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ABSTRACT 

REMOVAL AND RECOVERY OF VOCs AND OILs FROM SURFACTANT- 
FLUSHED RECOVERED WATER BY MEMBRANE PERMEATION 

by 
Ashish Nagnath Saraf 

Surfactant-enhanced subsurface remediation appears to be capable of removing efficiently 

contaminants from the source area as well as the concentrated plume. Initial research was 

conducted on separate removal of trichloroethylene (TCE) and an oil. It was found that oil 

permeation and modified pervaporation are effective techniques of removing oil and TCE 

respectively from the simulated feed. It was found that the oil permeation technique can 

effectively remove 98-99% of oil from an oil-in-water emulsion. The subsurface-entrapped 

organic pollutants often have high boiling components along with the VOCs. A combined 

permeation technique is applied here to simultaneously remove TCE and n-dodecane 

(a model oil) from a model surfactant-flushed aqueous solution in a hollow fiber membrane 

device. The oil-in-water emulsion containing TCE and oil flows through the bore of 

microporous hydrophobic hollow fibers. The shell is subjected to vacuum for the modified 

pervaporation-based removal of TCE which diffuses through the pores and the nonporous 

silicone skin on the outer surface of fibers. The oil wets the pores and is removed by 

permeation through the nonporous silicone rubber skin by applying a positive feed 

pressure.The presence of oil affected the flux of TCE but the water flux was cut down by 

almost 90%. It was observed that the presence of surfactant adversely affected the removal 

of oil. It was found that removal of TCE decreases with increased flow rate whereas the 

removal of oil increases with increased flow rate. Removal of TCE was constant at a low 

concentration of oil but at higher concentrations, the removal of TCE showed a decline with 

time. 
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NOMENCLATURE 

AM 	= Mass transfer area, cm' 

C 	= Concentration, mg/L 

Cin 	= Concentration of TCE at the module inlet, mg/L 

Cfinal 	= Final concentration of n-dodecane in feed reservoir, mg/L 

Co 	= Initial concentration of n-dodecane in feed reservoir, mg/L 

Co 	= Concentration of TCE at the module outlet, mg/L 

∆C 	= Concentration difference between the feed and retentate, mg/L 

Ct 	= Concentration of n-dodecane at any time t, mg/L 

Ct+∆t 	= Concentration of n-dodecane at any time t+∆t , mg/L 

Do, D, = Diameter of hollow fiber outside and inside respectively, µm 

JTCE 	= TCE flux, mol/hr.cm2  

JWATER = Water flux, mol/hr.cm2  

K 	= lumped model parameter. 

L= Length of the module, cm 

MTCE  = Molecular weight of TCE, gm/gmol 

MWATER  = Molecular weight of water, gm/gmol 

N= Number of fibers 

P 	= Adjustable constant 

R 	= Mass of n-dodecane permeating per unit time, mg/hr 
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NOMENCLATURE 
(continued) 

t, ttotal  = Duration of experiment, total duration of experiment, hrs. 

V 	= Volume of feed reservoir, L 

v 	= Feed flow rate, mL/min 

Vw 	= Volume of water collected, mL 



CHAPTER 1 

INTRODUCTION 

1.1 The Problem Genesis 

Oil-in-water emulsions are one of the major pollutants of the aquatic environments. This 

is due to a variety of industrial oily wastes from sources such as petrochemical, 

metallurgical industries, transportation, rolling mills, chemical processing plants, machine 

and vehicle maintenance shops and even domestic sewage (Koltuniewicz et al, 1995). 

Many different types of oils may be present in oily wastewater such as diesel oil, cutting 

and grinding oils, lubricating oils, water soluble coolants, natural animal or vegetable fats 

or any other organic immiscible in water. Before discharging these streams to sewers, 

the oil must be demulsified and separated from the water phase along with any other 

objectionable substances such as solids. The pollution of groundwater also directly affects 

more people than the more visible marine spills as the pollution commonly affects public 

water supplies. The removal of these oily wastes from wastewater is of importance in 

preventing pollution and meeting environmental standards. The EU (European Union) 

maximum admissible concentration for dissolved or emulsified hydrocarbons in potable 

water is 10µ1/L. For discharge to the municipal sewer system the "oil and grease" 

content may have to be on the order of mg/L. This means that the fuel tank of an 

average car holding say 40 of gasoline, can render 4 million cubic meter of water unsafe 

for drinking (Clark ,1990). 

Oily waste removal may also be beneficial for water or oil recovery or reuse. The 

degree of difficulty in separating oil from oily wastewater is strongly affected by the 

1 
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form(s) of oil that are present. Other wastewater characteristics that affect the separation 

process include the suspended solids concentration and particle size distribution, oil and 

bulk fluid densities, viscosity, surface tension and interfacial tension, the presence or 

absence of various chemicals, pH and temperature. Demulsification and water removal 

is a critical requirement before downstream processing of oil (Tirmizi et al, 1996). 

The emulsions used in liquid membrane processes are formulated to remain stable 

under the process operating conditions and are therefore difficult to break. Typical 

demulsification methods found in literature are additions of demulsifying agents, pH 

adjustments, gravity or centrifugal settling, filter coalescers and membranes. There are 

advantages and disadvantages to each of these demulsification techniques. Table 1.1 

indicates some of the polymeric membranes which are suitable for separating oil from 

water. 

1.2 Conventional Treatments 

Oily wastewater treatment techniques may be physical, chemical, physiochemical, 

electrical, mechanical or biological in nature, and they may be used singly or in 

combination depending upon the wastestream characterisitics and the objectives of 

wastewater treatment. Oily wastewaters to which chemical emulsifying agents have been 

added are more difficult to treat because of the electrical and mechanical barriers that 

prevent the oil droplets from agglomerating. 

Gravity separation is the most widely used wastewater treatment technique. The 

main objective is to separate free oil and suspended solids from the wastewater by 

utilizing differences in specific gravity. Effluent oil concentrations that can be achieved 
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with gravity separators typically range from 20-100 mg/L. More recently, the limitations 

of this approach have been recognized. This is due to the fact that it cannot remove 

emulsified or soluble oil. Secondly it occupies fairly large space and lastly is affected by 

temperature fluctuations. 

Table 1.1. Some polymeric membranes potentially suitable for oil/water separation* 

Manufacturer Type Configuration Pore Size Material 

Amicon UF 
MF 

plate & frame, spiral wound 
hollow fibre 

3-100K MWCO 
0.1pm 

PS 
PS copolymer 

Aqua Air Environmental UF spiral wound polymeric 
organic 

Dow/DDS MF plate & frame 0.1-5pin PS, fluoropolymer 

Desal OF 

MF 

spiral wound 1-15K MWCO 0.02-3pm thin film composite 
PTFE fluorocarbon 

Enka MP capillary, tubular 0.2pm PP 

Epoc/Exxflow MF tubular 0.5-5 pm polyester 

Hoescht Celanese OF spiral wound 
tubular 

4-200K MWCO 
10-400K MWCO 

PES 
modified PAN 

Koch/Abcor MF spiral wound, tubular 0.1-4µm PVDF, PES 

Memtec MF hollow fibre 0.2pm PP 

Millipore MF plate & frame 0.1-0.5µm fluoropolymer 

Nitto/Denko UF spiral wound, tubular 20K MWCO PO, PS, composite 

Osmonics. UF spiral wound 100pm-0.1pm modified PS, fluoropolymer 

Patterson Candy 
International 

UP tubular, plate & frame 4-200 K MWCO PS, PES, PVDF, PAN 

Romicon OF hollow fibre 0.005µm PP, PS, PAN 

Sartonius UF plate & frame 20K MWCO cellulose triacetate 

Separation 
Dynamics Inc. 

UF hollow fibre 40 K MWCO cellulosic 

Stock Priceland MF/UF tubular PS, PES, PAN, PVDF 

Tech Sep/Rhone-Poulenc MF plate & frame 0.1-1 µm fluoropolymer 

X-Flow MF hollow fibre 
plate & frame 

0.1-0.2µm 
0.05-lµm 

PS 

Zenon  OF tubular 5-20K MWCO PS 

Note: PAN- polyacrylonitrile; PES- polyether sulfone; PO-polyolefine; PP-polypropylene; PS-
polysulfone; PVC- polyvinylchloride; PVDF-polyvinylidene fluoride. 

* Source: Zaidi et al., (1992) 
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Another conventional technology for oil separation is coalescence. Coalescence is used 

primarily to remove free and mechanically dispersed oil from water; chemically 

emulsified oil droplets are normally too stable to be forced together. Effluent oil 

concentrations that can be achieved with coalescence typically range from 1-50 mg/L. 

Coalescence has the disadvantage of requiring pretreatment. Secondly the surface-active 

chemicals may alter the nature of the coalescing media (Magdich and Semmens, 1988). 

1.3 Techniques for Removal of Oil from Aqueous Solutions 

Dilute oil-in-water emulsions which are frequently encountered as wastestreams have to 

be demulsified to separate the oil before it can be discharged to the sewers. Chemical 

demulsification methods are the most widely used and they usually include acidification 

and/or coagulation followed by flocculation. In this process, the pH is lowered into 2-4 

range by the addition of acid which causes most of the oil droplets to destabilize and 

separate out; the freed oil is subsequently removed by skimming. The disadvantage 

associated with this method is that chemicals are required in large quantities. The method 

is not cost effective and also faces various problems like corrosion and sludge. The 

disadvantages associated with chemical emulsion breaking techniques have led to the 

development of a non-chemical oil-water emulsion separation method like the electrolytic 

treatment (Magdich and Semmens, 1988). 

More recent efforts have focused on the application of electrochemical techniques 

to break emulsions and separate destabilized oil without the addition of chemicals. The 

key process involved in most of these methods is electrocoagulation which can be 
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considered as a two step process: (1) aluminum or iron ions are introduced 

electrolytically to reduce the repulsive forces on the negatively charged oil droplets and 

break the emulsion; (2) a DC voltage is applied across the emulsion to cause the charged 

droplets to migrate and coalesce. The method has the disadvantages of not being able to 

handle shock loads and high solids. The applicability of this process on the industrial 

level remains questionable. 

Ultrafiltration is another method of dewatering the waste emulsified oils. It is a 

pressure driven membrane technique for the separation of material in the 1nm to 10 µm 

size range. "Clean" water (permeate) is forced through the microporous membrane while 

the oil retained by the membrane becomes more concentrated. UF reduces the volume 

of a waste-cutting oil emulsion by 95 to 98% and concentrates oil and solids to as much 

as 60%. Ultrafiltration is an efficient way of dewatering the emulsified oil but has several 

disadvantages. The performance of UF system is adversely affected by suspended solids 

and free oil. The short-term permeate flux is reduced by one or two orders of magnitude 

due to membrane fouling over long periods of time (Zaidi et al., 1988). The decrease in 

permeate flux is attributed to the following phenomena. 

Concentration polarization is defined as the generation of a concentration gradient 

of rejected particles at the membrane surface. A gel layer is formed at the membrane 

surface as a result of increase in concentration of contaminant at the surface.The 

contaminant may adsorb on the membrane surface and within the membrane pores. The 

adsorption process is often a irreversible process and hence results in permanent decrease 

in permeate flux. 
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1.4 Proposed Removal Technology 

This thesis is concerned with a membrane permeation technique to remove volatile 

organic compounds (VOCs) and oils simultaneously. Initial research was conducted on 

the removal of VOCs from a feed containing VOCs. A modified pervaporation technique 

was used to separate the VOCs from simulated contaminated ground water obtained in 

surfactant flushing processes (Chandra, 1996). Chandra (1996) briefly explored the 

phenomenon of separating the oil from an oil-in-water emulsion using the hollow fiber 

membrane modules. The surfactant-flushed water in site remediation process also has 

nonvolatile organic compounds for which the pervaporation technique is not suitable as 

the nonvolatile compounds have low vapor pressures. Tirmizi et al. (1996) studied the 

demulsification of water/oil/solid emulsions using hollow fiber membranes. Experiments 

were carried out by them using porous hydrophobic polypropylene membranes at a low 

oil concentration of 1%; they obtained a purified aqueous stream containing 25 ppm oil 

content.The permeate was oil. Their system did not have any surfactants. Magdich and 

Semmens (1988) at the University of Minnesota and Tirmizi et al. (1995) at Rutgers 

employed porous hydrophobic hollow fibers to separate oil from the oil-in-water or 

water-in-oil emulsion by preferential pore wetting and pressure driven flow through the 

pore. The phenomenon of breakthrough of water within minutes of starting the 

experiment was observed by Magdich and Semmens (pages 81-82, 1988) when 

surfactants were present. 

Lipp et al. (1987) at the University of New South Wales, Australia, used the 

ultrafiltration technique to permeate the water and was able to collect water having less 
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than 20 ppm oil in the permeate. The ultrafiltration membranes used for the research 

were the microporous polyamide membranes, CJT 35. They also used regenerated 

cellulose and polysulfone membranes, Amicon YM5 and Amicon PM30 respectively. 

Zaidi et al. (1992) reported that the oil content of several oilfield brines was reduced to 

less than 20 mg/L and the short term permeate flux of water was about 80 gal/ft2.d. 

Bodzek et al. (1992) at the Technical University of Silesia, Poland reported oil reductions 

of about 95 to 99% in the UF permeate from a metal industry emulsion. 

Oil permeation technique was employed here to separate the oil from the recovered 

water. In this technique, a oil-in-water microemulsion is brought to the substrate side of 

a silicone-coated porous hydrophobic fiber. The experiment was carried out in the batch 

recirculation mode. The shell side was maintained at atmospheric pressure. The oil-in-

water emulsion was allowed to flow under pressure through the fiber bore. The feed 

pressure was maintained at a certain level. Dodecane was chosen in this research to be 

the model oil. A positive feed pressure was applied to drive the permeation of oil and 

the oil was collected in a vessel. Magdich and Semmens (1988) also studied oil removal 

from an oil-in-water emulsion by using porous hydrophobic hollow fibers having a 

nonporous silicone skin on the outside surface; in their case the emulsion flowed in a 

crossflow manner at a higher pressure over the silicone skin surface; However the porous 

hydrophobic surface was not properly utilized. 

Often the surfactant-flushed water has a combination of volatiles and nonvolatiles. 

An alternative method, the combined permeation (CP) technique, which is carried out in 

once through mode in this research is proposed to remove both VOCs and the oil 
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simultaneously from the recovered water obtained from surfactant-enhanced subsurface 

remediation. In the combined permeation process, the recovered water to be treated flows 

on one side and vacuum is pulled on the other side of the membrane. A positive feed 

pressure is applied to provide additional driving force for the oil contaminant. The 

membrane is highly selective to the VOC over water. The VOCs dissolve in the 

membrane, diffuse through it and are evaporated on the other side of the membrane. The 

nonvolatile component passes through the membrane by diffusion and is collected as oil 

drops in a oil trap connected in series with the condenser for collecting the VOCs. The 

vapor collected and highly enriched in VOCs is condensed and the condensate separates 

into two layers of organic and aqueous phases. A schematic diagram of the hollow fiber 

is shown in Figure 1.1. A considerable reduction of volume of waste is obtained as the 

oil and the VOCs are collected separately in relatively pure form by the process of 

combined permeation. The aqueous phase collected in the condenser can be recycled back 

to the feed reservoir. Such a process can reduce the VOC and the oil concentrations to 

a level of low ppms and also reduce the water flux considerably due to the presence of 

oil in the pores. 

In the oil permeation experiments the feed was allowed to flow through the bore of 

a hydrophobic microporous hollow fiber with a nonporous hydrophobic coating on the 

outer diameter. Dodecane was chosen as a model oil in this research. The oil-in-water 

emulsion with or without the surfactant flowed through the fiber bore. The shell side was 

maintained at atmospheric pressure. 



Figure 1.1. Separation of a micellar solution of VOC and oil fed into the coated hollow fiber 
bore by permeation and modified pervaporation 
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Some experiments were also carried out with the emulsion flowing on the shell side and 

the tube side was maintained at atmospheric pressure. 

1.5 Research Objectives 

A) Devise a hollow fiber membrane-based demulsification process to remove and recover 

oil from an oil-in-water emulsion with or without surfactant by permeation through the 

substrate-side of silicone-coated hollow fiber. This research will focus primarily on the 

removal of oil, n-dodecane (C12H26). Dodecane is one the priority pollutants declared by 

EPA. 

B) Explore simultaneously the possibility of removal and recovery of trichloroethylene 

from a dodecane-based oil-in-water emulsion by hollow fiber membrane-based combined 

permeation process. 

1.6 Research Approach 

The approach adopted consists of the following steps: 

1) Fabricate hydrophobic hollow fiber membrane module using appropriate hollow 

fibers. 

2) Study the removal of dodecane from a synthetic microemulsion of oil-in-water flowing 

under pressure by demulsification using a hollow fiber membrane module. 

3) Study the effects of hydrodynamics on dodecane removal and the flux of dodecane. 

4) Study the removal of dodecane by varying the concentrations of dodecane and 

surfactant in the micellar or saturated solution. 
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5) Compare the tube-side and shell-side performances of the modules made of silicone 

coated hollow fibers. 

6) Carry out experiments keeping the surfactant concentration above the critical micelle 

concentration (cmc) level to ascertain the extended term performance. 

7) Explore the removal of TCE from a dodecane-based oil-in-water microemulsion by 

combined permeation. 

8) Study the effect of concentration of TCE on TCE and water fluxes using combined 

permeation process. 

9) Study the effect of n-dodecane concentration on TCE and water fluxes keeping the 

TCE concentration constant. 

10) Study the effects of hydrodynamics on the TCE removal in the presence of oil. 



CHAPTER 2 

MATERIALS AND METHODS 

2.1 Chemicals and Gases Used 

n-Dodecane (purity 99%, FW 170.34) from Acros Organics ( Springfield, NJ); n-Hexane 

(purity 99%) from Sigma (St. Louis, MO); sodium dodecyl sulfate (SDS, purity 99%, FW 

288.4), isopropyl alcohol (TPA, HPLC grade, FW 60.1) from Fisher Scientific (Springfield, 

NJ); trichloroethylene (TCE, purity 99.9%, FW 131.39, density 1.456 gm/cc), methanol 

(purity 99.9%, FW 32.04) from Fisher Scientific (Springfield, NJ); ultrapure nitrogen, 

helium, air and liquid carbon dioxide from Matheson (E.Rutherford, NJ); liquid nitrogen 

from GCI Medical and Laboratory Gases (Lodi, NJ). 

2.2 Hollow Fiber Membrane Module and Fabrication 

The membrane module contained hydrophobic polypropylene microporous hollow fibers 

(Celgard X-10, I.D 240µm, O.D 290µm, Hoechst Celanese, Charlotte, NC). The fibers 

provided by AMT Inc. (Minnetonka, MN) were coated with a thin layer of non-porous 

plasma polymerized PDMS (polydimethyl siloxane) skin on the outer surface. The 

fabrication of the module involved the following major steps. At the outset, a polyethylene 

sheet was spread over a table and three fibers were taken at a time from the spool. They were 

cut to appropriate lengths and the process was repeated until there were 75 fibers arranged 

on the polyethylene sheet. To avoid any entanglement of the fibers, scotch tape was used to 

attach them to the polyethylene at both ends. After the cutting was complete, the scotch 

12 
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tapes were removed by trimming the edges of the polyethylene sheet. The fibers were rolled 

into a bundle and the ends of the bundle were tied with cotton threads. 

The next step involved putting this fiber bundle inside a 1/4' OD seamless stainless steel 

tube (McMaster-Carr, New Brunswick, NJ). Prior to placing the fiber bundle inside, the tube 

was cut to the desired length and one end was connected to a 1/4" stainless steel male run 

tee (Swagelok, R.S.Crum, Mountainside, NJ). To avoid any friction between the fiber and 

the metal, the tube was filled with water. Once the fibers were in place inside the tube, the 

membrane module was dried by passing prefiltered oil-free air through it for 48 hours. 

The third and last stage of the module fabrication was potting of the tube sheet with 

a mixture of epoxy resin and silicone rubber. Two layers of potting were done - external and 

internal. The external layer was potted at the end of the male tee connecter using a mixture 

of A-2 resin and Activator A (Armstrong products, Easton, MA); for the internal layer, C-4 

resin and D-activator (Beacon Chemicals, MT. Vernon, NY) were mixed in a plastic cup (4:1 

proportion by weight) and then deareated in a vacuum desiccator. Using a disposable plastic 

pipette the resin mixture was carefully and slowly poured into the shell side. The module 

was kept for a day at room temperature so that the epoxy was adequately hardened. The 

module was not used for two weeks so that the tube sheet had sufficient time for curing. 

Table 2.1 provides the geometrical characteristics of the hollow fiber module so prepared. 
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Table 2.1. Characteristics of the module for permeation experiments 

Hollow fiber Celgard (X-10) 

Membrane Coating* Silicone 

Fiber Number (N) 75 

O.D., 	µm (Do) 290 

I.D., µm (Di) 240 

Active Length, cm (L) 32.8 

AM, Mass Transfer area based on I.D.(cm2 ) 185.5 

* source of coated fibers: AMT Inc., Minnetonka, MN 

2.3 Experimental Setup 

2.3.1 Oil Permeation Experiments 

The experimental setup for oil permeation is shown schematically in Figure 2.1. The feed 

was pumped into the module by a peristaltic Masterflex pump, model 7518-60 (Cole 

Palmer,Vernon Hills, IL). The feed solution of dodecane was made in a 2 liter high density 

polyethylene (HDPE) Erlenmeyer flask(Cole Palmer, Vernon Hills, IL) and was kept under 

continuous stirring during the experiments. Two pressure gages (Cole Palmer, Vernon Hills, 

IL) were connected before and after the module to monitor the pressure drop along the 

module length. A bypass valve was connected to the feed inlet to the module to regulate the 

flow into the module, and hence, the inlet pressure. A pressure regulating metering valve 

(R.S.Crum, New Brunswick, NJ) was connected at the outlet of the module to maintain the 

desired back pressure. The outlet liquid was recycled to the feed reservoir; the operation was 

thus in the batch recirculation mode. The shell side was maintained at atmospheric pressure. 

The permeate was collected in a 15mL measuring cylinder. 



Figure 2.1. Experimental Setup for Oil Permeation Experiments 
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2.3.2 Combined Permeation Experiments for Oil and TCE 

The experimental setup is shown in Figure 2.2. Feed was pumped into the module by a 

peristaltic Masterflex pump, model 7518-60 (Cole Palmer, Vernon Hills, IL) from a 

collapsible Teflon bag (Cole Palmer, Vernon Hills, IL). A Teflon bag of capacity 4.8 liters 

with one on-off valve was used as the experiments were carried out in the once through 

mode. Transparent 1/4" ID Teflon tubing (Cole Palmer, Vernon Hills, IL) and stainless steel 

fittings (Swagelok, R.S. Crum, New Brunswick, NJ) were used for the feed and all the 

connecting lines to and from the membrane module. A three-way valve (Swagelok, R.S. 

Crum, New Brunswick, NJ) was installed in the feed line to collect samples for measuring 

the drop in concentration in the Teflon bag. Micrometering valves (Swagelok, R.S. Crum, 

New Brunswick, NJ) were connected to the feed line and the outlet line to the module to 

regulate the feed and the back pressure. An oilless vacuum pump (KNF Neuberger, Trenton, 

NJ, Model UN 726.1.2 FTP, S/N 245177) was used to maintain a vacuum of -28/28.5 inch 

Hg. Convoluted Teflon tubes (Cole Palmer, Vernon Hills, IL) were used for the vacuum line 

connections to the condensers and for the oil trap connections. The module was installed in 

an inclined position to favor the permeation of oil by gravity from the shell side. An oil trap 

was connected in series with the condenser ( Labglass, Vineland, NJ) with graduated tip to 

the vacuum line before the vacuum pump. Dry ice and methanol were used as cooling 

medium in a Dewar flask (Labglass, Vineland, NJ), inside which the condenser was kept to 

trap the permeate vapor from the module outlet. 



Figure 2.2. Experimental setup for combined permeation of VOC/Oil 
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2.4 Experimental Procedure 

2.4.1 Preparation of Feed 

Fresh feed for the oil permeation experiments was prepared by adding dodecane to a specific 

volume of water in the reservoir. The feed was kept under vigorous stirring, using a magnetic 

stirrer overnight to achieve an oil-in-water (01W) emulsion. The reservoir used for the 

experiment was a High Density Polyethylene (HDPE) Erlenmeyer flask. 

Fresh feed for experiments on combined permeation of oil and VOCs was prepared 

before each experiment to avoid volatilization of TCE. The feed was prepared in a glass 

flask with minimum headspace to avoid volatilization of TCE. TCE and oil (dodecane) were 

added to a specific amount of deionized water in the glass reservoir. The feed was kept under 

rapid stirring, using magnetic stirrer overnight. 

For runs containing surfactants, a stock solution of the desired surfactant concentration 

was prepared at least 48 hours before the experiment for proper micelle formation. To 

prepare a desired concentration of surfactant (w/v), deionized water was heated just above 

the Krafft point of SDS (18-20°C) before adding the surfactant. This led to instant 

solubilization of the surfactant and micelle formation instead of dissociation into ions. This 

surfactant solution was kept in slow stirring for a minimum of 48 hours before adding 

dodecane. 

2.4.2 Experiment 

For oil permeation experiments, oil-in-water microemulsion was fed into the module by a 

Masterflex pump. The outlet from the module was recirculated back to the feed reservoir. 
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The feed in the reservoir was kept under constant stirring during the experimental run to 

maintain a homogeneous emulsion. A bypass valve was connected at the inlet to regulate 

the flow. The flow rate and the pressure drop along the module was noted every 1/2  hour; 

simultaneously, the drop in concentration of oil in the reservoir was noted. The experiment 

was generally carried out for 30 hours. The permeate was collected during the experimental 

run in a graduated cylinder. 

In experiments with SDS, the surfactant solution was prepared first before adding 

dodecane. Although the emulsion was much more stable in the presence of surfactant, the 

reservoir was kept under constant stirring during the experimental runs. After every set of 

runs, the permeate side was flushed with 30mL of hexane to remove any traces of dodecane 

in the permeate side. Next, the module was washed with deionized water arid 40% isopropyl 

alcohol (IPA) solution and dried overnight by passing oil-free prefiltered air. 

The oil permeation experiments were carried out using dodecane as a model oil. 

Experiments were done by passing the feed both from the tube side and the shell side to 

determine the performance of the module. The main focus of experiments was on the effect 

of the flow rate and the surfactant on the oil flux. Experiments were also carried out to find 

out the effect of initial concentration of oil.The shell side was flushed with hexane to remove 

any traces of dodecane which did not go into the collecting vessel. 

In combined permeation experiments using both TCE and the oil, the feed solution 

was pumped from the glass flask to the collapsible Teflon bag which prevented formation 

of headspace during an experimental run. Two magnetic stirrers were kept in the Teflon bag 

for continuous stirring of the feed so that a homogeneous solution could be pumped. The 



20 

experiment was carried out in once-through mode. The feed pressure was kept in the range 

of 4-5 psig by using a micrometering flow control valve (Swagelok, R.S. Crum, New 

Brunswick, NJ) at the outlet of module. Two dial pressure gages (Cole Palmer, Vernon 

Hills, IL) were used to monitor the pressure at the inlet and outlet of the module so as to 

maintain a certain a transmembrane pressure. Vacuum was tested at -28-28.5" Hg before 

starting the system. Dry ice was prepared in a dry ice machine ( Insta-Ice™, Model 3716-10, 

Cole Palmer, Chicago, IL) using liquid carbon dioxide. Dewar flasks were filled with dry ice 

and methanol after putting in the condenser to achieve a low cooling temperature. Samples 

were taken from the zero hour every half hour and analyzed. The experiment usually reached 

steady state after 3 hours, experiments were carried out for at least 7-8 hours. The weight of 

the empty condenser was noted before the start of the every experiment and the weight of 

the condenser after the experiment was measured. The volume of the permeate was observed 

and noted from the collection in the condenser. The volume of water and the VOC could be 

easily noted as the permeate separated into two distinct organic and aqueous phases. The 

mass of water collected was measured by multiplying the specific gravity by the volume of 

water collected; the mass of VOC collected was calculated by subtracting the mass of water 

from the total mass. The oil drops collected from the permeate were collected in the oil trap 

and measured. After every experiment the module was flushed in the same manner used for 

simple oil permeation experiments. Experiments were done by varying the concentrations 

of VOC and oil respectively one at a time. The effect of the flow rate was tested on the 

removal of TCE and oil. The effect of SDS on the removal of TCE and oil with feed flowing 

from tube and shell side was also tested. 
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2.5 Analytical Procedure 

2.5.1 Gas Chromatography 

Dodecane and TCE concentrations were measured in a HP 6890 series gas chromatograph 

(GC) using a HP 7694 Headspace Sampler and a HP 6890 integrator (Hewlett Packard, 

Wilmington, DE). Dodecane and TCE were analyzed by a Flame Ionization Detector (FID) 

using a HP-5 capillary column (cross-linked 5% PH ME Siloxane) of 30 m length, 320 µm 

diameter and 0.25 µm film thickness (Hewlett Packard, Wilmington, DE). Ultrahigh purity 

nitrogen (Matheson Gas Products, E.Rutherford, NJ) was used as the carrier gas. Headspace 

technique was used for the analysis of TCE. Separate analytical procedures were developed 

for dodecane with and without TCE. 

2.5.1.1 Analysis of Dodecane: The volume of sample collected from the feed reservoir of 

dodecane-water mixture was 2 mL. A 2:1 dilution factor was employed for the complete 

extraction of dodecane into hexane. Dodecane was extracted into the hexane phase by using 

a centrifuge (Model no. IEC 438, International Equipment, Needham Heights, MA). The 

hexane phase was next analyzed by headspace GC. Reproducible results were obtained by 

using 3µL of sample in a 22.5 mL headspace vial. The optimum headspace oven temperature 

(70°C), the sample volume (3µL) and the sample equilibration time (12 min) were 

determined after an extensive study by varying each parameter one at a time. 

A sample volume of 3µL was used to prevent column flooding by hexane. Figure 2.3 

shows the effect of equilibration time on dodecane output signal. The curve reached a 

plateau after 12 minutes indicating that the peak area became independent of the 
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Figure 2.3. Effect of equilibration time on n-dodecane output signal 
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equilibration time. Longer time led to cracking of dodecane. Sample vials were thermostated 

and shaken in the headspace oven for 12 minutes at 70°C. Headspace vapors were analyzed 

by pressurizing the vials for 0.15 minute for sample introduction into the gas chromatograph 

column. A temperature program was fixed for the GC and was set at 40°C for 1.5 minute. 

In the next step, temperature was ramped at 25°C per minute until it reached 75°C, where it 

was kept for 1 minute. In the final step, the temperature was ramped at 40°C per min. until 

it reached the final temperature of 220°C, which was maintained for 3 minute. The final 

temperature was kept at 220°C as the boiling point of dodecane is 215°C. Figure 2.4 shows 

the dodecane calibration curve. 

2.5.1.2 Analytical Procedure for Analyzing n-Dodecane with TCE: A similar procedure 

was used for analyzing dodecane and TCE in the GC headspace device. A 3 µL sample for 

analysis was taken from the hexane phase and analyzed in the GC- Headspace. The optimum 

headspace oven temperature (80°C) and sample equilibration time (6 min) were determined 

after an extensive study by varying each parameter one at a time. Figure 2.5 shows the effect 

of equilibration time on TCE/Dodecane output signal. The curve reached a plateau after 5 

minutes indicating that the peak area became independent of equilibration time. Sample vials 

were thermostated in the headspace analyzer for 6 minutes at 80°C. The temperature program 

was modified for the GC to get clear separation of TCE from others. The initial oven 

temperature of the GC was set at 25°C for 10 minutes for separating the hexane and TCE 

peaks. To attain the initial temperature the oven was precooled down to 25°C using liquid 

nitrogen. 
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Figure 2.4. Calibration of n-dodecane FID response 
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Figure 2.5. Effect of equilibration time on TCE/n-dodecane output signal 
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In the final step the temperature ramp was changed from 40°C per minute to 10°C per minute 

to prevent cracking of dodecane. The properties of sodium dodecyl sulfate (SDS), 

trichloroethylene (TCE) and n-dodecane are provided in Tables 2.2, 2.3 and 2.4 respectively. 

Table 2.2. Properties of surfactant* 

Property SDS (Sodium Dodecyl Sulfate) 

Chemical name Sodium Dodecyl Sulfate 

Source Sigma Chemicals 

Type Anionic 

Formula Weight 288.4 

Formula C12H25O4SNa 

Active component 99% 

CMC, 0.1 M electrolytes 0.28 

Free energy of micellization 

DDI water (KJ/mole) 

0.1 M electrolyte 

AG° 

-22.27 

-28.77 

Area per molecule (A2) 43.70 

* source: Rosen (1989), Dow Chemical Company (Midland, Michigan) 



Table 2.3. Physical and chemical properties of TCE* 

molecular weight (g/mol) 13 	. 	9 

melting point (c) C) -87.10 

boiling point (° C) 86.70 

density (glee), liquid ( 20 ° C) 1.456 

viscosity, mPa.s 
20 ° C 
60 ° C 

0.58 
0.42 

critical properties 
temperature (° C) 
pressure (MPa) 

271.0 
5.02 

heat capacity, (J/kg.K) 
liquid 

vapor at boiling point 
941.0 
653.0 

dipole moment, debye 0.77 

dielectric constant E 3.43 

vapor pressure (kPa) b 
Antoine constants 

A 
5.94606 

B 
1187.51 

C 
214.474 

solubility (mg/L) 1100.0 

° log10  P = A- [B/ (T+C)] 

source: Kirk-Othmer (1983) 

Lyman et al. (1990) 
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Table 2.4. Physical and chemical properties of dodecane* 

Trade name n-dodecane ( C12H26  ) 

boiling point (° C) 216.11 

melting point (° C) - 9.4444 

vapor pressure (mm Hg) 21C) 0.3 

vapor density (Air=1) 5.9 

specific gravity 0.749 

chemical solubility b  
solubility constants 

A 

B 

C 

23.755 

-15607.170 

2325.47E+03 

molecular weight 170.337 

solubility in wt. ppm 3700E-06 

log S = A + B/T + C/T2  

where S = solubility in water, wt. ppm 

A, B, C = correlation constants 

T= temperature constants, K 

* source: Fisher Scientific Company. (Fairlawn, NJ); 

Yaws (1993). 
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2.6 Calculation Methods 

The percent removal or drop in the concentration of n-dodecane of reservoir was 

calculated from 

The average flux of n-dodecane over the total duration of experiment (ttotal) was 

calculated from 

The flux for TCE was calculated in terms of mol/hr.cm2  as 

The water flux was calculated in terms of mol/hr.cm2  over the whole duration of experiment 

(ttotal) as 
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The local flux of n-dodecane at any time t was given as 

where C is the n-dodecane concentration. 

The percent removal of the concentration of TCE was calculated from 

where C1 , = Concentration of TCE at the module inlet, 

Cout  = Concentration of TCE at the module outlet. 

The membrane area Am  is based on the fiber inside diameter Di  : 



CHAPTER 3 

RESULTS AND DISCUSSION 

The objectives of the chapter are to discuss the effects of various parameters on the removal 

of n-dodecane and TCE from an oil-in-water emulsion. Four parameters that were studied 

in depth were the effect of flow rate, surfactant concentration, initial concentration and feed 

flow side. The results will be presented first for the oil-permeation experiments and then for 

combined permeation experiments. The data for oil permeation experiments will be 

discussed in terms of % removal of n-dodecane and n-dodecane fluxes. The data for the 

combined permeation will be discussed in terms of % removal of TCE, TCE fluxes and 

water fluxes. Data will be compared for the combined permeation experiments with the 

modified pervaporation experiments to judge the effect of n-dodecane. 

3.1 Oil Permeation Experiments 

The effects of various parameters on the removal of n-dodecane from an oil-in-water 

emulsion with or without a surfactant are considered here. The experiments were conducted 

at 25°C. An oil-in-water emulsion was fed to the hollow fiber module and the oil fluxes were 

calculated on the basis of a drop in the concentration of oil in the feed reservoir. All 

experiments were carried out in the batch recirculation mode. The experiments were usually 

carried out for 28-32 hours. 
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3.1.1 Effect of Flow Rate 

Figures 3.1 and 3.2 show the effect of flow rate on the removal and instantaneous flux of n-

dodecane respectively for the oil-in-water emulsion flowing on the tube side. Table 3.1 

provides the experimental results for the effect of flow rate. It was observed that increasing 

the flow rate from 21mL/min to 48mL/min increased the averaged flux of n-dodecane 

marginally from 1.92 *10-5  to 2.03 *10-5  mol/hr.cm2 . The removal of oil from the oil-in-

water emulsion increased with an increase in the flow rate. When the flow rate was increased 

from 21mL/min to 48mL/min, the oil removal increased from 84% to 88% and with a further 

increase in flow rate to 64mL/min the removal increased further to 91% for the initial 10 

hours. This may be due to the fact that increasing the flow rate from 21mL/min to 

64mL/min not only increases the rate of oil transport to the membrane but it also enhances 

the attachment and coalescence step as n-dodecane droplets are brought into increasing 

contact with fibers which allows more of n-dodecane molecules to permeate through the 

membrane. The overall removal over a 32-hour period remained almost unchanged at 97-

98% when the flow rate was increased from 21mUmin to 64mL/min. The transport of oil 

through the membrane, therefore, is not strongly enhanced at higher feed flow rates.The 

removal and the flux of n-dodecane did not change much after ten hours of experiment. 

3.1.2 Effect of Concentration of n-Dodecane 

Figures 3.3 and 3.4 show the effect of initial concentration on the removal and instantaneous 

flux of n-dodecane respectively for the oil-in-water emulsion flowing on the tube side. It was 

observed that increasing the oil concentration from 1563 ppm to 14220 ppm increased the 



Figure 3.1. Effect of flow rate on the removal of n-dodecane 
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Figure 3.2. Effect of flow rate on the flux of n-dodecane 



Table 3.1. Effect of feed flow rate on removal and the flux of n-dodecane 

Ct=0  
(ppm) 

Cfinal  
(ppm) 

Time 
(hours) 

Flow rate 
(mL/min) 

Pressure 
(psi) 

% Removal *Flux of n-dodecane *106  
(mol/hr.cm2) 

9889 176 32 21 23/10 98 19.2 

10878 310 33 48 24/8 97 20.3 

9492 273 32.15 64 25/7 97 18.2 

* Averaged flux over the whole experiment, equation (2.2) 
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Figure 3.3. Effect of n-dodecane initial concentration on removal 
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Figure 3.4. Effect of n-dodecane initial concentration on the flux behavior 
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averaged flux of n-dodecane from 0.31 *10-5  mol/hr.cm2  to 2.9 *10-5  mol/hr.cm2. A nine-fold 

increase in averaged flux was observed by an approximate ninefold increase in the initial 

concentration of n-dodecane. In the concentration range of 9889 ppm to 14220 ppm, a two-

fold increase in the flux was observed. The effect of oil concentration was more marked at 

low concentrations than at higher concentrations. The experiments were carried out in a flow 

rate range of 21-25 mL/min. The results are provided in Table 3.2. A removal of 97-99.7% 

was achieved by changing the initial concentration of n-dodecane. The increase in flux with 

concentration may be due to fact that more of n-dodecane molecules were available for a 

given flow rate for transport through the membrane pores which increased the permeation 

of n-dodecane. This phenomenon was also observed at low concentrations of oil by Magdich 

and Semmens (1988) and Tirmizi et al.(1996). 

3.1.3 The Role of Feed Flow Side 

The next set of experiments were conducted to compare the performance of the module w.r.t 

the effect of a tube-side feed versus shell-side feed in terms of the flux and the removal 

performance of n-dodecane. Figures 3.5 and 3.6 illustrate the role of feed-flow side on the 

removal and instantaneous flux of n-dodecane respectively for the oil-in-water emulsion 

flowing on either the shell or the tube side. Two feed composition ranges were used: 1025-

1095ppm and 444-498 ppm. At the higher concentration range, a flow rate of 50-54 mL/min 

was used; for the lower concentration range, a flow rate of 32-34 mL/min was utilized. The 

shell side had a higher flow area so there was less pressure drop along the module and less 

resistance for flow which was not the case for tube-side feed. Table 3.3 shows the effect of 



Table 3.2. Effect of n-dodecane initial concentration on its removal and flux 

Ct=0  
(ppm) 

Cfinal  
(ppm) 

Time 
(hours) 

Flow rate 
(mL/min) 

Pressure 

(psi) 

% Removal *Flux of n-dodecane*106  
(mol/hr.cm2) 

1563 5 32 22 24/15 99.7 3.1 

9889 176 32 21 23/10 98 19.2 

14220 366 30.45 25 25/16 97 29.0 

* Averaged flux over the whole experiment, equation (2.2)  
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Figure 3.5. Effect of shell side and tube side on the removal of n-dodecane 
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Figure 3.6. Effect of shell side and tube side on the flux of n-dodecane 



Table 3.3. Effect of shell-side and tube-side performances on removal and flux of n-dodecane 

Feed 
side 

Ct=0  
(ppm) 

Cfinal  
(ppm) 

Time 
(hours) 

Flow rate 
(mL/min) 

Pressure 
(psi) 

% Removal SDS 
conc. 

*Flux of n-dodecane *106  
(mol/hr.cm2) 

tube 1095 111 32 50 25/7 90 1 1.94 

shell 1026 246 32 54 15/12 76 1 1.54 

tube 444 127 31.2 32 24/7 71 1 0.64 

shell 498 162 33.5 34 22/19 68 1 0.635 

* Averaged flux over the whole experiment, equation (2.2) 
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feed flow side on the removal and flux of n-dodecane. The surfactant concentration was 

maintained at 1% for all experiments. The average removal of n-dodecane dropped by 14-

16%when the feed was flowing through the shell side. However there was a significant 

difference in the overall flux for the higher concentration feed. In the first eleven hours of 

the experiment, the removal of n-dodecane was 15% higher when fed from the tube side. 

A feed of 1026-1095 ppm fed from the shell and tube side showed respectively averaged 

fluxes of magnitude of 1.54 *10'mol/hr.cm2  and 1.94 *10-6  mol/hr.cm2. Similar performance 

was observed when the feed concentration was changed to 444-498 ppm. The emulsified 

feed fed to the module was in micellar form with no free n-dodecane in the feed. The free 

n-dodecane was separated using a separating funnel. Higher concentrations of n-dodecane 

were not used as it was observed that a large pressure drop was created and difficulties 

occurred in maintaining the flow rate. 

3.1.4 Effect of Surfactant 

Figures 3.7 and 3.8 show the effect of flow rate on the removal and flux of n-dodecane 

respectively for the oil-in-water emulsion flowing on the shell side for different surfactant 

concentrations. Experiments were conducted at n-dodecane concentrations of 5000-5300 

ppm while the surfactant concentration was varied from 0-3%. The flow rate was maintained 

at essentially 39-41 mL/min. The purpose of passing the feed through the shell side was to 

avoid the accumulation of the oil at the feed inlet and to avoid higher pressure drop over the 

module. The results for the removal and fluxes are presented in Table 3.4. It was seen that 

by increasing the concentration of SDS from 0% to 3% the removal dropped by 17% 



Figure 3.7. Effect of SDS on removal of n-dodecane with feed from shell side 
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Figure 3.8. Effect of SDS on flux of n-dodecane with feed from shell side 



Table 3.4. Effect of surfactant on shell-side performance 

Ct=0  
(ppm) 

Cfinal  
(ppm) 

Time 
(hours) 

Flow rate 
(mL/min) 

Pressure 
(psi) 

% Removal SDS 
conc. 

*Flux of n-dodecane *106  
(mol/hr.cm2) 

5864 1080 29 41 24/20 82 0 10.4 

4973 1135 33 39 25/22 77 1 7.37 

5458 1911 33 40 26/23 65 3 6.81 

* Averaged flux over the whole experiment, equation (2.2) 
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and the flux dropped by almost half. The removal dropped from 82% to 65% as the SDS 

concentration was increased from 0% to 3%. The averaged flux dropped from 10.4 *10' 

mol/hr.cm2  to 6.81 *10-6  mol/hr.cm 2. The drop in flux was not significant as the surfactant 

concentration increased from 1% to 3%; the corresponding drop in flux was 7%: the 

averaged flux dropped from 7.37 *10-5  mol/hr.cm2  to 6.81 *10-5  mol/hr.cm2. A similar 

phenomenon was observed by Magdich and Semmens (1988) when the surfactant 

concentration was increased. The decrease in flux with increasing SDS concentration may 

be due to an increase in emulsion stability with increasing surfactant concentration. 

Alternatively the decrease may be due to the buildup of surfactant at the surface which 

presents a mechanical and/or electrical barrier to the membrane transport. 

Magdich and Semmens (1988) observed a flux of 0.249 mL/min.ft2  (7.085 *10-5  

mol/hr.cm2) at a pressure of 10 psi, surfactant concentration of 500 mg/L, n-dodecane 

concentration of 5%, temperature of 37°C, flow rate of 300 mL/min. Table 3.2 here shows 

that the flux increases proportionally to the oil concentration. Therefore extrapolating the 

results for Table 3.4, we can assume that in this study, at 5% n-dodecane concentration, a 

flux in the range 10*10-5  mol/hr.cm2  is quite likely at 25°C. Obviously it will go up 

significantly at 37°C. Further, a higher flow rate will increase it even further. 

3.2 Combined Permeation Experiments 

In the combined permeation experiments, both the VOC and the oil were removed from 

the emulsified oil-in-water feed. The results are presented and discussed with respect to 

three parameters, namely the n-dodecane concentration, TCE concentration and the flow 

rate. The experiments were carried out in an once-through mode. 
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3.2.1 Effect of TCE Concentration on Removal of TCE at a n-Dodecane 
Concentration of 200 ppm 

The experiments were carried out at a flow rate of 2.5 mL/min to get a baseline idea of the 

process behavior for the combined removal of TCE and n-dodecane. n-Dodecane 

concentration was kept constant at 200 ppm and the TCE concentration was varied in the 

range of 425-636-842 ppm. The transmembrane pressure was maintained at 4 psi. The shell 

side was maintained under vacuum at -28"Hg. Figures 3.9 and 3.10 show the effect of n-

dodecane on the removal and flux of TCE respectively for the oil-in-water emulsion flowing 

on the tube side. Tables 3.5 to 3.7 provide the results from the experiments carried out at 

three different TCE concentrations. It was observed that the TCE removal dropped with 

time. It was also observed that the drop in removal decreased with an increase in 

concentration of TCE. At a TCE concentration of 425 ppm it was observed that over the 

length of the experiment (-6.5 hours) the removal of TCE dropped from 67% to 26% and 

the TCE flux dropped from 1.7 *10-6 mol/hr.cm2  to 7.7 *10-7 mol/hr.cm2 . Similar behavior 

was observed for TCE concentrations of 636 ppm and 842 ppm but the rate of decline of 

TCE removal decreased with increasing TCE concentrations. The results in Tables 3.5 to 

3.8 show that the presence of n-dodecane decreases the water flux by approximately 90% 

when compared to the flux values obtained from modified pervaporation experiments 

(Table 3.8). Modified pervaporation is defined as a process wherein the liquid feed flows 

on the tube side, and is not in direct contact with the VOC-selective silicone membrane 

layer. The VOC will permeate through the silicone skin subjected to vacuum on the shell 

side via vapor permeation. An averaged water flux of 4.3 *10-5  mol/hr.cm2  was observed 

with n-dodecane in comparison with an averaged flux of 1.45 *10' mol/hr.cm2  without 
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Figure 3.9. Variation of TCE removal with time at different TCE 
concentrations and a constant n-dodecane concentration of 200 ppm 



Figure 3.10. Variation of TCE flux with time at different TCE concentrations 
and a constant n-dodecane concentration of 200 ppm 
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Table 3.5. Effect of n-dodecane on the removal of TCE with n-dodecane 
concentration remaining constant at 200 ppm for 425 ppm of TCE feed 
Conditions: flow rate= 2.5 mL/min, pressure= 6/2  psi, 
n-dodecane collected= 7-8 drops 

Time 

(hours) 
Ch, 

ppm 
C011  
ppm 

% Removal TCE flux 
mol/hr.cm2  

Water flux 
mol/hr.cm2  

2 425 140 67 1.7e-06 

3 425 152 64 1.6e-06 

4 425 192 55 1.4e-06 

4.5 425 217 49 1.4e-06 

5 425 253 41 9.9e-07 

5.5 425 312 27 6.9e-07 

6.5 425 315 26 7.7e-07 4.61e-05 

Table 3.6. Effect of n-dodecane on the removal of TCE with n-dodecane 
concentration remaining constant at 200 ppm for 636 ppm of TCE feed 
Conditions: flow rate= 2.5 mL/min, pressure= 6/2 psi, 
n-dodecane collected = 7-9 drops 

Time 
(hours) 

C, 
ppm 

Cut  
ppm 

% Removal TCE flux 
mol/hr.cm2  

Water flux 
mol/hr.cm2  

2 636 168  74 2.9e-06 

3 636 158 75 3.0e-06 

4 636 193 69 3.0e-06 

4.5 636 247 61 2.4e-06 

5 636 266 58 2.3e-06 

5.5 636 289 54 2.0e-06 

6.5 636 292 54 1.9e-06 4.14e-05 
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Table 3.7. Effect of n-dodecane on the removal of TCE with n-dodecane 
concentration remaining constant at 200 ppm for 842 ppm of TCE feed 
Conditions: flow rate= 2.5 mL/min, pressure= 6/2 psi, 
n-dodecane collected = 9-11 drops 

Time 
(hours) 

Cin  
ppm 

Cout  
ppm 

% Removal TCE flux 
mol/hr.cm2  

Water flux 
mol/hr.cm2  

2 842 245 70.8 3.6e-06 

3 842 223 74 3.8e-06 

4 842 234 72 3.6e-06 

4.5 842 250 70 3.4e-06 

5 842 263 69 3.8e-06 

5.5 842 286 66 3.6e-06 

6.5 842 316 62 3.3e-06 4.15e-05 

Table 3.8. Effect on the removal of TCE without n-dodecane 
Conditions: flow rate= 2.5 mL/min, pressure= 6/2 psi 

Time 
(hours) 

Flow rate 
mL/min 

Cin  
ppm 

Cout  
ppm 

% Removal TCE flux* 
mol/hr.cm2  

Water flux* 
mol/hr.cm2  

420 2.5 178 26 85 9.3e-07 0.000141 

400 2.5 420 28 93 2.4e-06 0.000136 

400 2.5 675 60 91 3.8e-06 0.000159 

410 2.5 897 29 97 5.3e-06 0.000155 

370 5 826 161 81 8.18e-06 9.71e-05 

405 10 837 334 60 1.24e-05 9.76e-05 

* Water flux and TCE flux were calculated after steady state was reached; the unsteady state period 
is not considered here. 
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n-dodecane (Table 3.8). This may be explained due to the fact that the oil present in the 

pores reduces the water transport. The water flux remained almost constant at 4.15 *10-6  

mol/hr.cm2  in the results of Tables 3.5-3.7. 8-12 drops of n-dodecane were collected after 

each experiment. 

3.2.2 Effect of TCE Concentration on Removal of TCE at a n-Dodecane 
Concentration of 100 ppm 

In this set of experiments same experimental conditions were maintained as identified in 

section 3.2.1 except that n-dodecane concentration was decreased to 100 ppm. Four 

experiments were carried out at TCE concentrations of 210-324-591-903 ppm. Figures 3.11, 

3.12 and 3.13 show the values of TCE removal, TCE flux and water flux respectively. Table 

3.9 tabulates the experimental results. It was observed that TCE removal was constant over 

the whole length of the experiment unlike that with 200 ppm n-dodecane. It was also 

observed that by increasing the concentration of TCE from 210 ppm to 903 ppm the removal 

increased from 61% to 91%. Comparing Tables 3.8 and 3.9, the % removal of TCE was 

lower compared to modified pervaporation experiments. The TCE fluxes increased from 

7.88 *10-7mol/hr.cm2  to 5.04 *10-6 mol/hr.cm2  with an increase in the TCE concentration 

from 210 ppm to 903 ppm. The water fluxes dropped from 4.61 *10-5 mol/hr.cm2  to 3.42 

*10-5  mol/hr.cm 2  with an increase in TCE concentration. Comparing the results obtained 

with those from modified pervaporation experiments (Tables 3.8 and 3.9) we see that the 

TCE flux is comparable and the water flux is lowered by 90% (a drop from 4.2 *10-5  

mol/hr.cm2  to 1.45 *10' mol/hr.cm 2). 6-7 drops of n-dodecane were collected after each 

experiment. 
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Figure 3.11. Effect of concentration of TCE on the removal of TCE with or 
without n-dodecane concentration of 100 ppm 
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Figure 3.12. Effect of n-dodecane on TCE flux with or without 
n-dodecane concentration of 100 ppm 
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Figure 3.13. Effect of n-dodecane on water flux with or without 
n-dodecane concentration of 100 ppm 



57 
Table 3.9. Effect of n-dodecane on the removal of TCE with n-dodecane 

concentration remaining constant at 100 ppm 
Conditions: flow rate= 2.5 mL/min, pressure= 6/2 psi, 
n-dodecane collected=6-7 drops 

Time 
(hours) 

Cin  
ppm 

Cout  
ppm 

% Removal TCE flux 
mol/hr.cm2  

Water flux 
mol/hr.cm2  

6.5 210 82 61 7.88e-07 4.61e-05 

6.5 324 65 80 1.6e-06 4.71e-06 

6.5 591 86 85 3.1e-06 4.15e-05 

6.5 903 84 91 5.04e-06 3.42e-05 

Table 3.10. Effect of flow rate on the removal of TCE with n-dodecane 
concentration remaining constant at 100 ppm 
Conditions: TCE conc. = 903-1006-971 ppm, 
pressure = 6/2 psi, n-dodecane collected=7-11 drops 

Time 
(hours) 

Flow rate 
mL/min 

Cin  
ppm 

Cout  
ppm 

% Removal TCE flux 
mol/hr.cm2  

Water flux 
mol/hr.cm2  

6.5 2.5 903 84 91 5.04e-06 4.49e-05 

7 5 1006 546 46 5.65e-06 3.42e-06 

6.5 7.5 971 658 32 5.79e-06 3.14e-05 
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3.2.3 Effect of Flow Rate on the Removal of TCE at a n-Dodecane Concentration of 
100 ppm 

The effect of flow rate was studied by varying the flow rates from 2.5 mL/min to 7.5 mL/min 

and keeping the TCE and n-dodecane concentrations constant at approximately 1000 ppm 

and 100 ppm respectively. Figures 3.14, 3.15 and 3.16 show the effect of flow rate on 

removal, water flux and the TCE flux respectively. Table 3.10 tabulates the experimental 

results. 

It was observed that by increasing the flow rate from 2.5 mL/min to 5 mL/min the 

removal dropped from 91% to 46%. When the flow rate was increased to 7.5 mL/min the 

removal dropped to 32%. The TCE flux increased from 5.04*10-6mol/hr.cm2  to 5.79 *10-6  

mol/hr.cm2 . This may be due to an increase in removal of n-dodecane as it was observed that 

the removal of n-dodecane increased with flow rate in the oil permeation experiments which 

adversely affected the removal efficiency of TCE. The oil facilitated in cutting down the 

water flux but it also reduced TCE flux significantly. The water flux dropped from 4.49 * 

10-5 mol/hr.crn2  to 3.14 *10-5  mol/hr.cm2  as the flow rate was increased from 2.5 to 7.5 

mL/min. Comparing Tables 3.8 and 3.9, the % removal of TCE was lower compared to 

those in modified pervaporation experiments. The oil collected in the collecting vessel 

increased with an increase in flow rate. 

3.2.4 Effect of Surfactant 

The effect of surfactant was studied using two different SDS concentrations (0.3% and 

1.0%). Experiments were carried out at a flow rate of 2.5 mL/min and the TCE and n-

dodecane concentrations were kept constant at approximately 1500 ppm and 1050 ppm 



Figure 3.14. Effect of flow rate on removal of TCE with or without 
n-dodecane concentration of 100 ppm 
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Figure 3.15. Effect of flow rate on TCE flux with or without n-dodecane 
concentration of 100 ppm 



61 

Figure 3.16. Effect of flow rate on water flux with or without n-dodecane 
concentration of 100 ppm 
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respectively. Figures 3.17 and 3.18 show the effect of surfactant concentration on TCE 

removal and flux respectively. Tables 3.11 and 3.12 tabulate the experimental data 

collected. 

It was observed that TCE removal dropped with time. It was also observed that 

by increasing the surfactant concentration from 0.3 to 1%, the TCE removal was lowered. 

At a surfactant concentration of 0.3%, the % removal of TCE dropped from 61% to 40% 

over a period of five hours and the TCE flux was lowered from 6.3 *10-6  mol/hr.cm 2  to 

3.0 *10-6  mol/hr.cm2  . In the case of 1% SDS, the drop over a period of four hours was 

from 41% to 16% and the TCE flux was decreased from 3.7 *10-6  mol/hr.cm2  to 1.6 *10 -6  

mol/hr.cm2. The water flux dropped from 3.7 *10-5  mol/hr.cm2  to 2.8 *10-5  mol/hr.cm2  as 

the SDS concentration increased. Studying Tables 3.7, 3.11 and 3.12 it may be noted that 

the TCE removal was significantly reduced due to the presence of the surfactant and oil. 

3.2.5 Effect of Feed Flow Side 

The last set of experiments were conducted to compare the performances of the module 

with respect to tube-side feed and shell-side feed. The performance was based on the 

removal and the flux behavior of TCE. The feed composition of TCE was maintained 

at 1516-1624 ppm and the n-dodecane concentration was maintained at 1100-1140 ppm. 

The flow rate was maintained at 2.5 mL/min. Tables 3.11 and 3.13 provide the results 

from the two experiments. Figures 3.17 and 3.18 illustrate the behavior of the removal 

and the flux of TCE for feed flowing from the tube side and Figures 3.19 and 3.20 

illustrate the removal and the flux of TCE for feed flowing from the tube side and shell 

side. The surfactant concentration was maintained at 1% for both experiments. It was 
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Figure 3.17. Effect of surfactant on the removal of TCE 
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Figure 3.18. Effect of surfactant on the flux of TCE 
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Table 3.11. Effect of surfactant on the removal of TCE with 1% SDS 
Concentration of n-dodecane = 1100 ppm, flow rate= 2.5 mL/min, pressure= 6/2  psi, 

water collected=0.6 mL, n-dodecane collected = 10-12 drops, tube-side feed. 

Cin  Cout  Time (hours) %Removal TCE flux 
mol/hr.cm2  

Water flux 
mol/hr.cm2  

1516 898 2.5 41 3.7e-06 

1516 923 3.5 39 3.6e-06 

1516 974 4 36 3.4e-06 

1516 1017 5 33 3.2e-06 

1516  1150  6 24 2.1e-06 

1516 1281 6.5 16 1.6e-06 2.8e-05 

Table 3.12. Effect of surfactant on the removal of TCE with 0.3% SDS 
Concentration of n-dodecane = 1050 ppm, flow rate= 2.5 mL/min, pressure= 6/2 psi, 

water collected=0.8 mL, n-dodecane collected = 8-9 drops, tube-side feed. 

Cin Cout  Time (hours) %Removal TCE flux 
mol/hr.cm2  

Water flux 
mol/Uhr. cm2  

1567 612 2 61 6.3e-06 

1567 626 3 60 6.1e-06 

1567 666 4.5 57 5.9e-06 

1567 706 5.5 55 5.4e-06 

1567 923 6.5 41 3.6e-06 

1567  941 7 40 3.0e-06 3.7e-05 



Table 3.13. Effect of surfactant on the removal of TCE with shell-side feed 
Concentration of n-dodecane= 1140 ppm, SDS concentration= 1%, 
flow rate= 2.5 mL/min, pressure= 4/1 psi, water collected-0.5 mL, 
n-dodecane collected =8-9 drops. 

Cin  Cout  Time (hours) %Removal TCE flux 
mol/hr.cm2  

Water flux 
mol/hr.cm2  

1624 773 2 52 5.6e-06 

1624 654 3 60 6.2e-06 

1624 690 4 58 5.7e-06 

1624 730 4.5 55 5.0e-06 

1624 884 5.5 46 4.2e-06 

1624 983 6 39 4.0e-06 

1624  1088 7 33 3.3e-06 2.14e-05 
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Figure 3.19. Effect of feed flow side on the removal of TCE 



Figure 3.20. Effect of feed flow side on the flux of TCE 
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observed that for the feed flowing from the shell side the drop in removal of TCE was 

less as compared to the feed flowing from the tube side. Also the % removal at any point 

of time was better in the case of shell side. In the case of shell side the flux of TCE 

dropped from 5.6*10-6  mol/hr.cm2  to 3.3*10-6  mol/hr.cm2  whereas the flux of TCE 

dropped from 3.7 *10-6  mol/hr.cm2  to 1.6*10-6  mol/hr.cm2  in the case of tube side, The 

water flux dropped from 2.8*10-5 mol/hr.cm 2  to 2.14*10 -5 mol/hr.cm 2 when the feed flow 

was changed from tube to shell. 

Permeation of n-dodecane from the shell-side into the substrate pores and the tube-

side is expected to create considerable resistance to the pervaporation process; the 

collected oil will create difficulties in maintaining the vacuum. In these experiments 

discussed above, the amount of n-dodecane permeated was quite limited (8-9 drops). 

Therefore an extended term experiment spanning 1-2 days is needed to find out the long-

term behavior of such a system when there is shell-side feed. 



CHAPTER 4 

CONCLUSIONS 

The following conclusions can be drawn from the study of removal and recovery of n-

dodecane from an oil-in-water emulsion by permeation experiments and removal and 

recovery of TCE and n-dodecane from recovered water obtained from surfactant-enhanced 

subsurface remediation by combined permeation experiments. 

1) It was observed that n-dodecane can be efficiently removed from an oil-in-water emulsion 

by using membrane module having hydrophobic hollow fibers with a plasma-polymerized 

silicone skin on the outer surface. 

2) It was observed that by increasing the flow rate, both removal and flux of n-dodecane 

increased during the initial period and thereafter remained constant. 

3) The oil flux increased significantly when the initial concentration was increased but the 

overall removal remained constant with an increase in concentration. 

4) The oil flux of n-dodecane changed significantly when the feed was pumped from either 

the tube side or shell side. In the case of tube side, the feed side effect was more pronounced 

during the initial period, wherein the n-dodecane concentration dropped rapidly. A higher 

flux and overall removal was observed when the feed was pumped from the tube side. This 

effect was not clear at very low concentrations of n-dodecane. 

5) At lower concentration range of SDS, an increase in concentration of SDS decreased the 

oil flux significantly and at higher concentration range of SDS the oil flux did not change 

drastically when the SDS concentration was increased. 
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6) The oil permeation process was facilitated by higher concentration of n-dodecane and 

operation at higher flow rates. 

7) The surfactant flushed groundwater contains both volatile and non-volatile components. 

Although research was conducted in an exploratory manner for the combined permeation of 

TCE and n-dodecane, the combined permeation employed for separating the VOC and oil 

from groundwater was found out to be an efficient technique. 

8) With an increase in concentration of oil, the TCE removal decreased with time. But with 

higher TCE concentrations, the rate of decrease in TCE removal was lower. The water flux 

was reduced by an order of magnitude due to the presence of oil. 

9) It was observed that when the combined feed was flowing through the shell side the 

performance of TCE removal was better as compared to tube side. However, these 

experiments were of limited duration. Only extended-term experiments can provide the 

correct answer. 

10) The combined permeation technique was an efficient way of separating both the low 

boiling components and the high boiling components. 



APPENDIX A 

THEORY 

A.1 Theory of Surfactants 

A.1.1 Chemical and Physical Properties of Surfactants 

A surfactant or a surface active agent can be defined as a substance which when present 

in small quantities in a system, has a property of adsorbing onto the surface or interfaces 

of the system due to which a significant change occurs in the surface or interfacial free 

energies of those surfaces or interfaces. The term interface here indicates a boundary 

between two immiscible phases; the term surface indicates an interface where one phase 

is a gas, usually air. 

The interfacial free energy is the minimum amount of work required to create that 

interface. Surfactants can be expected to play a major role in the system when the phase 

boundary area is so large relative to the volume of the emulsion system (oil-in-water) that 

a substantial fraction of the total mass of the system is present at the boundaries. 

Surface active agents have a characteristic amphipathic structure. This is due to 

fact that a surfactant has two groups namely the lyophobic and the lyophilic. The 

lyophobic group has a lower affinity towards the solvent whereas the lyophilic group has 

a strong attraction towards the solvent. The lyophobic group creates a distortion of the 

solvent liquid structure, increasing the free energy of the system. As a result less work is 

required for bringing the surfactant molecule to the surface than the water molecule, 

which leads to the increased concentration of the surfactant at the surface. The presence 

of lyophilic group prevents the surfactant from being completely expelled from the solvent 
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as a separate phase. The amphipathic structure of the surfactant therefore causes not only 

concentration of surfactant at the surface and reduction of surface tension of water, but 

also orients the molecule at the surface with its hydrophilic group in the aqueous phase 

and its hydrophobic group oriented away from it. 

A.1.2 Surfactant Classification 

The hydrophilic group of the surfactant is an ionic or a highly polar group. The 

classification of the surfactant is based on the nature of the hydrophilic group. 

a) Anionic - The surface-active portion of the molecule bears a negative charge, 

e.g. C12 H25O4SNa , (Sodium Dodecyl Sulfate). 

b) Cationic - The surface-active agent bears a positive charge, e.g. RN(CH3)3+Cl-

(quaternary ammonium chloride). 

c) Zwitterionic - The surface-active portion may carry a both a positive as well as 

negative charge, e.g. R+NH2  CH2  coo-  (Long chain amino acid). 

d) Nonionic - The surface-active agent bears no ionic charge, e.g. RC6H4(OC2 H4)x0H 

(polyoxyethylenated alkyl phenol). 

A.1.3 Micelle Formation by Surfactants 

The property of the surface-active solutes to form colloidal-sized clusters in solution at 

higher concentration is known as micellization. 

A micelle can also be defined as a stable colloidal particle having a self-organizing 

structure in which the polar groups are exposed to water, while the hydrophobic groups 
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are in contact. This minimizes the interfacial energy and leaves the maximum number of 

water molecules in mutual contact. Micellization plays a important role in number of 

interfacial phenomena such as detergency and solubilization which depends on the 

existence of micelles. The distortion of the solvent structure can also be decreased by 

aggregation of the surface-active molecules into clusters(micelles) with their hydrophobic 

groups directed towards the interior of the cluster and the hydrophilic groups directed 

towards the solvent. The free energy of the system is reduced as a result of which 

micellization can be looked upon as alternative mechanism to adsorption at the interfaces 

as the hydrophobic groups are separated from water. 

The shape of the micelle produced in aqueous media is of importance in 

determining various properties of the surfactant solution, such as its viscosity, its capacity 

to solubilize water-insoluble material. The various types of micelle structure may range 

from small spherical to elongated cylindrical, rod-like micelles to large, flat lamellar 

micelles and vesicles. The interior region of the micelle, containing the hydrophobic 

groups, is of radius approximately equal to the length of the extended hydrophobic chain. 

A.1.4 Thermodynamic Parameters of Micellization 

The determination of the thermodynamic parameters of micellization ∆G°mic, ∆H°

mic, ∆S°mic has played a important role in developing a clear understanding of the process of 

micellization which helps to provide a rationale explanation of the effects of structural and 

environmental factors on the value of CMC. A standard free energy of micellization 

∆G°mic  may be calculated by choosing for the standard initial state of the nonmicellar 
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surfactant species a hypothetical sate at unit mole fraction x but with the individual ions 

or molecules behaving as at infinite dilution, and for the standard final state, the micelle 

itself. 

The negative values of ∆G°  are due mainly to the large positive values of ∆S° 

mic AH° mic  is often positive and even if it is negative is much smaller than the value of 

TAG°  mic. 

The process of forming micelles is primarily controlled by the entropy gain 

associated with it and the driving force for the process is the tendency of the lyophobic 

group of the surfactant to transfer from the solvent environment to the interior of the 

micelle.The entropy gain on micellization is in aqueous medium is due to structuring of 

the water molecules around the hydrocarbon chains in aqueous medium which when 

removed from the aqueous medium to the interior of the micelle results in increase in 

entropy. Also, the hydrocarbon chain when enter the non-polar interior of micelle have 

more freedom than in the aqueous environment which helps in entropy gain. Any 

structural or environmental factors that may affect solvent-lyophobic group interactions 

or interactions between the lyophobic groups in the interior of micelle will therefore affect 

∆G°

mic 

 and hence the value of CMC. 

A.1.5 Wetting Phenomena by Surfactants 

Wetting in a general sense is the displacement from a surface of one fluid by another. 

Wetting is a process involving surfaces and interfaces and the modification of the wetting 

power of water is a surface property shown to some degree by all surface-active agents. 
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The area required to be wetted determines the controlling factor. When the surface to be 

wetted the equilibrium conditions close to it can be attained during the wetting process 

and the free energy changes involved in the process determine the degree of wetting 

attained. 

Water has a high surface tension, 72 dyne/cm; hence it does not spread over 

covalent solids that have surface free energies of less than 72 erg/cm2. The addition of 

surface-active agent to water helps in modifying the interfacial tensions of the system. 

Therefore it is used to enable water wet a solid or liquid surface. The spreading 

coefficient SW/S  = γSA  - (γSW  + γWA  ) must be positive for the water to wet the surface 

spontaneously. The addition of surface-active agent to water reduces the surface tension 

of the water γSA  and perhaps the interfacial tension between water and the substrate γSW  

which may cause the spreading coefficient to have a positive value and make spreading 

spontaneous. 

But under certain conditions the addition of surface-active agent to water may 

make spreading more difficult. 

When the substrate is porous and considering that it has a mass of capillaries, the 

pressure causing the movement of liquid into the capillaries because of the curvature of 

the liquid surface is given by. 

where r is the equivalent radius of the capillaries and 6 the contact angle at the air-liquid 

substrate interface. 
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A.2 Theory of Emulsions 

Emulsification-the formation of emulsions from two immiscible liquid phases-is probably 

the most versatile property of surface active agents for practical applications and, as a 

result, has been extensively studied. Metal cutting oils, metal cleaners, and textile 

processing oils are all emulsions or are used in emulsified form. 

A.2.1 Definition 

An emulsion is a significantly stable suspension of particles of liquid of a certain size 

within a second, immiscible liquid. Emulsions are stable and intimate mixtures of oil or 

oily material with water. 

A.2.2 Types of Emulsions 

There are three different types of emulsions, based on size of the dispersed particles: (1) 

macroemulsions, the most well-known type, opaque emulsions with particles with >400 

nm easily visible under a microscope; (2) microemulsions, transparent dispersions with 

particles <100 nm in size that have been intensely studied during the past decade or so 

because of their enhanced oil recovery; (3) miniemulsions, a recently suggested type that 

is blue-white, with particle sizes between the first two types (100-400 urn). 

A.2.3 Theory 

A proper theory of emulsions can be described by the following characteristics 

1. Formation 
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2. Stability 

3. Breaking and inversion 

4. The role of emulsifying agents and other chemical factors such as pH and non-surface-

active ions. 

5. The influence of physical factors. 

A.2.4 Formation  

Two immiscible, pure liquids cannot form a emulsion. In the formation of emulsions, one 

of the two immiscible liquids is broken up into particles that are dispersed in the second 

liquid. Since the interfacial tension between two immiscible pure liquids is always greater 

than zero, this dispersion of the inner liquid, which produces a tremendous increase in the 

area of the interface between them, results in a correspondingly large increase in the 

interfacial free energy of the system. The emulsion produced is consequently highly 

unstable thermodynamically, relative to the two bulk separated by a minimum area 

interface. It is for this reason that two immiscible liquids, when pure, cannot form an 

emulsion. The formation of 0/W emulsion can be explained on the basis of difference in 

contact angles at the oil-water-emulsifier boundary. If the water contact angle is less than 

90°, then the water surface is concave toward the oil, producing an O/W emulsion. If the 

water contact angle is less than 90°, then γWE  < γOE, and the emulsifying agent is more 

hydrophillic than hydrophobic. Thus, emulsifying agents with mainly hydrophillic 

character produce 0/W emulsion. 

Macroemulsions are of two types, based on the nature of the dispersed phase: oil- 
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in-water (0/W) and water-in-oil (W/O). The oil-in-water type is a dispersion of a water-

immiscible liquid or solution, always called the "oil"(O), regardless of its nature, in an 

aqueous phase(W). The oil is, in this case, the "discontinuous" (inner) phase; the aqueous 

phase is the "continuous" (outer) phase. The type of emulsion formed by the water and 

the oil depends primarily on the nature of emulsifying agent and, to a minor extent, on 

the process used in preparing the emulsion and the relative proportions of the oil and 

water present. In general, 0/W emulsions are produced by emulsifying agents that are 

more soluble in the water than in the oil phase. 

A.2.5 Breaking and Inversion 

01W and W/0 emulsions are not in thermodynamic equilibrium with each other; one type 

is usually inherently more stable than the other for a particular emulsifying agent at a 

given concentration under a given set of conditions. However, the one type can be 

converted to the other by changing conditions. This is called inversion of the emulsion. 

A.2.6 Effect of Surface-Active Agent 

For a suspension of one liquid in another to be stable enough to be classified as an 

emulsion, a third component must be present to stabilize the system. The third component 

is called the emulsifying agent and it is usually a surface-active agent. Thus, emulsifying 

agents with mainly hydrophillic character produce 0/W emulsion. The emulsifying agent 

provides the stability by adsorption at the liquid-liquid interface as an oriented interfacial 

film. This oriented film reduces the interfacial tension between the two liquids and 
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consequently the thermodynamic instability of the system resulting from the increase in 

the interfacial area between the two phases. Also it decreases the rate of coalescence of 

the dispersed liquid particles by forming mechanical, steric, and/or electrical barriers 

around them. 

A.2.7 Stability 

The term stability, when applied to emulsions used for practical applications, usually 

refers to the resistance of emulsions to the coalescence of their dispersed droplets. 



APPENDIX B 

CALCULATION OF THE FLUX OF N-DODECANE 

The experimental data from different experiments in oil permeation showed a decline in 

concentration C of the reservoir with time (t). The plot (e.g 3.1) of the concentration versus 

time curve shows somewhat of a first-order decline model. The data were fitted to a first 

order expression and a lumped parameter for the model was determined. 

The lumped parameter (K) was used for the purpose of calculating the flux (J). The 

lumped parameter may be assumed to be a function of the process conditions (temperature, 

viscosity, pressure differential etc.). 

The mass of n-dodecane permeating per unit time (R) is given by the expression 

below. 

where, 

C, 	= Concentration of the reservoir at ant time t , mg/L 

= Concentration of the reservoir at any time t. +At , mg/L 

V 	= Volume of feed reservoir, Liters 

t = time interval, hours 

R 	= Mass of n-dodecane permeating per unit time, mg/hr 
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As ∆t →  0 the above expression can be written as 

The flux (J) can be calculated by dividing the above expression by the area of the hollow 

fiber module and is given by 

It is seen that the concentration C(t) profile follows a first order behavior and therefore one 

may write 

where K is the lumped model parameter. 

To determine K the experimental data were fitted to the above equation using 

non-linear regression. 

Differentiating equation B.4 w.r.t time gives us 

Substitute equation (B.5) into equation (B.3) 
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K and Co  are known for a given set of experiments and V and A being constant parameters 

the flux (J) can be calculated for any time t. 

Sample calculation 

J (mol/hr.cm2  ) is calculated using equation (2.5) 

J can also be calculated in the following manner as follows 

In Table 3.5, Co  = 9889 ppm, K=0.1538. 

V = 2 liters, AM  = 185.5 cm2, M n-dodecane = 170 gm/gmol 

Substituting the values in equation (B.3) we get the flux in terms of time: 

J = 9.6456*10-5* e  0.1538+1 

Where J can be expressed in terms of mol/cm2.hr. 

The following tables tabulates the values of K and the corresponding experimental 

condition the value of K came out to be 0.1538. 

Co  
ppm 

Flow rate 
mL/min 

Pressure 
(psi) 

K Standard 
error 

9889 21 23/10 0.1538 0.01 

5864 41 24/20 0.0735 0.006 

1563 22 24/15 0.1998 0.1998 

Three experiments were taken to fit the data to the first order model. The results are shown 

in the Figures B.1 to B.6 and Tables from B.1 and B.6.  



Figure BA. Fitted concentration profile versus experimental concentration data 
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Table B.1. Experimental results for Co =9889 ppm, ∆P= 13psi, 
flow rate=21mL/min 

Time elapsed (hours) Concentration of n-dodecane, 
ppm 

0 9889 

4.15 5972 

5.15 5519 

6 3471 

7 3306 

7.25 2232 

8.45 1753 

22.15 1121 

22.45 863 

23.45 642 

26.25 541 

27.1 483 

27.45 392 

28.3 302 

29 231 

31 175 

The value of K predicted from the non-linear regression was found out to be 0.1538. 
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Figure B.2. Fitted flux profile versus experimental flux data 



Table B.2. Experimental results for Co =9889 ppm, ∆P= 13psi, 
flow rate=21mL/min 

Time elapsed (hours) Flux of n-dodecane (1*105), 
mol/cm2.hr 

4.15 5.986 

5.15 5.381 

6.0 6.784 

7.0 5.964 

7.25 6.697 

8.45 6.107 

22.15 2.510 

22.45 2.550 

23.45 2.501 

26.25 2.258 

27.1 2.201 

27.45 2.194 

28.3 2.148 

29.0 2.112 

31.0 1.987 
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Figure B.3. Fitted concentration profile versus experiemental concentration data 



89 

Table B.3. Experimental results for Co =5864 ppm, ∆P= 4psi, 
flow rate= 41mL/min 

Time elapsed (hours) Concentration of n-dodecane, ppm 

0.00 5864 

4 4617 

6 3707 

6.5 3249 

8.35 2463 

10.05  
2325 

10.35 2056 

11.05 1909 

11.35 2098 

12 2056 

24.05 1994 

25.05 1909 

25.55 1419 

26.25 1371 

27 1353 

28 1321 

29 1080 

The value of K predicted from the non-linear regression was found out to be 0.0735. 



Figure B.4. Fitted flux profile versus experiemental flux data 
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Table B.4. Experimental results for Co =5864 ppm, ∆P= 4psi, 
flow rate= 41mL/min 

Time elapsed (hours) Flux of n-dodecane (1*4105), 
mol/cm2. hr 

4 1.977 

6 2.279 

6.5 2.552 

8.35 2.583 

10.05 2.233 

10.35 2.334 

11.05 2.270 

11.35 2.104 

12.0 2.013 

24.05 1.021 

25.05 1.001 

25.55 1.103 

26.25 1.086 

27.0 1.060 

28.0 1.029 

29.0 1.046 
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Figure B.5. Fitted concentration profile versus experimental concentration data 



Table B.5. Experimental results for Co =1563 ppm, LP=9 psi, 	 93 
flow rate=22 mL/min 

Time elapsed (hours) Concentration of n-dodecane, ppm 

0 1563 

2.3 1018 

4.3 748 

6 637 

6.4 445 

7 278 

8.45 178 

10.1 159 

10.5 140 

11 101 

21 94 

22 60 

22.3 47 

23.3 43 

24 32 

24.3 28 

25.3 22 

26 21 

28 18 

28.3 15 

29 11 

30.3 9 

31 7 

32 5 

The value of K predicted from the non-linear regression was found out to be 
0.1998 
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Figure B.6. Fitted flux profile versus experimental flux data 



Table B.6. Experimental results for Co =1563 ppm, ∆P=9 psi, 
flow rate 22 mL/min 

Time elapsed (hours) Flux of n-dodecane (1*105), 
mol/cm2.hr 

2.3 1.503 

4.3 1.202 

6.0 0.979 

6.4 1.108 

7.0 1.165 

8.45 1.040 

10.1 0.882 

10.5 0.860 

11.0 0.843 

21.0 0.444 

22.0 0.433 

22.3 0.431 

23.3 0.414 

24.0 0.405 

24.3 0.401 

25.3 0.386 

26.0 0.376 

28.0 0.350 

28.3 0.347 

29.0 0.339 

30.3 0.325 

31.0 0.318 

32.0 0.309 
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APPENDIX C 

ADDITIONAL SAMPLE CALCULATIONS 

C.1 Calculation of TCE flux 

TCE flux, JTCEJ 	is proportional to the solute concentration difference AC, the feed flow rate v, 

and the mass-transfer area AM. The three parameters can be related to the flux by the following 

expression as 

where, 

JTcE 	= TCE flux (mol/hr.cm2), 

AC 	= Concentration difference between the feed and retentate (mg/L), 

AM 	= Mass transfer area (cm2), 

v 	= Feed flow rate (mL/min), 

MTCE  = Molecular weight of TCE, (gm/mol), and 

P 	= Adjustable constant. 
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The mass transfer area was calculated as 

C.2 Calculation of Water Flux 

The water flux JWATER, was calculated by measuring the volume of water collected in the 

condenser in the permeate side. The water flux can be calculated as 

where, 

V

w 

	= Volume of water collected in the permeate (mL), 

MW 	= Molecular weight of water (gm/mol), 

AM 	= Mass transfer area of the membrane module (cm2), 

ttotal 	= Duration of experiment (hr). 

C.3 Sample calculation 

Taking the experimental data from Table 3.9 and substituting in (C.1): 

Cin = 903 ppm, Cout  = 84 ppm, v= 2.5 mL/min, t= 390 mins, P= 4.57*10 7 , 

water collected = 0.8mL, AM  = 185.5 cm', MTCE  = 131.4 gm/gmol.  
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The water flux can be calculated using the equation (C.3; 

C.4 Calculation of n-dodecane flux 

The average flux of n-dodecane over the total duration of experiment (t) can be 

calculated using equation (C.6). 

Taking the experimental data from Table 3.4 and substituting in (C.6), V= 2L, 

C0 =5864 ppm, Cfinal  = 1080 ppm, v=41 mL/min, t=29 hours, Mn-dodecane  =170 gm/gmol, 
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