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ABSTRACT 

LOW FREQUENCY CHARACTERIZATION OF A LOOP ANTENNA 

by 
Irene Koukhta 

The conventional solution of an integral equation for the loop antenna in free space can be 

expressed analytically using Fourier Series. However, the solutions based on delta gap 

feed model yield divergent input susceptance. 

To overcome such diverging results, alternative solution using equivalent magnetic 

frill current feed models were implemented. Although low frequency models for delta gap 

feeds were suggested, no generalized low frequency expansions for the input admittance 

have been reported previously. In this work, such generalized low frequency expansion are 

developed for both delta-gap and magnetic frill feeds of loop antennas. Validity of such 

expansion have been investigated comparing them with the published results. 

One other advantage of keeping such expansions limited to only few terms is to 

associate each term with the equivalent inductance, resistance, capacitance, radiation 

conductance and susceptance of the antenna. 
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CHAPTER 1 

INTRODUCTION 

In modern applications the circular loop configuration can either be used as an antenna 

(receiving or transmitting) in various communication systems or as a probe to detect 

magnetic fields. A frequency-dependent parametrization of the input admittance of a loop 

is of interest to the system designer. Especially if the loop has to operate at low 

frequencies below its first resonance, an accurate representation of an input admittance 

could not be obtained from elementary delta-gap model of the feed [1]. Conventionally, 

the input admittance of the loop antenna was determined via the solution based on the 

delta-gap feed integral equation for the current distribution I(φ). Then, the current at the 

feed point I(φ=0) normalized with the voltage Vo e at the feed point is used to determine 

the input admittance. The divergent character of the delta-gap model can be corrected by 

using the feed model in terms of the equivalent magnetic frill current, yielding results 

which are very close to the experimental measurements [2]. 

Low frequency expansions of dipole antennas have been obtained by Niver, et. al. [3]. 

Low frequency expansion of the loop antenna in the form of leading terms have been 

reported in [1]. Here, a systematic approach to the low frequency characterization of the 

loop antenna is developed. 
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The formulation developed in this work leads to the equivalent input, admittance of the 

loop antenna in the form of 

(1 .1) 

and in principal can be extended to include more high order terms if necessary. The 

advantage of keeping the representation with only few terms permits to associate each 

term with equivalent inductance, resistance, capacitance and radiation resistance. 



CHAPTER 2 

LOW FREQUENCY CHARACTERIZATION OF LOOP ANTENNA WITH 
DELTA-GAP EXCITATION 

2.1 Integral Equation for the Loop Antenna 

For the convenience in the analysis, the loop antenna shown in Figure 1 will be treated as a 

transmitting antenna. However, due to reciprocity, all its characteristics will be equally 

valid if it is used as a receiving antenna. As shown in the Figure 1, it consists of a circular 

loop of outer radius b of a conducting wire of radius a excited by a voltage generator of 

time harmonic variation (e jwt). The generator is assumed to have a voltage Vo_e and is 

located at the feed point φ'=0. For low frequency characterization, it will be assumed, that 

| ka  I « 1 and a « b, both conditions also satisfy the thin wire approximation [4] 

commonly used in the literature. 

The Electric Field Integral (EFI) equation formulated [4] for the unknown current 

distribution MO along the loop, excited by the voltage generator, based on the vanishing 

boundary condition defined on the surface of the antenna, i.e., 	x E101 ) s = 0 , except at 

the feed point. Here K(0, =Ei +Es and n  is the unit normal vector on the loop surface. 

At the feed point 

(2.1) 

3 



It follows from the relation 

(2.2) 

(2.3a) 

(2.3b) 
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Fig. 2.1 Geometry of a Circular loop antenna 

for the scalar potential that along the 

surface of the loop 

The scalar and vector potentials along the antenna surface at the element ds = b dφ are 

given as 



with 

(2.4a) 

(2.4b) 

(2.5) 

where the kernel is approximated as 
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Substitution of (2.3b) and (2.5) in (2.2) results in the approximate integral equation for 

the axial current I (φ') in the loop subject to (2.4) 

In more compact form (2.6) can be expressed as 

where the new kernel M(φ-φ') is 

(2.6) 

(2.7) 

(2.8) 



(2.9) 

(2.10) 

and 

(2 11) 

(2.12) 

Here, the wave impedance 
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and the wave number 

is defined for the medium (Eo,  µ0). 

2.2 Fourier Series Solution of the Integral Equation 

The solution of the integral equation (2.6) can be obtained in the form of a Fourier series 

expansion. This solution is based on expansions of both the kernel W( — φ`)  and the 

current No) in terms of Fourier series 

The unknown coefficients Km  and In  must be determined. Using the inverse relation, In  can 

be expressed as 

Similarly, the unknown expansion coefficients, Km  can be obtained if (2.9) is multiplied on 

both sides by e^jnφ and integrated with respect to 9 from -π to π. 



The next step is to substitute (2.9) in (2.8) to obtain expansion for the kernel 

Since 

and 

it is evident that 

where 

Hence, the integral equation in (2.7) reduces to 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 
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Since, in the summation over m only the term in = n contributes to the integral (all other 

terms vanish), it yields 



(2.20) 

and explicitly can be expressed as 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

Substitution of the expansion for current MO in (2.10) and (2.7) into (2.19) leads to 
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Expansion in (2.20) represents a Fourier series with the expansion coefficients 

The coefficients are determined using the properties of the 6-function 

The infinite summation in (2.10) can be re-expressed using only non-negative indices ii to 

give for unknown current distributions 

and can be reduced further into the solution for the unknown current distribution on 

The current distribution evaluated at the feed point, φ'=0  leads to the input admittance of 

the loop 
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2.3 Low Frequency Expansion of an Input Admittance 

A frequency dependent analytical expression for the input admittance of a loop antenna is 

desirable for circuit design applications. Here, the input admittance expansion in terms of 

wavenumber k is formulated, i.e. Y=Y(k). Since the input admittance Y in (2.25) depends 

on the values of ao and an  inversely, and (2.18) yields 

(2.26) 

the presence of a singularity at k = 0 necessities the proper consideration of the 

expansion around ko  = 0. 

Using the Taylor's series expansion of an analytical function f(x) around an 

expansion point xo, 

(2.27) 

suggests that the lower order coefficient 1/ao  given in (2.26) can be expanded around an 

expansion frequency k = ko. Thus, 

(2.28) 

where expansion coefficients are expressed as 

(2.29a) 

(2.29b) 



The derivatives of the expansion coefficients K, are defined as 

and 

(2.29c) 

(2.30) 

(2.31) 

Since, the function has a singular point at k = 0 , which requires 

where the expansion coefficients are 

(2.32) 

(2.33a) 

(2.33b) 

(2.33c) 

(2.33d) 

(2.34) 
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that a term —1/k appears in the series expansion of ]/a0  . The Taylor's series then reduces 

to a MacLaurin's series when the expansion point is chosen at ko = 0, hence 

Usage of (2.27) for expansion point ko=0 requires the additional third derivative K1"'/, and 



(2.35) 

(2.36) 

and 

(2.37) 

As 

directly as 

where 

with explicit expressions for the individual terms 

(2.38) 

(2.39a) 

(2.39b) 

(2.39c) 

(2.40) 

and 
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High order expansion coefficients  can also be expanded using a similar 

procedure. Following (2.18),  in (2.25) is expressed as 

has no singularities for any k, the Taylor's series expansion can be written 



with expansion coefficients defined as 

(2.43) 

(2.44a) 

(2.44b) 

(2.44c) 
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(2.41) 

(2.42) 

Special consideration has to be taken when chosen expansion point is ko  = 0, the 

Taylor series then reduces to the MacLaurin's series 

Using all these expansions, the input admittance, expressed in ascending order of 

terms in k around the expansion point ko  = 0, becomes 

and if the chosen expansion point is ko  0, is given by 

(2.45) 

(2.46) 



plate capacitance 

CHAPTER 3 

LOW FREQUENCY CHARACTERIZATION OF A LOOP ANTENNA WITH 
THE FRILL EXCITATION 

The use of the 6-gap generator in feed modeling leads to a well known problem, the 

imaginary part of the series for the current diverges at the feed point: 

co as n 	00 due to the divergent nature of the chosen 

expansion However, a simple delta-gap model of the feed point in terms of the parallel 

suggests that d ----> 0, C 	co . The divergent nature of the 

susceptance due to the 5-gap feed model can be improved by using a more realistic model 

for the excitation of the loop antenna in terms of an equivalent frill magnetic current 

generator [2]. 

3.1 Magnetic Frill Excitation of the Loop Antenna 

A loop antenna in free space can be replaced by a half-loop fed through a perfectly 

conducting plane, as shown in Fig. 3.1. The electric field in the coaxial aperture is 

assumed to be a TEM mode: 

(3.1) 

where p is the radial coordinate on the conducting plane, a, and ao  are the inner and outer 

radii of the coaxial transmission line, respectively. The radius of the outer conductor a0  is 

chosen small enough that only the TEM mode propagates in the coaxial line. The 

13 
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electromagnetic analysis of the structure in Fig. 3.2 facilitates solution of the antenna 

depicted in the Fig. 3.1 due to the presence of a large conducting plane, assumed to be 

infinite and the use of image theory. 

Loop 

Perfectly 
conducting 
Plane 

ao  

Feeding 
Coaxial 
Line 

Fig. 3.1 Half-loop driven through image plane from coaxial transmission line. 

Magnetic 
Frill 

Fig. 3.2 Equivalent full loop excited by magnetic frill 
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Here, the loop antenna is driven by a magnetic frill with magnetic surface current density 

(3.2) 

The electric field produced by this magnetic frill current along the surface of the loop 

serves as the excitation for the antenna [5]. 

(3.3) 

where the free space Green's function is 

(3.4) 

and, referring to Fig. 3.3, r is the distance from the source point A (toroidal coordinates: 

ρ' ,θ' ,φ' = 0) on the frill to the observation point B(ρ=a, ,θ ,φ) ) on the surface of the 

loop. The prime "/" in V' indicates differentiation with respect to the source variables, and 

the surface of integration is the area filled by the equivalent frill current density. 

Magnetic Frill 

Fig. 3.3 Detail of geometry 



with 

(3.6) 

After inserting (3.2) into (3.3) and expressing in terms of the source coordinates 

reduces to 

(3.7) 

(3.8) 

(3.9) 
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The field produced by the frill current is most significant in the vicinity of the driving 

point, φ = 0. Due to the thin-wire assumption, the wire of the loop is nearly straight in this 

region, and the distance r can be approximated by 

(3.5) 

In addition, the component of the electric field tangential to the surface of 

the loop Em', is approximately equal to 

Hence, the electric field integral equation in (2.7) with the inclusion of magnetic frill 

current becomes 

Similarly, expanding the current I(φ') along the loop in terms of the Fourier series (2.10) 

leads to 



where the coefficients are given by 

Extracting current expansion coefficients in  as 

the unknown current I(φ') can then be explicitly expressed as 

and the final result for the desired series of current reduces 

The corresponding input admittance is 

17 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

3.2 Low Frequency Expansion of an Input Admittance 
for Magnetic Frill Excitation 

The frequency characterization of an input admittance of a loop antenna modeled by a 

magnetic frill excitation consists of a series representation of an admittance as a function 

of k = w/c, where c is the speed of light in vacuum . If only few terms kept in a such 

expansion of an admittance 

(3. 1 5) 



(3.16) 

(3.17) 

(3,18a) 

(3.18b) 

(3.18c) 

where, 
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the expansion coefficients will correspond to capacitance, resistance, inductance, radiation 

resistance and radiation reactance. However, confining such an expansion to only a few 

terms, limits the applicability of this characterization over relatively narrow frequency 

band. The lowest expansion point can be chosen as ko = 0. If a wider band coverage is 

desired then the expansion has to be implemented over the band repeatedly at different 

expansion points k = ko. The expansion of (3.14) can be accomplished by expanding bo/ao  

and bn/an separately. 

Using the Taylor's series expansion around lc()  in (2.27), the ratio bo(k)/ao(k) 	can be 

expressed as 

or it can be rearranged as 



From (4.2) 

where distance r1  and r2  are defined respectively, as 

and 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

The function has a singular point at k = 0 , therefore a term ~1/k 

(3.23) 

(3.24a) 

(3.24b) 

(3.24c) 

where 
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has to be included in the series expansion of bo(k)/a0(k) . The coefficients of the series can 

be easily evaluated by expanding bo(k)/(bK1(k)) in a Taylor series and dividing the result 

by k. Hence, such an expansion can be expressed as 



(3.24d) 

(3.25) 

(3.26a) 

(3.26b) 

(3.26c) 

where, 

and can be equated to 

Using (2.18) it can be expressed as 

where individual terms are 

(3.27) 

(3.28) 

(3.29) 

(3.30) 
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Similarly the ratio  can be expanded in terms of a Taylor series around ko as 

Similarly, if the expansion is carried around ko  = 0 equation in (3.25) simplifies as 



(3.34a) 

(3.34b) 

(3.34c) 

(3.35) 

21 

(3.31) 

(3.32) 

(3.33) 

Comparison of (3.26) and (3.27) leads to 

Then, the input admittance for the case when ko=0, becomes 

and for ko=0 the input admittance reduces to 

(3.36) 



(4.1) 

(4.2) 

CHAPTER 4 

NUMERICAL RESULTS 

4.1 Evaluation of Coefficients 

The expansion coefficients In  in I(φ') need the evaluation of an  (see 2.22) which are 

expressed in terms of Kn  given in (2.13), 

Integration in evaluating the expansion coefficients is carried out using Simpson 

method. However for a loop antenna these coefficients could have been evaluated 

analytically and expressed in terms of Bessel functions. Numerical integration was 

preferred to keep the programming simpler by avoiding inclusion of special subroutines 

to evaluate Bessel's functions. 

Similarly, to obtain the current distribution I(φ)  in the loop with the magnetic frill 

excitation, the coefficients b„ defined in (3.10) have to be evaluated 

22 
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In order to determine numerical values of these coefficients a combination of analytical 

evaluation and numerical integration is used. The purpose of analytical evaluation is to 

reduce computational burden of a two dimensional integration by simplifying the 

integrand and by integrating with respect of x analytically. The remaining integral with 

respect of φ is evaluated numerically. 

Hence, the expression for bn can be modified 

Then the function Ψ(ρ') can be expended in a Taylor series with respect of as 

where 

and 

Since, 

then, 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 



(4.10) 

(4.11) 

(4.12) 

The first derivative of 4' with respect of p at p=0 and integrated with respect to 

x from -π to π is equal to zero. The second derivative of Ψ with respect of p at p=0 and 

integrated with respect of x from -π to π is equal to 

(4.13) 

where r(0) = r(ρ=0). 

Therefore, use of (4.13) in evaluation of the coefficients bn  reduces the computational 

effort significantly. 

24 
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4.2 Evaluation of Admittance 

Computer codes were developed to analyze the input admittance of loop antenna with 

source modeled via 

(a) delta-gap generator, 

(b) magnetic frill current excitation . 

Frequency characterization of admittance expressed through various expansions in this 

work are compared to Fourier series solutions reported in [1] and [2] for the delta-gap and 

magnetic frill excitations, respectively. These solutions were used as a reference to 

compare results based on various characterizations developed throughout the scope of 

this work. Computer codes were written to duplicate results reported in [1] and [2]. 

Figure 4.1 and 4.2 show the variation of the current distribution for the delta-gap 

excitation as a function of φ along the loop antenna for Q = 2 In (2π b/a ), Q = 10 and 

= 15, respectively. Figure 4.1 exhibits identical variation as in with the Figure 11.4 

reported in [4]. 

Using the derived current distributions in the computer codes , the input admittance Y is 

determined and shown in Figure 4.3 for , Q = 10 and Q = 15, respectively. Figure 4.3 

yields results similar to Figure 11.3 of reference [4] . Comparisons were made for the 

Fourier series solutions of magnetic frill generator as developed in [2] , and computer 

code generated in the course of this work and similar satisfactory results were observed . 

Hence the series solutions obtained numerically using such codes were used as reference 

solutions for subsequent comparisons of results based on varies frequency expansions 

developed in this work . 



βb=0.4 
βb=0.3 

13b=0.2 

βb=0.1 

Re (I) 

cp, deg 

Im(I) βb=0.4 
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φ

, deg 

Fig. 4.1 Real and imaginary components of the normalized current in a delta-gap 
excited circular loop antenna, Ω=10. 
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Fig. 4.2 Real and imaginary components of the normalized current in a delta-gap 
excited circular loop antenna, Q=15 
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k 

Fig. 4.3 Normalized Admittance with the Delta-Gap Excitation 
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The low frequency expansion in (2.45) around k0 =0 depicted in Figure 4.4 for the 

real part of the admittance agrees very well in the 0 < k < 0.05 range whereas the 

imaginary part starts to deviate quite rapidly away from the expansion. This is very 

obvious due to divergent nature of susceptance around ko =0 and more careful 

observation of Figure 4.4 results show that based on approximation predict the presence 

of a resonance (Im{Y} = 0) whereas the reference solution exhibits no sign of such 

resonance condition at these low frequencies. Further expansions around k0=0.1, 0.2 and 

0.3 exhibit similar behavior except that now deviations are much less in the region 

∆k=0.1 compared to k0=0, as seen in Figure 4.5, 4.6, 4.7, respectively. Expansions 

around k0=0.4 and k0=0.5 exhibit excellent agreement with the reference solutions of 

Fourier series solutions as seen in Figure 4.8, 4.9, respectively. 

Since the behavior around the resonance doesn't show rapid variations in the input 

susceptance , the four term expansion is adequate to lower the bandwidth ∆k=0.1. 

Taylor's series expansion around k = ko is expected to produce a perfect match at the 

expansion point, and diverging behavior as observations are made further away from the 

expansion point. However, such behavior was not observed in most of the numerical 

results, shown in Figure 4.6 to 4.10 due to various approximations made in evaluation to 

avoid two dimensional numerical integration. The expansion coefficients in (2.45 - 2.46) 

are tabulated for various expansion points in Table 1, covering the frequency band 

0<k<0.7. Note that when the input admittance is to be determined, each coefficient has to 

be multiplied by the proper k dependence. 
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Fig. 4.4 Comparison of the delta-gap excited antenna input admittance calculated 
around ko =0, versus Fourier Series Solution 
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Fig. 4.5 Comparison of the delta-gap excited antenna input admittance calculated 
around k0 =0.I, versus Fourier Series Solution 

3 1 



Re (Y) 

	 Expansion around k0=0.2 
- - - Fourier series solution 

k 

Im(Y) 

	 Expansion around k0=0.2 
- - - Fourier series solution 

k 
Fig. 4.6 Comparison of the delta-gap excited antenna input admittance calculated 

around k0 =0.2, versus Fourier Series Solution 
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Fig. 4.7 Comparison of the delta-gap excited antenna input admittance calculated 
around k0 =0.3, versus Fourier Series Solution 
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Re(Y) 

Fig. 4.8 Comparison of the delta-gap excited antenna input admittance calculated 
around k0 =0.4, versus Fourier Series Solution 
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	 Expansion around k0=0.5 
- - - Fourier series solution 

	 Expansion around k0=0.5 
- - - Fourier series solution 
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Fig. 4.9 Comparison of the delta-gap excited antenna input admittance calculated 
around k0 =0.5, versus Fourier Series Solution 



Expansion around k0=0.6 
- - - Fourier series solution 

	 Expansion around k0=0.6 
- - - Fourier series solution 
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Fig. 4.10 Comparison of the delta-gap excited antenna input admittance calculated 
around k0 =0.6, versus Fourier Series Solution 



37 

Table 1. Expansion Coefficients for Input Admittance of delta-gap excited loop antenna 

Y -1  Yo Y1 

0 -j462.4e-06 0 j1.4703 42.166e-06 

- j39.165e-06 

0.1 0 47.99e-09 

-j 13.86e-03 

-1.2725e-06 

j 1 40.34e-03 

51.545e-06 

-j462.04e-03 

0.2 0 9.21e-09 

-j6.925e-03 

-12.007e-06 

j36.201e-03 

85.599e-06 

-j57.134e-03 

0.3 0 6.269e-06 

-j4.582e-03 

-53.167e-06 

j 16.687e-03 

165.806e-06 

-j 15.973e-03 

0.4 0 29.744e-06 

-j3.329e-03 

-184.12e-06 

j 9.404e-03 

349.239e-06 

-j5.3099e-03 

0.5 0 123.37e-06 

-j2.360e-03 

-591.83e-06 

j5.076e-03 

794.638e-06 

-j457.82e-06 

0.6 0 503.772e-06 

-j 1.096e-03 

-1.949e-03 

j504.83e-06 

2.089e-03 

j3.687e-03 



38 

The frill generator used in the source model of the loop antenna is expected to produce 

more accurate representation of the input susceptance. However, it is very difficult to 

carry out a one-to-one comparison due to mismatch in the physical dimensions of a delta-

gap and the coaxial feed used in the magnetic frill excitation. The Fourier series solution 

of the magnetic frill excitation is chosen as a reference solution for frequency expansion 

developed in this work. Current distribution of Figure 4.11 and 4.12 and admittance 

variation of Figure 4.13 show very good agreement with the published results [2]. 

It is worthwhile to mention that the magnetic frill excitation yields much more 

accurate results when comparisons are made with experimental measurements. 

Comparison of various frequency expansions in the 0<k<0.7 range showed very good 

agreement with the reference solutions which permit to construct equivalent circuit 

models of the loop antennas. Using expansion coefficients of Table 2 (or Table 1) the 

input admittance of the lop antenna can be expressed as 

(4.14) 

It is required to include additional terms to accommodate better physical interpretation of 

(4.14). It is reported [1] that in low frequency characterization of the loop antenna the real 

. Presence of more terms will show that higher 

order terms will be insignificant at lower frequencies due to the representation developed 

in this work. 

part of the impedance 
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Fig. 4.11 Real and imaginary components of the normalized current in a frill excited 

loop antenna, Q=10. ao=ai/0.24 
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Fig. 4.12 Real and imaginary components of the normalized current in a frill 
excited loop antenna, Q=15, a„=ai/0.24. 
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Re(Y) 

Im(Y) 

k 

Fig. 4.13 Normalized Admittance with the Frill Excitation with S2=15 

(a) ao=ai/0.24 (b) a0=ai/0.46 (c) ao=ai/0.74 
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Re (Y) 

Im(Y) 

k 

Fig. 4.14 Comparison of the frill excited antenna input admittance calculated 
around k0=0, versus Fourier Series Solution 
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k 

Im(Y) 

	 Expansion around k0=0.1 

- - - Fourier series solution 

	 Expansion around ko=0.1 

- - - Fourier series solution 

Re(Y) 

k 
Fig. 4.15 Comparison of the frill excited antenna input admittance calculated 

around k=0.1, versus Fourier Series Solution 
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	 Expansion around 0=0.2 

- - - Fourier series solution 

Im(Y) 
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	 Expansion around k0=0.2 

- - Fourier series solution 
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Fig. 4.16 Comparison of the frill excited antenna input admittance calculated 
around k0=0.2, versus Fourier Series Solution 
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Expansion around k0=0.3 

- - - Fourier series solution 

	 Expansion around k0=0.3 

- - - Fourier series solution 
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Fig. 4.17 Comparison of the frill excited antenna input admittance calculated 
around k0=0.3, versus Fourier Series Solution 
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Fig. 4.18 Comparison of the frill excited antenna input admittance calculated 
around k0=0.4, versus Fourier Series Solution 
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	 Expansion around k0=0.5 

- - - Fourier series solution 

Re(Y) 
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Expansion around 1;0=0.3 

- - - Fourier series solution 

Im(Y) 

βb 

Fig. 4.19 Comparison of the frill excited antenna input admittance calculated 
around k0=0.5, versus Fourier Series Solution 



	 Expansion around 1;0=0.6 

- - - Fourier series solution 

k 

Expansion around k0=0.6 

- - - Fourier series solution 

Re(Y) 
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Im(Y) 

Fig. 4.20 Comparison of the frill excited antenna input admittance calculated 
around ko=0.6, versus Fourier Series Solution 
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Table 2. Expansion Coefficients for the Admittance of the frill excited loop antenna 

ko - Yo  V I  V2  

0 -j1.30516e-03 0 j3.267e-03 160.48e-06 

0.1 0 182.52e-09 

-j52.789e-03 

-4.842e-06 

j534.15e-03 

196.46e-06 

-j845.0e-06 

0.2 0 3.507e-06 

-j26.36e-03 

-46.36e-06 

j137.77e-03 

325.32e-06 

-j217.46e-03 

0.3 0 23.86e-06 

-j17.44e-03 

-202.29e-06 

j63.51e-03 

631.10e-06 

-j60.79e-03 

0.4 0  113.31e-06 

-j9.293e-03 

-700.50e-06 

j35.79e-03 

1.329e-03 

-j20.20e-03 

0.5 0 469.82e-06 

-j8.984e-03 

-2.2526e-03 

j19.3186e-03 

3.025e-03 

-j1.742e-03 

0.6 0 1.917e-06 

j4.173 e-03 

-7.421e-03 

j 1.918e-03 

7.649e-03 

-j14.03e-03 



CHAPTER 5 

CONCLUSIONS 

The systematic low frequency expansions for the input admittance of the loop antenna 

have been developed. Computer codes have been generated to solve integral equation for 

the loop antenna with delta-gap and magnetic frill current feeds in terms of Fourier series. 

Results obtained using these codes served as a reference solution to compare various 

expansion models developed in this thesis. This formulation lead to the input admittance in 

the form of 

Such expansion yield very accurate models if the magnetic frill current is used, 

when comparison is made with experiment [2]. Another major advantage of limiting such 

an expansion to only few terms is the capability to identify each term with their 

corresponding inductance, conductance, capacitance, radiation admittance, etc. 

Inclusion of few more terms is currently under investigation to identify more 

accurately the frequency dependence of these physical parameters of the loop antenna. 
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