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ABSTRACT 

MECHANICAL EVALUATION OF PEDICLE SCREW 
FLXATION OF THE LUMBAR SPINE 

by 
Ding Lu 

Pedicle screw fixation of the lumbar spine has been reported to increase fusion rates A 

biomechanical evaluation of four different pedicle screw implant systems, (AO. 

Rogozinski, TSRH and Wiltse). was performed to compare intrinsic device stiffness under 

conditions of flexion-compression and forty-five degree off-axis flexion-compression The 

effect on stiffness of the loosening of device members was also studied. Testing was done 

in load control using an electrohvdrualic testing machine. UHMWPe blocks are used to 

simulate the vertebra. 

Assuming that stiffness is directly proportional to the probability of obtaining fusion. this 

study allows the ranking of the systems tested in their normal loading stiffnesses and their 

abilities to maintain stiffness with off axis loading and unintentional loosening  of 

components. This study indicates a ranking of the four systems tested as TSRH being the 

most stiff followed by AO and Wiltse. 	Clearly, the worst system tested, from 

consideration of initial stiffness, off-axial load and loosening is the Rogozinski construct. 
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CHAPTER 1 

INTRODUCTION 

1.1 Objective 

The objective of this study is to evaluate the biomechanical performance with respect to 

stiffness of four different pedicle screw fixation devices. Disorders of the lumbosacral 

region are a challenge for orthopaedic surgeons A variety of abnormal conditions affect 

this region Various pedicle screw, devices and techniques are rapidly gaining popularity as 

adjuncts to the fusion treatments of different of types of spinal deformities. tumors and 

trauma.  

Pedicle screw fixation of the lumbar spine has been reported to increase fusion rates1 -3. 

presumably because of increased stiffness (rigidity) of fixation. Favorable results with 

fusion rates up to 100% have been published with pedicle screw instrumentation systems 4  

Ail of these devices depend upon the ability of the screw to maintain purchase and 

mechanical integrity in the pedicle until solid fusion occurs. However, conflicting data 

have recently appeared in the literature regarding this issue. Mechanical failures 5.6  have 

been observed in clinical applications. Clinical and experimental biomechanical studies 

have also shown that these devices appear to be associated with an increased rate of 

complications,7  - 9  such as short-term failure in pseudarthrosis or adjacent-level stenosis, 

slip progression after fusion, screw breakage, and spinal osteoporosislo - 13 . Long-term 

effects of spine fusion with pedicle screw fixation remain incompletely documented. One 

area of particular concern is the risk of disuse osteopenia in the vertebral bodies at the 

level of the fusion.14.15  Rigid instrumentation has been shown to result in local 
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osteopenia 13.16.17 because of decreased compressive stress in the bridged segments of the 

appendicular skeleton I 

Because of the above referenced concerns, screw rod and screw plate devices used for the 

purpose of posterior lumbar vertebral stabilization through the lumbar pedicle are Class 111 

medical devices and are considered by the us-FDA to be investigational or experimental 

forms of spinal fixation that are not vet proven to be safe and effective. 

This study is an attempt to supply information about the biomechanical properties of four 

pedicle screw devices. 

I.2 Anatomy of the Spine 

The spine is a complex structure composed of seven cervical, twelve thoracic. five lumbar. 

five sacral vertebrae and four coccygeal segments (Figure 1 1.) The length is about 71 

centimeters in males and 61 centimeters in females. A vertebra is composed of an anterior 

block of bone, the "vertebral body' and a posterior bony arch in which is contained four 

articular processes, seven transverse processes, and a spinous process (Figure 1.2 ) The 

vertebra body,  is a mass of cancellous bone within a thin shell of hard conical bone 

Studies have shown that compression is carried mainly by the vertebral trabecular bone. 

Between bodies are intervertebral discs that form the chief connections between bodies 

and act as mechanical springs. They are thicker in front than behind, (Figure 1.3), thus 

helping to form the convex curvatures in the lumbar region. The disc consists of two 

regions, the inner nucleus pulposus and the outer annulus fibrous. The nucleus pulposus is 

a soft, pulpy, yellowish elastic material that lies in the center of the disk. The annulus 

fibrous consists of a variable number of predominantly concentric lamellae. each about one 



millimeter thick, which are arranged so that the orientation of the collagen fibers relative 

to the longitudinal axis of the spine alternate with successive lavers Not only do disks join 

bones, but they also absorb most of the energy The pedicle is the strong rounded bar 

posteriorly projecting from the vertebral body and contouring an oblong plate with 

sloping surfaces. (Figure 1.2 ) The posture of the vertebral column is maintained by 

Figure 1.1 Spine Column 



the intrinsic back muscles Many measurements of vertebral compression strength have 

been made from 2.5 kN at T-8 and 3 7 kN at T-12 to 5 7 kN at L-5.19  Knowledge of the 

load-displacement behavior of the spine and its components is required for biomechanical 

analyses of spine function. For convenience. most tests of the mechanical properties of 

the spine use two vertebrae and theirs intervening soft tissues as a spinal segment The 

load-displacement properties are obtained by applying either test forces or moment, or 

both, to a point on the upper vertebra, and then measuring the resulting displacements 

The stiffness of a segment has been found to he in the range of 600 to 700 N/mm in axial 

compression.19  

Figure 1.2 3rd  Lumbar Vertebra 



Figure 1.3 Lumbar Spine Segment 

1.3 Fusion of The Spine 

Spinal fusion is the elimination of movement across a segment by bony union. In the 

United States. the concept of spinal fusion surgery was first reported by Albee 20  in 1911 

to control the progressive kyphosis associated with tuberculosis Later. Hibbs.21  performed 

fusion for the treatment of scoliosis Use of pellicle screws was first reported in the 

1940s, but their success and acceptance were limited 22  With time, techniques of spinal 

fusion were applied to scoliosis, fractures, and degenerative conditions.23,24,25  Although 

the rate of successful fusion after posterolateral bone grafting, alone, has increase.26,27,28  In 

procedures with consistently high fusion rates, attention has been directed to the 

instrumentation of the spine29 - 33  to enhance fusion. It has been reported that higher 

fusion rates are obtained with instrumentation '3  The more rigid the fixation, the higher 



the fusion rate 4.23, 28 	A variety of instrumentation systems have been developed during 

the past decades The choice of anterior or posterior fusion techniques is usually dictated 

by which form of fixation either coupled release of soft tissue or an osteotomy. will best 

enable correction of the deformity. the management of complex spinal deformities. 

including paralytic scoliosis. iatrogenic flat back deformity. lumbar kvphosis from trauma. 

and severe spondylolisthesis and spondyloptosis. This led to the concept of combining 

anterior interbody fusion with posterior arthrodesis. 

A spinal fusion. performed from a posterior approach, is done to achieve spinal stability 

In mechanical terms. an  unstable structure is one in which a small load causes a large 

increase in displacement In clinical terms. an  -unstable-  spine is one that exhibits an 

abnormally large anteroposterior translation. amounting to one millimeter or more on 

flexion-extension radiographs The type of fusion chosen, posterior or posterolateral, 

should afford the greatest likelihood for fusion with the fewest amounts of risk for the 

patient. The pedicle has been described as the "force nucleus-  of the spine, where the 

posterior elements converge before their communication with the anterior vertebral body 

This allows the pedicle, the strongest portion of the vertebral body. to act as an effective 

point of force application to accomplish rigid and effective segmental fixation. For the 

appropriate clinical conditions, It is generally believed that proper use of pedicle fixation 

can improve the potential for a successful fusion, insure a more effective initial surgery 

and, consequently, allow for earlier mobilization in the perioperative period. Although a 

higher fusion rate was obtained with instrumentation, or with rigid instrumentation,4 than 

without instrumentation, clinical failure,  with pedicle screw instrumentation in the lumbar 

spine has been reported. Evaluation of various instrument parameters such as screw size, 



shape. thread design, and the depth of screw insertion, as \veil as transverse connectors,30 

have been performed to gain insight into these clinical failures. The flexural 

compressive and torsional rigidity are major factors affecting the rate of successful 

fusion. 

1.4 Problem 

Even though internal fixation helps obtain a fusion, corrects deformities, and provides 

early stabilization, clinical retrospective and prospective studies have identified a 

significant incidence of hypermobilitv. osteopenia. or spinal stenosis in segments adjacent 

to the stabilized region9- 	38  Short-term failure such as pseudarthrosis or adjacent-level 

stenosis, occurs more frequently in patients with fusion Poor results from screw breakage, 

with recurrence of deformity and screw loosening, have also been reported.? 9  (Figure 1 4) 

Osteopenia has also occurred in response to rigid pedicle instrumentation.14,15 This may 

be attributed to factors such as poor design, incorrect screw-plate alignment, pre-stressing 

of the screw-rod-plate construct, the lack of anterior load sharing in the presence of 

anterior column instability, and, possibly improper stiffness of the instrumentation. Device-

related osteopenia suggests that the stiffness of the devices may be an important factor in. 

instrumental spine fusion. 
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Figure 1.4 An example of screw breakage 



CHAPTER 2 

:METHODS AND MATERIALS 

2.1 Implant Devices 

The internal fixation devices used in spinal surgery are metallic implants that attach to the 

bone and aid in the healing of bone gratis. However, these implants are intended only to 

assist healing and not intended to replace normal body structures. These implants are 

intended to be removed after the development of a solid fusion mass In addition. it is 

often necessary to reduce. at least partially. the existing deformity All metallic surgical 

implants are subject to repeated stresses in use. even in the absence of direct weight 

bearing, which can result in metal fatigue The surgeon must be thoroughly 

knowledgeable. not only in the medical and surgical aspects of the implants. but also must 

be aware of the mechanical and metallurgical limits of surgical implants. Correct selection 

of the implants is extremely important The potential for success of fusion is increased by 

the selection of the proper size, shape and design of the implant. 

This study investigates the mechanical properties of four spinal fixation systems that are 

the TSRH, AO, ROGOZINSKI and WILTSE fixation systems. 

1. The Texas Scottish Rite Hospital (TSRH) Spinal System is designed to aid in the 

surgical correction of several types of spinal conditions. The TSRH Spinal System 

traces its origins to research performed at the Texas Scottish Rite Hospital (TSRH) for 

children in Dallas, Texas. The system consists of a variety of shapes and sizes of rods, 

hooks, plates, bolts, and screws. The TSRH implant components can be rigidly locked 

into a variety of configurations. with each construct being tailor-made for the 

9 
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individual case The TSRH Spinal System implant components (Sofamor Danek 

Group, Inc TN) are made of medical grade Stainless Steel. (ASTM Standard F136 or 

its ISO equivalent) The TSRH Pedicle Screw Spinal System, designed with the 

variable angle T-bolt. provides the opportunity of effectively immobilizing the spine. 

alone with a reasonable degree of correction with improvement of the "slip angle-

(Figure 2.1). The TSRH pellicle screw spinal system allows easy contouring of the 

fixation system to improve and maintain the patient's spinal alignment and also 

provides easier insertion of the rods in cases where the pedicle screws are not in 

perfect alignment 

2. A second subject implant system is the .AO notched plates all screws system (Synthes 

Ltd., Paoli. Pennsvlvanvia) which consist of 	mm AO 3161_ Stainless Steel bone 

screws threaded through 316L stainless steel plates with individual holes The screws 

of this system have spherical heads that allow the screws to freely pivot within the 

plates. (Figure 2.2.) 

3. The Rogozinski Spinal Rod System (Smith & Nephew-Richards Orthopaedics Inc 

Memphis. TN) consists of two stainless steel (ASTM F 138) rods attached to the spinal 

column through the use of pedicle screws. (Figure 2.3.) Cross-bars can be used to 

connect rods to rods to provide a more rigid construct, as well as to connect screws 

to rod and hooks to rod. There are several screws provided in a variety of lengths, 

diameters, up-angles and down-angles. Screws used with this system feature a "T--

shaped head for offset attachment to the rod using both a coupler and cross-bars to 

accommodate varying patient morphology. Coupling of component is accomplished 

with flat set screws pressing on the circular rods. 
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4 The Wiltse Rod systems (.Advanced Spine Fixation System Inc , Cypress. CA) consist 

of anchor bone screws (e 	pedicle screws), all saddles and clamps that have 

apertures to capture stainless steel (ASTM F138) rods that are positioned on the 

pedicle screws and clamped by the tightening, of lock nut (Figure 2 4.) 

Figure 2.1 TSRH Spinal System 
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Figure 2.2 AO System 

2.2 Simulated Model 

A number of different methods have been utilized to analyze the biomechanical properties 

of instrumental fixation of the spine. In each case, either cadaveric bone or simulated 

vertebrae were used as the vertebral model. The advantages of biomechanical testing 

using fresh human spine are that they are closest to the in vivo situation, but the results 
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Figure 2.3 Rogozinski System 

obtained display a large deviation due to the variability of the samples ( patient's age. 

sex, state of health, specimen size. bone mineral density and method of preparation) 

Zinkrick, et al 	found that the factor that appeared to play the largest role in determining 

the ability of a screw, inserted into a pedicle, to resist loosening was the bone density of 

the specimen tested. The use of simulated vertebrae is valuable in evaluating the 

biomechanical properties of instrumentation fixation in the spine because it provides a 

consistency in the fixation medium .Accurate machining of the parts (vertebral bodies) 

provides consistency in the analyses, eliminating the variability of the cadaveric model. 
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The present study. a One Above and One Below Corpectomy Model-. was performed 

with simulated vertebrae The pedicle screws were attached to two UHMWPe (Ultra High 

Molecular Weight Polyethylene) vertebral bodies (Figure 2.5 ) The rods or plates 

Figure 2.4 Wiltse System 

were connected to the screws fixing the two vertebral bodies. (Figure 2.6.) The four types 

of pedicle implant systems were evaluated separately in an anterior-posterior (A-P) 

compressive flexure mode with bending stiffness determined for each device. Loads were 
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applied in an A-P zero degree and a forty-five degree off-axis A-P compressive flexural 

mode Additionally, the issue of decreased stiffness with device loosening was assessed by 

"controlled" loosening of the construct members A total of 21 samples of four different 

pedicle screw implant systems (TSRH, AO, Wiltse and Rogozinski) were tested All 

instrumentation, purchased from the manufacturers, was unused prior to testing. 

Figure 2.5 UHMWPe Vertebral Body 

2.3 UHMWPe Vertebra 

Ultra High Molecular Weieht Polyethylene (UHMWPe) cylinders (2 5 mm in diameter, 

McMaster Carr, Dayton, NJ) were manufactured to simulate the vertebrae. Each cylinder 
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was standardized and precisely machined to specific dimensions and tolerances to permit 

symmetrical bilateral application of a bi-level spinal implant system 	(Figure 2 4 ) 

(Machining was conducted by Auto-machine Lab. NJIT) Each vertebra was cut to 36 1 

mm high, and two flat surfaces were cut 150 degrees a part A pre-drilled hole was taped 

for the appropriate pedicle screws of each instrumentation system. Each top 

Figure 2.6 The Screw Inserted into Vertebra 

vertebral flat surface contained a 25.4 mm diameter pocket milled to 18.0 mm depth 

permitting a consistent lever arm of 45.0 mm. Based on skeletal measurements of a two 

level construct, the distance between the pedicle screw axes in the cephalocaudal and 

mediolateral directions were kept consistently at 76.0 mm and 40.0 mm, respectively. The 
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distance from the center of load application to the center of the longitudinal elements 

(plate or rod assembly) was precisely measured for each construct Measurements were 

performed and verified using a Precision Dial Caliper in conjunction with a 58.0 mm 

polyethylene spacer used between the UHMWPe vertebra to assure anterior column 

alignment and spacing. Torque values were generated using a Micrometer Changeable-

Head Torque Wrench (McMaster Carr, Dayton, NJ), applied to each rod system 

construct. 

2.4 System Set Up 

The systems were assembled as recommended by each manufacturer. The pedicle screws 

of 45 mm length were inserted into the pre-drilled flat surfaces of the UHMWPe 

vertebral body for each system. The screw diameters for AO, Rogozinski. TSRH and 

Wiltse were 4.5 mm, 6.4 mm, 6 5 mm and 6 5 mm respectively The longitudinal plates or 

rods were placed on the ends of the screws or bolts, and the clamps or nuts were 

tightened. The tightening torque used was 9 0 \.'m. for AO and 11.2 N/m. for Rogozinski, 

TSRH and Wiltse Based upon skeletal measurements of a two level construct, the 

distance of the two vertebral bodies in the cephalocaudal and rnediolateral direction was 

controlled to a distance of 36.0 mm for each construct. This model represents a 

corpectomy defect and worst-case scenario for instability. 

The instrumental models were connected to a servohydraulic MTS testing machine by a 

specially designed fixture. The bottom vertebra was fixed on the load cell, and the top for 

the zero degree A-P loading model was loaded by a one mm diameter stainless steel ball 

seated 18.0 mm into the opposing pocket. This allowed a swivel angle of 150 degrees, 



thereby, effectively providing an unrestricted testing environment For the 45 degree 

loading test, the top of the loading model was connected to a joint bearing fixture. It 

provided an unrestricted testing_ environment also 

Each implant system contained the following basic components four pedicle screws, two 

longitudinal rods or plates and clamps or couplers and a lock nut where appropriate 

Cross-linking and the interconnection screw/plate or rod mechanism changed with 

different systems as required by the manufacturers. All implant parts were constructed 

from stainless steel (ASTM F- I38) except the rod of the Wiltse system which was 

constructed from Titianum (ASTM F136). The test protocol consisted of mounting each 

specimen on an MTS testing Machine. (MTS. Inc . Minneapolis. Minnesota) as shown in 

(Figure 2.7) Each construct was cycled five times The load was applied at a load rate of 

5-N/sec up to a maximum flexion moment of I I N-m. All data were derived from the fifth 

final tests The data were collected on line. with the use of a DELL OptiPlex XM 5166 

computer. ( Dell lnc. Austin. Texas). 

Stiffness measurements were obtained from the load/deflection curves. Because the loads 

versus displacement curves were nonlinear. especially at low loads and during loosening 

tests, average slopes were calculated and the local slope was calculated at five different 

loading regions. 
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Figure 2.7 The Device Connected to Loading Cell 
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Figure 2.8 MTS Testing System 



CHAPTER 3 

RESULTS 

The mean values of minimum. average and maximum stiffness from all samples of the 

same system are reported as test results 

3.1 Anterior Flexion-compression 

A total of 15 devices were tested. three AO. four Rogozinski. six TSRH. and two Wiltse 

systems. For maximum stiffness, the AO plate pedicle screw system has the highest value 

of 916.9 (N/mm). Next are the Wiltse at 913 3 (N mm) and the TSRH system at 514 4 

(N/mm). The lowest maximum stiffness was obtained for the Rogozinski system at 433 7 

(N/mm). For average stiffness. the Wiltse device is the highest at 451 7 (N/mm). Next is 

the AO system at 364.2 (N/mm), and the Rogozinski system at 257.9 (N/mm). The 

lowest average system stiffness was measured from the TSRH construct at 247.2 

(N/mm). The values of the Rogozinski and the TSRH are very close. varying by only 4 %. 

The AO system minimum stiffness is 152.7 (N/mm) which is the highest, next is the 

TSRH at 90 (N/mm), and then the Rogozinski system at 88.7 (N/mm). The lowest one is 

the Wiltse system at 34.8 (N/mm). (Figure 3.1). 

3.2 Off-axis Anterior Flexion-compression 

The purpose of off-axis anterior flexion-compression loading was to obtain comparative 

construct's stiffness for the four systems in a loading mode typical of activities of daily 

living. The off-axial load mode combines anterior flexion-compression, torsion and 
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bending A 45 degree off-axis was used in this test The stiffness in the off-axis mode is 

reported as maximum. average and minimum values For maximum stiffness, the TSRH 

construct demonstrated the highest result at 188.3 (N/mm) The AO system and the 

Wiltse system maximum stiffness was computed as 97.7 and 94.5 (N/mm), respectively. 

The Rogozinski demonstrated the lowest maximum stiffness at 79 1 (N/mm). For the 

average stiffness values, the TSRH is the highest at 94.7 (N/mm) and the Rogozinski is 

the lowest at 50.9 (N/mm). The AO and the Wiltse average stiffness are 59.2 and 56.7 

(N/mm). respectively For the minimum stiffness. the order of the result is 26.5 (N mm) 

for Wiltse, 22 4 for TSRH. 21 8 for AO and 13.2 for Rogozinski. (Figure 3.2) These 

results show that the TSRH. the AO and the Wiltse have similar minimum stiffness. The 

Rogozinski construct has a significantly lower minimum stiffness value. 

3.3 Loosening Study 

For the loosening study, a total of 15 devices was tested with different combinations of 

the loosening of four components in both loading modes. 

In normal A-P flexion compression loading with the loosening of one component, the 

maximum stiffness results are 415 1 (N/mm) for .A0, 401.4 (N/mm) for TSRH, 324.7 

(N/mm) for Wiltse and 269.8 (N/mm) for Rogozinski. In average stiffness values, the 

values in (N/mm) are 205.6 for AO, 177.3 for TSRH, 162.5 for Wiltse and 127.7 for 

Rogozinski. For minimum stiffness values, the values from high to low are: Wiltse --

67.4, TSRH -- 45.5, Rogozinski  -- 30.3 and AO -- 26.3. (Figure 3.3). With two 

components loosened, the maximum stiffness (N/mm) from high to low are. 332.5 for 

TSRH, 253 for Wilste, 231.2 for AO and 88.1 for Rogozinski; average stiffness are. 



140 7 for AO. 131.3 for TSRH. 123.5 for Wiltse and 63.2 for Rogozinski, and minimum 

stiffness is 81 7 for Wiltse. 13 6 for TSRH, 6 6 for Rogozinski and -1.6 for AO (Figure 

3.4) Generally. the stiffness decreased around 140 % to 280 % with only one component 

loosened and about 400 % with two components loosened. 

In the off- axial mode, the values with loosening one component were 100.9 for TSRH, 

81.6 for AO, 58 for Rogozinski and 56 6 for Wiltse for maximum stiffness. For average 

stiffness, the values are 57.6 for TSRH, 48.5 For AO, 36.1 for Wiltse and 29.6 for 

Rogozinski In minimum stiffness calculations are 16 5 for Wiltse. 14 8 for TSRH. 12 

for AO and 6.9 for Rogozinski (Figure 3.5). When two components are loosened, the 

maximum stiffness (N/mm) of the TSRH constructs is 103.2, the average stiffness is 

49.2, and the minimum stiffness is 7 2 The stiffness of the AO system is 65.1, 39 9, and 

5.3. respectively. For the Wiltse system the values are 22.8, 7.3, and zero, respectively 

The Rogozinski system was completely loose with zero stiffness with two components 

loosened. (Figure 3.6). So, no data were reported here to the stiffness. (Figure 3.7) 

Consequently, for the AO system. the stiffness was decreased about 180 % with 

loosening, one component, and about 260 % with two components loose. (Figure 3 8). 

In Off-axial load mode, the stiffness decreased about 750 % on average with one part 

loosened and 910 % with two parts loosened. (Figure 3.9). For the Rogozinski device;  

the stiffness decreased about 200 % with one component loosened and about 400 % with 

two components loosened. (Figure 3.10). In off- axial loading, stiffness was decreased 

about 870 % with one component loose and moved freely with no resistance with two 

components loose. (Figure 3.11). For the TSRH system, the stiffness decreased about 

140 % with one component loose and about 190 % with two components loose (Figure 
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Figure 3.6 The Device Slides off with Loosening Two Parts 
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Figure 3.8 
AO Normal Vs Loosening 
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3.12). In off- axial loading, stiffness was decreased about 430 % with one component 

loose and about 500 % with two components loose (Figure 3 13) For the Wiltse device, 

the stiffness decreased about 280 % with one component loose and about 370 % with 

two components loose. (Figure 3 14). In off- axial loading, stiffness was dramatically 

decreased about 1260 % with one component 1oose. The system had zero stiffness with 

two components loose. (Figure 3.15). 



CHAPTER 4 

DISCUSSION 

_Although the literature contains a number of reports of the mechanical testing of pedicle 

screw fixation devices, the effects of off axis loading and device loosening have not been 

previously assessed. Ultra High Molecular Weight Polyethylene (UHMWPe) was chosen 

as the model vertebrae because it provided a consistent fixation medium Consistency was 

achieved because the UHMWPe vertebrae were pre-machined to predetermined 

specifications: the decree of pedicle angulation. interpedicular distance, and distance 

between construct levels all represented clinically realistic conditions All hardware was 

symmetrically aligned on the blocks and tightened to the manufacturer's specifications. 

The total corpectomv defect model provided a "worst case scenario". Mechanical testing 

of these devices demonstrated a large degree of variability in construct stiffness. Since 

the load-deflection response is not linear, it was decided to report three stiffness yalues, 

minimums, maximum and mean. in all tests, the stiffness decreased with increased 

loading, the effect being most dramatic in the final 20% of force. Figure 4.1. (An example 

of stiffness decreased at the final load area.) 

4.1 Anterior Flexion-compression 

Cunningham et a1.:42  reported the stiffness of the Rogozinski and TSRH systems in a test 

setup similar to that used in this work. Comparing the Rogozinski device tests, reveals that 

40 



D
is

  (
m

m
)  

D
is

  (
m

m
)  

60 % of Full Load 
Average Stiffness 

=227 (N/mm) 

D
is

  (
m

ill
)
  

Stage 1 

41 

16 % of Full Load 
Average Stiffness 

=384 (N/mm) 

Force (N) 

Stage 2 

40 % of Full Load 

Average Slope 
=357 (N/mm) 

Force (N) 

Stage 3 

Force (N) 

Figure 4.1 A sample of stiffness decreased with load increased 
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the average stiffness determined from the current work was 3.7 times greater than that 

reported by Cunningham, et al. This discrepancy in results is most probably due to the 

differences in the testing methods. The test of this work utilizes a fixed lower vertebra. 

Cunningham, et al. allowed both vertebrae to freely rotate. The present author found that 

this test mode is unstable and allows rotation as well as A-P bending. significantly 

decreasing the measured stiffness. William L. Carson et 	reported an average stiffness 
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for the TSRH system of 393 N/mm In their test, a nylon bolt was used to simulate 

the bone They used a 6 5 mm diameter screw and a 6.35 mm diameter rod The force was 

applied at a 25 mm distance from the longitudinal rod The average stiffness from the 

current study is 514 4 N/mm 	Differences are most likely due to the considerable 

differences in test methods 

Richard B Ashman et al". present results for the AO notched plate system Fresh human 

cadaveric- spines from Ill to L3 segments were utilized A pure axial load of 450 N force 

was applied at a load rate of 15 ':'sec The 4 5 mm diameter pedicle screws were used in 

their test with "one above and one below-  model The construct stiffness of the AO 

system was reported to be 121 Mimi The stiffness reported in the current study is much 

higher than that of Ashman. et al result, most probably because of the considerable 

differences in the elasticity of the bony versus polyethylene attachments. 

4.2 Off- Axis Anterior Flexion-Compression 

As with the normal loading mode, the stiffness decreased with increasing load The TSRH 

system demonstrated a higher stiffness than any of the other systems in off axis loading. 

The lowest values were obtained with the Rogozinski system. In this 45 degree off-axis 

loading mode, the force caused combined axial flexion-compression, torsion and lateral 

bending. One would expect that during the activities of daily living a patient would apply 

these combined loading modes to the spine. A system that demonstrates greatly decreased 

stiffness under such loading, may be inferior to other alternatives. Relatively, the TSRH 

system demonstrated the best result with changing load direction. Its stiffness decreased 

by 2.7 times from the normal loading case. The poorest results were obtained with the AO 
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and the Wiltse systems They demonstrated as much as a 10-fold decrease in stiffness In 

some AO tests. there was a sudden change of the slope during load application. (Figure 

4.2.) This is probably due to the spherical cavity in the plates that allows rotation of the 

mating sphere. 

Rogozinski With Loosening Part 
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Figure 4.2 Stiffness Suddenly Changed with Member(s) Loosening 

4.3 Loosening Anterior Flexion-Compression 

Loosening one or two members in all systems tested resulted in considerable decreases in 

device stiffness. In normal loading, for all systems except the Wiltse construct, the 

minimum stiffness values were the affected the most. They dropped to virtually zero when 

two members were loosened. The 45 degree loading mode did not demonstrate as large 

percentage drops for all of the systems, except the Rogozinski system. Loosening two 

members and applying off axis loading to this system resulted in a completely loose (zero 

stiffness) construct. Keeping in mind the holding mechanism for this device, where a flat 
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set screw is tightened against a round rod (line contact), this result is very disturbing 

High levels of corrosion noted in the attachment region of implanted devices combined 

with the inherent instability of this attachment scheme make it highly probable that a 

number of Rogozinski devices may have greatly decreased, if not zero, stiffness in vivo  

(Figure 4.4 to 4 1 1.). 

Figure 4.3 The number position of the loosening parts 
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CHAPTER 5 

CONCLUSION 

This dissertation presents an internally consistent study of four different pedicle 

screw fixation devices in two different loading modes. It also, for the first time, 

investigates the effect on stiffness of the loosening of one or two members, a 

situation that must occasionally be expected in the in 	vivo environment The 

study clearly 	indicates that the stiffness of the rod 	constructs is not always 

superior to the stiffness of plate systems in anterior flexural compression, although, 

the effect of cross-links was not studied. Additional testing comparing these 

same devices with transverse fixation would be useful. Changing loading direction 

and loosening attachment members 	significantly affects the stiffness of pedicle 

screw devices. The AO 	construct changed 	significantly with changed load 

direction 	and 	loosening The TSRH demonstrated relatively less decrease in 

stiffness 	from 	changes 	in load mode and loosening. Generally, the Rogozinski 

device demonstrated the poorest result. This was probably due to the large number 

of components and attachment points in a typical construct. 

Assuming that stiffness is directly proportional to the probability of obtaining fusion, 

this study allows the ranking of the four systems tested in their native normal 

loading stiffness and their abilities to maintain stiffness in the face of off axis 

loading and unintentional loosening of components. Generally, from the point view 

of stiffness, this study indicates a ranking of these systems as TSRH being the 

54 
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best followed by .A0 and Wiltse. Clearly, the worst system tested, from 

consideration of initial 	stiffness, off-axial load and loosening is the 	Rogozinski 

construct. 
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