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ABSTRACT 

MOTION COMPENSATION AND VERY LOW 
BIT RATE VIDEO CODING 

by 
Shu Lin 

Recently, many activities of the International Telecommunication Union (ITU) 

and the International Standard Organization (ISO) are leading to define new 

standards for very low bit-rate video coding, such as H.263 and MPEG-4 after 

successful applications of the international standards H.261 and MPEG-1/2 for 

video coding above 64kbps. However, at very low bit-rate the classic block matching 

based DCT video coding scheme suffers seriously from blocking artifacts which 

degrade the quality of reconstructed video frames considerably. To solve this 

problem, a new technique in which motion compensation is based on dense motion 

field is presented in this dissertation. 

Four efficient new video coding algorithms based on this new technique for 

very low bit-rate are proposed. (I) After studying model-based video coding 

algorithms, we propose an optical flow based video coding algorithm with thresh-

olding techniques. A statistic model is established for distribution of intensity 

difference between two successive frames, and four thresholds are used to control 

the bit-rate and the quality of reconstructed frames. It outperforms the typical 

model-based techniques in terms of complexity and quality of reconstructed frames. 

(2) An efficient algorithm using DCT coded optical flow. It is found that dense 

motion fields can be modeled as the first order auto-regressive model, and efficiently 

compressed with DCT technique, hence achieving very low bit-rate and higher visual 

quality than the H.263/TMN5. (3) A region-based discrete wavelet transform video 

coding algorithm. This algorithm implements dense motion field and regions are 

segmented according to their content significance. The DWT is applied to residual 



images region by region, and bits are adaptively allocated to regions. It improves 

the visual quality and PSNR of significant regions while maintaining low bit-rate. 

(4) A segmentation-based video coding algorithm for stereo sequence. A correlation-

feedback algorithm with Kalman filter is utilized to improve the accuracy of optical 

flow fields. Three criteria, which are associated with 3-D information, 2-D connec-

tivity and motion vector fields, respectively, are defined for object segmentation. A 

chain code is utilized to code the shapes of the segmented objects. it can achieve 

very high compression ratio up to several thousands. 
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CHAPTER 1 

INTRODUCTION 

Since the International Telegraph and Telephone Consultative Committee (CCITT), 

started its standardization-related activities in video coding in 1984, many efforts 

have been made to develop audiovisual coding techniques for various applications 

such as video-telephony, digital video disc, digital compact cassette [24], digital 

satellite systems (DSS), advanced television (ATV) [2116], high definition television 

(HDTV) [25], teleconferencing, CD-ROM storage, digital broadcasting. These efforts 

have led to national or international standards or recommendations. Some are 

currently being used widely, such as International Standard Organization (ISO) 

MPEG-1/2 and ITU-T (International Telecommunication Union, formerly CCITT) 

H.261. They work very well at the bit rates above 64kbps. Current activities are 

trying to develop video coding at very low bit rate (below 64kbps ), which is expected 

to be applied to a number of services, like multimedia, mobile personal communi-

cations, videophone through existing public switched telephone networks (PSTN). 

The efforts are leading to new standards such as ITU-T 1-1.263 and ISO MPEG-

4. The basic techniques which are used in the previous standards, like MPEG-

1/2, 1-1.261, are the block matching based motion compensation and discrete cosine 

transform (DCT). These existing techniques are becoming mature, but they may 

not suit well for very low bit rate video coding [18][4] To solve this problem, the 

second generation coding schemes [39][40], such as object-oriented [4], region-based, 

contour-based [54], model-based [3][45], fractal-based, syntax-based [65], and many 

others have been proposed, but most of them have not been yet mature enough 

to be used in the very low bit rate video coding. The ITU-T H.263 [32], which is 

on its way, still uses the classic block matching based DCT technique as its basic 

coding scheme. The unavoidable blocking artifacts are the intrinsic problem resulting 
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from the block matching model, and degrade the quality of the reconstructed video 

frames significantly. In this dissertation four new algorithms are proposed. They 

are: (1) an optical flow based video coding algorithm with thresholding techniques; 

(2) an efficient algorithm using DCT coded optical flow; (3) a region-based discrete 

wavelet transform video coding algorithm; and (4) a segmentation-based video coding 

algorithm for stereo sequence. All of them are expected to achieve very low bit rate 

as well as good quality of the reconstructed image frames by drastically reducing 

blocking artifacts. 

1.1 Video Coding Standards 

In 1984, the CCITT issued Recommendation H.120 targeted for videoconferencing 

applications, specifically, for 625/50 and 525/60 TV systems at bit rates of 2.048 

Mbps and 1.544 Mbps respectively. In 1989, another standard draft, H.261, was 

available. It is for the bit rate p x 64 kbps, where p=1,2, ..., 30. And in 1988, the 

Moving Picture Experts Group (MPEG) was founded under ISO/SC2 to standardize 

a video coding algorithm targeted for digital storage media at bit rate up to 1.5 Mbps. 

MPEG-1 was issued in 1992 that is intended to be generic. The quality of MPEG-1 

compressed video at 1.2 Mbps are not acceptable for some applications. To extend 

MPEG-1, MPEG-2 was started in 1990. At the beginning, it is for coding of TV-

picture with International Consultative Committee on Broadcasting (CCIR) Rec.601 

resolution at bit rate below 10 Mbps. And later it was extended for coding of HDTV 

up to 20Mbps in 1992, and released in early 1994. Because of the extension of 

MPEG-2, MPEG-3, which was targeted for HDTV, is no longer needed and died off. 

MPEG-4 was initiated in 1993 and its target bit rate is below 64 kbps. It is planned 

to be issued in November, 1998. Meanwhile, the ITU H.263/N (the near term) draft 

is available, and its bit rate could be as low as 28.8 kbps. H.263/L (the long term) 

is being accomplished in close collaboration with the ISO MPEG-4 activity. 
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Figure 1.1 The JPEG codec 

1.1.1 JPEG 

For the sake of completeness, prior to video coding standards, we briefly introduce 

here the JPEG, an international standard for still image coding. The Joint Photo-

graphic Experts Group (JPEG) standard is targeted for full-color still frame appli- 

cations, achieving 15:1 average compression ratio [63][30]. 	It defines a family of 

compression algorithms for continuous-tone, still images [12][63]. It has four modes 

of operation as follows: 

• Sequential DCT-based encoding, in which each component is encoded in single 

left-to-right, top-to-bottom scan. 

• Progressive DCT-based encoding, in which the image is encoded in multiple 

scans, in order to produce a quick, rough decoded image when the transmission 

time is long. 

• Lossless encoding, in which the image is encoded to guarantee the exact repro-

duction. 

• Hierarchical encoding, in which the image is encoded in multiple resolutions. 

The JPEG baseline codec block diagram is given in Figure 1.1. It uses DCT 

techniques to do intraframe coding, and variable length to do entropy coding. The 

JPEG standard does not define the meaning or format of the components that 

comprise the image. Attributes like the color space and pixel aspect ratio must 

he specified out-of-band with respect to the JPEG bit stream. The JPEG standard 
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provides a rich set of algorithms for flexible compression. However, JPEG is also 

applied in some real-time, full-motion video applications by compressing each frame 

of video as an independent still image and transmitting them in series. Video coded 

in this fashion is often called Motion-JPEG (MJPEG). For details of the JPEG 

standard, please consult [30][74][63][41][42]. 

1.1.2 H.261 

H.261 [31][49][8][33] has been developed for videophone and video conferencing, 

serving over the ISDN at bit rate p x 64 kbps, p = 1,2, ..., 30. It provides very high 

compression ratio for full-color, real-time motion video transmission with limited 

motion search and estimation strategies. The standard is intended to cover the 

entire ISDN channel capacity and for real-time communications allowing minimum 

delays (maximum coding delay is specified as 150 msec). For p = 1,2, due to 

limited available bandwidth, only desktop face-to-face visual communications (or 

video phone) can be implemented using this compression algorithm. However, for 

p> 6, more complex pictures are transmitted and the standard is suitable for video-

conferencing applications. To permit a single recommendation using 625- (PAL) 

and 525- (NTSC) line TV standards, the H.261 input picture format is specified as 

the so-called Common Intermediate Format (CIF). For lower-bit rate applications, 

a small format, QCIF, has been adopted. The video compression scheme chosen for 

H.261 standard has two modes: the intra and inter modes. The intra mode, based 

on block-by-block DCT coding, is coded using information only found in the picture 

itself. I-frame provides potential random access points into the compressed video 

data. In the inter mode, first a temporal prediction is employed with or without 

motion compensation (MC), then the interframe prediction error is DCT encoded. 

The block diagram of the encoder and decoder is illustrated in Figure 1.2. 	The 

algorithm begins by coding an intraframe block using the DCT transform coding and 
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Figure 1.2 H.261 codec 

quantization, and then sending it to the video multiplex coder. The same frames 

are then decompressed using the inverse quantizer and IDCT, and then stored in the 

picture memory for interframe coding. During the interframe coding, the prediction 

based on the DPCM algorithm is used to compare every macro block of the actual 

frame with the available macro blocks of the previous frame. Then, the difference 

is created, DCT-coded, quantized, and sent to the video multiplex coder. Finally, 

entropy coding is used to produce more compact code. 

The H.261 video codec is very efficient for carrying visual services at p x 64 kbps 

ISDN networks with constant bit rate transmission. A new 11.261 codec proposed 

in [21] expands the existing H.261 codec to operate in ATM networks. A software 

based video compression algorithm, called the popular video codec (PVC) proposed 

in [26], is suitable for real-time systems. 

1.1.3 MPEG 

The MPEG video compression algorithm is intended for compression of full motion 

video. The compression method uses interframe compression and can achieve high 
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Figure 1.3 The MPEG codec 

compression ratios. The MPEG codec block diagram is given in Figure 1.3. It uses 

motion compensation, DCT and variable length coding techniques. Bit rate control 

is used to avoid the buffer overflow or underflow and provide guarantee video quality. 

If the buffer is overflowed, then the quantization step will be increased, so that fewer 

bits are used to code the next macroblock, consequently, the bit rate is reduced. If 

the buffer is underflowed, a finer quantization step is used to provide better quality. 

MPEG-1 	MPEG-1 (ISO/IEC 1117) has been developed for storage of CIF format 

video and its associated audio at the bit-rate from 1 Mbps to 1.5 Mbps for multimedia 

systems. MPEG-1 has three parts: (1) Audio (ISO/IEC 1117-1), (2) Video (ISO/IEC 

1117-2), (3) System (ISO/IEC 1117-3). MEPG-1 is a generic standard in that it 

standardizes a syntax for the representation of the encoded bitstream and a method 

of decoding. The syntax supports operations such as motion estimation, motion 
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compensation, prediction, discrete cosine transformation, quantization, and variable 

length coding. MPEG-1 does not define specific algorithms needed to produce a 

valid data stream, and substantial flexibility is allowed in designing the encoder. A 

number of parameters, defining the coded bitstream and decoders, are contained in 

the bitstream itself. This allows the algorithm to be used with pictures of a variety 

of sizes and aspect ratios and on channels or devices operating at a wide range of 

bit-rate. MPEG-1 offers: 

• Random access to any video storage application at independent access points 

(I-frame). 

• Fast forward/reverse searching, which refers to scanning the compressed bit 

stream and to display only selected frames to obtain fast forward or reverse 

search. 

• Reasonable coding/decoding delay of about one second, and which provides 

the impression of interactivity in unidirectional video access. 

The maximum decoder buffer size is specified as 376,832 bits. There are two 

types of interframe encoded pictures, P- and B-pictures. In these pictures the motion-

compensated prediction errors are DCT encoded. Only forward prediction is used in 

the P-pictures, which are always encoded relative to the preceding I- or P-pictures. 

The prediction of the B-pictures can be forward, backward, or bidirectional relative 

to other I- or P-pictures. D-pictures contain only the DC component of each block 

and serve for browing purposes at very low bit-rate. 

Generally, the I- and P-pictures are only one third of all frames. The remaining 

frames can be interpolated from the reconstructed I and P frames. The B-pictures 

are not used in predicting any future pictures to avoid error propagation. One-half 

pixel accuracy is allowed for motion estimations. Because of using B-pictures, the 

frame display order and the transmission order are different (refer to Figure 1.4). 
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Display order 

Video transmission order 

Figure 1.4 The different orders between display and transmission 

Motion compensation is a technique for enhancing the compression of P and B 

frames by eliminating temporal redundancy. 

MPEG-2 	MPEG-2 standard (ISO/IEC 13818) is an audio/video compression 

algorithm optimized for broadcasting quality transmissions up to HDTV quality 

based on the motion compensation and the discrete cosine transform. It defines 

higher levels (for HDTV) and higher profiles and a multiplexing system, which allows 

to combine many video, audio, and data streams into one single data stream. It 

supports both of progressive and interlaced video formats and a number of features 

for HDTV. The MPEG-2 standard addresses scalable video coding for variety of 

applications that need different image resolutions, such as video communications over 

ISDN and ATM networks [14]; allows temporal scalability so that one stream can 

be displayed at different frame rates; allows for interlaced inputs, higher-definition 

inputs, and alternative subsampling of the chroma channels; provides improved 

quantization and coding options, higher bit rates, surround sound, and alternate 

language channels; allows different scan patterns than the zigzag. 
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MPEG-2 video syntax provides an efficient way to represent image sequences 

in the form of more compact coded data. The display picture size and frame rate 

may differ from the encoded frame size and rate. Hence, downsample or unsample 

may be applied to the reconstructed sequence according to the source rate, coded 

rate and display rate. MPEG-2 volume consists of a total of 9 parts1  under ISO/IEC 

13818. The second part is jointly developed with the ITU-T, where it is known as 

ITU-T recommendation H.262. MPEG-2 can be used in CATV, direct broadcast 

satellite (DBS), HDTV, digital video tape (DVT), DVD, high density CD, video 

conferencing and digital camcorder, etc. 

MPEG-4 	The MPEG committee is currently developing MPEG-4 with wide 

industry participation. MPEG-4 is to provide an audiovisual coding standard 

allowing for interactivity, high compression, and/or universal accessibility with high 

degree of flexibility and extensibility for emergence of the enlarged intersection of 

telecommunication, TV/film entertainment, and computer industry. This standard 

is intended for compression of full motion video consisting of small frames and 

requiring slow refreshments. The bit rate is from 9 kbps to 40 kbps. 

MPEG-4 combines some of the typical features of other MPEG standards with 

new ones coming from existing or anticipated manifestations of multimedia: 

1. Independence of applications from lower-layer details, as in internet paradigm; 

2. Technology awareness of lower layer characteristics (scalability, error robustness 

etc.) 

3. Application software downloadability, as in Java and the network computer 

paradigm; 

1MPEG-2: System, video, audio, conformance, software, digital storage medium 
command and control, non-backward compatible audio, 10-bit video extension, and real- 
time interface 
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4. Reusability of encoding tools and data; 

5. Possibility to hyperlink and interact with multiple sources information simul-

taneously as in the Web paradigm; 

6. Capability to handle natural/synthetic and real-time/non-real-time infor-

mation in an integrated fashion; 

7. Capability to composite and present information according to user's needs and 

computer graphics paradigm in general. 

At present time, MPEG-4 is structured in terms of four different elements: 

syntax, tools, algorithms and profiles, using a similar methodology to that of MPEG-

2. However, there is a significant difference between MPEG-2 and MPEG-4. In 

MPEG-2 all profiles are closely related and higher profiles superset lower profiles, 

while MPEG-4 may have a completely independent and exclusive profile for a specific 

application since MPEG-4 intends to address so broad applications which may have 

little in common. 

The MPEG-4 applications can be clustered into audiovisual database, audio-

visual communications and messaging, and remote monitoring and control. The 

features of the applications of MPEG-4 are random access, fast forward/reverse 

searches, reverse playback, audio-visual synchronization, robustness to errors, 

coding/decoding delay, editability, and format flexibility. 

1.1.4 H.263 

The H.263/N[32] (H.263 includes H.263 near term, H.263 plus, H.263 long term) is a 

video coding standard (draft) which specifies the I/O interface, video format, coding 

algorithms, and bit stream syntax and decoding semantics for narrow telecommu-

nication channels. It will use T.120 as the data interface protocol and V.342  as 

2The V.34 modem recommendation, also known as V.fast, employs multiple modulation 
methods and multiple impairment compensation techniques. The modem is defined to 
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Figure 1.5 The H.263 codec 

the modem for transmission. H.263/N uses block-matching motion-compensated 

prediction, adaptive intra/inter decision at macroblock level, DCT, quantization and 

entropy coding. The block diagram of H.263 codec is shown in Figure 1.5. The 

coding control is used to avoid the transmission buffer overflow or underflow. 

The main improvements in H.263/N compared with H.261 are as follows: 

1. Half pixel motion prediction for higher accuracy, which also eliminates the need 

for loop filtering. 

2. Possible motion search outside of the picture boundary. 

3. Possible overlapped motion compensation to obtain a smoother motion field at 

the expense of computational complexity. 

4. Possible incorporation of syntax-based adaptive arithmetic coder as the entropy 

coder for improved efficiency. 

5. Possible use of PB frames to improve the motion prediction efficiency. 

be able to automatically and intelligently choose to combine the optimum set of these 
modulation tools to adapt to any given telephone channel. It defines a 2 wire, full duplex 
dial and lease line modem supporting both synchronous and asynchronous operations. Bit 
rate is 28.8 kbps [80]. 
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6. Other optimization for very low bit rate with QCIF and sub-QCIF resolutions 

and low frame rate (below 10 frames/second). 

1.2 Block Matching (BM) 

Block matching is an efficient motion estimation method in small displacement 

between successive frames [20][29]. It is a very simple motion model, which is based 

on the assumption that all pixels within the block move with a unique motion velocity. 

The traditional BM treats a block independently. To estimate the displacement by 

block matching between two successive image frames, one can do the following, 

1. Locate the block whose displacement needs to be calculated. Suppose it centers 

at position (i,j) in frame 2 and its size is m by m pixels. Refer to Figure 1.6. 

2. Open a search window with size NxN centered at (i,j). N=m+2d, where d is 

the largest possible displacement. Refer to Figure 1.6. 

3. Define a function as a correlation measure. One such type of functions, named 

the mean absolute frame difference (MAD) is defined as follows, 

where m is odd, Due to its simplicity, it has been used frequently. The 

function also can be defined with mean square error (MSE) or normalized 

two-dimensional cross-correlation function (NCCP) instead of MAD. 

4. To calculate the most likely displacement, shift the block defined in Procedure 

1 to every possible position in the search window to find the best match. 

Calculate all of the possible correlation measures, and the minimum one 

indicates a best match. The displacement between the best match position 

and the original position is the motion vector of this block. 



(1.2) 

Figure 1.6 Block matching 

In the case of small displacements, block matching technique works very 

efficiently. However when the displacement becomes large, the number of possible 

shifts increase quadratically. That is, the number of shifts, denoted by NS, is: 

To solve this problem, some fast algorithms are investigated, such as 2-D logarithmic 

search [34] three step search [37], modified conjugate direction search and multireso-

lution block matching. These algorithms usually save much computation with some 

assumptions. However, if these assumptions are not satisfied, distortion may take 

place. 

The disadvantage of block matching model comes from its assumption that all 

pixels within a block have the same translation motion. It results in inaccuracy of 

motion estimation. Blocking artifacts are known as a major problem. 

1.3 The Discrete Cosine Transform (DCT) 

The DCT approaches the statistically optimal Karhunen-Loeve transform (KLT) 

for highly correlated signals, and it is widely used in digital signal processing, 

especially for video and image coding and speech compressions. Thus, like FFT, 



(1.3) 
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many algorithms and VLSI architectures for the fast computation of DCT have been 

proposed. The energy compactness of DCT makes it very attractive in video coding. 

That is, a small number of transform coefficients can represent most of energies. 

The orthogonal base function of DCT is given as 

1.4 Motion Compensation Based Video Coding Scheme 

Motion compensation is a major progress which has been made since 1980s for video 

coding. It drastically reduces temporal redundancies between successive frames and 

makes it possible that the video can be compressed at high ratio. A block diagram 

of a general motion compensated video coding scheme is shown in Figure 1.7. The 

pre-processing is to specify the image size, frame rate, sub or up sampling, and 

masking, etc. Motion vectors can be calculated with various motion field determi-

nation algorithms. The motion field is used to predict the next frame, i.e. motion 

compensation. The prediction error is obtained by calculating the difference between 

the original frame and the motion compensation frame. DCT is applied to each block 

of the predictive error image, and then a variable thresholding is applied to further 

decrease the number of nonzero DCT coefficients. After that, the DCT coefficients 

are quantized with reasonable quantization scale. And the quantized coefficients are 

zigzag scanned, and entropy coded. Then the layer headers are added to that to 

form the bitstream. 

1.5 Very Low Bit-Rate Video Coding 

Very low bit rate video coding means that the bit-rate in compression of visual 

portion is below 64kb/s. A large number of services need to transmit data, audio and 
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Figure 1.7 Diagram for motion compensated video coding scheme 

video in a narrow bandwidth, such as mobile phone, videophone, personal computer 

which is connected to the traditional telephone line. All of these applications make 

the compression of data in very low bit rate very important. In this context, it is no 

doubt that the classic block and DCT based coding schemes have reached a level of 

saturation in performance. It cannot be improved further very much for very low bit 

rate applications [18], and the inherent blocking artifacts degrade the quality of the 

reconstructed images significantly. Many so-called second generation coding schemes 

have been proposed to solve this problem in the past few years, such as facial model-

based, region-based, object-based, and contour, etc. These techniques are expected 

to be superior to the classic block-based coding in very low bit rate video coding. 

A key problem in high compression video coding is the operational control of 

the encoder. The nature of the encoder is generally left open to user specification. 

Ideally, the encoder should balance the quality of the decoded images with channel 

capacity. Most effective existing video coders utilize several modes of operation which 

are selected on a block-by-block basis. A given macroblock can be intra-frame coded, 

or inter-frame coded. 

1.6 Organization of the Dissertation 

In Chapter 2, three dense motion field determination algorithms are discussed. 

They are gradient-based, correlation-feedback and correlation-feedback with Kalman 
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filter. Some simulation and real image sequences have been tested to evaluate 

these techniques. In Chapter 3, a new algorithm that is optical flow based motion 

compensated very low bit rate video coding with thresholding techniques is proposed. 

A statistic model is investigated, based on which, four thresholds are established. The 

new algorithm is tested and its performance is compared with that of the existing 

model-based video coding schemes. In Chapter 4, a novel video coding technique is 

devised. Dense motion field is used for motion compensation, and DCT is applied 

to the highly correlated motion field. An AR(1) model is used to model optical 

flow field. Adaptive threshold is used to code the residual images. Two sequences 

are tested and the performance of the new algorithm is compared with the H.263. 

In Chapter 5, wavelet transform is discussed. A new region-based discrete wavelet 

transform technique is presented. Image is decomposed into regions according to 

their visual significance and bits are adaptively allocated to these regions. The 

comparison between this algorithm, the algorithm discussed in Chapter 4, and that 

in H.263 are given. In Chapter 6, a segmentation-based stereo sequence video coding 

scheme is proposed. The camera setting for stereo images is discussed. Three 

criteria associated with 3-D information, 2-D connectivity and motion vector fields 

are used to segment objects. A chain coding scheme is given to code the shapes of 

the segmented objects. Two stereo sequences are tested. Finally, a summary and 

directions for future research are given in Chapter 7. 
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CHAPTER 2 

OPTICAL FLOW 

Optical flow is the distribution of apparent velocities of movement of brightness 

patterns in an image [28], and it plays a very important role in motion analysis 

and video coding. Image sequences consist of a sequential frames taken at different 

moments by a camera when the objects in the picture are moving. On the other 

hand, if the objects are not moving while the viewer (like camera) is moving, then 

at different moments, the objects are moving related to the viewer. The optical flow 

may reveal useful information not only in analysis of the related motion velocity 

between the objects and their viewer, but also in recovery of the arrangement of 

objects in space. There are many algorithms of computing optical flow available 

now. The techniques used in these algorithms are gradient-based, region-based, 

energy-based and phase-based. Several algorithms can work in real-time [28]. It is 

not the author's intention to give a very comprehensive survey about various optical 

flow techniques here. Only those used in this dissertation work are discussed in this 

chapter. Specifically, three techniques, gradient-based, correlation-feedback with or 

without Kalman filter, are discussed. 

2.1 Gradient-Based Algorithm 

The gradient-based algorithm is based on the assumption that the luminance 

intensity is invariable in successive frames during a short interval. That is 

where /(x, y, t) expresses the intensity of a pixel at position (x,y) at moment t. Taylor 

series lead to 
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where 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

Then we have 

(2.9) 

(2.10) 

where D is the integration domain. 

(2.11) 

(2.12) 

according to Equation 2.1 and 2.3. In Equation 2.9 there are two unknown u and 

v needed to be solved, but we only have one equation, and we need an additional 

equation. Therefore, another constraint has to be imposed. The smoothness 

constraint proposed by Horn and Schunck [28] is a constraint frequently used in 

optical flow determination. Horn and Schunck provided an algorithm derived from 

these assumptions by minimizing the error in optical flow 

A decides the strength of the weight of the smoothness term. To solve the above 

nonlinear equation, Horn and Schunck gave the following iterative solution, 

where k denotes the iteration number, u°, v°  are the initial values, and uk,  vk are the 

neighborhood average of uk  and vk. A presmoothness is used to avoid discontinuities 

at moving boundaries [10]. For propagation in optical flow determination, the number 
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Figure 2.1 The block diagram of the correlation feedback 

of iterations should be larger than the number of picture cells across the largest region 

that must be filled in. Therefore, this technique is suitable for small displacements 

with respect to great scale of the image intensity variations. But if the scale of the 

image intensity variation is very small and the displacements are not great enough, 

then the optical flow will hardly be obtained, refer to [36]. 

2.2 Correlation-Feedback Algorithm 

The correlation-feedback technique is resulted from applying feedback technique 

to correlation-based algorithm such as Singh's [70]. A diagram of the correlation 

feedback algorithm is shown in Figure 2.1. It consists of four stages: initialization, 

observer, correlation and propagation [62]. 

The initialization stage is to obtain an initial optical flow fields (OFF) by some 

fast algorithms. The observer stage is to create a bilinear interpolation image with the 

initial OFF. The correlation stage is to open a search window, to find the best match 

with the sum-of-square-differences. The propagation stage is to use neighborhood 

information to improve the image velocities. 

Using the sum-of-squared-difference offers several computational advantages 

over correlation. For each pixel P(x, y) in the first image, a correlation-window wp 



(2.1,3) 

(2.14) 

20 

of size (2n + 1) x (2n + 1) is formed around the pixel. A search window ws, of size 

(2N + 1) x (2N + 1) is then opened around the pixel at location (x,y) in the second 

image. The (2N + 1) x (2N + 1) sample of error-distribution is computed using 

sum-of-squared-differences as: 

where —N ≤ u,v ≤ N. And the (2N+1) x (2N +1) samples of response-distribution 

is computed as follows, 

A point with small response is less likely to be the true match as compared to a point 

with a high response. 

In the correlation stage, the motion velocity can be calculated with the 

weighted-least-squares, 

In the propagation stage we have 

where w is a Gaussian mask. 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

2.3 Correlation-Feedback with Kalman Filter 

The gradient-based, correlation-feedback, and most other optical flow determining 

techniques are suffering from blurring in moving boundaries [62]. 
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For the correlation-feedback algorithm, the error decreasing rate, analyzed in 

[621, is as follows, 

where I2x  is the mean square of /x in a correlation window, c is a constant. This 

error decreasing rate is varied for different regions in an image plane. It is larger 

for the regions where intensity varies more drastically, it is smaller for those where 

intensity varies more smoothly. This indicates that the iterations needed in optical 

flow determination should not be uniform for different image regions. That is, for 

the moving boundaries, where intensity usually changes bigger, fewer iterations are 

needed than for other regions. Therefore, an optical flow algorithm needs to have 

fewer iterations along moving boundaries than in other areas so that the better 

estimations of optical flow along boundaries can be propagated into other areas 

instead of being blurred by those in other areas. A Kalman filter can realize the task 

of applying different number of necessary iterations in determining optical flow to 

deblur boundary and enhance accuracy. 

Furthermore, the Kalman filter is based on a linear measurement model, it will 

not introduce much computing burden. It operates in two phases: the prediction 

phase and the update phase, as shown in Table 2.1. The block diagram is given in 

Figure 2.2. For more details, please refer to [61][62]. 

2.4 Unified Optical Flow Field (UOFF) 

An image brightness function can be described by 

where x and y are coordinates on image plane, t is time, s indicates the sensors, 

camera position in 3-D world space 



Table 2.1 Kalman filter 
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Figure 2.2 The correlation feedback with Kalman filter 



(2.22) 

(2.23) 

(2.24) 

(2.25) 

(x, y, z) is the position of the optical center of the sensor in 3-D world space, β and 

-y represent the orientation of the optical axis of the sensor in 3-D world space. A 

world point P in 3-D space is projected onto the image plane as a pixel with the 

coordinates x, and yp. Then xp, yp  are also dependent on t and s, i.e. xp  = xp(t,s) 

and yp  = yp(t,s). Then 

Due to the assumption of the time and space invariance of brightness, one can get 

To expand the right hand side of the above equation in the Taylor series leads to: 

1. If δs= 0, the sensor is static in a fixed spatial position. 

2. If St = 0, i.e. at a specific time moment, the images generated with sensors 

at different spatial positions can be viewed as a spatial sequence of images. 

Hence, one has 

This equation can be used to deal with stereo imagery and can be solved with 

smoothness constraints [62]. 

 The UOFF approach [71] can calculate the uL ,vL,uR ,vR ,uS , and vS, where 

superscripts L and R indicate the left and right cameras, respectively. Using these 

six DOFF parameters and a set of equations, one can solve for all 3-D motion and 

position parameters, which completely describe the object in space status [71]. 
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Figure 2.3 A sinusoidal square 

2.5 Experiment and Conclusion 

In this dissertation research, some experiments are conducted to evaluate the perfor-

mances of the gradient-based and correlation-feedback algorithm with and without 

Kalman filters. Three experiments are presented below. 

2.5.1 Experiment I: A Moving Sinusoidal Square 

A sinusoidal square moves east at a speed of a pixel/frame, refer to Figure 2.3. 

The expected truth-ground optical flow is shown in Figure A.1. The optical 

flow fields obtained by Horn and Schunck's gradient-based algorithm with or 

without Kalman filter are given in Figure A.2 and Figure A.3. The Figure A.4 

and Figure A.5 demonstrate the results of the correlation feedback with or without 

Kalman filter. Obviously, the correlation feedback algorithm outperforms the 

gradient-based algorithm and the Kalman filter preserves moving boundaries better. 
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2.5.2 Experiment II: Real Sequence of Moving Boxes 

Refer to Figure A.6, there are three boxes in this image. Two of them are moving 

together, and the other is not moving. Figure A.7 is the optical flow u calculated with 

correlation-feedback algorithm, and Figure A.8 is the optical flow calculated with 

correlation-feedback with Kalman filter. The optical flow field obtained with Horn-

Schunck's algorithm is shown in Figure A.9, and that obtained with an additional 

Kalman filter is shown in Figure A.10. We can observe that the Kalman filter does 

improve the optical flow along moving boundaries. 

2.5.3 Experiment III: Hamburg Taxi 

The Hamburg Taxi sequence can be obtained from ftp.csd.uwo.ca/pub/vision  via 

anonymous ftp. Refer to Figure A.11. There are four moving objects in this sequence. 

The first is a taxi turning the corner; the second is a car in the lower left, driving from 

left to right; the third is a van in the lower right driving right to left; and the fourth 

is a pedestrian in the upper left. A needle diagram of the optical flow field is shown 

in Figure A.12. It is noted that the moving pedestrian cannot be shown because of 

the scale used in the needle diagram. The optical flow fields obtained by.  Horn and 

Schunck's, Singh's (correlation-based), and the correlation-feedback algorithms are 

shown in Figure A.13, A.14, and A.15, respectively. Only the turning taxi portion 

is given in these figures in order to give a detail needle diagram. Obviously, the 

correlation-feedback algorithm achieves the best quality. 



CHAPTER 3 

OPTICAL FLOW BASED VIDEO CODING WITH THRESHOLDING 
TECHNIQUES 

By analyzing the video sequence properties and the existing model-based facial video 

coding algorithms, we developed a new very low bit rate video coding algorithm [46], 

which is based on thresholding and optical flow techniques. This algorithm achieves 

a very good performance in terms of better quality of reconstructed video sequence, 

higher data compression ratio and much simpler computational complexity than some 

typical model-based facial video coding algorithms. 

3.1 Introduction 

It is well-known that wireframe model leads to very low bit rate in facial video 

coding [3][45][44], but it encounters two major problems: quality of reconstructed 

video sequences, and complexity of computation. In order to obtain high quality of 

reconstructed video sequences, some 3-D wireframe model algorithms [76][3] clip and 

paste some portions of speaker's face such as lips and eyes, which usually contain rich 

information of facial complexion, and transmit them to the receiving end. In doing 

so, however, identification and segmentation of these portions will be necessary. For 

different speakers, these sensitive portions will be quite different from one another. 

Consequently, computational complexity increases drastically. On the other hand, 

the quality of reconstructed video sequences heavily depends on the accuracy of 

clipping and pasting of these portions. This method relies on, in turn, the above-

mentioned difficult jobs: identification and segmentation of these portions, and it 

is therefore questionable. Another method commonly adopted [3][45][44] utilizes 

so-called action unit (AU). Similar to the clip-and-paste method, it involves identi-

fication of various facial complexion for various people, which not only increases 

computational complexity but also causes distortion of reconstructed video sequences 
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seriously. Next, take a look at the case of 2-D wireframe models [3]. It is found that 

2-D model algorithms are more robust than 3-D models. But, it is quite obvious 

that equal-spaced 2-D model is too dense in areas like background and too sparse 

in areas which are rich in a speaker's complexion. It then still suffers from the two 

problems, quality and computational complexity. 

In our experimental works, it has been noticed that when handling improperly 

a reconstructed video sequence can differ quite from its original counterpart. That 

is, severe distortion can take place even though the reconstructed video sequence 

does look like the very speaker but with speaker's facial complexion quite different 

from that in original video sequence. The key here is the speaker's facial complexion. 

This observation agrees with a recent survey paper on model-based image coding [3]. 

In order to avoid above two problems, a new algorithm for facial video coding 

is proposed. This algorithm uses optical flow and thresholding techniques instead of 

the wireframe model. In order to reduce transmitted data, and increase the quality 

of reconstructed image sequence, four thresholds are established and utilized in the 

process of coding. 

3.2 Statistic Model and Thresholds 

After analyzing the existing video sequences, such as Miss America, Claire and 

Salesman, we found that the distribution of the difference between two successive 

frames is very close to the zero-mean Gaussian distribution, except for the portions 

of large differences. For example, the histogram of the difference between the third 

frame and the second frame of Claire sequence is shown in Figure 3.1, 	while 

the corresponding Gaussian distribution is shown in Figure 3.2. 	Comparing 

these two curves, it is observed that there are more percentages of large difference in 

Figure 3.1 than that in Figure 3.2. It is conjunctured that these differences mainly 

come from the object motions. From statistics, consider two pictures taken at two 



Figure 3.1 The distribution of the SFD 
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Figure 3.2 The standard Gaussian distribution 
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different moments, even though there is no motion existing, some white Gaussian 

noises may he added during this time interval. The differences of the intensities 

between these two images obey white Gaussian distribution, so that we can use the 

zero-mean Gaussian distribution as statistic model to decide the thresholds which 

will be discussed below. 

1. Consulting Figures 3.1 and 3.2. As we discussed the differences between two 

images, the magnitudes of difference which is greater than three are more likely 

resulted from object motions. The first threshold is set and used so that the 

positions of the optical flow vectors associated with those pixels may be trans-

mitted if the difference between the intensity of a pixel and that of the displaced 

pixel by the corresponding optical flow vector exceeds the defined threshold T1, 

that is, 

where i,j denote pixel position, u,v are the components of the optical flow 

vector, and gn and gn+1 represent image intensity function at n and n+1 

moments, respectively. Otherwise the gn+i (i u, j v) can be replaced by 

gn(i + u, j v) directly, and the associated optical flow vector does not need 

to he transmitted. 

2. Some pixels associated with large intensity differences may not experience 

meaningful motion. These pixels are likely isolated and corrupted with random 

noises. The second threshold T2 is set that if the number of the moving pixels 

in a neighborhood is less than T2, then this pixel is considered static and its 

motion vector does not need to be transmitted. The purpose of this threshold 

is to eliminate noises, most in the background caused by inaccuracy in optical 

flow calculation. 
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Figure 3.3 The block diagram of the new algorithm 

3. In order to increase the quality of the reconstructed image, in addition to 

position and motion vectors of certain pixels being transmitted, the predictive 

error information will be transmitted as well. By the predictive error infor-

mation we mean the difference between reconstructed video picture and original 

one. The large errors need to be transmitted, and the third threshold T3 is set 

that the error which is greater than T3 maybe transmitted. 

4. The fourth threshold is set to avoid transmission of unnecessary errors that are 

isolated. Only the error of those pixels satisfying the threshold T4 , which is 

similar as T2 , will be transmitted. 

Only if the magnitude of the error of a pixel exceeds T3 and this error is not 

isolated from that of its neighboring pixels determined by T4, then this error should 

be transmitted. The threshold T3 can be controlled by considering the required 

PSNR (say 35 dB) and percentages of pixels whose error needs to he transmitted 

(4-5% is usually considered). 

A block diagram of the algorithm is given in Figure 3.3. 
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3.3 Threshold Selection 

The first threshold can be chosen as, say, between 2 to 4 in 256 gray levels. Obviously, 

compared with 256 different gray levels, the range between 2 to 4 means a very small 

portion. Therefore, not sending positions and optical flow vectors for those pixels, 

whose intensity value change after motion compensation is less than this threshold, 

will not seriously affect quality of reconstructed video sequence at the receiving end. 

From the video sequences of Miss America, Salesman and Claire, it's noticed that 

even for the static pixels intensity changing between 3 and 4 takes place very often. 

The second threshold can be between 6 and 8, with neighborhood of 5 x 5. This step 

further eliminates transmission amount drastically. 

The third threshold is chosen as T3  = 4 to 16. The T4  is determined similarly 

to T2. 

These four thresholds work well in our experiments. 

3.4 Expected Advantages 

With the above thresholdings, the new algorithm avoids difficult tasks of identifi-

cation and segmentation of the sensitive portions in a speaker's face. The optical 

flow computation becomes a major computational load of the new algorithm. It is 

known that optical flow computation can be implemented in real-time [44] and many 

algorithms are available. Furthermore, the transmission of the error information 

eases accuracy requirement of optical flow computation. For the relatively uniform 

regions, optical flow might even not need to be calculated following the reasoning of 

the first two thresholdings. Therefore, iterations needed in optical flow algorithm can 

be quite less. It thus simplifies computational complexity. Also, the transmission 

of the error information can fairly alleviate accumulative error. The transmission 

of the error information exceeding certain criterion raises quality without increasing 

computation very much. 
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Figure 3.4 Miss America sequence: The horizontal axis is the frame number of the 
sequence. The vertical axis is (a) the PSNR which our algorithm achieved, (b) the 
percentages of the pixels whose error information needs to be transmitted, (c) the 
number of velocities need to be transmitted, (d) the STD 

3.5 Experiments 

In order to compare data compression ratio between our new algorithm and the 

algorithm using 3-D wireframe model, we applied our new algorithm to the 

video sequences of Miss America, Salesman and Claire. The results are shown 

in Figures 3.4, 3.5, and 3.6. 

With these three sequences for the central portion (256 x 256) of the CIF 

format, our algorithm transmits the position and optical flow vectors for about 300 

pixels, as well as error information of about 5% pixels. Only the first frame of each 

sequence is transmitted, and all the subsequent frames are reconstructed from the 

transmitted velocities and errors. The results show that no obvious accumulative 

error has occurred. In this sense, it's more robust than many other algorithms. 

The compression ratio is higher than that achieved by the algorithm using 3-D 

wireframe model [3]. This can be justified as follows. In [3] a similar sequence (a 

Japanese woman) is tested. Also only the central portion, 256 x 256 pixels, is treated. 
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Figure 3.5 Salesman sequence: The horizontal axis is the frame number of the 
sequence. The vertical axis is (a) the PSNR which our algorithm achieved, (b) the 
percentages of the pixels whose error information needs to be transmitted, (c) the 
number of velocities need to be transmitted, (d) the STD 

Figure 3.6 Claire sequence: The horizontal axis is the frame number of the sequence. 
The vertical axis is (a) the PSNR which our algorithm achieved, (b) the percentages 
of the pixels whose error information needs to be transmitted, (c) the number of 
velocities need to be transmitted, (d) the STD 



34 

The motion vectors (3 parameters each) of vertices about 400 triangles need to be 

transmitted. For our algorithm only about velocities (two parameters each) of about 

300 pixels are needed to be transmitted. Using 3-D wireframe model, the number 

of pixels clipped and pasted, whose intensity values are transmitted in order to raise 

quality of reconstruction, is reported as 5% of the total pixels, while the number of 

pixels whose error information needs to be transmitted in our algorithm working on 

Miss America sequence is found to be 3.5%. 

In terms of quality, our algorithm achieves the PSNR of 36.22 dB for Miss 

America sequence, 36.0 dB for Salesman sequence and 38.4 dB for Claire sequence, 

while the algorithm using 2-D wireframe model in achieves 35.5 dB for Miss America 

sequence. Compared with the algorithm reported in [45](44], which uses AU and 

achieves the standard deviation of 7.5 (for Claire sequence), our algorithm achieves 

the standard deviations of 3.1 for the same sequence. 

Refer to Table 3.7 for detail. The performance of our algorithm is also better than 

2-D model algorithms. 

3.6 Conclusion 

Following an analysis of existing wireframe model-based facial coding algorithms, 

a new algorithm is developed. It utilizes optical flow and thresholding techniques. 

As a result, it avoids completely identification and segmentation of those highly 

complicated regions in human face containing rich facial complexion information, 

thus raising quality of reconstructed video sequences as well as data compression 

ratio, and simplifying computation drastically. 
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CHAPTER 4 

A DCT CODED OPTICAL FLOW ALGORITHM FOR VERY LOW 
BIT RATE VIDEO CODING 

In this chapter, we propose an efficient compression algorithm for very low bit-rate 

video applications. The algorithm [47] is based on (1) optical-flow motion estimation 

to achieve more accurate motion prediction fields; (2) DCT-coding of the motion 

vectors from the optical-flow estimation to further reduce the motion overheads; and 

(3) region adaptive threshold technique to match optical flow motion prediction and 

minimize the residual errors. Unlike the classic block-matching based discrete cosine 

transformation (DCT) video coding schemes in MPEG-1/2 [43][14] and H.261/3 

[58][32], the proposed algorithm uses optical flow for motion compensation and the 

DCT is applied to the optical flow field instead of predictive errors. Thresholding 

techniques are used to treat different regions to complement optical flow technique 

and to efficiently code residual data. While maintaining comparable peak signal to 

noise ratio (PSNR) and computational complexity with that of ITU-T H.263/TMN5, 

the reconstructed video frames of the proposed coder are free of annoying blocking 

artifacts, and hence visually much more pleasant. The computer simulation are 

conducted to show the feasibility and effectiveness of the algorithm. It achieves a 

bit-rate of 11 kbps for interframe coding and can be used for transmission of both 

audio and video signals through the existing public switched telephone network. 

4.1 Introduction 

The successful applications of ISO MPEG 1/2 and ITU-T H.261 [14][58][72][18][32] 

for video communications at relatively high bit-rates demonstrate that the block 

matching based motion compensation and DCT coding algorithm (BMDCT) works 

quite well at a bit-rate above 64 kbps for digital video coding. However, it is well 

known that the block matching techniques have several serious drawbacks: unreliable 
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motion fields in the sense of the true motion in the scene, block artifacts, and 

poor motion compensated prediction along moving edges [17] . At very low bit-

rates (below 64 kbps), the block artifacts become severe and the quality of the 

reconstructed images are degraded considerably. It is especially true in facial video 

coding because most of the facial expressions involve nonrigid motion. Considerable 

research efforts have been made on very low bit rate coding, which result in the 

current H.263/TMN5 [32]. It achieves much improved performance over H.261 with 

advanced motion prediction options, optimized entropy coding, and fine-tuning of 

the parameters to fit very low bit rate nature of the applications. Despite its good 

performance, H.263 still suffers from the blocking effects, an intrinsic problem of the 

block-matching motion prediction and block DCT implementation. 

Many techniques have been proposed to overcome the drawbacks of block 

matching techniques. One approach is to use overlapped windows [77][57][9], which 

was also adopted as an optional feature for H.263. Another approach is to apply 

variable block size (VBS) motion prediction to adapt the motion prediction to object-

level. One example of VBS is the locally adaptive multigrid block matching motion 

estimation [17]. There a multigrid structure and a modified three-step search are 

used. The entropy criterion is established to optimally balance the amount of infor-

mation corresponding to the prediction error and the representation of the motion. 

Another example uses a quadtree structure and different criterion to remove the 

constraint of fixed block size and translational motion to allow more flexibility in the 

motion field [53]. 

Different from these techniques, in this paper we present a new algorithm as an 

improvement of H.263/TMN5. The proposed algorithm utilizes optical flow (dense 

motion vector field) instead of block matching (block motion vector field) for motion 

compensation. Due to the usage of optical flow technique, it is expected to overcome 

the drawbacks of the traditional block matching. That is, it is expected to provide 
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more accurate predictions and to eliminate the annoying block artifacts. However, 

the dense motion field implies more overhead information. How to handle this issue 

becomes a key in our new algorithm. We preprocess images to lower the compu-

tational burden as well as side information related to optical flow field. Based 

on an analysis, which shows that dense motion vectors are highly correlated, we 

use DCT to code the optical flow vectors instead of predictive errors. A thresh-

olding technique is developed to treat different regions to complement with the 

optical flow technique to further decrease side information. Due to the usage of 

dense motion vector field, it is expected that the predictive errors will be drastically 

reduced and less correlated. To save computation, we directly code the residual 

data without involving the DCT. Another thresholding technique is devised to code 

residual data. The new algorithm is free of blocking effect and hence achieves better 

visual quality than the H.263/TMN5 while maintains comparable PSNR and compu-

tational complexity. It achieves a bit-rate of 11 kbps for interframe coding and can 

thus he used for transmission of both video and audio signals in PSTN and cellular 

networks. 

4.2 Description of the New Algorithm 

An overall block diagram of the proposed algorithm is shown in Figure 4.1. After pre-

processing, optical flow is estimated from frames of a video sequence. These optical-

flow vectors are divided block by block with each block of 8 x 8. Those flow vectors 

which do not satisfy certain thresholds in the successive frame difference (SFD) 

are eliminated from coding. Those which pass the thresholds are then transformed 

into discrete cosine domain. The position information of these DCT coefficients are 

quantized, zig-zag scanned, and run-length coded followed by Huffman coding. The 

magnitudes of these DCT coefficients are Huffman coded. The predictive errors are 

thresholded first. They are then divided block by block in the same fashion. The 
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magnitude and position information of these non-zero residual data are treated in a 

similar way to that for the DCT coefficients of motion vectors. 

The new algorithm is described in more details below. 

4.2.1 Optical Flow Estimation 

Modified Horn and Schunck algorithm 	The motion compensation plays a key role 

to exploit high correlation existing in video sequences. In this new algorithm, the 

dense motion vectors are used together with the bilinear interpolation for motion 

compensation. Using the dense motion vector field is expected to achieve much less 

prediction errors than using block-based motion model. The reconstructed images 

are expected to look much more natural, and the facial expression is much closer to 

the original. 

In video coding, the ultimate goal of motion estimation is not to assess the 

motion present in a scene, but to transmit the video frames with satisfactory quality 

and less bit-rate. Therefore, it is the changes in the spatiotemporal intensity, i.e. 

the optical flow, instead of 2D motion field, that need to be estimated. Optical flow 

field is defined as the distribution of apparent velocities of movement of brightness 

patterns in an image. From this perspective, the optical flow can arise from not only 

relative motion of objects and viewer but also intensity variation. 

There are two models of optical flow field. One is a deterministic model in 

which the motion can be considered as an unknown deterministic signal and can be 

estimated with maximum likelihood by maximizing the probability of the observed 

sequence with respected to the unknown motion. The other is a random model in 

which the motion is assumed to be a random variable. The motion field is modeled by 

a Markov random field. It can be estimated by maximizing a posteriori or minimizing 

expected cost. The deterministic model is usually taken. 
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A comprehensive survey of existing optical flow techniques is recently conducted 

by Barron, Fleet and Beauchemin [10]. There nine algorithms, classified into the 

following four different techniques: differential [28][56], region-based matching [5] 

energy-based [1][11], and phase-based techniques [19], are studied thoroughly and 

their performance are compared with each other. Some of the techniques can work 

in real time. What we used in the experiments is the so-called modified Horn and 

Schunck algorithm since it runs fast and gives quite good accuracy [10]. The Horn 

and Schunck algorithm [28] is among differential techniques. It is also frequently 

referred to as the gradient-based approach. 

The gradient-based approach is based on the assumption that intensity of light 

reflected by a point on a surface of an object and recorded in the image remains 

constant during a short time interval, although the location of the image of that 

point may change due to motion. This can be mathematically stated as, 

where 0 = (u, v) is an optical flow vector at the point (x, y) and it is assumed to 

be constant during the interval (t, t +  ∆t). This equation is called intensity constant 

equation. /(x, y, t) is the image intensity at point (x, y) in the image at time t. In the 

limit, when the time interval At tends to zero, the intensity-constancy assumption 

leads to the following equation: 

where /x, /y, and It  are partial derivatives of I with respect to x, y, and t, respectively. 

This is because the Taylor series expansion of the right hand side of Equation(4.1) 

is as follows, 



and 

(4.4) 

are the measure of the smoothness term, 

(4.5) 
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Ignoring the higher order terms in Equation (4.3), using Equation (4.1) in Equation 

(4.3) and taking the limit as At -4 0, Equation (4.2) can be obtained. 

The collection of image velocity vectors 0 for the entire image constitutes the 

optical flow field for the image. Equation (4.2) embodies two unknowns u and v, 

and is not sufficient by itself to specify the optical flow uniquely. This problem is 

known as the aperture problem. But Equation (4.2) does constrain the solution. 

It is possible to regularize the ill-posed problem and to compute optical flow for 

images by introducing an additional constraint. A frequently utilized assumption 

is the smoothness constraint, i.e., motion field varies smoothly in most parts of the 

image, which was introduced by Horn and Schunck [281. That is the minimization of 

i.e., the squares of the magnitude of the gradient of the optical 

flow velocity components u and v respectively: 

As a result, the optical flow is calculated by minimizing the error in optical 

flow. 

where D is integration domain, the magnitude of a reflects the influence of the 

departure from smoothness in the optical flow. 

Horn and Schunck solved this minimization problem by using the variation 

calculus. An iterative procedure was derived: 
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where k denotes the iteration number, u° and v0  denote initial velocity estimates 

which are set to zero, and uk and vk denote neighborhood averages of uk and vk. 

On the boundary, however, the smoothness constraint of optical flow may not 

hold. Much efforts have been made to improve optical flow determination along 

the boundaries. A detailed discussion about the quantitative error and reliability 

analysis of the gradient-based approach can be found in [36]. 

One of the problems with this algorithm is that the intensity derivatives 

are estimated by using a first-order difference, which is a relatively crude form of 

numerical differentiation and can be the source of considerable error. Barron et 

al modified it with spatiotemporal presmoothing and 4-point central differences 

for differentiation (with mask coefficients 1/12(-1,8,0, -8, 1)), resulting the modified 

Horn and Schunck algorithm. It uses a spatiotemporal Gaussian prefilter with a 

standard deviation of 1.5 pixels in space and 1.5 frames in time (1.5 pixel-frames), 

sampled out to three standard deviations. It performs better than the original Horn 

and Schunck algorithm [10]. 

Number of iterations 	As mentioned above, the ultimate goal of optical flow used 

for video coding is somehow different from that for robot vision. Hence, optical 

flow computation for video coding has different features. Specifically, optical flow 

in smooth areas does not need to be propagated from other areas for many times 

since optical flow accuracy is not vital in these areas. Consequently, we only use 

five iterations of the fast modified Horn and Schunck algorithm, rather than more 

than 100 iterations suggested in [10] . This saves lots of computation. Moreover, 

the problem caused by the smoothness constraint will not be serious with only five 

iterations. The optical flow estimation in fixed background and foreground is even 

not required, since these fixed background and foreground may be copied from one 

frame to its next frame. 
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Preprocessing 	The analysis in above section suggests a preprocessing to reduce 

optical flow vectors. This preprocessing is to decide in which areas the optical flow 

vectors need to be calculated. To coup with H.263, the whole image is divided into 

blocks with the size of a block being 16 by 16. A measure of SFD of a block is 

defined as follows: 

where / is the index of the block, V1(t) represents a vector formed in a certain manner 

with all the pixels within the block in the image I(x,y,t), and ||.||  means vector 

norm. The optical flow of block I will not be calculated except that its SFD 1  is 

greater than a preset threshold TsFD. Therefore TsFD  is an adjustable parameter 

of the algorithm. In our experimental work, the TsFD  is usually chosen such that 

only less than 25% blocks need optical flow determination. Concretely, we calculate 

SFD1  for each possible I, then arrange them, say, in a descending order. The TsFD  

is chosen as such a value that there are only less than 25% of SFD values in the 

sequence are larger that it. The reason to do so is that there is usually only small 

motion experienced during the time interval between two consecutive frames, and 

the change of brightness patterns mainly occurs around moving boundaries. For 

uniform or smooth regions in the image plane, there is no need to calculate flow 

vectors for video coding. In our experiments, this choice of TsFD  can produce both 

satisfactory reconstructed image quality and required bit-rate. This preprocessing 

saves not only huge computation, but also huge side information. 

4.2.2 DCT Coding of the Motion Vectors with Thresholding 

AR model 	It is considered in general that the motion vectors are transmitted as 

side information in motion compensated video coding schemes. However, when the 

very low bit-rate video coding is dealt with, the amount of the motion vector data 
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becomes comparable with and even more than that of the error data. Therefore 

the motion vector coding for very low bit-rate becomes more important than that 

in the case of high bit-rate. Obviously, to transmit all the flow vectors needs many 

more bits since even after the preprocessing the number of motion vectors is much 

more than that in the BMDCT technique. The bits used to encode the optical flow 

substantially affect the transmission bit-rate. 

How to code optical flow vectors? Let us consider human facial expressions. 

It is noted that the motion of any point in a face is not free or independent of its 

neighboring points, it is constrained by some muscles and skin. That is, the motion 

of a point correlates with that of its neighborhood very closely. It is well known that 

the DCT works very efficient for highly correlated data. Hence, in the new algorithm 

we use the DCT to code optical flow vectors. 

Using DCT to code optical flow vectors can also be justified from the theoretical 

sense. Figure 4.2 (a) shows a diagram of probability density function (pdf) of a first 

order AR model: 

where p = 0.8 and v is a random variable, obeying Gaussian distribution with mean 

being 0 and variance 0.17. Figure 4.2 (b) and (c) show the pdf of u and v components 

of optical flow field associated with Claire sequence (the 20th and 21st frames). The 

similarity between Figures 4.2 (a), and (b) and (c) supports this AR modeling of 

optical flow field. It is well-known that DCT is most effective for coding AR process. 

Thresholding 	To further reduce motion vector data, we use thresholding technique 

in our new algorithm. Most background of head-shoulder type of video frames such 

as in the Miss America and Claire sequences is fixed. These regions need not to 

be transmitted in interframe coding. They can be copied from the previous frame 

to the current frame directly. To avoid complex segmentation and merging of these 
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patches, the whole image is divided into fixed-size blocks (generally, 8 x 8 to cope 

with H.263). The mean and variance of the difference between estimated frame in  

and given frame In + 1,  named SFD in Figure 4.1, for those blocks whose optical flow 

has been estimated, are calculated. It is noted that the SFD used here is slightly 

different from that used in above section. Estimated frame în is used here, while 

actual frame In  is used there. To decide which block's optical flow vectors need 

to he coded and transmitted, two thresholds, T1  and T2 , are set_ If the mean of a 

block is less than T and the variance is less than T2 , then this block is assumed to 

be a non-motion block, all its contents can be replaced by the corresponding block 

in the previous frame and nothing is to be coded and transmitted. On the other 

hand, if the mean of a block is greater than T1  or its variance is greater than T2, 

this block's motion vectors then need to be coded and transmitted. The DCT is 

applied to this 8x8 block. The coefficients of DCT are then quantized. The positions 

of the nonzero coefficients are zig-zag scanned. The amplitudes and positions of the 

non-zero DCT coefficients are run-length coded, followed by Huffman coding. Refer 

to [72] for details. The thresholds T1  and T2  can be viewed as adjustable parameters. 

Their selection will affect the quality of reconstructed frames and the bit-rate. In 

summary, the preprocessing discussed in above section aims at reducing the number 

of optical flow vectors, while the thresholding discussed here is to reduce the number 

of flow vectors that need to be coded. Both contribute to data saving. 

DCT, quantization and zigzag scanning 	The 8 x 8 motion vectors are transformed 

into the frequency domain using the 2-D forward discrete cosine transform (FDCT) 

using equation 
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The transformed 64-point discrete signal is called DCT coefficients. The F(0, 0) 

coefficient is called the dc coefficient and the remaining 63 coefficients are called the 

AC coefficients. The DC coefficients represent the average values of the 64 points 

motion. If all the 63 AC coefficients are discarded, then it is reduced to the block 

matching model with a single motion vector to describe the whole block motion. 

Next, the coefficients whose amplitudes have trivial contribution to the quality of 

the image are dropped out, and thus increasing the number of zero-value coefficients. 

Quantization further discards DCT coefficients that are not visually significant. The 

positions and the nonzero coefficients are zigzag scanned. 

Runlength coding and Huffman coding 	After quantization, most of the DCT coeffi-

cients are zeros. The runlength coding is used to further save the bits. It works as 

follows. In the intermediate symbol sequence, each nonzero AC coefficient is repre-

sented by a pair of symbols, where 

Symbol - 1 	 Symbol - 2 

(RUNLENGTH, SIZE) 	 (AMPLITUDE) 

RUNLENGTH is the number of consecutive zero AC coefficients preceding the 

nonzero AC coefficient. SIZE is the number of bits used to encode AMPLITUDE. 

AMPLITUDE is the amplitude of the nonzero AC coefficient. Entropy coding 

(Huffman coding) is then used to follow the run-length coding. 

4.3 Adaptive Coding of the Residual Pictures 

Like all other motion compensated coding schemes, this algorithm also transmits 

error information. In order to find out the predictive errors, we reconstruct an image 

from the motion vectors and the previous frame as follows. After we obtain the 

nonzero quantized DCT coefficients and their positions, we reorder these coefficients 

according to their positions, and the nontransmitted coefficients are replaced with 
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zeros. Then the inverse DCT is applied to recover the motion vectors. Using these 

motion vectors together with bilinear interpolation if necessary, we estimate the 

current frame from the previous one. The difference between the estimated and 

actual current frames thus gives the predictive error. Because the pixel-based motion 

vectors rather than block-based motion vectors are used, the predictive errors are 

much less than that obtained by the BMDCT. The less the predictive errors, the 

lower the correlation they have, and the less effective the DCT, if applied, will be. 

For this reason, we do not apply the DCT to the error information. Instead, we 

transmit the errors directly. In order to use the bit-rate more effectively, another 

threshold T3 is set so that only the predictive errors which are greater than T3 will 

be quantized and transmitted. From experiments, it is observed that the predictive 

errors, needed to be transmitted in order to achieve good quality of the reconstructed 

image, are not scattered sparsely. Most of them are concentrated in the regions near 

the eyes and mouth. Using the 8 x 8 blocks defined above for optical flow vectors, 

the positions of these errors are zig-zag scanned and run-length coded in the same 

way as used for the nonzero coefficients of the DCT of the optical flow vectors. It is 

noted that T3 is the only parameter left after TSFD, T1 and T2 have been determined. 

Adjustment of this threshold T3 may play a role to reach a desired compromise 

between the reconstructed frame and quality and bit-rate. 

The values of both the quantized nonzero coefficients of the DCT of motion 

vectors and the quantized predictive errors, and the positions of these values are 

coded by variable length coding (Huffman codes) to further reduce the bit-rate. 

4.4 Experimental Results 

In order to evaluate the performance of our new algorithm, we applied it to Miss 

America and Claire sequences in the format of QCIF. The optical flow field is 

calculated with the modified Horn and Schunck algorithm. The coefficients of DCT 
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of motion vectors are quantized by 16 levels and the predictive errors are quantized 

by 32 levels. In these experiments, the threshold T1  is chosen as 3.0, T2  is 10.0, and 

T3  is adaptive, ranging from 15 to 30. 

In the case of Miss America, for 10 frames's (30 frames/s, 2 frames are skipped 

for every 3 frames) interframe coding, the proposed algorithm achieves a bit-rate 

of 11 kbps and the PSNR of about 37.1 dB. Both are averaged for the first 36 

frames of the sequence. These reconstructed frames are free of blocking artifacts. 

The 21st reconstructed frame is shown in Figure B.1 (b), the corresponding frame 

reconstructed with H.263/TMN5 is shown in Figure B.1 (c), and the original 21st 

frame in Figure B.1 (a). It is obvious that prominent blocking effects can be observed 

in the reconstructed frame with H.263/TMN5, particularly in these areas: the hair at 

right side, the lower portion of lips and chin, and the neck below chin, the background 

and so on. These blocking artifacts do not exist in the reconstructed frame with 

our algorithm. Our algorithm also improves the reconstructed image in the regions 

with rich information, like eyes, mouth and facial expression considerably, and the 

reconstructed frame is visually much more pleasant. Figure B.2 (a) and (b) show 

the PSNR curves frame indexes for our algorithm and H.263/TMN5, respectively. 

The similar comparison and observations are made for Claire sequence. The 

39th reconstructed frames with the new algorithm and with H.263/TMN5, and 

the original frame are shown in Figure B.3 . The PSNR curves are illustrated in 

Figure B.4. 

4.5 Conclusion and Discussion 

An efficient optical flow based motion compensation video coding scheme for very low 

bit-rate application is presented and implemented in this paper. The employment 

of the DCT to highly correlated optical flow motion vectors reduces data needed 
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for motion vectors considerably. Adaptive thresholding techniques contribute to the 

coding efficiency of the algorithm as well. 

It is noted that the optical flow based motion estimation for video compression 

has been applied for many years. However, the high bit overhead prevents it from 

practical usage in video coding. One of the new elements in this paper is the DCT 

coding of the dense motion vectors and the adaptive coding of the residual pictures, 

which enable the proposed optical flow based algorithm to efficiently work for very 

low bit rate video coding. 

This algorithm enhances the reconstructed image quality significantly by elimi-

nating the blocking artifacts resulted from block matching model. Experiments 

demonstrate that the proposed algorithm achieves superior performance than H.263 

at very low bit-rate in terms of subjective evaluation. It can be widely used in 

various very low bit-rate applications such as video phone, teleconferencing, and 

wireless communication. 
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Figure 4.1 The encoder of the proposed algorithm 
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Figure 4.2 The pdfs of AR(1) model and optical flow 



CHAPTER 5 

REGION-BASED ADAPTIVE DWT VIDEO CODING USING DENSE 
MOTION FIELD 

The emergence of the wavelet has led to a convergence of linear expansion methods 

used in signal processing and applied mathematics. Recently, the wavelets is one of 

the hostest research topics, it can be used in analysis acoustic signals [23], digital 

communications [78], computer graphics [68], biomedical engineering[73], computer 

vision [51] and subband coding [64]. Wavelet transform has a good time-frequency 

location, and multiresolution representation [50]. Some best bases have been 

exploited [64]. An embedded zero-tree wavelet algorithm (EZW) was proposed by 

Shapiro [69] for image coding. With the EZW, the code generated is fully embedded, 

which means that the encoder can terminate the encoding at any point and the image 

can be reconstructed with quality that corresponds to the number of bytes of the 

code. The EZW may outperform the classic DCT based still image coding, and 

might have competitive performance at high bit rate video coding. At very low 

bit rate video coding, however, like DCT based motion compensation algorithm, it 

suffers from significant distortion too, due to the very limited bits available, and the 

usage of two passes to code the amplitude and position information [69] or the usage 

of the priority-position coding relying on arithmetic coding to encode the position 

index [27]. 

In this chapter, firstly, the mathematical background of wavelet transform 

is discussed. Then the applications of the wavelet transform in image coding is 

discussed. Finally, a new algorithm of video coding for very low bit rate applications 

is presented. This algorithm [48] is based on (1) dense motion field, which can achieve 

better motion compensation than sparse (say, block-wise) motion field; (2) DCT 

applied to the dense motion field to drastically save overhead information; (3) region-

based segmentation with morphological techniques which can segment video frames 
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into different regions according to their content significance; (4) discrete wavelet 

transform (DWT) applied to residual data. with adaptive bit allocation. Conse-

quently, this algorithm avoids annoying block artifacts, thus making reconstructed 

video frames much more visually pleasant, which is similar to the previously proposed 

DCT coded dense motion field coding method. Moreover, it provides more flexibility, 

which means that it can adaptively allocate bits to the regions according to their 

content significance, while maintains similar bit-rate to H.263. 

5.1 Short Time Fourier Transform (STFT) 

Wavelet coding is a kind of transform coding schemes. It has good localization 

in both time domain and frequency domain. It has potential power to be widely 

used in digital image coding and video coding besides its applications in other areas. 

Fourier transform has been widely used in signal processing, such as communications, 

speech, control, system analysis, etc. It has perfect frequency resolution, but there 

is no time resolution. So that windowing is used to provide time localization, that 

is the short-time Fourier transform. 

There is a fundamental difference between the STFT and wavelet transform. 

In the STFT, at any analyzing frequency of coo, changing the window width will 

increase or decrease the number of cycles of coo  inside the window. In the wavelet 

transform, at a carrier frequency of wo, variation of window width causes dilation or 

compression, namely, the carrier frequency becomes w0/a for a window width change 

from T to aT. And the number of cycles inside the window remains constant. The 

frequency resolution is directly proportional to the window width in both the STFT 

and the wavelet transform. 

Generally, a transform for video signals can be described as 
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where 1 is N x N matrix whose elements are samples of an image. W could produce 

a transformed image matrix Ψ that is sparse and with most of its large magnitude 

elements concentrated in a small region of 'P. This is the idea of decorrelation and 

energy compaction by transformation, typically, only 15% of the elements of P need 

be retained without an adverse effect on the image quality. 

Most transforms which are widely used in image, video and audio signals 

are orthogonal transforms. Because the components of the transform bases are 

orthogonal to each other and dropping any component of an orthonormal trans-

formation results in a truncated representation that could still be best in the least 

square sense. STFT maps a single dimensional signal into the time-frequency domain, 

where h(t) is a Gaussian window, or other windows (Hamming, Blackman, etc.) 

A time localization can be obtained by suitably pre-windowing the signal. Good 

time resolution of STFT requires a short window, and good frequency resolution of 

STFT requires a narrow band filter. Therefore, the joint time-frequency resolution 

of STFT is inherently limited, improving the time resolution results -in a loss of 

frequency resolution and vice versa. 

5.2 Wavelet Transform 

A wavelet is an orthogonal function which can be applied to a set of finite data. 

Wavelet theory is based on the multiresolution1 analysis concept. A multiresolution 

wavelet package is shown in Figure 5.1. When the wavelet package is used to code 

the video signals, we can get different bitstream with different resolutions. The video 

signals pass through the wavelet package, we get different subimages. Figure C.1 is 

the original image; Figure C.2 gives four subimages and their size is approximately 

Multiresolution: we approach the original signal by successively adding details to it, 
successively refine it. 
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Figure 5.1 The multiresolution wavelet package 

a quarter of the original image size. The top-left subimage in Figure C.2 is further 

decomposed into another four subimages, shown in Figure C.3. 

Wavelet transform is generally given as 

ψ is a fixed function, called "mother wavelet," that is well localized both in time 

and frequency domains. The baby wavelets are generated from the dilation and/or 

translation of the mother wavelet. In Equation 5.3 a is a scale, it scales a function 

by compressing or stretching it; b is a translation of the wavelet function along the 

time axis. 

A continuous wavelet transform of a function 
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In practice, the continuous wavelet transform can only be computed on a discrete 

grid of points. 

5.2.1 Examples of Wavelet Transform 

There are lots of wavelet functions devised, and the following are some typical ones, 

1. Modulated Gaussian (Morelet), shown in Figure 5.2. 

2. Second derivative of a Gaussian, shown in Figure 5.2. 

3. Shannon, shown in Figure 5.3. 

4. Haar, shown in Figure 5.3. 



Figure 5.2 The Gaussian and the 2nd derivative Gaussian wavelets 
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Figure 5.3 The Shannon and the Haar wavelets 
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5.2.2 Wavelet Transform Analysis in Video Coding 

The wavelet function ψ(t) in practice should have compact support in order to have 

good time localization. Compact support is that the wavelet transform is able to 

operate on a finite set of data. The value of the transform coefficients ck  is determined 

by constraints of orthogonality and normalization. Generally, the area under the 

wavelet curve over all space should be unity, which requires that 

Since most of the information exists in the output of the low-pass filter, one can take 

this filter output and transform it again. This process can be repeated if necessary. 

this is the wavelet transform dilations shown in Figure 5.4. 	There are three 

parameters which describe a wavelet transform, the filter length, which affects the 

number of butterfly stages required in the lattice filter, and the number of delays 

involved; the block size of the input data to be transformed; the number of nested 

levels. Unfortunately the wavelet reconstruction is carried out such that the deepest 

nested dilation calculated in the decomposition must be first reconstructed. This 

means that all transformed data must be saved in memory. So the size of the input 

blocks and the resolution of the wavelet decomposition are limited constrained by 

the memory size. 

The delay necessarily existing in convolution results in an output stream which 

is half the length of the input plus the number of delay stages. It is not desirable to 

output all these numbers of delay stages, because that would require an increasingly 

greater rate of processing for the output of each decomposition level. There are 

two ways to solve this problem, one is to truncate the output and discard the extra 

endpoint values. This gives a reconstruction which is very close to the original if it is 

done correctly. The second is circular, the input stream is wrapped around and fed 

back through the filter, and the new outputs replace the first outputs. This method 



Input stream 

Figure 5.4 Wavelet dilation 
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(5.16) 

The conditions for PR are: 

(5.17) 

(5.18) 

(5.19) 

(5.20) 
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yields a perfect reconstruction, but makes scheduling and data routing even more 

difficult. 

The wavelet transform can be divided into 

1. continuous wavelet transform; 

2. discrete parameter wavelet transform; 

3. discrete time wavelet transform; 

4. and discrete wavelet transform (DWT). The DWT is given as 

5.2.3 Perfect Reconstruction 

There are two kinds of multiresolution. One is the full balanced tree, which is 

shown in Figure 5.5, and every subband can be further decomposed. The other is 

unbalanced tree, in which only the lowest subband will be further decomposed, this 

is the so-called wavelet package, shown in Figure 5.1. 

Perfect reconstruction (PR) is a basic requirement in filter bank designing, even 

though after compression, the reconstructed image will only be an approximation 

of the original. From Figure 5.6, we can obtain the following solution for perfect 

reconstruction. 



62 

Figure 5.5 Balanced binary tree subbands 

Figure 5.6 Biorthogonal wavelet filters 



with 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

Or 

(5.33) 

(5.34) 

(5.35) 

(5.21) 

(5.22) 

For paraunitary (lossless) FIR filters of order p, which is an even number, we have 

(5.23) 

(5.24) 

Another very useful filter bank is QMF (quadrature mirror filter) which satisfies 

The requirement for lowpass PR-QMF is 

while for highpass PR-QMF 

(5.30) 

(5.31) 

(5.32) 



64 

5.3 DWT and Video Coding 

The application of digital video coding has enormously increased in the past decade, 

such as teleconferencing, video phone, DVD, DSS, DBS, HDTV, WWW, etc. To 

meet requirements of these applications, several video coding standards, such as 

ISO/IEC MPEG 1/2 and ITU-T H.261, have been successfully developed. For very 

low bit rate video coding, H.263/N is almost finished, and MPEG-4 is expected to be 

completed in 1998. Many coding schemes have been devised, such as block matching 

based DCT (BMDCT), DWT, model based, object-based, fractal, etc. The BMDCT 

is widely used in the standards. It works very well at high bit rate applications, 

but at very low bit rate, it suffers from the well-known block artifacts, an intrinsic 

problem of the block-wise model. Since only very limited bits are available at very 

low bit rate, the block artifacts then become very severe and the quality of the 

reconstructed images are degraded considerably. It is especially true in facial video 

coding, because most of the facial expressions involve nonrigid motion. 

An efficient way to code video sequence is to divide the coding process into 

two stages, motion compensation and residual image coding. DWT has already been 

shown to outperform DCT technique when used to code still images, generally, 2 to 

3 dB will be enhanced over DCT. While DWT is used to code video sequence in 

order to reach better performance, it faces two major problems. First, if the block 

matching is used in motion compensation stage, then block artifacts will manifest 

themselves in the residual images, and many sharp edges can be observed. After 

DWT, the number of DWT coefficients with large magnitude in the high frequency 

subbands will increase, coding these coefficients requires more bits, hence deterio-

rating the DWT performance. Second, the DWT is applied to the whole image, and 

bits are allocated to subbands according to their variances only, ignoring the visual 

perception. Therefore the visual quality of the reconstructed image is not optimum 

to human visual system. 
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To overcome blocking artifacts, instead of the block based motion vectors, 

the dense motion field is used in our proposed algorithm for motion compensation, 

because dense motion vectors can reflect true motion and intensity variation more 

accurately than the block based sparse motion vectors do, especially near the motion 

boundaries, hence, the prediction error is decreased, and the number of sharp edges 

is reduced. To compress the overhead information resulted from using dense motion 

fields, DCT is applied to the highly correlated dense motion vectors as discussed in 

the previous chapter. To optimize the bit allocation to different regions according to 

their visual perceptual significance, morphological segmentation techniques are used 

to segment video frame. And the DWT is then applied to residual data region-wise, 

and the bits are allocated depending on not only the subband variances but also 

visual perception. Experimental results demonstrate that the block artifacts have 

been eliminated. Furthermore for regions with significant contents, both of the PSNR 

and the subjective visual effect have been improved. Due to DCT applied to dense 

motion field and other thresholding techniques utilized, the bit rate is compatible 

with that achieved by H.263. 

Wavelet transform has not only good localization in both frequency and time 

domains but also flexible scalibility in video coding. Figure 5.7 explains how to 

deal with the bitstream resolution scaling. The input video signals are filtered and 

downscaling, then we get a base layer bitstream and an enhancement layer stream. 

For the low resolution application, only a base layer bitstream is needed. For high 

resolution applications, both of them are required. This is very useful for different 

applications, especially in video server and multimedia distributions. 

5.4 New Algorithm 

A new algorithm is proposed in this paper to reduce the block artifacts resulted from 

the block-wise motion estimation and motion compensation. Dense motion fields are 
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Figure 5.7 Wavelet transform scaling 

Figure 5.8 The encoder of the proposed algorithm 
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exploited to predict motion in this algorithm, since pixel based motion compensation 

turns out to be much more accurate than that of the block based, this is especially 

true for motion estimation near motion boundaries as well as for non-rigid motion. 

To optimize bit allocation to different areas, morphological segmentation is used to 

segment different regions according to their significance, based on the light intensity, 

neighborhood information, and motion estimation. DINT is then applied to the 

prediction error of these regions and bits are adaptively allocated to regions according 

to their content significance. An overall block diagram of the proposed algorithm is 

shown in Figure 5.8. For videoconferencing the encoding algorithm assumes that the 

video sequence is a set of head-and-shoulder type images and that the subjectively 

most important features are the eyes, mouth, and facial expression. It showed that 

people, when observing a moving head-and-shoulder image, concentrate mainly on 

the speaker's face. 

5.4.1 Dense Motion Field Estimation 

In typical applications such as teleconferencing, videophone, the frame-to-frame 

change is relatively slow. Therefore, most areas in the frame will not involve motions. 

To save computation of the dense motion field, a preprocess is used to detect motion 

areas. This preprocess is the same as that discussed in Chapter 7. 

5.4.2 DCT Coding of the Motion Vectors 

In general, the motion vectors are transmitted as side information in motion 

compensated video coding schemes. To transmit all the dense motion vectors 

needs many bits, and it excesses the bit budget. The motion in a face is constrained 

by some muscles and skin, and it is highly correlated with that of its neighborhood. 

Hence, in the new algorithm we use the DCT to code the dense motion vectors. 

Please refer to Chapter 7 for an analysis. 



(5.36) 
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5.4.3 Region-Based Segmentation 

In order to adaptively assign bits to regions with different visual perception, these 

regions need to be segmented. The human visual perception is not linear with the 

light intensity of the image. We have noticed that the intensity variant in dark areas 

is less perceptual than that in bright areas; noise in the areas with an abundance of 

texture is generally ignored by human eyes; human attention is usually focused on 

human face rather than shoulders or background. For the head-and-shoulder type 

sequence, in order to use visual perceptual weighting, the image is decomposed into 

three regions, significant region (human face), less significant region (shoulders), and 

non-significant region (background) with the following formula, 

where Var is the pixel variance obtained within its neighborhood, generally a 

Gaussian mask is used; λ is a weighting coefficient, from 0.2 to 0.8; /(i, j) is the 

intensity of a pixel at position (i,j); T is a threshold which is decided by the contents 

of the image and is region dependent. With different T, different regions will be 

segmented. Some small regions will be segmented in this stage. To code these small 

regions separately is neither economic nor necessary. The morphological erosion and 

dilation are used to eliminate and merge these small regions. Unlike the object-

based, the region-based techniques rely on the regions rather than objects. For 

example, the objects of eyes and nose are segmented, they will be possibly coded 

individually with object-based techniques, while using region-based techniques, they 

will be merged an coded together because they belong to the same class of significant 

region and they are adjacent. The three-class regions of Miss America sequence are 

segmented in Figure 5.9. 
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Figure 5.9 Three-class regions 

5.4.4 Adaptive DWT Coding of Residual Pictures 

Like all other motion compensated coding schemes, this algorithm also transmits 

error information. In order to find out the predictive errors, we reconstruct an image 

from the motion vectors and the previous frame as follows. After we obtain the 

nonzero quantized DCT coefficients and their positions, we reorder these coefficients 

according to their positions, and the nontransmitted coefficients are replaced with 

zeros. Then the inverse DCT is applied to recover the motion vectors. Using these 

motion vectors together with bilinear interpolation if necessary, we estimate the 

current frame from the previous one. The difference between the estimated and actual 

current frames thus gives the predictive error. Because the pixel-based motion vectors 

rather than block-based motion vectors are used, the predictive errors are much less 

than that obtained by the block matching based DCT. The less the predictive errors, 

the lower the correlation they have, and the less effective the DCT, if applied, will 

be. For this reason, we do not apply the DCT to the error information. Instead, we 

use DWT to code the prediction error. 
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Figure 5.10 Discrete wavelet transform 

Wavelet transform is well known for its good localization in both time and 

frequency domains. Its perfect reconstructed filter banks (best bases) are widely 

used in image and video coding. Figure 5.10 gives us a diagram of a simplest wavelet 

transform. A signal sequence x input to a pair of bi-orthonormal filters h.o(n) and 

h1(n), two subsequences are produced and down sampled by a factor of two, these two 

sub-signals locate in different frequency bands so that they can be coded separately. 

At the decoder end, they will be upsampled by a factor of two, and then pass through 

a pair of synthesis filters, go (n) and g1(n), and added up to get the reconstructed 

signal. DWT is traditionally applied to rectangular shaped regions rather than an 

arbitrary shaped region. The regions segmented in the previous section are generally 

not rectangular, so that they will be regularized into rectangular (in our experiments) 

before they are input to the DWT. The significant region is coded first, it can use up 

to 100% bits. The less significant region will not be coded every frame. Generally, 

coding of every other frame is sufficient. If it is coded, it will use about 20% bits 

assigned to the frame. The non-significant region will be coded every fifteen frames 

and will use about 10% bits of the frame. 

5.5 Experimental Results 

To evaluate the performance of our new algorithm, we applied it to Miss America 

sequence and Claire sequence in the format of QCIF. The dense motion field is 

calculated with the modified Horn and Schunck algorithm (refer to the previous 



chapter). The coefficients of DCT of motion vectors are quantized by 16 levels and 

the DWT coefficients are quantized by 32 levels. In the experiment, the threshold 

T1  is chosen as 3.0, T2  is 10.0, and T3  is adaptive, ranging from 15 to 30. The 

Daubechies 4-tap and 6-tap wavelets [16] are used to decompose the residual images. 

At frame rate of 10 frames/s (30 frannes/s, 2 frames are skipped for every 3 frames), 

the proposed algorithm achieves a bit-rate of 12 kbps for interframe coding and the 

PSNR of about 34.8 dB for the significant region. Both are averaged for the first 

36 frames of the sequence. These reconstructed frames are free of blocking artifacts. 

The 21st reconstructed frame is shown in Figure 5.11 (b), the corresponding frame 

reconstructed with H.263/TMN5 is shown in Figure 5.11 (c), and the original 21st 

frame in Figure 5.11 (a). It is obvious that prominent blocking effects can be observed 

in the reconstructed frame with H.263/TMN5. 

5.6 Conclusion and Discussion 

A new region based DWT video coding algorithm which is based on dense motion field 

is proposed and discussed in this chapter. This algorithm utilizes DCT technique 

to code dense motion field, morphological segmentation to decompose image into 

different regions, and DWT to code the residual images. The bits are adaptively 

assigned to the regions according to their visual perceptual significance, and different 

refresh rates are applied to different regions as well. It improves the reconstructed 

image visual quality subjectively by reducing the block artifacts and assigning more 

bits to the significant regions. It achieves 12 kbps of interframe coding while working 

on Miss America sequence. This algorithm is expected to be used in various very low 

bit rate applications, such as video phone, teleconferencing, etc. Compared with the 

algorithm discussed in Chapter 4, and the H.263, for Miss America sequence, this 

algorithm achieves a bit rate of 12 kbps for interframe coding, and a PSNR of 37.04 

dB for the whole image and 34.8 dB for the significant regions, while the algorithm 



72 

(a) The 21st original frame of Miss America sequence 

in Chapter 4 achieves about 11 kbps, PSNR of 37.1 dB for the whole image and 

34.3 dB for the significant regions, and the H.263 achieves 10.5kbps, PSNR of 37.4 

dB for the whole image and 34.2 dB for the significant regions. This algorithm and 

the algorithm presented in the previous chapter have no annoying blocking artifacts, 

hence, their visual quality of the reconstructed frames is better than that of the 

H.263/TMN5. 



(b) The recovered frame 21 with DWT, Miss America 

(c) The reconstructed 21st frame with H.263/N 

Figure 5.11 Miss America 
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CHAPTER 6 

SEGMENTATION-BASED STEREO SEQUENCE VIDEO CODING 

Segmentation-based video compression has been a very active research area over 

the past few years[4]. It has been viewed as a potential alternative to traditional 

schemes suffering from the "blockiness" of image intensities at very low bit rate 

video coding. In conventional motion compensation methods, a translational motion 

model of square blocks is employed. The independently moving square blocks lead to 

visible block artifacts in the very low bit rate video coding. A relative large predictive 

error along moving object boundaries is expected. To solve this problem, a new 

segmentation-based motion compensation algorithm is proposed in this chapter. This 

algorithm utilizes stereo images to estimate the 3-D information (3-D coordinates and 

3-D velocity). The 3-D information along with the connectivity and velocity fields 

are used to segment objects. A chain code is used to efficiently code the contour 

of the segmented objects. Because the 3-D information is used, the occlusion can 

be handled. The number of velocities is equal to the number of segmented objects, 

and the segmentation-based method essentially has a superior prediction ability for 

moving objects. Therefore, this algorithm can achieve very high compression ratio 

which can be up to several thousands at acceptable reconstructed image quality in 

our experimental works. It is noted that the 3-D information (say, depth) is utilized 

in the segmentation. In doing so, the disparity vector fields have to be determined. 

This disparity vector field can late be used to predict one image of the stereo image 

sequence from the other in stereo video coding. 

6.1 Introduction 

High compression video coding is an essential technique for digital video applications, 

such as videophone, digital video disc, etc. For these purposes, there are several 
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international standards developed, e.g. ITU-T H.261, ISO MPEG-1/2. However, 

these coding schemes do not achieve a high enough level of compression performance 

for mobile video communication or full motion video transmission through integrated 

services digital network (ISDN), or public switched telephone network (PSTN). In 

recent years, ISO MPEG-4 and ITU-T LBC groups have started active researches on 

the standardization of audiovisual services at very low bit rate through PSTN, LAN, 

ATM and mobile networks. Many advanced techniques have been studied to avoid 

blocking effects resulting from classic block matching motion compensated DCT 

algorithm. Among these techniques, region-based [7], object-oriented [60]167] [55], 

and segmentation-based [35][52][75][59] techniques are based on the models of moving 

regions, moving objects, and segmentation, respectively. All of these techniques 

inherently require an effective video segmentation algorithm. Video segmentation is 

a process of partitioning each frame of a video sequence into disjoint homogeneous 

regions. Recursive shortest spanning tree (RSST) or centroid linkage region growing 

(CLRG) have been often used as a segmentation algorithm for region-based coding. 

However, RSST and CLRG are believed to be impractical in real-time processing 

because of irregular structure in nature. In the following, we will give a new algorithm 

which is used for stereo video sequence and based on object-segmentation. 

6.2 Camera Setting for Stereo Sequence and 3-D Information 
Calculation 

At least two cameras are needed for taking stereo images. The general camera setting 

for stereo images is shown in Figure 6.1. 	The distance between two camera optic 

centers OR  and 0L is the base line 1. ZL,  ZR are the depths of the left and right 

cameras, and fL fR are the left and the right camera focal length, respectively. In the 

following text, superscript L denotes the left camera and R denotes the right camera. 

The parameters (X, Y, Z) without superscript are the 3-D world coordinates. From 



(6.1) 

(6.2) 

(6.3) 

(6.4) 
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Figure 6.1 The camera setting for stereo images 

the perspective projection theory, for the left camera we have 

where (X L  yL) is the coordinate in the image plane. XL , YL, ZL  are the left camera 

coordinates in 3-D space. 

Let sL  = Z L, and rewrite the above two equations for the left camera as 

The relationship between the left camera 3-D coordinate system and the world 

coordinate system can be expressed with a rotation matrix RI-  and a translation 

matrix T L. Thus, we have 



where 

Similarly, we have the following equation for the right camera, 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10)  

(6.11) 

(6.12)  

(6.13) 

(6.14) 

(6.15) 

and plug it into Equation 6.7, 

We reorder them, 

it is rewritten as, 

where 
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Inserting it into Equation 6.3, we have the relationship between the left image 

coordinates and the world coordinates as following: 

The elements in the matrices of RL, T L, FL, RR, TR, F R  are determined by the 

parameters of the camera settings. From Equation 6.5, we have 



(6.16) 

(6.17) 

(6.18) 

(6.19) 
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We obtain 3R,  sL, 

and the 3-D coordinates are 

From Equations 6.13 to 6.15, all parameters are known except one pair of 

(XR, yR) or (xL, yL)In this algorithm, we use unified optical flow method to find 

(xR, yR) or (xL, yL) depending on which one known and which one unknown [71]. 

One way in the lab to take stereo images as follows. A camera takes a picture at 

the left camera position, and then moves to the right camera position, takes another 

picture while all other conditions are preserved. This is equivalent to the case that 

the left camera and the identical right camera take pictures at the same time. Using 

the unified optical flow technique, we can find the displacement between these two 

images. For a simple case, the left camera 3-D coordinate system is coincident with 

the world coordinate system, and both cameras locate at the same altitude. There 

is an angle 0 between the two camera optical axes. Then the depth can be simplified 

as: 

where us  is the horizontal displacement between left and right images. Please consult 

to [71] for detail. 

6.3 Segmentation 

In the previous section, we have discussed the stereo image camera setting, and the 

depth calculation from the optical flow us  in the space domain. In this section, we 

will use them to segment objects and code the video sequence. 
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In segmentation-based coding, the image is first segmented into a set of 

homogeneous objects. Then their contours are coded and transmitted to the 

receiver. Finally, the prediction error is coded and transmitted. Some of existing 

techniques use morphological technique [66][22][18]. We propose a different method 

below. 

6.3.1 Optical Flow Calculation 

There are many optical flow determination techniques [10][28][34][36][62]. In order 

to obtain an accurate motion field, the discussed correlation-feedback with Kalman 

filter technique is used. Four image frames, i.e. two frames from the right sequence 

and two frames from the left sequence are used to calculate the six parameters: 

uL ,vL,uR ,vR ,uS ,vS * uL  is the horizontal component of the pixel velocity associated 

with the left sequence, and vL is the vertical component. uR  and vR  are the 

counterparts for the right sequence. us  is the horizontal component of the pixel 

velocity associated with the spatial image sequence (here formed by the left and right 

images), and vs  is the vertical component. The initial optical flow field generally 

are obtained with some fast algorithms (e.g. Horn's gradient-based algorithm in our 

experiment). The initial matrices, Φ, H and Po+  in Table 2.1 are set to identical 

matrices. And the choice of the parameter c depends on the accuracy and the speed 

of convergency desired. 

6.3.2 Three-Dimensional Coordinate Calculation 

For every pixel, its 3-D coordinates, X, Y, Z, can be calculated with Equations 6.12 

~ 6.17. In this algorithm, only the depth is needed for segmentation. The depth 

could be calculated with Equation 6.19. 
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6.3.3 Three-Criterion Segmentation 

The points belonging to the same object must have some common properties, such 

as depth, connectivity and velocity. For instances, they are probably in the same 

plane, aX + bY + cZ = m, or on the same surface, say, aX2 + bY2 + cZ2 = d. Aftei 

the motion vector field and the 3-D coordinates (X, Y, Z) are obtained, the image 

will be segmented with the following three criteria. 

1. 3-D Coordinates 

The image is segmented first according to an object's 3-1) information. We 

define function F(X, Y, Z) such that a point (Xk, Yk, Zk) in 3-1) space may 

belong to the object F, if 

	

F(Xk, Yk,Zk) l< δr 	 (6.20) 

where δr is a threshold. The function F can be linear or non-linear. For the 

simplest case, only the depth is used as, 

	

F(X,Y, Z) = Z — Zo 	 (6.21) 

where Z0  is the object depth. All points with depth between Z0  - δ r and Z0  + δr 

may belong to the object F. 

2. Connectivity 

A pixel, p, at position (x,y) has four neighbors, their coordinates are given by 

(x + 1,y),(x - 1,y),(x,y + 	1), (x,y - 1.). 

denoted by N4(p). In Figure 6.2 (a), the black pixel is p, and the 4 shaded 

pixels are its 4-neighbors. Four diagonal neighbors of p have coordinates: 

	

(x -I- 1,y + 1),(x + 1,y - 1), (x -  1,y + 	1),(x - 1,y 	1), 

and are denoted by ND(p), shown in Figure 6.2 (h). The four diagonal 

neighbors together with the 4-neighbors are called the 8-neighbors of p, 

denoted by N8(p), which is shown in Figure 6.2 (c). 
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Figure 6.2 The 4-neighbors and 8-neighbors 

We have three kinds of connectivities: 

• 4-connectivity: Two pixels p and q with values from a set of V are 4-

connected if q is in the set N4(p). 

• 8-connectivity: Two pixels p and q with values from a set of V are 8-

connected if q is in the set N8 (p). 

• m-connectivity: Two pixels p and q with values from a set of V are m- 

connected if (i) q is in N4 (p) or 

(ii) q is in ND(p) and the set N 4(p) ∩  N  4(q ) is empty. 

The 8- and m- neighbors of a pixel are shown in Figure 6.3. The shaded dots 

have the values from the set V. If a point under consideration connects to one 

of the points of the objects, this point may be considered to belong to the 

object. 

3. Motion Velocity 

The motion velocity is the third criterion. If a point satisfies the first two 

criteria, hut has significantly different motion vector from that of the other 

points which belong to the object F, this point is not considered on the object, 

since we assumes an object has a unique motion vector. This criterion can be 

implemented as 

W(X, Y, Z) < q- 	 (6.22) 



(6.23) 

(6.24) 
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(a) 	 (b) 	 (c) 

Figure 6.3 The neighbors, (a) arrangement of pixels, (b) 8-connectivity, (c) m-
connectivity 

where W is the motion function and €p is a threshold. If 3-D motion is 

considered, then W has two components, rotation w and translation T. 

where A is a parameter. If only 2-D motion field is considered, it can be 

simplified as 

where W is a 2-I) motion vector in image plane. 

Any point which satisfies the above three criteria belongs to the object P. There 

may exist very small segments after the segmentation. Those small objects need to 

be eliminated or merged to its nearest large object. 

6.4 Motion Vector Calculation 

After segmentation, the vector associated with an object is calculated as follows, 

(6.25) 

where W(i,j)  is the motion vector of the pixel at position (i,j), and w is a weight 

function, it could be an average for simplicity. For rigid motion, a motion vector is 

good enough to describe the object motion. For non-rigid motion, if the adjacent 



(6.26) 
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frames are taken in a very short time interval, then the motion can be considered 

approximately as rigid motion. This assumption is reasonable if the deformation of 

the object shape is not very fast. Because an object only has a motion vector, the 

number of motion vectors equals to the number of segmented objects. The motion 

information is thus drastically decreased, and there is no blocking artifacts resulted 

from the block matching technique. 

6.5 Contour Coding 

A major problem in object oriented video coding is the efficient encoding of object 

boundaries. There are two common approaches to encode the segmentation infor-

mation. One approach is based on a spline approximation of the boundary, and the 

other is based on chain codes. The original boundary represented with pixel accuracy 

can be losslessly encoded by an 8-connect chain code. Using 4-connect chain code 

can encode with fewer bits. 

Let B = b0, b1, bNB - 1 denote the connected boundary which is an ordered 

set, where b j  is the j-th point of B and NB  is the total number of points in B. Let 

P = p0,p1, ... ,pNp-1  denote the contour used to approximate B which is an ordered 

set, where pk  is the k-th point of P and Np  is the total number of points in P. The 

approximation used in our proposed algorithm is described shortly in this subsection. 

The bits to encode the entire contour is 

where R is the total bits, and r is the bits used to code two consecutive points. 

This encoding scheme which is used in the proposed algorithm is a combination 

of an 8-connect or 4-connect chain code, and a run-length encoding scheme. There 

are two passes used in this coding scheme. The first pass records the direction values 

while the second pass records the run-length of a direction. 
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The algorithm is, 

1. Choose an object. 

2. Choose an arbitrary contour point on the object. 

3. Find the next contour point and compute its direction value. 

4. If the direction value is equal to the previous one, then the run-length increased 

by 1. Otherwise, a new direction value is added to the first pass. Update the 

contour point. 

5. Co to step 3 until no more contour point can be found on the object. Then 

leave this object. 

6. Co to step 1 until all objects are coded. 

7. The two passes are entropy coded. 

The direction values are given in Figure 6.4. Figure 6.4(a) has 4 directions, which 

will be coded as binary sequence (00), (01), (11), and (10). The binary codes for 8 

directions are shown in Figure 6.4(b). 

After the objects are segmented at the encoder, this contour information will 

be transmitted to the decoder, and the decoder uses it to reconstruct the image. 

Because this information is preserved as long as the object appears in the scene, and 

it does not need to be resent. 

6.6 Predictive Error Coding 

The transmission of the predictive error information is still necessary because 

1. The segmentation is not perfect. 

2. Some covered scene exposes due to disocciusion take place. 
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Figure 6.4 The contour directions 

3. There is error between the estimated motion and the true motion. 

It is noted that the disocculusion may affect the bit rate severely. These areas can be 

predicted from the previous frame. The predictive error is divided into 8 x 8 blocks, 

and DCT is applied block by block. 

6.7 Experiments 

In order to evaluate the new algorithm, two video sequences, a simulation sequence 

with three moving objects and a real image sequence with two moving boxes and a 

fixed box, are used in this experiments. 

6.7.1 A Simulation Sequence 

The camera setting for the simulation sequence is in Figure D.1. θ = 2.50. The box1 

and box3  have sinusoidal textures on their surfaces, and box 2  has uniform surfaces. 

The first four frames of the sequence are shown in Figure D.2. The small box 

with sinusoidal (boxi ) moves with 2 pixels/frame horizontally and 2 pixels/frame 

vertically. The largest box (box3 ) moves with -1 pixel/frame horizontally and 1 

pixel/frame vertically. The other box (box2) moves with -1 pixel/frame horizontally 
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and -2 pixels/frame vertically. The minus sign means the opposite direction. White 

Gaussian noises are added to the background. The optical flow field is obtained with 

the correlation-feedback with Kalman filter algorithm, and the depth obtained with 

Equation 6.19. The objects are segmented according to the three criteria. Only 

depth is used in the first criterion, Z0  is chosen to be 1050, 980, 940 for different 

objects, and 6p=20. 8-connectivity is tested in the second criterion, and er = 20% 

in criterion 3. The contours of the three objects are coded with 4-directions and 

the prediction error is DCT coded. The bit rate and the PSNR of the reconstructed 

frames are shown in Figure D.3. It achieves PSNR 38.46dB at bit rate about 0.09 

bpp. The contours are coded at 0.04 bpp for the first frame, and the motion vectors 

are coded at 0.008 bpp. 

6.7.2 A Real Image Sequence 

The camera setting for this real sequence is in Figure D.4. 0 = 2.5°. The box 2  and 

box 3  move together, and box1  is fixed. The first frame of the sequence is shown in 

Figure D.5. The optical flow field is obtained with the correlation-feedback with 

Kalman filter algorithm, too. Only depth is used in segmentation. Zo  is chosen to be 

1080, and 875; δr = 40. 8 connectivity is tested in second criterion too, and Er = 20% 

in criterion 3. 

The predictive error and the PSNR of the reconstructed frames are shown in 

Figure D.6. At hit rate 0.12 bpp, it achieves PSNR 37.536 dB. The results for 

different quality of the reconstructed image is given in Table 6.1, 

6.8 Conclusion 

A new video coding algorithm which is based on segmentation is given in this chapter. 

Three criteria are defined for segmentations and a chain code combined with run 

length is implemented to code the shapes of the segmented objects. The advantages 
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Table 6.1 The results of the real. sequence 

PSNR  27.2 31.4 36.5 37.5 39.0 
bpp 0.004 0.0l1 0.08 0.12 0.34 	 

of this algorithm are that only a few bits are required to code the motion vectors, 

and it can handle the occlusions since the depth information is used so that very 

low bit rate is obtained with good quality of reconstructed video frames. On the 

other hand, it can easily reconstruct the right image sequence from the left sequence 

with the disparity vector fields, which can be calculated from the given stereo video 

sequence, or vice versa. This algorithm works well for regular shape objects and rigid 

motions. 



CHAPTER 7 

SUMMARY 

This chapter contains a summary of our major research contributions, a review 

of some unsolved problems and a discussion of some possible directions for future 

research. 

7.1 Major Contributions 

It is known that in intraframe coding spatial redundancy is reduced. The 1-pictures, 

defined in MPEG, are coded independently of each other. Therefore, every I-picture 

can be accessed randomly. Any frame in a sequence consisting of the 1-pictures 

exclusively, such as coded with MJPEG, can be displayed easily and with less buffer 

memory than that coded with the interframe coding. However, it needs high bit-rate. 

The motion compensated video coding, used in interframe coding, reduces temporal 

redundancy drastically. Compared with MJPEG, it increases compression ratio by 

a factor of more than ten at the same quality of reconstructed frames. The motion 

compensation is widely used in the video coding standards. At high bit-rate, motion 

compensation with block matching techniques works very well for video coding. But, 

at very low bit-rate, because very limited bits are used to code prediction error, 

annoying blocking artifacts become more significant than that at high bit-rate. Prom 

our experiments, the bits used to code motion vectors is comparable to the bits 

used to code prediction error in the case of very low bit-rate video coding. More 

specifically, at high bit-rate, the bits to code motion vectors are only less than 5%, 

while at very low bit-rate, it will need 30% to 50%. Those limited bits for coding 

prediction error are not sufficiently enough to eliminate blocking artifacts which arises 

from block matching model, and many efforts have been made to reduce artifacts. To 

eliminate blocking artifacts, one of the potential approaches is to use dense motion 

88 
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fields. The dense motion field is pixel-based rather than block-based, so that it can. 

eliminate blocking artifacts. To transmit dense motion vectors needs, however, more 

bits than to transmit block-based motion vectors. This difficulty has made optical 

flow field little used for motion compensation in video coding after some trials in the 

early 80s. In this dissertation research, it is found that dense motion vectors can be 

efficiently compressed with DCT techniques. For example, points in a human face 

are controlled by skin and muscles, and a point motion is highly correlated with its 

neighboring points. Further theoretical analyses show that dense motion fields can 

be modeled by the first order auto-regressive model with correlation coefficient 0.8. 

Although the bits used to code dense motion fields may be a few more than that 

required by the block matching technique, the prediction error is much less due to 

the usage of dense motion field. To reduce the computational burden of pixel-based 

motion field determining, a pre-processing is applied to detect motion areas. Only 

motion vectors in those areas that involve obvious motion will be calculated. The 

pre-processing reduces computation to one third in general. These analyses result 

in an efficient coding algorithm for very low bit-rate video coding which uses DCT 

coded dense motion field as motion compensation. Compared with H.263, the new 

algorithm eliminates annoying blocking artifacts, hence making reconstructed video 

frames much more visually pleasant while maintaining almost the same bit-rate. 

However, for very complicated video sequence, its performance will decrease because 

the computation in optical flow determination and the amount of prediction error 

will increase. 

The region-based DWT algorithm also uses DCT coded dense motion field. 

It decomposes the picture into three regions, significant, less significant, and non-

significant regions. The motivation of doing that is to assign bits to regions according 

to their content significance. For example, when people observe a head-and-shoulder 

type sequence, their attention, in general, is focused on the speaker's face. Assigning 
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more bits to the facial portion will improve the quality of reconstructed frame subjec-

tively. It achieves similar performance to that by the previous algorithm. However, 

it has more flexibility in terms of adaptively assigning bits to regions according 

to their content significance and thus improve the quality of significant regions. 

Furthermore, the performance of this algorithm can be potentially enhanced once the 

DWT technique is improved. Similarly to the previous algorithm, its performance 

will decrease when complexity of video sequences increases. 

After studying the model-based video coding techniques, we find several 

problems preventing this powerfully potential technique from being practically used 

for very low bit-rate video coding. The first problem involves identification and 

segmentation. In order to obtain high quality of reconstructed frames, some 3-D 

wireframe model algorithms and AU methods require identification and segmentation 

of some sensitive portions, such as lips and eyes. Consequently, the computational 

complexity increases drastically. The second problem is model fitting. To fit a 

generic model to a special human face is not straightforward. It is either non-

automated or not fitting well. Not only the shape of face need to be fitted but also 

eyes and mouth need to be fitted. The third problem is motion estimation. For the 

3-D wireframe model, the 3-D motion vectors need to be calculated with relatively 

high accuracy. If the motion vectors are not accurate enough, it will result-in high 

prediction error, and it will need many hits to code prediction error, as a result, the 

compression ratio will decrease. 

After realizing these problems, we proposed an algorithm which is based on 

dense motion field and thresholding techniques. This algorithm is much simpler than 

the model-based techniques, and it outperforms some typical model-based techniques 

in terms of the bit-rate and the quality of reconstructed frames. 

Stereo sequence coding is a research topic on which relatively less effort has 

been made. From stereo sequence, we can obtain the 3-D information which can be 
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used for object segmentation. In this dissertation, the proposed algorithm for stereo 

video sequence coding, which utilizes three criteria to segment objects, can achieve 

very high compression ratio for regular shape of objects. A combination of chain 

codes and run-length coding is used to code the contour of the segmented objects. 

This algorithm is good for sequences with rigid motion and regular shapes of objects. 

With many non-regular shape objects, its performance will deteriorate. 

In a summary, four efficient video coding techniques at very low bit-rate are 

proposed in this dissertation. These four algorithms are all based on dense motion 

fields used for motion compensation. Besides, following an optical flow determining 

technique devised by Pan et al [71][62], some simulation and real image sequence 

experiments have been carried out to evaluate the correlation-feedback with a 

Kalman filter [62]. It is concluded that the correlation-feedback technique is robust 

against noise. The Kalman filter does improve the motion field accuracy near moving 

boundaries. 

7.2 Major Unsolved Issues 

Our efforts in this dissertation are aimed at finding out some very efficient techniques 

to reduce or eliminate the blocking artifacts. The computational efficiency is 

another important issue. However, the exact number of operations in these proposed 

algorithms has not been quantitatively analyzed, this is because the operations in 

computation is quite complicated. 

The segmentation-based stereo video coding algorithm works very well for 

relatively simple video sequences. For highly complicated sequences, it needs to 

be tested and further improved. 
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7.3 Directions for Further Research 

Firstly, how to overcome the problems associated with the model-based video coding 

technique, which are mentioned in the first section of this chapter. These problems 

need to be solved before the model-based technique can be practically used for video 

coding. Secondly, how to reduce or eliminate the blocking artifacts at very low 

bit-rate is still a research topic. Thirdly, the most existing dense motion field deter-

mining techniques were not proposed specifically for video coding. Therefore, these 

techniques should be modified before they are used for video coding. New techniques 

need to be devised to match this application. Finally, for some video coding schemes, 

such as content-based, region-based, and object-based, in order to compress video 

sequence more efficiently, prior knowledge of the image content is very helpful and 

necessary. Hence how to extract the content information from the first frames is a 

very important research topic. 

It is expected that the future research for video coding will be in both very low 

bit-rate and high bit-rate. For very low bit-rate video coding some very efficient 

coding schemes need to be developed, and for high bit-rate video coding some 

problems in applications need to be solved. 
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Figure A.1 True optical flow 
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Figure A.2 Optical flow obtained with gradient-based 



Figure A.3 Optical flow obtained by gradient-based with Kalman filter 

Figure A.4 Optical flow obtained with correlation feedback algorithm 
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Figure A.5 Optical flow obtained by correlation feedback with Kalman filter 

Figure A.6 Real image: three boxes 
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Figure A.7 UL with correlation-feedback 
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Figure A.8 U'-' with correlation-feedback and Kalman filter 



Figure A.9 UL with Horn-Schunck algorithm 

98 

Figure A.10 UL with Horn-Schunck and Kalman Filter 



Figure A.11 The image of Hamburg Taxi 
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Figure A.12 Needle diagram of optical flow 



Figure A.13 Needle diagram of optical flow by Horn and Schunck's algorithm 

Figure A.14 Needle diagram of optical flow by Singh's algorithm 
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Figure A.15 Needle diagram of optical flow by correlation-feedback 
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(a) The 21st original frame of Miss America sequence 

(b) The reconstructed 21st frame with proposed algorithm 
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(c) The reconstructed 21st frame with H.263/N 

Figure B.1 Miss America 

Figure B.2 PSNR of Miss America sequence 



(a) The 39th original frame of Claire sequence 

(b) The 39th reconstructed frame with proposed algorithm 
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(c) The 39th reconstructed frame with H.263 

Figure B.3 Claire 

Figure B.4 PSNR of Claire sequence 
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Figure C.1 The original image 
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Figure C.2 The level 1 subimages 



110 

Figure C.3 The level 2 subimages 
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Figure D.1 The camera setting for simulation sequence 
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Figure D.2 The first four frames of the simulation sequence 
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Figure D.3 The result of the simulation sequence 

Figure D.4 The camera setting for the real image sequence 



Figure D.5 The first frame of the real image sequence 
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Figure D.6 The results of the real image sequence 
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