

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

ABSTRACTION OF AN OBJECT-ORIENTED VOCABULARY
BY PROVIDING A

STANDARDIZED INTERFACE

by
Hemant Kothavade

Controlled vocabularies are ubiquitous in varied application fields. They are

particularly helpful in the medical field since they can unify disparate terminologies

and provide information in a compact, comprehensible manner. In this thesis,

we present a mechanism to efficiently retrieve and update knowledge stored in a

controlled vocabulary modeled as an Object-Oriented Database (00DB) system.

We aim to provide a standardized interface to the vocabulary, such that the imple-

mentation details of the vocabulary are transparent to all users. The user of this

standardized interface will typically be an application programmer who is trying to

provide the vocabulary's knowledge-base to end users. We first describe our approach

to creating the standardized interface. We then present the software architecture and

design for it. We conclude by describing the implementation of this standardized

interface.

ABSTRACTION OF AN OBJECT-ORIENTED VOCABULARY
BY PROVIDING A

STANDARDIZED INTERFACE

by
Hemant Kothavade

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer and Information Science

January 1997

APPROVAL PAGE

ABSTRACTION OF AN OBJECT-ORIENTED VOCABULARY
BY PROVIDING A

STANDARDIZED INTERFACE

Hemant Kothavade

Dr. Yehoshua. Per], Thesis Advisor 	 Date
Full Professor of Computer and Information Science, NJIT

Dr. James Geller, Thesis Co-advisor 	Date
Director of ArtificiaI Intelligence and OODB Laboratory
Associate Professor of Computer and Information Science, NJIT

Dr. Michael Halper, Committee Member 	 Date
Assistant Professor of Math and Computer Science,
Kean College of New Jersey

BIOGRAPHICAL SKETCH

Author: 	Hemant Kothavade

Degree: 	Master of Science in Computer Science

Date: 	 January 1997

Undergraduate and Graduate Education:

e Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1997

• Bachelor of Science in Computer Engineering,
Ramrao Adik Institute of Technology, Bombay, India., 1993

Major: 	 Computer Science

iv

This work is dedicated to
my family and friends

ACKNOWLEDGMENT

I would like to thank Dr. Y. Perl, Dr. J. Geller and Dr. M. Halper for this

opportunity to conduct research under their able guidance. Their continuous interest.

and encouragement have contributed significantly to the work presented in tins thesis.

It has been an enriching experience for me.

I would also like to thank all my colleagues in the laboratory. A special thanks

to the members of my group; without, their hard work and dedication this work would

not have been possible.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

2 THE OOHVR 	 3

2.1 	Controlled Vocabulary as an OODB 	3

2.2 	Description of the InterMED 	5

2.3 Initial OOHVR Schema 	

2.4 Extended OOHVR Schema 	 12

3 AN APPROACH TO THE VOCABULARY INTERFACE 	 17

3.1 User Interfaces to the Vocabulary 	 17

3.1.1 The Form-Based Web Interface 	 17

3.1.2 The Programmatic Interface 	 18

3.1.3 The Graphical Interface 	 18

3.2 Interaction between the Vocabulary and User Interfaces 	 18

3.2.1 Advantages of the API Approach 	 19

3.3 Basic Approach to API Development 	 19

3.3.1 Mapping Queries to Functions 	 19

3.3.2 Abstraction of the Database 	 20

3.4 Deriving the List of Functions 	 21

3.4.1 The Graph-Theoretic Approach to Queries 	 21

3.4.2 Filtering the Patterns 	22

3.4.3 The Patterns for OOHVR 	 	22

4 API DESIGN 	 24

4.1 API Software Architecture 	 24

1.2 API Specification 	 25

4.2.1 Additional Functions 	 25

vii

Chapter 	 Page

4.2.2 Area and Term Level Functions 	 23

4.2.3 Naming the Functions 	 26

4.2.4 Arguments to the Functions 	 26

4.2.5 Error Handling 	 27

4.3 Example of API Specification 	 28

4.4 Sharing the API Functions 	

5 API IMPLEMENTATION 	 30

5.1 Vocabulary Access 	 30

5.1.1 Retrieving Area Level Information 	 30

5.1.2 Retrieving Term Level information 	 31

5.2 Auxiliary Information about the Vocabulary 	 32

5.2.1 Relationship and Attribute Sets 	 32

5.3 Argument Classes 	 33

5.4 Implementation of Error Handling 	 34

5.5 API Library Implementation 	 35

5.6 API Implementation Architecture 	 36

5.7 Miscellaneous Implementation Issues 	 37

5.7.1 Accessing Different Databases 	37

5.7.2 Making each Transaction more Efficient 	 37

6 CONCLUSIONS AND FUTURE WORK 	 38

APPENDIX A MISCELLANEOUS DETAILS 	 40

APPENDIX B CODE FOR THE API 	 44

REFERENCES 	 111

viii

LIST OF FIGURES

Figure 	 Page

2.1 	Three areas in a vocabulary 	7

2.2 	Areas classes corresponding to three areas in Figure 2.1 	9

2.3 OOHVR Schema 	 10

2.4 	Expanded version of vocabulary from Figure 2.1 	 13

2.3 Areas classes corresponding to four areas in Figure 2.4 	 14

2.6 OOHVR schema including intersection area classes 	 16

4.1 API Software Architecture 	 24

5.1 	API Implementation Architecture 	 36

ix

CHAPTER 1

INTRODUCTION

A controlled vocabulary is a centralized software system for representing the concepts

used in an application domain. Controlled vocabularies are very useful in domains

where many different terminologies coexist. The medical field represents such a

domain. The increasing use of controlled vocabularies in the medical field will neces-

sitate their efficient implementation and relatively simplified access to the knowledge

stored in the vocabulary.

We have implemented a medical vocabulary as an Object-Oriented Database

(00DB). This vocabulary originally existed as a semantic network. The mapping

from the semantic network to a schema for the OODB is described in Chapter 2.

This thesis focuses on the issues involved in retrieving information from the

vocabulary implemented as an OODB. In Chapter 3, various alternatives for infor-

mation retrieval are considered. As a first step, we identify the possible users of

the vocabulary and their specific requirements. Based on this knowledge of user

requirements and the vocabulary's modeling, we decide on a specific approach. This

approach requires the creation of a set of low level access functions. These functions

can be invoked by the programs that supply a. specific user interface. Each low level

function represents a basic query posed by the vocabulary user. The derivation of

the set of all queries and their mapping to corresponding functions is also described.

Chapter 4 describes the design of the set of low level functions. Additional

classification of the functions - schema level and instance level - is introduced.

Design issues like function names, function argument(s) and error handling are also

discussed. A mechanism to share the functions amongst the user interface programs

is described.

1

2

The implementation issues for these low level functions are discussed in

Chapter 5. Accessing the vocabulary for information retrieval, adding auxiliary

information and making all the functions shareable are some of the implementation

issues discussed. Special measures to make the implementation robust and efficient

are also described.

Future work and concluding remarks are available in Chapter 6.

Appendix A provides implementation details like special compilation requirements

and accessing the right header files.

Appendix 3 contains the source code for the implementation of the argument

classes and some low level functions.

CHAPTER 2

THE OOHVR

2.1 Controlled Vocabulary as an OODB

The following material is derived from [20].

Starting from the first generation of semantic networks [4, 2(3, 28] and semantic

data models [12, 13], attempts have been made to computerize the semantics of

natural language terms. While most of these attempts were limited to small domains

or "toy" applications, there have been a number of notable exceptions such as

Cyc [19] and WordNet [21]. Another large semantics-based vocabulary called the

Medical Entities Dictionary (MED) has been developed in the healthcare arena [5].

From an application standpoint, controlled vocabularies alleviate software systems

of the burden of maintaining their own ad hoc vocabularies. A common, centralized

vocabulary also facilitates communication among applications by eliminating costly

and time-consuming translation tasks. From a user point of view, they can help

standardize information processing among different organizations and thus reduce

the overall cost of doing business [20].

We have modeled and implemented a semantic network-based controlled

vocabulary as an Object-Oriented Database (00DB) [16, 29]. We have chosen to

focus on an existing medical vocabulary called the InterMED, au offshoot of the

MED [5]. One reason for our choice is the fact that the healthcare field is one where

such vocabularies are becoming ubiquitous and are being exploited in a wide variety

of settings. We refer to the OODB obtained by this mapping as the Object-Oriented

Healthcare Vocabulary Repository (OOHVR). At present, a version of the OOHVR

is up and running as an ONTOS [25] database [20].

There are a. number of reasons why one would want to model a vocabulary in an

OODB. First, in applications where external agents such as intelligent, information-

locators, decision-support systems, and end-user browsers are demanding the

3

4

knowledge stored in the vocabulary, transparent. and concurrent access to it is

necessary. OODB systems provide the traditional access support of database

systems and offer a "low impedance" pathway [29] to the network, particularly at a

time when more and more application programs are being built using object-oriented

programming languages. The vocabulary can also be accessed declaratively using an

SQL extension (like OSQL of ONTOS [24]) or a "path" language such as XQL [15].

Additionally, from a theoretical standpoint, the typical OODB system's repertoire

of modeling constructs neatly captures the modeling features of semantic networks.

Thus, the vocabulary can be mapped almost, directly from the semantic network

into the OODB system without having to re-model it from scratch [20].

An additional benefit of using the OODB framework turns out to be increased

comprehension of the overall hierarchy and connectivity of the InterMED, which

currently comprises about 3,000 terms. Eventually, the InterMED might be expanded

to include much of the content of the MED which contains 46,000 concepts. We have

previously availed ourselves of such comprehension for identifying and correcting

inconsistencies and errors in the MED [10] and to restructure and refine the MED

[20].

Previously, an object-oriented framework has been used as a. modeling vehicle

for thesauri for (natural) language-to-language translation [7, 8]. A terminology

editor called TEDI was built in the same context as a tool for extracting relevant

information from hypermedia documents [22]. The 02 OODB system has been used

to store portions of a general English dictionary based on a "feature structure"

description of its entries [14, 20].

In addition to the InterMED, the medical field has seen a number of standardized

vocabularies such as SNOMED [6] , ICD9-CM [27], and MeSH [23]. A descriptive

semantic network called Structured Meta Knowledge (SMK), employing a termitic-

5

logical knowledge-base, has been used to capture the semantics of patients' medical

records [9, 20].

2.2 Description of the InterMED

In this section, we describe the InterMED, a controlled medical vocabulary modeled

as a semantic network. The InterMED is the successor to the MED, which was

developed and is presently in use at Columbia-Presbyterian Medical Center. It is

being built as an inter-organizational vocabulary to be employed by various medical

centers. Structurally, the InterMED is a semantic network whose nodes are medical

concepts. Each node can have properties which are referred to as either attributes

or relationships. An attribute is a property whose value is a primitive data. type

(such as a string). A relationship has as its value a reference to another concept in

the network. One attribute common to all nodes is name, which holds a. concept's

associated term (or textual denotation). Another is synonyms which can hold

alternate denotations aside from the primary one [20].

The InterMED features a concept subsumption hierarchy-----a directed acyclic

graph (DAG) composed of concepts connected through super-concept (and sub-

concept) links. This hierarchy acts as the property inheritance mechanism within

the network. A sub-concept inherits all the properties of it's superconcepts. For

example, Glucose Test is a subconcept of (or, simply, "IS-A") Test, and therefore

it inherits all of Test's properties. In other words, the set of properties of Glucose

Test is a superset of the properties of Test. A concept may have more than one

parent concept. Also, the entire vocabulary hierarchy is rooted at a single concept

called Entity [20].

The second purpose of the hierarchy is to support reasoning. 	Such a

capability would be exploited, for example, by decision support systems that make

subsumption based inferences [20].

6

At present, the InterMED comprises about 3,000 medical concepts. This figure

is expected to increase into tens of thousands as the InterMED is extended over

time to cover much of the current content of the :VIED. The concepts are linked by

approximately 9,000 non-hierarchical (i.e., non-IS-A) relationships. The IS-A links

total about 5,000 [20].

2.3 Initial OOHVR Schema

The concepts in the semantic network have been assembled into structural groups.

Each group contains all the concepts that share the same properties. In the context

of the OODB, each group can be defined as a class and all the concepts for that

group will be instances of that class. Thus, some nodes in the semantic network

serve as the basis for the definition of object classes in the OOHVR. schema, while

all nodes are mapped directly into instances of those classes [20] .

The question is: Which nodes of the InterMED will actually guide the definition

of classes and their associated properties? Because the purpose of an object class

is, among other things, to define the properties of it's instances, it is sensible to

examine the nodes of the network that also function in this role. Ultimately, our

principal task is to identify groups of nodes that share identical properties so that

we can define the OOHVR schema's classes [20].

It turns out that there are only 30 concepts of the InterMED that introduce

properties. We will call these property-introduction nodes. The rest just inherit

their properties from other concepts. Because only 30 out of the nearly 3,000 nodes

introduce new properties, we call the InterMED's subsumption hierarchy a sparse

inheritance hierarchy. Vocabularies, in general, by their very nature tend to have

sparse inheritance hierarchies. This situation is in sharp contrast to the subclass

hierarchy of a. typical OODB schema where at almost every class we expect, to find

the definition of new properties [20].

7

We define an area to be a property-introduction node and all its descendants

down to but excluding its direct-property-introduction descendants. The property-

introduction node of an area will be called its root, and will be used to denote the

area.

Figure 2.1 Three areas in a vocabulary

In Figure 2.1, we show three areas A, B, and C of a vocabulary. The nodes

are represented as small rectangles with rounded edges, while the areas appear as

large rectangles enclosing their respective nodes. Note that the root of area A (i.e.,

the node A) introduces the single attribute "1," listed inside its rectangle. Area

A extends down to, but excludes, node B which is a. direct-property-introduction

descendant of A. B defines the attribute "2" as well as the relationship r (drawn as

a labeled arrow) and serves as the root of area, B. Finally, area C has the root C

which introduces attribute "3" and relationship n', the converse of r. The IS-A links

8

are drawn as unlabeled arrows directed from the sub-concept to the super-concept

[20].

As a concrete example from the InterMED, the concept Measurable Substance

introduces a new relationship measured-by and is thus the root of a new area.. All

descendant concepts between Measurable Substance and its direct-property-

introduction descendants are in this "Measurable .Substance" area. Examples of

such concepts are Color, Temperature, Specific Gravity, Viscosity, Blood

Coagulation, and Optical Density [20].

As we noted above, the InterMED has the concept. Entity as the root. Entity

introduces a number of properties, and it therefore is the root. of the "Entity" area.

We will call this area the root area of the vocabulary. Because there are 30 property-

introduction nodes in the InterMED, it is divided into 30 areas. With respect to the

overall size of the vocabulary—approximately 3,000 nodes 	this is a very compact

division. If all areas are mutually disjoint (i.e., no concept. appears in more than

one), then all nodes in an area will have the exact same properties (specifically those

defined or inherited by its root), and areas will provide the partition we need to

define the classes of the OOHVR. We will, in the remainder of this section, describe

the OOHVR schema under the assumption that the areas of the vocabulary form

a partition. In the succeeding subsection, we will discuss the additional complexity

encountered when areas are not disjoint [20].

Under the assumption that areas are disjoint, we define the OOHVR schema

as follows. For each area in the InterMED, we define an object class in the OOHVR

whose instances will be exactly the concepts in that area, including its root. The

class's intrinsic properties are those defined by the area's root. Because the extension

of the class is precisely one area, we refer to it as an area class. Therefore, the

OOHVR schema comprises area classes. The name of a class is formed by concate-

nating the name of the area's root concept and tArea." So, the "Measurable

9

Substance" area would have the corresponding class Measurable_Substance_Area. Its

properties would include the relationship measured-by, among others [20].

Another issue that, needs to be addressed is which area classes should be related

via subclass relationships. Because the InterMED is singly rooted, each concept in

the InterMED is a descendant of the Entity concept. Thus, the root of any area. in

the InterMED is a child of a node(s) in some other area(s). (The exception being

Entity itself.) Thus, the root of an area has all the properties of its parents' areas

plus the properties that it intrinsically introduces. To capture this in our model, we

place each area class corresponding to a. root node in a subclass relationship with

respect to the area class(es) of its parent(s). It should be noted that because a.

node (particularly a, property-introduction node) may have more than one parent,

the subclass hierarchy induced by this process is not necessarily a tree, as it may

exhibit multiple inheritance. The class Entily_Area corresponding to the "Entity"

area appears as the root of the OOHVR schema [201.

Figure 2.2 Areas classes corresponding to three areas in Figure 2.1

To illustrate this approach, we first show the result of mapping the three areas

of Figure 2.1 into corresponding area classes and subclass relationships in Figure 2.2.

Then in Figure 2.3, we show the entire OOHVR schema. Both figures were drawn

using our OOdini-2 graphical notation which is based on a schema diagramming

10

Figure 2.3 OOHVR Schema

11

language presented previously in [11] The pictures were produced with the

OOdini-2 editor that is being built using the ObjectMaker Tool Development Nit of Mark-V.

With OOdini-2, a class is represented as a rectangle, and a relationship, as a. labeled

thin arrow. We denote a subclass relationship as a bold arrow directed upward

from the subclass to its superclass. Attributes are listed inside their respective class

rectangles beneath the class name. Let us emphasize again that the OODB schema.

produced by this mapping turns out to be very compact in terms of the number of

classes, particularly when one considers that the InterMED contains thousands of

concepts [20].

It is helpful to note that the InterMED's concept. subsumption hierarchy served

as the basis for the mapping into the OOHVR schema. In fact, the mapping really

constituted the identification of the property-introduction nodes and a "collapsing"

of the inheritance paths between these concepts. Thus, the OOHVR schema. can be

seen as an abstraction of the property definitions and accompanying inheritance that

occur within the InterMED. For this reason, we call this kind of schema for a sparse

inheritance hierarchy a network abstraction schema [20].

However, if one is still to use the concept subsumption hierarchy of the

vocabulary in the other ways that it wa.s intended (e.g., in order to reason with

respect to it), then it is mandatory that it appear in its entirety within the OOHVR.

This is accomplished by introducing two reflexive relationships at the root area class

Entily_Area: has_superconcepts and has_subconcepts. These properties are defined

as follows. In the InterMED, if X IS-A Y, then, in the OOHVR, the object corre-

sponding to Y is a referent of X with respect to the has_superconcepts relationship;

has_subconcepts is the converse. In other words, the hierarchy of concepts in the

InterMED is represented in the OOHVR on the instance (object) level rather than at

the schema. level. The schema of the OOHVR provides a compact framework for the

definition and inheritance of all the properties of the concepts in the vocabulary. It

12

thus helps the user of the vocabulary comprehend the vocabulary's overall structure

[20].

2.4 Extended OOHVR Schema

In the InterMED, some concepts assume membership in more than one area., thus

violating the disjointness condition. This multiple membership is due to the fact that

each such concept is subsumed by multiple parents (or other ancestors) that reside

in different areas. (Recall that this is possible because the vocabulary's concept

subsumption hierarchy is a. DAG, not a tree.) It should be noted that a node, say, X

belonging to two (or more) areas cannot be a property-introduction node, otherwise

it would be the root of some new area of its own. Instead, X would exhibit the

combined properties from its multiple areas without introducing any properties that

are new [20].

The question is how does this affect the mapping described in the previous

section. To see the problem, let us assume that concept X resides in the two unrelated

areas A and B. By "unrelated" we mean that neither A's corresponding area class

(i.e., A_Area) nor B's (B_Area) is a descendant of the other in the OOHVR schema..

X's dual area membership implies that the object corresponding to it in the OOHVR

must be an instance of both A_Area and B_Area. However, in ONTOS [25], an object

cannot be a "direct instance" of more than one class. Thus, we need to modify the

mapping slightly in order to accommodate this scenario, which, as it happens, occurs

infrequently within the InterMED.

The problem described for X is true for any non-property-introduction node

whose parents are in different areas or any such node with an ancestor in that

situation. In Figure 2.4, we expand the vocabulary pictured in Figure 2.1 to include

four nodes that reside in both areas B and C. Nodes D and E both have parents

in those areas, while F and G are in the areas by virtue of the lad that they are

13

Figure 2.4 Expanded version of vocabulary from Figure 2.1

children of D and E, respectively. As a concrete example of this, the InterMED

concept Buffered aspirin tablet preparations resides in the two areas "Aspirin

tablet preparations" and "Drug enforcement administration (DEA) class."

Our solution to the problem is to extend the notion of area and define the non-

empty intersection of two areas as an area of its own, called an intersection area.

As with all other areas in the vocabulary, a class is defined for it in the OOHVR

schema. This new kind of class is referred to as an intersection area class. The

concepts in the intersection area are made instances of this intersection area class,

which does 710i introduce any new properties. Instead, the class gets its properties

14

Figure 2.5 Areas classes corresponding to four areas in Figure 2.1

entirely via inheritance. The required properties are exactly those of the two areas

of which it models the intersection. Therefore, the intersection area class is defined

as a subclass of the two area classes corresponding to those areas. In Figure 2.5, we

illustrate the result of the mapping that the intersection of the areas B and C from

Figure 2.4 undergoes in the construction of the OOHVR. schema. [20].

The notion of intersection area can be extended to encompass the intersection

of three or more unrelated areas. In the InterMED, the "Acetaminophen/codeine

tablet preparations' area is the intersection of three areas: "Pharmacy items (drugs

and nondrugs)," "Drug enforcement administration (DEA) class," and "Drug form."

Thus, the intersection area class in this case has three parents in the OOHVR. schema.

It is also possible for a ❑ intersection area class to be a. subclass of another intersection

area class [20].

As shown in Figure 2.4, the intersection area. might not have a root (i.e., a

concept which is an ancestor of all others). If there exists a root X, then the corre-

sponding intersection area class will naturally be denoted X_Area. Otherwise, the

15

schema designer will have to select one of the concepts in the intersection as the name

of the intersection area class. In Figure 2.5, the name was chosen to be D_Area.

In Figure 2.6, we show the entire OOHVR schema, including all intersection

area classes. The schema comprises a total of 39 area classes and 50 subclass

relationships [201.

16

Figure 2.6 OOHVR schema including intersection area classes

CHAPTER 3

AN APPROACH TO THE VOCABULARY INTERFACE

There are many end users for the OOHVR. These users have varied requirements

when they access the vocabulary. Hence, multiple user interfaces will have to be

provided. Efficient and easy access to the vocabulary is desired by each of these user

interfaces.

3.1 User Interfaces to the Vocabulary

Presently, we have identified three potential user interfaces to the OOHVR:

• A Form-Based Web Interface

• A Programmatic Interface

• A Graphical Interface

3.1.1 The Form-Based Web Interface

The vocabulary is presented as a set of queries. Each query provides information

relevant to a particular aspect of the vocabulary El 5, 16]. Typically, a query prompts

the user to identify the term or area for which information is to be provided. This

interface is now available on the World Wide Web.

It should be noted that each query must be capable of handling multiple users

simultaneously. For this purpose, this interface requires the code for the queries to be

re-entrant. That is, the code for a particular query could have more than one thread

passing through it at the same time. We have provided this functionality by using

the UNIX "archive" facility (section 5.5). For the web programmer, designing and

implementing the form based interface is simpler if the information in the vocabulary

is available in the form of preliminary data types like a string of characters or an

17

integer. The web programmer is also concerned with implementation issues like

compatibility with the compiler required for accessing the vocabulary.

3.1.2 The Programmatic Interface

This interface will typically be used by people with considerable knowledge of the

vocabulary. Programs could be written to perform tasks involving a varying degree of

complexity [5]. These programs could be tools used by the vocabulary administrator.

Alternately, these programs may present some specific knowledge in the vocabulary.

The programmer for this interface will typically need to access the vocabulary more

than once in order to obtain the information required by such programs.

3.1.3 The Graphical Interface

The vocabulary's structure is presented graphically to emphasize its hierarchical

object-oriented modeling. This enhances the user's comprehension and facilitates

maintenance of the vocabulary. 'The icons needed for this graphical representation

are available in the OODINI [11, 22] software. This interface will need details about

the schema of the OOHVR database and the structural and semantic relationships

in the database.

3.2 Interaction between the Vocabulary and User Interfaces

We see that the vocabulary as an ONTOS database is on one side and the user

interfaces are on the other side. We need to provide a mechanism for interaction

between these two components. This mechanism can be an Application Programmer's

Interface (API). This API provides a list of function headers. For each query posed

to the user interface, the appropriate function(s) in the API are invoked and it is the

API function's responsibility to retrieve the relevant information from the database

[16].

19

3.2.1 Advantages of the API Approach

1. The use of the ONTOS database is transparent to all programmers accessing

the vocabulary.

2. All the user interfaces can use the same set of API functions. The API also

addresses the specific requirements of each user interface.

3. The whole OODB system becomes "an abstract data type" which makes it.

easier to update the version of ONTOS or to change the representation of the

vocabulary.

3.3 Basic Approach to API Development

3.3.1 Mapping Queries to Functions

In developing this API, we have two extreme alternatives available. On one extreme,

there is a single function that accepts a text string argument. The text, string is then

parsed and interpreted as a query which is passed on to the appropriate functions

that access the ONTOS database. On the other extreme, there is an exhaustive list

of all possible queries, and for every query there is a separate function that directly,

and relatively easily, accesses the database [15].

Advantages of the single function approach:

• It's easier to add new queries.

• The user interface programs will always know exactly which function should

be called.

Disadvantage of the single function approach:

• Parsing the input. text string is a complicated problem and is comparable to

writing an SQL interpreter with query optimizer and query processor.

Advantage of the multiple functions approach:

20

• The complex parsing and interpretation problem is bypassed.

Disadvantage of the multiple functions approach:

• Adding new queries is relatively difficult.

The intermediate solution is based on the principle of avoiding oversimplifi-

cation by having one function per query. We supply a set of functions which permit

the expression of most queries by a single APT function call or the simple composition

of a few APT function calls.

3.3.2 Abstraction of the Database

We could treat the whole ONTOS implementation of the vocabulary as one very large

abstract data type (ADT). As is well known, in an abstract data type a complicated

data structure is encapsulated by giving the user no direct access to the data. Indeed,

the organization of the data is transparent to the user. The user (the user interface

programmer in our case) can access the data only through a relatively small set of well

defined access functions. All querying, testing and updating of the data structure

(our database) can only be done through such access functions. The designer of the

abstract data type has to ensure that he or she supplies all access functions that

might be necessary during the lifetime of the ADT. If a. user requests any additional

access functions, the ADT designer must supply them. On the other hand, as is well

known, the internal organization of the data structure (in our case, database) may be

changed without altering any of the programs that rely on the data structure. Only

the access functions themselves need to be changed. These advantages of abstract

data types lead us to rely on a. metaphor of the ONTOS DB as an abstract data type

with a list of low level access functions [3].

21

3.4 Deriving the List of Functions

3.4.1 The Graph-Theoretic Approach to Queries

The InterMED [5], a medical entities dictionary, has been used as the source of

our vocabulary. Since the InterMED is based on a semantic network, queries are

constructed based on the following ideas:

® Path Languages

• Pattern Matching

3.4.1.1 Path Languages A path language describes a path with a prototype

that might or might not contain variables. Some semantic networks as well as some

Object-Oriented systems supply path languages. Once a path has been specified, an

interpreter retrieves all or one of the paths conforming to the path description. For

an example of a semantic network with a path language, refer to [17, 18].

3.4.1.2 Pattern Matching In many Artificial Intelligence systems, especially

PROLOG-like systems, expressions with constants and variables can be formulated.

These expressions can then be matched against a knowledge base. If there are any

variables in the expression, and if that match was successful, the result will consist

of one or more copies of the original expression, with variables replaced by values

found in the knowledge base [261.

3.4.1.3 Using Paths and Pattern Matching Fundamentally, any "large"

structure in a semantic network can be described by composing triples of the form

(NODE, EDGE, NODE). Smaller structures can be described as NODE or as EDGE,

or a pair of the two. Therefore, we need to generate an exhaustive list of such paths,

under the assumption that each one is a pattern.

22

For each path in the list, replace every possible combination of elements either

by a literal or by a variable.

For example, 	NODE - EDGE - NODE can become:

NODE(VAR) - EDGE(CONST) - NODE(CONST) or

NODE(CONST) - EDGE(VAR) - NODE(CONST)

The combinatorial patterns generated correspond to the possible queries posed

by the user. These queries will have to be translated into a set of access functions

to be included in the API.

3.4.2 Filtering the Patterns

The list of access functions is constrained in two ways. First, we need to know exactly

what queries will be posed by the various user interfaces. This is the necessity

constraint. Second, the functions specified should be implementable. The 'non

implementable' functions do not refer to problems that are in principle undecidable

or intractable, or for which algorithms are not known. Instead, they refer to problems

for which the actual function implementation would require person years of time, or

where the writing of the function would require a complete redesign of the ONTOS

database, or where the runtime of an implementation would be measured in minutes.

These constraints defined by implementation time and run time are the possibility

constraints.

Between the necessity constraints and the possibility constraints, we have to

find a set of compromises. Some desirable queries may have to be eliminated if they

have long run times. Some aspects of the ONTOS database design may have to be

extended to accommodate absolutely necessary queries.

3.4.3 The Patterns for OOHVR

The combinatorial patterns for the OOHVR, can be obtained by applying the

techniques discussed above to the InterMED. We treat each node as a class and

23

each arc as a property (relationship or attribute). For the InterMED, the semantic

network triples translate into two generic patterns:

CLASS - RELATIONSHIP - CLASS 	and

CLASS - ATTRIBUTE - VALUE

OODBs have a schema. (class) level and an instance (object) level. Thus, we

need to consider two levels of generic patterns:

CLASS - RELATIONSHIP - CLASS 	and

INSTANCE - RELATIONSHIP - INSTANCE

3.4.3.1 Examples of Patterns In the following examples, every term within

<brackets> marks a search term. Every term with no brackets is to he replaced by

a literal term from the vocabulary. In OOHVR, each class in the OODB is referred

to as an Area and each instance referred to as a Term.

1. <Area> : Lists all the areas in the InterMED.

2. Term - <Rel> Lists all the relationships that emanate from a particular term.

3. Area - Rel : Returns true if the given area has that particular relationship.

4. Area. - <Attrib> : Lists all the attributes of the given area.

5. Tenni - <Rel> - <Term2> : List the relationships that emanate from a

particular term and also the terms to which those relationships point.

6. <Areal> - <Rel> - <Area2> : List all the area level triples.

7. Term - <Attrib> - <Value> : List all the attributes and their values for a

particular term.

CHAPTER 4

API DESIGN

4.1 API Software Architecture

By definition, an API has to interact with a particular resource on one side and with

various programs on the other side.

Figure 4.1 APT Software Architecture

As shown in Figure 4.1, for OOHVR the resource is a ONTOS OODB and

the programs are the ones that provide user interfaces. These programs could be

Of two types [29]. Programs of the first type provide the form based and graphical

user interfaces and can be referred to as the "Interface Programs". Programs of the

second type provide the programmatic interface and can be referred to as the "Direct

24

25

Access Programs". It should be noted that the interface programs need to execute

on the server component of the software system since they share free store with the

API functions.

4.2 API Specification

As discussed earlier, an analysis of the vocabulary structure has provided us with

an exhaustive list of query patterns. The API specification aims at transforming

these query patterns into function specifications; with a view to implementing these

functions in the C++ programming language.

4.2.1. Additional Functions

While determining the set of access functions to be included in the API, a need for

additional functions not directly identified by the query patterns was felt. These

functions are required to take care of the following cases:

l.. Distinction between local and inherited properties.

2. Basic composite operations — siblings, children etc.

3. Determination of the correlation between specific areas and terms. For

example, which area does a particular term belong to?

4.2.2 Area and Term Level Functions

The vocabulary, implemented as an OODB, has schema level information as well

as instance level information [10]. The schema information presents the area level

hierarchy and the introduction of properties in different areas. This information is

useful in comprehension of the vocabulary and understanding its modeling. The

instance level presents the numerous terms in the vocabulary. Specific information

about term level hierarchies, term properties and correlation between terms and areas

can be obtained at this level.

26

Recognizing the significance of separate queries at these two levels of the

database, each query pattern has been mapped to two separate (area and term level)

functions providing similar functionality at the two levels.

4.2.3 Naming the Functions

The process of converting the query patterns into.access functions begins by assigning

names for each function. The name is based on the functionality of the query pattern

corresponding to that, particular function. The function names are long enough to

clearly describe the function's purpose. This also provides unique names for the

functions.

Further, each API function's name and each identifier in the API has the

prefix "MV" (Medical Vocabulary). This ensures that the name of any function does

not coincide with the name of another function in the relevant software environment.

4.2.4 Arguments to the Functions

The APT functions accept zero to three strings as input, depending on the number of

literals (constants) in the corresponding query pattern. The variables in the query

patterns correspond to the output arguments for the function. In most cases, these

output arguments are strings or pairs of strings. Also, since the number of output

strings is a variable, a count, for each set of strings is required. In some cases the

output is more complex. Lists of strings may be nested inside another list of strings.

For example, consider the function that accepts a term's name as input, and returns

a list of all relationships that emanate from it, along with the names of all the terms

that those relationships point to. The output of this function will consist of a list

of the relationships and a list, of destination terms for each relationship (since a

relationship can be multi-valued).

Special classes have been defined to encapsulate the input and output

arguments' data for the API functions [3]. Each argument class typically contains

27

the input or output data item(s) and some member functions to access and modify

them. The argument(s) to the functions will be objects of these argument classes.

The creation of these special classes has the following advantages:

• The number of arguments to each function is reduced since we don't require

separate arguments for a count, of the strings in an output set.

• It is easier to handle the input and output data. The API programmer as

well as the user interface programmer use the argument object's data access

functions, without worrying about the actual data structure implementation.

* The actual internal implementation of the set(s) of strings and other data in

an argument object may be altered without modifying the API functions or

the user interface programs.

• It is easy to perform any processing on the data encapsulated in the argument

objects. For example, it is possible to add a member function that provides the

output strings in a HyperText Markup Language (HTML) compatible format.

4.2.5 Error Handling

Each API function returns an error, if any, by embedding an error code in an error

object. The error class corresponding to this object facilitates error handling in the

API by encapsulating the error code. Further, default error handling corresponding

to each error code is provided as a member function of this error class. Overloading

this function or bypassing it altogether enables an interface programmer to handle

errors as per his or her requirements.

28

4.3 Example of API Specification

MV_API_Errors* MV_List_All_Relationship_TargetTerm_Pairs_of_SourceTerm(

MV_TermName &Source_Term,

MV_RelTermPairs &aRelTermList

Input:

Source_Term: A reference to a user defined object of the class MV_TermName

which includes the following data member:

* TermName: The term from which the relationship(s) emanate.

Output:

• aRelTermList: A reference to a user defined object of the class

MV_RelTermPairs which includes the following data members:

* Pairs: An array of pairs of relationships and destination terms.

Pairs is of RelTerm_type, defined as:

typedef struct RelTerm

{

char *Relationship;

char *Term;

RelTerm_type;

* No_of_Pairs: The number of relationship-term pairs detected.

Description:

This function returns a list of relationship(s) emanating from a particular

term, the term(s) that the relationship(s) point to and a. count of these relationship-

term pairs.

29

4.4 Sharing the API Functions

There are many different user interface programmers accessing the API. Each of them

has his or her own view and utilization of the vocabulary database. Yet, a uniform

access to the API functions needs to be provided. Two factors need to be considered

while designing this common access to the API functions. First, simultaneous access

to the various API functions could be required. Second, the overhead associated

with invoking an API function to access the vocabulary should be minimized.

The optimal solution for this problem is to create a shareable library that

contains the object code for all the API functions. The UNIX operating system will

handle and schedule all simultaneous accesses to this library [1, 2]. The APT users

will link to this shareable library in order to access one or more API functions.

CHAPTER 5

API IMPLEMENTATION

Based on the analysis of the OOHVR and the API design, a majority of retrieval

functions have been implemented. The various implementation principles followed

and issues involved are discussed in this chapter.

5.1 Vocabulary Access

As mentioned earlier, the InterMED medical vocabulary has been implemented as

an Object-Oriented Database using the commercially available ONTOS OODB. To

access the knowledge stored in this vocabulary, the API functions use object database

constructs provided by ONTOS. For example, if an API function needs to locate a

particular term in the database, it uses the index search iterator provided by ONTOS

to search the index of all term names.

To use these ONTOS constructs, each API function's source code will have to

include the appropriate header files. The ONTOS constructs' header files are stored

in a fixed directory on the system. Hence, each APT function will simply include the

relevant header files from this directory.

Most API functions require details about the classes defined in the object

database. For our vocabulary, these class declarations and definitions are obtained

from the Terms.h and Terms.0 files, respectively.

5.1.1 Retrieving Area Level Information

All the area level API functions need details regarding the schema of the object

database. ONTOS provides a facility to retrieve schema level information from its

database by providing descriptions of all the persistent classes in the database. All

the class declarations are provided as objects in the database [24j.

30

31

The name of such a persistent class description object is the same as the name of

the corresponding class. Thus, when an API function requires information regarding

a particular area in the vocabulary, it simply retrieves the ONTOS object with that

area's name. The properties of that area are available in this class description.

ONTOS also provides facilities to retrieve hierarchical information for these

schema level classes. Thus, given a particular area's persistent class description

object, it is possible to determine the parent and child areas for that particular area.

5.1.2 Retrieving Term Level Information

Each term in the vocabulary has been stored as an object in the database. In the

current implementation of the ONTOS database, these objects are not stored with

a unique name. That is, none of these term objects can be identified or retrieved

by just knowing its name. Instead, an index has been created that stores the name

of a term and the corresponding object identifier. When an API function needs to

retrieve a particular term's information, it uses this index to get the corresponding

object identifier [24].

Some API functions require names of the properties (attributes and relationships)

for a particular term. This translates into a query to the schema level of the database,

although it is initiated through some term. Thus, the area corresponding to the

given term is determined and the property names are obtained from that area's class

description object.

The values for the properties of the term can be retrieved by using the object

identifier. Attribute values can be obtained by using specific methods defined for

that term. Relationship values, which represent the links to other terms in the

vocabulary, typically provide names of the terms that the relationships point to. To

obtain additional information regarding the destination terms, the relevant objects

have to be retrieved separately.

32

It should be noted that within an area, the various terms are also related

hierarchically. This follows from the semantic network, the predecessor of our object-

oriented vocabulary. Since the concepts in the semantic network are not grouped in

any manner, each of them has its own position in the network. An equivalent hierar-

chical position has been assigned to each term in the object-oriented vocabulary. To

retrieve this term level hierarchy knowledge, relationships like SUBCLASS_OF and

SUPERCLASS_OF are utilized.

5.2 Auxiliary Information about the Vocabulary

Many API functions require some auxiliary information about the vocabulary,

primarily to simplify their algorithms and improve overall efficiency. Such infor-

mation has been added to the database and is accessible to all API functions.

5.2.1 Relationship and Attribute Sets

When the properties for a particular area or term are retrieved from the schema of the

database, it is not directly possible to classify them as attributes and relationships.

To perform this classification, separate lists of names of all possible attributes and

relationships in the vocabulary are needed. Then, for the area or term of interest,

each property's name can be compared with the entries in these lists to determine

whether that property is an attribute or a relationship.

Since this classification of properties into attributes and relationships is

required quite frequently, two auxiliary sets have been added to the database:

1. The RelationshipSet contains the names of all the relationships in the

vocabulary

2. The AttributeSet contains the names of all the attributes in the vocabulary

33

5.2.1.1 Obtaining Lists of Attributes and Relationships The task of deter-

mining all the attributes and relationships in a vocabulary is difficult and error prone

if one tries to do it manually. For the InterMED vocabulary, this data. was available

in the form of fiat files. These fiat files represent the information stored in the

semantic network version of the vocabulary. It should be noted that these same flat

files were the starting point for the generation of the object database version of the

vocabulary.

A Gnu Awk program is used to extract the names of all the properties from

these flat files (Use the gawk command to execute this program On A special

identifier is also extracted. It enables the differentiation between an attribute and a

relationship. This extracted information is stored in a file named Properties.db.

5.2.1.2 Creating and Storing the Sets A C++ program has been written to

create and store the attribute and relationship sets in the database. This program

looks at each property in the Properties. db file and uses the special identifier of that

property to decide whether it is an attribute or a relationship. Accordingly, that

property is stored in the attributes set or the relationships set. To simplify access to

these sets (for all API functions), they have been stored in the database with specific

names - AttributeSet and RelationshipSel. Thus, any function that, uses these sets

simply retrieves them by using the appropriate names [21].

5.3 Argument Classes

As explained in the previous chapter, the arguments to the API functions are encap-

sulated in special classes defined for this purpose. These are the argument classes.

Each argument class typically contains the data item(s) needed by the API function

and some access functions to create and modify these data item(s). These classes

34

have to ensure that the user interface programs as well the API functions can access

the data item(s) without knowing the internal implementation.

The declarations of these argument classes are present in the MV_API_IO.h file

and the definitions of various member functions are present in the MV_API_IO.C file.

The member functions are typically concerned with maintaining the data structure(s)

for the various data item(s) in that class.

Each API function includes the MV_API_IO.h header file in order to access the

objects of the argument classes that are passed as arguments to the function. To

utilize the member functions of the argument objects, each API function links to the

object code for the argument classes -

5.4 Implementation of Error Handling

As discussed earlier, each API function returns a pointer to an object of an error

class. This error class contains an error code and different error codes refer to the

different errors that can occur when an API function is invoked. A list of the error

codes and their meanings is given below.

1. NO_ERROR : The API function has been executed successfully.

2. ERR_INPUT : The input(s) to the API function is (are) invalid.

3. ERR_DATA_A.BSENT : The requested data is not available in the vocabulary.

: An attempt to open the database ha.s failed.

5. ERR_DBNAME_ABSENT : The DBNAME environment variable has not, been

set.

Since the API functions return a. pointer, a NULL return value can be used to

represent successful completion of the function. This also facilitates the invocation of

the API function within an "If" statement and immediate error handling, if required.

35

The default error handling for the various error codes has been provided in the

form of a member function for the error class. This default, error handling function

displays the appropriate error message and terminates execution of the API function.

If any specialized error handling is required, this member function can be overloaded

or a separate function can be created to handle the error.

5.5 API Library Implementation

The API library primarily contains the object code for all the API functions. It also

contains other object code (such as MV_API_IO.o - the argument classes implemen-

tation code) to be used by more than one API function. Since the entire APT is to be

exported using this library, it is necessary to ensure that the library can be moved

around (either locally on the same system or even to an entirely new system).

The UNIX based "archive" facility satisfies all our requirements [2]. This

facility permits the creation and maintenance of a library of object codes. The

UNIX archive command "ar" has various command line switches that provide the

required functionality. Examples of using this command:

e ar -q libMVAPI.a api_func1.o 	==> 	Quick append the object, code

api_func1.o to the archived library MVAPI

• ar -r libMVAPI.a api_func2.o 	==> 	Replace the library's existing object

code for api_func3 with the new object code specified

• ar -d IibMVAPI.a api_func3.o 	==> 	Delete the object code api_func3.o

from the library MVAPI

• ar -vt libMVAPI.a 	==> 	List the contents of the library MVAPI

36

5.6 API Implementation Architecture

Each API function uses ONTOS constructs, vocabulary implementation details and

argument classes to produce the API library. This APT library is accessible to the

different user interface programmers. This interaction between various components

of the system is depicted in Figure 5.1.

Figure 5.1 API Implementation Architecture

37

5.7 Miscellaneous Implementation Issues

5.7.1 Accessing Different Databases

The API functions can be used for object database implementations of different,

medical vocabularies. Hence, they must possess the flexibility to access different

databases without requiring any changes in their own implementation. We have

incorporated this flexibility by using a special environment variable, DBNAME, to

indicate the name of the database to be accessed by the API functions. Each API

function uses the getenv() system call [2] to obtain the value of this environment

variable. This value is assumed to be the name of the database that. the API function

should access.

5.7.2 Making each Transaction more Efficient

Each API function has at least one database transaction. The data retrieval functions

do not make any changes to the database, hence it is not necessary to commit their

transactions to the database. By aborting transactions after the required data, has

been retrieved, the much more expensive database commit operation is skipped. This

improves the overall efficiency, per transaction, of the data retrieval API functions.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Controlled vocabularies serve as excellent tools for the management of diverse termi-

nologies within an application field. In this thesis, we have described a standardized

interface (the API) for users of a vocabulary implemented as an OODB system. This

interface provides efficient retrieval of information available in the vocabulary. Since

the outputs of this interface are basically strings and numbers, they can be used

by various user interface programs. While our discussions were centered around a

medical vocabulary that we have implemented, the techniques described are readily

applicable to any vocabulary modeled as an OODB system. We also presented the

architecture and implementation of a software system that provides the standardized

interface. Presently this interface is up and running for the InterMED vocabulary

within the context of the ONTOS OODB system. A web-based user interface that

utilizes the API has also been implemented by a. peer group.

Further development steps for the API have been identified. These steps

primarily deal with new functions for additional vocabulary access.

1. Updating the OOHVR: Since the vocabulary is not static, functions to

modify, add and delete information will be required. These updates could

apply to the properties of existing terms and areas or result in the addition of

new areas and terms. Thus there are two kinds of updates: updates of the data

and updates of the schema. Due to the mechanisms that are used to generate

the schema, there are situations when even an update of the data results in the

necessity of a schema change.

The issues involved in updating the vocabulary have been identified and

documented. The specification and implementation of the APT functions

38

39

that perform these updates will be the next. step in the development of the

standardized interface.

2. Versions of the Vocabulary Terms: The terminology in the medical field

changes from time to time. For example, the same drug could have different

names during: different time spans. Yet, a query to the vocabulary may refer

to an older name or may require results corresponding to terminology used in

a specific time span. This implies that different versions of the terms in the

vocabulary will have to coexist. Also, we will need information that indicates

how different versions of a term are related to each other.

API functions will he required to provide and maintain this versioning

capability for the vocabulary.

3. Pattern Matching: Presently, precise string inputs need to be provided to

the APT functions. This is very cumbersome, especially in the medical field

due to the long and complex terminology used. Pattern matching will attempt

to allow users to provide only partial or abbreviated strings as inputs.

APT functions capable of mapping partial or abbreviated inputs to their appro-

priate full length versions need to be developed.

APPENDIX A

MISCELLANEOUS DETAILS

Certain aspects of the API implemenation and maintenance will be discussed here.

A.1 Compile and Link Procedures

We use the ONTOS cplus compiler to compile and link each API function. This

compiler pre-processes the ONTOS constructs in a source file and converts them to

equivalent C++ code. This entire code is then passed on to the standard CC C++

compiler. This mechanism permits the use of the same command line switches for

(This as those available for CC.

A.1.1 Compiling

The following alias is used to compile each API function (and the program invoking

the API function(s)).

Each component of this compile command is explained below:

• -c : Standard CC compiler switch to indicate that only compilation of the

specified source files is required.

• -q 	Standard CC compiler switch to indicate that debugging information

should be included in the object files created by the compilation.

• !* : Represents the names of all the source files specified.

• : This switch asks the compiler to search the current directory for header

files included in the source code.

40

41

Asks compiler to search this directory for header

files. We have the ONTOS constructs related header files in this directory.

The OOHVR. related Terms.11

header file is in this directory, so we ask the compiler to look up this directory.

The API argument class definition

file (MV_API_IO.h) and other shareable files are in this directory.

This compilation alias can be used as shown below:

where,

MV_List_All_Children_of_Terin.C is the name of the source file

to be compiled (It contains the source code for the MV_List_All_Children_of_Term

APT function).

A.1.2 Linking

The following alias is used to link each API function (and the program invoking the

API function(s)).

Each component of this compile command is explained below:

• -g : Standard CC compiler switch to indicate that debugging information

should be included in the object files created by the compilation.

• !* : Represents the names of all the object files specified.

• -L/opt/ONTOS/lib : The -L switch defines a directory to search for libraries

required during the link and load procedure. Here, a path is set for the ONTOS

library.

42

• -10NTOS : Specifies linkage to the ONTOS library.

: 	Sets the directory path for the API

library.

• -IAPI : Specifies linkage to the API library. This enables an API function to

invoke other API functions already present in the library.

This linkage alias can be used as shown below:

where,

MV_List_All_Children_of_Term.o is the name of the API

function's object file.

Prog_MV_List_AIl_Children_of_Term.o is the name of the test

program for the API function.

Terms.o is the name of the object file for the class definitions

of the object database for our vocabulary.

The Terins.o object code has to be included here because ONTOS requires

explicit linkage to the schema definition code. Hopefully, ONTOS will be able to

overcome this technical hurdle.

A.2 Directory Structure

To organize all data, files etc. a specific directory structure has been created.

We start with the directory /home/geller/OOHVR/A P I and treat this as the

home directory for the API.

The following directories have been created under the API directory:

• include: Contains all the header files to he included by different API functions.

(e.g. MV_API_IO.h)

43

• lib : Contains the MVAPI library.

• Funcs : The source code for the functions is stored in this directory.

• Progs : The source code of test programs for the API functions are stored in

this directory.

• bin : The object code for the functions is stored in this directory.

Each directory contains a README file explaining the purpose of that,

particular directory.

A.3 Important Files

Some files have been created and maintained with a view to better communication

amongst team members and efficient project management.

• /home/geller/OOHVR/API/assigns.doc : This file is used for task assignment,

to the various API group team members. It contains a list of all API functions'

names and the name(s) of the individuals) assigned to code each function.

• /home/geller/OOHVR/ API/Storing. doc : 	This file describes the steps

involved in coding an API function and then storing it and the relevant,

test program in the appropriate directories.

• /home/geller/OOHVR/API/A PI_List.doc : This file contains entries for all

the completed API functions. It represents the current status of the API group.

A new entry in this file also indicates a need to add that API function's object

code to the MVAPI library.

• /home/geller/OOHVR/API/specific_V2_msword.uu : 	This uuencoded file

contains the specification for API functions. The contents are in the MS-Word

document format.

APPENDIX B

CODE FOR THE API

The code for the following components of the API is presented here:

• Argument Classes

• Function Implementation

B.1 Argument Classes

B.1.1 The Class Declarations

/**
* MV_API_IO.h : This header file contains all the class declarations

* required for the parameter objects of the API. It should be

* included by all the programs that access the API.
*

* Created by : Hemant Kothavade 	 Creation Date : 6/3/96

* Last Updated : 9/20/96

***/

/**

* Design Notes :

*

* 1. We have designed a separate class for each type of parameter

• needed instead of creating a hierarchy. This is to enable

• each parameter class's members to have unique names related

• to their functionality.

*

* 2. The 'MV' prefix to each class name denotes 'Medical

Vocabulary'.

***/

/**

* Implementation Notes :

*

* 1. The #defines for ROOT_AREA etc. are specific to a database.

• These should be changed when the API is to be used for a

• different database.

44

45

***/

#include <string.h>

// Defines to be used in the API functions.

7/ This corresponds to the name of the root area in the 00HVR for

// which the API is being used

#define ROOT_AREA ENTITY_AREA

// This is the name of the property that provides the name of each

// area and term stored in the 00HVR

#define ID PROPERTY NAME

7/ Required during a OC_lookup etc.

#define STR_ROOT_AREA "ENTITY_AREA"

// Required during a OC_lookup etc.

#define STR_ID_SEARCH "ENTITY_AREA::NAME"

// The set with names of all relationships.

#define STR_RELATIONSHIP_SET "RelationshipSet"

// The set with names of all attributes.

#define STR_ATTRIBUTE_SET "AttributeSet"

#define SHADOW_CONCAT "_P"

#define AREA_SUFFIX_CONCAT "_AREA"

// Global declarations to be used by the API functions.

enum bool_type {FALSE, TRUE};

/* The classes for the input parameters */

class MV_TermName

{

private :

char *TermName;

public :

MV_TermName()

{

TermName = NULL;

}

MV_Te/mName(char *init_name)
{

TermName = new char[strlen(init_name) 	1];
strcpy(TermName, init_name);

}

void setTermName(char *inane)
{

delete TermName;

TermName = new char[strlen(iname) 	1];

strcpy(TermName, inane);

}

char *getTermName()
{

return (TermName);
}

-MV_TermName()
{

delete TermName;

}

class MV_AreaName
{

private :

char *AreaName;

public :

MV_AreaName()

{

AreaName = NULL;
}

MV_AreaName(char *init_name)

{

AreaName = new char[strlen(init_name) 	1];

strcpy(AreaName, init_name);
}

void setAreaName(char *inane)

{

delete AreaName;

46

AreaName = new char[strlen(iname) + 1];

strcpy(AreaName, iname);
}

char *getAreaName()
{

return (AreaName);

}

-MV_AreaName()
{

delete AreaName;

}
};

class MV_RelationshipName
{

private :

char *RelName;

public :

MV_RelationshipName()

{

RelName = NULL;

}

MV_RelationshipName(char *init_name)

{

RelName = new char[strlen(init_name) + 1];

strcpy(RelName, init_name);
}

void setRelName(char *iname)

delete RelName;

RelName = new char[strlen(iname) + 1];

strcpy(RelName, iname);

}

char *getRelName()

return (RelName);

}

-MV_RelationshipName()
{

delete RelName;

}

};

47

class MV_AttributeName

{

private :

char *AttrName;

public :

MV_AttributeName()

{

AttrName = NULL;

}

MV_AttributeName(char *init_name)

{

AttrName = new char[strlen(init_name) + 1];

strcpy(AttrName, init_name);

}

void setAttrName(char *iname)

{

delete AttrName;

AttrName = new char[strlen(iname) 	1];

strcpy(AttrName, iname);

}

char *getAttrName()

{

return (AttrName);

}

-MV_AttributeName()

{

delete AttrName;

I;

class MV_Value

private :

char *Value;

public :

MV_Value()

{

Value = NULL;

}

48

49

MV_Value(char *init_value)

{

Value = new char[strlen(init_value) + 1];

strcpy(Value, init_value);

}

void setValue(char *ival)

{

delete Value;

Value = new char[strlen(ival) + 1];

strcpy(Value, ival);

}

char *getValue()

{

return (Value);

}

-MV_Value()

{

delete Value;

}

I;

/* 	 */

/* The classes for the output parameters */

class MV TermList

private :

char **TermList;

int No_of_Terms;

int term_count; 	 // No. of terms added so far

public :

MV_TelmList()

{

No_of_Terms = -1;

term_count = -1;

}

void createList(int nterms) 	// nterms in the list

{

No_of_Terms = nterms;

TermList = (char **) new char *[No_of_Terms];

}

void addTerm(char *aTerm); 	In MV_API_IO.0

/* Use only to reduce the term count, if needed */

void setTermCount(int new_count)
{

No_of_Terms = new_count;
}

char **getTermList()
{

return TermList;

}

int getTermCount()
{

return No_of_Terms;
}

-MV_TermList()
{

for(int i = 0; i < No_of_Terms; i++)

delete TermList[i];

delete [] TermList;
}

};

class MV AreaList
{

private :

char **AreaList;

int No_of_Areas;

int area_count; 	 // No. of areas added so far

public :

MV_AreaList()

{

No_of_Areas = -1;

area_count = -1;

}

void createList(int nareas) 	// nareas in the list

{

No_of_Areas = nareas;

AreaList = (char **) new char *[No_of_Areas];

50

void addArea(char *anArea);

/* Use only to reduce the area count, if needed

void setAreaCount(int new_count)

{

No_of_Areas = new_count;

}

char **getAreaList()

{

return AreaList;

}

int getAreaCount()

{

return No_of_Areas;

}

-MV_AreaList()
{

for(int i = 0; i < No_of_Areas; i++)

delete AreaList[i];

delete ❑ AreaList;

}

};

class MV_RelationshipList
{

private :

char **RelList;

int No_of_Rels;

int rel_count; 	 // No. of rels added so far

public

MV_RelationshipList()

{

No_of_Rels = -1;

rel_count = -1;

}

void createList(int nrels) 	// nrels in the list
{

No_of_Rels = nrels;

RelList = (char **) new char *[No_of_Rels];
}

void addRelationship(char *aRel);

51

52

/* Use only to reduce the rel count, if needed *7

void setRelationshipCount(int new_count)

{

No_of_Rels = new_count;

}

char **getRelationshipList()

{

return RelList;
}

int getRelationshipCount()
{

return No_of_Rels;

1

-MV_RelationshipList()

for(int i = 0; i < No_of_Rels; i++)

delete RelList[i];

delete [] RelList;

}
};

class MV_AttributeList

private :

char **AttrList;

int No_of_Attrs;

int attr_count; 	 // No. of attrs added so far

public :

MV_AttributeList()

No_of_Attrs = -1;

attr_count = -1;

}

void createList(int nattrs) 	// nattrs in the list

No_of_Attrs = nattrs;

AttrList = (char **) new char *[No_of_Attrs];

}

void addAttribute(char *anAttr);

/* Use only to reduce the attr count, if needed */

void setAttributeCount(int new_count)
{

No_of_Attrs = new_count;

}

char **getAttributeList()

{
return AttrList;

}

int getAttributeCount()
{

return No_of_Attrs;

}

-MV_AttributeList()
{

for(int i = 0; i < No_of_Attrs; i++)

delete AttrList[i];

delete 	AttrList;

}

;

class MV_ValueList

{

private :

char **ValList;

int No_of_Vals;

int val_count; 	 /7 No. of vals added so far

public :

MV_ValueList()

{

No_of_Vals = -1;

val_count = -1;

}

void createList(int nvals) 	// nvals in the list

{

No_of_Vals = nvals;

ValList = (char **) new char *[No_of_Vals];

}

void addValue(char *aVal);

/* Use only to reduce the value count, if needed */

53

void setValueCount(int new_count)

{

No_of_Vals = new_count;

}

char **getValueList()
{

return ValList;

}

int getValueCount()

{

return No_of_Vals;

}

-MV_ValueList()
{

for(int i = 0; i < No_of_Vals; i++)

delete ValList[i];

delete [] ValList;

}

class MV_TermRelPairs

{

private :

typedef struct TermRel 	// Each Term will have one or

// more relationships.

char *Term;

char **Relationships;

int No_of_Rels;

}TermRel_type;

// Total rels for this Term

TermRel_type *Pairs; 	/1 List of pairs

int No_of_Pairs; 	 // Equals no. of Terms retrieved

int pair_count; 	 // No. of pairs entered so far

int rel_count; 	// No. of rels so far for particular Term

public :

MV_TeimRelPairs()

{

No_of_Pairs = -1;

pair_count = -1;

rel_count = -1;

54

55

void createList(int npairs) // npairs is total no. of pairs

{

No_of_Pairs = npairs;

Pairs = (TermRel_type *) new TermRel_type[No_of_Pairs];

}

void addTerm(char *aTerm, int nrels);

void addRelationship(char *aTerm, char *aRel);

int getTermRelPairCount()

{

return No_of_Pairs;

void getTermList(char **&aTermList, int &no_of_terms);

// Use the following function in a loop to get each term and its

// relationships OR

// Use the position in the term list to get relationships of a

// particular term

int getTermRelationships(int pos, char *&aTerm, char **&aRelList,

int &no_of_rels);

-MV_TermRelPairs()
{

for (int i = 0; i < No_of_Pairs; i++)

{

delete (Pairs[i].Term);

for (int j = 0; j < Pairs[i].No_of_Rels; j++)

delete Pairs[i].Relationships[j];

delete [] Pairs[i].Relationships;

};

delete [] Pairs;

};

class MV_AreaRelPairs
{

private :

typedef struct AreaRel 	// Each Area will have one or

// more relationships.

char *Area;

char **Relationships;

int No_of_Rels;
	

// Total rels for this Area

}AreaRel_type;

AreaRel_type *Pairs; 	// List of pairs

int No_of_Pairs; 	 // Equals no. of Areas retrieved

int pair_count; 	 // No. of pairs entered so far
int rel_count; 	// No. of rels so far for particular Area

public :
MV_AreaRelPairs()
{

No_of_Pairs = -1;
pair_count = -1;
rel_count = -1;

}

void createList(int npairs) 	// npairs is total no. of pairs
{

No_of_Pairs = npairs;
Pairs = (AreaRel_type *) new AreaRel_type[No_of_Pairs];

}
void addArea(char *anArea, int nrels);
void addRelationship(char *anArea, char *aRel);
int getAreaRelPairCount()
{

return No_of_Pairs;
}

void getAreaList(char **&anAreaList, int &no_of_areas);
// Use the following function in a loop to get each area and its
// relationships OR
// Use the position in the area list to get relationships of a
// particular area

int getAreaRelationships(int pos, char *&anArea,
char **&aRelList, int &no_of_rels);

-MV_AreaRelPairs()

for (int i = 0; i < No_of_Pairs; i++)
{

delete Pairs[i].Area;
for (int j = 0; j < Pairs[i] No_of_Rels; j++)

delete Pairs[i].Relationships[j];

delete C] Pairs[i].Relationships;

1;
delete C] Pairs;

1;

56

class MV_TermAttrPairs

private :

typedef struct TermAttr 	// Each Term will have one or

// more attributes.

char *Term;

char **Attributes;

int No_of_Attrs; 	 // Total attrs for this Tent'

}TermAttr_type;

TermAttr_type *Pairs; 	// List of pairs

int No_of_Pairs; 	 // Equals no. of Terms retrieved

int pair_count; 	 // No. of pairs entered so far

int attr_count; 	// No. of attrs so far for particular Term

public :

MV_TermAttrPairs()

{

No_of_Pairs = -1;

pair_count = -1;

attr_count = -1;

}

void createList(int npairs) 	// npairs is total no. of pairs

No_of_Pairs = npairs;

Pairs = (TermAttr_type *) new TermAttr_type[npairs];

}

void addTerm(char *aTerm, int nattrs);

void addAttribute(char *aTerm, char *anAttr);

int 	getTermAttrPairCount ()

return No_of_Pairs;
}

void getTermList(char **&aTermList, int &no_of_terms);

// Use the following function in a loop to get each term and its

// attributes OR

// Use the position in the term list to get attributes of a

7/ particular term

int getTermAttributes(int pos, char *&aTerm, char **&anAttrList,

int &no_of_attrs);

-MV_TermAttrPairs()

57

for (int i = 0; i < No_of_Pairs; i++)
{

delete Pairs[i].Term;

for (int j = 0; j < Pairs[ii.No_of_Attrs;

delete Pairs[i].Attributes[j];

delete [] Pairs[i].Attributes;

};

delete [] Pairs;

}

class MV_AreaAttrPairs
{

private :

typedef struct AreaAttr 	// Each Area will have one or

// more attributes.

char *Area;

char **Attributes;

int No_of_Attrs; 	 // Total attrs for this Area

}AreaAttr_type;

AreaAttr_type *Pairs; 	// List of pairs

int No_of_Pairs; 	 // Equals no. of Areas retrieved

int pair_count; 	 // No. of pairs entered so far

int attr_count; 	// No. of attrs so far for particular Area

public :

MV_AreaAttrPairs()

{

No_of_Pairs = -1;

pair_count = -1;

attr_count = -1;
}

void createList(int npairs) 	// npairs is total no. of pairs

No_of_Pairs = npairs;

Pairs = (AreaAttr_type *) new AreaAttr_type[No_of_Pairs];

}

void addArea(char *anArea, int nattrs);

void addAttribute(char *anArea, char *anAttr);

int 	getAreaAttrPairCount ()

58

59

{

return No_of_Pairs;

}

void getAreaList(char **&anAreaList, int &no_of_areas);

// Use the following function in a loop to get each area and its

// attributes OR

// Use the position in the area list to get attributes of a

// particular area

int getAreaAttributes(int pos, char *&anArea,

char **&anAttrList, int &no_of_attrs);

-MV_AreaAttrPairs()
{

for (int i = 0; i < No_of_Pairs; 	+)
{

delete Pairs[i].Area;

for (int j = 0; j < Pairs[i].No_of_Attrs;

delete Pairs[i].Attributes[j];

delete [] Pairs[i].Attributes;
};

delete [] Pairs;
}

};

class MV_RelTeimPairs
{

private :

typedef struct RelTerm 	// Each relationship of a Term will

// point to a particular Term

char *Relationship;

char *Term;

}RelTerm_type;

RelTerm_type *Pairs; 	// List of pairs

int No_of_Pairs; 	// Equals no. of relationships for the Term

int pair_count; 	 // No. of pairs entered so far

public :

MV_RelTermPairs()

{

No_of_Pairs = -1;

pair_count = -1;

60

}

void createList(int npairs) 	// npairs is total no. of pairs

{

No_of_Pairs = npairs;

Pairs = (RelTerm_type 	new RelTerm_type[No_of_Pairs],

}

void addRelTermPair(char *aRel, char *aTerm);

int 	getRelTermPairCount ()

{

return No_of_Pairs;

}

// Use the following function in a loop to get each relationship and

// the term it points to

int getRelationshipTerm(int pos, char *&aRel, char *&aTerm);

-MV_RelTeimPairs()

for (int i = 0; i < No_of_Pairs; i++)

{

delete Pairs[i].Relationship;

delete Pairs[i].Term;

};

delete [] Pairs;
}

};

class MV_RelAreaPairs

{

private :

typedef struct RelArea 	// Each relationship of a Area will

// point to a particular Area

char *Relationship;

char *Area;

}RelArea_type;

RelArea_type *Pairs; 	// List of pairs

int No_of_Pairs; 	// Equals no. of relationships for the Area

int pair_count; 	 // No. of pairs entered so far

public :

MV_RelAreaPairs()

61

No_of_Pairs = -1;

pair_count = -1;

}

void createList(int npairs) 	// npairs is total no. of pairs
{

No_of_Pairs = npairs;

Pairs = (RelArea_type *) new RelArea_type[No_of_Pairs];

}

void addRelAreaPair(char *aRel, char *anArea);

int getRelAreaPairCount()

{

return No_of_Pairs;

}

/7 Use the following function in a loop to get each relationship and

// the area it points to

int getRelationshipArea(int pos, char *&aRel, char *&anArea);

-MV_RelAreaPairs()
{

for (int i = 0; i < No_of_Pairs; i++)

{

delete Pairs[i].Relationship;

delete Pairs[i].Area;
};

delete [] Pairs;
}

};

class MV_TermPairs

{

private :

typedef struct Terms

{

char *Source_Term;

char *Dest_Term;

}Term_type;

Term_type *Pairs; 	// List of pairs

int No_of_Pairs; 	 // Equals no. of Term pairs detected

int pair_count; 	 7/ No. of pairs entered so far

public :

MV_TermPairs()

{

No_of_Pairs = -1;

pair_count = -1;

}

void createList(int npairs) // npairs is total no. of pairs

{

No_of_Pairs = npairs;

Pairs = (Term_type *) new Term_type[No_of_Pairs];

}

void addTermPair(char *aSourceTerm, char *aDestTerm);

int getTermPairCount()

{

return No_of_Pairs;

}

int getTerms(int pos, char *&aSourceTerm, char *&aDestTerm);

"MV_TermPairs()

{

for (int i = 0; i < No_of_Pairs; i++)

{

delete Pairs[i].Source_Term;

delete Pairs[i].Dest_Term;

};

delete [] Pairs;

}

};

class MV_AreaPairs
{

private :

typedef struct Areas

{

char *Source_Area;

char *Dest_Area;

}Area_type;

Area_type *Pairs; 	// List of pairs

int No_of_Pairs; 	 // Equals no. of Area pairs detected

int pair_count; 	 // No. of pairs entered so far

public :

MV_AreaPairs()

62

{

No_of_Pairs = -1;

pair_count = -1;

}

void createList(int npairs) 	// npairs is total no. of pairs
{

No_of_Pairs = npairs;

Pairs = (Area_type *) new Area_type[No_of_Pairs];

}

void addAreaPair(char *aSourceArea, char *aDestArea);

int getAreaPairCount()

{

return No_of_Pairs;
}

int getAreas(int pos, char *&aSourceArea, char *&aDestArea);

-MV_AreaPairs()
{

for (int i = 0; i < No_of_Pairs; i++)
{

delete Pairs[i].Source_Area;

delete Pairs[i].Dest_Area;
};

delete [] Pairs;

1;

class MV_AreaTermPairs
{

private :

typedef struct AreaTerm 	// Each Area will have one or

// more insatnces.

char *Area;

char **Terms;

int No_of_Terms; 	 // Total Terms for this Area

}AreaTerm_type;

AreaTerm_type *Pairs; 	// List of pairs

int No_of_Pairs; 	 // Equals no. of Areas retrieved

int pair_count; 	 // No. of pairs entered so far

int term_count; 	// No. of Terms so far for particular Area

public :

63

64

MV_AreaTermPairs()
{

No_of_Pairs = -1;
pair_count = -1;
term_count = -1;

}

void createList(int npairs) // npairs is total no. of pairs
{

No_of_Pairs = npairs;
Pairs = (AreaTerm_type *) new AreaTerm_type[No_of_Pairs];

}

void addArea(char *anArea, int nterms);
void addTeiiu(char *anArea, char *aTerm);
int getAreaTermPairCount()

return No_of_Pairs;
}

void getAreaList(char **&anAreaList, int &no_of_areas);
// Use the following function in a loop to get each area and its
// terms OR
// Use the position in the area list to get terms of a particular
// area

int getAreaTerms(int pos, char *&anArea, char **&aTermList,
int &no_of_terms);

-MV_AreaTermPairs()
{

for (int i = 0; i < No_of_Pairs; i++)
{

delete Pairs[i].Area;
for (int j = 0; j < Pairs[i].No_of_Terms; j++)

delete Pairs[i].Terms[j];
delete 0 Pairs[i].Terms;

};
delete [] Pairs;

}

};

class MV_TermTriples
{

private :
typedef struct Terms

65

char *Source_Term;

char *Relationship;

char *Dest_Term;

}Term_type;

Term_type *Triples; 	// List of triples

int No_of_Triples; 	// Equals no. of Term triples detected

int triple_count; 	 // No. of triples entered so far

public :

MV_TermTriples()

{

No_of_Triples = -1;

triple_count = -1;

}

void createList(int ntriples) // ntriples is total no. of triples

{

No_of_Triples = ntriples;

Triples = (Term_type *) new Term_type[No_of_Triples];

void addTermTriple(char *aSourceTerm, char *aRelationship,

char *aDestTerm);

int getTermTripleCount()

{

return No_of_Triples;

}

int getTermTriple(int pas, char *&aSourceTerm,

char *&aRelationship, char *&aDestTerm);

"MV_TermTriples()

{

for (int i = 0; i < No_of_Triples; i++)
{

delete Triples[i].Source_Term;

delete Triples[i].Relationship;

delete Triples[i].Dest_Term;
};

delete [] Triples;

}

};

class MV_AreaTriples

66

private :

typedef struct Areas

char *Source_Area;

char *Relationship;

char *Dest_Area;

}Area_type;

Area_type *Triples; 	// List of triples

int No_of_Triples; 	// Equals no. of Area triples detected

int triple_count; 	 // No. of triples entered so far

public :

MV_AreaTriples()

No_of_Triples = -1;

triple_count = -1;
}

void createList(int ntriples) // ntriples is total no. of triples

No_of_Triples = ntriples;

Triples = (Area_type *) new Area_type[No_of_Triples];
}

void addAreaTriple(char *aSourceArea, char *aRelationship,

char *aDestArea);

int getAreaTripleCount()

return No_of_Triples;
}

int getAreaTriple(int pos, char *&aSourceArea,

char *&aRelationship, char *&aDestArea);

-MV_AreaTriples()

for (int i = 0; i < No_of_Triples; i++)

delete Triples[i].Source_Area;

delete Triples[i].Relationship;

delete Triples[i].Dest_Area;

};

delete [] Triples;
}

};

67

class MV_AttrValPairs
{

private :

typedef struct AttrVal 	// Each attribute will have one or

// more values.

char *Attribute;

char **Values;

int No_of_Vals; 	 /7 Total values for this attribute

}AttrVal_type;

AttrVal_type *Pairs; 	// List of pairs

int No_of_Pairs; 	 7/ Equals no. of attributes retrieved

int pair_count; 	 // No. of pairs entered so far

int val_count; 	// No. of vals so far for particular Attribute

public :

MV_AttrValPairs()
{

No_of_Pairs = -1;

pair_count = -1;

val_count = -1;

}

void createList(int npairs) // npairs is total no. of pairs
{

No_of_Pairs = npairs;

Pairs = (AttrVal_type *) new AttrVal_type[No_of_Pairs];
}

void addAttribute(char *anAttr, int nvals);

void addValue(char *anAttr, char *aVal);

int getAttrValPairCount()
{

return No_of_Pairs;

}

void getAttributeList(char **&anAttrList, int &no_of_attrs);

// Use the following function in a loop to get each attribute and

// its values OR

// Use the position in the attribute list to get values of a

// particular attribute

int getAttributeValues(int pos, char *&anAttribute,

char **&aValList, int &no_of_vals);

-MV_AttrValPairs()

68

{

for (int i = 0; i < No_of_Pairs; i++)

delete Pairs[i].Attribute;

for (int j = 0; j < Pairs[i].No_of_Vals; j++)

delete Pairs[i].Values[j];

delete [] Pairs[i].Values;

};

delete C] Pairs;
}

};

class MV_TermValPairs
{

private :

typedef struct TermVal 	/7 Each Term will have one or

// more values for the attribute.

char *Term;

char **Values;

int No_of_Vals; 	// Total values for this Terms attribute

}TermVal_type;

TermVal_type *Pairs; 	// List of pairs

int No_of_Pairs; 	 // Equals no. of Terms retrieved

int pair_count; 	 // No. of pairs entered so far

int val_count; 	// No. of vats so far for particular Term

public :

MV_TermValPairs()
{

No_of_Pairs = -1;

pair_count = -1;

val_count = -1;
}

void createList(int npairs) // npairs is total no. of pairs
{

No_of_Pairs = npairs;

Pairs = (TermVal_type *) new TermVal_type[No_of_Pairs];
}

void addTerm(char *aTerm, int nvals);

void addValue(char *aTerm, char *aVal);

int getTermValPairCount()

69

{

return No_of_Pairs;

}

void getTermList(char **&aTermList, int &no_of_terms);

// Use the following function in a loop to get each term and

// the values OR

// Use the position in the term list to get values for a

//particular term

int getTermValues(int pos, char *&aTerm, char **&aValList,

int &no_of_vals);

-MV_TermValPairs()
{

for (int i = 0; i < No_of_Pairs; i++)
{

delete Pairs[i].Term;

for (int j = 0; j < Pairs[i].No_of_Vals; j++)

delete Pairs[i].Values[j];

delete [] Pairs[i].Values,

};

delete [] Pairs;

};

class MV_TermAttrValTriples
{

private :

typedef struct TermAttrVal
{

char *Term;

char *Attribute;

char **Values;

int No_of_Vals;

}TermAttrVal_type;

TermAttrVal_type *Triples; 	// List of triples

int No_of_Triples; 	 // Equals no. of Term triples detected

int triple_count; 	 // No. of triples entered so far

int val_count;

public :

70

MV_TermAttrValTriples()

{

No_of_Triples = -1;

triple_count = -1;

val_count = -1;

}

void createList(int ntriples) // ntriples is total no. of triples
{

No_of_Triples = ntriples;

Triples = (TermAttrVal_type *) new TermAttrVal_type[No_of_Tri

pies];
}

void addTermAttribute(char *aTerm, char *anAttribute, int nvals);

void addValue(char *aTerm, char *anAttribute, char *aValue);

int getTermTripleCount()
{

return No_of_Triples;

}

int getTermAttrValTriple(int pos, char *&aTerm,

char *&anAttribute,

char **&aValueList, int &no_of_vals);

-MV_TermAttrValTriples()
{

for (int i = 0; i < No_of_Triples; i++)

{

delete Triples[i].Term;

delete Triples[i].Attribute;

for (int j = 0; j < No_of_Triples; j++)

delete Triples[i].Values[j];

delete [1 Triples[i].Values;

};

delete [] Triples;

}

I;

#define NO ERROR 0

#define ERR INPUT 1

#define ERR_DATA_ABSENT 2

#define ERR_OPEN_FAIL 3

#define ERR_DBNAME_ABSENT 4

class MV_API_Errors

71

private :

int Error_code;

public :

MV_API_Errors()

{

Error_code = 0;

}

MV_API_Errors(int ierr)

Error_code = ierr;

}

void setErrorCode(int err)

{

Error_code = err;
}

int getErrorCode()

{

return Error_code;
}

void HandleError(); 	// A case statement to handle all errors

};

B.1.2 Implementation of Member Functions

/**
* MV_API_IO.0 : This file contains the implementation of the member

* functions for the classes defined in MV_API_IO.h

*

* Created by : Hemant Kothavade Creation Date : 6/3/96

* Last Updated : 6/13/96

***/

/**

* The 'MV' prefix denotes 'Medical Vocabulary'.

***/

#include <iostream.h>

#include "MV_API_IO.h"

/**

* Function Name : MV_TermList 	addTeim

72

* Inputs :-

* 1. aTerm(Type char *) : The Term to be added in the list.

* Outputs :-

* 1. An entry for the new Term name in the list TermList.

*

* Description :-

* This function adds a new Term name to the list TermList

***/

void MV_TermList 	addTerm(char *aTerm)

term_count++;

if (term_count <= No_of_Terms)

{

TermList[term_count] = new char[strlen(aTerm) + 1];

strcpy(TermList[term_count], aTerm);

}

else

cout << "\n\n *** ERROR : Adding too many items to the list !!

/**

* Function Name : MV_AreaList 	addArea

*

* Inputs :-

* 1. anArea(Type char *) : The Area to be added in the list.

*

* Outputs :-

* 1. An entry for the new Area name in the list AreaList

*

* Description :-

* This function adds a new Area name to the list AreaList

***/

void MV_AreaList 	addArea(char *anArea)

{

area_count++;

if (area_count <= No_of_Areas)

AreaList[area_count] = new char[strlen(anArea) + 1];

strcpy(AreaList[area_count], anArea);

}

else

cout << "\n\n *** ERROR : Adding too many items to the list !!";

73

/**

* Function Name : MV_RelationshipList 	addRelationship
*

* Inputs :-

*1. aRel(Type char *) : The Relationship to be added in the list.
*

* Outputs :-

*1. An entry for the new Relationship name in the list RelList.
*

* Description :-

* This function adds a new Relationship name to the list RelList.

**/

void MV_RelationshipList 	addRelationship(char *aRel)
{

rel_count++;

if (rel_count <= No_of_Rels)
{

RelList[rel_count] = new char[strlen(aRel) + 1];
strcpy(RelList[rel_count], aRel);

}

else

cout << "\n\n *** ERROR : Adding too many items to the list !!";

/**

* Function Name : MV_AttributeList 	addAttribute

*

* Inputs :-

* 1. anAttr(Type char *) : The Attribute to be added in the list.

*

* Outputs :-

* 1. An entry for the new Attribute name in the list AttrList

*

* Description :-

* This function adds a new Attribute name to the list AttrList.

***/

void MV_AttributeList 	addAttribute(char *anAttr)

{

attr_count++;

if (attr_count <= No_of_Attrs)

74

{

AttrList[attr_count] = new char[strlen(anAttr) + 1];

strcpy(AttrList[attr_count], anAttr);

}

else

cout << "\n\n *** ERROR : Adding too many items to the list !!

/**

* Function Name : MV_ValueList 	addValue

*

* Inputs :-

* 1. aVal(Type char *) : The Value to be added in the list.

*

* Outputs :-

* 1. An entry for the new Value in the list ValList.

*

* Description :-

* This function adds a new Value to the list ValList.

***/

void MV_ValueList 	addValue(char *aVal)

{

val_count++;

if (val_count <= No_of_Vals)
{

ValList [val_count] = new char[strlen(aVal) + 1];

strcpy(ValList[val_count], aVal);
}

else

cout << "\n\n *** ERROR : Adding too many items to the list !!";

/**

* Function Name : MV_TermRelPairs 	addTerm
*

* Inputs :-

* 1. aTerm(Type char *) : The Term to be added in the list of pairs.
* 2. nrels(Type int) : The no. of relationships for this new Term.
*

* Outputs :-

* 1. An entry for the new Term name in the list.

75

* 2, An empty list is created to store the relationships.

* Description :-

* This function adds a new Term and initializes all the

* data structures needed to store its relationships.

***/

void MV_TermRelPairs 	addTerm(char *aTerm, int nrels)

pair_count++;

Pairs[pair_count].Term = new char[strlen(aTerm) + 1];

strcpy(Pairs[pair_count].Term, aTerm);

Pairs[pair_count].No_of_Rels = nrels;

Pairs[pair_count].Relationships = (char **) new char *[nrels];

rel_count = -1;

}

/**

* Function Name : MV_TermRelPairs 	addRelationship

*

* Inputs :-

* 1. aTerm(Type char *) : The Term for which relationship is to be

• added.

* 2. aRel(Type char *) : The relationship to be added to the list.

*

* Outputs :-

* 1. An entry for the relationship name in the list.

*

* Description :-

* This function adds a relationship to the list of

* relationships for the current Term. You should add all the

* relationships for a Term one after another (not randomly).

***/

void MV_TermRelPairs 	addRelationship(char *aTerm, char *aRel)

if ((strcmp(Pairs[pair_count].Term, aTerm)) != 0)

{

cout << "\n\n\n Error : You should add all relationships for a

Term at the same time.";

return;

}

rel_count++;

76

Pairs[pair_count].Relationships[rel_count] =

(char *) new char[strlen(aRel) + 1];

strcpy(Pairs[pair_count].Relationships[rel_count], aRel);

/**

* Function Name : MV_TermRelPairs 	getTermList

*

* Inputs : None.

*

* Outputs :-

* 1. aTermList(Type char **) : The list of terms in the pairs

* retrieved.

* 2. no_of_terms(Type int) : Number of terms in the list of

* pairs.

*

* Description :-

* This function provides a list of all the terms retrieved.

***/

void MV_TermRelPairs 	getTermList(char **&aTermList,

int &no_of_terms)

aTermList = (char **) new char *[No_of_Pairs];

for (int i = 0; i < No_of_Pairs; i++)
{

aTermList[i] = Pairs[i].Term;
}

no_of_terms = No_of_Pairs;

}

/**

* Function Name : MV_TermRelPairs 	getTermRelationships
*

* Inputs :-

* 1. pos(Type int) : The Term number (amongst all the tent's

* retrieved) for which relationships are requested.

*

* Outputs :-

* 1. aTerm(Type char *) : The Term for which list of

* relationships is returned.

* 2. aRelList(Type char **) : A list of all the relationships

77

* for the Term.

* 3. no_of_rels(Type int) : A count of the number of

* relationships for that Term.

* Description :-

* This function provides a list of all the relationships

* retrieved for a Teim. A value 0 is returned if the data is

* available and a value 1 is returned if the pos parameter is

* incorrect.
***/

int MV_TermRelPairs 	getTermRelationships(int pos, char *&aTerm,

char **&aRelList, int &no_of_rels)

{

if (pos <= No_of_Pairs)

{

aTerm = Pairs[pos].Term; 	// pos - 1 	????

aRelList = Pairs[pos].Relationships;

no_of_rels = Pairs[pos].No_of_Rels;

return 0;

}

else

return 1;

/**

* Function Name : MV_AreaRelPairs 	addArea

*

* Inputs :-

* 1. anArea(Type char *) : The Area to be added in the list of

* pairs.

* 2. nrels(Type int) : The no. of relationships for this

* new Area.

*

* Outputs

• 1. An entry for the new Area name in the list.

* 2. An empty list is created to store the relationships.

*

* Description :-

* This function adds a new Area and initializes all the

* data structures needed to store its relationships.

***/

void MV_AreaRelPairs 	addArea(char *anArea, int nrels)

78

pair_count++;
Pairs[pair_count].Area = new char[strlen(anArea) + 1];
strcpy(Pairs[pair_count].Area, anArea);

Pairs[pair_count].No_of_Rels = nrels;
Pairs[pair_count].Relationships = (char 	new char *[nrels];
rel_count = -1;

}

/**
* Function Name : MV_AreaRelPairs 	addRelationship
*

* Inputs :-
* 1. anArea(Type char *) : The Area for which relationship is
* to be added.
* 2. aRel(Type char *) : The relationship to be added to the list.
*

* Outputs :-
* 1. An entry for the relationship name in the list.
*

* Description :-
* This function adds a relationship to the list of
* relationships for the current Area. You should add all the
* relationships for an Area one after another (not randomly).
***/

void MV_AreaRelPairs 	addRelationship(char *anArea, char *aRel)

if ((strcmp(Pairs[pair_count].Area, anArea)) != 0)
{

cout << "\n\n\n Error : You should add all relationships for a
Area at the same time.";

return;

}
rel_count++;

Pairs[pair_count].Relationships[rel_count] =
(char *) new char[strlen(aRel) + 1];

strcpy(Pairs[pair_count].Relationships[rel_count], aRel);
}

/**

79

* Function Name : MV_AreaRelPairs 	getAreaList
*

* Inputs : None.

*

* Outputs :-

* 1. anAreaList(Type char **) : The list of areas in the pairs

* retrieved.

* 2. no_of_areas(Type int) : Number of areas in the list of pairs.

*

* Description :-

* This function provides a list of all the areas retrieved.
***/

void MV_AreaRelPairs 	getAreaList(char **&anAreaList,

int &no_of_areas)

anAreaList = (char **) new char *[No_of_Pairs];

for (int i = 0; i < No_of_Pairs; i++)

{

anAreaList[i] = Pairs[i].Area;

}

no_of_areas = No_of_Pairs;

/**

* Function Name : MV_AreaRelPairs 	getAreaRelationships
*

* Inputs :-

* 1. pos(Type int) : The Area number (amongst all the Areas

* retrieved) for which relationships are requested.

*

* Outputs :-

* 1. anArea(Type char *) : The Area for which list of

* relationships is returned.

* 2. aRelList(Type char **) : A list of all the relationships

* for the Area.

* 3. no_of_rels(Type int) : A count of the number of

* relationships for that Area.

*

* Description :-

* This function provides a list of all the relationships retrieved

* for a Area. A value 0 is returned if the data is available and a

* value 1 is returned if the pos parameter is incorrect.

***/

80

int MV_AreaRelPairs 	getAreaRelationships(int pos, char *&anArea,

char **&aRelList, int &no_of_rels)
{

if (pos <= No_of_Pairs)

anArea = Pairs[pos].Area; 	// pos - 1 	????

aRelList = Pairs[pos].Relationships,

no_of_rels = Pairs[pos].No_of_Rels;

return 0;
}

else

return 1;

/**

* Function Name : MV_TermAttrPairs 	addTerm

*

* Inputs :-

* 1. aTerm(Type char *) : The Term to be added in the list of pairs.

* 2. nattrs(Type int) : The no. of attributes for this new Term.

*

* Outputs :-

* 1. An entry for the new Term name in the list.

* 2. An empty list is created to store the attributes.

*

* Description :-

* This function adds a new Term and initializes all the

* data structures needed to store its attributes.

***/

void MV_TermAttrPairs 	addTerm(char *aTerm, int nattrs)

pair_count++;

Pairs[pair_count].Term = new char[strlen(aTeim) + 1];

strcpy(Pairs[pair_count].Term, aTerm);

Pairs[pair_count].No_of_Attrs = nattrs;

Pairs[pair_count].Attributes = (char **) new char *[nattrs];

attr_count = -1;

/**

81

* Function. Name : MV_TermAttrPairs 	addAttribute

* Inputs :-

* 1. aTerm(Type char *) : The Term for which attribute is to

* be added.

* 2. anAttr(Type char *) : The attribute to be added to the list.

*

* Outputs :-

* 1. An entry for the attribute name in the list.

*

* Description :-

* This function adds an attribute to the list of

* attributes for the current Teim. You should add all the

* attributes for a Term one after another (not randomly).

***/

void MV_TermAttrPairs 	addAttribute(char *aTerm, char *anAttr)

{

if ((strcmp(Pairs[pair_count].Term, aTerm)) != 0)

{

cout << "\n\n\n Error : You should add all attributes for a

Term at the same time.";

return;

}

attr_count++;

Pairs[pair_count].Attributes[attr_count] =

(char *) new char[strlen(anAttr) + 1];

strcpy(Pairs[pair_count].Attributes[attr_count], anAttr);

/**

* Function Name : MV_TermAttrPairs 	getTermList

*

* Inputs : None.

*

* Outputs :-

* 1. aTermList(Type char **) : The list of terms in the pairs

* retrieved.

* 2. no_of_terms(Type int) : Number of terms in the list of pairs.

*

* Description :-

* This function provides a list of all the terms retrieved.

***/

82

void MV_TermAttrPairs 	getTermList(char **&aTermList,

int &no_of_terms)

aTermList = (char **) new char *[No_of_Pairs];

for (int i = 0; i < No_of_Pairs; i++)

{

aTermList[i] = Pairs[i]:-Term;

}

no_of_terms = No_of_Pairs;

/**

* Function Name : MV_TermAttrPairs 	getTermAttributes
*

* Inputs :-

* 1:- pos(Type int) : The Term number (amongst all the terms

* retrieved) for which attributes are requested.

*

* Outputs :-

* 1:- aTerm(Type char 	: The Term for which list of attributes

* is returned:-

* 2:- anAttrList(Type char **) : A list of all the attributes

* for the Term:-

* 3. no_of_attrs(Type int) : A count of the number of attributes

* for that Term:-

*

* Description :-

* This function provides a list of all the attributes retrieved

* for a Term. A value 0 is returned if the data is available and

* a value 1 is returned if the pos parameter is incorrect.

***/

int MV_TermAttrPairs 	getTermAttributes(int pos, char *&aTerm

char **&anAttrList, int &no_of_attrs)

if (pos <= No_of_Pairs)

{

aTerm = Pairs[pos]:-Term;
	

// pos - 1 	????

anAttrList = Pairs[pos].Attributes;

no_of_attrs = Pairs[pos]:-No_of_Attrs;

return 0;

}

else

return 1;

- * Outputs :

*

1. An entry for the attribute name in the

/**

* Function Name : MV_AreaAttrPairs 	addArea

*

* Inputs :-

* 1. anArea(Type char *) : The Area to be added in the list of

* pairs.

* 2. nattrs(Type int) : The no. of attributes for this new Area.

*

* Outputs :-

* 1. An entry for the new Area name in the list.

* 2. An empty list is created to store the attributes.

* Description :-

* This function adds a new Area and initializes all the

* data structures needed to store its attributes.
***/

void MV_AreaAttrPairs 	addArea(char *anArea, int nattrs)

{

pair_count++;

Pairs[pair_count].Area = new char[strlen(anArea) +

strcpy(Pairs[pair_count].Area, anArea);

Pairs[pair_count].No_of_Attrs = nattrs;

Pairs[pair_count].Attributes = (char **) new char *[nattrs];

attr_count = -1;
}

/**

* Function Name : MV_AreaAttrPairs 	addAttribute

*

* Inputs :-

* 1. anArea(Type char *) : The Area for which attribute is to
* be added.

* 2. anAttr(Type char *) : The attribute to be added to the list.

list.

84

* Description :-

* This function adds an attribute to. the list of

* attributes for the current Area. You should add all the

* attributes for a Area one after another (not randomly).
***/

void MV_AreaAttrPairs 	addAttribute(char *anArea, char *anAttr)

if ((strcmp(Pairs[pair_count].Area, anArea)) != 0)

cout << "\n\n\n Error : You should add all attributes for a

Area at the same time.";

return;

}

attr_count++;

Pairs[pair_count].Attributes[attr_count] =

(char *) new char[strlen(anAttr) + 1];

strcpy(Pairs[pair_count].Attributes[attr_count], anAttr);

/**

* Function Name : MV_AreaAttrPairs 	getAreaList

* Inputs : None.

*

* Outputs :-

* 1. anAreaList(Type char **) : The list of areas in the pairs

* retrieved.

* 2. no_of_areas(Type int) : Number of areas in the list of pairs.

*

* Description :-

* This function provides a list of all the areas retrieved.
***/

void MV_AreaAttrPairs 	getAreaList(char **&anAreaList,

int &no_of_areas)

anAreaList = (char **) new char *[No_of_Pairs];

for (int i = 0; i < No_of_Pairs; i++)

anAreaList[i] = Pairs[i].Area;

}

no_of_areas = No_of_Pairs;

85

}

/**

* Function Name : MV_AreaAttrPairs 	getAreaAttributes

*

* Inputs :-

* 1. pos(Type int) : The Area number (amongst all the Areas

* retrieved) for which attributes are requested.

*

* Outputs :-

* 1. anArea(Type char *) : The Area for which list of

* attributes is returned.

* 2. anAttrList(Type char **) : A list of all the attributes

* for the Area:-

* 3. no_of_attrs(Type int) : A count of the number of

* attributes for that Area.

*

* Description :-

* This function provides a list of all the attributes retrieved

* for a Area. A value 0 is returned if the data is available and

* a value 1 is returned if the pos parameter is incorrect.

***/

int MV_AreaAttrPairs 	getAreaAttributes(int pos, char *&anArea,

char **&anAttrList, int &no_of_attrs)

{

if (pos <= No_of_Pairs)

{

anArea = Pairs[pos].Area; 	// pos - 1 	????

anAttrList = Pairs[pos]:-Attributes;

no_of_attrs = Pairs[pos].No_of_Attrs;

return 0;

}

else

return 1;

/**

* Function Name : MV_RelTeimPairs 	addRelTermPair

*

* Inputs :-

* 1. aRel(Type char 	: The Relationship to be added in the

86

* list of pairs.

* 2:- aTerm (Type char *) : The Term to be added in the list of

* pairs.

*

* Outputs :-

* 1:- An entry for the new Relationship and Term names in the

* list.
*

* Description :-

*This function adds a new Relationship and Term to the list of

* relationship-term pairs.
***/

void MV_RelTermPairs 	addRelTermPair(char *aRel, char *aTerm)

pair_count++;

Pairs[pair_count].Relationship = new char[strlen(aRel) +

strcpy(Pairs[pair_count]:-Relationship, aRel);

Pairs[pair_count].Term = new char[strlen(aTerm) + 1];

strcpy(Pairs[pair_count].Term, aTerm);

/**

* Function Name : MV_RelTeimPairs 	getRelationshipTerm

*

* Inputs :-

* 1. pos(Type int) : The number for the requested pair:-

*

* Outputs :-

* 1:- aRel(Type char *) : The Relationship in the pair.

* 2:- aTerm (Type char *) : The Term in the pair.

*

* Description :-

* This function provides the relationship and team in a

* particular pair of the list. A value 0 is returned if the data is

* available and a value 1 is returned if the pos parameter is

* incorrect.

***/

int MV_RelTermPairs 	getRelationshipTerm(int pos, char *&aRel,

char *&aTerm)

if (pos <= No_of_Pairs)

{

aRel = Pairs[pos]:-Relationship; 	// pos - 1 ??

87

aTerm = Pairs[pos].Term;

return 0;

}

else

return 1;

/**

* Function Name : MV_RelAreaPairs 	addRelAreaPair

*

* Inputs :-

* 1. aRel(Type char *) : The Relationship to be added in the

* list of pairs.

* 2. anArea (Type char *) : The Area to be added in the list

* of pairs.

*

* Outputs :-

* 1. An entry for the new Relationship and Area names in the list.
*

* Description :-

* This function adds a new Relationship and Area to the list of

* relationship-area pairs.

***/

void MV_RelAreaPairs 	addRelAreaPair(char *aRel, char *anArea)
{

pair_count++;

Pairs[pair_count].Relationship = new char[strlen(aRel) + 1];

strcpy(Pairs[pair_count].Relationship, aRel);

Pairs[pair_count].Area = new char[strlen(anArea) + 1];
strcpy(Pairs[pair_count].Area, anArea);

}

/**

* Function Name : MV_RelAreaPairs 	getRelationshipArea

*

* Inputs :-

* 1. pos(Type int) : The number for the requested pair.
*

* Outputs :-

* 1. aRel(Type char *) : The Relationship in the pair.

* 2. anArea (Type char *) : The Area in the pair.

88

* Description :-

* This function provides the relationship and Area in a particular

* pair of the list. A value 0 is returned if the data is available

* and a value 1 is returned if the pos parameter is incorrect.
***/

int MV_RelAreaPairs 	getRelationshipArea(int pos, char *&aRel,

char *&anArea)

if (pos <= No_of_Pairs)
{

aRel = Pairs[pos].Relationship;

anArea = Pairs[pos].Area;

return 0;
}

else

return 1;

// pos - 1 ??

/**

* Function Name : MV_TermPairs 	addTermPair

*

* Inputs :-

* 1. aSourceTerm(Type char *) : The Term from which the given

* relationship emanates.

* 2. aDestTerm(Type char 	: The Term pointed to by the given

* relationship.
*

* Outputs :-

* 1. An entry for the new Term pair in the list.

*

* Description :-

* This function adds a new Term pair to the list.

***/

void MV_TermPairs 	addTermPair(char *aSourceTerm, char *aDestTerm)

{

pair_count++;

Pairs[pair_count].Source_Term = new char[strlen(aSourceTerm) + 1];

strcpy(Pairs[pair_count].Source_Term, aSourceTerm);

Pairs[pair_count].Dest_Term = new char[strlen(aDestTerm) +

strcpy(Pairs[pair_count].Dest_Term, aDestTerm);

89

/**

* Function Name : MV_TermPairs 	getTerms
*

* Inputs :-

* 1. pos(Type int) : The number for the requested pair.
*

* Outputs :-

* 1. aSourceTerm(Type char *) : The source term in the pair.

* 2. aDestTerm(Type char *) : The destination term in the pair.
*

* Description :-

* This function provides the source and destination terms in a

* particular pair of the list. A value 0 is returned if the data is

* available and a value 1 is returned if the pos parameter is

* incorrect.

***/

int MV_TermPairs 	getTerms(int pos, char *&aSourceTerm,

char *&aDestTerm)

if (pos <= No_of_Pairs)

{

aSourceTerm = Pairs[pos].Source_Term; 	// pos - 1

aDestTerm = Pairs[pos].Dest_Term;

return 0;
}

else

return 1;

/**

* Function Name : MV_AreaPairs 	addAreaPair
*

* Inputs :-

* 1. aSourceArea(Type char *) : The Area from which the given

* relationship emanates.

* 2. aDestArea(Type char *) : The Area pointed to by the given

* relationship.

*

* Outputs

• 1. An entry for the new Area pair in the list.

90

* Description :-

* This function adds a new Area pair to the list.

***/

void MV_AreaPairs 	addAreaPair(char *aSourceArea, char *aDestArea)

{

pair_count++;

Pairs[pair_count].Source_Area = new char[strlen(aSourceArea) + 1];

strcpy(Pairs[pair_count]:-Source_Area, aSourceArea);

Pairs[pair_count].Dest_Area = new char[strlen(aDestArea)

strcpy(Pairs[pair_count]:-Dest_Area, aDestArea);

}

/**

* Function Name : MV_AreaPairs 	getAreas

*

* Inputs :-

* 1:- pos(Type int) : The number for the requested pair:-

*

* Outputs :-

* 1. aSourceArea(Type char *) : The source Area in the pair.

* 2. aDestArea(Type char *) : The destination Area in the pair.

*

* Description :-

*This function provides the source and destination Areas in a

* particular pair of the list. A value 0 is returned if the data is

* available and a value 1 is returned if the pos parameter is

* incorrect

***/

int MV_AreaPairs 	getAreas(int pos, char *&aSourceArea,

char *&aDestArea)

if (pos <= No_of_Pairs)

{

	

aSourceArea = Pairs[pos].Source_Area; 	// pos - 1 ??

aDestArea = Pairs[pos].Dest_Area;

return 0;

}

else

return 1;

91

/**

* Function Name : MV_AreaTermPairs 	addArea

*

* Inputs :-

* 1:- anArea(Type char *) : The Area to be added in the list of

* pairs.

* 2:- nterms(Type int) : The no. of terms for his new Area:-

*

* Outputs :-

* 1:- An entry for the new Area name in the list.

* 2. An empty list is created to store the terms.

*

* Description :-

* This function adds a new Area and initializes all the

* data structures needed to store its terms.
***/

void MV_AreaTermPairs 	addArea(char *anArea, int nterms)

{

pair_count++;

Pairs[pair_count].Area = new char[strlen(anArea) + 1];

strcpy(Pairs[pair_count].Area, anArea);

Pairs[pair_count]:-No_of_Terms = nterms;

Pairs[pair_count].Terms = (char **) new char *[nterms];

term_count = -1;

}

/**

* Function Name : MV_AreaTermPairs 	addTerm
*

* Inputs :-

* 1. anArea(Type char *) : The Area for which team is to be added.

* 2. aTerm(Type char *) : The term to be added to the list.

*

* Outputs :-

* 1:- An entry for the term name in the list.

*

* Description :-

* This function adds an term to the list of

* terms for the current Area. You should add all the

* terms for a Area one after another (not randomly).

***/

92

void MV_AreaTermPairs 	addTerm(char *anArea, char *aTerm)

{

if ((strcmp(Pairs[pair_count].Area, anArea)) != 0)

{

cout << u\n\n\n Error : You should add all terms for a Area at

the same time.";

return;

}

term_count++;

Pairs[pair_count].Terms[term_count] =

(char *) new char[strlen(aTeim) + 1];

strcpy(Pairs[pair_count]:-Terms[term_count], aTerm);

/**

* Function Name : MV_AreaTermPairs 	getAreaList

*

* Inputs : None:-

*

* Outputs :-

* 1. anAreaList(Type char **) : The list of areas in the pairs
* retrieved.

* 2. no_of_areas(Type int) : Number of areas in the list of

* pairs.

*

* Description

• This function provides a list of all the areas retrieved.

* /

void MV_AreaTermPairs 	getAreaList(char **&anAreaList,

int &no_of_areas)

anAreaList = (char **) new char *[No_of_Pairs];

for (int i = 0; i < No_of_Pairs; i++)

{

anAreaList[i] = Pairs[i].Area;

}

no_of_areas = No_of_Pairs;

/*** *******

93

* Function Name : MV_AreaTermPairs 	getAreaTerms

* Inputs :-

* 1. pos(Type int) : The Area number (amongst all the Areas

* retrieved) for which terms are requested.

*

* Outputs :-

* 1. anArea(Type char *) : The Area for which list of terms

* is returned:-

* 2. aTermList(Type char **) : A list of all the terms for the Area.

* 3. no_of_terms(Type int) : A count of the number of teems for that

* Area.

* Description :-

* This function provides a list of all the terms retrieved

* for a Area. A value 0 is returned if the data is available and

* a value 1 is returned if the pos parameter is incorrect.

***/

int MV_AreaTermPairs 	getAreaTerms(int pos, char *&anArea,

char **&aTermList, int &no_of_terms)

if (pos <= No_of_Pairs)

{

anArea = Pairs[pos].Area; 	1/ pos - 1 	????

aTermList = Pairs[pos].Teims;

no_of_terms = Pairs[pos].No_of_Terms;

return 0;

}

else

return 1;

/**

* Function Name : MV_TermTriples 	addTermTriple

*

* Inputs :-

* 1:- aSourceTerm(Type char *) : The Term from which the

* relationship emanates:-

* 2:- aRelationship(Type char *) : The relationship between

* two terms.

* 3. aDestlerm(Type char *) : The Term pointed to by the

* relationship.

94

* Outputs :-
* 1. An entry for the new Term triple in the list.
*

* Description :-
* This function adds a new Term triple to the list.
***/

	

void MV_TermTriples 	addTermTriple(char *aSourceTerm,
char *aRelationship, char *aDestTerm)

triple_count++;
Triples[triple_count].Source_Term =

new char[strlen(aSourceTerm)
strcpy(Triples[triple_count].Source_Term, aSourceTerm);
Triples[triple_count]:-Relationship =

new char[strlen(aRelationship) + 1];
strcpy(Triples[triple_count].Relationship, aRelationship);
Triples[triple_count].Dest_Term = new char[strlen(aDestTerm) + 1];
strcpy(Triples[triple_count].Dest_Term, aDestTerm);

/**

* Function Name : MV_TermTriples 	getTermTriple

Inputs :-
* 1. pos(Type int) : The number for the requested triple.
*

* Outputs :-
* 1. aSourceTerm(Type char *) : The source term in the triple.
* 2. aRelationship(Type char *) : The relationship in the triple.
* 3. aDestTerm(Type char *) : The destination term in the triple.
*

* Description :-
* This function provides the source term, relationship and
* destination term in a particular triple of the list:- A value 0 is
* returned if the data is available and a value 1 is returned if

* the pos parameter is incorrect.
***/

	

int MV_TermTriples 	getTermTriple(int pos, char *&aSourceTerm,
char *&aRelationship, char *&aDestTerm)

if (pos <= No_of_Triples)

95

aSourceTerm = Triples[pos].Source_Term; 	// pos - 1 ??

aRelationship = Triples[pos].Relationship;

aDestTerm = Triples[pos].Dest_Term;

return 0;

}

else

return 1;

/**

* Function Name : MV_AreaTriples 	addAreaTriple

*

* Inputs :-

* 1:- aSourceArea(Type char *) : The Area from which the

* relationship emanates.

* 2. aRelationship(Type char *) : The relationship between

* two areas.

* 3. aDestArea(Type char *) : The Area pointed to by the

* relationship:-

*

* Outputs :-

* 1. An entry for the new Area triple in the list:-

*

* Description :-

* This function adds a new Area triple to the list.

***/

void MV_AreaTriples 	addAreaTriple(char *aSourceArea,

char *aRelationship, char *aDestArea)

triple_count++;

Triples[triple_count]:-Source_Area =

new char[strlen(aSourceArea) + 1];

strcpy(Triples[triple_count].Source_Area, aSourceArea);

Triples[triple_count].Relationship =

new char[strlen(aRelationship) + 1];

strcpy(Triples[triple_count].Relationship, aRelationship);

Triples[triple_count].Dest_Area = new char[strlen(aDestArea) + 1];

strcpy(Triples[triple_count].Dest_Area, aDestArea);

96

/**

* Function Name : MV_AreaTriples 	getAreaTriple

*

* Inputs :-

* 1:- pos(Type int) : The number for the requested triple.

*

* Outputs :-

* 1:- aSourceArea(Type char *) : The source area in the triple.

* 2:- aRelationship(Type char *) : The relationship in the triple.

* 3. aDestArea(Type char *) : The destination area in the triple.

*

* Description :-

* This function provides the source area, relationship and

* destination area in a particular triple of the list. A value 0 is

* returned if the data is available and a value 1 is returned if

* the pos parameter is incorrect.
***/

int MV_AreaTriples 	getAreaTriple(int pos, char *&aSourceArea,

char *&aRelationship, char *&aDestArea)

if (pos <= No_of_Triples)

{

aSourceArea = Triples[pos].Source_Area;

aRelationship = Triples[pos].Relationship;

aDestArea = Triples[pos].Dest_Area;

return 0;

}

else

return 1;

/1 p05 - 1 ??

/**

* Function Name : MV_AttrValPairs 	addAttribute

*

* Inputs :-

* 1. anAttr(Type char *) : The Attr to be added in the list of

* pairs.

* 2. nvals(Type int) : The no:- of values for this new Attr.

*

* Outputs :-

* 1:- An entry for the new Attribute name in the list.

* 2. An empty list is created to store the values:-

97

* Description :-

* This function adds a new Attribute and initializes all the

* data structures needed to store its values.

**/

	

void MV_AttrValPairs 	addAttribute(char *anAttr, int nvals)

pair_count++;

Pairs[pair_countl:-Attribute = new char[strlen(anAttr) + 1

strcpy(Pairs[pair_count].Attribute, anAttr);

Pairs[pair_count].No_of_Vals = nvals;

Pairs[pair_count].Values = (char **) new char *[nvals];

val_count = -1;

/**

* Function Name : MV_AttrValPairs 	addValue

*

* Inputs :-

* 1. anAttr(Type char *) : The Attr for which value is to be added.

* 2:- aVal(Type char *) : The value to be added to the list:-

*

* Outputs :-

* 1. An entry for the value in the list.

*

* Description :-

* This function adds a value to the list of

* values for the current Attribute:- You should add all the

* values for a Attribute one after another (not randomly).
***/

	

void MV_AttrValPairs 	addValue(char *anAttr, char *aVal)

if ((strcmp(Pairs[pair_count].Attribute, anAttr)) != 0)

{

cout << "\n\n\n Error : You should add all values for a Attr

at the same time.";

return;
}

val_count++;

Pairs[pair_count].Values[val_count] =

(char *) new char[strlen(aVal) + 1];

98

strcpy(Pairs[pair_count].Values[val_count], aVal);

/**

* Function Name : MV_AttrValPairs 	getAttributeList

*

* Inputs : None:-

*

* Outputs :-

* 1. anAttrList(Type char **) : The list of attributes in the

* pairs retrieved:-

* 2. no_of_attrs(Type int) : Number of attributes in the list

* of pairs.

*

* Description :-

* This function provides a list of all the attributes retrieved.

***/

void MV_AttrValPairs 	getAttributeList(char **&anAttrList,

int &no_of_attrs)

anAttrList = (char **) new char *[No_of_Pairs];

for (int i = 0; i < No_of_Pairs; i++)
{

anAttrList[i] = Pairs[i]:-Attribute;

}

no_of_attrs = No_of_Pairs;

/**

* Function Name : MV_AttrValPairs 	getAttributeValues
*

* Inputs :-

* 1:- pos(Type int) : The Attribute number (amongst all the

* attrs retrieved) for which values are requested.
*

* Outputs :-

* 1. anAttr(Type char *) : The Attr for which list of values

* is returned.

* 2. aValList(Type char **) : A list of all the values for the Attr.

* 3. no_of_vals(Type int) : A count of the number of values for that

* Attr.

99

* Description :-

* This function provides a list of all the values retrieved

* for a Attribute. A value 0 is returned if the data is available

* and a value 1 is returned if the pos parameter is incorrect.

***/

int MV_AttrValPairs 	getAttributeValues(int pos, char *&anAttr,

char **&aValList, int &no_of_vals)

if (pos <= No_of_Pairs)

{

anAttr = Pairs[pos].Attribute; 	// pos - 1 	????

aValList = Pairs[pos].Values;

no_of_vals = Pairs[pos].No_of_Vals;

return 0;

}

else

return 1;

/**

* Function Name : MV_TermValPairs 	addTerm

*

* Inputs :-

* 1. aTerm(Type char *) : The Term to be added in the list of pairs:-

* 2. nvals(Type int) : The no. of values for this new Term.

*

* Outputs :-

* 1. An entry for the new Term name in the list:-

* 2. An empty list is created to store the values.

*

* Description :-

* This function adds a new Term and initializes all the

* data structures needed to store its values.
***/

void MV_TermValPairs 	addTerm(char *aTerm, int nvals)

pair_count++;

Pairs[pair_count].Term = new char[strlen(aTerm) + 1];

strcpy(Pairs[pair_count]:-Term, aTerm);

Pairs[pair_count]:-No_of_Vals = nvals;

Pairs[pair_count]:-Values = (char **) new char *[nvals];

100

val_count = -1;

/**

* Function Name : MV_TermValPairs 	addValue

*

* Inputs

• 1. aTerm(Type char *) : The Term for which value is to be added.

* 2. aVal(Type char *) : The value to be added to the list:-

*

* Outputs :-

* 1:- An entry for the value in the list.

*

* Description

• This function adds a value to the list of

* values for the current Term. You should add all the

* values for a Term one after another (not randomly).
***/

void MV_TermValPairs 	addValue(char *aTerm, char *aVal)

if ((strcmp(Pairs[pair_count]:-Term, aTerm)) != 0)

cout << "\n\n\n Error : You should add all values for a Term

at the same time.";

return;

}

val_count++;

Pairs [pair_count] . Values [val_count] =

(char *) new char[strlen(aVal) + 1];
strcpy(Pairs[pair_count].Values[val_count], aVal);

/**

* Function Name : MV_TermValPairs 	getTermList

*

* Inputs : None:-

*

* Outputs

• 1. aTermList(Type char **) : The list of terms in the pairs

• retrieved.

* 2. no_of_terms(Type int) : Number of terms in the list of pairs.

101

* Description :-

* This function provides a list of all the terms retrieved.

***/

void MV_TermValPairs 	getTermList(char **&aTeImList,

int &no_of_terms)

aTermList = (char **) new char *[No_of_Pairs];

for (int i = 0; i < No_of_Pairs; i++)
{

aTermList[i] = Pairs[i].Term;

}

no_of_terms = No_of_Pairs;
}

/**

* Function Name : MV_TermValPairs 	getTermValues

*

* Inputs :-

* 1. pos(Type int) : The Term number (amongst all the terms

* retrieved) for which values are requested:-

*

* Outputs :-

* 1:- aTerm(Type char *) : The Term for which list of values

* is returned.

* 2. aValList(Type char **) : A list of all the values for the Term.

* 3. no_of_vals(Type int) : A count of the number of values for that

* Term.

*

* Description :-

* This function provides a list of all the values retrieved

* for a Term. A value 0 is returned if the data is available and a

* value 1 is returned if the pos parameter is incorrect.

***/

int MV_TeimValPairs 	getTermValues(int pos, char *&aTerm,

char **&aValList, int &no_of_vals)

{

if (pos <= No_of_Pairs)

{

aTerm = Pairs[pos].Term; 	/1 pos - 1 	????

aValList = Pairs[pos].Values;

no_of_vals = Pairs[pos].No_of_Vals;

return 0;

102

}

else

return 1;

/**

* Function Name : MV_TermAttrValTriples 	addTermAttribute

* Inputs :-

* 1. aTerm(Type char *) : The Term in the triple:-

* 2. anAttribute(Type char *) : The attribute in the triple.

* 3:- nvals(Type int) : The number of values for that attribute:-

*

* Outputs :-

* 1:- An entry for the new Term-Attribute in the list.
*

* Description :-

* This function adds a new Term-attribute pair that is a

* part of the new triple in the list.

***/

void MV_TermAttrValTriples 	addTermAttribute(char *aTerm,

char *anAttribute, int nvals)

triple_count++;

Triples[triple_count].Term = new char[strlen(aTerm) + 1];

strcpy(Triples[triple_count].Term, aTerm);

Triples[triple_count].Attribute =

new char[strlen(anAttribute) 	1];
strcpy(Triples[triple_count].Attribute, anAttribute);

Triples[triple_count].No_of_Vals = nvals;

Triples[triple_count].Values = (char **) new char *[rivals];

val_count = -1;

/**

* Function Name : MV_TermAttrValTriples 	addValue
*

* Inputs :-

* 1. aTerm(Type char *) : The Term for which value is being added.

* 2. anAttribute(Type char *) : The attribute whose value is being

103

* added.
* 3. aValue(Type char *) : The value being added to the triple.
*

* Outputs :-
* 1. An entry for the new value in the present triple:-

* Description :-
* This function adds a new value for the current Term-Attribute
* pair
***/

void MV_TermAttrValTriples 	addValue(char *aTerm,
char *anAttribute, char *aValue)

if (((strcmp(Triples[triple_count]:-Term, aTerm)) != 0) II
Ustrcmp(Triples[triple_count].Attribute, anAttribute)) != 0))

tout << "\n\n\n Error : You should add all values for a
Term-attribute pair at the same time.";

return;
}

val_count++;
Triples[triple_count].Values[val_count] =

new char[strlen(aValue) 	+ 1];
strcpy(Triples[triple_count].Values[val_count], aValue);

}

/**

* Function Name : MV_TermAttrValTriples 	getTermAttrValTriple
*

* Inputs :-
* 1. pos(Type int) : The number for the requested triple.
*

* Outputs 	:-
* 1. 	aTerm(Type char *) 	: The term in the triple.
* 	2. anAttribute(Type char *) 	: The attribute in the triple.
* 	3. aValueList(Type char **) 	: The list of values in the triple.
* 	4. no_of_vals(Type int) 	: The number of values in that triple.
*

* Description :-
* This function provides the term, attribute and list of that
* attribute's values in a particular triple of the list. A value 0
* is returned if the data is available and a value 1 is returned if

104

* the pos parameter is incorrect.

***/

int MV_TelmAttrValTriples 	getTermAttrValTriple(int pos,

char *&aTerm, char *&anAttribute,

char **&aValueList, int &no_of_vals)

if (pos <= No_of_Triples)
{

	

aTerm = Triples[pos].Term; 	If pos - 1 ??

anAttribute = Triples[pos].Attribute;

aValueList = Triples[pos]:-Values;

no_of_vals = Triples[pos].No_of_Vals;

return 0;

}

else

return 1;

/**

* Function Name : MV_API_Errors 	HandleError

*

* Inputs :-

* None:-
*

* Outputs :-

* 1:- Based on the Error_code, appropriate error message is

* displayed:-

*

* Description :-

* This function utilizes the Error_code data member to provide

* the appropriate error message(s):-

**/

void MV_API_Errors :: HandleError()

switch(Error_code)

	

case NO_ERROR :
	

// 	No error

break;

case ERR INPUT :

tout << "\nERROR : The input(s) to the API function is(are)

invalid";

105

break;

case ERR_DATA_ABSENT :

cout << "\nERROR : The requested data is not available in the

vocabulary";

break;

case ERR_OPEN_FAIL :

cout << "\nERROR : An attempt to open the Vocabulary has failed
!I"
• •

break;

case ERR_DBNAME_ABSENT :

cout << "\nERROR : The DBNAME environment variable has not been

}

set";

break;

default

cout << "\nUNKNOWN ERROR

break;
}

I 	1 	;

B.2 Function Implementation

Example 1

/**
* MV_List_All_Children_of_Term.0

	

	Implements the API function

MV_LIst_All_Children_of_Term.

*

* Created by : Hemant Kothavade 	 Creation Date : 6/4/96

* Last Updated : 6/18/96

***/

#include <stdlib.h>

#include <iostream.h>

#include "Te/ms:-h"

#include "MV_API_IO:-h"

MV_API_Errors ErrObj;

106

MV_API_Errors *MV_List_All_Children_of_Term(MV_TermName &Source_Term,

MV_TermList &Child_Terms)

int No_of_Children;

char *dbname;

if (dbname = getenv("DBNAME"))

{

if (!(OC_open(dbname)))

ErrObj:-setErrorCode(ERR_OPEN_FAIL);

return(&ErrObj);

}

else

{

ErrObj.setErrorCode(ERR_DBNAME_ABSENT);

return(&ErrObj),

}

OC_transactionStart();

OC_Type* TypeA = (OC_Type *) OC_lookup (STR_ROOT_AREA);

OC_Property *PropertyA = (OC_Property *) OC_lookup (STR_ID_SEARCH);

ROOT_AREA *search_term = OC_null;

OC_Instancelterator Itr(TypeA,PropertyA,Source_Term.getTermName(),

Source_Term.getTermName());

while(Itr.moreData())

{

search_term = (ROOT_AREA*)(OC_Entity *) Itr();

if (search_term == OC_null) 	// Term not found in vocabulary !!

{

ErrObj.setErrorCode(ERR_INPUT);

return(&ErrObj);

}

OC_Set *ChildrenSet = search_term -> getSUPERCLASS_OF();

OC_Setlterator *anIterator =

(OC_SetIterator *) ChildrenSet -> getIterator();

{

}

No_of_Children = (int) ChildrenSet -> cardinality();

Child_Terms:-createList(No_of_Children);

char *tname;

while(anIterator -> moreData())

{

ROOT_AREA *anObject =

(ROOT_AREA *) (OC_Entity *)(anIterator -> operator()());

tname = anObject -> getNAME();

Child_Teims.addTerm(tname);

// Should we use OC-transactionCommit ?? - NO W!

OC_transactionAbort();

OC_close();

return NULL;

}

Example 2

/**

* MV_List_All_Area_LocalRelationship_Pairs.0 :

• Implements the API function

MV_List_All_Area_LocalRelationship_Pairs

*

* Created by : Hemant Kothavade 	 Creation Date : 8/21/96

* Last Updated : 8/21/96
***/

#include <stdlib.h>

#include <iostream:-h>

#include <Property:-h>

#include "Terms.h"

#include "MV_API_IO.h"

#include "MV_API_Prototypes.h"

MV_API_Errors MyErrObj;

MV_API_Errors *

107

108

MV_List_All_Area_LocalRelationship_Pairs (MV_AreaRelPairs

&anAreaRelPair)
{

// First, we get a list of all the areas in the vocabulary:- This

// is easily done by using the already existing

// MV_List_All_Descendants_of_Area API function.

MV_AreaName Source_Area;

MV_AreaList Descendant_Areas;

Source_Area.setAreaName(STR_ROOT_AREA);

MV_API_Errors *anError;

if ((anError = MV_List_All_Descendants_of_Area(Source_Area,

Descendant_Areas)) .= NULL)

{

MyErrObj = *anError;

return(&MyErrObj);

}

// Now we find out the relationships for each area

char *dbname;

if (dbname = getenv("DBNAME"))

-C
if (!(0C_open(dbname)))

MyErrObj.setErrorCode(ERR_OPEN_FAIL);

return(&MyErrObj);

}

}

else

MyErrObj.setErrorCode(ERR_DBNAME_ABSENT);

return(&MyErrObj);

}

int no_of_areas = Descendant_Areas.getAreaCount();

char **Descendants = Descendant_Areas.getAreaList();

// The root area is not in the descendants list, hence the +1

char **All_areas = (char **) new char *[no_of_areas + 1];

All_areas[0] = (char *) new char[strlen(STR_ROOT_AREA) + 1];

strcpy(All_areas[0], STR_ROOT_AREA);

109

for (int i = 1; i <= no_of_areas; i++)

All_areas[i] = (char *) new char[strlen(Descendants[i - 1])+1];

strcpy(All_areas[i],Descendants[i - 1]);
}

no_of_areas++;

anAreaRelPair:-createList(no_of_areas);

OC_transactionStart();

// Get the set in the 00HVR that contains the names of all the

// relationships

OC_Set *RelSet=(DC_Set *)0C_lookup(STR_RELATIONSHIP_SET);

for (i = 0; i < no_of_areas; i++)

{
// The relationships for each area are located

OC_Type* area_type = (DC_Type *) OC_lookup (All_areas[i]);

OC_PropertyIterator * propertyItr=

new DC_Propertylterator(area_type);

OC_Property *theProperty = OC_null;;

bool_type rel_found;

int no_of_area_rels = 0;

while (propertyItr->moreData())

theProperty = (0C_Property *)propertyItr->operator()();

char *prop_name = theProperty->name();

while (*prop_name != ':')

prop_name++;

prop_name += 2;

rel_found = FALSE;

// Determine if the property is a relationship

OC_Iterator *Rellter = RelSet->getIterator();

while(RelIter->moreData())

OC_String *aStr =

(OC_String *)(OC_Entity *)(Reliter->operator()());

if ((strcmp(prop_name, aStr->operator char*())) == 0)

rel_found = TRUE;

break;

if (rel_found) 	// prop_name is a relationship
no_of_area_rels++;

anAreaRelPair.addArea(All_areas[i], no_of_area_rels);
OC_Propertylterator *propertyItr2=

new OC_Propertylterator(area_type);

while (propertyItr2->moreData())

theProperty = (OC_Property *)propertyItr2->operator()();
char *prop_name = theProperty->name();
while (*prop_name != ':')
prop_name++;

prop_name += 2;

rel_found = FALSE;
// Determine if the property is a relationship
OC_Iterator *Rellter = RelSet->getIterator();
while(RelIter->moreData())

OC_String *aStr =
(OC_String *)(OC_Entity *)(RelIter->operator()());

if ((strcmp(prop_name, aStr->operator char*())) == 0)

rel_found = TRUE;
break;

}

if (rel_found) 	// prop_name is a relationship
anAreaRelPair.addRelationship(All_areas[i], prop_name);

}

OC_transactionAbort();
OC_close();

return NULL;

110

REFERENCES

1. AT&T, Inc. Murray Hill, NJ. UNIX System V Programmer's Guide, 1990.

2. AT&T, Inc. Murray Hill, NJ. UNIX System V User's Reference Manual, 1990.

3. Grady Booch. Object-Oriented Design. Benjamin/Cummings Publishing Co.,

Inc., Redwood City, CA, 1991.

4. Ronald J. Brachman. On the epistemological status of semantic networks. In
N. V. Findler, editor, Associative Networks: Representation and Use of

Knowledge by Computers, pages 3-50. Academic Press, Inc., New York,

NY, 1979.

5. J. Cimino, P. Clayton, G. Hripcsak, and S. Johnson. 	Knowledge-based

approaches to the maintenance of a large controlled medical terminology.
Journal of the American Medical Informatics Association, 1(435-50,

1994.

6. College of American Pathologists, Skokie, IL. Systematized Nomenclature of

Medicine, second edition, 1982.

7. D. H. Fischer. Consistency rules and triggers for thesauri. Jut. Classif.,
18(4):212-225, 1991.

8. D. H. Fischer. Consistency rules and triggers for multilingual terminology. In
Proc. TKE'93, Terminology and Knowledge Engineering, pages 333-342,

1993.

9. C. A. Goble, A. J. Glowinsld, W. A. Nolan, and A. L. Rector. A descriptive
semantic formalism for medicine. In Proc. 9th ICDE, pages 624-631,
Vienna, Austria, 1993.

10. H. Cu, J. Cimino, M. Halper, J. Geller, and Y. Perl. Utilizing OODB schema
modeling for (medical) vocabulary management. Research R.eport CIS-
96-03, NJIT, 1996. Submitted for conference publication.

11. Michael Halper, James Geller, Yehoshua. Pert, and Erich J. Neuhold. A graphical
schema representation for object-oriented databases. In R. Cooper, editor,
Interfaces to Database Systems, pages 282-307. Springer-Verlag, London,
1993.

12. Michael Hammer and Dennis McLeod. Database description with SDM: A
semantic database model. ACM Transactions on Database Systems,
6(3):351-386, 1981.

13. R. Hull and R. King. Semantic database modeling: Survey, applications, and
research issues. ACM Computing Surveys, 19(3):201-260, September
1987.

111

112

14. N. Ide, J. Le Maitre, and J. Véronis. Outline of a model for lexical databases.
Information Processing and Management, 29(2):159-186, 1993.

15. Michael Fifer, Won Kim, and Yehoshua Sagiv. Querying object-oriented
databases. In Proc. 1992 ACM SIGMOD Conference on Management
of Data, San Diego, CA, June 1992.

16. Won Kim and Frederick H. Lochovsky, editors. Object-Oriented Concepts,
Databases, and Applications. ACM Press, New York, NY, 1989.

17. D. Kumar and S. C. Shapiro. Architecture of an intelligent, agent in SNePS.
SIGART Special Seclion on Integrated Cognitive Architectures, 2(4), 1991.

18. D. Kumar and S. C. Shapiro. Modeling a rational cognitive agent in SNePS.
In P. Barahona, L. Moniz Pereira, and A. Porto, editors, EPIA 91: 5th
Portugese Conference on Artificial Intelligence, Lecture Notes in Artificial
Intelligence 541, pages 120-1.34. Springer-Verlag, Heidelberg, Germany,
1991.

19. Douglas B. Lenat and R. V. Guha. Building Large Knowledge-Based Systems:
Representation and Inference in the Cyc Project. 	Addison-Wesley
Publishing Co., Inc., Reading, MA, 1990.

20. L. Liu, H. Cu, J. Geller, and Y. Peri. Modeling a vocabulary in an object-
oriented database. Research Report CIS-96-11, NJIT, 1996. Submitted
for conference publication.

21. G. A. Miller. WordNet: A lexical database for English. Communications of the
ACM, 38(11):39-41, 1995.

22. W. Mar and L. Rostek. TEDI: An object-oriented terminology editor. In Proc.
TKE'93, Terminology and Knowledge Engineering, pages 363-374, 1993.

23. National Library of Medicine, Bethesda, MD. Medical Subject Headings.
Updated annually.

24. ONTOS, Inc. Lowell, MA. ONTOS DB 3.1 Reference Manual, 1995.

25. Valery Soloviev. An overview of three commercial object-oriented database
management systems: ONTOS, Object,Store, and 02 . SIGMOD Record,
21 (1):93 -104, March 1992.

26. .J. F. Sowa. Principles of Semanlic Networks, Explorations in the Representation
of Knowledge. Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1991.

27. United States National Center for Health Statistics, Washington, DC. Inter-
national Classification of Diseases: Ninth Revision, with Clinical Modifi-
cations, 1980.

113

28. William A. Woods. What's in a link: Foundations for semantic networks.
In Ronald J. Brachrnan and Hector J. Levesque, editors, Readings in
Knowledge Representation, pages 218-241. Morgan Kaufmann Publishers,
Inc., San Mateo, CA, 1985.

29. Stanley B. Zdonik and David Maier, editors. Readings in Object-Oriented
Database Systems. Morgan Kaufmann Publishers, Inc., San Mateo, CA,
1990.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: The OOHVR
	Chapter 3: An Approach to the Vocabulary Interface
	Chapter 4: API Design
	Chapter 5: API Implementation
	Chapter 6: Conclusions and Future Work
	Appendix A: Miscellaneous Details
	Appendix B: Code For The API
	References

	List of Figures

