Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

INTERACTIVE AND BATCH CREATION QOF
O00DB MEDICAL VOCABULARIES

by
Muhammad Arif

Controlled vocabularies are becoming popular for knowledge representation
and querying. They are particularly helpful in the medical field since they can
unify disparate terminologies and provide information in a compact, comprehensible
manner. [n this thesis, we present a mechanism to ereate OODB controlled meaedical
vocabularies from flat-file format. We also describe a tool by which a user can
interactively create, edit and browse the vocabulary. For better understanding of
the structure of the vocabulary we designed our interface as a graphical editor and
browser. The user of this interface will typically be a medical expert who cither wants
to add new concepts to the vocabulary or ereate a new vocabulary from scratch.
We first deseribe our approach for creating the vocabulary from an existing flat-file
format by batch processing. We then present the software architecture and design

of an interactive vocabulary creator (IVC).

INTERACTIVE AND BATCH CREATION OF
O0ODB MEDICAL VOCABULARIES

by
Muhammad Arif

A Thesis
Submitted to the Facully of
New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degres of
Master of Science in Computer Science

Department of Computer and Information Science

October 1997

APPROVAL PAGE

INTERACTIVE AND BATCH CREATION OF
OO0ODB MEDICAL VOCABULARIES

Muhammad Arif

Dr. Yehoshua Perl, Thesis Advisor Date
Full time Professor of Computer and Information Science, NJIT

Dr. James Geller, Thesis Co-adyisor Date
Director of Artificial Intelligence and OODB Laboratory
Asgsociate Professor of Computer and Information Science, NJI'T

Dr. Michael Halp@r, Committee Member “ Date
Assistant Prolessor of Math and Computer Seience,
Nean College of New Jersey

BIOGRAPHICAL SKETCH

Author: Muhammad Arif
Degree: Master of Science in Computer Science
Date: October 1997

Undergraduate and Graduate Education:

e Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1997

¢ Master in Computer Science,
Department of Computer Science,

University of Karachi, Karachi, Pakistan, 1996

Major: Computer Science

This work is dedicated to
my parents, friends and all those who
helped me in my accomplishments

ACKNOWLEDGMENT

I would like to thank Dr. Y. Perl, Dr. J. Geller and Dr. M. Halper for this
opportunity to conduct research under their able guidance. Their continuous interest
and encouragement have contributed significantly to the work presented in this thesis.
It has been an enriching experience for me.

I would also like to thank all my colleagues in the laboratory. A special thanks
to the members of my group; without their hard work and dedication this work would

not have been possible.

vi

TABLE OF CONTENTS

Chapter

(3]

N
2.2
2.3

24

3 PREPROCESSOR DESIGN AND IMPLEMENTATION

3.1

Lan
NI

Need for Health Vocabulary Systems

A Medical Vocabulary as a Semantic Network

Object Oriented Paradigm Choice for Storing Semantic Networks .

Modeling InterMed and MED into OOTIVR.
241 Structure of a CMV

2.4.2 Representation of a CMV as an OODR
Modeling CHREF-T and CHREF-1T into OOTIVR
2.5.1 CHREF-1
2.5.2 CHREF-II

Practical Realization of the OOHVR Tmplementation

3.1.1 The Need for the OOHVR Generator

...................................

3.2.1 Tmplementation of Tntersection Classes in ONTOS

3.2.2 Diamond Cutting Algorithm ..o 0000000 o

124 Tntermediate File .o 0 0 oo oo
3985 CHREF-T ... o
3.9.6 CHREF-TT ...
Output Files Format
3.3.1 DBLOAD X ...

vii

Chapter

3.3.2 instout,ol2and o3 38

4.1 Introduction 40

=
N

Background ofl WWW 000 41

4.3 [Essential Features of a Vocabulary Creator 42
4.4 System Architecture 42

4.5 Back-End Design
4.5.1 OODRB Schema for a General Vocabulary
4.5.2 API Design o 44
4.5.3 Common Gateway Interfaces

4.6 Front-Fnd Design

4.6.1 The Notion of Neighborhoods. 17
4.6.2 Programming Details. 0 oo oo ool o 49

5 FUTURE WORK . e, 52
51 Performance Criteria 0 o 52
5.1.1 Connection Establishment Time .. o000 00000000 52
5.1.2 Request Placement Time ... 0o 0o oo 52
5.1.3 Database Access Time . ..o L o o §2
5.1.4 Data Retrieval Thme - 0.0 0 o 52
51.5 Data Translfer Time . o000 0 oo 0L o 53

5.1.6 Presentation Time. o 53

5.2 Different Options Available for Client Server Cominunicadion 53
521 Common Gateway Interfaces .. .0 0 3
5.2.2 TCP/IP Based APT Server . ..o oo o 54
523 Java RMIs ... o 54

5.2.4 Using CORBA e 54

5.3 ConcluSion . . . oo 55

Chapter

Page
APPENDIX A CGIsCODE o 56
APPENDIX B JAVA CLASSES AND THEIR CODE 63
APPENDIX C APIDESCRIPTION o o 125
REFERENCES . . 135

ix

LIST OF FIGURES

Figure

Page
2.1 Fourareasofla CMV .. 10
2.2 The area classes for the areas in Figure 2.1 14
2.3 OOHVR Schema 17
2.4 CHREF-T schema structure, 18
2.5 CHREF-II schema structure 19
3.1 Schematic Figure of the whole system 22
3.2 Schematic Figure of the Pre-processor 23
3.3 An example of multiple-inheritance in the InterMED00 0. 24

3.4 The result of applying the diamond cutting algorithm to Figure 3.3 ... 25

3.5 Advanced diamond cutting

................................ 27
3.6 The InterMED source files o 28
3.7 antersectionuinfo a snapshot ... L. o L 30
3.8 A drugelass_table Snapshot ... oo oo 0o 34
3.9 intersection_clagses snapshot L L o oo 30
310 hicelass snapshol ... o L 36
311 DBLOAD X snapshoto 37
312 inst.aut snapshiol 38
313 The InterMED source files 39
4.7 Architecture of TVC . 43
4.2 Schema for a general Vocabulary for TVC 0000 oo 44

CHAPTER 1
INTRODUCTION

A Controlled Vocabulary is an explicit specification of a subject. Tt is a formal and
declarative representation which includes the terms in a subject area and the logical
statements that describe what the terms are and how they are related to each other.
Vocabularies therefore provide a way of representing and communicating knowledge
about some topic which leads to a uniform way of knowledge sharing and reuse. The
medical feld is one of the most rapidly growing fields in terms of concepts(terms)
in ane subject. That is why Controlled Medical Vocabularies (CMV) are hecoming
maore and more popular in medicine.

A Semantic network is a tool for modeling vocabularies. Due toa the huge
number of terms available in a medical vocabulary, the size of semantie networks of
CMVs is typically large. That means that we have to organize huge amounts of data
in such a way that they can be stored and retrieved efficiently . Choosing a paradigm
for a computerized storage of a vacabulary, is a diflicult task. As mentioned before,
vocabularies are for reuse and sharing of data. Object-Orientation is a paradigm
which proved itsell as a good tool in terms of re-usability and easy shareablity.
We mapped the semantic network of a major medical vacabulary inta an Ohject
Oriented Database which we named OOTVR (Object Oriented Health Voeabulary
Repository). Chapter 2 deals with modeling details of OOTNTVR.

After modeling the vocabulary, the most tedious task s to convert a huge

gemantic network which is initially available in a flat-file format Lo our QODHE. We

nt]

degigned a Schiema Generator which reads the seimantic network representation as a

set of Nat files and generaies a schema creating code. The preprocessor is o part of the
Schema Generator which takes a schema dependent format flat-files and generates

common format flat files. These common format flat files are fed to a code generator

which generates C++ code for schema generation. Chapter 3 deals with all imple-
mentation and design details of preprocessor.

As new ideas and concepts are developed every day, we felt a need for an inter-
active Creator which enables a user to create vocabularies from scratch. Choosing an
interface and development system is an important task which is discussed in sections
4.1 and 4.2 while our proposed system architecture is discussed in section 4.3. Back-
end and front-end design issues are discussed in 4.5 and 4.6. We discuss possible
future enhancements in TVC in the last chapter.

APPENDIX A contains the CGls source code for the Creator.

APPENDIX B contains the Java object descriptions and documentation with
the source code.

APPENDIX C contains the description of the APIs used in the system.

CHAPTER 2

AN OVERVIEW OF OOHVR

2.1 Need for Health Vocabulary Systems
Effective and efficient delivery of health care requires accurate and relevant. clinical
information. This is true for the individual doctor caring for the individual patient, as
well as the health care organization concerned with measuring outcomes and ensuring
cost eflective care. Furthermore it is recognized that patient-centered clinical infor-
mation systems, integrated with decision support and other systems, are the key to
high quality clinical information. However developing such systemns has heen proven
difficult and many problems remain. Perhaps the maost pervasive and the most
important of these problems is that of the chinical terminology or language that
ig used to represent the information. Advanced clinical systems require advanced

terminology systems which must be:

¢ Comprehensive and sufficiently detailed in content and structure for use in
clinical medicine.
& supported across a wide range of natural language communities, both profes-

sional and geographical;

e maintainable and extendible, with realistic human effort which the computer

must actively support

e well suited to supporting computer-based information systems and henee

farmally sound.

Clinical terminologies are large, complex, and diverse. For example the details
reqiiired in a patient’s medical record which is used to support the daily eare of
the patient, are far greater than for an epidemiological study or routine hospital
statistics. Furthermore, different users in different clinical settings require diflerent

but consistent views of that information. Clinical medicine is inherently large and

complex and yet clear separations between medical specialties are not possible. Hence
anything we do to represent the detailed record of clinical medicine will also be large
and complex in one way or another. HEALTH VOCABULARY SYSTEM’s goal is to
make this complexity manageable. As the demand has grown for wider coverage and
new uses, the traditional techniques of coding and classification have been proven
inadequate. They tend to ’explode’ in size and become unwieldy, inconsistent and
unmanageable.

Advanced clinical systems need more than just terminologics, they need
computer systems which can provide a sophisticated and appropniate set of termino-
logical services, allowing applications to be developed to use whatever coding system
or natural language, local circumstances demand. Clinical application developers
can therefore concentrate on the clinical tasks they must support, knowing that not
only are the details of coding and classification abstracted for them but that they
have access to a powerlul maodel of clinical information to support their dialogue
with clinical users. OONVR addresses this challenge to develop computer systems

that provide powerful terminological services

2.2 A Medical Vocabulary as a Semantic Network

Semantic networks are a technique for representing knowledge. As with other
networks, they consiat of nodes with links between them. The nodes in a semantic
network represent concepts. A concept is an abstract class, or set, whose members are
things that are grouped together because they share common features or properties.
The "things” are called instances of the coneept. For example, Femur s a caneept
representing the set of all femurs in the world; John Smith’s Teft femur is an fnstanc
of the concept Femur.

Links in the network represent relations between concepts. Links are labeled

to indicate which relations they represent. Links are paired to represent a relation

and its inverse relation. For example, the concept Femur is related to the concept
Upper Leg with the relation has-location. The inverse of has-location is the relation

location-of, which relates Upper Leg to Femur.

2.3 Object Oriented Paradigm Choice for Storing Semantic Networks
Object Oriented Databases are good tools for conceptual modeling in infor-
mation technology. There are a number of reasons why the Object Oriented
database paradigm is a good choice for modeling a vocabulary’s semantic network.
In applications where external agents such as intelligent information locators,
decision-support systems, and end-user browsers access the knowledge stored in
the vocabulary, transparent and concurrent access to it is necessary[2]. OODRB
systems provide the traditional access support of Database systems and offer a "low
impedance” pathway [14] to the network. As a matter of fact, Object Oriented
programming languages are increagingly used in the industry so an QODB can be
easily accessed through them. Declarative langnages are also available to access
the OODB like OSQL in ONTOS case and a path language XSQT. [8]. The typical
OODB gystem’s repertoire of modeling constructs neatly captures many modeling

features of semantic networks used to deseribe a typieal controlled vocabulary [9].

2.4 Modeling InterMed and MED into OOHVR
In this section, we first describe the general structure of a CMV. After that, we
go on to present our methodology for modeling such a system as an OODB. OQur
representation of the InterMED, an existing CMV, as an OODB is called the OOMVR.

and is currently available in the context of ONTOS.

2.4.1 Structure of a CMV

A commion formalism used in building a CMV is the semantic network, cach of which
nodes in that context is a medical concept. All nodes can exhibit properties which
come in two kinds: (1) Attributes whose values are of data types (such as integer o1
text string), and (2) relationships whose values are references to other concepts in
the vocabulary. For a concept V', we will use P(V) to denote the set of all of V7's
properties.

Each node ina CMV is defined with the attribute name that holds the coneept’
associated lerm (i.c., textual denotation). Note that we distinguish the notions of
“concept” and “term.” A (medical) concept is a nade in the CMV, while a term is
simply a string used as the node’s name [6]. Somatimes a term s called the printable
value of a concept.

In [3, 4], a set of design criteria (sometimes referred to as “Ciming’s rules™)
was proposed that all CMVs should satisly in order to inerease their utility. These
criteria are: Domain completeness, non-redundancy, synonyimy, non-vagueness, non-
ambiguity, multiple elassification, consiatency of views, and explicit relationships. As
an example, non-ambiguity requires that a given medical coneept be reprasented hy a
unique node even il it has several synonymons names. [Dnultiple nodes representing
the same concept exist, then these should be folded inta one coneept that holds the
primary name (i.c., the concept’s term) and any secondary names (i.c., synonyms).

The related synonymy criterion, in fact, states that any concept must be accessible

via its known synonyms, all of which should be stored with the concept. Due to this,
each concept in the CMV is assumed to have the property synonyms whose value
is the entire set of acceptable secondary names for the concept. Let us point out
that it is strictly a design decision as to which name is primary and which others are
secondary.

The concept subsumption (IS-A) hierarchy is a fundamental aspect of a CMV.
Structurally, it is an aeyclic collection of IS-A links, each of which connects a
subconcept to a related superconcept. The multiple classification criterion requires
that the IS-A hierarchy be a directed acyclic graph (DAG). In other words, it must
be possible for any concept to have multiple parents.

The 1S-A hierarchy plays two important roles in the vocabulary. First, it
supports reasoning in the form of subsumption-based inferences. For example, if a

ser asks if a patient is on antibiotics, then this can he answered in the aflirmative
by consulting the CMV i we know the patient is taking Tetracycline hecause the
concept Tetracycline 1S-A Antibiotic. The second aspect of the IS-A hierarchy is
inheritance: A subeoncept inherits all the properties exhibited by its superconecepts
(which themsclves may have inherited the properties from their ancestors). For
example, the concept Sodium Test 1S-A Test, and therefore the set of properties
of Sodium Test is a superset of the properties af Test. 11 a concept has multiple
parents, then it could potentially inherit properties from each of them. Another

assumption that we make following [3] is that the CMV satisfies the following rule:

Rouale (Uniqueness of Property Introduction): A given property @ can only he

intraduced at one concept in the vocabulary.
Other concepta needing that same property i ¢ delined as descendants of
that concept and obtain the property via inheritance. Naote that if there is a need

to introduce the same property p in several independent nodes, then an “artificial”

8

node can be created to define p, and the other nodes can be made children of this
new node [2].

A CMV is also taken to be singly rooted with respect to the IS-A hierarchy.
We will refer to the root concept as Entity. Of course, there is no loss of generality
because Entity can be artificially introduced into the vocabulary if need be. Note
that Entity is defined with the property name (that holds a concept’s primary term)
and synonyms (that holds a concept’s acceptable secondary names). Via inheritance,

all other nodes in the CMV have these properties, too.

2.4.2 Representation of a CMV as an O0ODB

2.4.2.1 Partitioning the CMV into Areas

Our modeling of a CMV as an OODB is based on a structural abstraction of the
vocabulary network. The network is partitioned into groups of concepts such thai
all the concepts in a single group have the exact same set ofproperties. We refer to
such groups as areas of the CMV [9]. The partitioning of the CMV into areas closely
follows the property introduction and inheritance patierns of the IS-A hierarchy,
and in fact can be done automatically in a top-down fashion according to a mimber
of different cases. In the statement of those cases, we will be using the lollowing

definitions.

Definition (Property Set of an Avea): For an area A, P(A) denotes the set of
properties of any (and all) of its constituent concepts.

Definition (Property-introduction Node): A caneept al which one ar more new
propertics are introduced inta the CMV s ealled a property-introduction node.

An example of such a concept is the vocabulary’s root Entity which, among

other things, introduces the property name that is used to hold the term associated

with a given concept. Another example is the concept Lab Diagnostic Procedure

which introduces the relationship has-specimen.

Definition (Root of an Area): A concept 1 residing in area A is called a root
of A if V has no parent in the CMV (i.e.,, V' is the concept Entity, the root of the

entire CMV) or Vs parents all reside in areas other than ..

Definition (Property-Introduction Area): An area with a root that is a

property-introduction node is called a property-introduction area.

An example of a property-introduction area is the one to which Entity belongs.
Recall that Entity was defined to introduce the property name, among others.
Another is the area rooted at Lab Diagnostic Procedure.

It can be shown that a property-introduction area always has exactly one root.
(We will not prave this result here. Refer to [10] for the details.) The other kind
of area, called an wmlerseclion area (defined below), can have more than one root.
Il an area has a single root, then the arca igs named after that concept. The area
containing Entity as its root is called “Entity Area.” The area whose root is Lab
Diagnostic Procedure is named “Lab Diagnostic Procedure Area.”

The partitioning of the network into areas was originally deseribed as a two-
gtep process where the second step was used to overcome a problem introduced by
the first step [9]. Below, we present the solution in recursive form, which serves
to unify the presentation. To reiterate, the process of identifying areas is top-down
gtarting at the level of the children of Entity. The base of the recursion is the special
case defining “Fntity Area.”

For a concept 1 (not equal to Entity), membership in an area is determined

by the following two major cases.

10

\

" C Arca
. 7
.

)

- |

D Arcea \ / \]
(o) [¥)

Figure 2.1 Four areas of a CMV

Clase 13 V 1 o vroperiy-introduction node.
! Y

in this case, V belongs to a new area that differs from all areas already
identified. Tn fact, becauge V is a properiy-introduction node, the new arca is a
property-introduction area. As can be shown, Vs the one and anly roat of (his
new ares, 8o the area is designated “V Area.” Three example property-intraduction
areas, A Area, B Area, and C Area, are shown in Figure 2.1. The concepts
in the figure are represented as rectangles with rounded edges, while the IS-A

links are drawn as thick, unlabeled arrows directed from the subconcept to the

11

superconcept. The only concepts in those three areas with their names displayed
are A, B, and C, the respective roots. The node A introduces the attribute z:
B, the attribute y; and C, the attribute z. B also defines the relationship »

(drawn as a labeled, thin arrow) that is directed to C, which, on the other hand,

introduces relationship ', the converse of r.
Case 2: V 18 not a property-introduction node.
Here, there are two major sub-cases.

Case 2.1: V has a single superconcept W.

In thig situation, V' is in the same area as W. Reeall that the CMV was
defined to be singly rooted with respect to the 1S-A hierarchy. Therelore, every
concept (except for Entity) has at least one superconcept.

Case 2.2: V has mulliple superconcepts Wi, Wo, .. W, (n > 1).

Here, again, there are two additional sub-cases. Belore stating these, we will
need the following definition.

Definition (Intersection Node): Tet 1V be a concept having multiple super-
concepts Wy, Wo, ..., W, (n > 1). V ig called an intersection node if the following
condition holds: Vi: 1 <1 < n, P(V) # P(IW;). That is, the set of properties of 1

differs from all of its parents’ sets of propertics.

We usge the desgignation inlerseclion node because V7 lies at the junction of (al
least) two independent inheritance paths. With this new kind of node, we also have:
Definition (Intersection Area): arca with a root that is an intersection node

ig ealled an intersection arca.

Case 2.2.1: V s not an intersection node. That is, V has the exact same sel of

properties as al least one of ils parents, say, W,.'

"Formally, we can state this condition as: Fi: 1 <4 < n such that P(V) = P(W;).

12

In this case, V' isin the same area as W;. Note that all other parents with the

same set of properties as W; are in W’s area as well.
Case 2.2.2: V s an mniersection node.

Then V belongs to an area that differs from all the areas of its parents. By
definition, V' is a root of its area, and hence the area is an intersection area. It is
possible that this intersection area might already have been identified by a previous
application of Case 2.2.2, so it is necessary to scan all existing (intersection) areas
to determine V's membership. Il P{(V) = P(A) lor some area A already identified,
then V is a member of A. Otherwise, V defines a new intersection area that diflers
from all known areas. Since V' is the first concept. in this new area, it i8 named “V
Area.”

As we mentioned, unlike a property-introduction area, an intersection area can
have more than one root. This is demonstrated in Figure 2.1 by the intersection area
called “D Area” which contains four concepts, D, I, F', and G. Tis roots are D and
I2, both of which have two parents, one residing in 3 Area and the other in C Area.
We have assumed that the concept D was identified as a member of this area fivst,
and hence the area was named D Area. 11 had been examined belove D), then the
arca woiild have been designated B Area. The concepts Fand G are members of D
Area by virtue ol the fact that they are children of D and [, vespectively. ' and
G oare not roofs of D Area. Tt will be noted that none of the coneepts in D Avea
hag any intringic properties. All properties are inherited. 1t i8 not possible for an
intersection area to have as one of its nodes a property-introduction nade sinee sueh
a node would define a new area with new properties.

Before continuing, let us summarize, without proof, a lew hinportant properties

that hold for areas.

13

1. An area is either a property-introduction area or an intersection area. That is,

there are no other kinds of areas.
2. All areas have at least one root.
3. A property-introduction area has exactly one roat.
4. An intersection area can have multiple roots.

5. An intersection area cannot contain a property-introduction nade.

2.4.2.2 OOHVR Schema
In the OODB-version of the voecabulary, which we refer to as the OONHVR, eacl
concept is represented by a unique object. The OOHVR’s schema is constructed
automatically after the identification of all areas. There is a one-to-one corre-
spondence between the areas in the CMV and the classes in the QOTTVR s sehema.
That is, one class is defined to represent one area. The extension of a given class
(i.e., its entire set of instances) is identical to the set of concepts in the corresponding
arca in the CMV. Due to this, we reler to the elasses in the OOITVR schema as area
classes. I the area happens to be a property-introduction area, then we have a
property-introduction cluss. Likewise, for an intersection area, there is an inter-
section class. Let ug point out that, in an OODB schema, classes ave delined Tor the
prirpose of describing a set of objects whose structure and hehavior are the same.
This ig indeed what is done in our mapping. The ingtances of one elass are exactly
all those cancepts which veside in a single area which, by deflinition, containg all
concepts exhibiting identical propertics.

The intringic properties of a property-introduction class are defined to he
exactly those introduced by the root concept, of its corresponding area. In addition,

all the concepts in a property-introduction area must have the properties inherited

14

A_Area
X
r
B_Area = (C_Ares
y S ya

D_Area

Figure 2.2 The area classes for the areas in Figure 2.1

by the root from its parent(s) in the CMV. To capture this situation, the property-
introduction class is placed in gubelass relationships with those other area clagses to
which the parents of the root helong. Tn this way, the praperty-introduction class
obtains all necessary properties: Some are defined intrinsically, while the others are
inherited [rom other clagses. Tt should be noted that cven though the roat ol a
property-introduction area contributes bhoth its name (via the arca name) and its
intrinsic properties to the area class definition and in this sense the clasg itsell
denates that root concept- there still exists an object that directly represents the
root in the extension of the class.

In Figure 2.2, we illustrate the above by showing the classes, A_Aren, HB_Aren,
and C_Avea, that respectively represent the corresponding areas from Figove 2.7, The
classes are boxes with their names and atéributes written inside. The labeled arrows
are the ordinary relationships. The subclass relationship is drawn as a thick arrow

pointing from the subclass to the superclass. The ellipses indicate the omission of the

15

subclass relationships that A_Area and C_Area would have in an expanded drawing.
All property-introduction classes-—and, indeed, all intersection clagses—have at least
one subclass relationship. The only exception to this is the class Fniify_Area which
is the root of the OOHVR schema.

Since an intersection area, by definition, does not contain any property-
introduction nodes, and, in fact, all properties of its concepts are abtained via
inheritance, an intersection class does nol introduce any properties of its own.
Instead, it is defined to be a subclass of all other area classes (potentially inter-
section classes themselves) which contain one or mare parents of its root(s). Again,
an intersection area may have more than one root. Let us also note that an inter-
section class always exhibits multiple inheritance, i.e., it inherits from twa or mare
guperclasses.

Relerring to Figure 2.2 again, we see the intersection class D_Area representing
D Area. D_Area is a subclass of both B_Area and C_Area because its roots (D and
) have parents residing in both those respective areas. As can be seen, D_Area has
no intrinsic properties defined for it

The final agpect of the mapping which deserves special eareis the IS-A hieravehy
of the CMV. Tt ig appropriate to view the IS-A link as a generie property, one
featured hy all coneepts, aside from the ordinary attributes and relationships. Tndead,
all concepts can--and indeed must - have some 15-A connections Lo ather concepis
(except for Entity). Therefore, in the original network, the rool concept Entity
can he cansidered to be endowed with the multivalued relationship “TS-A" that
provides all nodes with the capability of making siiperconcepl connections to other
concepts. In the mapping, this tranglates to the nclugion of the mnluivalued, reflexive
relationship 75-4 in the definition of the class at the top of the schema, namely, the
class Entity-Area. In this way, all concepts (objects) in the OOHVR can have their

required IS-A connections, too.

16

It is important to note that the CMV's IS-A hierarchy is different from the
subclass hierarchy of the OODB schema, though, to be sure, the latter is derived
from the former. An IS-A link between two concepts in the CMV indicates that one
is a subconcept (or, vice versa, a superconcept) of the other. A subclass connection
between a pair of area classes in the schema denotes the fact that the set of properties
exhibited by the concepts of one area is a superset of the properties exhibited by the
concepts in the other. Of course, as we have just discussed, the CMV's IS-A hierarchy
does appear in its entirety at the instance-level of the OOHVR with respect to the
relationship I5-4 appearing at Eniily_Area.

In Figure 2.3, we show the entire OOHVR schema which comprises 39
classes (29 property-introduction classes, 10 intersection classes) and 50 subclass
relationships. The schema was generated automatically by software deseribed in [10].
Overall, it provides a structural abstraction of the underlying network of the CMV.
Concepts with like properties are grouped into areas which in turn are modeled
ag object classes; the concepts themselves become the objects of the OODB. We
reler to this kind ol schema as a nefwork abstraclion sehema [9]. Tt is important
to point out that this schema represents a substantial reduction in size {from the
original CMV. The TnterMED containg about 3,000 concepts, while the QOTTVR
schema has merely 39 arca classes - approximately a 75-to-1 reduction. This ratio
is high since, by the “Uniqueness of Property Tntroduction” Rule, each property
can be introduced only at one node in the CMV. Thus, the nunber of different
properties ig an upper-bound on the number of property-intraduction areas and their
corresponding classes in the schiema.

The schema can aid in the comprehension of the vocabulary and lhelp
a vocabulary administrator uncover problems in the modeling [7]. The same

methodology was also carried out with respect to the entire MED which contains

17

fegrzestsn kel

s

20 sus ol c g

N\

By AooLson

j ey D §5 _ / hmf

. = |
@ wmshony, - - ! :
‘ ’ # Erg e i
3 R L
k.
|
o} T BT E—
e | 124 mss o insaafug Emmrmee]

T
\ Bt

foranmse
P X Z

23l BLEVE AT i

e

RSN, 202 Sy DRERT |

r—

B =

g s _ [ETe e TRt

TAnEscar ACH MECRBINALERYY

P 41 ey ewag

fogeizactud

¥ g
qu-wm%WNmeum wilectip I
A §

alnwé

2y %8560 B Lvn o8 padbeg e

pramrkus /

Bz 598850 16 A end 8 L Tsaing
Q»aui%ﬂw’

~ E&-é%num.aqh%ﬁ%mu_im.égu_&_@f_

whdoism
JoXfaii:d
sealclied

STHBS

BRI

BN
sk
[Eseenily
B3k Az

o A *
/ /,w ucw,aivv.._

23y areaon Binacs Tu,wpr

e
SIS0 V] URSASKINGY EEDRE g

Priaich
377 W4 g w

Figure 2.3 OOHVR Schema

18

approximately 46,000 concepts. There, the schema comprised about 90 classes, and

the ratio was about 300-to0-1.

2.5 Modeling CHREF-I and CHREF-II into OOHVR
2.5.1 CHREF-I
The National Drug Code system was established as an essential part of an out-of-
hospital drug reimbursenient program under Medicare. The purpose of NDC was to

provide a universal product identifier for prescription drugs. It contains information

about most frequently prescribed drugs.

Roat

//// L
Major Classification T~
‘) 4 . AN T
7 L,* T 1

hMinor {_‘ias%‘if'zc/mmn | \ o
— R 1 e T

] o HE S —

iniersection Classes

Figure 2.4 CHREPF-I schema structure

The Divectory is orviginally composed of four different scetions indexed by
different keys. We aualyzed the divectary data taken from a hospital, The Drug
Classification provided the basis to build the schema. The classification places the
drugs and their NDC codes into a hierarchical structure. We took that structure as

our structural schema, and name the database CHREE-1. The schema containg a four

19

level hierarchy, the root of which is Drug and the second level is major drug classes,
which places drugs in therapeutic or pharmacological classifications. The major
classification is further divided into minor classes which contain actual instances of
drugs. In the fourth level of the hierarchical structure, classes exist which actually

are inheriting from more than one class in the third level. In Figure 2.4 the general

sketeh of the schema is shown.

2.5.2 CHREF-II

After analyzing the data in the NDDF that we recieved from First Data Bank for
NDC in the form of a relational database, we found that drugs can also be elassified by
their HIC (Hierarchical Ingredient Code) which actually maintaing the Drog classi-

fication according to their ingredients.

Raoot

DRUG

[
U
B
|

7
B

N\ N

i“i*i I 1 | S I

Therapeutic Classes

Figure 2.5 CHRISF-TT achemna structure

This hierarchy was also maintained as a three level tree. To map the classifi-
cation to OOHVR we built a four level schema, starting from DRUG as the root.

The second level represents the Organ system, the third level is the pharmacological

20

class of the drug and the fourth level represents the therapeutic class. No intersection
classes were found in this hierarchy since it is a tree. We built the schema under the
name CHREF-II.

The next chapter will present detailed discussions about the design of pre-

processors for all of the above mentioned Schemas.

CHAPTER 3
PREPROCESSOR DESIGN AND IMPLEMENTATION

3.1 Practical Realization of the OOHVR Implementation
Our method of mapping a controlled vocabulary onto an object-oriented database
can be applied not only to a medical vocabulary, but to any semantie network-based
vacabulary, as long as the “uniqueness of property introduction” rule is satisfied.
For the medical domain we used in our research, OOHVR can be built from serateh.
Existing vocabulary sets, e.g. InterMED or MED, can be loaded inta the QOTIVR

as well.

3.1.1 The Need for the OOHVR Generator

For loading existing vocabularies which are usually stored in diflerent farmats, the
preferred approach would be to design a universal loader. Otherwise, for each
vocabulary format, we would have to write a corresponding program to load it into
thie OOHVR. We approximated the universal loader, which we call the OONVR
generator, by modular design. For loading a different format vocabulary, only
ane program component, the Preprocessor, in the OOHVER generator needs to he
rewritten and the rest of the program modules can be reuged.

The MED and InterMED are too large, and the OOTTVR schema is too complex,
to congider creating the schema and the data delinition language (DD statements
for generating it by hand. Rather, it is necessary to nse a program that transforng
the MIED or InterMED into an appropriate set of DDL statements. Even il one would
congider ereating the schema manually, it is expected that the database and even the
schema will change on a regular bagis, as the MED and iterMED are constantly
growing. In addition, the task of dealing with the schema is made more difficult by

the length of many of the class names. Currently, the longest class name has 47

21

End user

t

»!

R

Pictonal
interface

Form-Based
Interfaoe

T

!

i

APt
) Retrieval
Hard updaic - Fasy update
Update @ R
Versioning
String Matching
CHREF
Re-create é
3 e -
Procedure OUHIVR
/_—i\
CHREF-I Data -
Preprocassar [\/\
Inter MED. flat E new flat file -
nter MED sl
in J’x’lﬂ Bslo [E\/\F QOHVR
(InterhED) Data (& LOAM T
LM——% di‘ o e QOHVR OOHVER
Prepracessor =} B inglances. T 1OADI withaut
T classes file value
CHREF-TI TN .
classes declaration
i {CHREF-FD Data N & main program
i Preprocessar) Program THaltoabl
. DBLOAD |8
MED flat Files Generator .
MED siot fles o~ main program
_ r of LOADY
(MED) Data Schema
Preprocessar e | Foader

Figure 3.1 Schematic Figure of the whole system

characters and as such ig not easily retyped. Moreover those clags nanies contain
complex medical terms which again are not easily retyped.

Some of the concept names of the hiterMIED contain special characters such as
G etes which are not permitted in C4+ class namnes. Dealing consistently
with thaose is much easier for a generator than lor a lmman programner. This adds
another argument for the need for the OOHVR generator. Tn the next subscction,

we will describe the format of the input data. Then we will advance to the OOHVR.

generator functionality.

23

interMED_| InterMed
source—2] Pre-processor

N

MEDL—7] MED ; Schema Genersting
y N] ¢ ating

source Pre-processor [== COMMON___lopnmpator = ode

FORMAT
CHTRF-I _ | CHREF-I /
source="">"

Pre-processor

CHREF-H

CHREF-1I .
Pre-processor

sGuree

Figure 3.2 Schematic Figure of the Pre-pracessor

3.1.2 Preprocessor Description

The preprocessor is the part of the OOHVR generator which Pre-process the
data in different formates and converis it into a common forinat from where the
OOHVRE generalor can generate code for schema loading. Preprocessor takes scheimna
dependent files as input and generates chree files which will be used for generating
schema code by the OOHVR generator. Figure 3.2 shows the process. Last section
summarizes the layout of those files. Every preprocessor also generates three files

which are used for creating instances ol objects.

3.2 Processing Details
3.2.1 Implementation of Intersection Classes in ONTOS

Il one draws the OOTTVR ag o graph then this graph has many nodes with several
parents. An example of a clags with two parents is the Chemieal_Area. The
preprocessor is complicated by the oceurrence of a class with sevaral parvents. The
actual difliculty is not caused by the two parents, but by any common ancestor of
those two parents. However, this always happens in the QOHVR schema due to

the existence of the class Fnlity_Area as its unique root. Since Enlity-Area is a

24

Entty_Area
I
Measureable Etiology _Agent
_Entity_Area _Area

Chemical_Area

Figure 3.3 An example of multiple-inhernitance in the InterMED

pergistent class, all its descendants are also persistent classes which we want because
ONTOS uses inheritance to make clagses persistent. In Figure 3.3, Chemical_Area
has two parents which have a common parent FEniity_Area. C-4 permits two
solutions for such casecs. In one solution, the structures corresponding to the
common ancestor are duplicated. This leads to considerable waste of memaory.
For InterMed, we estimated that the waste of memory is as high as 60% for the
Acetaminophen_Codeine_Tablel_Preparation_Area. The other solution makes use of
the C-- virtual superclass construct. Unfortunately, by the syntax of C4, we
cannot instantiate any virtual class, which means Fultly_Arew cannol have any
ingtances and this is not true in the OOHVR.

To deal with this problem, we have constructed a “diamond cutting algorithny
which eliminates paths that have common ancestors. The details of the algorithng
are given in the next section.

Another problem that we had to solve is as follows. Every relationship is

introduced in a certain class and points to a particular clags which is called the largel

25

Entity_Area

Measureable Etology_Agent
_Bnrtity_Area Etiology_Agent _Area
_Area_P

Chemical Area

Figure 3.4 The result of applying the diamond cutting algorithm to Figure 3.3

area. 1l we have a relationship, I, which uses Fliology-Agent.Area as the targoet
clags then the extension of Chemical_Area should contain the candidate targets.
However, Chemical_Area is not pointing to Eliology_Agent_Area Trom the DBMS’s
point of view. Any references to the instances of Chemical_Area will be considered
an error. Our solution for this problem is to change all the relationship target
arcas to the root class, Fnbily.Area. Luckily we can store this information in the
shadow mela-schema. Any sctup ol relationships will lave no problems from the
database management system’s point of view. The correctiess of the target arveas

for relationships is ascertained by checking the shadow meta-schemna information.

3.2.2 Diamond Cutting Algorithm

Ag discussed earlier the algorithin basically eliminates paths that have common
ancestors. The information loss which may happen is avoided by creating a
copy of the class that has become unrcachable by this operation. We call this

copy "primed class” or "shadow class” of a node. For example, in Figure 3.3,

26

Etiology_Agent_Area is initially a parent of Chemical_Area. After applying the
algorithm, Etiology_Agent_Area_P becomes the shadow class of Etiology _Agent_Area
and a "primed parent” of Chemical_Area.

The shadow class has no connection to the persistent superclass, and therefore
the original problem is ehiminated. Tt also has all the properties of the node it is
copied from, so that the node with multiple parents is till inheriting the right set of
properties as shown in Figure 3.4, As the shadow class is never instantiated, it does
not need to be persistent.

Computationally, whenever the edge between an area and one of it’s parent is
cut, we transformed that parent from the parent-set of the class to its primed-set.
We also add ancestors (persistent as well as non-persistent) of that primed parent to
the primed-get of the intersection class excluding the root of the diamond.

For instance, in Figure 3.5, when we cut the edge between G and F, to prevent
G [rom losing properties that were intraduced in I we make a copy of the class F
called F” and make it a parent of G. By cutting the edge we lost the properties of 0
and A. So, we make a copy of T too and make it a parent of G. Sinee A s root of
the diamond, it’s properties will he inherited via the other path through D and so
we don’t need to duplicate it.

The same solution is used whercever intersection classes oceurs in any of the
schemas. As mentioned in the last chapter we come across with intersection classes
in InterMED, MED and CHREF-I. Tlence the Diamond cutting algorithm was usad

in their pre-processor.

3.2.3 The InterMED and The MED
Due to similarities in the gource of MED and TiuterMED we have decided 1o put
the pre-processor information for them together. The InterMED and MED have the

same disk-resident format consisting of two files: slot file and flal file. The MED

27

A
B E
c }
/
G

Iy

Figure 3.5 Advanced diamond cutting

ig much larger in both slot file and llat file because the MED has over 16 times as
many concepts as the TnterMED. Tn this section we simply use the smaller one, the
InterMED, as the example to discuss the process of generating the OOIVR. The firat.
file, the slot file, deseribes all the attributes and relationships types ol the TnterMED,
Fvery attribute (or relationship type) is deseribed by one line in the slot file. As of
this writing, there are 52 lines in the slot file. Figure 3.13 (a) shows the first couple
of lines of the slot file. The fields in the slot file are separated by commas. The first

field is the slot number. The second field is the slot name and the third field is the

28

concept number which introduces this property. Attributes have a string in the last
field while relationship types leave that field empty. The remaining four fields are

irrelevant to this discussion.

0 "MED-CODE” 1,-1,0,," IDENTIFIER” 1,1,°To71e
1,"UMLS-CODE” 1,-1,0,,”IDENTIFIER” 1.2 ENTITY™
2 NAME” 1,-1,0,,"SYNONYM” 1,4,
3 "DESCENDANT-0F",1,0,0,-2, 1,5,"MEDICAL ENTITY”
4,"SUBCLASS-0OF”,1,0,0,-1, 1,6," Entity”
5"SYNONYMS” 1,-1,0,,"SYNONVYM" ,7,"The class of all concepts
6,"PRINT-NAME" 1,-1,0,,"SYNONYM" the collabarative vocabulary knowledge”
7"DOCUMENTATION" 1,-1,0,,"LONG STRING™ 1,8
8, "SNOMED-CODE"1,-1,0,,"IDENTIFIER” 1,231
9,"HAS-RESULT”,3,1,1,10, 1,49
10, RESULT-OF”,28,0,1,9, 2.1,
11,"HAS-SPECIMEN" 4,1,1,12, 22" PROCEDURE”
12,"SPECIMEN-OF”,29,0,1,11, 2.3,1
13,"SUBSTANCE-MEASURED” 5,1,1,14, 2,41
14,"MEASURED-BY”,30,0,1,13, 250"

5" HAS-PRECISION",5,1,1,16, 2.6, Procedure”
(a) TnterMED slat file (h) TnterMEED . flat file

Figure 3.6 The TuterMED source files

The second hle, the flal file, deseribes all the details of the datain the TnterM D
and currently contains over 43,000 lines. Figure 3.13 (b) shows the firat couple of
lines of the flat file. ssentially, an entry in the flat fle consists of three elements.
The first element ig a coneept number, a number representing one of the concepts
in the semantic network. The second minmber s a slot numboer which stands for one
of the relationship types or attributes and s therefore an index into the slot file.
The third element may be another number (for a dillerent concept) denoting the
referent of a relationship. For an attribute, the third element is a primitive value,
represented as a string type. For instance, the line 22" PROCEDURE" means that

the concept 2 is named “PROCEDURE” and the line 2,4,1 means that the concept 2,

29

PROCEDURE, has the “SUBCLASS-OF” relationship (4) to concept 1, ENTITY.
The MED has 160 lines in its slot file and around 950,000 lines in its flat file, and is
constantly growing. More details are irrelevant for this paper and will be omitted.

The Preprocessor uses these two files to generate three types of intermediate
files: DBLOAD files, instances_classes file, and new flal files. There are four
DBLOAD ples, one istances_classes file, and two new flat files. The DBLOAD files
contain all the information necessary for gencrating class declarations for the area
classes. They are sent to the Program Generator which generates the necessary DD
statements for generating OOHVR, as well as Concept Creator, and Property Loader.
The instances_classes file contains the information for instantiating all concepts and
is used by the Concepl Creator. The new flat files contain the information for
loading the property values and are used by Property Loader alter Concept Creator
ingtantiates all concepts.

The gpirit of the Object Oriented paradigm has been adopted even while pre-
processing the data fles. Two major entitics in our database are terms and areas
so they have been defined as clagses in C++ program. The area class s made a
subclass of the term class hecause it i a superset ol term elass. A set class was used
to maintain the set of parents and children of a term and area {or that mySet.h.
The library used was previously developed by R. Singh {or develaping the TnterMED
pre-processor. Using a set as a container of parents, slots, ancestors and primed-gsets
etc. provides an ability to apply powerlul mathematical set operations like Union,
Intersection and Diflerence elc.

We have differentiated between Avea and Tnterseetion Avea in the last chapter
go the firat task of a pre-processor is to identily the list of Areas and Inlersection
Areas. The list of Areas can easily be generated from MED slot or InterMED slot
since it contains the information about the term where each attribute or relationship

wag first time introduced. The third column of slots contains the term number where

30

the property was first time introduced. The function Create_Areas_From_Slotsfiles
in the program goes through each and every slot in the slot file and generates the
list of Areas as an array of Area Objects and returns the count of total areas found.

Finding Intersection Areas is a difficult task, since the source files doesn’t
contain the information directly. The fact that there can be multiple intersection
areas having exactly same set of slots lead us to maintain another file called inter-

section file. The file contains the root of the intersection areas and their parents.

2, BODY SUBSTANCE, 28672, 50
43, CHEMICAL, 50, 135
1080, WHITE PIEDRA, 1067, 2691
1179, CHARACTER STRING RESULT, 1178, 32431
1712, ALLEN SERUM AMYLASE MEASUREMENT, 144, 2248
2315, ELECTROCARDIOGRAM, 2314, 24466
2548, HEART DISEASE, 10016, 1178
2672, PHYSICAL ANATOMIC ENTITY, 14, 32291
2691, MICROORGANISM, 315, 135, B0
10014, PULMONARY COLLAPSE, 21878 , 10016
10046, PYOPNEUMOTHORAX, 1067, 10014

10056, CALCIFICATION OF PLEURA, 10016, 356232

Figure 3.7 intersection_info a snapshot

The function Add_ InterArveas_Frominterfile reads the intersection file and adds
the intergection areas in the array of Areas. The next stepis to maintain the hierarchy
of Areas [rom the Area Array. The lunction Create_[lerarchy takes the array of areas
and generates the set of parent and children aveas for each area .o makes the whaole
hierarchy. 11 an Arvea X containg all the properties of area Y plus the propertios
introduced by itsell, then Avea X ig a child of Area V. This logie is nsed Lo generate
the set of parent and child areas of an area while for the intersection Areas the

information form the intersection file is used for making the hierarchy.

31

After making the hierarchy of Areas in memory as an array of area objects, the
output files can be generated. Each area object contains the set of parents, children,
and properties etc. Create.DBLOADx (where x can be 0,1,2 and 3) functions
generates corresponding DBLOAD files. A function INST is designed for generating

instances of the Areas.

3.2.4 Intermediate File
Many intermediate files are generated for MED, InterMED preprocessor use.

Following is the information and format of those files.

The names of files are

1) NewInterclasses.attrib
2) inter_info

3) MED .names

4) Term.names

5) MED.slots

Description of files:
1) Newinterclasses.attrib
This file contains the first two fields of the actual flat
file only for Intersection Areas.
Format

medcode slot_id

Example

o

N =

Ul ol 0~ Oy 1
- O

The file can be created by using the program gen_interinfo.cpp
Which takes the area hierarchy and NEWMED from the MED.latest
directory as input File and generates this file.

14,
43,
49,
50,
75,
76,
83,
93,
94,
135,
144,
315,

1035,

The file can be created by using the program gen_interinfo.cpp
Which takes the avea hirarchy and NEWMED from the MED.latest
directory as input File and generates this file.

[y

How to create the file:

2) inter_info

The file contains the area information.

Format

med_code, Name , parentl, parent2, parentd,

Example:

2, BODY SUBSTANCE ,b0,2672

ANATOMIC ENTITY ,1

CHEMICAL ,50,136

SPECIMEN 1
MEASUREABLE ENTITY ,1
MENTAL OR BEHAVIORAL DYSFUNCTION ,76,21762
DISEASE OR SYNDROME 1
LABORATORY OR TEST RESULT ,1
LABORATORY DIAGNOSTIC PROCEDURE ,94
DIAGNOSTIC PROCEDURE 1
ETIOLOGIC AGENT 1
CPMC LABORATORY DIAGNOSTIC PROCEDURES ,93
CULTURE RESULT ,35878

CULTURE PREFIX RESULT ,31b

TO CREATE THE FILE

3) MED.names & 4) Term.names

32

33

Files contains names of all terms and Areas. Only difference is

in MED.names all "“(¥,")","-" gtc. are converted to "_".
FORMAT:
med_code rnames
Example:

1 MEDICAL ENTITY

BODY SUBSTANCE

BODY SPACE OR JUNCTION

EMBRYONIC STRUCTURE

CONGENITAL ABNORMALITY

ACQUIRED ABNORMALITY

ANATOMIC SYSTEM

BODY PART, ORGAN, OR ORGAN COMPONENT
TISSUE

CELL

TO CREATE THE FILES

gen_names.cpp program can be used which takes NEWMED
as input and generates both files.

W o~ O O W

(==Y
<

5) MED.slots
Tt is the slot file from which all "," and " (QUOTS) are deleted.

FORMAT:
slot_code alot_name term#t unknown Attrib-Relation

Example:
0 MED-CODE 1 -1 0 IDENTIFIER

1 UMLS-CODE 1 -1 0 IDENTIFIER
2 NAME 1 -1 0 SYNONYM
3 DESCENDANT-OF 1 0 1 -2

o

SUBCLASS-0F 1 0 0 -1

5 SYNONVMS 1 -1 0 SYNONYM

6 PRINT-NAME 1 -1 0 SYNONYM

7 HAS-PARTS 1 1 1 8

8 PART-OF 1 0 1 7

8 CPMC-LAB~PROC-CODE 144 -1 0 IDENTIFTER
10 SERVICE-CODE 144 -1 0 IDENTIFIER
11 CPMC-UNIT-NAMES 144 -1 0 NAME

12 CPMC-LAB-TEST-NAMES 2248 -1 0 NAME
13 SPECIMEN-OF 49 0 1 14

14 SPECIMEN 93 1 1 13

CODE CLASSIFICATION
0100 ANESTHETICS/ADJUNCTS
0117 ANESTHETICS, LOCAL (INJECTABLE)
0118 ANESTHETICS, GENERAL
0119 ANESTHESIA, ADJUNCTS TO
0120 MEDICINAL GASES
012t ANESTHETICS, TOPICAL
0122 ANESTHETICS, OPHTHALMIC
0123 ANESTHETICS, RECTAL
0200 ANTIDOTES
0281 ANTIDOTES, SPECIFIC
0283 ANTIDOTES, GENERAL
0285 ANTITOXINS/ANTIVENINS
0286 ANAPHYLAXIS TREATMENT KIT
0300 ANTIMICROBTALS
0346 PENTCTILLINS
Figure 3.8 A drugelass_table Snapshot

TO CREATE FILE:

gen_medslots.cpp program can be used to get this file.
The program takes NEWSLOTS as input .

3.2.5 CHREP-T

To maintain similarities in preprocessor code we designed same type of Tunetion
for CHREF-T ag well. Writing a pre-processor for CITRIF-T is relatively a siniple
task die to lower complexity of it’s schema. The drugelasa_table contains the infor-
mation about each drug. The program reads the diugs information from this file and
maintains an array of Areas. An Arca with UNKNOWN_NDC_CLASSIFICATION

is created for the NDC-codes which do not fall into any classification.

35

1032 12656
1032 1479
1032 1568
1032 1724
1032 1940 1941
1032 1941
1032 1847
1033 1479
1034 1040
1034 1041
1034 1265
1034 1479
1036 1041
1035 1041 1371

Figure 3.9 intersection_classes snapshot

We maintain an "intersection_classes” file for the intersection elasses. The next,
step of the program reads the information about the intersection classes fram the
file and adds them in the array of Area Objects. Figure 3.9 shows ane intersection
class per line. The file doesn’t give names to the classes so we build the nnmes of
intersection classes by concatenating the names of all parents classes of an intersection
clags. The MakeHierarchy function makes the hierarchy by adding the values in ihe
parents and children sets. The hierarchy is built. an the biages of the code. g if
the last two digits of the code are 00 that means the elass represents the major drug
class while il the last two digits are not 00, the class belongs to the thivd level of the
schema hierarchy. Tn Figure 3.8 cade (700, 0200 and 0300 represent major classes
while all other not having the Tast two digits 00 helong to the minor elassilication.
The fourth level of the schema hierarchy is the intersection classes. GenerateDbloads

generates all the output files while INST generates the files for creating instances.

36

e

Al
AlA
A41B
A£1C
A1D
A2
A24
A4

W 0O ~N O U = W R

Figure 3.10 hic_class snapshot

3.2.6 CHREF-II

CHREF-II preprocessor is simpler than other preprocessor. Since are na inter-
section classes in CHREF-IT schema we no don’t have to apply the diamond eutting
algorithm. Tt just takes the HTC hierarchy i.e. represented by the code of the elasses.
Il a class has only one character code than it belongs to major classes i.e the second
level classes. The hic_class file contains the list of all codes and their class numibers.
The file thillic.txt contains the names of those drug classes. The program reads the
hierarchy from the hicclass file and the name of the drug classes (rom the thillic.oxt
file and generates the DBLOADX files. For instances the INST funetion takes

attributes files input and generates inst.out, 012 and o3 files.

3.3 Output Files Format
3.5.1 DBLOAD.X
There are four DBLOAD Giles generated by the preprocessor. All files have the same

structure. All concept has their attributes and relationships, in the DBLOAD files

in the following format.

MEDICAL_ENTITY_AREA
0

7

MED_CODE
UMLS_CODE

NAME

SYNONYMS
PRINT_NAME
MAIN_MESH
SUPPLEMENTARY_MESH
o

DESCENDANT _OF MEDICAL_ENTITY_AREA
SUBCLASS_OF MEDICAL_ENTITY_AREA
HAS_PARTS MEDICAL_ENTITY_AREA
PART_OF MEDICAL_ENTITY_AREA

SUPERCLASS_OF

Figure 3.11 DBLOAD.X snapshot

CONCEPT NAME
Number of Subclasses

Names of subclasses each on different line.

Number of Attributes
Name of Attributes

Number of Relationships
Name of relationships

37

Above entry shows that ENTTTY_AREA has O number of parvents, 7 attributes

which are listed on next 7 lines, has 5 relationships listed with target classes.

The DBLOAD.O file cantains the area hist before applying the diamond cutting

algorithm, while DBLOADLT containg the area list after the diamond cutiing

algorithim. DBLOAD2 containg list of shadow areas. DBLOAD A cantaing all the

areas in DBLOAD_0 but arcas also contain the properties they inherit from their

parents.

SINGLE _RESULT_LABORATORY_TEST_AREA
SINGLE_RESULT_LABORATORY_TEST_AREA
SINGLE_RESULT_LABORATORY_TEST_AREA
SINGLE_RESULT_LABORATORY_TEST_AREA
SINGLE_RESULT _LABORATORY _TEST_AREA
SINGLE_RESULT_LABORATORY_TEST_AREA
SINGLE_RESULT_LABORATORY_TEST_AREA
SINGLE_RESULT_LABORATORY_TEST_AREA
SINGLE_RESULT_LABORATORY _TEST_AREA
SINGLE_RESULT_LABORATORY_TEST_AREA
SINGLE_RESULT_LABORATORY_TEST_AREA
SINGLE_RESULT_LABORATORY_TEST_AREA
SINGLE_RESULT_LABORATORY_TEST_AREA

38

CHEMISTRY TEST

INTRAVASCULAR CHEMISTRY TEST
WHOLE BLOOD CHEMISTRY TEST
PLASMA CHEMISTRY TEST

SERUM CHEMISTRY TEST
INTRAVASCULAR SODIUM ION TEST
WHOLE BLOOD SODTUM ION TEST
PLASMA SODIUM ION TEST

SERUM SODIUM TON TEST
IMMUNDLOGY TEST

COAGULATION TEST

CELL AND ARTIFACT TEST
MICROBIOLOGY TEST

Figure 3.12 inst.out snapshot

3.3.2 inst.out, 012 and o3

These files are used to generate instances of the arcas. ingt.oul contains the name
of the area an object belongs to and the value of its key field. Fach lne of inst.out

represent an object. The format of the hne is

<AREA NAME> <KEY FIELD VALUE>

In Med and Tntermed the keyfield is the name of the coneept. while in CHRFF-1
and CHREF-TT it is the NDC-CODI of the drug.
012 and o3 contain the valies of other attributes of the objects. 12 containg

the name of the attributes and Object identifier.
<NAME OF AREA>

<Object ITdentifier>

Rach line in 012 has a corresponding line in o3 which containg the value of the

attribute.

<VYalue of the attribute listed in o012 file>

39

UMLS_CODE ENTITY T071

NAME ENTITY ENTITY
SUBCLASS OF ENTITY

SYNONYMS ENTITY MEDICAL ENTITY
PRINT . NAME ENTITY Entity
DOCUMENTATION ENTITY The class of all concepts
SNOMED.CODE ENTITY 1

CPMC_CODE ENTITY 0

CATEGORY_.OF ENTITY
CATEGORY_TYPE ENTITY
SUPERCLASS_OF PROCEDURE SPECIMEN COLLECTION PROCEDURE

Figure 3.13 The TuterMEED source liles

CHAPTER 4
DESIGNING A VOCABULARY CREATOR

4.1 Introduction
Development and research in the medical industry produces new concepts and terms
in the subject. An interactive tool is necessary to allows a medical expert to add
new concepts and relationships to an existing vocabulary as well as to create a new
vocabulary from scratch.

When a user starts creating a vocabulary he/she starts by defining a set of
terms/concepts. Then he/she adds relationships and attributes to the concepts,
which leads him to a semantic model or a conceptual representation of the subject
knowledge. Tn the process a user has to face a number of challenges. He has to create
and organize a large amount of concepts. T1e has to assure that each concept containg
the ateributes and relationships necessary to represent that concept in the subject
ficld. To accomplish this the user must have a solid grasp of the overall structure of
the vocabulary.

A Vocabulary usually contains at least hundreds of concepts and can grow up
to tenths of thousands. Remembering the name of just a few dozen of these and the
relationships between them may be troublesome. With the inerease of vocabulary
gize, comprehending the structure becomes ahmost impossible. A graphical view
of the voeabulary can provide an casy to visualize tool for the voeabulary creator.
That is why we decided to pravide a graphical user interface for our IVC (Tuteractive
Vacabulary Creator).

As digenased earlier the vacabularies should provide an easy Lo aceess knowledge.
The internet is a way which can provide easy and world wide accens Lo knowledge.
We decided to use WWW as a medium of distribution for our TVC. Section 4.2

provides background of WWW systems. Section 4.3 gives a briel idea about which

40

41

are the essential features of IVC. Sections 4.4, 4.5 and 4.6 deals with design issues

in details.

4.2 Background of WWW

The World Wide Web architecture was developed by Berners-Lee [13] and is based on
a generic object-oriented protocol, the Hypertext Transfer Protocol (HTTP). Thig
protocol manages requests in the form of a Uniform Resource Loecator (URL) and
delivery of information as Multipurpose Internet Mail Txtension (MIME) objects.
The most common objects delivered by the HTTDP protocal are documents written
in the Hypertext Markup Language (HTML), a subset of the more general Standard
Generalized Markup Language (SGMT) [1]. TITML adds structure to ASCIT text
documents, and WWW browsers (such as Mosaic or Netseape) use this structure
to display the text in a graphical manner. Beyond designating the structure of the
documents, HTML provides a syntax for embedding graphics, images, sounds, and
video, as well as hyperlinks to other documments [13].

One of the main tenants of the TP protocol is that it is stateless: after
the TTTTP server returns the requested information, the session is terminated. No
information about the state of the user is maintained. Becausge many internctive
processes require maintenance of state information, developers have maintained state
information in hidden fields of TTTML [orms or in the databases resident on the server
[4].

To support the processing of user input, the Conmon Gateway Interface (CGI)
standard was developed. This standard assures that WWW Dirowsers, TITTT servers,
and external processes comimunicate using a standard set of parameters. When a
hyperlink or HTML form is used to initiate a CGI process, the HTTP server receives
the request, starts the CGI process with the parameters submitted by the user,

waits for the output of the CGI, and delivers the output to the browser. The CGI

42

application can use the supplied parameters to perform almost any task: make a
database query, annotate a document, or send an electronic mail message.

Another drawback of HTML is, one can not design user interfaces for which
complex client side computation and display is required. Java provides the solution
to this limitation. Java has the capability of virtually handling any kind of complex
interface. We decided to use Java based client, for the Creator. To make the data
persistent Java still needs some interface to talk to the server. We used CGls as our

interface. Other possible interfaces are discussed in chapter 5.

4.3 Essential Features of a Vocabulary Creator
A vocabulary creator should have the following {eatures as a minimum.
¢ Add/Delete/Tdit a Concept to the vocabulary.
¢ Add/Remove/Edit an attribute of a concept.
e Add/Remave/Edit values of the attribute.
¢ Add/Remove/REdit Relationships in a concept.
¢ Add/Remove/Idit Relationships values.
Other features includes a good search mechanism, which allows a user to

retricve information from the vacabulary.

We started to develop a creator initially with the essential requirements.

4.4 Sygtem Arvchitecture
The architecture of the TVC is composed of five components
1) A Java Based WWW Browser

2) An HTTP Server

43

HTTP
Serve CGlsye APIs OOHVR
J erver
Java Based —
Browser
Figure 4.1 Architecture of TVC

3) CGIT Mediator

4) APTs

5) OOHVR

he following steps are followed in response to a user's request. A user activates

request e.g. a new Concept addition, fram the Java based browser. The browser
activates the CGI mediator on the HTTP server by using the HHTTD protocol. CGI
Mediator which calls the corresponding APTs lor the request and these APls actually
communicate with the ONTOS database to make changes accordingly. Il the request
i a query (rom a user than the resulting data is passed back to the CGT program,
which delivers the data to the TTTTP server, and it is sent back to the Chent. Detailad
information about CGI, APTs and OOIVR is given in the next seetion. A Java bhased

browser design ig discussed in section 1.0,

4.5 Back-End Design
4.5.1 00DB Schema for a General Vocabulary
By using the Creator one can build any kind of vocabulary. We designed a schema

which can allow editing of a general semantic network. We decided to use a relatively

simple schema, which is shown in Figure 4.2. Any concept would be an instance of

44

MV_Concept
Contains @

g
MV_Property

Related o
Value /J\

MV _Attributes MV _Relationships

Figure 4.2 Schema for a general Vocabulary for IVC

MV _Conecept which has Name as an attribute. It contains a set of MV_Praperty. The
MV _Property is a base class for MV_Attribute and MV Relationships, it contains the
Name of the property. MV_Attribute has attribute value which actually saves the
value of attribute. MV _Relationships has a reference to a target concept for the
relationghip. Since MV_Concept contains a set of Properties it can have more than

one Attribute and Relationship.

4.5.2 API Design

Application programmers Interfaces (APT) are functions develaped as a library, They
provide an easy access to the database lfor an Application programmer. We have
designed a set of ATPTa for all possible editing or browsing requests. These APIs eall

the ONTOS database to provide a desired linctionality. A list of the APIs s given

in APPENDIX C.

4.5.3 Common Gateway Interfaces
CGls are a main component of the Creator. They provide an interface between
the APIs and HTTP server. As discussed before, the CGls are the programs which

provide dynamic data to the Web. Our CGIs has to perform the requested APIs. To

45

accomplish that, we designed a protocol for chient and server synchronization. First
we'll provide the general details about the CGIls. Then we'll discuss the Protocol we
have adopted for the client and server synchronization and error checking.

CGls are executable programs which are executed by the HTTP server upon
request of the client. They can take data in two different ways. They can give back

sults in only one way i.e writing to the standard output. Data input to CGls can be
given by Standard input (POST Method) or by environment variables (GET Mthod)
Environment variables are good for the cases when one has to transfer a smaller
amount of data to the CGIls. Because of our data sive we decided to use Standard
Input (POST Method) for providing data to CGls.

The client actually prepares for a connect string i.e. a (Universal Resouree
Locator) URL. A URL contains the type of protocal to be used, the server to he
connected, name and path of CGI program and a list of parameters to be passed Lo
the CGI program. We used the TTTTP protocol as our connection protocol.

For example a server name is object.njit.ediz2000 (where 2000 18 a port nunber
of the TITTP server), and the CGI program is oohvr/oohvr.egh and we have to pass
variables NAME=Text and EMATL=xyzChomernjit.edu to CGL Then the URL
would be

http://objectnjit.edu:2000 /dolvr fochvr.egi?NA ME="Text &

EMATL=xyz@homer.njit.cedu

Mare than one parameter can be passed by "&" separated strings. The Text
here ig the value of the paramecter, which should he in an encoded form. The
encoded form is to change all spaces 1o "7 and special characters in hexadecimal
number representing ASCIT code of the character. This whole creation of Ul
done on the client side. The above URL would instruct the HTTP server to run

the program oohvr.cgi and pass NAME=Text&EMATL=xyz@homer.njit.cdu to the

46

program, which reads this string from the standard input. After performing the
desired request, the is output on standard Output.

To call the APIs from a remote side, we take a variable name FUNCTION.
The value of the variable would tell the CGI program to call a specific APL Let us
suppose to run an API ListAllConcepts, the URL would be

http://object.njit.edu:2000/dchvr /oohvr.egi? FUNCTION=List AllConceptes.

The CGI program in the begining will see the name of the function from
FUNCTION variable and would call MV _List_AU_Conecepts. The result of the API
is sent to the Standard Output which would be redirected to client by the ITTDP
server. For the APIs which need some parameters to be passed to, they are passed
by using the Name=Value. T.g. to call List AllChilern the APT need the name of the
parent concept so the URL would be constructed as following

http://object.njit.edu:2000/dohvr/oohvr.egi?FUNCTION =List AllChildern

CPARENT=ENTITY

Ilan APT requires more than one parameters the parameter arc sent by coneate-
nating desired parameter names and their values at the end of URL proceeded by
"&7 sign.

The CGT returns OW in first line of output to represent that the request has
been fulfilled . 1 the first Hine doesn't contain ON, then that means there is some
error oceurred. In this case the fivst line represents the Error message. In the case of
a sticeesslul query the lines followed by OR eantaing the results of the query. 1 there
is nothing after the O line, that means the data is not available or the request was

just an edit operation to be performed.

47

4.6 Front-End Design

4.6.1 The Notion of Neighborhoods

One of the problems that we had to face was how to display a vocabulary. Qur
initial choice was to use a graphical display of the vocabulary network which shows
whole vacabulary on the screen. We have built an experimental layout algorithm and
fed it the InterMED hierarchy, i.e., all the nodes and the IS-A connections between
them, but no attributes and no relationships. The result was a picture that was
too overwhelming to be of any use [11]. Tt can be deseribed as having a center tha

is entirely black with no recognizable features whatsoever. In addition, the layout
algorithm was intensive in computational time.

The general problems we lace in viewing a graphical diagram of a vocabulary
are large scale and high complexity, particularly in comparison with the imited size of
display media (e.g., a computer screen) and limited human-comprehension capacity.
The complexity issue was previously discussed i [12], where the ratio of edges to
nodes was proposed as a quantitative measure of diagram complexity. BEven il we
can display a diagram of, say, 50 concepts and 200 conunecting relationships (lines)

1 a gingle page of paper or on a monitor, such a diagram is overwhelming to most
users. And 50 concepts usually represents a small fraction of a CMV,

To cope with these difficulties, we define the notion of various forms of coneept
neighborhoods (or neighborhoods, for short) in CMV diagrams
Definition (Neighborhood): The neighborhiood of a concept Voin a CMV diagrai
containg V and Vs children and parents (with respect to the IS-A hierarchy) as well

as any concepts related to Vo ovia non-hierarchical relationships.

Definition (Two-level Neighborhood): The two-level neighborhood of a concept
V in a CMV diagram contains V’s neighborhood and Vs siblings, grandparents, and

grandchildren (with respect to the I5-A hierarchy).

48

Definition (Indirect Ancestors): The indirect ancestors of a concept V are the

ancestors of V' excluding Vs parents.

Definition (Indirect Descendants): The indirect descendants of a concept V' are

the descendants of ¥V excluding ¥7's children.
w3

Definition (Extended Neighborhood): The extended neighborhood of a concept
V' contains Vs neighborhood and V7s siblings, indirect ancestors, and indirect

descendants.

Note that these definitions are valid both far the concept diagram and the
area class diagram of a CMV when it is madeled as an OODB, as discussed in the
previous section. We refer to the respective neighborhoods as concept neighboarhoods
and (area) class neighborhoods when it 15 necessary to draw a distinetion.

A neighborhood diagram displays only a portion of limited size and complexity
of the entire CMV diagram, and thus aflords a user a much more comprehensible
view. Asg we will explain later, navigating throngh a CMV network via successive

center” shifts from a concept to another concept in its neighborhood lacilitates
gearch traversals.

To use an analogy, navigation is like looking at the night sky with a telescope
that magnifies a small portion. By moving the telescope slowly, the astronomer
achicves a “sliding” clear view ol a substantial portion ol the sky. Tle uses his limited
view to obtain an overall view and focus in on objects of interest.

The various kinds of neighborhoods give the user of the vocahulary flexihility
in the chaice of “locus.” At each stage, o user can select a suitable view hased
on the size of ithe neighborhiood and the desired information. For example, i &
concept’s neighborhood contains only six nodes, the user might choose the two-level
neighborhood or even the extended neighborhood. On the other hand, for a large

neighborhood, the ordinary neighborhood display might be more appropriate

49

There are, however, problems in creating such an interface to the CMV:

1. The number of children of a concept might be so large as to not fit on the

screen.

2. The neighborhood layout may be time consuming to generate on demand as it
could differ considerably from the layout of the same concepts in the context,

of the whole vocabulary diagram.

It is clear from the above discussion that nothing is perfect in terms of a good
view [or the user. So we decided to give the user a choice of more than one type of
views. A user in the start of the program will see anly the root and the first level
of the vocabulary. That means only,first level neighbor will be shown while the root
is the focused element. After that a user can expand any child of Raoot to see the
second level neighbor i.e. one can view the vocabulary as needed.

To deerease the complexity some other views are provided to a uger in which 1)
First Level Neighbor, second level neighbor, ancestorial view and descendent view.
The ancestor view starts from the bottonm and goes up to the root of the voeabulary.
This would be a somewhat siimple view because usually a concept doesn’t have many
miultiple parents. Descendent view starts from the given concept and goes all the
way to the bottom. We can say it 18 a tap to bottom view. We are planning to
have n-level neighborhood view in which a usger ean give nas a parameter and the

prograin generates the view.

4.6.2 Programming Details

Ti

le sleleton of the program consists of three main parts.

APT Calling Component.

Layout Manager.

50

User Interface.

We will discuss them separately.
4.6.2.1 API Calling Component
This component basically provides an interface to the CGls discussed in the previous
section. The component is designed as a separate Java class OOhvrCGILL Tt provides
all the APls to other components. Other compaonents of the program would call those
APIs just like they are calling APIs from a local system. Tt provides a transparent
interface to Server APIs. Due to this feature it can be changed with any other
interface, like RMTIs or CORBA and we dan’t have to change other components of
the program.

The OOhvrCGI contains all available APTs declarations with the same number
and types of parameters as they are for APIs. Thase APT funetions basically build the
URL string discussed in the last section and calls CallServer a function of OOlvrCGlL
That function calls the URL and gives the results hack. 16 there is an error, a public

hoolean variabie of the class would give the indication to the calling

3

object.

4.6.2.2 Layout Manager
Il we take concepts as nodes and relationships hetween them as edges then a
Vocabulary is nothing but its a directed Graph. The layout manager keeps track of

the graph and has the ability to apply au algorithm on the graph for the layaut of

the concepts on the screen.

4.6.2.3 Uger Interface
The user Tnterface is the central part of TVC 10 provides a graphical view, dialog

boxes and frames to user. The user interface calls other components of the program

when needed. Tt gets data from the server by using the OOhvrCGI class and pass

51
it to Layout manager which apples the layout algorithm on the graph. Then user
interface shows the vocabulary. The user can select a particular concept and can
apply the different functions. Like one can select a concept and press the Properties
button to see and edit all the properties of the concept. The property editor is
a dialog box which provides the Attributes and Relationships with their values in
separate list boxes. All essential features discussed in 1.3 Section are included in the

system.

CHAPTER 5

FUTURE WORK

The current architecture of IVC uses CGIs for user for client server communication.
In the following we'll discuss some other ways of client server communiecation and

try to find out the differences in them in terms of query executation time.

5.1 Performance Criteria
The following times are considerable for giving a quick response to a user on his

requests

5.1.1 Connection Establishment Time

Our network 1s based on the TCP /TP protocol. The establishment thme is to translate
the server name to an IP address from a DNS server. Then linding out the route to
the destination for the virtual cirenit, and actually setting up the virtual cireuit.
5.1.2 HReqguest Placement Time

Request placing time depends upon the amount of data transler {or the request since

same APIs need more data as arguments.

5.1.3 Database Access Time
This time is actually the setting up tinie for a query. A process is forked Lo access

the database by HTTP server and establishes connection to databases.

5.1.4 Data Reirieval Time
This time totally depends upon the way the APls reirieve data lrom a database and

can be decreased by any optimization to the APIs if possible.

53

5.1.5 Data Transfer Time

This time is dependent upon the following factors:

Current Traffic size on the network.

Amount of data to transfer.

Distance data has to travel.

5.1.6 Presentation Time
This is the layout and client side caleulation part on data which may be required.
In the case of the Creator this time is very important. The Creator has to apply a

lavout algorithm on the schema graph.
Y 8

5.2 Different Options Available for Client Server Communication
5.2.1 Common Gateway Interfaces

A way to transfer dynamically generated data from the TTTTEP server side upon
client request. Upon request, the data is retrieved from the APDs and is sent o the
client where the client side program can present it For each and every CGI request,
the client has to establish the connection, oo our thne consideration Connection
Fatablishment time is always delaying the response time. For the database accessing,
every time a process has to be lorked by the HTTT server. Te needs setting up fime
by the operating system and for each request database opening time which is alsa
congiderable time. Al these are acutely performance drawbacks of CGla. Bul on
the other hand CGIs are easy to develop and setup and no special client s always

necessary to access data. An 1TTTP browser can be used divectly to browse the data.

54

5.2.2 TCP/IP Based API Server

This approach can provide better performance than CGls. We can design a TCP/IP
based server which can continuously listen on an assigned port of the server for an
APT request. The server, at start time, can open the database. This eliminates the
need of forking a process on each request. The client can set up a TCP/IP virtual
circuit in the start of the program. Then only an APT eall is needed. Le. setting up
time will be once only while database access time would also be improved. Minor

changes to the APIs may be needed for a better database access time.

5.2.3 Java RMlIs

Java Remote method invocation can be a good alternative to TCP/IP based server,
because developing a TCP/IP based server is not an ecasy task. RMI server can
approximately give the same performance as a TCP/IP server can give. RMIs
are the way ol calling methods of Java object on remote machines which actually
rung on the server side and returns data on client side trangparvently. RMT gives a
better performance as compared to CGIs since (Stare of client program) setup time
is required once. The main problem ig that our system has to eall the APTs written
in C++. Te. we need an Interface bhetween Java and C/C-+. INT (Java Native

Interface) can be used to call APTs written in C+4-

5.2.4 Using CORBA

Common Object Request Broker Avchiteeturve 18 a standard for remote objeet
binding. CORBA is similar to RMTs except that it is a language wndependent Archi-
tecture. In RMIs we have to nse INIs for Java to C++ interface. CORBA can he

sed for direct binding of server’s Co-+ ohjects 1o client’s Java objects.

5.3 Conclusion

¢ We need a change in the architecture for better performance.

¢ TCP/IP based API server is the best optian available but at the same time
it is hard to develop. Since we only needed to provide an interface between
Java and C++ at this stage, RMIs of Java is second best aption. CORBA

can widen our future wark, which can allow us to create client other than Java

language.

APPENDIX A

CGIs CODE

The code for the CGIs is presented here.

#include
#include
#include

#include
#include
#include
#include

ffdefine
#define

7

#idefine
#tdefine
#tdefine
#idefine

#define

#define

fidefine
#define
#define
#define
#define
ftdefine
#define
#define
#define
#define
#tdefine
#define

"api/include/MV_ut. h"
"api/include/MV_api.h"
<iostream.h>

<stdlib.h>
<gtream.h>
<gtring.h>
icgic.h”

PARENT 1
CHILDREN 2

LIST OF FUNCTIONS AVAILABLE FROM CGT

OKFLAG "OK\n"
NO_FUNCTION “ND\n"
FERROR_FLAG "ERROR\n"
CONTINUE "CONTINUE\n"

fnCHILDREN "CHILDREN"

// PARENT=" &

faPARENT "PARENTSY

// CHILD=® *

fnAttribValue
fnAllAttribValue
fnAllRelationValue
fnRelationShipValue
fnChangeAttribVal
fnChangeRelationVal
fnhddChild
fnAddProperty
fnAllConcepts
fnAddRelationshipValue
fnCreateNewRelation
fnDeleteAttribute

would be pavameter

would be parameter
"AttribValue”
TAllAttribVaiue"
“AllRelationValue®
"RelationValue®
“ChangedttribValus"
“ChangeRelationValue"
“AddChild”
“AddProperty"
“AliConcepts”
"AddRelationshipValue"
"CreateNewRelation"
"Deletehttribute"”

56

57

#define fnDeleteRelation "DeleteRelation"
#define fnRemoveAttributeValue "RemoveAttributeValue”
#define fnRemoveRelationValue '"RemoveRelationValue"
#define fnDeleteConcept "DeleteConcept"

void Child_Parent{char *,int);
void AttribValue(char #*CName,char %PName=0,char FLAG=1);
void List_A1l_Concepts();

cgiMain(void)

{
char Function[30];

char hst[100];
cgiFormStringNoNewlines ("FUNCTION", Function, 30);
cgiHeaderContentType ("text/html") ;
if (Istremp (Function, fnCHILDREN)) {
char parent[100];
cgiFormStringNoNewlines ("PARENT", parent, 100);
Child_Parent (parent ,CHILDREN) ;
Yelse if (tstrcemp(Function,fnAllConcepts)) {
List_All_Concepts();
Yelse if (Istremp(Function, fnPARENT)){
char child[100];
cgiFormStringNoNewlines ("CHILD",child, 100);
Child_Parent (child, PARENT) ;
Yelse if (Istremp(Function,fnAttribValue)){
char concept[100];
char attr[100];
cgiFormStringNoNewlines ("CONCEPT", concept,100);
cgiFormStringNoNewlines ("ATTRIBUTE" ,attr,100) ;
AttribValue(concept,attr,0);
Yelse if (lstrcmp(Function,fndddProperty)){
char concept[100];
char propi100];
cgiFormStringloNewlines ("CONCEPT", concept, 100);
cgiFormStringNoNewlines ("PROPERTY" prop, 100);
MV_Create_Attribute (concept,prop);
fprintf (cgilut, OKFLAG) ;
}
else if (!strcmp(Function,fnAllAttribValue)){
char concept[100];
cgiFormStringNoNewlines ("CONCEPT", concept,100);
AttribValue(concept);

58

else if (!strcmp{Function,fnDeleteConcept)){
char concept[100];
cgiFormStringNoNewlines ("CONCEPT",concept,100);
MV_Delete_Concept(concept);
fprintf (¢cgilut,0KFLAG) ;

else 1f (!strcmp(Function,fnAllRelationValue)){
char concept[100];
cgiFormStringNoNewlines ("CONCEPT", concept,100);
AttribValue(concept,NULL,3);

else if (!strcmp(Function,fnAddRelationshipValue)){
char concept[100],target[100],Relation[100],*RRelation;
cgiFormStringNoNewlines ("CONCEPT", concept,100) ;
cgiFormStringlNoNewlines("Relation', Relation,100);
cgiFormStringNoNewlines (“Target",target,100) ;

if (MV_Show_Reverse_Relationship(Relation,RRelation))

{
MV_Add_Relationship_Value(concept,Relation,target);
MV_Add_Relationship_Value(target,RRelation,concept);
fprintf (cgilut ,0KFLAG) ;
delete RRelation;

¥ elsed
fprintf (cgilut,"NO REV. RELATION");

else if (1strcemp(Function,fnCreateNewRelation)){
char concept{100],target[100] ,Relation[100],vevielation[100];
cgiFormStringNoNewlines ("CONCEPT",concept,100) ;
cgiFormStringNoNewlines ("RELATION" ,Relation,100);
cgiFormStringNoNewlines ("RevRELATION" ,revRelation,100) ;
cgiFormStriﬂgNoNewlines(”Targat“,target;100);
MU_Create_Relationship(concept ,Relation,target,revRelation);
fprintf (cgilut, OKFLAG) ;

else if (lstremp(Function,fnRelationShipValue))q{
char concept[100];
char attr[100];
cgiFormStringNoNewlines ("CONCEPT", concept,100) ;
cgiFormStringNoNewlines ("ATTRIBUTE",, attr, 100) ;
AttribValue(concept,attr,2);

Yelse if(!strcmp(Function,fnChangeAttribVal)){

char CName[100];
char PName[100],0Value[100],Value[100];
cgiFormStringNoNewlines ("CONCEPT",CName, 100);
cgiFormStringNoNewlines ("ATTRIBUTE",PName, 100) ;
cgiFormStringNoNewlines ("OLDVAL", oValue, 100);
cgiFormStringNoNewlines ("VALUE",Value,100);
MV_Change_Attribute_Value(CName,PName,oValue,Value);
fprintf (cgilut,0KFLAG) ;
telse if (!strcmp(Function,fnChangeRelationVal)){
char CName[100];
char PName[100],oValue[100],Value[100];
cgiFormStringNoNeulines ("CONCEPT", CName, 100) ;
cgiFormStringNoNewlines("ATTRIBUTE",PName, 100) ;
cgiFormStringNoMewlines("OLDVAL"Y oValue, 100);
cgiFormStringNoNewlines ("VALUE",Value, 100);
MV_Change_Relationship_Value{(CName,PName,oValue,Value);
fprintf (cgilut,0KFLAG) ;
telse if (!strcmp(Function,fnAddChild)) {
char Parent[100],Child[100];
cgiFormStringNoNewlines ("PARENT",Parent, 100) ;
cgiFormStringlioNewlines ("CHTLD",Child, 100);
MV_Create_Concept(Child,Parent);
fprintf (cgilut,OKFLAG) ;
telse if (!strcmp(Function,fnDeletedttribute)) {
char CName[100];
char PName[100]:
cgiFormStringNoNewlines ("CONCEPT", CName, 100) ;
cgiFormStringNoNewlines ("ATTRTBUTE" ,PName, 100) ;
MV_Delete_Attribute(Cllame,PName) ;
fprintf (cgibut ,DKFLAG) ;
Yelse if (Istremp(Function,fnbeleteRelation)) A
char concept[100],target[100],Relation[100],vavRelation([100];
cgiFormStringNoNewlines ("CONCEPT" , concept,100);
cgiFormStringNoNewlines ("RELATTON® ,Relation, 100} ;
cgiFormStringNoNewlines ("RevRELATIONY ,reviielation,100);
cgiFormStringloNewlines ("Target", tavget, 100)
MV_Delete_Relationship(concept ,Relation, target,reviteiation)
fprintf (cgilut , OKFLAG) ;
Yelse if (1stremp(Function, fnRemovedttributeValue)) o
char CName[1007;
char PName[1C0],Value[100];
cgiFormStringNoNewlines (" CONCEPT", CName, 100) ;
cgiFormStringNoNewlines(”ATTRIBUTE“,PName,lOO);
cgiFormStringoNewlines ("VALUE",Value, 100) ;

60

MV_Remove_Attribute_Value (CName,PName,Value) :
fprintf(cgilut,OKFLAG) ;

Yelse if (!stremp(Function, fnRemoveRelationValue))
char CName[100];
char PName[100],Valuel[100];
cgiFormStringNoNewlines ("CONCEPT",CName, 100) ;
cgiFormStringHoNewlines ("RELATION", PName, 100) ;
cgiFormStringNoNewlines ("VALUE", K Value, 100);
MV_Remove_Attribute_Value(CName,h PName,Valua);
fprintf (cgilut,OKFLAG) ;

telse

fprintf(cgilut,“Sorry: Function %s is not Implimented",Functio

}

return 1;

void List_All_Concepts()

{
int number=0;
char *%1ist;
char CName[200];
MV _Tist_A1l_Concept (number,list);
if (number == 0) {
fprintf (cgilut," Vocabulary deesn’t have Any Concept\n');
T else {
fprintf (cgilut,OKFLAG) ;
for(int i=0;i<number;i++)
{
if(list{i])
fprintf(cgilut, "%s\n", list[i]);
else
fprintf (cgilut,"\n") ;
}
mv_free(number,list);
}
}

void Child_Parent (char #*parent,int FLAG)
{

int number=0;

char **1ist;

61

switch(FLAG)
{
case CHILDREN:
MV_List_Children(parent,number,list);
break;
case PARENT:
MV_List_Parents(parent,number,list);

break;

}

if (number == Q)
{

fprintf(cgilut,CONTINUE) ;
fprintf(cgilut,
" Concept %s don’t have Children/Parent\n", parent);

}
else
{
fprintf(cgilut,OKFLAG) ;
for(int i=0;i<number;i++)
{
if(list{i])
fprintf (cgilut, "%e\n", list[i]);
else
fprintf (cgilut,"\n");
}
mv_free(number,list);
]
}

void AttribValue(char #CName,char #*PName,char FLAG)
{

int nunber=0;

char *¥list;

switch (FLAG)

{

cage O:
MV _Show_Attribute_Value(CNawe,PName, number,list);
break;

cage 1:
MV_List_Al1_Attribute_Value(CName,number,list);
break;

case 2:

MV_Show_Relationship_Value(CName,PName,number,list);
break;

62

case 3:
MV_List_All_Relationship_Value(CName, number,list);
break;

if (number == 0) {
fprintf(cgilut,"%s\n","Dose’nt have value");
} else {
fprintf (cgilut,0KFLAG) ;
for(int i=0;i<number;i++)
if(1ist[i])
fprintf (cgilut, "%s\n", list[1]);
else
fprintf (cgilut,"\n");
mv_free(number,list);

APPENDIX B

JAVA CLASSES AND THEIR CODE

The code for the TVC is presented here.

JET
* File: newoochvr.java
* Project Title: VOCABULARY CREATOR
* Author: Muhammad Arif

Last updated on : 07/09/97
* Last updated by : Muhammad Arif
*/

import java.applet.Applet;

import java.awt.*;

import java.util . *;

import EDU.auburn.VGJ.gui.*;

import EDU.auburn.VGJ.graph.#*;

import EDU.auburn.VGJ. algorithm.tree. *;

import EDU.auburn.VGJ.algorithm.GraphAlgorithm;
import java.util.Stack;

IES

* Main Applet class which activates the Schema Frame. And Tnitializes
* the CGI class

#/

public class newoohvr extends Applet
{
{JohvrSchema mainSchema;
GraphiWindow guwin;
int nodeno;
NewFrame SchemaFrame;
SchemaCanvas gCnv;
douhle view;
/%
* CGI variable
*/
00hvrCGI cgi;
final int OVAL=1;
final int RECTANGEL=2;

63

64

/%%
* Main initialization function which actvates the CGI and Schema frame
*/
public void init()
{
nodeno=0,
cgi=new 00hvrCGI("http://object.njit.edu:2000"," arif/oohvrC.cgi", this);
// Creating an Instance of cgi whith http
// server and oohvrC.cgi as CGI prog. name.
view=20; // Initial value of view
String root=cgi.GetRoot(); // Getting the root of Vocabulary
mainSchema=new OohvrSchema{root, RECTANGEL, "IN} ;
// Creating Schema as Directed graph
int rootId=mainSchema.getRootId();
String strll=cgi.GetChild(root);

int k=0;
int no_of_children = cgi.ReadTotal();

for(int i=0;i<no_of_children;i++)

{
ket
int id=mainSchema.AddChild{root, str[i]);
System.out.println(k+": "+strii]);

}

System.out.println(“Total : "+k+" Generated");

SchemaFrame=new NewFrame(mainSchema,cgi);

SchemaFrame . resize (600,600);

gCnv=new SchemaCanvas(mainSchema,SchemaFrame);
SchemaFrame.UpdateCanvas (gCnv); // just updates Schemacanvas variable
ScrolledPanel vPanel=new ScrolledPanel (gCnv);

SchemaFrame.add ("Center" ,vPanel) ;

gCnv . setMouseMode (gCnv . SELECT_NODES) ;

SchemaFrame.pack () ;

SchemaFrame. show () ;

SchemaFrame . Refreash ()

et

65

AL
* File: OohvrSchema.java
* Project Title: VOCABULARY CREATOR
* Author: Muhammad Arif

Last updated on : 07/09/97
* Last updated by : Muhammad Arif
*/

import java.applet.Applet;

import java.awt.¥;

import java.util. #;

import EDU.auburn.VGJ. gui.x*;

import EDU.auburn.VGJ. graph.*;

import EDU.auburn.VGJ.algorithm.tree.*;

import EDU.auburn.VGJ.algorithm.GraphAlgorithm;
import java.util.Stack;

IEE:
* The schema is a Directed graph b/w diffrent concepts. Showing the
* relationship b/w them.

*/

public class OohvrSchema extends Graph
{

private int CShape;
private String ClabelPosition;
private int Rootld;
Hashtable NameTolndex;
/#*
* Schema Constructor which takes Root of the schema and shape type for
* Concept displaying. Two options DVAL and RECTANGLE ars currently
* available.
* And the position for the concept names, TN, OUT are available.
*/
public OohvrSchema(String root,int Shapev,String pos)
{

super (true) ;

NamaTolndex=new Hashtable():

ClabelPogition=pos;

Node H=new Node();

if (Shapev==1)

CShape=N.0OVAL;
else
CShape=N.RECTANGLE;

RootId=AddNewNode{(root);
}
YET:
* Returns the current root of the schema
*/
public int getRootId()
{
return Rootld;
}
/E%
* Sets Id as new root.
*/
public void setRootId(int id)
{
RootId=id;
}
VAT
* Adds a new node in the graph by having concept name.
*/
int AddNeuwNode(String Labelv)
{
int id;
id=insertiode();
Node NewNode=getNodeFromIndex (id);
NewNode.setShape (C3hape) ;
NewNode. setLabel (Labelv) ;
NewNode.setPosition(10,10);
Newlode. setLabelPosition(ClLabhelPosition) :
System.out.println(id+": "+Labelv+" Tn Add");
NameTolIndex.put(Labelv,new Integer(id));
return id;

VAL
* Adds new child when Parent Id is given with new child’'s name.
¥ Returns the new child’'s ID.
“/
int AddChild(int Paventid,String Child)
{
Integer inVal;
int id;
inVal=(Integer)NameToIndex.get(Child) ;
if (inVal==null)

id=AddNewNode (Child) ;

66

67

else
id=inVal.intValue();
AddEdge (id,ParentId);
System.out.println(id+":"+Child+" In AddChild");
System.out.println("Size of hash table:"+NameToIndex.size());

return id;

Jx%
* Adds a new child by taking Parent name and Child name
* Returns the new child ID as return value.

*/

public int AddChild(String Parent,String Child)

{
int id;
int no=((Integer)NameToIndex.get (Parent)).intValue();
System.out.print ("Adding to "+no+" i.e "+Parent);
return AddChild(no,Child);

¥

/%

* Adds a new edge b/w two given nodes while nodes Ids are given.
*/
void AddEdge (int idParent,int i1dChild)

{

insertEdge (idParent,idChild) ;
}
/%

* Adds a new edge b/w two given nodes while nodes names are given.
* /
public void AddRdge(String Parent,String Child)
{
ingertidge (((Integer)NameTolndex.get (Parent)) .intValue (),
((Integer)NameTolndex.get (Child)) .intValue());
}
public void LabelEdge(String Parent,String Child, String label)
{
Edge eg=getEdge (((Integer)NameTolndex.get (Parent)) . intValuea(),
((Integer)NameToIndex.get (Child)) .intValue());
eg.setLabel(label);

68

public void removeEdge (String source, String destination)
{
int Source_id = ((Integer)NameToIndex.get(source)).intValue();

int Dest_id = ((Integer)NameTolIndex.get(destination)) . intValue();

removeEdge (Source_id,Dest_id);

¥

// added by Gowtham on 07/09/97

JET:

* This function removes a child from the present schema given the
* the parent name and the child name

*/
public void RemoveChild(String parent, String child)
{
int child_id,parent_id;
child_id = ((Integer)NameToIndex.get(child)).intValue();
parent_id = ((Integer)NameTolIndex.get (parent)). intValue();
//cleanup
removeldge (child_id,parent_id);
removeNode (getNodeFromIndex(child_id));
if (NameToIndex. remove (child) == null) // removes entry from hashtable
{
System.out.println("Shucks™);
+
System.out.println("Number of elements in the hash table'+
NameToTndex.size());
}

public boolean isNodepresgent (String name)
{

return NameTolndex.containsKey(name);

-

public Edge getEdge(String strl, String str2)
{

((Integer)NameToIndex.get(strl)) .intValue();
((Integer)NameToIndex.get(str2)) .intValue();

£

int idl
int id2

return getEdge(1dl,1d2);

public int AddParent(String Child, String Parent)

{
Integer inVal = (Integer) NameToIndex.get(Parent);
int child_id,parent_id;

//obtain parent id (allocate node if parent not present)

if(inVal == null) // node does not exist
{
parent_id = AddNewNode (Parent) ;
}
else
{
parent_id = inVal.intValue();
}

// obtain child id
child_id = ((Integer) (NameToIndex.get(Child))).intValue();
AddEdge (child_id,parent_id);

return parent_id;

public int get_nodeid(String str)

{
Integer id = (Integer) (NameTolndex.get(str));
if(id 1= null)
{

return id.intValue();

refurn —1;

3
File: 00OhvrCGT. java
Project Title: VOCABULARY CREATOR
Author: Muhammad Arif
Last updated on : 07/09/97
Last updated by : Muhammad Arif

¥O¥ O HOH

*/

import java.net.*;

69

70

import java.io.¥;

import java.util.*;

import java.applet.Applet;

import java.awt.¥;

import EDU.auburn.VGJ.gui.MessageDialog;

VEL:
* This class provide transparent inteface to API’s using CGI calls

*/

public class 0OOhvrCGI

{
int TotalRead;
String Server,cgilame;
Applet oohvr;

EL:

Indicator about the status of last CGI call
*/

public boolean 0K;

AT

* Constructor takes HTTP server name, CGI file and path name and
* the calling Applet reffrence to show the status.

*/
public O0hvrCGI(String sr,String cgiNam,Applet ohvr)
{
Server=sar;
DK=falsge:
cgiName=cgiNam;
oohvr=ohvr;
T
AL
* Actual CGI call to server takes the call string as input.
«/
Stringl] CallServer(String CallString)
{

Frame fr2=new Frame();

Message msg=new Message (fr2,"Wait", "Contacting to "+Server 12 +
o Wofalse):

//MessageDialog(fr2,"Wait™,"Getting Data" true);

msg.show();

System.out.println("Calling : "+CallString) ;

TotalRead=0;

OK=false;

oohvr.showStatus("Connecting to "+Server+" ")

71

CallString=Server+"/"+cgiName+"?"+CallString;
String Str[]=new String[4000];
try {

URL url = new URL{CallString);

DatalnputStream URLinStream=new DatalnputStream
(url.openStream()});
String tmpStr;
oohvr.showStatus("Connected Waiting for Data ");
msg.UpdateMessage ("Contected Waiting for Data");
boolean flg=false;
tmpStr = URLinStream.readlLine();
if (bmpStr.equals(“0K")) // OK would come from server
{
if(flg)
{
msg.UpdateMessage ("Retrieving Data");
flg=false;
}
else
{
msg . UpdateMessage ("Retrieving Data");
flg=true;
+
while((tmpSty = URLinStream.readLine()) !=null)
StriTotalRead++]=tmpStr;
DK=true;

elge
{
if (VempStr.equals ("CONTINUEY))
{
Frame fr=new Frame():
MessageBox mbox=new MessageRox(fr,"Frror!®,
‘Error Message from Server: "+tmpStr,trus);
mhox . show() ;
OK=true;
}
oohvr.showStatus ("Data Retrieved ");
msg.End();
URLinStream.close();
} catch (MalformedURLException mexp)

{

Frame fr=new Frame();
MessageBox mbox=new MessageBox{fr,"Exception!",
"Exception Occured during Data retriveval:
mexp,true) ;
mbox .show();
System.err.println("MalFormedURL: "+mexp);
System.out.printin("Called : "+CallString);

}
catch (T0Exception iocexp)
{
Frame fr=new Frame();
MessageBox mbox=new MessageBox{fr,"Exception!",
"Exception Occured during Data’’
‘¢ retriveval:
+ioexp,true);
mbox . show () ;
System.err.println("I/0 Exception : "+iocexp);
System.out.printin("Called : "+CallString);
}
return Str;
}
e
* Returns the total number of lines read from last APT call.
*/
public int ReadTotal()
{
return TotalRead;
}
/%

Returns the root of Vocabulary. Tt’s static value ENTITY for
¥ this version which cab be dynamic by adding a CGT call to

¥ gerver in future.
*/
public String GetRoot ()
{
return "ENTITY'";
!
IEs:
* AFI: Returns the properties of given concept.
*/
public String[] GetProperties(String conc)
{

String Str(];

73

String CallString;

CallString="FUNCTION=A1l1lAttribValue&CONCEPT="+
URLEncoder.encode(conc) ;

Str=CallServer(CallString);

return Str;

}
[#*
¥ API: Returns all the childern of given concept.
* /
public Stringl] GetChild(String parent)
{
String Strll;
TotalRead=0;
String CallString;
CallString="FUNCTTON=CHILDREN&PARENT="+URLEncoder.encode (parent) ;
Str=CallServer(CallString);
return Str;
}.
/o
API: Returns all relationships from a concept.
#/
public Stringl[] GetRelations(String conc)
{

String Strl];
String CallString;
CallString="FUNCTION=AllRelationValue&CONCEPT="+
URLEncoder.encode(conc) ;
Str=CallServer (CallString);
return S5tr;
T
/%
API: Deletes a given concept from the Vocabulary.

/

{
String Strl];
String CallString;
CallString="FUNCTION=DeleteConcept&CONCEPT=1+
URLEncader .encode(conc) ;
Str=CallServer(CallString);
return Str;

}

VET:

¥ API: Get all the concepts available in the Vocabulary.

74

*/
public String{] GetAllConcepts()
{
String Str[];
String CallString;
CallString="FUNCTION=Al1lConcepts";
Str=CallServer(CallString);
return Str;
}
[*%
* API: Get the parent of a given concept.
*/
public Stringl] GetParent(String child)
{

TotalRead=0:

String CallString;

CallString="FUNCTION=PARENTS&CHTLD="+
URLEncoder.encode (child) ;

String Str(];

Str=CallServer(CallString) ;

return Str;

}
/H%
* API: Add a new child to given parent concept.
*/
public void AddNewChild(String Parent,String Child)
{
TotalRead=0;
String C5;
C3="FUNCTTON=AddChi1d&CHILD="+URLEncoder. encode (Child);
Co=CS8+"&"+"PARENT="+URLEncoder . encode (Parent) ;
String Strll];
Str=CallServer (C8);
}
JET:
¥ API: Add A new property to given concept.
*/
public void AddNewProperty(String Concept,8tring plame)
1

TotalRead=0;

String CS;
CS="FUNCTION=AddProperty&CONCEPT="+URLEncoder .encode (Concept) ;
CS=CS+“&“+”PRDPERTY=”+URLEncoder‘encode(pName);

String Strl];

75

Str=CallServer(CS);

JET]

* API: Change the property value of given concept provided that
* the old value to concept is also given.
*/
public void ChangePropertyValue(String CName,String PName,
String LVal,String NVal)

{
TotalRead=0;
String CS;
CS="FUNCTION=ChangeAttribValue&CONCEPT="+URLEncoder.encode (CName) ;
CS=CS+"&"+"ATTRIBUTE="+URLEncoder .encode (PName) ;
CS=CS+"&"+"0LDVAL="+URLEncoder .encode (LVal) ;
C8=CS+"E "+ "VALUE="+URLFncoder.encode (NVal) ;
String Strll;
Str=CallServer(CS);

}

VET)

* API: Change the relationship value of given concept provided that
* the old value of relationship is also given.
#/
public void ChangeRelationValue(String CName,String PName,
String Lval,String NVal)

{
TotalRead=0;
String C5;
C5="FUNCTTON=ChangeRelationValue&CONCEPT="+URI.Fncoder . .encode (CName) ;
CE=C8+"E"+"ATTRIBUTE="+URLEncoder . encode (PName) ;
C3=C8+"&"+"0LDVAL="+URLEncoder . encode (LVal) ;
C8=CE+"E"+"VALUR="+URLFncoder. encode (WVal) ;
String Strll];
Str=CallServer(CS):

}

/%%

APT: Adding a new Relationship to a Concept targel concept is
* also given.

¢

public void AddRelationValue(String CName,String riame,
String tConceptName)
{
TotalRead=0;
String CS;

76

CS="FUNCTION=AddRelationshipValue&CONCEPT="+URLEncoder.encode (CName) ;
CS=CS+"g"+"Relation="+URLEncoder.encoda (rName) ;
CS=CS+"&"+"Target="+URLEncoder.eancocde (tConceptName) ;

String Strl]l;

Str=CallServer(CS);

JES:
* API: Creating a new Relationship to a Concept target concept is
* and reverse relationship name is also given.

*/

public void CreateNewRelation(String CName,String rName,
String tCName,String rriame)

{
TotalRead=0;
String CS;
C5="FUNCTION=CreateNewRelation&CONCEPT="+URLEncoder.encode (CNama) :
C8=CS+"&"+"RELATION="+URLEncoder. encode (rName) ;
CS=Co+"&"+"Target="+URLEncoder.encode (tCName) :
Co=C5+"L"+"RevRELATION="+URLEncoder.encode (rrName) ;
String Strl];
Str=CallServer(CS);
I
JET
* API: Deleting an attribute from a Concept.
*/
public void DeleteAttribute(String CName,String PName)
{
TotalRead=0;
String CS;
CE="FUNCTION=DeleteAttribute&CONCEPT="+URLEncoder.ancode (CName) :
Co=Co+"&"+"ATTRIBUTE="+URLEncoder . encode (PName) ;
String Strl];
Str=CallServer(C8);
}
/s
API: Deleting relationship from a Concept.

5/
public void DeleteRelation(String CName,String rNama,
String tCName,String rriame)
{
TotalRead=0;
String CS;
CS="FUNCTION=DeleteRelation&CONCEPT="+URLEncoder.encode (CName) ;

77

CS=CS+"&"+"RELATION="+URLEncoder.encode (rNane) ;
C5=CS+"&"+"Target="+URLEncoder.encode (tCName) ;
CS=CS+"&"+"RevRELATION="+URLEncoder.encode{rrName) ;
String Str(l;

Str=CallServer{CS);

JET:
* APT: Removing an Attribute value from a Concept value value
* to that property is also provided.

*/
public void RemoveAttributeValue(String CName,String PName,String PValue)
{
TotalRead=0;
String CS5;
CS="FUNCTION=RemoveAttributeValueZCONCEPT="+URLEncoder.encode (CName) ;
CS=C8+"&"+"ATTRIBUTE="+URLEncodear . encode (PName) ;
CS=CS+"&"+"VALUE="+URLEncoder . encode (PValue) ;
String Strl];
Str=CallServer(CS);
¥
JET:

* API: Removing a Relationship from a Concept
* relationship name 1is also given.

*/

public void RemoveRelationValue(String CName,String rName,String Value)

{
TotalRead=0;
String CS;
C5="FUNCTION=RemoveRelationValuekCONCEPT="+URLEncoder . encode (CName) :
CS=C8+"&"+"RELATION="+URLEncoder . encode (rName) ;
CS=(C8-+"E"+"VALUE="+URLEncoder . ancode (Value) ;
String Strl];
Str=CallServer(CS);

}

import java.awt .k,

public class NList extends List
{
String propl];
PropertyDialog pd;

78

PropertyEditor ped;

public NList(int no,boolean v,String pro[],PropertyDialog pdb)
{

super (no,v);

pProp=pro;

pd=pdb;
}

public NList()
{

super () ;

¥

public NList(int rows, boolean multipleSelections)

{

super (rows,multipleSelections);

public boolean mouseDown(Event ev,int x,int ¥)

{
//if(ev.clickCount==2)
System.out.printin("You are Editing "+getSelectedTtem());
return true;

}.

// deselectAll deselects all selected items in the list
public void deselectAll()

{
int i
for(i=0; i< getTtemCount(); i++)
{
if(isSelected(i) == true)
{
deselect (i)
}
}
}

public boolean is_Ttempresent(String str)
{
for(int i=0; i<countItems(); i++)

{

if (str.equalsIgnorecase(getIten(i)))
return true;

}

return false;

import java.awt.List;

public class Enhanced_list extends List
{

public Enhanced_list{()

{
gsuper () ;
}
public Enhanced_list{(int x)
{
super (x) ;
}
public Enhanced_list(int x, boolean bool)
{
super (x,bool) ;
}
public boolean isPresent(String str)
{
for(int i=0; i<countltems(); ++i)
{
if(str.equals(getitem(i)) == true)
{
return true;
}
}

return false;

VEL:

* File: MessageBox. java

* Project Title: VOCABULARY CREATOR
* Author: Muhammad Arif

79

* Last updated on : 07/09/97
* Last updated by : Muohammad Arif

*/

import java.awt.*;

/%

* Message box

*/

public class Message extends Frame

{

Label Msg;

JE3:

vhich shows messages to user.

80

* MessgageBox gets Frame and String for heading and boolean true
* for showing buttons or not, To diffrentiate b/w Status messages
* of Data transfer or Error message.

*/

public Message(Frame par,String Head,String Message,boolean bt)

{

/¥*

super (Head) ;

Panel pnl=new Panel();

Msg=new Label(Message);

pnl.add(Msg) ;

add ("Center',pnl) ;

Panel pni2=new Panel();

if(bt)

{
pnl2.add(new Button("0k"));
pnl2.add(new Button("Cancel’));

}

add ("South",pnl2) ;

resize (300, 160)

move (250, 250) :

* gvent handler.

*/

public boolean handleEvent (Event ev)

if(ev.id == Event.ACTION_EVENT)

{
if ("0k".equals(ev.arg))
{
show(false);
dispose();
return true;
}
if ("Cancel".equals(ev.arg))
{
show(false);
dispose();
return true;
}
}
return false;
}
public void UpdateMessage (String str)
{
Msg.setText (str);
¥
public void End()
{
dispose () ;
}
+;
IEL:

* File: MessageBox.java

* Project Title: VOCABULARY CREATOR
Author: Muhammad Arif

¥ Last updated on : 07/08/97

* Last updated by : Muhammad Arif

import java.awt.*;
JEk
* MessageBox dialog which shows messages to user.

*/

public class MessageBox extends Dialog

81

82

Label Msg;
private boolean Okclicked;
/E%
* MessgageBox gets Frame and String for heading and boolean true
* for showing buttons or not, To diffrentiate b/w Status messagas
* of Data transfer or Error message.
*/
public MessageBox(Frame par,String Head,String Message,boolean bt)
{
super (par,Head) ;
Panel pnl=new Panel();
Msg=new Label(Message);
pnl.add(Msg);
add ("Center",pnl);
Panel pnl2=new Panel();
if (bt)
{
pnl2.add(new Button("0k"));
pnl2.add(new Button("Cancel"));
+
add ("South",pnl2);
resize(300,1560) ;
Okclicked = false;
}
VAL
* gvent handler.
*/
public boolean handleEvent (Event ev)
{
if(ev.id == Event.ACTION_EVENT)
{
1£("0k" . equals(ev.arg))
{
Okclicked = true;
shou (falge) ;
return true;

if ("Cancel".equals(ev.arg))

{
Okclicked = true;
show(false)

return true;

by

return false;

T

public void UpdateMessage(String str)
{
Msg.setText(str);

public void End{()
{

dispose();

public boolean Dk_clicked()
{

return Okclicked;

/H%

File: NewChild.java

Project Title: VOCABULARY CREATOR
Author: Muhammad Araif

Last updated on : 07/09/97

Last updated by : Muhammad Arif

. I S R S

‘5./

import java.applet.Applet;

import java.awt.¥;

import java.util.#;

import EDU.auburn.VGJ.gui. *;

import EDU.auburn.VGJ.graph.*;

import EDU.auburn. VGJ.algorithm.tree.*;

import EDU.auburn. VGI.algorithm. GraphAlgorithm;
import java.util.Stack;

IEE:

* A dialog box to take new Child name from the user.
*/

public class NewChild extends Frame

84

NewFrame ooh;

TextField fl1d;

String Parent;

Panel pnl,pl;

[Ex

¥ Constructor takes Parent of the new child and main frame reffrence.
+/

public NewChild(String pParent,NewFrame ohv)

{
super ("New Child of '"+pParent);
setLayout (new BorderLayout());
ooh=ohv;
pnl=new Panel();
pnl.setlayout (new FlowlLayout());
Parent=pParent;
pnl.add(nev Label("Child’s Name : "));
fld=new TextField(30);
pnl.add(f1d);
add ("Center",pnl);
pl=new Panel();
pl.add("Center”,new Button("0K"));
pl.add("Center",new Button("Cancel™));
add ("South",pl);
pack () ;
move (200,200) ;
show();

}

L

* Envent handler for the dialog.

* /

public boolean handleEvent (Fvent ev)

{

if(ev.id == Event ACTION_EVENT)

{
if ("OK".equals(ev.arg))
{
ooh. AddNewChild (Parent ,fld.getText ());
dispose();
return true,
}else if("Cancel".equals(ev.arg))

dispose();
return true;

Ay

}

return false;

import java.util.¥;
import java.awt. *;
import java.auwt.event.¥;

class PropertyEditor extends Dialog
{
// PropertyDialog pd;
TextField fld;
String name,oval;
Panel pnl,pl;
// NList mylist;
private boolean Dk_clicked,Cancel_clicked;

public Propertykditor(String Name,String Value,Frame fr)
{

super (fr,true);
setTitle("Properties/relationships editor");
gsetLayout (new BorderLayout());

/7 pd = pdb;
pnl=new Panel();
pnl.setLayout (new FlowLayout());
name=Name ;
oval=Valug;

// mylist = 11;
pnl.add(new Label (Name+" : ")) ;
System.out.println("Length of String "“+Value.length());
fld=new TextField(Value,35);
pnl.add(£1d);
add ("Center",pnl);
pl=new Panel();
pl.add(new Button("0K'));
pl.add(new Button("Cancel"));
add ("South",pl);
pack();
resize(preferredSize());

85

86

System.out.printin("Property Editor Should PopOut");
//initialize button related variables
Ok_clicked = false;
Cancel_clicked = false;
¥

/% FEvent handler =/

public boolean handleEvent (Event ev)

{
if(ev.id == Event .ACTION_EVENT)
{
if ("OK".equals(ev.arg))
{
// pd.UpdateProperty(name,oval,fld.getText () ,mylist);
// dispose();

Ok_clicked = true;
show(false);
refturn true;

¥
if ("Cancel”.equals(ev.arg))
{

// digpose() ;

Cancel_clicked = true;
show(false);
return true;

T
1
return false;
}
public boolean is_Okclicked()
{
return Ok_clicked;
}

public boolean is_Cancelclicked()
{

return Cancel_clicked;

public String getText ()
{
return fld.getText () ;

class NewRelationshiptype extends Dialog

{

//declare dialog components

TextField text;

Label label;

Panel panel,bpanel;

private boolean Ok_clicked,Cancel_clicked;

public NewRelationshiptype(Frame fr)
{
super (fr) ;

// initialize components
text = new TextField(20);
label = new Label("Enter new RelationShip type");
panel = new Panel();
bpanel = new Panel();

I

¥

panel.add(label);
panel.add(text);

bpanel.add(new Button("0K"));
bpanel . add(new Button("CANCEL"));

add ("South" ,bpanel) ;
add ("Center",pansl) ;

// initialize button related variables
Dk_clicked = false;
Cancel_clicked = falge;

}

public boolean handleEvent (Event evt)
{

if ("OK".equals(evt.arg))

{

return true;

1if ("CANCEL" .equals(evt.arg))
{
dispose();
return true;
}
return false;

+

class NewProperty extends Dialog
{
PropertyDialog pdlg;
TextField fld;
String Parent;
Panel pnl,pl;
private boolean Ok_clicked,Cancel_clicked;

public NewProperty(String Concept,PropertyDialog pd,Frame fr)
{
// super (fr,"New Property of "+Concept);
super (fr,true) ;
setTitle ("New Property of "+Concept);
setLayout (new BorderLayout());
pdig=pd;
pnl=new Panel();
pnl.setLayeut (new FlowlLayout());
Parent=Concept;
pnl.add(new Label("New Property Name : "));
fld=new TextField(30);
pnl.add(£1d);
add(“Center", pnl);
pl=new Panel();
pl.add(new Button("DK"));
pl.add(new Button("Cancel™));
add ("South',pl);
pack () ;

Ok_clicked = false;
Cancel_clicked = false;

+

89

public boolean handleEvent(Event ev)

{
if(ev.id == Event. ACTION_EVENT)
{
if ("OK".equals(ev.arg))
{
// pdlg. AddNewProperty(Parent,fld.getText());
/7 dispose();

Ok_clicked = true;
1if ((fld.getText () .length() I= 0)

{
show (false) ;
}
return true;
T
if ("Cancel" . equals(ev.arg))
{

/7 dispose();
Cancel_clicked = true;
show(false);

return true;
}
¥
return false;

¥

public String getText()
{

return fld. getText();

!

public boolean is_Okelicked()
{
return Ok_clicked;

public hoolean is_Cancelclicked()
{
return Cancel_clicked;

class NewRelation extends Dialog

{
// PropertyDialog pdlg;
TextField fld;
NList conlList,rellist;
String Parent;
Panel pnl,pl;
00hvrCGI cgi;
private boolean Ok_clicked,Cancel_clicked;
public NewRelation(String Concept,00hvrCGI cg,Frame fr)
{
super (fr,true) ;
setTitle("New Relation of "+Concept);
cgi=cg;
setLayout (new Borderlayout());
// pdlg=pd;
pnl=new Panel();
pnl.setLayout{new FlowLayout());
Parent=Concept;
conlist=new NList(10,false);
String strl]=cgi.GetAl1lConcepts();
for(int i=0;i<cgi.ReadTotal () ;i++)
conlist. addTtem(stril);
rellist=new NList(10,false);
String str2(]=cgi.GetRelations(Concept);
for(int i=0;1i<cgi.ReadTotal () ;i+=2)
{
if (rellist.is_Ttempresent (str2[i]) == false)
{
rellist additem(str2[i]);
¥
}

//pnl . add(new Tabel ("Relation Name: ")) ;
//f1d=new TextField(30);
pnl.add(rellast);

add ("North",pnl);

add ("Center", conList) ;

pl=new Panel();

pl.add(new Button("0K"));

pl.add(new Button("Cancel"));

90

91

pl.add(new Button("New Relation™));

add ("South",pl);
pack () ;

Ok_clicked = false;
Cancel_clicked = false;

}
public boolean handleEvent(Event ev)
{
if(ev.id == Event.ACTION_EVENT)
{
if("OK".equals(ev.arg))
{
/% cgi.AddRelationValue(Parent,rellist.getSelectedTtem(),

conlist . getSelectedltem());
if (cgi.OK == true)
{
!/ dispose();
show(false) ;
}
else
{
MessageBox msg = new MessageBox(new Frame(),
"Warning","CGT operation failed", true);
} o/
show(false);
Ok_clicked = true;
reburn true;

I
if ("Cancel'.equals(ev.arg))
{
// dispose();

show(false) ;
Cancel_clicked = tirue;
return true;

if ("New Relationship".equals(ev.arg))
{

System.out.println("New Relationship button clicked");

NewRelationshiptype xyz = new
NewRelationshiptype(new Frame());
return true;
}
+

return false;

public boolean is_Okclicked()

{

return Ok_clicked;

}
public boolean is_Cancelclicked()
{
return Cancel_clicked;
}
public String get_Selectedrelation()
{
return rellist.getSelectedItem();
¥
public String get_Selectedconcept()
{
return conlList.getSelectedltem();
F
}

public class PropertyDialog extends Dialog // implements ActionlListener
{
O0hvrCGT cgi;
TextField f1d;
PropertyEditor ped;
NewFrame aplt;
Panel pnl,lpnl;
NList propList,rellist;
String proll;
String rell];
String Name;
Button ok,edit,del,add;
int Active_list_box;

93

boolean Dialog_active;
boolean Ok_clicked;

String[] selection_buffer = new String[50];
int changed;

public PropertyDialeg(NewFrame ap,00hvrCGI ocgi,String conc,
String properties[],String relations[],int totl,int tot?2)

{

super(ap,trus);

setTitle("Properties and Relationships of "+conc);

aplt=ap;

System.out.println("Starting Property and Attributes Dialog");

pro=preperties;

rel=relations;

Name=conc;
setLayout (new BorderLayout());

pnl=new Panel();

lpnl=new Panel();

Label centerlabel = new Label("” Attributes v Relationships",
Label . CENTER) ;

System.out.println("Panel Created");

lpnl.setlLayout(new BorderLayout());

// button panel

ok = new Button("0K");

gdit = new Button("Edit");
del = new Button('Delete");
add = new Bubtton('"Add");

[}

pnl.add(ok);

pnl.add(edit) ;
pnl.add(del);
pnl.add(add);

System.out.printin("Creating List");

!

proplist = new NList(10,false,properties,this);
rellist new NList(10,6false,relations,this);

1

propList.select(0); // Selects the first
//Item in the properties list

//
//

Dialog_active = fa
Ok_clicked = false:

changed

Lmd

public void UpdateProperty(String name,String oval,String nval,NList 1i)

{

94

Active_list_box = (;

propList. setName("Properties");
rellist.setName("Relations");

// add the action listeners
propList.addActionListener (this);
rellist.addActionlistener (this);

// add the focus listener to the class components

propList.addFocusListener(new fhAdapt(this));
relList.addFocusListener(new fAdapt(this));

// add the items to the list boxes

for(int i=0;i<toti;i+=2)
proplist.addltem(properties[i]+"="+properties[i+1]);

for(int 1=0;i<tot2; i+=2)
rellist.additem(relations[il+"="+relationa[i+1]);

System.out.println("List Updated");
1pnl.add("North",proplist);
lpnl.add("Center", centerlabel);

1pnl.add("South™, rellist);

add ("Center",lpnl);
add ("South",pnl);

CEL=0CEL;

:O)
for(int j=0; j<BO; j++)
{
selection_buffer(j] = null;
}

if(1i == propList)

{

95

cgi.ChangePropertyValue{(Name,name,oval ,nval);
b
else
{

cgi.ChangeRelationValue(Name,name,oval,nval);
}
UpdatePropertyValues(1l1);

void UpdatePropertyValues(NList 1i)
{
String properties(];
if(1i == propList)
{
properties=cgi.GetProperties(Name);
propList.clear();
for(int i=0; i<cgi.ReadTotal(); i+=2)
propList.additem(properties[i]+"="+properties[i+1]);

glse

properties=cgi.GetRelations (Name);
rellist.clear():
for(int i=0;i<cgi.ReadTotal();i+=2)
rellist addltem(properties[i]+"="+properties[i+1]);

Lot

public boolean is_Okclicked()
{
return Ok_clicked:

Lt

public boolean handleEvent(Event ev)
{

if(ev.id == Event . ACTTON_EVENT)

{

// if the ok butten is depressed
if ("OK" . equals(ev.arg))
{
Ok _clicked = true;
show(false);
return true;

96

}
/% if("0k".equals(ev.arg)) // Ok from Message Box
//TAKE CARE OF IT IN THE END
{
if{ev.target == (Object) propList)
{
String tmp=proplist.getSelectedltem();
cgi.RemoveAttributeValue (Name,
tmp.substring (0,tmp.index0f (’=")),
tmp.substring (tmp.index0f (°=")+1,tmp.length()));
UpdatePropertyValues (propList) ;
+
else
{
String tmp=rellist.getSelectedltem();
cgi.RemcveRelationValue (Name,
tmp.substring(0,tmp.index0f (*=")),
tmp.substring(tmp.index0f (*=")+1 tmp.length()));
UpdatePropertyValues (rellist) ;
}
return true;
}

*/
// If the edit button is depressed
if ("Edit".equalis(ev arg))
{
Frame fr = new Frams();
if ((Active_list_box == 0) && (Dialog_active == false))
{
Dialog_active = true;
String tmp=proplList.getSelecteditem();
ped=new PropertyEditor (tmp.substring(0,
tmp. index0f (*=")) , tmp
csubstring (tmp. index0f ('=")+1,
tmp. length O),fr);
ped.setModal (true) ;
ped.pack();
ped.move (200,200) ;
ped.show(true);

g7

System.out.println{“Comes here");
// button handlers for "ped"
if(ped.is_Okclicked() == true)
{
System.out.println("Comes here too");
UpdateProperty(tmp.subgtring(0, tmp.index0f (°=")),
tmp.substring (tmp.index0f (*=2)+1
,tmp.length()),
ped.getText () ,proplist);
System.out.println("Tt works 1!11");
Dialog_active = false;
ped.show(false);
ped.dispose();
}

if (ped.is_Cancelclicked() == true)
{
System.out.println("Tt works! i),
ped.dispose();
Dialog_active = false;
i
¥

if((Active_list_box ==1) &k (Dialog_active == false))
{
Dialog_active = true;
String tmp=rellist.getSelacteditem();
ped=new Propertykditor (tmp.substring(0,
tmp.index0f ('=7)),

tmp . substring (tmp. index0f (7=2)+1
Jtmp.length (), fr);

pad.setModal (true) ;

ped.pack();

ped.move (200,200)

ped.show(true) ;

// button handlers
if (ped.is_Okclicked() == true)

i
Syatem.out printin("Tt works 1117);
UpdateProperty (tmp.substring(0,tmp.index0f (’=")),
tmp.substring(tmp.index0f (’=")+1
,tmp.length()),
ped.getText(),rellist);

98

ped.dispose();
Dialog_active = false;

by
if(ped.is_Cancelclicked() == true)
{
System.out.println("It works !!1{");

ped.dispose();
Dialog_active = false,
1
+

return true;

// If the add button is depressed

if ("Add" .equals(ev.arg))

{

Frame fr = new Frame();
if((Active_list_box == 0) && (Dialog_active == false))
{
Dialog_active = true;
NewProperty nchld=new NewProperty(Name,this,fr);

nchld.setModal (true);
nchld.shou(true);

// button handlers
if(nchld.is_Okclicked() == true)
{

if {(nchld.getText ()) . length() i= 0)

Svetem.out.printin("Comes heve');
AddNewProperty(Name,nchld getText ());
nchld.dispose();
Dialog.active = false;
1
elses
{
System.out.printla("Invalid entry");

if(nchld. is_Cancelclicked() == true)

{

99

System.out.println("Cancel clicked");
nchld.dispose();
Dialog_active = false;

}
+
if((Active_list_box == 1) && (Dialog_active == false))
{

Dialog_active = true;

NewRelation nRelsh=new NewRelation(Name,cgi, fr);
nlelsh.move (250,250);

nRelsh.setModal (true);

nRelsh.show(true);

// button handlers
if (nRelsh.is_Okclicked() == true)
{
if{ (nRelsh.get_Selectedrelation() !'= null) &&
(nRelsh.get_Selectedconcept () != null))

cgi.AddRelationValue (Name,
nRelsh.get _Selectedrelation(),

nRelsh.get_Selectedconcept());
if(cgi. 0K == fals2)

MessageBox msg = nov MessageBox (new
Frame (),
“Warning",
"CGI operation failed",true);
}
else
{
// include the new IS-A4 link
String str = new String();
str = nRelsh.get_Selectedrelation() + "=" +
nielsh.get_Selactedconceapt () ;
System.out.printinlstr);
rellist.addItem(str);
gselection_buffer(changed] =
nRelsh.get_Seleactedconcept ()
changed++;
nRelsh.dispose();

100

else
{
System.out.printin('no items selected");
¥
Dialog_active = false;
¥
if(nRelsh.is_Cancelclicked() == true)
{
nRelsh.dispose();
Dialog_active = false;
}
}
return true;

// 1f the delete button is depressed
if ("Delete'.equals(ev.arg))
{
Frame fr = new Frame();
if(Active_list_box == 0)
{
MessageBox mbox=new MessageBox(fr,"Warning",
"Do You want to Delete "
+proplist.getSelectedTtemn() ,trus) ;
mbox . move (250, 250) ;
mbox.setModal (true);
mbox . show (true) ;

if (mbox . 0Ok_clicked() == true)
{
String tmp=propList.getSelectaditem();
cgi.RemovehttributeValue (Name,
tmn substring (0, tmp.index0f (7=")),
tnp . gubstring (tmp.indexOf (=) +1,tmp. length())) ;
UpdatePropertyValues (proplist) ;

ot

Lt
[val
[eod

.

MessageBox whox3=new MessageBox(fr,"Warning",
"Do You want to Delete "

+rellist.getSelectedItem() ,true);

101

mbox3 .move (250,250);
mbox3.setModal{true);
mbox3.show (true) ;
if(mbox3.Ck_clicked() == true)

=t

String tmp=rellist.getSelectedltem();
cgi.RemoveRelationValue(Name,tmp.substring(oj
tmp.index0f(’=")),
tmp.substring (tmp.index0f (7=")+1,
tmp.length())):
UpdatePropertyValues(rellist) ;
¥
}
return true;
¥
}
return false;

¥

public Stringl] get_newconstraints()
{

return selection_bufier;

et

void AddNewProperty(String Parent,String pName)

{
cgi.AddNewProperty(Parent, pName) ;
if (cgi.0K)
propList.addltem(pNamet+'=");
}
/#
public void actionPerformed(Actionfvent avt)
{
Frame fr = new Frame();
if (evt.getSource() == (Object) propList)
1

String tmp=proplist.getSelectedTtemn()

ped=new Propertylditor (tmp.substring(0,tmp.index0f ('=)),
tmp.substring(tmp.index0f (’=’)+1,
tmp.length()),this,proplList,fr);

ped.setModal (t>rue) ;

ped.move (250 250);

102

ped.show(true);
System.out.printin("You are Editing "+
propList.getSelectedItem());
System.out.printin("It works,yipee!!");

T

if (evt.getSource() == (Object) rellist)
;
String tmp = rellist.getSelectedltem();
ped = new PropzrtyEditor(tmp.substring(0,tmp.index0f (’=")),
tmp.substring (tmp.index0f (’=)+1,
tmp.length()) ,this,rellist, fr);
ped.setModal (true);
ped._move (250,250) ;
ped.show(true),
System.out.printin("You are Editing"+
rellList.getSelectedIten());

System.out.prinIn("Tt works,yipee!!");
N
¥
i)
*/
¥;
class fAdapt extends FocusAdapter
{
PropertyDialog myDialog;

//class constructor method
public fAdapt(PropertyDialog pd)

1
myDialog = pd;

()

public void focusGained(FocusFvent e)
{
if((e.getiD() == FocusFvent.FOCUS_GATNED) &&

(¢ metSource() == myDialog.proplist))

myDialog.Active_list_box = 0;
System.out.println(myDialog.Active_list_box) ;

103

if((e.getID() == FocusEvent.FOCUS_GAINED) &&

(e.getSource() == myDialog.rellist))
{
myDialog. Active_list_box = 1;
System.out.printlu{myDialog. Active_list_box);
¥
¥
+
J#%
* File: SchemaCanvas. java
* Project Title: VOCABULARY CRFATOR
* Author: Muhammad Arif
* Last updated on : 07/09/97
¥ Last updated by : Muhammad Arif
*/

import java.applet Applet;

import java.awt.*;

import java.util.#;

import EDU.auburn. VGJ.gui. #;

import EDU.auburn.VGJ.graph. #;

import EDU.auburn.VGJ.algorithm. tree. *;

import EDU.auburn.VGJ.algorithm. GraphAlgorithm;
import java.util.Stack;

[

#* Canvas for showing schema graph.

+/

public class SchemaCanvas extends GraphCanvas

{
e
Contructor for canvas takes Schema Graph, and frame reffrence
*/
public SchemaCanvas (OohvrSchema g, Frame Nf)

super(s,Nf);
I
/* public boolean mouseDown(Event evt,int x, int y)

{

System.out.println("Mouse is moving over me'+x+":'"+y);

104

return (super.mouseDown(evt,x,y));

I o/

import java.awt.¥;

import java.awt.event.*,
import EDU.auburn.VGJ.graph.*;
import java.util.Hashtable;

public class listframe extends Dialog

{
Fnhanced_list mylist,selectlist;
Button done,cancel, Add,Remove;

int no_of_items;
Set selected_set;

private Hashtable hash;

public listframe(Stringl[] contents,int number,NewFrame frame)
{

guper (frame, "List of children", true);

resize(600,600) ;

no_of_items = number;

t

GridBaglayout layout = new GridBaglLayout();
GridBagConstraints ¢ = new GridBagConstraints();
getlayout (layout);

i

// SETUP THE GRIDBAGLAYOUT
¢.ingets = new Insets(2,5,2,5):

// set up label 1

c.gridy = 1;

c.gridy = 1;

c.gridwidth = 1;

c.gridheight = 1;

c.anchor = GridBagConstraints.CENTER;
c¢.fill = GridBagConstraints HORIZONTAL;
c.weightx = 0.0;

105
c.weighty = 0.0;

Label labell = new Label("Candidates");
layout.setConstraints(labell,c);
add (labeli);

// set up label 2

.gridx = 11;

.gridy = 1;

.gridwidth = 1;

.gridheight = 1;

.anchor = GridBagConstraints.CENTER;
.fill = GridBagConstraints HORIZONTAL;
.weightx = 0.0;

.welghty = 0.0;

OO 0O O 0 G O 0

Label label?2 = new Label("Chosen");
layout.setConstraints(label2, c);
add (label2);

// setup the list box
c.gridy = 1;
c.gridy = 2;

c.gridwidth = 10;

¢.gridheight = 10;

¢.anchor = GridBagConstraints.CENTER;
¢.fi11l = GridBagConstraints.BOTH,
c.weightx = 1.0;

c.weighty = 1.0;

mylList = new Enhanced_list(10,false);

for(int 1=0; i<number; i++)
mylist.addTtem{(contents[i]);// £ill the list box with
// the children concepts
layout.setConstraints (myList, c);
add (myList) ;

// setup ya list box
c.gridx = 11;
c.gridy = 2;
c.gridwidth = 10;
c.gridheight = 10;

.anchor = GridBa
.fill = GridBagConstraints.BOTH;
.weightxy = 1.

1

OO 0O 0

.weighty =

selectList = new Enhanced_1list(10,false):
layout.setConstraints(selectlist,c);
add(selectlist);

// Add the "done" button
.gridx = 2;
.gridy = 12;
.gridwidth = 2;

.gridheight = 2;

.anchor = GridBagConstraints.CENTER;
.fill = GridBagConstraints .HORIZONTAL;
.weightx = 0.0;

weighty = 0.7

o~

o OO O O O 0o 00

done = new Button("DONE");
layout.setConstraints (done,c);
add (done) ;

// &dd the "Add" button

Lgridy = 4;
Jgridy = 12;

i~
N

.gridwidth = 2;

.gridheight = 2,

.anchor = GridBagConstraints.CENTER;
fi11 = GridBagConstraints HORTZONTAL,
-welghtxy = 0.0;

welighty = 0.0,

O O 0 0O 0 0O 00

idd = new Button("Add all')y;
layout.setConstraints(Add,c);
add (Add) ;

//Ahdd the "Remove all' button
c.gridx = 8;

.gridy = 12:

.gridwidth = 2;

.gridheight =2;

.anchor = GridBagConstraints.CENTER;

O O O O

107

c.fill = GridBagConstraints .HORIZONTAL;
Cc.weightx 0.0;
¢.welghty = 0.0;

H

Remove = new Button{"Remove all");
layout.setConstraints(Remove,c);
add (Remove) ;

// allocate selected set
selected_set = new Set();

// Initialize hash table
hash = new Hashtable(),

+
public Set get_selected()
{

return selected_set;
+

// class event handler function

public boolean handleEvent (Fvent ev)
{
if(ev.id == Event. ACTION_EVENT)

1f ("DONE" .aquals(ev.arg))
{
System.out .printin("“Clicked on ok");
show(false) ;
return true:

if("Add all". equals(ev.arg))

System.out.printin("Clicked on add");

for(int 1=0; i<no_of_items; it++)

{
if (selectList isPresent(myList.getItem(i)) == false)
{

selected_sat.includeklement (i) ;
selectlist.addItem(myList. getItem(i));

108

hash put (myList.getItem(i),new Integer(i));

}

return true,

+

if ("Remove all'.equals(ev.arg))

{
System.out.println("Clicked on remove");
while(selected_set.isEnpty() !'= true)
{

selected_set.removeFlement (selected_set.first()):

}
hash.clear ();
selectlist.clear();
return true;

}
}
if(ev.id == Event.LIST_SELECT)
{
if(ev.target == (Object) myList)
{
if(selectlist.isPresent (myList.getSelectediten()) == false)
{

selectlist.addTtem(myList.getSelectedlten());
selectedmse cZncludeElement (
myList.getSelectedIndex());
hash.put (myList.getSelectedltem(),
new Integer(mylist.getSelectedindex()));
System.out.println(selected_set) ;
return true;

if (ev.target == (Object) selectlist)

UJ

gselectlist. getSelectedindex () ;
atr 8l iTill FEIIer(“)

Integer y = {1 *eger\ hash. get(str)

selected“set.removeElement(y,1nLVa1ue());

hash.remove {str);

gelectList.delltem(x);

Lp
rD

YET:

¥ ¥ K # * #

System.out printin(selected_set);
return true;

return false;

File: ViewFrame. java

Project Title: VOCABULARY CREATOR
huthor: Muhammad Arif

Last updated on : 07/08/97

L.ast updated by : Muhammad Arif

import java.applet.Applet;
import java.awt.¥;
import java.util . *;

import EDU.auburn.VGJ.gui . *;

3

import EDU.auburn.VGJ.graph.»;
import EDU.auburn.VGJ.algcrithm tree.#*;

import EDU.auburn.VGJ.algorithm. GraphAlgorithm;

import java.util.Stack;

VAT
¥

*/

public class ViewFrame o tends F-

{

Main window in which schema would be shoun

I

JohvrSchema main3chema;
SchemaCanvas gCnv;
double view;

00hvrCGT cgi;

Frame fr;
PropertyDialog propRlg;
char ViewType;

[*%

* Constructor takes schema graph, Schema canvas and CGI

109

¥ and reffrences.
*/
public ViewFrame(OchvrSchema g,00hvrCGI ocgi)
{
super () ;
ViewType=’d’;
view=1;
Cgi=0CgL;
mainSchema=g;
setLayout (new BorderLayout());
Panel pnl=new Panel();
pnl.add(new Button(“+")};
pnl.add(new Button(“-")};
pnl.add(new Button("Layout Graph"));
pnl.add(new Button("Properties™));
pnl.add(new Button(“ChangeVieu')),

pnl.add(new Ratton("Attributes"));
pnl.add(new Buttcn("Relationships™));*/
add ("North",pnl);
}
public void UpdateCanvas(SchemaCanvas cnv)

{

gCnv=cnv;
¥
/#%
Event handler for ths main window.
#/

public boolean action(Event evt, Object arg) {

if ("+".equals(arg)) { // To Increase vieuw size
viewsviewtl;
gCnv.setScale(view) ;
System.out . printlin("Added in view");
return true;
lelse

if ("ChangeVieuw". equals(arg)) { // To Increase view size

if (ViewType==d’)
ViewType='1’;
ViewType=’d’;
Refreash();
return true;
}else

110

111

if ("-".equals(arg)) { // To decrease view size
viewsview-1;
if(view<0) viewsi;
gCnv.setScale(view),
gCnv.update(true);
System.out.println(“Subtracted in view");
return true;
Yelse // show up the property window
// for selected concept
if ("Properties".equals(arg))
{
//Status="Contacting Server Wait :
//shcuStatus(Status);
Node root = gCnv.zetSelectedNode();
if(root!=null)
{

String selected=root.getlabel();

String propi[i=cgi.GetProperties(selected) ;
int nopropl = cgi.ReadTotal ();
ponlean astOk = cgi.OK;

String prop2[l=cgi.GetRelations (selected);
int noprop2 = cgi.ReadTotal();
boolean relOK = cgi.OK;

if (att0K == =rue && rellK==true)
/% frenew Fraae ()
fr resize(50,50);
5
prophig=new PropertyDialog(fr,this,cgi,
selectzd,propl,prop2,nopropl,noprop2,’'A’);
prophlg.show();
prophlg.resize(310,410) %/
+
i
return true:
}
else
if ("Layout Graph".equals(arg)) { // Relayout the graph.
/*double i=gCnv.SELECT_NODES;
if (gCnv==nu11}
System.out.println(“Canvas Null");

Node root = gCnv.gatSelectedNode();
GraphAlgorithm alg=new TreeAlgorithm(’d’);
mainSchema.removeGroups () ;
mainSchema.pack();
String msg=alg.compute(mainSchema,glnv);
gCnv.update (true) ;
System.out.printin("Layout:"+msg); */
Refreash();

return true;

¥
return false;
}
[#%

Lt

FEZ:

FA T

+/

¥ Huns the layout aigovithem on the graph and

* Updates the scrzen with neu layout.

*/

public void Refreash()

{
gCnv.setSelectadNode (niinSchema.getRootId());
mainSchema.setDirected (false);
GraphAlgorithm alg=new TreefAlgorithm(ViewType);
mainSchema.reraveGroups();
mainSchema.park();
String msg=alg.compute(mainSchema,gCnv) ;
mainSchema.setDirectad{true);
gCnv.update (true) ;
System.out .printle ("Layout: "+msg) ;

File: NewFrame. java

Project Title: VACARNTARY CREATOR
Author: Muhammad Arif

Last updated on @ 07/09/97

l.agt updated by -~ Muhammad Avif

import java.applet.Applet;
import java.awt.*;

import java.util.*;

import EDU.auburn.VGJ]. gui . *;

112

113

import EDU.auburn.VGJ.
import EDU.auburn VGJ. { %
import EDU.auburn.VGJ.algerithm. Graphdlgorithm;
import java.util.Stack;

VEZ:
¥ Main window in which schema would be shown
*/

public class NewFrame exzends Frane
{
OohvrSchema mainSchema;
SchemaCanvas gCnv;
double view;
00hvrCGI cgi;
Frame fr;
PropertyDialog prophig;
char ViewType;
Menu MainMenu,Opticns,
MenuBar mb;
int Expansion_number;

VEL:
* Constructor takes schema graph, Schema canvas and CGI
¥ and reffrences

*/
public NewFrame (Nol'vrSchema g,00hvrCGT ocgi)
{

super () ;

MainMenu = new Menu(“View')

MainMenu.add(new Menultem(“"Ancaestor View")):
MainMenu.add(new Menultem{"Childern View"));
MainMenu.add(nev Menultem!"First Level Neighborhood"));
MainMenu.add(e MenuTten("Exit"));

Options = new Menu('Options");
Options.add(new Menultem("Select Detail"));

mh=new MenuBar(}V;
mb.add (MainMern) ;
mb.add(Option=) -

setMenuBar (mb) :

+

114

3.

ViewType='d
view=1;
cgi=ocgi;
mainSchema=g;

setLayout (new BorderLayout());

Panel pnl=new Panel();

pnl.add (new Button("+"));
pnl.add(new Button("-"));
pnl.add(new Button("New Child"));
pnl.add(new Button{("Layout Graph'));
pnl.add(new Button("Properties"));
prnl.add(new Buttor("Expand"});
pnl.add (new Button("Detract"));
pnl.add(new Butten(“ChangeView"));
add ("Noxth',pnl);

‘xpansion_number = 5;

public void UpdateCarvas{(SchemaCanvas cn)

{

]_

gCnv=cn;

VAL

&

“/

Event handler for the main window.

public boolean action(fvent evt, Object arg)

{

if(evt.arg.equals ("Ancegtor View"))

{
Node voot = gCnv.getSelectedNode();
System.out.printin("Activating Ancestor View");
if (rooti=nulil)

{
int i1d=0;
String aelectad=root.getlabel () ;
Stack stleney Stack();
stk push(selecied);
OchvSchema og=new OohvrSchema(selected,2,"IN");
while ('stk.empty())
{
String Child=(String)stk.pop();

String str[l=cgi.GetParent(Child);
for(int i=0;i<cgi.ReadTotal();i++)

n
id=os.AddParent (Child,str[i]);
stk.push(str[il]);
}
/% string rel[l=cgi.GetRelations (Child);

for(int k=0:k<cgi.ReadTotal () ;k+=2)

15(trel [k equals ("SUBCLASS_DF') &&
'rellk].equals("SUPERCLASS_OF"))
{ o0s.£3dCh11d(Child,rel[k+1]);
os Lab~1Zdge(Child,rell[k+1],rel[k]);

0s.setRootid ld);

VievFrame vi=aeu ViewFrame(os,cgi),

vi resize (800,700 ;

SchemaCanvas z<ov=new SchemaCanvas(os,vf);
scnv. setMousc M e (scnv. SELECT_NODES) ;
vf.UpdateCanvas(scnv) ;

ScrolledPanel vPanel=new ScrolledPanel(scnv);
vi add “"Center®,vPanel);

vi opact ()
vf . shovr'Y

vl Refreash (o
)‘.

return true;

if(evt.arg.equale"Childern View"))

{

Node root = gCnv getSelectedNode () ;

System ont, orintin("Activating Child View");
if(rooti=null)
{

int id:

String sslected=root.getl.abel ();

Stz puk=acu Stack();

stk opush(selected);

OohvSchems os:rav QohvrSchema(selected,2,"IN");
while (Us=k ampt 1 ()

{

115

}

116

String Parent={String)stk.pop();
String si:[i cgi.GetChild (Parent) ;
for{int 1=0;i<cgi.ReadTotal () ;i++)
{

id=0s.AddChild(str[i] ,Parent);
stk.push(strl[il);

iewlrame < f-n.w ViewFrame(os,cgi);

vi.res7e (ROS V00

SchemaCanvas scnv=new SchemaCanvas(os,vf);
scnv. setMouseMode (scnv. SELECT_NODES) ;
vf.UpdateCanvas (zcnv) ;

ScrolledPare! .Panel=naw ScrolledPanel(scnv);
v «dd{"Center ', vPanel);

vi . pack();

vi <hov

L JNF N e
vi Lefeangh 0

returiy ftrue;

if (evt.arg. eque.

{

System. .u

-
{

s {"¥irst Level Neighborhood"))

'

nrant’ ("Activating Neighborhood View");

Node roov = gy gotSelectedNode () ;
if(root!'=aull)

{

i

String selectel=root.getlabel ()

0 Schiany s aw DohvrSchama(selected, 2, VINY) ;
String str]=cgi. GetParant (selected);

fer(re 7=0; 7 i ReadTotal () ;i++)

(

id=o0s.AddChild(str[i] ,selected);

String str2l=rgi . GetChild(selected)
for(int i=0;i< =i ReadTotal () ;it++)
{

id=0a AddChild(selected,str2[i]);
o
ViewFrame vi=nev ViewFrame(os,cgi);
vf.resize (800 .700)
SchemaCanvas scnv=new SchemaCanvas(os,vf);

117

scnv setMouseMnde(scnv . SELECT_NODES) ;
vi.UpdateCanvas{scav);

ScrolledPanel Pansl=new ScrolledPanel(scav);
vf add("Center®, vPanel);

v pack():

v show{);

¥

~

vf Refreash();
}

return true,

[

if(evt.arg.equais Zxav"y,
{

dispose),

if(evt.arg.eq:ais("Select Detail™))
{
// pop up the dialog boux for selecting no of children
Info_box sclect_detiu:l = new
Info _box ("Number of children during expansion",
3,this);
select_detail .move(200,200);
select_detail .setModal (true);
select_detall oack(
select_detail sheowltrue);

if(select detall Ok o icked() == true)
{
Expansion_number =
gelect_detail.get_textfieldvaluay);
)

if ("+".equals(arg)) { // To Increase view size
views=viewt
gCnv.gel Scala vien},
System. out . printin(“fdded in view');
return true;

}

if ("ChangeViev" equaln(arg)) { // To Increase view size

118

if (ViewType=='d’)
ViewTvpe=’r’;

else
ViewTvpe='d’;
Refreash();
return true;

¥

if ("-".equals(arg)) { // To decrease view size
views=view-1;
if (view<0) view=1;
gCnv.se+Scalelvieu);
glnv.update(true) ;
System.out.printin("Subtracted in view");
return trug;
} // show up the property window
/" for selected concept
if ("Propert cs” equals(arg))
{
//Staruiﬁ“Contacting Server Wait e
//shod tatus (Status)
Node root = zCwr.yu:tSelectedNode() ;
if{rootti=null)
{

String selected=root.getlabel ();

String proplil=cgi.GetProperties(selected) ;
ir o wproot = ezl ReadTotal (O

beelran At = cgi 0K,

String prop2[l=cgi.GetRelations(selected);
int noprop? = cgi.ReadTotal O,

bonlean relfll = cgi . 0K;

FlattlK == fiue &k rel0K==true)

e bt

Gatem. cvt printin(UActivating My Dialog!);
propblig=new PraopertyDialog(this,cgi,selected,propl
prepd nopropl, noprop?) ;
nrophlg. setMedal (true) ;
aranDlg patk Y
propblg.resize(310,410) ;
prodDdlgLmoeve (700,200)
nropDlg. shew(true) ;

119

if(propDlg.is_Okciicked (S == irue)
{
// code to add new s (if any
//Implemented only for SUB_CLASS relationships
String[] new_cons = new String[50];
new_cons = propb.g.get_newconstraints();
for(int x=0; new_cons{x] != null; x++)
{
System.out.println('New entry = "+new_cons[x]);
int id = mainScher:. ot _nodedaew_cons[x]);
if(id t= -1)

{
mainSchema.AddEdge (selacred nenv_cons[x]);
¥
else
{

System.out.printlr ("I'odc™ rew nslx]+
y
“may not be inserted correctly");

1
Refreash();
propDlg.dispose();

}
i
else
{
System.out.printin("Something messed up");
¥
}
else
{
Systemn. out printin('Node not selected");
}

return Lrue;

if ("Expand".squals(arg))

{
Node root = gCnv.getSelectedNode();
int no. ef_children
if (roo* '=null)

120

{
String selected=root.getlabel ();
String childii=cgi.GetChild(selected);
no_of _children = cgi.ReadTotal();
if{no_of_children>0)
{
if(no_of_children <= Expansion_number)
{
fovtint 1=0; i<no_of_children; i++)
iv¥ ma: ~Schema.isNodepresent (child[i]) ==
true) //child already present
{
mainSchema.AddEdge (child[i] ,selected);
},
else
{

nainichema. AddChild{(selected,childlil);
"/a4dds children nodes

// ADD ADDITTIONAL LINKS TF ANY. ..

String Parents{] = cgi.GetParent (child[i]);
int no_of_additional_links = cgi.ReadTotal (),
“Flre_ ot additional _links > 1)
for(int j=0; j<no_of_additional_links;j++)
{
f(Parents|j].equals(selected))
{
System.out.printin(
“Thig link already exists");

System.out . printin(
"Link Needed");
if (mainSchema. isNodepresent (

Parents[j]) == true)

{
mainSchema.AddEdge (

child[i],Parents[jl);

121

Y // end if
} // end for

else
{

System.out.println(“no more IS A links
+2* for"+child[il);

} // end if
}
Y /) end for
1
else
{

// include code to display a list box of concepts
listframe childlist = new listframe(child,
no_of_children,this);
childlist.pack();
chi’vlist.show(true);
childlist . move(200,200);
Set selected_set = new Set();
selected_set = child]ist.getmselected();
System.out.printIn("In NewFrame'+selected_set);

“f(svlected_set . isEmpty() == false)
// do only if an item 1s selected
{
whiie(se]ected_set.isEmpty() == false)
int z = selected_set.f)
// System. out.printiniz);

selected_szet . removeFlement -)

if (mainSchema.isNodepresent (childlz])
== false)
// check if child already exists

{
mainSchema. AddChild(selactac,
child[z]); //adds children nnde®
/7 ADD ADDITTONAL LINKS TF ANV, ..

String Parents([] = cgi.GetParent
(child[z]);
int no_of_additional_links =

cgi.ReadTotal();

if(no_of_additional_links > 1)
{
for(int j=0;
j<no_of_additional_links; j++)

{

if (Parents[j].equals(
selected))

{

System.out.println

("This link already exists");

}

alse

{

System.out.printin
("Link Needed");

if(
mainSchema.isNodepresent (Parents[]) == true)
{
mainSchema.AddEdge (child[z],Parents{jl);
}

Y // end if
} // end for

:}.
}
else
{
mainSchema.AddFdege (childz] ~zlected);
System.out.printin(child[z]+" already exists");
].

.

-
System.out.println("In NewFrame after removal'+selected_set);
].
+ //end if no_of_children <= b

¥
als6
{
System.out.printin("No Children, no expansion);
}.
Rafreash();
+
else

/7

/4

wy
]
(2]
o+
42}
=

t.println("Node not selected");

}
return true;
¥
Refreash();
}
else
{
System.out.println("Node not selected");
1
return true;
}

if ("New Child".equals(arg)) { // Add a new child to a
// selected concapt
Node root = gCnv.getSelectedNode();
if(rooti=null)

{
String parent=root.getlabel();
NewChild nch=new NewChild(parent,this);
1
else
{
System.out.printin{"Node not selected");
¥
return true;

]_

if (“Layout Graph".equals(arg)) // Relayout the graph.
{
double i=gCnv SELECT_NODES;
if (gCnv==null)
System.out.printin("Canvas Null");
Node root = gCnv.getSelectedode();
GraphAlgorithm alg=new TreeAlgorithm(’d’);
mainSchema.removeGroups () ;
mainSchema. pack();
String msg=alg.compute(mainSchemna, glnv) ;
gCnv.update (true);
System.out.println("Layout:"+msg);

123

124

Refreash();

return true;

}
if (evt.id == Event . WINDOW_ICORIFY)
{
System.out.println("comes here, great!");
);
return false;
}
ETS

/!
//

* Runs the layout aigcrith:im on the graph and
* Updates the screen with new layout.

*/
public void Refreash()
{
gCnv.setSelectedNode (mainSchema. getRootId());
mainSchema.setDirected(false);
GraphAlgorithm alg=new TreeAlgorithm{(ViewType);
mainSchera.ramoveGroups ()
mainSchema . pack();
String msg=alg.compute(mainSchema,glnv);
mainSchema . getDirected(true);
gCnv.update(true);
System.out printin("Lavout: "+msg);
}
[#E
* Add a new child o thn ~-ucept by calling the API
¥ from CGI clann
*/

public void AdAN wChild(String Pavent,String Child)
{
cgi.AddNewChild(Perent Crild);
if (cgi.0K)
{
mainSchema AddCh: 100~ ans,Child);
Refreash(®

}

APPENDIX C

API DESCRIPTION
The defination of APIs is presented here

[R KRR ok o R S KRR K R 36K OR R R 3 ok ok ok ok o Rk R sk kK R ok ok
¥
* Funciton MV_List_Children
* Input: [ConceptName] Concept name.
* Qutput:[number] Number of children
* [1ist] keeps all children name
* Description:
* Function caller need to release the memory.
delete list [number;{;,
*
*

ok sk ok o Sk ok ok sk Rk R R R RN R R R R Ok o sk sk sk ok R R KOk ks Rk sk fok ok kol skokok sk ok
void MV_List_Children(char* ConleptName,int& number, char *x Elist);

[s ok o s R o R sk o sk sk ol S ok R HOR SR R SR R R SR SR 3R Rk sk sk o sk kR skok ook
¥
Funciton MV_T..lst Parents
Input: [ConceptlName] Concept name.
Qutput: [number | Mumber of children
[1ist 1 keeps a1l perent name
Description:
Function caller n-ed to release the memory.
delete Tigth fnumbovl{];

A Y B

S s o s o o o o o SRSk SRR R S ek P s otk b D s R kR sk ok sk ok ok ok kb ok ok sk ok ok ok

void MV_List_Parents(char® CovcertName,intd number, chary #% Elist);

[S s o R R ROR A R S RS K R R sk S o
i
* Funciton MV _Show Attribu - _Value
* Tnput: [Conceptliame | Concept name.
* [Attribut:llame | Ator.buts nane.
* Output: [number] Number of value of this attribute
* [lig= 1 xeupg 1) ralie of this attribute
* Description:
* Funcuion caller 1:ed o welease the memory.

126

¥ delete list {number]}[};
%

ok o R K kSRR S s o R R R R R SEOR 3 3 R O RS ok sk sk sk s sk sk RSk sk kR ok ko

void MV_Show_Attribute_Value(charx ConceptiName,
char* AttributeName,
int& number,char*+ &Valus);

/s sk R R SR KK T 38R RS 5 % SRR SR R oK o K o K KR K S
*

% Funciton MV_Show_Relationchip_Value

* Input: [ConceptName] Concept name.

* [AttributeName] "elationship name.

* Output:[number] Number of value of this Relationship

* [1ist ? keeps all concept name of this Relationship
* Description:

Funcrtion callaer nand %o release the memory.

* delete 1list [number][];

"

s e o oo ok ook oo o R R s sk R R IR b ok ks sk kR R kR R R R R ok

void MV_Show_Relationship_Valuelchar* Conceptiame,
char* RelationshiplNnue,
intd number,char+¥ &Value);

] s o o s s ot R S R ok R e S R KR oo o ks sk s K SRS R o o
"
* FUﬂchon MV_l.leo Ui Puoe oty Value
% (MV_List_All_Attribute_Value |
(MV_List Allwﬂéiiillndhlp_V&1\G)
% J_nput: [Cov. eptWName | Concept name.
* Output: [nwiber 1 keeps the number of list
¥ [lis® 1 store property name and value
Txample: list{1] = "SUBCLAS3_IT" <- property name
¥ list[2] = "ENTITY" <- value
¥ 1ist[3] = "NAMEY 1o propecty ana
% 1ist[4] = "Procedure” <- valw
"
* Description”
o Func=ion caller need to velease GLhe memory.
* delese l:iast | umhan';
%

ok ok sk ok o o ok ok sk ok o s ok Sk ok o o %5k R ok ook o . o 3 s ok SR ok s ok ok ok sk ok sk o R ok ok ook ks sk ok sk sk sk kb skok ok skok ok /

127

void MV_List_All_Property_Value(char* ConceptName,
int& number, char *¥ &list):

void MV_List_All_Attribute_Value(char*x ConceptName,
int& number, char *% &list):

void MV_List_All_Relaticnship_Value(charx ConceptName,
int& number, char ## &list);

[ok ok o sk sk sk sk o R R s s ko R R R Ok S k Rk sk ok kR R Rk ok s R ok
S

* Funciton MV_Chanze Attribute_Value

* TInput: [ConceptNuase } Concapi nane.

* [Attributedame | Attribute name.

* [Value . Tew valus.

* Qutput: O if no such concept exist or

* no such attribute exist in this concept

* 1 normal update

Description:

* Tf no ouvh 2oz . ce axist in this certain concept,
* function will re:. w.tar iy change.

¥ If the front end 1" r .ads some srror codes, T need to

rewrite this func.:on

"

oo s ok o o ook ok ok okl Sk R Rk s sk sk R ARk sk sk ok sk sk sk skok sk kR R R ok ok ok g/

int MV_Change_Attribute_Value(chars ConceptName,
char* Attributellame.

char* oldValue,

char#* Value);

/s o o o o o R S K s o o Y s RS S S R o S SR K S SRR o
¥k

* Funciton MV_Change_Relat’ onship_Value

* Tnput: [ConcaptMame | C. “opt name.

* [Relationshipiane ! Relationship name.

¥ [Clame | lies tare & concepl name.

* Output: 0 if vo wuch conapt exist or

ne such attribute exist in this concept
1 nomnal apdate
Description:
If no oaucls ats cibhei o exist in thig certain concept,
r=* - without any change.
If the £ 2d AP aeeds some error codes, I need to
reurte thit Tn Y iton.

E O S T R S A .
rh
o
=

.
:

5
—J
Z

-

b3

D

4

128
kb ok kR R KR R RN R R ¥ RN R Rk R R kR R R R Rk kR R R Rk bk

int MV_Change_Relationship_Valus. char* ConceptNams,
char* AttributeName,
char* OName,

char* CName);

sk sk sk sk sk ok ok 3R R R O R K R R o S 3 3R S OB SR o o sk sk R o sk 3k K s R o sk o ok ok sk SkoRoR K kK
%

* Funciton MV_Shew_iumber i _Children

* Input: [Concentlizme] Conceot name.

* Qutput: [number] Number -f children.

* Descriptioin:

This function takes a Conceptlume and return the number

of its children.

%

ook sk ok ok ok sk Ak R R R s ks R s s ok sk s ok sk R K o O K R Rk o ok sk ok ok

void MV_Show_Number_" C1- " Crern’ ar# ConceptName,int& number);

[o o o ok R sk R R SRS R R o R R KR KR R kR s s sk ok sk K sk bk ok

*

* Funciton MV_Show_Number _Of _Parent

* Tnput: [Conceptliume | Cuucept name.

* Output: [nuaoes | dades o0 parents.

Descriptioin.

* Thi: oo vom o2ves a CoscaptName and return the number
of parents

*

S s o sk ok sk o s o o Sk R R SRR SR R R R R T R R R K R R R ok ko sk ko /

void MV_Show_Number NF Pavents(..+ ConcaptName,intd number);

[s R KSR R RS O R R R SR R SRR S ok R R R
"

Funciton MV_Dres Property Dxust

Tnput: [Propertylame ' Property Name.

Qutput:[Intrelode T 4F 17 have ®his property, this TntroNodea
keeps the node first introduced this property.
Descriptioin:
This function ~e > n 1 if we do have this Property and
setup the value 2% Tn%rallodn. Neturn 0 1f we don’t have
this property and Tntrolode no nt to NULL

¥R K K FE H K H K

ok sk s o ok ok sk ok o okok ok ko Ok s R

129

ks e s sk sk sRok ok ok Rk 3K K ok oK SRR KKK s ok ok sk sk kK ok oK ok sk ok ok

int MV_Does_Property_Exist{charx PropertyName,charx &IntroNode);

sk sk o sk ek sk ok ok R R R R K SRk o R s % ok ok sk s ok ok ok oo sk oo ok ok o ok sk s ok ok ok s sk ok ok sk ok of

¥

HOH K K K

Funciton MV_Create_Attyibute
Tnput: [ConceptName] Coicept Name
[Atto.bucedawe L avosibute Name
Output: None
Descriptioin:
This function will add Attribute in Concept and

PROPAGATE this avc-o-bute Lo a.. the descendents of

% Concept with NULL value. Tf some descendents of

¥ Concept already haves =his 1ot - Hute, this function will

* not add anything %¢ 1

%

s s e o s o st K SR K SRR R SR skl s ok S R KR R SRk ok KR kR K o sk R Sk Sk ok sk Rk /

void MV_Create_Attribute(char* ConceptName,ckhar+ AttributeName) ;

/] sk ks s o oo oK S R R RO S s R o o R SR K Sk oK S R o K s o sk o

*

¥ Funciton MV_Dnleva Attriinie

* Input: [CorceptNune ' Co.:ept Name

* [Atr-ihutaellamo 7 Attribute Name

Dutput: None

* Descriptioin:

* This function wi™" d2lete Attribute in Concept and
* recu gL sedy doioty all this attribute from its

* descendents. IF THR HADF 75 INT THE PLACE WHTCH

#* INTRODUCES THIS AVTRIRUTT, TH T "TINCTION WILL RETURN

* AND DO NOTHING.

¥

S s s s o o o o o K o SRR S S o R o R SR R RS o sk s R S s o s S R R R s sk ok /

void MV Delete Attribitelchar# ConcestName,charx AttributeName)

[s o AR R S S SR S R R o o o o A A S o
¥
* Funciton MV_Craace Pelat:<rship
* Input: [Relt 1 Relat<onsh p Name
* [Re?2 1 Reverse Rolationship Name
* [CNamel] Concept Name vhich introduce Rell

130

* [CName2] Concept Name which intreduce Rel2

* Qutput: Hone

* Descriptioin:

* This function will add relationships in Concepts and

* PROPAGATE these relationships to all the descendents of

% Concept with HULL value. If some descendents of

% Concept alreadv have the Relationship, this function will
* not add anything to itv.

*

sk sk o o s o ok R R RO Rk o Sk sk SR R R Rk s o sk R S0l ol o Ok o o ok Rk R Sk ok s kb ok /

void MV_Create_Relationship{chor> CNamel,charx Rell,

ey Cliq-ne? chrorx Rel2);

[sk R KRR R s e s T e e ok sk R R kR Kk ok R ok
*
* Funciton MV Delete _Re'nt o nship
* Tnput: [Re i] Relaiionsi.p dame
* [Rel2] Reverse Helationship Name
s [CName 1 Cowsop ilams vhish introduce Rell
* [CNam20] Coo oo 2 whio introduce Rel2
* Qutput: None
* Descriptioln
* This func-ior 117 remove relationships in Concepts and
#* PROPECATE © s 3 otion to all the descendents of
CNanel anad Olianae? 17 gome descendents of CNamel and
% CName?2 don’t have those Rolzatirnships, this function will
¥ just return and v oneibing
%
S o o o s sk S o S R o R R o R R S R s o sl kR o ok o K A S sk sk ok /

void MV_Delete_Relaticnghipl{ hars CNamel char¥ Rell,

chaos MHame?2, char* Rel?2);

/***********$*$$¢$$$$x¢¢g¢¢,xxwx:ngF:***¢m¢******¢***$*¢$$**$$$*¢*¢
¥
¥

Funciton MV_TFind _louwest _Common_Node
input: [
[CName2 1 second conc:nt name
1

Chnacl T oot conoapt name

C

Dutput:f LOMoile "ot aamon nade of two input nodes.
Descriptioiz

T1f “Hamel is arersshor of CVame2, then LCNode will be

set up as CName™ . vic: vurs
Currently we don’” hav~ i per eoct algorithm to judge

131

* yhich node 1s LCsx. So, 1 use greedy algerithm from
¥ CNamel. In other wor L3 c

* of CNamel and Ckame2, you way get diff
"

o
i
o
<
<
=
o]
>4

3ok 3 koK R oK % K % Rk 3 08 KO K R ¥ K0 ¥ 30 0808 KK R R 0K 3k ok ok ok ok sk ok sk sk ok ok sk ok ok ok /
void MV_Find_Lowest_Common_WNode.char* CNamel,char¥* CName2, charx & LCNode);
JF kR kb R kR R R 3R R R TR R e OR sk o s ¥ o s ok ok sk ok o ok ok sk ki sk sk dokok o ok

* Funciton MV Treate_ (o ep

* Tnput: [ConceptName . corcept name

* [PacustNane parent nane

* Qutput :none

* Descriptioin

* This function c¢reate a new concept with same proparty
* ag its parent has Tha vidne o 79 pvonsrties will be

* null except NAME and SUBCLASS LF

Sokokskokok sk sk kR ok ok bRk ks ok sk sk sk ok R ok sk oRok ok ok ok o ko sk sk ok]
void MV_Create_Concept (char# ConceptlName,chars Parentiame) ;

[sk ok s ok sk R SRR R KSR s g s e S T o R ok sk o ok R S o ok ok
*
¥ Funciton MV T ist_ 1ot ov
* Tnput: Nothing
Qutput: ALl cono.po 0l .o.abase
* Descripticii
%

s s s o sk ik oSk ok s R o s R ks R R SRR kR R R R R R Rk R
void MV_List_ALl1_Cc:cept(intd oo, chas =% &list);
/st s s R SRR SRR TSR sk 1 S kK R R s S SR R R Sk sk o sk o ok o

Funciton MV Add_fAutribuve Value
Input: [Conceptiams | conce name
[AttributeName
[Value] a valur

Output: 0 i€ no such con - n%oexist or

no sunch At~ ute exist in this concept
1 rormal nndate

atty- i o s

o K ¥

* ¥ ¥ ¥

Descriptioin:

132

Add ome attribute-value oDair 7o this certain concept.
If this concept has a pa.r of - 2is attribute with
value NULL, then “his pa.r will be changed to
attribute-value with Value.

EE R

ok ko R R R Rk R0 R a0k o o R R ok ok % K R KRk sk o s Rk sk ok /

int MV_Add_Attribute_Value(char> ConceptName,
cha o+ Wt huteNime,
oo Valae)

[k sk R R SRR KR iR b kol e s Rk ok ok sk KR kR sk sk o ok ok R R Kk ok
¥
Funciton MV_add_Rerat_cns p_Value

Input: Conceptlame | concept name

%K %

[

[Rzlationsh:plane] relacionship name
[TergetCono.p? .rget concept

0 1f 2o

axniyt or

#OE K
-]
=
ot
o)
e}
ot

a.zenship exist in this concept

* 1 noomel apdlote

* Descriptiocin:

* Add e wel T oe-calus pair into this certain concept.
* If this covcapt %o 1 pair of this relationship with
®
*
F

valre pointer to "HLL, than this pair will be changed
to relationship-valune noivm o oxIiet concept.

S5 ok s ok ok ook ok sk o s R ok R SR SR Sk e % et nan ook ok o sk ok sk ok K Ok o ok ok ko sk ok sk sk sk ok sk ok f
int MV_Add_Relationship_Value(chur* ConceptiName,
ot RelationshipName,

ek TargetConcept) ;

/*********4*,@:’:%***45\”:(:’:}‘*“ PR T S HH
#

ok sk ok ko ok sk sk ok Ak A sk ook s skok

oo Yalua

Fynciton MY _Nomov.: 'Lt
Input: Concaptllame ' concept name

3

[
[Arvtr-ibuteNane & Stribute name
[Vatue 1 & va'u-
Output: 0 if no such con - v exis’ or
no such a v hate exist in this concept
1 ool vl o
Descriptioin:
Remo .= ¢n~ v ih oa-valve pair from this certain concept.

If the pair is t' - las® »oi- o7 this 3ttribute, this

XK K ¥ KKK K

* function will keen this nair
%

kR kKRR R R R R KR R RN R e X

int MV_Remove_Attribute_Valne(

/s sksk ok ok skl bk R R e R Rt

Funciton MV_Rermowa Rat
Input: ConceptName |

Rolatzongh? pN

K K K

L
[
[TargetConcept
Output: O if no such

co

ne such re

I nermal apd e
Descriptioin:

Reno

if

fun 17

R N

N

‘I N

<%

"
*
sk s o sk ook Rk ok R 3

BT I A S I

133

anaA

clesan the value to NULL.
s xR R R R koK R Kk sk ok sk kol sk Rk g Rk ok ok ok
chars ConceptName,

char* AttributeName,
char* Value);

ook ok A sk st ko ok ok sk ok s ok ROk SR Ok ROk Rk

e

~
<

rnchip_Valu
concept name
a1 relationship name
“arget concept
neent exist

1

Oor
aationship exist in this concept

~oo=tavzaet pair from this certain concapt.
pxir of this relationship, this
this »a’'v and clean the value to NULL.

last

1

int MV_Remove_Rela' .~ .:hi a0 larw ConceptName,
char* RelationshipName,
oos TaoputConcept)
L i LS TE s T EANIEE L TR Ak o o sk sk ok o sk o ok kR Kk Sk ok
+
Funciton MV _Seu Do oo 0 Tatlonship

Input: [Relaticrs
[RevRelationghiyfirra
relationship name
Dutput: 0 if no
1
Descriptio’r

W

h

ne

"
*
-
”
"
¥
¥
E3
%
%
*
*

5
EN

int MV_Show_Reverse Nalat ol

Daplian e

pt

1 relationship name

Gyt g

“o tarvyy the reverse

This function wi 1 return the reverse rvelationship name
to the caller. T ca'l» hoa *hia ragoonsibility to clean
the momory of Revlolatic-sh vhoae

~har#* RelationshipName,

134

char¥ & RevRelationshipName);

int MV_List_Descendant(char> ConcepuName,int& number, char ** &list);

/7

// MV_Delete_Concept sti:l need tu be optimized

// 1f we delete concept &, all aecendants of A will be deleted, too.

// If A or its decendants iuvroduced an, celationship, we will abort this

// operation.

“// Problem: if coicapt B use: soravionship R to point to one of A’s decendants
// what should we do? (R’ xs introduced above of concept A.)

//

49

int MV_Delete_Conce . (char> ‘i e Hameld,

int MV_List_Al1_Relo.icmsip. Ty lo-_ Yode chor+ ConceptName,
int& number,
char sk glist)

[aas

9.

12.

REFERENCES

. Goldfarb C. SGML Handbook. New York: Oxford University Press, 1990.

J. J. Cimino. Personal communication. Associate Professor Medicine, Medical
Informatics, Columbia University, 1996.

J. J. Cimino, P. D. Clayton, G. Hripesak, and S. B. Johnson. Knowledge-based
approaches to the maintenance of a large controlled medical terminology.
JAMIA, 1(1):35 50, 1994,

J. J. Cimino, G. Hripesak, S. B. Johuson, and P. D. Clayton. Designing
an introspective, multipurpose, controlled medical vocabulary. In Proc.
Thirteenth Annual Symposium on Computer Applications in Medical
Care, pages 513 517, Washington, DC, November 1989,

Williarn M. Detmer and Edward H. Shoruliffe. A model of clinical query
management that supports integration of biomedical information over
the world wide web. Section on Medical Informatics, Stanford University
School of Medicine, 1994,

D. H. Fischer. Consistency rules and triggers for multilingual terminology. In
Proe. TKE'93, Termanology and Knowledge Engineering, pages 333 342,
1993.

H. Cu, J. Cimino, M. Halper, J. Geller, aud Y. Perl. Utilizing OODB schema
modeling for vocabulary management. In J. Cimino, editor, Proe. 1996
AMIA Annual Fall Symposium, pages 274 278, Washington, DC, Octoboer
19906.

Michael Kifer, Won Kim, and Yehoshua Sagiv. Querying object-oriented
databasges. In Proc. 1092 ACM SIGMOD Conference on Managemnent
of Data, San Dicgo, CA, June 1902,

L. Lin, M. Halper, H. Gu, J. Geller, and Y. Perl. Modeling a vocabulary i
an object-oricnterd deat.uim».u, .In N L)zwkm‘ and M. 7. Ousu, editors,
CIKM-96, Proc. 5th Int’l Conference on Information and IKnowledge
Management, pages 170 188, Rockville, MD, November 18890,

L. Liu, M. Halper, H. Gu, J. Geller, aud Y. Perl. Controlled voeabularies in
OO0DBa: Modeling issues and imiplementation. In preparation, 1007

. Y. Perl and J. Geller. Using object-oriented databases Lo make medical vocal-

ulavies camprehensible. NJUT Researel, 5, 1997, To appoear,

Y. Perl, J. Geller, and H. Gu. [dentifying a forest hierarchy in an OODB
spccuhzamon hi mauhv satisfying disciplined modeling. In Proc. First
IFCIS Int’l Conference on Coo;u(eza,t/,ue Information Systems (CooplS96),
pages 182-195, Brussels, Belgium, 1996.

135

136

13. Berners-Lee T, Callliau R, Luotores A, Frvstvk Nielsen H, and Secret A. The
world-wide wo b, Commune woons of the ACM, pages 37(8)-76, 1994,

14. Stanley B. Zdonik aund Duvid Maier. editors. Readings in Object-Oriented
Database Systens. Morean Naufmann Publishers, Ine., San Mateo, CA,
1990.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: An Overview of OOHVR
	Chapter 3: Preprocessor Design and Implementation
	Chapter 4: Designing A Vocabulary Creator
	Chapter 5: Future Work
	Appendix A: CGIs Code
	Appendix B: JAVA Classes and Their Code
	Appendix C: API Description
	References

	List of Figures

