precise concentration of water vapor concentration, GC-TCD 

was used to measure the concentration of water vapor in the propane and water mixture. 

Deionized water was used to get the calibration curve of water. The experiment condition 

are summarized below: 

Column: Poropac Q 

Injection Temperature: 160°C 

Detector Temperature: 120°C 

Oven Temperature: 110°C 

The influence of water vapor concentration on the N2  conversion is shown in 

Figure 3.10. The experiment was conducted at 400°C and the space velocity was 

20,000/h. It can be seen that the conversion to N2  dropped from 82.4% in the absence of 

water to 53.1% in the presence of 14.31% water. 

Figure 3.11 shows the effect of water vapor on NO reduction by propane in the 

presence of 1% 02. In Run 1, without water vapor, a maximum NO conversion of 83% 

was observed at 400°C. In the presence of 9.73% water vapor in Run 2, 

N2 

 conversions 

are decreased and reach a maximum of 72% at 450°C, indicating a significant decrease in 

activity of Cu-ZSM-5 in the presence of water vapor. After Run 2, the water-exposed 

Cu-ZSM-5 was flushed with helium at 300°C for 30min in the absence of water and the 

catalytic activity was tested again. From the curve of Run 3, it is apparent that maximum 

N2 conversion at around 400°C is only 73%. The original high activity can not be 

restored, which means a permanent loss of activity for the catalyst. 
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The aging was carried out by heating either in a flow of l0% water steam of 

helium or in gas containing 472 ppm NO, 472 ppm propane, 1% O 2  and 10% water 

vapor. The flow conditions were 1 liter/min over a sample of 3 ml of catalyst at 400°C. 

At given aging intervals, the NOx  and hydrocarbon conversions were measured. 

Dependence of conversion on temperature for different aging times were also 

investigated. As described above, after 5 hrs and 10 hrs of aging, experiments were 

conducted at the same operating conditions that were used with the fresh catalyst. At the 

end of aging, an activity run was carried out ramping the temperature up to 500°C. 

Different pretreatment conditions can be seen in the table below (at 400°C). The result is 

shown in Figure 3.12. 

Table 3.7 Pretreatment Conditions for the Catalyst Aging in Figure 3.12  
Pretreat NO C3H8  O 2  H2O Time (hr) 

Fresh No - - - - 

Steam Yes - - - + 5 
Wet Cat.  Yes + + + + 5 
Wet Cat. Yes + + + +  10 
Dry Cat. Yes + + + - 5 

- : No reagent 

+: Reagent at standard concentration 

Comparison of the catalysis aged catalyst with the catalyst aged in steam confirms 

that hydrothermal aging is not the only deactivation factor for this type of material. This 

is a curious result, especially since both the catalytic gas stream and the hydrothermal gas 

stream contain 10% steam. Catalysis might cause plugging, as might decomposition of 

the zeolite (to yield amorphous silica-alumina), sintering of copper ions to oxides, and 

rapid loss of micropore volume. It is reported that Zn-ZSM-5 materials have no 

dealumination after hydrothermal treatments at 800°C for time periods considerably 

longer than required to cause substantial sintering of copper in Cu-ZSM-5. 
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Dealumination is synonymous with the loss of Bronsted acid sites and with the 

destruction of the geometric integrity of the exchanged Cu-ion sites. If either of these 

sites is important in NO reduction, dealumination will result in deactivation. Suzuki et 

al.(1987) investigated the effect of exchanging alkali or alkaline earth metals on the 

dealumination of HZSM-5. After exposure to flowing steam at ambient pressure and 

600°C for 13.5hr, HZSM-5 was 90% dealuminated. The exchanged cations inhibited the 

dealumination, leaving one framework Al for each exchanged metal cation equivalent. 

Grinsted et al.(1993) reported that at the harsh conditions of the high-temperature steam 

treatment, both the protonated and Cu-ZSM-5 are dealuminated to a large degree as 

evidenced by the sharp decrease in the 54 ppm peak. The treatment of 43%-exchanged 

Cu-ZSM-5 in a static system at 700°C established that Cu inhibits the dealumination. For 

a different Cu-ZSM-5 with a high Si

O

2/A12

O

3  ratio of 80 and `overexchanged' at 147%, it 

was observed that the activity decreases rapidly at 410°C if the catalyst is exposed to 

moist air, whereas it is not affected by dry air. The decrease in activity is accompanied by 

dealuminati on. 

3.5.5 Effect of SO2  

The influence of sulfur dioxide on the catalytic activity of Cu-ZSM-5 was also studied. 

The dependence of the reaction temperature on the catalytic activity in the (NO + C3H8  + 

O2 + SO2) system over Cu-ZSM-5 was first measured. When 22 ppm sulfur dioxide was 

introduced into the reaction system of (NO + C3

H8 

 + 

O2

), the extent of N2  conversion 

decreased and turned into a steady state process after about 30 min. The results are shown 

in Figure 3.13. The catalytic activity increased with increasing reaction temperature, 

reached a maximum at 400°C, and then decreased at higher reaction temperatures. By 

comparing the two curves in Figure 3.13, we can conclude that the addition of sulfur 

dioxide in the (NO + C3H8  + 

O2

) system results in a decrease in catalytic activity. For 
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example, the conversion of NO into nitrogen was 57% at 400°C in the presence of sulfur 

dioxide while it was 81% in its absence. 

3.5.6 Reaction Mechanism  

Catalytic reduction of NOx  by hydrocarbons in an oxidizing atmosphere appears to be the 

most efficient process for removing NO from exhaust gases. Reduction of NO by 

propane can be explained by the reaction below: 

C3 H8  + 10NO -----> 5N2  + 3 CO2  + 4 H2O 	 (3-8) 

Factor Analysis data reported by C.Marquez-Alvarez et al. (1996) identifies 4 

copper species in the Cu-ZSM-5 sample through the experiment of (NO + C3

H6 

 + O 2). 

The spectra can be assigned to Cu2+  and Cu+  ions inside the zeolite structure and to Cu

O

- 

and Cu2

O

- like aggregates. There must be a correlation between the activity of the 

catalyst and the concentration of Cu ions during NO reduction by propane in excess 

oxygen. Propane can reduce Cu2+  to Cu+, and 

O2 

 tends to oxidize Cu+  to Cu2+. When 

O2 

 

is present in the NO gas mixture, a reaction tends to occur that produces NO2, which can 

oxidize Cu+  to Cu2+  even at room temperature. The oxidation may be due to the 

dissociation of NO2  molecule on the Cu+  ion. The complex Cu2+-NO2  is an intermediate 

in NOx  reduction by propane. 

3.6 Reduction of NO by Hydrocarbon over A12

O

3  

During investigations of NOx  reduction with hydrocarbons over various catalysts, 

alumina and silica-alumina were tested for the selective reduction of NOx  with 

hydrocarbons in oxidizing atmospheres. 

When a catalyst was not used, reduction of NO to N2  did not occur, although 

homogeneous gas phase oxidation of propane to CO2  and CO was observed. When silica-

alumina and alumina were used, the formation of nitrogen was clearly observed. The 

more active catalyst was pure alumina, with which a conversion of NO to 51% N2  was 
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attained. It should be noted from Figure 3.14 that the temperature at which maximum NO 

conversion is obtained tends to become lower as alumina content increases. Kintaichi et 

al.(1990) used ammonia TPD measurements to get information on the active centers of 

the catalysts: SiO2/A12O3  and Al2O3. The results shows that silica is not acidic and that 

total acid amount increases with alumina content. This tendency agrees quite well with 

the activity change for the selective reduction. Thus the acidity of the catalysts is a major 

factor that determines catalytic activity. 

3.6.1 Effect of Oxygen Concentration  

To obtain information on the selective reduction, the influence of the oxygen 

concentration was examined. Figure 3.15 indicates the variation in the percentage 

conversion of nitric oxide to nitrogen as a function of oxygen concentration at 500°C. In 

the absence of oxygen, only 7.1% nitric oxide was reduced to nitrogen. However, the 

conversion of nitric oxide to nitrogen increased with increasing oxygen concentration to 

51% at 10% oxygen. These facts clearly show that the reduction is not inhibited but 

enhanced by the presence of oxygen. This effect of oxygen was also the same for the 

reduction of nitric oxide over Cu-ZSM-5. 

3.6.2 Effect of Propane Concentration  

Since propane concentration was expected to affect the nitric oxide reduction level, a 

reaction was conducted with 590 ppm propane over alumina catalyst, other reaction 

conditions remained the same. The result is shown in Figure 3.16. In this case, nitric 

oxide conversion to nitrogen of about 58% was attained at 500°C. Again, increase the 

propane concentration will increase the rate of the reaction. 
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3.6.3 Effect of Nitrogen Dioxide  

The main environmental problem associated with NOx  emissions is actually due to NO2. 

NO is the major precursor to NO2  formation. Nitrogen dioxide contributes to pollution by 

reacting with hydrocarbons, ozone and light to produce smog. In addition, NO2  reacts 

with water to produce acid which causes corrosion problems, and it absorbs visible light 

which reduces visibility as well as the contrast and brightness of distant objects. Most 

important, NO2  is extremely toxic to humans. Concentration greater than 100 ppm are 

lethal. 

From the standpoint of minimizing total NOx  emissions, it is fortunate that the 

concentration of NO2  in and near the combustion zone is very low. This results from the 

fact that NO2  is not favored thermodynamically at combustion temperatures. In addition 

to this thermodynamic limitation, there is also a kinetic limitation at high temperature. 

The oxidation of NO by O

2 

 via the reaction 2NO + 

O2 

 -----> 2NO2  is one of the few 

known reactions where rate decreases with increasing temperature. The consequence of 

these thermodynamic and kinetic limitations is that the amount of N

O2 

 emitted by 

combustion sources is generally limited to a few percent of NO, and only as the 

combustion gases cool in the atmosphere does any significant amount of the reddish 

brown NO2  begin to form. The other six oxides of nitrogen (N2

O

, N2

O

2, N2

O

3, N2

O

4, 

N2

O

5, N

O

3) play only insignificant roles in combustion processes. 

Since the participation of nitrogen dioxide in this reaction was suggested from 

the effect of oxygen, the reduction of nitrogen dioxide was next investigated. Figure 3.17 

shows the effect of oxygen concentration on the reduction of nitrogen dioxide over 

alumina at 500°C. It can be seen that the conversion of nitrogen dioxide to nitrogen is not 

affected much by the oxygen concentration. At a lower temperature (400°C), the 

conversion was almost constant in spite of a very large change in the oxygen 

concentration. 
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The high nitrogen dioxide conversion of 34.6% at 0% oxygen, compared with 

the corresponding value of 7.1% of nitric oxide in Figure 3.15, clearly indicates that the 

reduction of nitrogen dioxide to nitrogen occurs more effectively than that of nitric oxide 

in the absence of oxygen. The nitrogen and carbon balance at different temperatures in 

this reaction is listed in Table 3.8. The nitrogen balance can be obtained from the inlet 

NO2  and outlet N2, NO and NO2  concentration. The carbon balance can be obtained from 

the inlet C3H8  and outlet CO, CO2  and C3H8  concentration. 

As we all know, soot exists in diesel exhaust. It may react with NO2  to form 

NO. To verify the hypothesis, carbon black was added into the quartz reactor together 

with propane to reduce NO2. From Table 3.9, it can be seen that the concentration of NO2  

in the outlet gas flow is very low compared with the outlet NO2  concentration in Table 

3.8. On the other hand, the outlet NO concentration in Table 3.9 is very high, which 

confirms that NO is the product of the reaction between carbon black and NO2. The 

nitrogen balance of NO2  reduction by propane and carbon over alumina is also shown in 

Table 3.9. 

From the results described above, it can be concluded that nitrogen dioxide 

plays an important role in the selective reduction of nitric oxide over alumina. In other 

words, nitrogen dioxide may be a reaction intermediate at least in the temperature range 

below 500°C. Therefore, the need to use oxygen for the selective reduction of nitric oxide 

can be explained mainly by the oxidation of nitric oxide to form the nitrogen dioxide 

intermediate. This is also hypothesized by Tsutsumi et al.(1995). To confirm this idea, the 

oxidation of nitric oxide to nitrogen dioxide was examined with an alumina catalyst. 

Figure 3.18 shows the experimental results along with empty tube (no catalyst) 

experiments under various reaction conditions. The empty tube experiments indicate that 

the oxidation of nitric oxide to nitrogen dioxide proceeds homogeneously to some extent, 

the percentage conversion of nitric oxide to nitrogen dioxide increasing with oxygen 

concentration. It can also be seen that nitric oxide conversion to nitrogen dioxide in the 
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presence of alumina is mostly homogeneous, suggesting that alumina has very little 

activity in the oxidation. It should be noted that the formation of nitrogen dioxide was not 

promoted by higher reaction temperature. This is due to the equilibrium limitation of the 

reaction: 2NO + O2 -----> 2NO2, although the reaction rates are probably high (Shaw, 

1976). 

All the above mentioned data can be considered to support the idea that the 

oxidation of nitric oxide to nitrogen dioxide is an important step in the selective reduction 

of nitric oxide over alumina. The following reaction scheme is suggested: 

1. NO + 

O

2    -------> NO2     This is the oxidation of nitric oxide to nitrogen dioxide 

inter 	mediate. 

2. NO2  + C3 H8 -------> N2  + CO2  + CO + H2O The nitrogen dioxide intermediate is 

reduced to nitrogen by reaction with propane. 

3. C3H8  + 

O

2 

--------> CO2  + CO +H2O The direct oxidation of propane with oxygen is 

a side reaction. 

Probably the high selectivity of the reduction is caused by the higher reactivity 

of nitrogen dioxide with hydrocarbons than oxygen over alumina, which is a poor catalyst 

for the activation of molecular oxygen. The decrease in nitric oxide conversion to 

nitrogen at high temperatures can be explained by the high rates of the propane-oxygen 

reaction. 

3.7 Reduction of NO by Carbon Black  

Emissions of nitrogen oxides (NOx) and soot particulates from diesel engines have been 

causing serious environmental and health problems. In recent years, efforts have been 

made to search for the most cost-effective process to remove or reduce NOx  and soot 

particulates form diesel exhausts. One promising process to meet this demand is the 

simultaneous removal of NOx  and soot, that is, the reduction of NOx  by soot in an 

oxidizing atmosphere. The development of an active catalyst for this reaction is 
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considered to be most important. The purpose of this study is to investigate the catalytic 

performance of Cu-ZSM-5 and A12

O

3  for the simultaneous removal of NOx  and diesel 

soot particulates. 

Soot itself is a high surface area material that is known to promote NO 

reduction under appropriate conditions. The use of carbon as both the reducing agent and 

SCR catalyst has been shown to be feasible. 

The reactions between soot and NOx  are very complicated. As a result, the 

catalytic reactions are also complicated. The experiments were run in the fixed bed 

reactor. The gases flowed through the reactor which contained carbon black and catalyst. 

3.7.1 Effect of Oxygen  

As shown in Figure 3.19, the NO reaction with carbon black over Cu-ZSM-5 catalyst 

resulted in a high conversion of NO to N2. The maximum NO conversion is 36% in the 

absence of oxygen. The reduction of NO by carbon was found to be enhanced by the 

presence of oxygen. When 10% oxygen was present, the NO conversion at 400°C is 

raised to 45%. This is consistent with what was reported by Tsutsumi et al.(1995). They 

found that for the NO-soot-

O

2  system the NO reaction with soot had a high conversion 

form NO to N2, whereas in the absence of oxygen, low NO reduction activity was 

observed. 

Using A12

O

3  as the catalyst, oxygen will also enhance the NO-carbon reaction. 

The NO conversion is somewhat lower than that with Cu-ZSM-5. The highest 

N

2  

conversion occured at 500°C rather than at 400°C with Cu-ZSM-5. (Figure 3.20) 

A major disadvantage in the use of carbon is the possible consumption by 

combustion with oxygen. Considerable amounts of CO2  and CO were produced during 

these reactions. This indicated that carbon was consumed by the C-NO reaction and/or by 

the C-O2  reaction. Most of the carbon consumption was due to the oxidation of carbon 
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with 

O

2, because the concentration of 

O

2  (10%) in the feed was much higher than that of 

NO (590ppm) and the concentration of 

O

2  greatly decreased in the outlet gas. 

Thermodynamically, the NOx-carbon reaction is favorable. Several 

investigators have reported that carbon has a certain degree of selectivity for reducing NO 

emissions in the presence of excess oxygen. The presence of oxygen significantly 

modifies the reaction rate. Chu and Schmidt (1993) found that during the NO-graphite 

reaction at low temperature the formation of stable (CN)x polymers hinders the diffusion 

of the NON, reducing the reaction rate. Akhter et al.(1984) directly identified the surface 

species produced on soot after the reaction with NO2/N2

O

4  by using FTIR technique. But 

in the presence of oxygen, the NO-carbon reaction rate increases because there is no 

formation of (CN)x polymers. In addition, they reported that the rates of noncatalytic 

reaction with graphite follow the order of rNO2>rN2O>rNO>r

O

2. Nitrogen dioxide is the 

more thermodynamically stable compound at low temperatures. Tsutsumi et al.(1995) 

suggested a reaction scheme of the NO soot reaction, which is 

NO + 1/2 O2  ----->  NO2 	 (3-9) 

NO2  + [C] -----> [C-NO2] 	 (3- 10) 

[C-NO2] -----> CO2  + 1/2N

2 

	 (3-11) 

The overall reaction is expressed as 

NO +1/2O2  + C -----> CO2 +1/2O2 	(3-12) 

3.7.2 Effect of Cu Ion  

Tsutsumi et al.(1995) reported that the typical NO concentration in diesel engine exhaust 

is 530 ppm. Johnson et al, 1994 estimate the average ratio of particulate matter to NOx  to 

be about 0.05 g particulate/g NOx. Assuming a molecular weight of NOx  as 28, a 

molecular weight of particulate (carbon) of 12, and that 2 moles of NO react with 1 mole 

of C to produce 1 mole of CO2  and 1 mole of 

N

2, it is obvious that, based on these 

numbers, the stoichiometric amount of NOx  is approximately 4 times as great as the 
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amount of soot. Thus if all the soot is consumed by reaction with NOx, there still be some 

unreacted NO, delivered into the atmosphere. Therefore, it may be necessary to add some 

diesel fuel or carbon in order to remove all of the NOx. If carbon were to be added, it may 

be advantageous to add a metal-loaded carbon to utilize the catalytic properties of this 

material. 

Copper was introduced onto carbon black by impregnation using saturated 

copper acetate (10 ml of solution/g of carbon) overnight. The impregnated samples were 

dried in an oven at 120°C for a period of 12h. The results of NO reduction by carbon 

black is shown in Figure 3.21. The efficiency of NO removal is higher by using carbon 

black with Cu ion as compared with that using only carbon black. This is consistant with 

the results of Yamashita et al.(1991) who observed that the reaction between NO and 

metal-loaded carbon was remarkably promoted by the presence of oxygen at a 

temperature as low as 572K. The oxidation of carbon black was studied using TGA. For 

pure carbon black, the oxidation of carbon black begins around 500°C. But for Cu-

carbon, it begins to oxidize before 400°C as can be seen in Figure 3.23. 

The same impregnation procedure was used for Al2

O

3  instead of carbon black. 

Figure 3.22 shows the effect of Cu ion on the reduction of NO by carbon black over 

alumina. It can be seen that the presence of Cu ion shifts the maximum nitrogen 

conversion temperature down about 50°C. But the maximum conversion is somewhat 

lower that the pure alumina. This is probably due to the loss of fine particles during the 

preparation of Cu/Al2O3. 

Ismailov et al.(1993) invested the oxidation of CO and the reactions of CO 

and NO on the surface of activated A12

O

3  catalysts that contain Co, Ni and Cu ions. They 

studied the structure and reactivity of the surface complexes formed during the adsorption 

and reaction of the components. They found that carbonyl, carboxylate and nitrate 

complexes formed, and the oxidic catalysts containing 10-40wt.% of Cu were the most 

active. The conversion rate of the carboxylate complexes is three orders of magnitude less 
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than that of CO2  formation. The intermediate in CO oxidation and the CO and NO 

reactions is a carbonyl complex. 

It is difficult to understand how a catalyst can promote the reaction between a 

solid, which is too large to penetrate the catalyst pores, and a gas. It is possible that 

intermediates diffuse between the catalyst pores and carbon black particles which are 

much larger that the size of the pores of the catalyst (Weisz and Swegler, 1955). We 

speculate that the reaction of oxygen with carbon black could produce CO which would 

react very fast with NO in the catalyst pores to produce CO2  and N2. In this manner 

carbon black would participate in the reaction without being in direct contact with the 

active sites of the catalyst. Furthermore, this hypothetical mechanism explains the need 

for oxygen in the gas stream to promote the NO reduction by oxidizing the carbonaceous 

material to form a stronger reducing agent (CO). The overall reaction is expressed as 

C + NO + O 2 →  CO2  + N2 	 (3-13) 

The metal ions Cu, in contact with carbon, does not change the fundamental 

thermodynamics which favors the reduction of NO, but only increases the rate at which 

this reduction is achieved. 

For Cu-ZSM-5, it is possible that as a result of the copper ion exchange, there 

are accessible copper sites on the catalyst surface, which are not inside the zeolite 

framework and may be associated with Cu+  or Cu2+  sites on the alumina binder. Indeed, 

copper is an excellent catalyst for the reduction of NO by carbon. 
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CHAPTER 4 

CONCLUSIONS  

As a consequence of the research, the following conclusions were reached: 

• Cu-ZSM-5 can catalyze the direct decomposition of NO to N2  and O2, but oxygen can 

greatly inhibit the reaction. SO2  and water can poison the reaction, but the catalytic 

activity of Cu-ZSM-5 can be regenerated by the desorption of SO2  at higher 

temperatures. 

• Cu-ZSM-5 shows activity for the reduction of NO by CO. Its highest activity appears 

at around 400°C for NO/CO = 1.28. The conversion to 

N

2 was inhibited by oxygen. 

• High N2  conversion can be attained by selective catalytic reduction of NO by C3H8  

over Cu-ZSM-5. Oxygen is necessary for the reaction. The highest NO reduction can 

be attained when the oxygen concentration is around 1% to 2%. The rate of NO 

conversion to N2 increased monotonically with propane addition. When there is water 

vapor presence in the feed gas, catalyst activity is permanently impaired. 

• A12O3  catalyze the reduction of NO to N2  by C3H8. The conversion to N2 increases 

with increasing oxygen concentration. The highest N2  conversion appears at 500°C. 

High C3H8  concentration can enhance the activity of the catalyst. No detrimental 

effect of water vapor was observed. 

• The reduction of NO2  to N2  occurs more rapidly than that of NO over 

A12

O

3

. Oxygen 

is necessary for the reaction, although the concentration of oxygen does not effect 

much. NO2  may be a reaction intermediate of NO reduction to N2  over 

A12O3

. 

• Both Cu-ZSM-5 and 

A12O3 

 catalyze the reduction of NO by carbon black. The 

conversion is enhanced by the presence of oxygen. The rate of NO conversion is 

relatively slower in the presence of 

A12O3 

 than that with Cu-ZSM-5. The highest rate 

of reduction reaction over 

A12O3 

 is at 500°C, and over Cu-ZSM-5 at 400°C. 

54 
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The presence of Cu enhances the NO reduction by carbon black. It can also reduce the 

oxidation temperature of the carbon black. 

• The presence of Cu on A12

O

3  can reduce the maximum temperature of the reaction of 

NO to N

2 

 by carbon black from 500°C to 450°C. It is possible that CO, a stable 

intermediate, reacts with NO over Cu. 
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