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ABSTRACT 

CHARACTERISTICS OF RECYCLED PLASTICS AND APPLICATIONS 
FOR HIGHWAY APPURTENANCES 

by 
Keith MacBain 

Recycling is gaining widespread support in many communities as an environmentally 

acceptable solution to the management of solid waste. The success of these recycling 

programs depends largely on the development of high-value end use for the recycled 

products. This research involves an experimental and analytical study on the development 

of high-value, high-volume end uses for recycled plastic shapes. The experimental part 

includes material tests to determine mechanical properties of various recycled plastics. A 

constitutive model is proposed and verified that can be used in characterization of recycled 

plastics. Bending tests of recycled plastic beams were performed to assess strength, 

stiffness and mode of failure. Analytical results using the proposed constitutive model are 

in good agreement with the experimental results. An innovative noise wall design that 

takes advantage of multi-layering to increase stiffness and sound effectiveness is discussed 

as well as other possible uses and future research needs. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Solid waste is overloading the landfills and is a major contributor to the environmental 

problems facing this country. Every year the U.S. alone generates 320 billion lb (145 

billion kg.) of municipal solid waste. Of this waste, plastics comprise 18 percent by 

volume and 7 percent by weight [1]. Furthermore, plastics and paper are the fastest 

growing segments of solid wastes [2]. 

Recycling is an environmentally acceptable means of reducing solid waste and 

conserving resources. Reprocessing industrial plastic waste (e.g., in-house scrap) has 

been a common practice for as long as the plastic industry has existed. There have recently 

been significant developments in the recycling technology of commingled plastic waste but 

the key issue to be resolved is securing long-term, high-value markets for recycled 

polymers. 

This research investigates some of the products of the recycled plastic industry to 

evaluate their mechanical and structural properties and to assess conformity of these 

properties among manufacturers. The use of recycled plastics in development of 

economical and environmentally acceptable highway appurtenances, such as noise and 

traffic barriers, is also discussed. 



1.2 General Properties of Recycled Plastics 

Mixed, or commingled, plastics once destined for the waste stream are now being recycled 

[3]. Collected plastic scrap is granulated, then melted and processed in an extruder. The 

molten plastic is then forced into a mold cavity of the shape and size of the final product. 

The product can be cut and shaped with the same tools and fastening devices used for 

wood. These molded products are resistant to attack from gas, oil, salt, sunlight, 

chemicals and insects and will withstand human and mechanical abuse [4]. Test results 

have shown mixed plastics hold nails approximately 40 percent better than wood [5]. 

Fiberglass and treated wood fiber, both classified as hazardous waste materials, have been 

successfully used to improve the mechanical properties [6] of recycled plastics. 

Currently, molded shapes are used to make park benches, guardrail block outs, 

fences, road markers, landscape timbers and a wide variety of other non-structural 

applications. Although it has been highly anticipated that molded shapes "will replace 

wood, concrete and steel" [7], structural applications of the product are practically non-

existent. This is mainly due to lack of knowledge about the mechanical and structural 

properties of the material, especially their relation to long term performance. Lack of 

testing standards and design specifications compound the problem. 

Previous work [8] has revealed that the modulus of elasticity varies greatly among 

manufacturers. Creep effects [9] are thought to be significant and it has been noted [1 0] 

that sample size and temperature affect material properties. It has also been shown [I 1] 

that these recycled plastics are virtually non-toxic which is in sharp contrast to chemically 

pressure treated lumber 



CHAPTER 2 

EXPERIMENTAL TESTS 

The cross-section of the standard recycled plastic (RP) lumber shape is visually non-

homogeneous, suggesting that the material properties also vary. Non-homogeneity of the 

material is attributed to the cooling process during extrusion; the section normally cools 

from the outside first causing the periphery to solidify before the center. Shrinkage of the 

center as it cools can also distort the final form of the section causing rounded corners and 

uneven surfaces. Although the degree of variation is different for various manufacturers 

and shapes, all products evaluated depict this phenomenon. Material tests (tension and 

compression) were conducted to investigate this difference and the results were used to 

formulate a constitutive model for RP that can be employed in analytical studies. To 

validate the constitutive model and to assess global behavior of structural components 

(such as stiffness, strength, and ductility) member tests in bending were performed and the 

results were compared with the analytical results using the proposed material model. 

There is currently no industry standard for the manufacture of RP products so 

there is variation among the manufacturers in composition as well as the methods of 

acquiring materials. To represent the range of compositions available, three manufacturers 

(to be called A, B & C) were selected for testing. Manufacturer A mixes fiberglass with 

the RP, B uses only RP, and C uses 50% wood fiber in addition to the RP. It must be 

mentioned that variations in material strength among manufacturers are not a problem in 

developing structural applications, but consistency (reliability) of the mechanical 

properties and long term performance are. 

3 
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The cross section of the extruded product can have any shape but only standard 

lumber shapes (2x10, 4x4, and 6x6) were used in testing because these are commonly 

produced. The actual dimensions of the 2x10, 4x4, and 6x6 are approximately 1.5" x 

9.5", 3.5" x 3.5", and 5.5" x 5.5" respectively but they are generally referred to by their 

nominal size. 

2.1 Material Tests 

Material tests were performed to asses the variation of material properties within the 

material as well as the variation among manufacturers. 

2.1.1 Selection of Coupons 

To investigate the apparent non-homogeneity, visually consistent sections were cut from 

both 4x4 and 6x6 shapes and termed 'core' or 'shell' coupons based on their origin. 

Coupons were also cut from 2x 10 shapes but the visually consistent shell section was too 

thin (typically less than 0.4") to be used for standard coupons. The core and shell 

coupons were not only visually different but also were noted to have different dry densities 

after they were weighed and measured. The dry density of the shell coupons was found to 

range between 57 to 68 pounds per cubic foot. Depending on manufacturer (and lumber 

size for Manufacturer B), the core coupons typically had 50% the density of the shell. 

2.1.2 Specimen Dimensions and Test Set Up 

Core and shell coupons for tension tests were 0.5" x 1.57" x 8" nominal and the 

compression coupons were 0.5" x I .57" x 0.79" nominal. Since ASTM is still developing 
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RP test standards, procedures for wood and plastic were used. Ten tension tests were 

conducted similar to ASTM D 638 and ten compression tests were conducted observing 

ASTM D 695 for each manufacturer. Tension strain was measured with a clip-on type 

gage over a 2" initial gage length and the load was recorded. 

2.1.3 Results 

Figures 2.1 through 2.3 show tension and compression stress-strain diagrams for both 

core and shell coupons for all three manufacturers. Stress was computed by dividing the 

recorded load by the original cross sectional area. The compression test results are 

plotted only to a maximum of 10% strain because all materials began to visually fail near 

this point. It should be noted that beyond 30% strain, the materials exhibit hyper-elastic 

behavior; there was no point of maximum stress but rather the stress continued to increase 

after the material visually failed. This was also characterized by a softening (lower 

modulus of elasticity) followed by a stiffening of the material. Figure 2.4 shows a typical 

full scale compression test for Manufacturer B which marks the point of inflection (change 

in curvature) and indicates the minimum stiffness. This stiffening is likely attributed to the 

size of the sample used rather than it being representative of true material characteristics 

for large deformations. For rectangular wood samples, ASTM recommends that the 

height be no greater than two times the minimum thickness but it is believed that these 

recommendations are not appropriate for compression testing of plastics where large 

deformations are expected. The coupons appeared to be approaching a point that would 

require the material to undergo viscous flow for continued deformation which is, of 

course, entirely apart from the objective of these tests. The results of this method are 



Strain 

Figure 2.1 Material Properties for Manufacturer A 



Strain 

Figure 2.2 Material Properties for Manufacturer B 



Figure 2.3 Material Properties for Manufacturer C 



Figure 2.4 Full Scale Compression Test, Manufacturer B 
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applicable for small to moderate strain (less than 10%) but if large deformation results are 

desired, a different sample size may provide more representative results. 

The stress-strain diagrams show that there is a significant difference in both the 

tension and compression behavior as well as the core and shell materials. It can also be 

seen that the material is non-linear throughout its range. For all manufacturers tested, the 

core was found to have lower initial tangent modulus of elasticity (E) and lower ultimate 

strength. Manufacturer A foam-fills the core for aesthetic purposes so these materials 

were not tested. Table 2.1 shows the variation in material properties between shell and 

core coupons in tension and compression for all three manufacturers tested. For 

Manufacturer B, the material properties varied with the size of the section. The core 

coupons from 4x4 sizes had a smaller E than that of the 6x6 and 6x8. It was also noted 

that the core density of the 4x4 (23 pcf) was nearly half that of the 6x6 and 6x8 (42 pcf). 

This suggests a correlation between density and stiffness; higher density corresponds to a 

higher stiffness but variations in density of less than 5% do not appear significant. 

Although it is unclear if Manufacturer B uses different raw materials to form different 

shapes, it is thought that the variation in density and stiffness is caused by the size and 

shape of the section. While it is beyond the scope of this paper, the rate of cooling is 

thought to have an important effect on the material properties and because the section will 

cool from the outside first, the shell will impose boundary conditions on the core as it 

cools. Noting that only the core properties vary for different sizes and that the 6x6 and 

6x8 have the same minimum center to perimeter distance supports this notion. 



Table 2.1 Material Properties 

max tension compression 

Manufacturer E, Ec stress stress at 

and type (ksi) (ksi) (psi) inflection point 

(Psi) 

A Shell 625 125 1800 3250 

Core NA NA NA NA 

B Shell 270 100 2200 5100 

(4x4) Core 51 35 580 1000 

(6x6, 6x8) Core 150 72 750 1300 

C Shell 320 90 1000 2000 

Core 260 65 750 1900 

Coupons from all manufacturers were seen to contain varying amounts of 

impurities; tension failure usually occurred at these locations. impurities are typically 

materials such as bottle tops that are inadvertently collected and granulated with the 

recyclables but melt at a different (normally higher) temperature. The amount of bond 

adhesion for these impurities is unknown. The size of the impurities varied, but typically 

comprised less than 5% of the cross-sectional area for A and C while they contributed as 

much as 10% for B. This is believed to be a factor in the divergence from theory 

mentioned in later sections. 
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2.1.4 Proposed Constitutive Model 

Based on analyses of the test results under both tension and compression stresses for all 

manufacturers, the following equation is proposed to define material characteristics of 

recycled plastics: 

where σ represents the stress, c represents the strain, and A, B, C, and D are material 

constants. 

The material constants need to be determined for each type of material; that is, 

tension and compression of core and shell. This requires sixteen constants for each 

manufacturer to fully define the section behavior. These constants were determined using 

a method that attempts to minimize Chi-square [12] as implemented by Temple Graph 

software. The model was not fit to the compression curves beyond the point of inflection. 

For all three manufacturers the proposed model can simulate the experimental 

results with high accuracy. In Figure 2.5, a stress-strain diagram from material tests of 

Manufacturer B is plotted along with the proposed model, which shows a good match. 

Table 2.2 lists the material constants for all three manufacturers (a is dimension-less and o 

is in psi). These results were used to simulate member response and compared to 

experimental results as discussed in the following sections. 



Strain 

Figure 2.5 Material Properties and Curve-fit for Manufacturer B 



Table 2.2 Material Constants 

Manufacturer 
& coupon 

A B C D 

A 

Shell - tension 

Shell - compression 

2.55E+7 

2.45E+8 

1.68E+3 

7.24E+4 

8.49E+3 

-4.33E+4 

40 

1.94E+3 

Core - tension 0 0 0 1 

Core - compression 0 0 0 1 

Shell - tension 1.69E+7 2.46E+3 6.04E+3 62 

B Shell - compression 3.70E+8 -5.39E+3 -5.19E+4 3.70E+3 

Core - tension 1.37E+7 1.47E+5 1.77E+4 264 

Core - compression 1.25E+8 7.81E+4 -1.99E+5 3.87E+3 

Shell - tension 2.02E+7 2.98E+5 1.21E+4 62 

C Shell - compression 1.21E+8 1.16E+5 -3.99E+4 1.36E+3 

Core - tension 2.01E+7 7.28E+5 1.03E+4 77 

Core - compression 1.39E+8 8.70E+4 -4.68E+4 2.1 1E+3 

2.1.5 Freeze / Thaw Exposure 

To help asses the effects of long term outdoor exposure, all materials were exposed to 

freeze / thaw cycles. Standard tension and compression coupons were submerged in 

water for six days and then put into a chamber that regulated the temperature. One cycle 

consisted of at least 12 hours frozen (-60° F) and at least 12 hours thawed (68°  F). The 

relative humidity was between 65% and 75% at all times. All coupons were subjected to 

at least 60 freeze / thaw cycles before performing the same material tests as before. 

Referring to Figures 2.6 through 2.8, it can be seen that strength and stiffness were 

reduced in materials containing wood fibers (Manufacturer C) while those containing all 

plastic (Manufacturer B) or mixed with fiberglass (Manufacturer A) were not affected 

significantly. This indicates that plastics containing wood fibers are not a good choice for 

long term outdoor exposure where structural considerations are important. 



Figure 2.6 Freeze / Thaw Tests Compared with Curve-fit Results, Manufacturer A 



Strain 

Figure 2.7 Freeze / Thaw Tests Compared with Curve-fit Results, Manufacturer B 



Figure 2.8 Freeze / Thaw Tests Compared with Curve-fit Results, Manufacturer C 
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2.1.6 Creep 

Standard compression coupons were subjected to a constant dead load that produces a 

stress level of 10 psi. This is a typical dead load stress level at the base of a 20 ti high wall 

created with RP. The temperature was held constant at 95° F throughout. Figure 2.9 

shows that after 7 months, the creep strain for all manufacturers was less than 0.15% and 

that no creep strain has been measured in the last 4 months for Manufacturer A. If this 

strain were (conservatively) considered constant throughout the height, it equates to a 

creep deflection of only 0.3 inch for a 20 ft high wall. Although this is acceptable for a 

noise wall, Table 2.3 shows it is extremely large when compared to the initial strain 

obtained from the test data. Creep deflection comprises the larger portion of the total 

deflection by far, even for low stress levels. Noting that 10 psi is at least 15 times less 

than the ultimate compressive stress found in the material tests for all manufacturers, it is 

apparent that creep deflection can be very significant and is discussed further in Section 5, 

Future Work. 

Table 2.3 Summary of Creep Strain 

Manufacturer Initial strain 

(%) 

Creep strain after 7 

months (%) 

Increase from initial 

strain 

A 0.008 0.13 1625% 

B 0.01 0.13 1300 % 

C 0.01 0.13 1300 % 



Figure 2.9 Creep Strain vs Time 
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2.2 Member Tests 

2.2.1 Test Setup and Specimens 

Four-point bending tests were performed on 27" long 4x4 samples in accordance with 

ASTM D 198. In addition to load and deformation at the load point, outer fiber strain 

was recorded using strain gages adhered to the top and bottom of the member before 

testing. End rotation was also recorded using dial gages. Three point bending tests were 

conducted on 60" long 6x6 and 6x8 sections although outer fiber strain and end rotation 

were not recorded for the larger sections. Three 4x4's, one 6x6 and one 6x8.  were tested 

from each manufacturer. 

Axial compression tests were performed on whole 4x4 sections with an initial 

height of 4.5". Four samples were used for each manufacturer and testing proceeded 

following ASTM D 198, Static Compression of Timbers in Structural Sizes. 

2.2.2 Flexural Test Results 

The load deformation results show non-linear behavior similar to the material tests. An 

interesting observation is that despite significant differences in material properties for 

tension and compression (Figures 2.1 through 2.3), the strain at the top and bottom outer 

fibers were within 25% of each other for all specimens tested. Figure 2.10 shows the 

strain at the top and bottom outer fibers as the bending moment increases at mid-span of a 

4x4 for Manufacturer B. Because the data acquisition equipment was not able to record 

two independent signals simultaneously, the signals from the top and bottom strain gages 

were recorded alternately for short intervals causing the gaps in the plot. When the RP 

section is in flexure, the large difference revealed in the material tests between tension and 



Figure 2.10 Strain at Outer Fiber, Manufacturer B 



22 

compression behavior is compensated for by the shifting of the location of zero strain or 

neutral axis (NA) that occurs during bending. Figure 2.11 illustrates this shift as the 

moment increases based on the theoretical analysis. Considering a symmetric section, 

initially the NA is below the geometric centerline because the modulus of elasticity in 

tension (E1) is greater than that in compression (E). At larger strains, Et  becomes less 

than Ec and the NA rises to maintain the force equilibrium. That is, tension strain 

approaches (and may surpass) compression strain because E0  maintains nearly its initial 

value at strains that Et  has lost most of its initial value and a greater increase in tension 

strain is needed to balance the force generated by a nominal increase in compression 

strain. This is consistent with the strains recorded in the 4x4 tests and shown in Figure 

2.10. 

Although all three products had good ductility for structural purposes, they all 

failed suddenly as reflected by the lack of a descending portion in the load-deformation 

curves. Products from Manufacturer B exhibited the largest tension strain (9%) before 

failure. The greater ductility can be attributed to the lack of reinforcement in the product. 

That is, addition of fibers (glass or wood) reduces ductility, apparently due to bond failure. 

2.2.3 Compression Test Results 

The axial compression results showed that all manufacturers exhibited similar behavior. 

Near the ultimate load for the section, the stiffness dropped considerably and the shell 

began to buckle away from the core marking visual failure (Figures 2.12(a) and 2.12(b)). 

The ultimate compressive strength of the member, thus, is affected by not only the height 

of the section, but also the bond strength between core and shell materials. After visual 



Figure 2.11 Moment vs Neutral Axis, Manufacturer C 6x8 
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Figure 2.12(a) Manufacturer A Axial Compression 

Figure 2.12(b) Manufacturer C Axial Compression 
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failure, all samples sustained large plastic deformations suggesting that these materials 

might be well suited for one - time, large energy absorbing mechanisms such as crash 

cushions. 



CHAPTER 3 

ANALYTICAL VS. EXPERIMENTAL 

Two computer programs were developed to predict member behavior by using the 

proposed material model and the parameters given in Table 2.2. A composite, non-linear 

section (such as RP) is modeled in axial compression by one program (CRUSH.FOR) and 

in flexure by the other (BEND.FOR). Numerical integration techniques are used to 

generate theoretical load-deflection data. The flexural analysis program also generates 

theoretical moment-curvature and load-rotation data. Both programs assume that there is 

a distinct division between core and shell and that the section is perfectly rectangular (i.e., 

roundness of the corners is ignored). The FORTRAN source codes for both programs are 

included in Appendix A along with the descriptive files that explain their algorithms and 

implementation. 

3.1 Flexure 

Appendix B contains Figures B.1 through B.9 which show the bending test results 

compared with the theoretical curve for all three products. The analytical results agree 

with the experimental results within 15% for loads less than 80% of the ultimate load for 

all sections tested, It is suspected that stress concentrations caused by the presence of 

impurities (mentioned in material tests) effect theory to deviate from test results, 

particularly at larger loads. The theoretical curve is derived from the coupon tests, but the 

member is more able to transfer the stress concentrations to adjacent areas than the 

coupon due to its larger cross-sectional area (i.e., redistribution of stress). 

26 
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The material properties reported by the coupon tests may not be entirely 

representative of the member behavior. The coupon strain was recorded over a 2" gage 

length and the net effect of specific, localized stress concentrations occurring in this length 

cannot be determined because there are several parameters that affect how stress 

concentrations will change the apparent material behavior. Among these are the ratio of 

coupon size to impurity size, the ratio of coupon size to member size, the density 

(frequency) of the impurity distribution and the type of strain gage and gage length. It is 

not the intent of this paper to investigate these effects but rather to develop and 

investigate a method for the analysis of composite RP sections. 

At larger loads when the material is yielding, the variation between coupon and 

member behavior will be greater because for greater loads, the coupon can rely less on the 

impurity bonds. This suggests that for the theoretical member, strength will be affected 

more than initial stiffness. The fact that the tension strain in the member at failure was 

greater (typically by 20%) than the maximum coupon strain supports this conclusion. 

Similarly, the theoretical maximum bending moment (based on maximum coupon tension 

strain) was less than the maximum moment experienced during testing. To extend the 

theoretical curves for the purpose of comparison, the program uses the curve fit limit 

(CFL) as described in Appendix A. The CFL is the maximum coupon tension strain 

before failure and when the program requires the stress at a strain larger than the CFL, it 

uses the stress at the CFL. In other words, the curves are extrapolated by assuming pure 

plastic deformation to take place after the actual observed failure. 

Although all of the theoretical curves predict nonlinear behavior, it can be seen that 

they all anticipate a more linear response than observed in the tests.. It can also be seen 
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that all but one predict a higher load than observed which may be due to an artificial 

strength caused by the plastic CFL assumption noted earlier. 

Although it is possible to model the bending of RP sections based on the material 

behavior satisfactorily for low loads (Figures B.3, B.7 and B.9), this method seems to 

deviate more for higher loads. Because this method is based on simpler, less expensive 

coupon tests and does not necessitate separate tests of the entire member for each specific 

cross section considered, it is anticipated that it will prove useful for RP analysis. 

Additionally, Manufacturer B has reported to now be collecting and sorting the scrap 

more carefully so the notion of impurity stress concentrations may soon be irrelevant. 

3.2 Compression 

Figures 3.1 through 3.3 show the theoretical curves plotted with the axial member 

compression test results. The curves can be seen to closely follow the behavior of the 

member before buckling of the shell occurs for all three manufacturers. Figures 2.12(a) 

and 2.12(b) show two samples at visual failure. Note that Manufacturer A exhibits a local 

buckling failure of the shell while Manufacture C seems to have a more general buckling 

failure. The test obviously deviates from theory at this point because the possibility of 

shell buckling is not considered in the computer program. The agreement between the test 

and theory before visual failure occurs indicates that it is possible to predict axial member 

behavior with reasonable accuracy in this range but the model gives no prediction of when 

the shell buckling might occur. 

A simple approximation of the shell buckling load was obtained by considering one 

side of the shell to be a simple column supporting a percentage of the total load based on 



Figure 3.1 Axial Compression of 4x4, Manufacturer A 



Figure 3.2 Axial Compression of 4x4, Manufacturer B 



Figure 3.3 Axial Compression of 4x4, Manufacturer C 
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total cross sectional area and initial E value. The Euler buckling load was computed and 

the values for each manufacturer are indicated in Figures 11 through 3.3 which seems to 

give a rough indication as to when one might expect this buckling to occur. The values 

are not as conservative as expected, however, considering the assumptions made which 

suggests that the mode of failure is more of a localized buckling than a general buckling. 

It must be emphasized that Euler's approximation as applied here is not only approximate 

but very subjective and sensitive to one's interpretation of core and shell material. It is 

presented here only for reference and is not viewed as a good method to predict the 

ultimate load for RP axial members. A more complex analysis is required if the true 

behavior is to be considered in detail. 



CHAPTER 4 

HIGHWAY APPLICATIONS 

4.1 Noise Wall 

As seen in Table 2.1, the stiffness of RP is generally low; much smaller than concrete or 

even wood. If current design approaches were to be used, it would be difficult to utilize 

RP as an economical noise barrier. An advantage of RP, however, is that it can easily be 

manufactured into various shapes and the cross section does not have to be solid. With 

this in mind, a new noise barrier design, as shown in Figure 4.1, is proposed. Spacing of 

the webs was determined through finite element analysis of a typical cell assuming the 

material to be linear. The proposed design uses shell thickness of 0.5" with an overall 

depth of 8". A 30 psf (typical AASHTO 80 to 90 mph wind load) applied to a 15' long 

panel resulted in a maximum deflection of 2.2" and the stresses were below 210 psi. The 

panel length was increased to 20' causing a maximum deflection of 6.2" and the stresses 

were still below 360 psi so the linear assumption is still valid. The shell thickness and 

overall depth of the cross section can also be increased to allow even greater panel length, 

thus, making more economical designs by further reducing the number of posts. 

For typical RP material, the total density (i.e., considering both layers) of the 

proposed design satisfies the recommendation of 20 kg/m2  [13] for sound attenuation. It 

is expected that multi-layering will significantly enhance the sound effectiveness of the 

wall since layering is the only way to overcome the mass requirement [13]. Prototype 

panels (Figure 4.2) were assembled from 'A" thick RP sheets by fastening them together 

with screws. They are 8' long and resemble the proposed cross section. The prototype 
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Figure 4.1 Proposed Noise Wall Panels 



Figure 4.2 Prototype Panel 
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panels were tested for sound absorption (ASTM C423-90a and E795-83) and transmission 

loss (ASTM E90-90 and E413-87). The noise reduction coefficient (NRC) is an average 

of the percent energy absorbed by the test specimen at 250, 500, 1000, and 2000 Hz 

frequencies. The sound transmission class (STC) of a specimen is a single number that 

gives an indication of the sound transmitted by fitting the test data to an ASTM defined 

curve. For the prototype panels, the NRC is 0.10 and the STC rating is 37. Table 4.1 

shows these results along with some other commonly used building materials. This shows 

that these prototype sections are comparable by these standards even though these 

numbers alone do not give a full understanding of how well a material will perform 

acoustically in a given situation. The STC and NRC do not reflect, for example, that the 

prototype panels were noted to perform better at lower frequencies (100 to 250 Hz) of the 

test range. Large trucks have been noted [14] to generate a majority of their noise in this 

frequency range. 

Table 4.1 Acoustical Properties of Different Materials 

Current design guidelines [15] do not specify a minimum STC or NRC for use as a noise 

wall because it is assumed that the transmission loss of the barrier is large compared to the 

sound that is diffracted over the barrier. The barrier attenuation is thus considered a 

function of the site geometry. 
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4.2 Guardrail Posts 

Present technology and design uses road barriers that are made of relatively rigid materials 

such as steel, concrete or a combination of the two. It is well known, however that 

flexible but strong designs can absorb more energy, reduce impact deceleration, and 

minimize the damage sustained by the impacting vehicle and its occupants. Previous 

research has resulted in designs that incorporate energy absorbing mechanisms (such as 

the use of rubber energy absorber) and improved the performance of bridge rails [16 - 20]. 

Due to high initial costs associated with these energy absorbing designs compared to 

conventional bridge rails, high maintenance costs, and difficulty in attachment to standard 

bridge decks, these energy-absorbing bridge rails have not gained wide acceptance. The 

proposed design for road barriers combines the flexibility of plastics (used as posts) with 

the stiffness of steel rails. Thus, the final product is expected to be functionally superior to 

current designs. 

Analysis of a typical guardrail system was performed using frame models and a 

linear approximation of 6x8 RP posts. A steel 6x6 box section was used for the rail at a 

27" height. With the typical post spacing of 6', it was not possible to satisfy AASHTO's 

allowable stress requirements. Only when reducing the post spacing to 2' could the 10 kip 

lateral load be sustained without exceeding the allowable stress of 0.6 times the yield 

stress (0.6fy). To meet the more demanding AASHTO bridge rail requirements of 

performance level one (PL-1) or greater, it would likely be cost prohibitive to use RP in a 

post and rail design. It should be mentioned, however, that PL- 1 through PL-4 anticipate 

relatively rigid barriers [21], and can not be directly used for evaluation of the proposed 

design which is a flexible one. 
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n a crash test of a guardrail system, the use of RP posts has been reported as 

inadequate [22] based on a one-to-one deflection comparison with wood posts. 

Obviously, RP is much more flexible than wood and if total deflection is compared to 

wood and this is the only parameter to determine appropriateness of the design, then it will 

be very difficult or uneconomical to design a guardrail post using RP. 

Further investigation of RP for use as guardrail posts should include specific 

design guidelines to be used for RP. An equivalent replacement of steel posts is not 

possible because the modulus of elasticity multiplied by the area second moment of inertia 

(El) varies by as much as 70 times for the sections discussed. AASHTO suggests an 

allowable stress design based on a static loading. Using an allowable stress method 

implies that the rail and posts should sustain no damage under mild events but numerous 

tests of steel post guardrails [23 - 25] have shown damage to posts in the zone of impact 

evidencing that the stresses were far beyond allowable. To effectively use RP for posts 

and capture the high energy absorption potential, the design must be based on recognizing 

the full strength of the posts in the zone of impact. 



CHAPTER 5 

FUTURE WORK 

To further investigate the appropriateness of the RP for highway appurtenances and 

advance the general state of knowledge about RP, the following tests and analytical 

studies should be pursued: 

• A more detailed study of the creep behavior which includes longer test duration, 

different stress levels and different temperatures. It has been seen that creep deflection 

can be far greater than initial deflection and should be investigated more thoroughly. 

• The material model should be verified more exhaustively by comparing the theoretical 

results with more test results including different materials and cross sections. 

• Wind test of full scale panels of the proposed model should be conducted. The wind 

tests should focus on whether the design loads obtained from current standards are a 

reasonable predictor of the actual wind loads, and if the flow of wind over the top of 

the wall causes vortex shedding that might excite the wall and cause it to vibrate. 

• Crash worthiness analyses using realistic analytical models by incorporating the 

proposed material model into an existing program such as BARRIER VII [21]. 

• impact tests and verification with analytical procedures. 
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CHAPTER 6 

CONCLUSIONS 

Experimental and analytical investigation of RP indicates that it is a viable material that 

could have structural applications. Material tests revealed that RP is a nonlinear material 

and the presence of additives such as glass and wood fibers can increase stiffness and 

reduce ductility. Creep deflection of RP can be very large and freeze / thaw exposure 

adversely affects materials with wood fibers. It is possible to predict the behavior of RP 

members with reasonable accuracy for low to moderate load levels based on the material 

properties. RP is suitable for noise walls but to be efficiently used for guardrail posts, a 

design methodology based around capturing the large energy absorption capabilities of RP 

should be considered. 

Problems that need to be addressed to ensure the use of RP among structural 

engineers include quality control, development of standards for testing, design 

specifications, and long term performance evaluation. Over the last two years, 

manufacturers have also taken major steps in improving quality and initiating efforts to 

develop design standards that can be used by structural engineers. Of course, proper 

dissemination of this work and research as well as developments made at various 

universities is essential to advancing the state of knowledge. 
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APPENDIX A 

COMPUTER PROGRAMS 

The BEND.FOR program for flexure analysis requires an input file to run and generates an 

output file that contains the input file data, the moment-curvature (M-phi) relation and 

load-deflection (P-delta) data. The following gives the input file format, details of the 

program, and the assumptions made in the analysis that the user should be familiar with. 

The explanation is given in terms of the program variables. The input file must have the 

following format: 

h 	w 	tf tw 	et stop 
A(1) B(1) C(1) D(1) 
A(2) B(2) C(2) D(2) 
A(3) B(3) 	C(3) 	D(3) 
A(4) B(4) C(4) D(4) 
CFL( 1) 
CFL(2) 
CFL(3) 
CFL(4) 
method L P lim 

The above input variables refer to a composite rectangular section with these parameters 

h 	 height of the section 
w 	 width of the section 
tf 	 shell thickness; the flange 
tw 	 shell thickness; the web 
et stop 	maximum tension strain produced in bending 

The next 16 items are the constants that define the material behavior and fit the equation: 

stress = A * e / (B * e^2 + C * e + D), where e = strain. There are four constants (A, B, 

C, and D) for each type of material behavior. The subscripts for the constants correspond 

as follows. 
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I indicates shell in compression 
2 indicates core in compression 
3 indicates shell in tension 
4 indicates core in tension 

The sign convention is positive for tension stress/strain and negative for compression. 

CFL (curve fit limit) is the strain that the material property (stress/strain) curve extends to 

(negative for compression). The integer number 'method' is the method of loading for the 

beam. Possible choices are: 

1 	Cantilever with concentrated load at the free end 
2 	Simply supported with a uniformly distributed load 
3 	Simply supported, one concentrated load at midspan 
4 	Simply supported, two equal concentrated loads at 1/3 and 2/3 span length 

The remaining input items are 

L 	total length of the beam 
P_lim largest load applied, i.e. the limit of load-deflection data desired. 

To describe the analysis algorithm, program variables are listed in single quotes. After 

reading the input, 'et stop' is divided into 'MoPhiSize' equal divisions yielding each 'et', 

(tension strain at the outer fiber). For each 'et', a trial & error method is used to size 'y' 

(location of neutral axis; from bottom of section) until 'sum_force' (the net axial force; i.e. 

Tension + Compression) is less than 'Tol'. If this balance is not found in less than 

'time_out' attempts, the program sets 'Flag' equal to the imbalance ('sum force') and 

proceeds to the next 'et'. If the strain in any part of the section exceeds the 'CFL' for that 

type, pure plastic deformation is caused in that type by using the stress that corresponds to 

'CFL' for all strains greater than this. When the 'CFL' is exceed, 'Plast' is set to reflect this 

and written to the 'MoPhi' array as described in OUTPUT FILE. 
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When 'et stop is reached, the program then goes on to compute the deflection of 

the beam at the point of loading (midspan for method 2). The program uses the internal 

control constant 'LoDefSize' to divide 'P_lim' into equal divisions. For each load 

increment 'P', the moment-area method is used to find the deflection by referring to the 

'MoPhi' array and interpolating linearly to find the 'phi' corresponding to a given moment. 

The deflection and rotation at the free end are found by integrating the M/EI diagram (phi) 

with an interval 'dx'. If the moment corresponding to a particular load exceeds the 

maximum moment found in the M-Phi array, the message " !! Section will not support 

this moment ..." is written to the screen and the remainder of the 'LoDef array is filled 

with zeros. 

The output file contains the 'LoDef' array, the 'MPhil' array, the input file 

information, and the internal parameters of the program. The 'LoDef' array contains: 

theta rotation at the end of the beam 
delta deflection at the load point (center for method 2) 
P 	load corresponding to above theta and delta 

The 'MoPhi' array contains 

phi 	the curvature associated with this moment (et / y) 
M 	moment generated ('sum_moment') 
et 	tension strain at outer fiber 
ec 	compression strain at outer fiber 
y 	location of neutral axis from bottom 
Flag 	force imbalance if 'sum_force' is greater than 'Tol' after 'time_out' attempts 

zero if 'sum force' is less than 'Tol' 
Plast indicator of plastic deformation; 

Plast = 0.0000 if CFL has not been exceeded. A one (1) is found in 'type' 
number of places following the decimal if the CFL has been exceeded in 
that type. 

e.g. Plast = 0.1000 if CFL has been exceeded in type 1 
Plast = 0.0101 for types 2 and 4 

The input file information consists of 
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The internal control constants are 

When the program is run, if the file names are not given after the command line, the 

program will prompt the user for them. The input file is associated with unit 45 and the 

output file is linked to unit 46. 

To change the internal control constants, the user must edit the source code and 

then compile the program. Any change of the array size should be accompanied by the 

same change in the declarations section. 

The thickness of the area of each element used in the integration varies as y does 

because the number of elements (N) is constant. The true thickness of the area used is the 

distance from the neutral axis to the outer fiber divided by 'N'. The user should recognize 

the significance of exceeding the CFL. Any compatible system of units can be used 

provided they are consistent throughout. 

* BEND.FOR: Program to compute deflection in plastic beam 
* Declarations 

DOUBLE PRECISION Cnst(4,4), MoPhi(25,7), LoDef(20,3), CFL(2,4) 
DOUBLE PRECISION h, w, if, tw, y, tA, et, et stop, ep_outer 
DOUBLE PRECISION force, sum force, sum moment, old_sum, area 
DOUBLE PRECISION Tol, Time, Step, Flag, P_Iim, P, M, epsilon 
DOUBLE PRECISION x, dx, L, Lp, phi, thetaA, delPA, 	Plast 



INTEGER count, go, i, k, method, MoPhiSize, LoDefSize, 
+ time out, type 

* Program Control Constants 
MoPhiSize = 25 
LoDefSize = 20 
time out = 50 
Tol = ID-1 
dx = 1D-1 
N = 100 

* Open file and read 
READ (45,*) h, w, tf, tw, et_stop 
READ (45,*) ((Cnst(type,i),i=1,4),type=1,4) 
READ (45,*) (CFL(1,type),type=1,4) 
READ (45,*) method, L, P_lim 

* Initializations 
y =1113.0 
DO 10 i = I, 3 

10 LoDef (1,i)=ODO 
DO 20 i = 1, 6 

20 MoPhi(1,i)=0D0 

* Begin M - phi 
WRITE (*,*) " Working on Moment - Curvature ..." 
DO 50 k = 2, MoPhiSize 
et = et_stop * DFLOAT(k-I) DFLOAT(MoPhiSize - I) 
sum moment = ODO 
sum force = 100D0 
old sum = 1D0 
time = 1DO 
Plast = ODO 
Flag = ODO 
count = 1 
DO 55 type=1,4 

55 CFL(2,type)=0 

DO 51 WHILE ((DABS(sum_force).GT.To1).AND.(Flag.EQ.0.0)) 
* Check if sign has changed and adjust y accordingly 

IF (sum_force/old_sum.LT.0) time=time+1.0 
IF (sum_force.LT.0) THEN 
Step = 0.1**time 

ELSE 
Step = -0.1**time 

45 



END IF 
old sum = sum_force 
sum moment = 0DO 
sum_force = 0D0 
y=y+Step 

DO 52 type=1,4 
* Shell - Comp 

(type.EQ.1) THEN 
tA = (h-y)/N 
ep_Outer = -et*(h-y)/y 
area=tA*tw*2.0 

* Core - Comp 
ELSE If (type.EQ.2) THEN 

tA = (h-y-tf)/N 
ep_Outer = -et*(h-y-tf)/y 
area=tA*(w-2.0*tw) 

* Shell - Tens 
ELSE IF (type.EQ.3) THEN 

tA=y/N 
ep_Outer = et 
area=tA*tw*2.0 

* Core - Tens 
ELSE IF (type.EQ.4) THEN 

tA = (y-tf)/N 
ep_Outer = et*(y-tf)/y 
area=tA*(w-2.0*tw) 

END IF 

DO 52 i=1,N 
epsilon = DFLOAT(i) / DFLOAT(N) * ep_Outer 

IF ((type.EQ.1).OR.(type.EQ.3)) THEN 
IF ((tA*i).GT.(tA*N-tf)) area=tA*w 

END IF 

* Create plastic deformation if > Curve Fit Limits (CFL) 
IF (DABS(epsilon).GT.DABS(CFL(1,type))) THEN 
epsilon = CFL(1,type) 
IF (CFL(2,type).EQ.0) THEN 

WRITE(*,403) " Outside CFL; type",type," at et =" 
CFL(2,type)=1. 
Plast = Plast + 10**(-FLOAT(type)) 

END IF 
END IF 
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force = area *Cnst(type, I )*epsilon/(Cnst(type,2)* epsilon*epsilon 
++Cnst(type,3) * epsilon + Cnst(type,4)) 

sum_force = sum_force force 
sum_moment = sum_moment + DABS(force)*i*tA 

52 CONTINUE 

count = count + 1 
IF ((count.GT.time_out).AND.(sum_force.GT.Tol)) Flag=sum_force 

51 CONTINUE 

* Store results in array 
IF (Flag.NE.0) WRITE (*,*) " sum_force = ",sum_force 

," at et = ",et 
MoPhi(k,1)=et/y 
MoPhi(k,2)=sum_moment 
MoPhi(k,3)=et 

MoPhi(k,4)=et/y*(h-y) 
MoPhi(k,5)=y 
MoPhi(k,6)=Flag 
MoPhi(k,7)=Plast 

50 CONTINUE 

WRITE (*,401) " .. done!" 

* Moment-Area method to compute deflection 

WRITE (*,405) " Working on Load - Deflection ..." 
* Method of loading 

IF (method.EQ.1) THEN 
Lp = L 
L_stop=L 

ELSE IF (method.EQ.2) THEN 
Lp = L/2 
L_stop=L/2 

ELSE IF (method.EQ.3) THEN 
Lp = L/2 
L_stop=L/2 

ELSE IF (method.EQ.4) THEN 
Lp=L/3 
L_stop=L/2 

END IF 
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* Begin load increments 
go = 1 
DO 40 k=2,LoDefSize 
P=DFLOAT(k-1)/DFLOAT(LoDefSize - 1)*P_lim 
thetaA = 0D0 
delPA = 0D0 
x=dx 

* Begin computations for this load 
DO 41 WHITE ((x.LE.L stop).AND.(go.EQ. I)) 

* Find Moment at this location 
lF (method.EQ.1) THEN 

M=P * (L_stop - x) 
ELSE IF (method.EQ.2) THEN 
M = P*x*(L - x) / 2 

ELSE IF (method.EQ.3) THEN 
M=P * L / 4 * (x / L_stop) 
ELSE IF (method.EQ.4) THEN 

IF (x.LE.Lp) M=P*L/6* (x / Lp) 
IF (x.GT.Lp) M = P * L / 6 

END IF 

* Scan array to find low M 
found=0 
DO 42 i=1, MoPhiSize IF

 ( (found.EQ.0).AND.(MoPhi(i,2).GE.M) ) THEN 
phi = MoPhi(i-1,1) + (M-MoPhi(i-1, 2)) * (MoPhi(i,1)-MoPhi(i- 1, 

+1)) (MoPhi(i,2)-MoPhi(i-1, 2)) 
found=1 
END IF 

42 CONTINUE 

IF (found.EQ.0) THEN 
WRITE (*,*) " 	!! Section will not support this moment..." 
go = 0 
DO 43 i = k, LoDefSize 
DO 43 j = 1,3 

43 LoDef (i,j) = 0 
END IF 

thetaA=thetaA+phi*dx 
IF (x.LT.Lp) delPA=delPA+(Lp-x)*phi*dx 
x=x+dx 

41 CONTINUE 



IF (go.EQ.1) THEN 
LoDef (k, l) = thetaA 
LoDef (k,2) = thetaA*Lp-delPA 
LoDef (k,3) = P 
END IF 

40 CONTINUE 

WRITE (*,401) ... done!" 

********************* OUTPUT TO FILE ********************* 

WRITE (46,600) " **** Load - Deflection ****" 
WRITE (46,607) " theta"," delta"," P " 
WRITE (46,707) (LoDef(i,1),LoDef(i,2), 

+ LoDef(i,3),i=1, LoDefSize) 
WRITE (46,600) " **** Moment - Curvature ****" 
WRITE (46,617) " phi"," M"," et"," ec"," y"," Flag","Plast" 
DO 60 i=1,MoPhiSize 

60 WRITE (46,717) MoPhi(i,1), MoPhi(i,2) ,MoPhi(i,3), MoPhi(i,4), 
+ MoPhi(i,5), MoPhi(i,6), MoPhi(i,7) 
WRITE (46,600) " *** Geometry ***" 
WRITE (46,627) " h"," w"," tf," tw"," et_stop" 
WRITE (46,727) h, w, tf, tw, et_stop 
WRITE (46,600) " *** Constants ***" 
WRITE (46,728) ((Cnst(type,i), i=1,4), type=1, 4) 
WRITE (46,600) " *** Curve Fit Limits ***" 
WRITE (46,729) (CFL(I,type),type=1,4) 
WRITE (46,600) " ******* Loading ********** " 
WRITE (46,637) " method"," L"," P_Iim" 
WRITE (46,737) method, L, P_Iim 
WRITE (46,600) " ******* Internal parameters *******" 
WRITE (46,647) " time out" " M Phi Size"," P Delta Size" _ 	_ 

+ ""Tol"," N"" dx'' 	
_ 	_ 

WRITE (46,747) time_out, MoPhiSize, LoDefSize, 
+ Tol, N, dx 
WRITE (*,401) " ... done!" 

**************** FORMAT STATEMENTS 
400 FORMAT (A,f6.4) 
401 FORMAT (40x,A) 
403 FORMAT (8x,A,I4,A,f6.3) 
405 FORMAT (//A) 
600 FORMAT (/,A) 
607 FORMAT (lx,A,3x,A,3x,A) 

************* 
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617 FORMAT (3x,A,6x,A,7x,A,4x,A,5x,A,3x,A,2x,A) 
627 FORMAT (2x,A,3x,A,3x,A,3x,A,3x,A) 
637 FORMAT (3x,A,6x,A,7x,A) 
647 FORMAT (lx,A,lx,A, lx,A,3x,A,4x,A,3x,A) 
707 FORMAT (1X,f6.4,4X,f4.2,2x,f7.1) 
717 FORMAT (1X,f7.5,1x,f9.1,2x,2(1X,f7.5),1X,f5.3,1X,f4.1, I x,f6.4) 
727 FORMAT (2(1X,f5.2),2(1x,f4.2),3X,f5.3) 
728 FORMAT ((e10.4)) 
729 FORMAT ((f8.4)) 
737 FORMAT (6X,11,8x,f5.1,5X,f6.0) 
747 FORMAT (2(6X,13),12x,12,7x,f4.1,1X,I6,1X,f4.2) 

999 STOP 
END 

The CRUSH.FOR program for axial compression analysis uses the same constants as the 

flexure analysis program but only those corresponding to compression. The program uses 

the geometry of the section to calculate the force corresponding to a specific strain. The 

output file consists of the input information and the theoretical load-deformation data. 

The input file must contain the following 12 items. 

h w %core ec_max 
A(1) B(1) C(1) D(1) 
A(2) B(2) C(2) D(2) 

The above variables are defined as follows. 

h 	 height of the cross section 
w 	 width of the cross section 
%core 	percentage of the total cross section comprised of core material 
ec max 	max compression strain expected 

The four constants (A, B, C, and D) represent the material behavior in the equation: 

stress = A * e / (B * e^2 + C * e + D) 

where e represents strain and the subscripts correspond such that 

1 	indicates shell in compression 
2 	indicates core in compression 
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* CRUSH.FOR; Program to compute deflection in axial member 
***************** Declarations  ********************* 

DOUBLE PRECISION cnst(2,4), area(3), P_delta(2,40) 
DOUBLE PRECISION h,w,percent core 
DOUBLE PRECISION ec,ep inc,ec_max 
DOUBLE PRECISION area, force, sum_force 
INTEGER P delta size, type, i 

***************** Program constants **************** 
P_delta_size=40 

***************** Open  files and read ****************** 

OPEN (5, file='in.dat') 
OPEN (7, file='out.dati) 

READ (5,*) h, w, percent_core, ec_max 
DO 70 type=1,2 
DO 60 i=1,4 
READ (5,*) cnst(type,i) 

60 CONTINUE 
70 CONTINUE 

****************** nitializations  ******************* 

P_delta(1,1) = 0 
P_delta(2,1) = 0 
ep_inc = ec_max / DFLOAT(P_delta_size - 1) 

****************** Begin  P _ del ta  ******************** 

* 1 for shell, 2 for core, 3 for whole section 
area(3) = h*w 
area(2) = area(3) * percent_core / 100 
area(1) = area(3) -area (2) 

WRITE (*,*) " Working on P - delta ..." 
DO 50 i=2,P_delta_size 
ec = -DFLOAT(i-1)*ep_inc 

sum_force = 0 
DO 30 type=1,2 

force = area(type)*cnst(type,1)*ec/(cnst(type,2)*ec*ec 
++cnst(type,3) * ec + cnst(type,4)) 



sum_force = sum_force + force 
30 CONTINUE 

* Store results in array 
P_delta(1,i) = ec 
P_delta(2,i) = sum_force 

50 CONTINUE 
WRITE (*,527) " done!" 

********************* OUTPUT TO  FILE ********************* 

WRITE (*,537) " Now writing to fort.",out file_num," ..." 
WRITE (7,517) " File: fort.",out_file_num 

DO 85 i=1,P_delta_size 
WRITE (*,707) P_delta(1,i), P_delta(2,i) 

85 CONTINUE 

WRITE (7,*) 
WRITE (7,*) " *** Geometry ***" 
WRITE (7,627) " h"," w"," % core"," ec_rnax" 
WRITE (7,727) h, w, percent_core, ec_max 
WRITE (7,*) 
WRITE (7,*) " *** Constants ***" 
DO 79 type=1,2 
DO 69 1=1,4 
WRITE (7,*) cnst(type,i) 

69 CONTINUE 
79 CONTINUE 

WRITE (7,*) 
WRITE (7,*) " ******* nternal parameters *******" 
WRITE (7,647) " P delta size" 
WRITE (7,747) P_delta_size 

WRITE (*,527) " ... done!" 
WRITE (*,*) 
WRITE (*,*) 

**************** FORMAT STATEMENTS ************* 
507 FORMAT (A,f6.4) 
517 FORMAT (A,14) 
527 FORMAT (40x,A) 
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537 FORMAT (A,14,A) 
627 FORMAT (2x,A,3x,A,3x,A,3x,A) 
647 FORMAT (1x,A) 
707 FORMAT (1X,f6.4,4X,f15.4) 
727 FORMAT (2(1X,f5.2),1x,f4.1,3 X,f5. 3) 
747 FORMAT (6X,13) 

CLOSE (5) 
CLOSE (7) 

STOP 
END 
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APPENDIX B 

BENDING TESTS 
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Figure B.1 4x4 Beam Test Manufacturer A 



Figure B.2 4x4 Beam Test Manufacturer B 



Figure B.3 4x4 Beam Test Manufacturer C 



Figure B.4 6x6 Beam Test Manufacturer A 



Figure B.5 6x6 Beam Test Manufacturer B 



Figure B.6 6x6 Beam Test Manufacturer C 



Figure B.7 6x8 Beam Test Manufacturer A 



Figure B.8 6x8 Beam Test Manufacturer B 



Figure B.9 6x8 Beam Test Manufacturer C 
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