

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

A GRAPHICAL ENVIRONMENT FOR
CHANGE DETECTION IN STRUCTURED DOCUMENTS

by
Girish A. Patel

Change detection in structured documents (e.g. SGML is important in data

warehousing, digital libraries and Internet databases. This thesis presents a graphical

environment for detecting changes in the structured documents. We represent. each

document by alp ordered labeled tree based on the underlying markup language.

We then compare two documents by invoking previously developed algorithms for

approximate pattern matching and pattern discovery in trees. Several operators

are developed to support. the comparison of the documents; graphical devices are

provided to facilitate the use of the operators. We believe the proposed tool is useful

for not only document management, but also software maintenance, particularly

configuration management and version control, where programs aro represented as

parse trees and detecting changes in the trees provides a way to find the syntactic

differences of two program versions.

A GRAPHICAL ENVIRONMENT FOR
CHANGE DETECTION IN STRUCTURED DOCUMENTS

by
Girish A. Patel

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer and Information Science

May 1997

APPROVAL PAGE

A GRAPHICAL ENVIRONMENT FOR
CHANGE DETECTION IN STRUCTURED DOCUMENTS

Girish A. Patel

Dr. Jason T. L. Wang, Thesis Advisor
	

Date
Associate Professor of Computer and
Information Science Department,
New Jersey Institute of Technology

Dr. James McHugh Committee Member
Professor of Computer and Information Science Department,
New Jersey Institute of Technology

 Date

Dr. Peter A. Ng, Committee Member
	

Da to
Chairman and Professor of Computer and
Informaton Science Department
New Jersey Institute of Technology

BIOGRAPHICAL SKETCH

Author: Girish A. Patel

Degree: Master of Science in Computer Science

Undergraduate and Graduate Education:

• Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1997

• Bachelor of Science in Electrical Engineering,
Birla Vishvakarma Mahavidyalaya, India, 1988

Major: Computer Science

Presentations and Publications:

J. T. L. Wang, D. Shasha, G. J. S. Chang, G. A. Patel, L. Relihan and K. Zhang.
NJIT, 	Piercom Ltd., University of Western Ontario. Structural Matching
and Discovery in Document Databases. To appear in ACM SIGMOD, May
1.997

J. T. L. Wang, G. 	S. Chang, L. ReMinn and G. A. Patel. A Graphical
Environment for Change Detection in Structured Documents. To appear
in COMPSACO7. Washington D.C., August 1997.

iv

To
my parents

my wife Daxa Patel and
my daughter Tithi Patel

ACKNOWLEDGMENT

I wish to thank my advisor. Dr. Jason T. L. Wang, for his guidance, encour-

agement. and support throughout this thesis.

Special thanks to George J. S. Chang who helps me in getting started. I spent

many hours with him discussing various approaches and ideas, for this I am sincerely

grateful.

I also wish to thank Dr. James McHugh and Dr. Peter A. Ng for serving as

members of the committee.

vi

• TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	

2 BACKGROUND 	 4

2.1 SGML Preliminaries 	4

2.2 Tree Comparison 	6

3 ALGORITHMS AND ARCHITECTURE 	 10

3.1 Underlying Algorithms 	 10

3.2 System Architecture 	 19

4 GRAPHICAL INTERFACE 	 1.1

4.1 Graphical Interface 	

5 CONCLUSION 	 17

APPENDIX A PROGRAMS 	

REFERENCES 	

vii

LIST OF FIGURES

Figure 	 Page

2 .1 	A DID for a document of type article 	5

2.2 	An SGML document of type article 	

2.3 	Tree representation of the document in Fig: 2.2. 7

2.4 	Edit operations. 	8

2.5 	A mapping from tree T1 to tree T2 	 9

3.1 Matching a VLDC pattern V and a tree T 	

3.2 System architecture of the proposed graphical environment. 	 12

4.1 	Result of comparing two SGML documents. 	

4.2 Result of finding the largest common portion of three versions of
document. 	 16

CHAPTER 1

INTRODUCTION

It has recently been the trend in document systems technology to emphasize the

logical structures inherent in many kinds of documents. In general, text processing

systems and word processing systems require additional information to be recorded

on the text of the document being processed. This metainformation is usually inter-

spersed among the actual text itself and is often referred to as markup. Individual

fragments of markup are called tags.

One kind of markup - generalized markup - is becoming increasingly common.

Generalized Markup is based on two postulates [7, 9]:

• Markup should describe a document's structure and other attributes rather

than specifying processing instructions to be carried out on it.

• Markup should be rigorous in order that techniques available for processing

other rigorously defined objects (e.g. programs, databases) be available for

processing documents also [1].

Generalized markup provides the following advantages over the inure usual

kind of markup (descriptive markup) that merely specifies processing instructions:

• Information is preserved; the identification of logical elements is not lost.

• Arbitrary processing instructions may be assigned to tags. This provides:

— flexibility: the appearance of whole sets of documents may be changed

instantly by simply changing the processing instructions associated with

the tags;

2

— portability: since platform dependent processing instructions are not

embedded in descriptively marked-up documents, the portability of

documents is enhanced.

• It is feasible to make "intelligent" queries on documents [4]

SGML is a metasyntax that is used for writing generalized markup syntaxes.

Ultimately, the rationale behind SGML is to provide mechanisms that. allow

documents to be described in such a way that they are easily portable across

systems. In fact, the SGML language is becoming de facto the standard for

structured document; creation and exchange.

This thesis presents a. graphical environment for change detection in structured

documents such as SGML and its extension HTML. The SGML and 	are

widely used to define document types for the defense [10], aerospace, publishing

industries and World Wide Web. Detecting changes to the structured documents is

a basic function of many important applications, including data warehousing,

libraries, version management, hypermedia and Internet. databases [3, 8, I I, 12, 21].

As an example, a user ()I" the World Wide Web may be interested in knowing changes

in an HTML document. Suck changes ran he detected by comparing the old and

new version of the document. As another example, in hypertext authoring, ii user

May wish to find the common portions in the history fist of a document or a set of

documents.

Our approach to detecting document. changes is first II) translate a document

into an ordered labeled tree structure based on the underlying markup language.

(An ordered labeled tree is a tree in which each node has a label and the left to right

order of its children. if it has any, is fixed.) We then compare two documents (trees)

using approximate tree matching techniques which find a minimum number of tree

edit operations (insert. node, delete node and relabel node) for transforming one I tree

3

to the other. Besides. our system can find an approximately common portions of a

set. of documents by invoking a previously developed algorithm for pattern discovery

in trees. We believe that the proposed techniques should help not only document

management. but also software maintenance. particularly configuration management

and version control [131. where programs are represented by parse trees and changes

to the code can be detected by comparing the parse trees.

The rest of the thesis is organized as follows. In Chapter 2 we review the

background for the SGML language, the representation of structured documents

using trees, and tree edit operations. In Chapter 3, we describe the architecture

of our tool and the underlying algorithms. Chapter 4 presents the graphical user

interface of the tool. Chapter 5 concludes the thesis.

CHAPTER 2

BACKGROUND

2.1 SGML Preliminaries

There are two important concepts in SGML: elements and entities. Elements are

logical information components which compose a document. Common examples

are sections, lists. paragraphs, etc. An SGML document consists of a hierarchical

structure of elements called the element structure. Elements are of a defined type and

can have a set of attributes. Element attributes are essentially pieces of information

about an element.

SGML entities are units of information that may be referred to by a logical

name in an SGML document. Entities are often used to hold strings of characters.

They are also used to refer to typographical symbols that cannot be entered on

ordinary computer keyboards and separate files that may or may not contain SGML

data.

Arbitrary arrangements of elements and entities need not; be permitted in

SGML documents, since SGML provides for sets of rules that define the allowable

contents of elements (content models). These sets of rides are contained in Document

Type Definitions (DTDs) and all SGML documents must conform to a particular

DTD. A document conforming to a DTD essentially consists of the document's

content interspersed with tags that delimit elements within the content. For instance,

Fig. 2.1. shows a DTD for a document of type article. Element names are used as

tags in the document. The specification of an element in the DTI) gives its name,

ins structure and some indications (e.g. "-()" indicates that the tag can be omit led

if there is no ambiguity). The efement structure is built using other elements or

basic types such as #PCDATA, EMPTY, etc. and connectors that can be further

qualified with occurrence indicators. In particular. the following can 1w used:

4

5

• The aggregation connector (".") implies an order between elements. For

example. a figure is composed of a picture followed by a caption (line 10).

There is also an alternative aggregation connector ("&") that does not imply

an order.

• The choice connector ("—") provides an alternative in the type definition. For

instance, element body is either a figure or a paragraph (line 9).

• The optional indicator ("?") indicates zero or one occurrence of an element

(e.g., captions in figures (line 10)); the plus sign ("+") indicates one or more

occurrences of an element. (e.g., sections in articles, line 2); and the asterisk

("*") indicates zero or more occurrences of an element (line 7).

1. <!DOCTYPE article[
2. <!ELEMENT article 	- - 	(title,author+,affil,abstract,

section+,acknowl)>
3. <!ATTLIST 	article 	 status (final-- draft) draft

#REQUIRED>
4. <!ELEMENT title. 	 (#PCDATA)>
5. <!ELEMENT author - () 	(#PCDATA)>
6. <!ELEMENT abstract - () 	(#PCDATA)>

<!ELEMENT section - () 	((titlebody+)

subsectn+))>
8. <!ELEMENT subsect - () 	(title,body+)>
9. <!ELEMENT body 	- () 	(figure 	paragrl ->
0. 	<!ELEMENT figure 	- () 	(picture, caption?)>
.1. <!ELEMENT picture - () 	EMPTY>
2. <!ATTLIST 	picture 	 sizes NMTOKEN "16cm"

sizey NMTOKEN #IMPLIED
lily EN-ray #IMPLIED>

3. <!ELEMENT caption () () 	(#PCDATA)>
I. 	<!ENTITY 	file 	SYSTEM "/u /george/TEX/SGML/fig1.ps"

NDATA
<!ELENIENT paragr 	- () 	(#PCDATA)>

6. <!ELENIENT acknowl - () 	(#PCDATA)> I>

Figure 2.1 A DTD for a document of type article.

6

<article status="Final">
<title> A Graphical Environment for Change Detection in
Structured Documents
<author> George J.S. Chang
<author> Girish Patel
<author> Liam Relihan
<author> Jason T.L. Wang

<abstract> Change detection in structured documents such as SGML
and HTML is important in many applications including data warehousing
<section>
<title> Introduction <\title>

<body><paragr> The rest of the thesis is organized as follows.
In Chapter 2 we review the background for the SGML language,
the representation of structured documents using trees, and tree edit.
operations. In Chapter 3, we describe the graphical interface ...
<\body> < \section>
<section>
<title> Background <\title>
<subsectn>
<title> SGML Preliminaries <\title>

<body><paragr> There are two important concepts in SGML: elements
and entities. Elements ate logical information components ...
<\body><\subsectn><\section>

<article>

Figure 2.2 An SGML document of type article.

Fig. 2.2 shows a document. instance conforming to the DTD in Fig. 2.1 t hat.

contains the information content as well as the tags. This document. instance can be

translated to a rroe structure as shown in Fig. 2.3. Tints comparing two documents

amounts to comparing their tree structures.

2.2 Tree Comparison

We compare two documents (trees) by finding their edit. distance. There are three

typos of edit operations. namely i.e., relabeling. delete. and insert a node. Relabeling

7

article

title 	author 	author author 	author abstract 	section (title) 	 section (tale)

data 	data 	data 	data 	data 	data 	<P> <P> <P> subsection (title) subsection (title)

I 	I 	I
data data data 	<P> 	<P> <P> <P>

I 	I 	I
data 	data data data

Figure 2.3 Tree representation of the document. in Fig: 2.2.

node n means changing the label on n. Deleting a node n means making the children

of n become the children of the parent of n and removing n. Insert is the inverse of

delete. Inserting node n as the child of node 	makes n the parent of a consecutive

subsequence of the current children of 	Fig. 2.4 illustrate the edit operations.

Let S be a sequence S1, S2, ... Sk edit operations. S transforms tree T to tree

T' if there is a sequence of trees To, T1 , 	, T. such that T = To, 	= TA. and 7,

results from T, 	via s, flit. I < i < k. For the purpose of t his work. We assume that

all edit operations have unit cost. By extension, the cost of the sequence S, denoted

-,(s), is simply the sum of the costs of the constituent edit. operations in S. The edit

distance, or simply the distance from tree T1 to tree T2, denoted dist(T1 ,T2). is the

cost of a minimum cost sequence of edit operations transforming T1 to T2 [20].

The edit. operations give rise to a mapping I hal. is a graphical specification of

which edit operations apply to each node in the two trees. For example, the mapping

in Fig. 2.5 shows a way to transform T1 to T2. The transformation includes deleting

the node labeled b in T1 and inserting it into T2 . The cost of a mapping If is the

cost of deleting nodes of T1 not touched by a mapping line of M plus the cost of

inserting nodes of T2 not touched by a mapping line of .11 plus t he cost. of relabeling

8

the nodes related by a mapping line of .11 with different labels. It can be proved

that the distance between two trees T1 and T2 equals the cost of a minimum cost

mapping from T1 to T2[22].

Figure 2.4 Examples illustrate the edit operations. (i) Relabeling: To change one
node label (a) to another (b). (ii) Delete: To delete a node; all children of the deleted
node (labeled b) become children of the parent (labeled r). 	Insert: To 	a
node; a consecutive sequence of siblings among the children of the wale labeled r
(here, h and c) heroine the children of the node labeled c.

Given two trees (documents) T1 and T2 and an integer d our system also

hod the largest approximately common substructures. within distance d, of T

1

 and T2.

A substructure of a tree T is a subtree of T with certain nodes being cut. (Cutting at

a node ii in T means removing the subtree rooted at it.) The largest approximately

Figure 2.5 Example shows a mapping from tree T1 to tree T2. A dotted line from a
node u in T1 to a node v in T2 indicates that u should be changed to (i.e. relabeled
to) v if u ≠ v, or that u remains unchanged if u = v. The nodes of T1 not touched
by a dotted line are to be deleted and the nodes of T2 not touched by a dotted line
are to be inserted. The mapping shows a way to transform T1 to T2 .

common substructures, within distance d, of T1 and 72 refer to a substructure U1 of

T1 and a substructure U2 of T2 such that U1 is within distance d of U2 and there does

not exist any otber substructure V1 of T1 and V2 of T2 such that V1 and V2 satisfy the

distance constraint and the sum of the sizes of VI and V2 is greater than the sum of

the sizes of U1 and U2 . When d = 0, U1 (or U2) is the largest common substructure

of the two trees.

9

CHAPTER 3

ALGORITHMS AND ARCHITECTURE

3.1 Underlying Algorithms

Referring to Fig. 2.3. we represent the paragraphs of a document as leaves (terminal

nodes) in the corresponding tree structure. The contents 	the paragraphs are

encoded into signatures [5]. Each signature is an integer value obtained by hashing

the content of the corresponding paragraph. Thus, if two paragraphs are the same,

their signatures remain the same. When the hash function chosen is perfect [6], two

equivalent: signatures also imply the equivalence of the corresponding paragraphs.

Likewise, the section and subsection titles associated with the nonterminal

nodes of the tree structure are encoded into signatures. These signatures become

the labels of the nodes. When comparing two documents (trees) T1 and T2, we. use

the approximate tree matching algorithm to find the best mapping that transforms

T1 to T2. The algorithm runs in time 0(ni n2(min{h1,l1 (min(h2 ,12))) where n i

(n9, respectively) is the number of nodes, h1 (h2, respectively) is the height, and l1

(1,, respectively) is the number of leaves of T1 (T2, respectively) [20].

Our system can also detect the movement. of paragraphs (i.e. moving one

paragraph from one place to another) in T1 and T2. To do so, the system firs, finds

the hest mapping from T1 to T. For leaf nodes not touched by mapping lines,

compare their signatures. If the signature of a paragraph (leaf) in T1 is found to be

the same as the signature of a paragraph (leaf) in T2, the two paragraphs sin 	be

t he Same and 	 -move" message is displayed.

10

V

Figure 3.1 Example illustrate matching a VLDC pattern V and a tree T. The root
* in V would be matched with nodes r, x in T, and the two leaves * in V would he
matched with nodes i, j and m, n. in T, respectively. Nodes y, z, h, p in T would he
cut. The distance of V and T would be 1 (representing the cost of changing c in V
to d in Tj.

In finding the largest approximately common portions (substructures), within

a given distance value d. of T1 and T2. our algorithms run in time

O(dn1n2(min{h1,l1})(min{h2.l2})).By extension. our system can find the largest

common portion of it set of documents. For example, in finding the largest. common

portion of three documents T1 , T„ Ti , we first. find the largest common portion P

of two documents, say T1 and T. Then compare P with T3 to find their largest

common portion.

To locate where a substructure M approximately occurs in a document T, We

add variable length don't cares (VLDCs) to M as the new root and leaves to form a

VLDC partern 1 and then compare I' with T using the pattern matching algorithm

developed in [23]. (A VLDC (conventionally denoted by "*”) can be matched, at. no

cost, with a path or portion of a path in T. This technique calculates the minimum

distance between 	and T after implicitly computing an optimal substitution for the

11

edit
mapping

Display

Manager

common
substructures documents

& DTD

12

VLDCs in V, allowing zero or more cuttings at nodes from T (see Fig. 3.1).) The

algorithm requires, in the worst case. 0(n1 n2(min{h 1l1})(min{h2l2})).

3.2 System Architecture

Fig. 3.2 illustrate the architecture of the system. The back end of the system

contains the programs for comparing trees whose algorithms are described in the

previous subsection.

Parser

Converter

Tree

Comparator trees

Figure 3.2 System architectures of thi. proposed graphical environment.

The front end of the system is composed. or a display manager (to be described

in the next section), a parser and a. converter. The parser, written in the C++

programming language 1w James Clark, takes a DTD and a document as the input

and parses the document. according to the rules of the DTD. If a parsing error

(i.e., the document does nut conform to the DTD), the parser rejects the document

with an error 	 On the other 	 hand 	if the document is parsed correctly the

parser produces A Complete abstract syntax tree described in a format called ESN

(Element Structure Information Set). The converter, written in the interpreted Perl

programming language. takes the ESIS description of the document's abstract syntax

13

tree and generates die output suitable for the back end of the system. The output

consists of the following items:

• signatures used as node labels in the tree;

• the start and end line numbers of elements in the document. which facilitate

the location and display of relevant. textual objects by the back end:

• document. component type identifiers for each element.

The converter does not attempt to impose any semantics upon the document

being processed - it just treats the document as a tree structure whose nodes possess

some associated information. It should be noted that our system is capable of working

with many different, document types (e.g. memos, letters, books, articles, etc.) 	in

fact any type describable with SGML. This use of a "generator-generator" approach

allows us to remain independent of the semantics attached to any document types.

Thus, given any two documents (or a set, of documents), our system can compare

them provided that they conform to the same DTD.

CHAPTER 4

GRAPHICAL INTERFACE

4.1 Graphical Interface

The display manager of our system is responsible for managing the graphical interface

of the system. The system provides the user with a set. of operators to select it

DTD and documents conforming to the DTD. It then compares the documents, and

displays/highlights the differences or the common portions of the documents through

the graphical interface.

Fig. 4.1 shows the result of comparing two SGML documents. The two windows

on the left show the documents. The right window displays the output of comparison.

For each document element, only the first 8 characters are displayed. " "--" indicates

that, the two document elements (e.g. two section titles or two paragraphs) are the

same. ">" indicates that the corresponding document. element is inserted, and "<"

indicates the document element is deleted. The system can also show the movement

of paragraphs (line ??). When the user clicks on the particular document element

of interest in the right window, that, portion of the document is scrolled to the top

in its window. Fig. -1.2 shows the result of finding the largest common portion of

three versions of a document. The places in which the common portion appears are

highlighted by displaying them at the top of each document. window.

14

Figure 4.1 Result of comparing two SGML documents.

Figure 4.2 Result of finding the largest common portion of three versions of a document.

CHAPTER 5

CONCLUSION

This thesis presents a system for change detection in structured documents. Given

two documents. the system can find the difference between them or their common

portions. and display the output through a graphical interface. Our approach is to

transform the documents into ordered labeled trees based on the underlying markup

language and then compare the documents using tree matching algorithms. Since

programs can be represented as parse trees, the proposed tool is also useful in tracing

program versions in software maintenance.

One commonly used tool for comparing documents is UNIX cliff. The tool

considers documents as mere strings of text; it does not consider structure or markup

within the text. The system described here can detect and display the differences

in structured documents with respect to their hierarchical structure. Moreover, the

system can detect paragraph movements, a functionality absent in cliff. In using this

system, when the difference between two strings of text (e.g. paragraphs) is detected,

the user can call the dill' to see the detailed difference.

Recently, Chawarthe et al. [3] developed a system, ca I led LaDiff for comparing

two Latex documents. Like the proposed system, La Diff can detect paragraph

movements and find the hierarchical difference of two documents. However, the

two systems differ in their underlying tree matching algorithms. Furthermore, Ladiff

lacks the facilities for finding common portions of multiple documents. The types

of target documents (i.e. Latex) are hardwired to Ladiff and It does wit

a generator-generator approach. In contrast, our system can compare any two

documents conforming to the same DTD and can deal with any SGML document

type.

This system is implemented in C++. Perl, Tcl/Tk and run on a SunSpare

workstation 20 under the Solaris operating system version 2.4. Currently, we are

17

18

incorporating the system into a visualization toolbox for pattern matching and

discovery in scientific [2. 1.5, 16. 17. 13, 20) and document databases [14, 19]. The

executable software packages of the toolbox are available from the authors.

APPENDIX A

PROGRAMS

This appendix contains all of the programs used in the implementation of graphical

display module of toot

Program: XSUN

Author: Girish A. Patel

This program provides Graphical User Interface to the back-end

program designed for change detection in structured documents

#!/local/bin/wish

global selectedlist

global pwdir
global OkFlag

global filetype
global OP
global level

set OP 0
set level 1
set OkFlag 0

set pwdir [pwd]
set algo_type 	"algo1"

wm title . "Document Comparison Tool"
frame .mbar -relief raised -bd 2

pack .mbar -side top -fill x

button .mbar.exit -bitmap @./bitmaps/exit.xbm -relief groove -command
exit pack .mbar.exit -side right -anchor n

menubutton .mbar.file -bitmap @./bitmaps/select.xbm -relief groove \
-menu .mbar.fiie.menu

menubutton .mbar.algo -bitmap @./bitmaps/compare.xbm -relief groove \
-menu .mbar.algo.menu

menubutton .mbar.search -bitmap @./bitmaps/search.xbm -relief groove \
-menu .mbar.search.menu

button .mbar.query -bitmap @./bitmaps/query.xbm -relief groove -command \
Get Query

menubutton .mbar.level -bitmap @./bitmaps/level.xbm -relief groove -menu \
.mbar.level.menu

pack .mbar.file .mbar.algo .mbar.search .mbar.query .mbar.level -side left

n

20

menu .mbar.file.menu

.mbar.file.menu add command --label "HTML Document" -command
set filetype html

DocumentSelect

f

.mbar.file.menu add command -label "SGML Document" -command { \

set filetype sgml

DocumentSelect
}

menu .mbar.algo.menu

.mbar.algo.menu add cascade -label Symdifference -menu .mbar.algo.menu.subl

.mbar.algo.menu add separator

.mbar.algo.menu add command -label Difference -command 	\
Comp1 difference

,mbar.algo.menu add command -label Union -command 	\
Comp1 union

.mbar.algo.menu add command -label Intersection -command { \
Comp1 intersection

.mbar.algo.menu add command -label Merge -command 	\

comp2 merge

.mbar.algo.menu add command -label Mergeable -command { \
comp2 mergeable

menu .mbar.search.menu

.mbar.search.menu add command -label Newest-Document -command 	\

comp2 newest
}

.mbar.search.menu add command -label Oldest-Document -command

comp2 oldest

}

.mbar.search.menu add command -label Nearest-Neighbor -command { \

comp2 nearestneighbor

,mbar.search.menu add command -label Furthest-Neighbor -command { \

comp2 furthestneighbor

menu .mbar.level.menu

.mbar.level.menu add command -label Normal -command { \

set level 1
}

.mbar.level.menu add command -label Section -command { \

set level 2

21

.mbar.level.menu add command -label Paragraph -command { \
set level 3
}

menu .mbar.algo.menu.subl
.mbar.algo.menu.subl add command -label Symdifference -command { \
Comp1 symdifference
}

.mbar.algo.menu.subl add command -label "Symdifference & Diff" \
-command {
Comp1 symdifference

.mbar.algo.menu.subl add command -label "Symdifference & Sdiff" \
-command {
Comp1 symdifference
}

}

I Function: CreatListbox

I This function creats list box as per given arguments.

proc CreatListbox { parent args 	{
frame $parent
eval { listbox $parent.list -yscrollcommand [list $parent.sy set I \
-xscrollcommand [list $parent.sx set] 	$args
scrollbar $parent.sy -orient vertical \
-command [list $parent.list yview]
frame $parent.bottom
scrollbar $parent.sx -orient horizontal \
-command [list $parent.list xview]
set pad (expr [$parent.sy cget -width] + 2* \
([$parent.sy cget -bd] + [$parent cget -highlightthickness]\
)]
frame $parent.pad -width $pad -height $pad
return $parent

I Function: DocumentSelect

I This function creats window for document selection
I from any directry.

proc DocumentSelect { } {
global selectedlist
global filetype
global pwdir
set selectedlist { }
toplevel .ds

wm title .ds "[string toupper $filetype] Document Selection"
set left [CreatListbox .ds.left -background #feeacf -width 25 \
-setgrid true]

set right [CreatListbox .ds.right -background #feeacf -width 25 \
-setgrid true]
frame .ds.bot
pack .ds.bot -side bottom -fill x
pack $left $right -side left -expand true -fill both
pack $left.bottom -side bottom -fill x
pack $left.pad -in $left.bottom -side right
pack $left.sx -in $left.bottom -side bottom -fill x
pack $left.sy -side right -fill y
pack $left.list -side left -fill both -expand true
pack $left $right -side left -expand true -fill both
pack $right.bottom -side bottom -fill x
pack $right.pad -in $right.bottom -side right
pack $right.sx -in $right.bottom -side bottom -fill x
pack $right.sy -side right -fill y
pack $right.list -side left -fill both -expand true
button .ds.bot.ok -text "OK 	" -command { Okay }
button .ds.bot.clear -text "Clear All" -command {
global OkFlag
.ds.right.list delete 0 end
set OkFlag 0
}
button .ds.bot.quit -text 	Quit " -command { DocSelQuit }
pack .ds.bot.ok .ds.bot.clear .ds.bot.quit -side left -padx 15m \
-expand true
cd $pwdir

if { $pwdir == "I" 	{

set pwdir ""
}
foreach f [exec /bin/ls -a [pwd] 	{
if { $filetype == "html" } {

if 	[file extension $f] == ".htm" || [file extension $f] \
== ".html" } {
$left.list insert end $pwdir/$f

}
}
if { $filetype == "sgml" } {
$left.list insert end $pwdir/$f

22

23

}

}

bind $left.list <ButtonRelease-1> [list GoToDir $left]
bind $right.list <ButtonPress-1> \
{ ListSelectStart .ds.right.list %y
bind $right.list <B1-Motion> \
{ ListSelectExtend .ds.right.list %y }
bind $right.list <ButtonRelease-1> \
{ ListDeleteEnd .ds.right.list %y }
bind $right.list <ButtonPress-3> \
{ ListSelectStart .ds.right.list %y
bind $right.list <B3-Motion> \
{ ListSelectExtend .ds.right.list %y
bind $right.list <ButtonRelease-3> \
{ ViewDoc .ds.right.list %y }
bind $left.list <ButtonPress-3> \
{ ListSelectStart .ds.left.list %y
bind $left.list <B3-Motion> \
{ ListSelectExtend .ds.left.list %y
bind $left.list <ButtonRelease-3> \
{ ViewDoc .ds.left.list %y

I Function: ListSelectStart, ListSelectExtend, ListDeleteEnd

I These functions are used to keep track of mouse movements

proc ListSelectStart { w y } {
$w select anchor [$w nearest $y]
}

proc ListSelectExtend { w y } {
$w select set anchor [$w nearest $y

}
proc ListDeleteEnd{w y} {
global. OkFlag
$w select set anchor [$w nearest $y]
foreach i [lsort -decreasing [$w curselection]] {
$w delete $i
}

$w selection clear 0 end
set OkFlag 0

24

I Function: GoToDir, Okay, DocSelQuit

I These functions are used to navigate to different directories

proc GoToDir { left } {
global OkFlag
set ck [$left.list get [$left.list curselection]]
$left.list selection clear 0 end
if { [file isdirectory $ck 	{
cd $ck
if { [file readable $ck] } {
$left.list delete 0 end
} else {

tk_dialog .err { Output File Reading Error } \
"Read permission denied." warning 0 OK

return

set pwdir [pwd]
if { $pwdir == "1" } {
set pwdir ""

foreach f [exec /bin/ls -a [pwd]] {
$left.list insert end $pwdir/$f

}
} else
set check [lsearch [.ds.right.list get 0 end] $ck]
if { $check == 	} {

.ds.right.list insert end $ck
set OkFlag 0
} else {

tk_dialog .err { Output File Reading Error } \
"This document is already selected." warning 0 OK

}

proc Okay { } {
global selectedlist
global OkFlag
set selectedlist [.ds.right.list get 0 end]
set OkFlag 1

25

proc DocSelQuit { } {

global selectedlist

global OkFlag

set selectedlist 	.ds.right.list get 0 end

destroy .ds

}

Function: GetQuery

I These functions creats window to write queries

proc GetQuery { } {

toplevel .q

wm title .q "Query"

frame .q.select

pack .q.select -side top -fill x

button .q.select.select -text SELECT -relief raised -width 7 \

-command [list .q.select.data delete 1.0 end]

pack .q.select.select -side left

text .q.select.data -relief sunken -height 1 -width 30 -wrap none

pack .q.select.data -side left -expand true -fill x

frame .q.from

pack .q.from -side top -fill x

button .q.from.from -text " 	FROM" -relief raised -width 7 \

-command [list .q.from.data delete 1.0 end]

pack .q.from.from -side left

text .q.from.data -relief sunken -height 1 -width 30 -wrap none

pack .q.from.data -side left -expand true -fill x

frame .q.where

pack .q.where -side top -expand true -fill both

button .q.where.where -text " WHERE" -relief raised -width 7 \

-command [list .q.where.data delete 1.0 end]

pack .q.where.where -side left

text .q.where.data -relief sunken -height 3 -width 30 -wrap none

pack .q.where.data -side left -expand true -fill both

frame .q.tmpli

pack .q.tmpll -side top -fill x

button .q.tmpll.bl -text Q1 -relief raised -width 4 -command
.q.select.data delete 1.0 end

.q.select.data insert 1.0 "*"

.q.from.data delete 1.0 end

.q.from.data insert 1.0 "docset1.set"

.q.where.data delete 1.0 end

.q.where.data insert 1.0 ""

}

button .q.tmpll.b2 -text Q2 -relief raised -width 4 -comm

.q.select.data delete 1.0 end

.q.select.data insert 1.0

.q.from.data delete 1.0 end

.q.from.data insert 1.0 "docsetl.set"

.q.where.data delete 1.0 end

.q.where.data insert 1.0 "a IN docset1 set\nAND

SYMDIFFERENCE(a, docl.sgm)"

}

button. .q.tmpll.b3 -text Q3 -relief raised -width 4 -command {

.q.select.data delete 1.0 end

.q.select.data insert 1.0 "a"

.q.from.data delete 1.0 end

.q.from.data insert 1.0 "docsetl.set"

.q.where.data delete 1.0 end

.q.where.data insert 1.0 "a IN docsetl.set\nAND

SYMDIFFERENCE(a, doc1.sgm)"

button .q.tmpll.b4 -text Q4 -relief raised -width 4 -command {

.q.select.data delete 1.0 end

.q.select.data insert 1.0 "a"

.q.from.data delete 1.0 end

.q.from.data insert 1.0 "docsetl set"

.q.where.data delete 1.0 end

.q.where.data insert 1.0 "a IN docsetl.set\nAND xx

SYMDIFFERENCE(a, docl.sgm)\nAND (SIZE(xx) > 1 and SIZE(xx) < 4

button .q.tmpll.b5 -text Q5 -relief raised -width 4 -command

.q.select.data delete 1.0 end

.q.select.data insert 1.0 "t"

.q.from.data delete 1.0 end

.q.from.data insert 1.0 "docsetl.set, docset2.set"

.q.where.data delete 1.0 end

.q.where.data insert 1.0 "a IN docsetl.set\nAND b IN \

docset2.set\nAND t = DIFFERENCE (a, b)"

}

for {set i 1} {$i < 6} {incr i 	1} {
pack .q.tmpll.b$i -side left -expand true

}

frame .q.tmpl2

pack .q.tmpl2 -side top -fill x

button .q.tmpl2.b6 -text Q6 -relief raised -width 4 -command {

.q.select.data delete 1.0 end

26

.q.select.data insert 1.0

.q.from.data delete 1.0 end

.q.from.data insert 1.0 "docsetl.set"

.q.where.data delete 1.0 end

.q.where.data insert 1.0 "t = intersection (docsetl.set)"

button .q.tmpl2.b7 -text Q7 -relief raised -width 4 -command {

q.select.data delete 1.0 end

.q.select.data insert 1.0 "m"

.q.from.data delete 1.0 end

.q.from.data insert 1.0 "memoset.set"

.q.where.data delete 1.0 end

.q.where.data insert 1.0 "m IN memoset.set\nAND DIST(m, memoi.sgm) \

= MIN (DIST(u, memo1.sgm) WHERE u IN memoset.set)"
}

button .q.tmp12.b8 -text Q8 -relief raised -width 4 -command {

.q.select.data delete 1.0 end

.q.select.data insert 1.0 "m"

.q.from.data delete 1.0 end

.q.from.data insert 1.0 "memoset.set"

.q.where.data delete 1.0 end

.q.where.data insert 1.0 "a IN memoset.set\nAND m = \

nearest_neighbor (a, memoset.set)"

button .q.tmp12.b9 -text Q9 -relief raised -width 4 -command {

.q.select.data delete 1.0 end

.q.select.data insert 1.0 "k"

.q.from.data delete 1.0 end

.q.from.data insert 1.0 "docsetl.set"

.q.where.data delete 1.0 end

.q.where.data insert 1.0 "k = furthest_neighbor \

(docl.sgm, docsetl.set)"

}

button .q.tmp12.b10 -text Q10 -relief raised -width 4 -command {

.q.select.data delete 1 0 end

.q.select.data insert 1 0 "OLDEST"

.q.from.data delete 1.0 end

.q.from.data insert 1.0 "docsetl.set"

.q.where.data delete 1.0 end

q.where.data insert 1.0 ""

for {set i 6} {$i < 11} {incr i 1} {

pack .q.tmpl2.b$i -side left -expand true

}

frame .q.run

pack .q.run -side bottom -fill x

button .q.run.run -text Run -relief raised -width 5 \

27

28

-command {RunQuery}

button .q.run.quit -text Quit -relief raised -width 5 -command {

destroy .q
}

pack .q.run.run .q.run.quit -side right -padx 10 -pady 10 \

-expand true

}

1

1 Function: RunQuery

I These functions passes queries to backend program

I and displays the result.

1 	

proc RunQuery { {

#save SQL in file

if { [winfo exists .d.list] 	{

.d.list configure -state normal

.d.list delete 1.0 end

else {

set fileld [open GetQuery w+]

puts $fileId "SELECT "

puts $fileld [.q.select.data get 1.0 end

set where (.q.from.data get 1.0 end

if { (llength $where) >• 0 	{

puts $fileld "FROM "

puts $fileld [.q.from.data get 1.0 end
}

set where [.q.where.data get 1.0 end]

if { (llength $where) > 0

puts $fileld "WHERE "

puts $fileld $where

}

puts $fileId ";"

close $fileld

catch (exec ./dql_parse < GetQuery >& Query0PFile)

if { I(file exists QueryOPFile) 	{

return

toplevel d

wm title .d "Query Results"

frame .d.quit

pack .d.quit -side top -fill x

button .d.quit.quite -text Quit -relief raised -command {

destroy .d

catch [exec rm GetQuery

29

catch 	exec rm Query0PFile]

}
pack .d.quit.quite -side Tight -fill x

text .d.list -relief sunken -bd 3 -yscrollcommand ".d.scroll \
set "-xscrollcommand ".d.xscroll set" -height 30 -width 80 -wrap none

scrollbar .d.scroll -command ".d.list yview"
scrollbar .d.xscroll -command ".d.list xview" -orient horizontal
pack .d.scroll -side right -fill y

pack .d.xscroll -side bottom -fill x
pack .d.list -expand true -fill both
}

.d.list delete 1.0 end
set f [open Query0PFile]
while { ![eof $f] {

set line "[gets $f]\n"

.d.list insert end $line
}

close $f

.d.list configure -state disabled
return

}

Function: ViewDoc, DisplayDoc, DisplayDocComp2, texscroll

These functions are used. to display the document.

proc ViewDoc { w y } {

$w select set anchor 	$w nearest $y
foreach i [lsort -decreasing [$w curselection 	{

set file 	$w get $i
if { [file isdirectory $file]

continue

}
set 1 [split $file .

set t [join $1 #
if { [winfo exists .$t]

continue

}
DisplayDoc 	$file
}

$w selection clear 0 end
}

proc DisplayDoc { t file

set bkgcolor #ffe3d2

toplevel .$t

frame .$t.frm -background #fid2b7

pack .$t.frm -side top -fill x

button .$t.frm.quit -text Quit -relief raised -background #ffbb93 \

-command [list destroy .$t]

pack .$t.frm.quit -side right -padx 0 -pady 0

wm title .$t "Document: $file "

set txv [text .$t.listl -relief sunken -bd 2 -bg $bkgcolor \

-yscrollcommand " .$t.scrolll set" -xscrollcommand ".$t.xscrolll set")

scrollbar .$t.scrolll -command ".$t.listl yview"

scrollbar .$t.xscrolll -command ".$t.listl xview" -orient horizontal

pack .$t.scrolll -side right -fill y

pack .$t.xscrolll -side bottom -fill x

pack .$t.listl

.$t.listl delete 1.0 end

set f [open $file]

while { ![eof $fl} {

set line "[gets $f]\n"

.$t.listl insert end $line
}

.$t.listl configure -state disabled

close $f

return
}

proc DisplayDocComp2 { t file 	{

set bkgcolor #ffe3d2

toplevel .$t

frame .$t.frm -background #ffd2b7

pack .$t.frm -side top -fill x

button .$t.frm.quit -text Quit -relief raised -background #ffbb93 \

-command [list destroy .$t]

pack .$t.frm.quit -side right -padx 0 -pady 0

wm title .$t "$t"

set txv [text .$t.list1 -relief sunken -bd 2 -bg $bkgcolor \

-yscrollcommand " .$t.scrolll set" -xscrollcommand ".$t.xscrolll set")

scrollbar .$t.scrolll -command ".$t.listl yview"

scrollbar. .$t.xscrolll -command ".$t.list1 xview" -orient horizontal

pack .$t.scrolll -side right -fill y

pack .$t.xscrolll -side bottom -fill x

pack .$t.listl

.$t.listl delete 1.0 end

set f [open $file]

while { ![eof $f] {

set line "[gets $f]\n"

.$t.listl insert end $line

30

}
.$t.listl configure -state disabled

close $f

return

proc texscroll { file line } {
if { $line } {

set 1 [split $file .]
set t [join $l #]
if 	![winfo exists .$t] } {

DisplayDoc $t $file

}
.$.list1 yview 	expr $line - 1]

}
return
}

31

1
I Function: Comp1, Comp2, Multcomp

I These function are used to display results in hypertext form.

proc Comp1 { operator } {

global OP
global OkFlag

global filetype

global level
global selectedlist

if { $0kFlag == 0 } {
tk_dialog .err. { Document Selection Error } \

"In Document Selection Window, select your favoured \

documents and press OK to confirm your selection." warning 0 OK

return

}
set TotalSelectDoc [llength $selectedlist]
if { [string compare $operator "symdifference" 1 == 0 && \

$TotalSelectDoc != 2]- {
tk_dialog .err. { Document Selection Error } \

"Total no of document selected: $TotalSelectDoc !!
For Symdifference two documents requires. \

Select again." warning 0 OK
return
}

set SelectedFiles ""

foreach doc $selectedlist {

set SelectedFiles "$SelectedFiles [file tail $doc
}

puts $SelectedFiles

set file $operator
foreach doc 	lsort$selectedlist] {

set file $file.$doc
}

set t [split $file]
set 1 [join $t #]

if { [winfo exists .$l] } {

puts "Already This comparision exists"
return
}

incr OP 1

set para1 [lindex $selectedlist 0
set para2 [lindex $selectedlist 1]
set para3 [lindex $selectedlist 2

switch $operator {

symdifference {
if { $filetype == "sgml" {
catch [eval "exec ./tdsgml -d $SelectedFiles > op$OP"
else {

catch [eval "exec ./tdsgml -p ./html_dtd/catalog \

./html_dtd/html.decl $SelectedFiles > op$OP"]
}

}

difference

if { $level == 1 } {

catch [eval "exec ./tdsgml -s $SelectedFiles > op$OP"
} elseif { $level == 2 } {
catch [eval "exec ./tdsgml -sec $SelectedFiles > op$OP"
} elseif { $level == 3 I {
catch [eval "exec ./tdsgml par. $SelectedFiles > op$OP"
}

union
if { $level 	1 } {
catch [eval "exec ./tdissgml -k 0 $SelectedFiles > op$OP"
} elseif { $level == 2 } {
catch [eval "exec /tdissgml -sec -k 0 $SelectedFiles > \
op$OP"]

elseif { $level == 3} {

catch [eval "exec ./tdissgml -par -k 0 $SelectedFiles > \
op$OP"]

32

}

intersection {
catch [eval "exec ./tdissgml 	-k 0 $SelectedFiles
op$OP"

1
default

puts "Wrong operator"
return

}

}

toplevel .$l
wm title .$1 	string toupper $operator]"
frame .$l.frm
pack .$l.frm -side top -fill x
pack .$l.frm.quit -side right -ipadx 2m
text .$l.list -relief sunken -bd 3 -yscrollcommand ".$l.scroll \
set" -xscrollcommand ".$l.xscroll set" -width 75 -wrap none \
-font *-*-bold-*-*-10-* -background #feeacf
scrollbar .$l.scroll -command ".$l.list yview"
scrolibar .$l.xscroll -command ".$l.list xview" -orient horizontal
pack .$l.scroll -side right -fill y
pack .$l.xscroll -side bottom -fill x
pack .$l.list -expand 1 -fill both
bind .$l.list <Enter> [list .$l.list config -cursor hand2]
.$l.list delete 1.0 end
set linecounter 0
set f [open op$OP]
while 	{ ![eof $f]}
set line [gets $f]
.$l.list insert end "$line\n"
incr linecounter 1.
if 	[regexp "Line No" $line]

break

}

set line [gets $f]
set ClrIntl 6
set ClrInt2 6
set part 0

while { ! [eof $f] }
set line [gets $f]
set line "$line\n"
.$l.list insert end $line
incr linecounter 1
if { ![string compare

[string range $line 25 34]] } {

MultComp $f $linecounter $l $part

33

break
}

set array "$line"
set s [string range $line 33 34]
if { ![string compare " =" $s]} {

incr part 1
set doclline [lindex $array 0)
set i [lsearch $array "="]
incr i +l
set doc2line [lindex $array $i)
set ClrInt1 [lindex $array l]
set ClrInt2 [lindex $array 	incr i +1]]
set clr1 [Colorint black $ClrInt1]
set clr2 [Colorint black $ClrInt2]

elseif { ![string compare " I" $s]} {
incr part 1
set doclline [lindex $array 0]
set i [lsearch $array "I")
incr i +1
set doc2line [lindex $array $i]
set ClrIntl [lindex $array 1]
set ClrInt2 [].index $array [incr i. +1]]
set clr1 	ColorInt red $ClrIntl]
set clr2 [Colorint red $ClrInt2)

elseif { ![string compare " <" $s]} {
incr part 1
set doclline [lindex $array 0]
set doc2line 0
set ClrInt2 6
set ClrIntl ['index $array 1.]
set clr1 [Colorint purple $ClrIntl]
set clr2 [Colorint black $ClrInt2]

elseif f ![string compare " >" $s]} {
incr part 1
set i [lsearch $array ">"]
incr i +1
set doc2line [].index $array $i]
set doclline 0
set ClrIntl 6
set ClrInt2 [lindex $array [incr i +1]]
set clr1 [ColorInt black $ClrIntl]
set clr2 [Colorint blue $ClrInt2]

elseif { ![string compare " X" $s]} {
incr part +1
set doclline [lindex $array 0]
set i [lsearch $array "X"]
incr i +1

34

set doc2line [lindex $array $1]

set ClrIntl [lindex $array 1]

set ClrInt2 [lindex $array [incr i +1]]

if { ![string compare "X" $dociline] } {

set dociline 0

set ClrIntl 0

set ClrInt2 [lindex $array [incr i +1]]

}
if { ![string compare " " $doc2line] } {

set doc2line 0

set ClrInt2 0

set ClrIntl [lindex $array 1]

}
set clr1 [ColorInt green $ClrInt1]

set clr2 [Colorint green $ClrInt2]

}
if { ! [regexp {-[0-9]+$} $ClrIntl] } {

set Clrlnt1 6

elseif { 	regexp f-[0-9]+$1 $ClrInt2] } {

set ClrInt2 6
}

.$l.list tag add bigl$part $linecounter.0 $linecounter.34

.$l.list tag add big2$part $linecounter.35 $linecounter.end

.$1.1ist tag configure bigl$part -foreground $clr1 -relief flat

.$l.list tag bind bigi$part <Button-1> [list texscroll [lindex \

$selectedlist 0 	$doclline]

.$l.list tag configure big2$part -foreground $clr2 -relief flat

.$l.list tag hind big2$part <Button-1> [list texscroll [lindex \

$selectedlist i.] $doc2line]

} # while ends here

set level 1.

l.list configure -state disabled

catch [exec rm op$OP]

proc comp2 	operator } {

global OP

global OkFlag

global selectedlist
if { $0kFlag ==, 0 }

tk_dialog .err { Document Selection Error } \

"In Document Selection Window, select documents and press \

OK to confirm your selection." warning 0 OK
return
}

set SelectedFiles ""

foreach doc $selectedlist {

35

set SelectedFiles "$SelectedFiles [file tail $doc]"

}

puts $SelectedFiles

set file $operator

foreach doc [lsort $selectedlist 	{

set file $file.$doc

}

set t [split $file .

set 1 [join $t #

if { C winfo exists .$1] } {

puts "Already This comparision exists"

return

}

incr OP 1

set TotalSelectDoc [llength $selectedlist

switch $operator {

merge {

if { $TotalSelectDoc == 2 && ![IsSetFileThere $selectedlist] \

f

catch [eval "exec ./tdsgml -n $SelectedFiles > \

op$OP"]

set 1 C split op$OP .]

set t C join $1 #]

if { [winfo exists .$t] } {

puts "This is existing nearest-neighbour"

return

DisplayDocComp2 $operator op$OP

} else {

tk_dialog .err. { Document Selection Error } \

"Total no of document selected: $TotalSelectDoc !!

For. Merge two regular file requires. \

Select again." warning 0 OK

return

}

mergeable {

if { $TotalSelectDoc == 2 && ![IsSetFileThere $selectedlist] \

f
catch [eval "exec ./tdsgml -m $SelectedFiles > \

op$OP"]

Set 1 C split op$OP .
set t [join $l #

if { [winfo exists .$t] } {

puts "This is existing nearest-neighbour"

return

}

36

DisplayDocComp2 $operator op$OP
else {

tk_dialog .err { Document Selection Error } \

"Total no of document selected: $TotalSelectDoc
For Mergeable two regular file requires. \

Select again." warning 0 OK
return

}
}

newest {

if f $TotalSelectDoc == 1 && [IsSetFileThere $selectedlist] \
f

catch [eval "exec /newest $SelectedFiles > \
op$OP"]
set 1 [split op$OP
set t [join $1 #
if { [winfo exists .$t] } {

puts "This is existing newest"
return

}
DisplayDocComp2 $operator op$OP
else {

tk_dialog .err { Document Selection. Error 	\
"Total no of document selected: $TotalSelectDoc

For Newest operator one set file requires. \
Select again." warning 0 OK

return

}

oldest {
if { $TotalSelectDoc 	1 && [IsSetFileThere $selectedlist] \

{.
catch [eval "exec ./oldest $SelectedFiles > op$OP"
set 1 [split op$OP
set t [join $1 #

if { [winfo exists .$t] } {

puts "This is existing oldest"

return

}
DisplayDocComp2 $operator op$OP

} else {
tk_dialog .err { Document Selection Error 	\
"Total no of document selected: $TotalSelectDoc

For Oldest operator one set file requires. \
Select again." warning 0 OK

return

}

37

}

nearestneighbor {

if { $TotalSelectDoc == 2 && [IsSetFileThere $selectedlist] \
&& [IsRegularFileThere $selectedlist] 	{
catch [eval "exec ./nearest $SelectedFiles > op$OP"
set 1 [split op$OP]
set t [join $l #]
if { [winfo exists .$t] 	{
puts "This is existing nearest-neighbour"
return

}
DisplayDocComp2 $operator op$OP

else

tk_dialog .err { Document Selection Error 	\
"Total no of document selected: $TotalSelectDoc !! 	\

For Nearest-Neighbour one regular file and one set file \

requires. Select again." warning 0 OK
return

}
furthestneighbor {

if { $TotalSelectDoc == 2 && [IsSetFileThere $selectedlist] \
[IsRegularFileThere $selectedlist] } {

catch [eval "exec /furthest $SelectedFiles > \
op$OP"

set 1 [split op$OP
set t [join $l #]
if { [winfo exists It] } {
puts "This is existing nearest-neighbour"
return

}
DisplayDocComp2 $operator op$OP
} else {

tk_dialog .err { Document Selection Error 	\
"Total no of document selected: $TotalSelectDoc !!

For Nearest-Neighbour one regular file and one set file \

requires. Select again." warning 0 OK
return

}

substructure

if { $TotalSelectDoc == 2 && 	IsSetFileThere $selectedlist] \

f
catch 	eval "exec ./tdsgml -sub $SelectedFiles > \

op$OP"]
set 1 [split op$OP .]
set t [join $l #

38

if { [winfo exists .$t) 	{
puts "This is existing substructure"
return

}

DisplayDocComp2 $operator op$OP
else

tk_dialog .err { Document Selection Error 	\
"Total no of document selected: $TotalSelectDoc !!

For SubStructure two regular file requires. \
Select again." warning 0 OK

return

}

}
superstructure {

if { $TotalSelectDoc == 2 && ![IsSetFileThere $selectedlist) \

f
catch [oval "exec ./tdsgml -super $SelectedFiles > \

op$OP"
set 1 [split op$OP .

set t [join $l #
if { [winfo exists .$t] } {
puts "This is existing superstructure"

return
}

DisplayDocComp2 $operator op$OP

else {
tk_dialog .err { Document Selection Error. } \

"Total no of document selected: $TotalSelectDoc !!
For SuperStructure two regular file requires. \

Select again." warning 0 OK

return

default
	

{ puts "Wrong operator"

return
}

proc MultComp { f linecounter 1 part 	{

global selectedlist

set clrl red

set clr2 red

set ClrIntl 6
set Clrint2 6

set indx 1

set line " 	

39

while { ![eof 	{
if 	![string compare " 	" [string range $line 25 34]] 	{

while { ![eof 	$f]} {
set line [gets $f]
if f [regexp "Line No" $line] 	{

incr indx +1
set line [gets $f
break

else f
set line "$line\n"

.$l.list insert end $line
incr linecounter 1
}

}
}

if f [eof $f] 	f break
}

set line [gets $f]
incr linecounter 1
set line "$line\n"
.$1.list insert end $line
set array "$line"
set s [string range $line 33 34]
if { ![string compare " =" $s]} f

incr part 1
set doclline [].index $array 0]
set i [lsearch $array "="]
incr i +I
set doc2line [].index $array $1]
set ClrInt1 [lindex $array 1]
set ClrInt2 [lindex $array [incr i +1]]
set clr1 [Colorint black $ClrIntl]
set clr2 [Colorint black $ClrInt2)
elseif { ![string compare " l" $s]} {
incr part 1
set dociline [lindex $array 0]
set i [].search $array "In]
incr i +1
set doc2line [lindex $array $1]
set Clrint1 [lindex $array l]
set ClrInt2 [lindex $array [incr 1 +1]]
set clr1 	Colorint red $Clrint1]
set clr2 [Colorint red $ClrInt2)

elseif { ![string compare " <" $s]} {
incr part 1
set dociline [lindex $array 0]
set doc2line 0

40

set ClrInt2 6
set ClrInt1 [lindex $array 1]
set clr1 	Colorint purple $ClrInt1
set clr2 [Colorint black $ClrInt2]

elseif { ![string compare " >" $s] } {
incr part I
set i [lsearch $array ">"]
incr i +1
set doc2line [lindex $array $1]
set doclline 0
set ClrInt1 6
set ClrInt2 [lindex $array [incr i
set clr1 [ColorInt black $ClrIntl
set clr2 [Colorint blue $ClrInt2]

} elseif { ![string compare 	X" $s] } f
incr part 1
set doclline [lindex $array 0]
sat i [lsearch $array "X")
incr I +1
set doc2line [lindex $array $13
set ClrInt1 [lindex $array l]
set ClrInt2 [lindex $array [incr i +1]]
if { ![string compare "X" $doclline] } i

set doclline 0
set ClrIntl 0
set ClrInt2 [lindex $array [incr 1 +1]]

}

if { ! [string compare 	' $doc2line 	} f
set doc2line 0
set ClrInt2 0
set ClrIntl [lindex $array

}

set clr1 [ColorInt green $ClrInt1
set clr2 [Colorint green $ClrInt2

if { }[regexp {-[0-9]+$} $ClrInt1] } {
set ClrInt1. 6
} elseif { 	regexp {-[0-9]+$} $ClrInt2] } f.
set ClrInt2 6

.$l.list tag add big1$part $linecounter.0 $linecounter.34

.$l.list tag add big2$part $linecounter.35 $linecounter.end

.$l.list tag configure big1$part -foreground $clr1 -relief flat

.$l.list tag configure big2$part -foreground $clr2 -relief flat

.$l.list tag bind big2$part <Button-1> [list texscroll 	lindex
$selectedlist $indx 3 $doc2line]
} # while ends here

41

return

}

I Function: ColorInt

I This function is used to display text in different
I intensity of color.

proc ColorInt { color int 	{
switch $color

red
if { $int == 1 } 	f return #ec3535

} elseif { $int == 2 } { return #ec1515
} elseif { $int == 3 } { return #ec0000

elseif { $int == 4 } { return #d70000
elseif { $int == 0 -1 { return #ff5151

} else { return #c60000

}
}

green {

if { $int == 0 } 	{ return #009b00
} elseif 	$int == 1 } { return #008d00

} elseif { $int == 2 } 	return #008200
} elseif { $int == 3 } { return #006f00
} elseif { $int == 4 } { return #006500
} else { return #005900

1
}

blue {
if { $int == 1 } 	return #3e3eff

} elseif { $int == 2 1 { return #1313ff

} elseif { $int == 3 } { return #0000e8
} elseif { $int == 4 } { return #0000c4
} elseif { $int == 0 } { return #6060ff
} else { return #000092

}
}

purple {
if { $int == 1 } 	{ return #cc22cc
elseif { $int == 2 } { return #b71eb7
elseif } $int == 3 } 	return #9e1b9e

elseif { $int == 4 } 	return #8a168a
} elseif { $int == 0 } { return #dc27dc

else { return #701270

42

}
default {
if { $int == 0 	{ return #444444
elseif { $int == 1 	{ return #444444
elseif { $int == 2 	{ return #222222
elseif { $int == 3 	{ return #222222
elseif { $int == 4 	{ return #111111
else { return #111111

}
}

}
}

I These functions are used to find type of the document.

proc IsSetFileThere { fileslist 	{
foreach doc $fileslist {
if { [file ext $doc) == 	{ return 1

}
}

return 0
}

proc IsRegularFileThere { fileslist 	{
foreach doc $fileslist {
if { [file ext $doc 	!= ".set"} 	return 1.

}

}

return 0

}
proc IsAllHtmiFile { fileslist 	{
foreach doc $fileslist {
if { [file ext $doc) = ".html" II [file ext $doc 	= \
".htm"} { continue

}else {
tk_dialog .err { Document Selection Error 	\
"All files should be html. files. Select again." \
warning 0 OK

return 0

return 1

}
proc IsAllSgmlFile { fileslist 	{
foreach doc $fileslist {
if { [file ext $doc) = ".sgml" II [file ext $doc) = \

43

".sgm" } { continue
}else {

tk_dialog .err { Document Selection Error 	\
"All files should be sgml files. Select again.
warning 0 OK

return 0

}
}

return 1
}

44

REFERENCES

1. T. Cahill, M. G. Hinchey, and L. Rebhan. Documents are programs. In Proc.
ACM SIGDOC, Waterloo, Canada, October 1993.

2. C.-Y. Chang and J. T. L. Wang. Scientific data mining: A case study. In
Proceedings of the 8th International Conference on Software Engineering
and Knowledge Engineering, pages 100-107, Lake Tahoe, Nevada, June
1996.

3. S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Change
detection in hierarchically structured information. In Proceedings of the
1996 ACM SIGMOD International Conference on Management of Data,
pages 493-504, Montreal, Quebec, Canada, June 1.996.

4. V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From structured
documents to novel query facilities. In Proceedings of the 1994 ACM
SIGMOD International Conference on Management of Data, pages 313-
324, Minneapolis, Minnesota., May 1994.

5. C. Faloutsos and S. Christodoulakis. Signature files: An access method for
documents and its analytical performance evaluation. ACM Transactions
on Office Information Systems, 2(4):267-288, October 1984.

6. E. A. Fox, L. S. Heath, Q. F. Chen, and A.. M. Daoud. Practical minimal
perfect hash functions for large databases. Communications of the ACM,
35(1):105--121, January 1.992.

7. C. F. Goldfarb. The SGML Handbook. Oxford University Press, New York,
1990.

8. A. Haake. CoVer: A contextual version server for hypertext applications. In
Proceedings of the 4th ACM Conference on Hypertext, 1.992.

9. E. V. Herwijnen. Practical SGML. Kluwer Academic Publishers, Boston,
Massachusetts, 2 edition, 1994.

10. Mil-M-28001A. Markup requirements and generic style specification for
electronic printed output and exchange of text,. Department of Defense
CALS Office, September 1990.

1.1. H. Moller. Versioning structured technical documentation. In Proceedings of the
Workshop on Versioning in Hypertext Systems, 1994.

12. K. Osterbye. Structural and cognitive problems in providing version control for
hypertext. In Proceedings of the ACM Conference on Hypertext, 1992.

13. C. V. Ramamoorthy and W. T. Tsai. Advances in software engineering. IEEE
Computer, 290.0):47-58, October 1996.

45

46

13. J. T. L. Wang and C.-V. Chang. Fast retrieval of electronic messages that
contain mistyped words or spelling errors. IEEE Transactions on Systems,
Man, and Cybernetics (forthcoming).

15. J. T. L. Wang, G. J. S. Chang, G.-W. Chirn, C.-Y. Chang, W. Vu, and
F. A.ljallad. A visualization tool for pattern matching and discovery in
scientific databases. In Proceedings of the 8th International Conference on
Software Engineering and Knowledge Engineering, pages 563-570, Lake
Tahoe, Nevada, June 1996.

16. J. T. L. Wang, G.-W. Chirn, T. G. Marr, B. A. Shapiro, D. Shasha, and
K. Zhang. Combinatorial pattern discovery for scientific data: Sonic
preliminary results. In Proceedings of the 1994 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 115.-125, Minneapolis,
Minnesota, May 1994.

17. J. T. L. Wang, T. G. Marr, D. Shasha, B. A. Shapiro, and C.-W. Chirn.
Discovering active motifs in sets of related protein sequences and using
them for classification. Nucleic Acids Research, 22(14):2769-2775, 199.1.

18. J. T. L. Wang, T. G. Marr, D. Shasha, B. A. Shapiro, G.-W. Chirn, and
T. Y. Lee. Complementary classification approaches for protein sequences.
Protein Engineering, 9(5):381-386, 1.996.

19. J. T. L. Wang and P. A. Ng. TEXPROS: An intelligent document processing
system. International Journal of Software Engineering and Knowledge.
Engineering, 2(4171-1.96, June 1.992.

20. J. T. L. Wang, K. Zhang, K. Jeong, and D. Shasha. A system for approximate
tree matching. IEEE Transactions on Knowledge and Data Engineering,
6(-1):559-571., August. 199-1.

21. S.-J. Yoo, P. B. Berra, Y. K. Lee, and K. Yoon. Version management in
structured document. retrieval systems. In Proceedings of the 8th Interna-
tional Conference on. Software Engineering and Knowledge Engineering,
pages 537-544, Lake Tahoe, Nevada, June 1996.

22. K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between
trees and related problems. SIAM 	Journal on Computing, 18(6): I 245
1262, December 1989.

23. K. Zhang, D. Shasha, and J. T. L. Wang. Approximate tree matching in the
presence of variable length don't cares. Journal of Algorithms, 16(1):33-
66, January 1994.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment
	Table of Contents
	Chapter 1: Introducation
	Chapter 2: Background
	Chapter 3: Algorithms and Architecture
	Chapter 4: Graphical Interface
	Chapter 5: Conclusion
	Appendix A: Programs
	References

	List of Figures

