

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

INTERACTIVE AND BATCH CREATION OF
OODB MEDICAL VOCABULARIES

by
Muhammad Arif

Controlled vocabularies are becoming popular for knowledge representation

and querying. They are particularly helpful in the medical field since they can

unify disparate terminologies and provide information in a compact., comprehensible

manner. In this thesis, we present. a mechanism to create OODB controlled medical

vocabularies from flat-file format.. We also describe a tool by which a user can

interactively create, edit. and browse the vocabulary. For better understanding of

the structure of the vocabulary we designed our interface as a graphical editor and

browser. The user of this interface will typically be a medical expert who either wants

to add new concepts to the vocabulary or create a new vocabulary from scratch.

We first describe our approach for creating the vocabulary from an existing flat-file

format by batch processing. We then present the software architecture and design

of an interactive vocabulary creator (IVC).

INTERACTIVE AND BATCH CREATION OF
OODB MEDICAL VOCABULARIES

by
Muhammad Arif

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree o

Master of Science in Computer Science

Department of Computer and information Science

October 1997

APPROVAL PAGE

INTERACTIVE AND BATCH CREATION OF
OODB MEDICAL VOCABULARIES

Muhammad Arif

Dr. Yehoshua Perl, Thesis Advisor 	 Date
Full time Professor of Computer and Information Science, NJIT

Dr. James Geller, Thesis Co-advisor 	 Date
Director of Artificial Intelligence and OODB Laboratory
Associate Professor of Computer and Information Science, MIT

Dr. Michael liallafr, Committee Member 	 Date
Assistant Professor of Math and Computer Science,
Kean College of New jersey

BIOGRAPHICAL SKETCH

Author: 	Muhammad Arif

Degree: 	Master of Science in Computer Science

Date: 	 October 1997

Undergraduate and Graduate Education:

• Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1997

• Master in Computer Science,
Department of Computer Science,
University of Karachi, Karachi, Pakistan, 1996

Major: 	Computer Science

This work is dedicated to

my parents, friends and all those who

helped me in my accomplishments

ACKNOWLEDGMENT

I would like to thank Dr. Y. Peri, Dr. J. Geller and Dr. M. Halper for this

opportunity to conduct research under their able guidance. Their continuous interest

and encouragement have contributed significantly to the work presented in this thesis.

It has been an enriching experience for me.

I would also like to thank all my colleagues in the laboratory. A special thanks

to the members of my group; without their hard work and dedication this work would

not have been possible.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 	 1

2 AN OVERVIEW OF OOHVR 	 3

2.1 Need for Health Vocabulary Systems 	 3

2.2 A Medical 'Vocabulary as a Semantic Network 	 4

2.3 Object Oriented Paradigm Choice for Storing Semantic Networks . . . 5

2.4 Modeling InterMed and MED into OOIIVR. 	 6

2.4.1 	Structure of a CMV 	 6

2.4.2 	Representation of a CMV as an OODB 	 8

2.5 Modeling CHREF-I and CHREF-II into OOIIVR 	 18

2.5.1 	CHREF-I 	 18

2.5.2 	CHREF-II 	 19

3 PREPROCESSOR. DESIGN AND IMPLEMENTATION 	 21

3.1 Practical Realization of the OOHVR. Implementation 	 21

3.1.1 	The Need for the OOHVR Generator 	 21

3.1.2 	Preprocessor Description 	 93

3.2 Processing Details 23

3.2.1. 	Implementation of Intersection Classes in ONTOS 	 23

3.2.2 	Diamond Cutting Algorithm 	 25

3.2.3 	The InterMED and The MED 	 26

3.2.4 	Intermediate File 	 31

3.2.5 	CHREF-I 	 34

3.2.6 	CHREF-II 	 3(1

3.3 Output Files Format 	 36

3.3.1 	DBLOAD_X 	 36

vii

Chapter Page

3.3.2 	inst.out, o12 and o3 	 38

4 DESIGNING A VOCABULARY CREATOR 	 40

4.1 Introduction 	 40

4.2 Background of WWW 	 41

4.3 Essential Features of a Vocabulary Creator 	 42

4.4 System Architecture 	 42

4.5 Back-End Design 	 43

9.5.1 	OODB Schema for a General Vocabulary 	 43

4.5.2 	API Design 	 44

4.5.3 	Common Gateway Interfaces 	 44

4.6 Front-End Design 	 47

4.6.1 	The Notion of Neighborhoods 	 47

4.6.2 	Programming Details 	 40

5 FUTURE WORK 	 52

5.1 Performance Criteria. 	 52

5.1.1 	Connection Establishment. Time 	 52

5.1.2 	Request Placement Time 	 52

5.1.3 	Database Access Time 	 52

5.1.4 	Data Retrieval Time 	 52

5.1.5 	Data Transfer Time 	 53

5.1.6 	Presentation Time 	 53

5.2 Different Options Available for Client Server Communication 	 53

5.2.1 	Common Gateway Interfaces 	 53

5.2.2 	TCP/IP Based API Server 	 54

5.2.3 	Java RMIs 	 54

5.2.4 	Using CORBA 	 54

5.3 Conclusion 	
55

viii

Chapter 	 Page

APPENDIX A CGIs CODE 	 56

APPENDIX B JAVA CLASSES AND THEIR CODE 	 63

APPENDIX C API DESCRIPTION 	 125

REFERENCES 	 135

ix

LIST OF FIGURES

Figure 	 Page

2.1 	Four areas of a CMV 	 10

2.2 	The area classes for the areas in Figure 2.1 	 14

2.3 	OOHVR Schema 	 17

2.4 CHREF-I schema structure 	 18

2.5 CHREF-II schema structure 	 19

3.1 	Schematic Figure of the whole system 	 22

3.2 	Schematic Figure of the Pre-processor 	 23

3.3 	An example of multiple-inheritance in the InterMED 	 24

3.4 	The result of applying the diamond cutting algorithm to Figure 3.3 . . . 25

3.5 Advanced diamond cutting 	 27

3.6 The InterMED source files 	 28

3.7 	intersection_info a. snapshot 	 30

3.8 A drugclass_ta.hle Snapshot 	 34

3.9 intersection_classes snapshot. 	 35

3.10 hic_class snapshot 	 36

3.11 DBLOAD_X snapshot 	 37

3.12 inst.out snapshot 	 38

3.13 The InterMED source files 	 30

4.1. 	Architecture of IVC 	 43

4.2 Schema for a. general Vocabulary for IVC 	 44

CHAPTER 1

INTRODUCTION

A Controlled Vocabulary is an explicit specification of a subject. It is a formal and

declarative representation which includes the terms in a subject area and the logical

statements that describe what the terms are and how they are related to each other.

Vocabularies therefore provide a way of representing and communicating knowledge

about some topic which leads to a uniform way of knowledge sharing and reuse. The

medical field is one of the most rapidly growing fields in terms of concepts(terms)

in one subject. That is why Controlled Medical Vocabularies (CMV) are becoming

more and more popular in medicine.

A Semantic network is a tool for modeling vocabularies. Due to the huge

number of terms available in a medical vocabulary, the size of semantic networks of

CMVs is typically large. That means that we have to organize huge amounts of data

in such a way that they can be stored and retrieved efficiently . Choosing a paradigm

for a computerized storage of a vocabulary, is a difficult task. As mentioned before,

vocabularies are for reuse and sharing of data.. Object-Orientation is a paradigm

which proved itself as a good tool in terms of re-usability and easy shareablity.

We mapped the semantic network of a major medical vocabulary into an Object

Oriented Database which we named OOHVR. (Object Oriented Health Vocabulary

Repository). Chapter 2 deals with modeling details of OOHVR.

After modeling the vocabulary, the most tedious task is to convert a huge

semantic network which is initially available in a flat-file format to our 00DR. We

designed a Schema Generator which reads the semantic network representation

set of flat files and generates a schema creating coda. The preprocessor is a part of the

Schema Generator which takes a. schema dependent format flat-files and generates

common format fiat files. These common format flat files are fed to a code generator

1

2

which generates C++ code for schema generation. Chapter 3 deals with all imple-

mentation and design details of preprocessor.

As new ideas and concepts are developed every day, we felt a need for an inter-

active Creator which enables a user to create vocabularies from scratch. Choosing an

interface and development system is an important. task which is discussed in sections

4.1 and 4.2 while our proposed system architecture is discussed in section 4.3. Back-

end and front-end design issues are discussed in 4.5 and 4.6. We discuss possible

future enhancements in WC in the last chapter.

APPENDIX A contains the CGIs source code for the Creator.

APPENDIX B contains the Java object descriptions and documentation with

the source code.

APPENDIX C contains the description of the APIs used in the system.

CHAPTER 2

AN OVERVIEW OF OOHVR

2.1 Need for Health Vocabulary Systems

Effective and efficient delivery of health care requires accurate and relevant. clinical

information. This is true for the individual doctor caring for the individual patient, as

well as the health care organization concerned with measuring outcomes and ensuring

cost effective care. Furthermore it is recognized that patient-centered clinical infor-

mation systems, integrated with decision support. and other systems, are the key to

high quality clinical information. However developing such systems has been proven

difficult and many problems remain. Perhaps the most pervasive and the most.

important of these problems is that of the clinical terminology or language that

is used to represent the information. Advanced clinical systems require advanced

terminology systems which must be:

• Comprehensive and sufficiently detailed in content and structure for use in

clinical medicine.

• supported across a wide range of natural language communities, both profes-

sional and geographical;

• maintainable and extendible, with realistic human effort which the computer

must actively support

• well suited to supporting computer-based information systems and hence

formally sound.

Clinical terminologies are large, complex, and diverse. For example the details

required in a patient's medical record which is used to support the daily care of

the patient, are far greater than for an epidemiological study or routine hospital

statistics. Furthermore, different users in different clinical settings require different

but consistent views of that information. Clinical medicine is inherently large and

3

4

complex and yet clear separations between medical specialties are not possible. Hence

anything we do to represent the detailed record of clinical medicine will also be large

and complex in one way or another. HEALTH VOCABULARY SYSTEM'S goal is to

make this complexity manageable. As the demand has grown for wider coverage and

new uses, the traditional techniques of coding and classification have been proven

inadequate. They tend to 'explode' in size and become unwieldy, inconsistent and

unmanageable.

Advanced clinical systems need more than just. terminologies, they need

computer systems which can provide a sophisticated and appropriate set. of termino-

logical services, allowing applications to be developed to use whatever coding system

or natural language, local circumstances demand. Clinical application developers

can therefore concentrate on the clinical tasks they must support, knowing that. not

only are the details of coding and classification abstracted for them but that they

have access to a powerful model of clinical information to support their dialogue

with clinical users. OOHVR addresses this challenge to develop computer systems

that provide powerful terminological services.

2.2 A Medical Vocabulary as a Semantic Network

Semantic networks are a technique for representing knowledge. As with other

networks, they consist. of nodes with links between them. The nodes in a semantic

network represent concepts. A concept is an abstract class, or set, whose members are

things that are grouped together because they share common features or properties.

The "things" are called instances of the concept. For example, Femur is a concept

representing the set of all femurs in the world; John Smith's left femur is an instance

of the concept Femur.

Links in the network represent relations between concepts. Links are labeled

to indicate which relations they represent. Links are paired to represent a relation

5

and its inverse relation. For example, the concept Femur is related to the concept.

Upper Leg with the relation has-location. The inverse of has-location is the relation

location-of, which relates Upper Leg to Femur.

2.3 Object Oriented Paradigm Choice for Storing Semantic Networks

Object Oriented Databases are good tools for conceptual modeling in infor-

mation technology. There are a number of reasons why the Object. Oriented

database paradigm is a good choice for modeling a vocabulary's semantic network.

In applications where external agents such as intelligent. information locators,

decision-support systems, and end-user browsers access the knowledge stored in

the vocabulary, transparent and concurrent. access to it is necessary[2]. OODB

systems provide the traditional access support. of Database systems and offer a "low

impedance" pathway [14] to the network. As a matter of fact, Object. Oriented

programming languages are increasingly used in the industry so an OODB can be

easily accessed through them. Declarative languages are also available to access

the OODB like OSQL in ONTOS case and a path language XSQL [8]. The typical

OODB system's repertoire of modeling constructs neatly captures many modeling

features of semantic networks used to describe a typical controlled vocabulary [9].

6

2.4 Modeling InterMed and MED into OOHVR

In this section, we first describe the general structure of a CMV. After that, we

go on to present our methodology for modeling such a system as an OODB. Our

representation of the InterMED, an existing CMV, as an OODB is called the OOHVR

and is currently available in the context of ONTOS.

2.4.1 Structure of a CMV

A common formalism used in building a. CMV is the semantic network, each of which

nodes in that context is a medical concept. All nodes can exhibit properties which

come in two kinds: (1) Attributes whose values are of data types (such as integer or

text. string), and (2) relationships whose values are references to other concepts in

the vocabulary. For a concept V, we will use P(V) to denote the set of all of V's

properties.

Each node in a CMV is defined with the attribute name that. holds the concept's

associated term (i.e., textual denotation). Note that, we distinguish the notions of

"concept" and "term." A (medical) concept is a node in the CMV, while a term is

simply a. string used as the node's name [6]. Sometimes a term is called the printable

value of a concept.

In [3, 4], a. set of design criteria (sometimes referred to as "Cimino's rules")

was proposed that all CMVs should satisfy in order to increase their utility. These

criteria are: Domain completeness, non-redundancy, synonymy, non-vagueness, non-

ambiguity, multiple classification, consistency of views, and explicit. relationships. As

an example, non-ambiguity requires that a given medical concept he represented by a

unique node even if it has several synonymous names. If multiple nodes representing

the same concept exist., then these should he folded into aim concept that holds the

primary name (i.e., the concept's term) and any secondary names (i.e., synonyms).

The related synonymy criterion, in fact, states that any concept must he accessible

7

via its known synonyms, all of which should be stored with the concept. Due to this,

each concept in the CMV is assumed to have the property synonyms whose value

is the entire set. of acceptable secondary names for the concept. Let us point out.

that it is strictly a design decision as to which name is primary and which others are

secondary.

The concept subsumption (IS-A) hierarchy is a. fundamental aspect of a. CMV.

Structurally, it is an acyclic collection of 1S-A links, each of which connects a

subconcept to a related superconcept. The multiple classification criterion requires

that the 1S-A hierarchy be a directed acyclic graph (DAG). In other words, it

must be possible for any concept to have multiple parents.

The IS-A hierarchy plays two important. roles in the vocabulary. First., it.

supports reasoning in the form of subsumption-based inferences. For example, if a

user asks if a patient is on antibiotics, then this can he answered in the affirmative

by consulting the CMV if we know the patient. is taking Tetracycline because the

concept Tetracycline 1S-A Antibiotic. The second aspect. of the IS-A hierarchy is

inheritance: A subconcept inherits all the properties exhibited by its superconcepts

(which themselves may have inherited the properties from their ancestors). For

example, the concept Sodium Test IS-A Test, and therefore the set of properties

of Sodium Test is a superset of the properties of Test. If a concept has multiple

parents, then it could potentially inherit properties from each of them. Another

assumption that we make following 13] is that the CMV satisfies the following rule:

Rule (Uniqueness of Property Introduction): A given property x can only he

introduced at one concept in the vocabulary.

Other concepts needing that, same property must be defined as descendants of

that concept and obtain the property via inheritance. Note that if there is a need

to introduce the same property p in several independent nodes, then an "artificial"

8

node can be created to define p, and the other nodes can be made children of this

new node [2].

A CMV is also taken to be singly rooted with respect. to the IS-A hierarchy.

We will refer to the root concept. as Entity. Of course, there is no loss of generality

because Entity can be artificially introduced into the vocabulary if need he. Note

that Entity is defined with the property name (that holds a concept's primary term)

and synonyms (that holds a concept's acceptable secondary names). Via inheritance,

all other nodes in the CMV have these properties, too.

2.4.2 Representation of a CMV as an OODB

2.4.2.1 Partitioning the CMV into Areas

Our modeling of a. CMV as an 00D13 is based on a structural abstraction of the

vocabulary network. The network is partitioned into groups of concepts such that

all the concepts in a single group have the exact same set ofproperties. We refer to

such groups as areas of the CMV [9]. The partitioning of the CMV into areas closely

follows the property introduction and inheritance patterns of the TS-A hierarchy,

and in fact can be done automatically in a top-down fashion according to a number

of different cases. In the statement of those cases, we will he using the following

definitions.

Definition (Property Set of an Area): For an area A, P(A) denotes the set of

properties of any (and all) of its constituent concepts.

Definition (Property-introduction Node): A concept at which one or more new

properties are introduced into the CMV is called a property-introduction node.

An example of such a. concept is the vocabulary's mot. Entity which, mom

other things, introduces the property name that is used to hold the term associated

9

with a given concept. Another example is the concept. Lab Diagnostic Procedure

which introduces the relationship has-specimen.

Definition (Root of an Area): A concept V residing in area .4 is called a root

of A if V has no parent in the CMV (i.e., V is the concept Entity, the root. of the

entire CMV) or V's parents all reside in areas other than A.

Definition (Property-Introduction Area): An area with a root that is a

property-introduction node is called a property-introduction area..

An example of a property-introduction area is the one to which Entity belongs.

Recall that Entity was defined to introduce the property name, among others.

Another is the area rooted at Lab Diagnostic Procedure.

It can be shown that. a property-introduction area always has exactly ono root.

(We will not prove this result here. Refer to [10] for the details.) The other kind

of area, called an intersection area (defined below), can have more than one root..

If an area has a single root, then the area is named after that concept.. The area

containing Entity as its root is called "Entity Area." The area whose root is Lab

Diagnostic Procedure is named "Tab Diagnostic. Procedure Area."

The partitioning of the network into areas was originally described as a two-

step process where the second step was used to overcome a problem introduced by

the first. step [9]. Below, we present the solution in recursive form, which serves

to unify the presentation. To reiterate, the process of identifying areas is top-down

starting at the level of the children of Entity. The base of the recursion is the special

case defining "Entity Area."

For a concept. V (not. equal to Entity), membership in an area is determined

by the following two major cases.

10

Figure 2.1 Four areas of a CMV

Case 1: V is a properly-introduction node.

In this case, V belongs to a new area that differs from all areas already

identified. In fact, because V is a property-introduction node, the new area is a

property-introduction area. As can be shown, V is the one and only root of LI&

new area, so the area. is designated "V Area." Three example property-introduction

areas, A Area, B Area, and C Area, are shown in Figure 2.1. The concepts

in the figure are represented as rectangles with rounded edges, while the IS-A

links are drawn as thick, unlabeled arrows directed from the subconcept to the

11

superconcept. The only concepts in those three areas with their names displayed

are A, B, and C, the respective roots. The node A introduces the attribute x;

B, the attribute y; and C, the attribute z. B also defines the relationship r

(drawn as a labeled, thin arrow) that is directed to C, which, on the other hand,

introduces relationship r', the converse of r.

Case 2: V is not a property-introduction node.

Here, there are two major sub-cases.

Case 2.1: V has a single superconcept TV.

In this situation, V is in the same area as 141. Recall that the CMV was

defined to be singly rooted with respect to the TS-A hierarchy. Therefore, every

concept (except for Entity) has at, least one superconcept.

Case 2.2: V has multiple superconcepts W1 , W2 , … , Wn (n >1).

Here, again, there are two additional sub-cases. Before stating these, we will

need the following definition.

Definition (Intersection Node): Let V be a concept having multiple super-

concepts W1 , W2 , … , Wn (n > 1). V is called an intersection node if the following

condition holds: Vi: 1 ≤ i ≤ n, P(V) ≠ P(Wi). That is, the set of properties of V

differs from all of its parents' sets of properties.

We use the designation intersection node became V lies at the junction of (at

least) two independent, inheritance paths. With this now kind of node, we also have:

Definition (Intersection Area): An area with a root that. is au intersection node

is called an intersection area.

Case 2.2.1: V is not an intersection node. That is, V has the exact same set of

properties as at least one of its parents, say, Wi.1 1

Formally, we can slate this condition as: 	∃i: 1 ≤ i ≤ n such that P(V) = P(Wi).

12

In this case, V is in the same area as 	Note that all other parents with the

same set of properties as W1 are in Wi's area as well.

Case 2.2.2: V is an intersection node.

Then V belongs to an area that differs from all the areas of its parents. By

definition, V is a root of its area., and hence the area is an intersection area. It, is

possible that this intersection area might, already have been identified by a previous

application of Case 2.2.2, so it. is necessary to scan all existing (intersection) areas

to determine V's membership. If P(V) = P(A) for some area .1 already identified,

then V is a member of A. Otherwise, V defines a new intersection area that differs

from all known areas. Since V is the first, concept in this new area, it is named "V

Area."

As we mentioned, unlike a property-introduction area, an intersection area can

have more than one root. This is demonstrated in Figure 2.1 by the intersection area

called "D Area" which contains four concepts, D, E, F, and G. Its roots are D and

E, both of which have two parents, one residing in 13 Area and the other in C Area.

We have assumed that the concept D was identified as a member of this area first,

and hence the area was named I) Area. If E had been examined before D, then the

area would have been designated E Area. The concepts F and C are members of D

Area. by virtue of the fact that they are children of D and I?, respectively. F and

G are not, roots of D Area.. It will be noted that none of the concepts in I) Area

has any intrinsic properties. All properties are inherited. It is lint. possible for an

intersection area to have as one of its nodes a property-introduction node since such

a. node would define a new area with new properties.

Before continuing, let us summarize, without proof, a few important properties

that hold for areas.

13

L An area is either a property-introduction area or an intersection area. That is,

there are no other kinds of areas.

2. All areas have at least one root.

3. A property-introduction area has exactly one root..

4. An intersection area can have multiple roots.

5. An intersection area cannot contain a property-introduction node.

2.4.2.2 OOHVR Schema

In the OODB-version of the vocabulary, which we refer to as the OOHVR, each

concept is represented by a unique object. The OOHVR's schema is constructed

automatically after the identification of all areas. There is a one-to-one corre-

spondence between the areas in the CMV and the classes in the OOHVR's schema.

That is, one class is defined to represent one area. The extension of a given class

(i.e., its entire set of instances) is identical to the set of concepts in the corresponding

area in the CMV. Due to this, we refer to the classes in the OOHVR. schema as urea

classes. If the area happens to be a property-introduction area, then we have a

property-introduction class. Likewise, for an intersection area, there is an inter-

section class. Let us point out that, in an OODB schema, classes are defined for the

purpose of describing a set of objects whose structure and behavior are the IMMO.

This is indeed what is done in our mapping. The instances of one clans are exactly

all those concepts which reside in a single area which, by definition, all

concepts exhibiting identical properties.

The intrinsic properties of a property-introduction class are defined to be

exactly those introduced by the root concept of its corresponding area. In addition,

all the concepts in a property-introduction area must have the properties inherited

14

Figure 2.2 The area. classes for the areas in Figure 2.1

by the root from its parent(s) in the CMV. To capture this situation, the property-

introduction class is placed in subclass relationships with those other area classes to

which the parents of the root belong. In this way, the property-introduction class

obtains all necessary properties: Some are defined intrinsically, while the others are

inherited from other classes. It should he noted that even though the root. of a

property-introduction area. contributes both its name (via the area name) and its

intrinsic properties to the area class definition and in this sense the class itself

denotes that root concept- there still exists an object that. directly represents the

root in the extension of the class.

In Figure 2.2, we illustrate the above by showing the classes, A_Area, B_Area,

and C_Area, that respectively represent the corresponding areas from Figure 2.1. The

classes are boxes with their names and attributes written inside. The labeled arrows

are the ordinary relationships. The subclass relationship is drawn as a thick arrow

pointing from the subclass to the superclass. The ellipses indicate the omission of the

15

subclass relationships that A_Area and C_Area would have in an expanded drawing.

All property-introduction classes--and, indeed, all intersection classes--have at least

one subclass relationship. The only exception to this is the class Entity_Area which

is the root of the OOHVR. schema.

Since an intersection area, by definition, does not contain any property-

introduction nodes, and, in fact., all properties of its concepts are obtained via

inheritance, an intersection class does not introduce any properties of its own.

Instead, it is defined to be a subclass of all other area classes (potentially inter-

section classes themselves) which contain one or more parents of its root.(s). Again,

an intersection area may have more than one root.. Let. us also note that an inter-

section class always exhibits multiple inheritance, i.e., it inherits from two or more

superclasses.

Referring to Figure 2.2 again, we see the intersection class D_Area representing

D Area. D_Area is a subclass of both B_Area and C_Area because its roots (D and

E) have parents residing in both those respective areas. As can he seen, D_Area has

no intrinsic properties defined for it.

The final aspect of the mapping which deserves special care is the IS-A hierarchy

of the CMV. It is appropriate to view the TS-A link as a generic property, one

featured by all concepts, aside from the ordinary attributes and relationships. Indeed,

all concepts can-- and indeed must have some IS-A connections to other concepts

(except for Entity). Therefore, in the original network, the root concept. Entity

can be considered to he endowed with the multivalued relationship "IS-A" that

provides all nodes with the capability of making superconcept. connections to other

concepts. In the mapping, this translates to the inclusion of the multivalued, reflexive

relationship IS-A in the definition of the class at the top of the schema, namely, the

class Entity_Area. In this way, all concepts (objects) in the OOHVR. can have their

required IS-A connections, too.

16

It is important to note that. the CMV's IS-A hierarchy is different from the

subclass hierarchy of the OODB schema, though, to be sure, the latter is derived

from the former. An IS-A link between two concepts in the CMV indicates that. one

is a subconcept (or, vice versa, a superconcept) of the other. A subclass connection

between a pair of area classes in the schema denotes the fact that the set of properties

exhibited by the concepts of one area is a superset. of the properties exhibited by the

concepts in the other. Of course, as we have just discussed, the CMVs IS-A hierarchy

does appear in its entirety at the instance-level of the OOHVR with respect. to the

relationship IS-A appearing at. Entity_Area.

In Figure 2.3, we show the entire OOHVR schema which comprises 39

classes (29 property-introduction classes, 10 intersection classes) and 50 subclass

relationships. The schema. was generated automatically by software described in [10].

Overall, it. provides a. structural abstraction of the underlying network of the CMV.

Concepts with like properties are grouped into areas which in turn are modeled

as object classes; the concepts themselves become the objects of the OODB We

refer to this kind of schema as a network abstraction schema H. It is important

to point out that. this schema represents a substantial reduction in sive from the

original CMV. The InterMED contains about 3,000 concepts, while the

schema. has merely 39 area classes—approximately a 75-to-1 reduction. This ratio

is high since, by the "Uniqueness of Property Introduction" Rule, each property

can be introduced only at one node in the CMV Thus, the number of different

properties is an upper-bound on the number of property-introduction arena and their

corresponding classes in the schema.

The schema can aid in the comprehension of the vocabulary and help

a vocabulary administrator uncover problems in the modeling [7]. The same

methodology was also carried out with respect to the entire MED which contains

17

Figure 2.3 OOHVR Schema

18

approximately 46,000 concepts. There. the schema comprised about. 90 classes, and

the ratio was about. 500-to-I.

2.5 Modeling CHREF-I and CHREF-H into OOHVR

2.5.1 CHREF-I

The National Drug Code system was established as an essential part of an out-of-

hospital drug reimbursement. program under Medicare. The purpose of NDC was to

provide a universal product. identifier for prescription drugs. It. contains information

about most frequently prescribed drugs.

Figure 2.4 CHHEF-I schema structure

The Directory is originally composed of four different sections indexed by

different, keys. We analyzed the directory data taken front a hospital. The Drug

Classification provided the basis to build the schema. The classification places the

drugs and their NDC codes into a hierarchical structure. We took that, structure as

our structural schema, and name the database CHREF-I. The schema contains a four

19

level hierarchy, the root of which is Drug and the second level is major drug classes,

which places drugs in therapeutic or pharmacological classifications. The major

classification is further divided into minor classes which contain actual instances of

drugs. In the fourth level of the hierarchical structure, classes exist which actually

are inheriting from more than one class in the third level. In Figure 2.4 the general

sketch of the schema is shown.

2.5.2 CHREF-II

After analyzing the data in the NDDF that. we recieved from First. Data Banlc for

NDC in the form of a relational database, we found that. drugs can also he classified by

their HIC (Hierarchical Ingredient Code) which actually maintains the Drug classi-

fication according to their ingredients.

Figure 2.5 CHREF-II schema structure

This hierarchy was also maintained as a three level tree. To map the classifi-

cation to OOHVR we built a four level schema, starting from DRUG as the root.

The second level represents the Organ system, the third level is the pharmacological

20

class of the drug and the fourth level represents the therapeutic class. No intersection

classes were found in this hierarchy since it is a tree. We built the schema under the

name CHREF-II.

The next chapter will present detailed discussions about the design of pre-

processors for all of the above mentioned Schemas.

CHAPTER 3

PREPROCESSOR DESIGN AND IMPLEMENTATION

3.1 	Practical Realization of the OOHVR Implementation

Our method of mapping a controlled vocabulary onto an object-oriented database

can be applied not only to a medical vocabulary, but to any semantic network-based

vocabulary, as long as the "uniqueness of property introduction" rule is satisfied.

For the medical domain we used in our research, OOHVR can be built from scratch.

Existing vocabulary sets, e.g. InterMED or MED, can be loaded into the OOHVR

as well.

3.1.1 The Need for the OOHVR Generator

For loading existing vocabularies which are usually stored in different formats, the

preferred approach would be to design a universal loader. Otherwise, for each

vocabulary format, we would have to write a corresponding program to load it into

the OOHVR We approximated the universal loader, which we call the 0011V1?

generator, by modular design. For loading a different format vocabulary, only

one program component, the Preprocessor, in the OOHVR generator mods to he

rewritten and the rest of the program modules can be reused.

The MED and InterMED are too large, and the OOHVR schema is too complex,

to consider creating the schema and the data definition language (DDT) statements

for generating it by hand. Rather, it is necessary to use a program that transforms

the MED or InterMED into an appropriate set of DDT, statements. Even if one would

consider creating the schema manually, it is expected that the database and even the

schema will change on a regular basis, as the MED and InterMED are constantly

growing. In addition, the task of dealing with the schema is made more difficult by

the length of many of the class names. Currently, the longest class name has '17

22

Figure 3.1 Schematic Figure of the whole system

characters and as such is not. easily retyped. Moreover those class names contain

complex medical terms which again are not easily retyped.

Some of the concept names of the InterMED contain special characters such as

"/","(",",", etc. which are not permitted in C++ class names. Dealing consistently

with those is much easier for a generator than for a human programmer. This adds

another argument for the need for the OOHVR generator. In the next, subsection,

we will describe the format of the input data. Then we will advance to the OOHVR.

generator functionality.

23

Figure 3.2 Schematic Figure of the Pre-processor

3.1.2 Preprocessor Description

The preprocessor is the part, of the OOHVR generator which Pre-process the

data in different, formates and converts it. into a common format from where the

OOHVR generator can generate code for schema loading. Preprocessor takes schema.

dependent; files as input and generates three files which will be used for generating

schema code by the OOHVR generator. Figure 3.2 shows the process. Last section

summarizes the layout of those files. Every preprocessor also generates three tiles

which are used for creating instances of objects.

3.2 Processing Details

3.2.1 Implementation of Intersection Classes in ONTOS

If one draws the OOHVR as a graph then this graph has many nodes with several

parents. An example of a class with two parents is the Chemical_Area. The

preprocessor is complicated by the occurrence of a class with several parents. The

actual difficulty is not caused by the two parents, but by any common ancestor of

those two parents. However, this always happens in the OOHVR schema due to

the existence of the class Entity_Area as its unique root. Since Entity_Area is a

24

Figure 3.3 An example of multiple-inheritance in the InterMED

persistent class, all its descendants are also persistent classes which we want because

ONTOS uses inheritance to make classes persistent. In Figure 3.3, Chemical_Area

has two parents which have a common parent Entity_Area. C++ permits two

solutions for such cases. In one solution, the structures corresponding to the

common ancestor are duplicated. This leads to considerable waste of memory.

For InterMed, we estimated that the waste of memory is as high as 60% for the

Acetaminophen_Codeine_Tablet_Preparation_Area. The other solution makes use of

the C++ virtual superclass construct. Unfortunately, by the syntax of C++, we

cannot instantiate any virtual class, which means Entity_Area cannot have any

instances and this is not true in the OOHVR.

To deal with this problem, we have constructed a "diamond eating algorithm"

which eliminates paths that have common ancestors. The details of the algorithm

are given in the next section.

Another problem that we had to solve is as follows. Every relationship is

introduced in a certain class and points to a particular class which is called the target

25

Figure 3.4 The result. of applying the diamond cutting algorithm to Figure 3.3

area. If we have a relationship, R, which uses Etiology_Agent_Area as the target

class then the extension of ChemicaLArea should contain the candidate targets.

However, ChemicaLArea is not, pointing to Etiology_Agent—Area from the DBMS's

point of view. Any references to the instances of Chemical_Aren will 1w considered

an error. Our solution for this problem is to change all the relationship target

areas to the root class, Entity_Area. Luckily we can store this information in the

shadow meta-schema. Any setup of relationships will have no problems from the

database management system's point of view. The correctness of the target arena

for relationships is ascertained by checking the shadow meta-schema information.

3.2.2 Diamond Cutting Algorithm

As discussed earlier the algorithm basically eliminates paths that have common

ancestors. The information loss which may happen is avoided by creating a

copy of the class that has become unreachable by this operation. We call this

copy "primed class" or "shadow class" of a node. For example, in Figure 3.3,

26

Etiology_Agent_Area is initially a parent. of Chemical_Area. After applying the

algorithm, Etiology_Agent_Area_P becomes the shadow class of Etiology_Agent_Area

and a "primed parent" of Chemical_Area.

The shadow class has no connection to the persistent superclass, and therefore

the original problem is eliminated. It also has all the properties of the node it is

copied from, so that the node with multiple parents is till inheriting the right set, of

properties as shown in Figure 3.4. As the shadow class is never instantiated, it does

not need to be persistent.

Computationally, whenever the edge between an area and one of it's parent is

cut, we transformed that. parent. from the parent-set. of the class to its primed-set.

We also add ancestors (persistent as well as non-persistent) of that primed parent to

the primed-set of the intersection class excluding the root. of the diamond.

For instance, in Figure 3.5, when we cut the edge between G and F, to prevent.

G from losing properties that were introduced in F we make a copy of the class

called F' and make it a parent of G. By cutting the edge we lost the properties of E

and A. So, we make a copy of E too and make it a parent. of G. Since A is root of

the diamond, it's properties will be inherited via the other path through D and so

we don't need to duplicate it.

The same solution is used whenever intersection classes occurs in any of the

schemas. As mentioned in the last chapter we come across with intersection classes

in InterMED, MED and CHREF-I. Hence the Diamond cutting algorithm was used

in their pre-processor.

3.2.3 The InterMED and The MED

Due to similarities in the source of MED and InterMED we have, decided to put

the pre-processor information for them together. The InterMED and MED have the

same disk-resident format consisting of two files: slot file and flat file. The MED

27

Figure 3.5 Advanced diamond cutting

is much larger in both slot file and flat file because the MED has over 16 times 118

many concepts as the InterMED. In this section we simply use the smaller one, the

InterMED, as the example to discuss the process of generating the OOHVR. The first

file, the slot file, describes all the attributes and relationships types of the InterMED.

Every attribute (or relationship type) is described by one line in the slot file. As of

this writing, there are 52 lines in the slot file. Figure 3.13 (a) shows the first couple

of lines of the slot file. The fields in the slot file are separated by commas. The first

field is the slot number. The second field is the slot name and the third field is the

28

concept number which introduces this property. Attributes have a string in the last

field while relationship types leave that field empty. The remaining four fields are

irrelevant to this discussion.

0,"MED-CODE",1,-1,0„"IDENTIFIER."
1,"UMLS-CODE",1,-1,0„"IDENTIFIER."
2,"NAME",1 ,-1,0„"SYNONYM"
3,"DESCENDANT-OF",1,0,0,-2,
4,"SUBCLASS-OF",1,0,01-1,
5,"SYNONYMS",1,-1,0„"SYNONYM"
6,"PRINT-NAME",1,-1,0„"SYNONYM"

1,1,"T071"

1

 ,2,"ENTITY"
1,4,
1,5,"MEDICAL ENTITY"
1,6,"Entity"
1,7,"The class of all concepts
the collaborative vocabulary knowledge"

7,"DOCUMENT.ATION",1,-1,0„"LONG_STRING" 1,8,""
8,"SNOMED-CODE"11,-1,0„"IDENTIFIER" 1,23,"1"

9,"HAS-RESULT" ,3,1,1,10, 1,49,""
10,"RESULT-OF",28,0,1,9, 2,1,""
11," HAHAS-SPECIMEN" ,4,1,1 ,12, 2,2,"PROCEDURE"
12,"SPECIMEN-OF",29,0,1,11, 2,3,1
13,"SUBSTANCE-MEASURED",5,1,1,14, 2,4,1
14,"MEASURED-BY",30,0,1,13, 2,5,""

15,HAS-PRECISION",5,1,1,16,

(a) InterMED.slot file

2,6,"Procedure"

(b) InterMED.flat. file

Figure 3.6 The InterMED source files

The second file, the flat file, describes all the details of the data. in the InterMED

and currently contains over 43,000 lines. Figure 3.13 (h) shows the first couple of

lines of the flat file. Essentially, an entry in the flat file consists of three elements.

The first element is a concept. number, a number representing one of the concepts

in the semantic network. The second number is a slot. number which stands for one

of the relationship types or attributes and is therefore an index into the slot file.

The third element may be another number (for a different, concept) denoting the

referent of a relationship. For an attribute, the third element is a. primitive value,

represented as a string type. For instance, the line 2,2,"PROCEDURE" means that

the concept 2 is named "PROCEDURE" and the line 2,4,1 means that the concept 2,

29

PROCEDURE, has the "SUBCLASS-OF" relationship (4) to concept 1, ENTITY.

The MED has 160 lines in its slot file and around 950,000 lines in its flat file, and is

constantly growing. More details are irrelevant. for this paper and will be omitted.

The Preprocessor uses these two files to generate three types of intermediate

files: DBLOAD files, instances_classes file, and new flat files. There are four

DBLOAD files, one instances_classes file, and two new flat files. The DBLOAD files

contain all the information necessary for generating class declarations for the area.

classes. They are sent to the Program Generator which generates the necessary DDL

statements for generating OOHVR, as well as Concept Creator, and Property Loader.

The instances_classes file contains the information for instantiating all concepts and

is used by the Concept Creator. The new flat. files contain the information for

loading the property values and are used by Property Loader after Concept Creator

instantiates all concepts.

The spirit of the Object Oriented paradigm has been adopted even while pre-

processing the data files. Two major entities in our database are terms and areas

so they have been defined as classes in C++ program. The area class is made a

subclass of the term class because it is a superset of term class. A set. class was used

to maintain the set of parents and children of a term and area for that. mySet.h.

The library used was previously developed by 11.. Singh for developing the InterMED

pre-processor. Using a. set as a container of parents, slots, ancestors and primed-sets

etc. provides an ability to apply powerful mathematical set operations like Union,

Intersection and Difference etc.

We have differentiated between Area and Intersection Area in the last chapter

so the first task of a pre-processor is to identify the list of Areas and Intersection

Areas. The list of Areas can easily be generated from MED.slot or InterMED.slot

since it contains the information about the term where each attribute or relationship

was first time introduced. The third column of slots contains the term number where

30

the property was first time introduced. The function Create_Areas_From_Slotsfiles

in the program goes through each and every slot in the slot file and generates the

list of Areas as an array of Area Objects and returns the count of total areas found.

Finding Intersection Areas is a difficult task, since the source files doesn't.

contain the information directly. The fact that there can be multiple intersection

areas having exactly same set of slots lead us to maintain another file called inter-

section file. The file contains the root. of the intersection areas and their parents.

2, BODY SUBSTANCE, 2672, 50
43, CHEMICAL, 50, 135

1080, WHITE PIEDRA , 1067, 2691
1179, CHARACTER STRING RESULT, 1178, 32431
1712, ALLEN SERUM AMYLASE MEASUREMENT, 144, 2248
2315, ELECTROCARDIOGRAM, 2314, 24466
2548, HEART DISEASE, 10016, 1178
2672, PHYSICAL ANATOMIC ENTITY, 14, 32291
2691, MICROORGANISM, 315, 135, 50
10014, PULMONARY COLLAPSE, 21878 , 10016

10046, PYOPNEUMOTHORAX , 1067, 10014
10055, CALCIFICATION OF PLEURA, 10016, 35232

Figure 3.7 intersection_info a snapshot.

The function Add_InterA reas_FromInterfile reads the intersection file and adds

the intersection areas in the array of Areas. The next step is to maintain the hierarchy

of Areas from the Area Array. The function Create_Ilierarchy takes the array of areas

and generates the set of parent and children areas for each area i.e. makes the whole

hierarchy. If an Area X contains all the properties of area. Y plus the properties

introduced by itself, then Area X is a child of Area Y. This logic is used to generate

the set of parent and child areas of au area while for the intersection Areas the

information form the intersection file is used for making the hierarchy.

31

After making the hierarchy of Areas in memory as an array of area objects, the

output files can be generated. Each area object contains the set. of parents, children,

and properties etc. Create_DBLOADx (where x can be 0,1,2 and 3) functions

generates corresponding DBLOAD files. A function INST is designed for generating

instances of the Areas.

3.2.4 Intermediate File

Many intermediate files are generated for MED, InterMED preprocessor use.

Following is the information and format of those files.

The names of files are

1) NewInterclasses attrib
2) inter_info
3) MED .names
4) Term . names
5) MED . slots

Description of files:

1) NewInterclasses .attrib
This file contains the first two fields of the actual flat
file only fer Intersection Areas.

Format :

medcode slot_id

Example :

1 1
1 2

1. 	4
1 5
1 6
1 7
1 8
1 50
1 51

32

2 1

How to create the file:

The file can be created by using the program gen_interinfo.cpp

Which takes the area hierarchy and NEWMED from the MED.latest

directory as input File and generates this file.

2) inter_info :

The file contains the area information.

Format :

med_code, Name , parent1, parent2, parent3, .

Example:

2, BODY SUBSTANCE ,50,2672

14, ANATOMIC ENTITY ,1

43, CHEMICAL 350,135

49, SPECIMEN

50, MEASUREABLE ENTITY ,1

75, MENTAL OR BEHAVIORAL DYSFUNCTION ,76,21762

76, DISEASE OR SYNDROME ,1

83, LABORATORY OR TEST RESULT ,1

93, LABORATORY DIAGNOSTIC PROCEDURE ,94

94, DIAGNOSTIC PROCEDURE ,1

135, ETIOLOGIC AGENT ,1

144, CPMC LABORATORY DIAGNOSTIC PROCEDURES ,93

315, CULTURE RESULT ,35878

1035, CULTURE PREFIX RESULT ,315

TO CREATE THE FILE :

The file can be created by using the program gen_interinfo.cpp

Which takes the area hirarchy and NEWMED from the MED.latest

directory as input File and generates this file.

3) MED.names & 4) Term.names

33

Files contains names of all terms and Areas. Only difference is

in MED.names all "(",")","-" etc. are converted to "_".

FORMAT:

med_code 	names

Example:

1 MEDICAL ENTITY
2 BODY SUBSTANCE
3 BODY SPACE OR JUNCTION
4 EMBRYONIC STRUCTURE

5 CONGENITAL ABNORMALITY
6 ACQUIRED ABNORMALITY
7 ANATOMIC SYSTEM
8 BODY PART, ORGAN, OR ORGAN COMPONENT

9 TISSUE

10 CELL
TO CREATE THE FILES :

gen_names.cpp program can be used which takes NEWMED

as input and generates both files.

5) MED.slots
It is the slot file from which all "," and " (QUOTS) are deleted.

FORMAT:

slot_code 	slot_name terra unknown Attrib-Relation

Example:
0 MED-CODE 1 -1 0 IDENTIFIER

1 UMLS-CODE 1 -1 0 IDENTIFIER

2 NAME 1 -1 0 SYNONYM
3 DESCENDANT-OF 1 0 1 -2

4 SUBCLASS-OF 1 0 0 -1
5 SYNONYMS 1 -1 0 SYNONYM
6 PRINT-NAME 1 -1. 0 SYNONYM

7 HAS-PARTS 1 1 1 8

8 PART-OF 1 0 1 7
9 CPMC-LAB-PROC-CODE 144 -1 0 IDENTIFIER

10 SERVICE-CODE 144 -1 0 IDENTIFIER

11 CPMC-UNIT-NAMES 144 -1 0 NAME

12 CPMC-LAB-TEST-NAMES 2248 -1 0 NAME

13 SPECIMEN-OF 49 0 1 14

14 SPECIMEN 93 1 1 13

34

CODE 	 CLASSIFICATION

0100 	 ANESTHETICS/ADJUNCTS
0117 	 ANESTHETICS, LOCAL (INJECTABLE)
0118 	 ANESTHETICS, GENERAL
0119 	 ANESTHESIA, ADJUNCTS TO
0120 	 MEDICINAL GASES
0121 	 ANESTHETICS, TOPICAL
0122 	 ANESTHETICS, OPHTHALMIC
0123 	 ANESTHETICS, RECTAL
0200 	 ANTIDOTES
0281 	 ANTIDOTES, SPECIFIC
0283 	 ANTIDOTES, GENERAL
0285 	 ANTITOXINS/ANTIVENINS
0286 	 ANAPHYLAXIS TREATMENT KIT
0300 	 ANTIMICROBIALS
0346 	 PENICILLINS

Figure 3.8 A drugclass_table Snapshot

TO CREATE FILE:

gen_medslots.cpp program can be used to get this file.
The program takes NEWSLOTS as input.

3.2.5 CHREF-I

To maintain similarities in preprocessor code we designed same type of function

for CHREF-I as well. Writing a pre-processor for CHREF-I is relatively a simple

task due to lower complexity of it's schema. The drugclass_table contains the infor-

mation about each drug. The program reads the drugs information from this file and

maintains an array of Areas. An Area with UNKNOWN_NDC_CLASSIFICATION

is created for the NDC-codes which do not fall into any classification.

35

1032 1265
1032 1479
1032 1568
1032 1724

1032 1940 1941
1032 1941
1032 1947
1033 1479

1034 1040
1034 1041

1034 1265
1034 1479

1035 1041
1035 1041 1371

Figure 3.9 intersection_classes snapshot.

We maintain an "intersection_classes" file for the intersection classes. The next.

step of the program reads the information about, the intersection classes from the

file and adds them in the array of Area Objects. Figure 3.9 shows one intersection

class per line. The file doesn't give names to the classes so we build the names of

intersection classes by concatenating the names of all parents classes elan intersection

class. The MakeHierarchy function makes the hierarchy by adding the values in the

parents and children sets. The hierarchy is built on the biases of the code. E.g. if

the last. two digits of the code are 00 that means the class represents the major drug

class while if the last two digits are not 00, the class belongs to the third level of the

schema hierarchy. In Figure 3.8 code 0100, (120(1 and 0300 represent major classes

while all other nut having the last two digits (10 belong to the minor classification.

The fourth level of the schema hierarchy is the intersection classes. GenerateDbloads

generates all the output files while MST generates the files for creating instances.

36

1 A

2 Al

3 AlA

4 A1B

5 A1C
6 A1D

7 A2

8 A2A
9 A4

Figure 3.10 hic_class snapshot.

3.2.6 CHREF-II

CHREF-H preprocessor is simpler than other preprocessor. Since are no inter-

section classes in CHREF-II schema. we no don't. have to apply the diamond cutting

algorithm. It just takes the MC hierarchy i.e. represented by the code of the classes.

f a. class has only one character code than it belongs to major classes i.e the second

level classes. The hic_class file contains the list of all codes and their class numbers.

The file tblHic.txt contains the names of those drug classes. The program reads the

hierarchy from the hic_class file and the name of the drug classes from the tblHie.txt

file and generates the DBLOAD_X files. For instances the INST function takes

attributes files input and generates inst.out, alt and o3 files.

3.3 Output Files Format

3.3.1 DBLOAD_X

There are four DBLOAD files generated by the preprocessor. All files have the same

structure. All concept has their attributes and relationships, in the DBLOAD files

in the following format.

37

MEDICAL_ENTITY_AREA
0
7
MED_CODE
UMLS_CODE
NAME
SYNONYMS
PRINT_NAME
MAIN_MESH
SUPPLEMENTARY_MESH
5
DESCENDANT_OF MEDICAL_ENTITY_AREA
SUBCLASS_OF MEDICAL_ENTITY_AREA
HAS_PARTS MEDICAL_ENTITY_AREA
PART_OF MEDICAL_ENTITY_AREA
SUPERCLASS_OF

Figure 3.11 DBLOAD_X snapshot

CONCEPT NAME
Number of Subclasses
Names of subclasses each on different line.
Number of Attributes
Name of Attributes
Number of Relationships
Name of relationships

Above entry shows that ENTITY_AREA has 0 number of parents, 7 attributes

which are listed on next 7 lines, has 5 relationships listed with target classes.

The DBLOAD_0 file contains the area list before applying the diamond cutting

algorithm, while DBLOAD_1 contains the area list after the diamond cutting

algorithm. DBLOAD_2 contains list of shadow areas. DBLOAD_3 contains all the

areas in DBLOAD_O but areas also contain the properties they inherit from their

parents.

38

SINGLE_RESULT_LABORATORY_TEST_AREA CHEMISTRY TEST
SINGLE_RESULT_LABORATORY_TEST_AREA INTRAVASCULAR CHEMISTRY TEST
SINGLE_RESULT_LABORATORY_TEST_AREA WHOLE BLOOD CHEMISTRY TEST
SINGLE_RESULT_LABORATORY_TEST_AREA PLASMA CHEMISTRY TEST
SINGLE_RESULT_LABORATORY_TEST_AREA SERUM CHEMISTRY TEST
SINGLE_RESULT_LABORATORY_TEST_AREA INTRAVASCULAR SODIUM ION TEST
SINGLE_RESULT_LABORATORY_TEST_AREA WHOLE BLOOD SODIUM ION TEST
SINGLE_RESULT_LABORATORY_TEST_AREA PLASMA SODIUM ION TEST
SINGLE_RESULT_LABORATORY_TEST_AREA SERUM SODIUM TON TEST
SINGLE_RESULT_LABORATORY_TEST_AREA IMMUNOLOGY TEST
SINGLE_RESULT_LABORATORY_TEST_AREA COAGULATION TEST
SINGLE_RESULT_LABORATORY_TEST_AREA CELL AND ARTIFACT TEST
SINGLE_RESULT_LABORATORY_TEST_AREA MICROBIOLOGY TEST

Figure 3.12 inst.out snapshot.

3.3.2 inst.out, o12 and o3

These files are used to generate instances of the areas. inst.out contains the name

of the area an object belongs to and the value of its key field. Each line of inst.out.

represent an object. The format of the line is

<AREA NAME> 	 <KEY FIELD VALUE>

In Med and interned the keyfield is the name of the concept while in CHREF-I

and CHREF-II it is the NDC-CODE of the drug.

o12 and o3 contain the values of other attributes of the objects. o12 contains

the name of the attributes awl Object identifier.

<NAME OF AREA> 	<Object Identifier>

Each line in o12 has a corresponding line in o3 which contains the value of the

attribute.

<Value of the attribute listed in o12 file>

39

UMLS_CODE ENTITY 	 T071
NAME ENTITY 	 ENTITY
SUBCLASS_OF ENTITY
SYNONYMS ENTITY 	 MEDICAL ENTITY
PRINT...NAME ENTITY 	Entity
DOCUMENTATION ENTITY 	The class of all concepts
SNOMED_CODE ENTITY 	1
CPMC_CODE ENTITY 	0
CATEGORY_OF ENTITY
CATEGORY_TYPE ENTITY
SUPERCLASS_OF PROCEDURE SPECIMEN COLLECTION PROCEDURE

Figure 3.13 The InterMED source files

CHAPTER 4

DESIGNING A VOCABULARY CREATOR

4.1 Introduction

Development and research in the medical industry produces new concepts and terms

in the subject.. An interactive tool is necessary to allows a medical expert. to add

new concepts and relationships to an existing vocabulary as well as to create a new

vocabulary from scratch.

When a user starts creating a vocabulary he/she starts by defining a set of

terms/concepts. Then he/she adds relationships and attributes to the concepts,

which leads him to a semantic model or a conceptual representation of the subject

knowledge. In the process a user has to face a number of challenges. lie has to create

and organize a large amount. of concepts. He has to assure that each concept. contains

the attributes and relationships necessary to represent that concept in the subject

field. To accomplish this the user must have a solid grasp of the overall 8tructure of

the vocabulary.

A Vocabulary usually contains at. least hundreds of concepts and can grow up

to tenths of thousands. Remembering the name of just a few dozen of these and the

relationships between them may be troublesome. With the increase of vocabulary

size, comprehending time structure becomes almost impossible. A graphical view

of the vocabulary can provide an easy to visualize tool for the vocabulary creator.

That. is why we decided to provide a. graphical user interface for our IVC (Interactive

Vocabulary Creator).

As discussed earlier the vocabularies should provide an easy to access knowledge.

The internet is a way which can provide easy and world wide access to knowledge.

We decided to use WWW as a medium of distribution for our IVC. Section 4.2

provides background of WWW systems. Section 4.3 gives a brief idea about which

40

41

are the essential features of IVC. Sections 4.4, 4.5 and 4.6 deals with design issues

in details.

4.2 Background of WWW

The World Wide Web architecture was developed by Berners-Lee [13] and is based on

a generic object-oriented protocol, the Hypertext, Transfer Protocol (HTTP). This

protocol manages requests in the form of a Uniform Resource Locator (UR.L) and

delivery of information as Multipurpose Internet. Mail Extension (MIME) objects.

The most common objects delivered by the HTTP protocol are documents written

in the Hypertext Markup Language (IITML), a subset of the more general Standard

Generalized Markup Language (SGML) [1]. HTML adds structure to ASCII text.

documents, and WWW browsers (such as Mosaic or Netscape) use this structure

to display the text in a graphical manner. Beyond designating the structure of the

documents, HTML provides a syntax for embedding graphics, images, sounds, and

video, as well as hyperlinks to other documents [13].

One of the main tenants of the HTTP protocol is that it is stateless: after

the HTTP server returns the requested information, the session is terminated. No

information about the state of the user is maintained. Because many interactive

processes require maintenance of state information, developers have maintained state

information in hidden fields of HTML forms or in the databases resident on time server

[5].

To support the processing of user input, the Common Gateway Interface (CGI)

standard was developed. This standard assures that WWW browsers, HTTP servers,

and external processes communicate musing a standard set of parameters. When a

hyperlink or HTML form is used to initiate a CGI process, the HTTP server receives

the request, starts the CM process with the parameters submitted by the user,

waits for the output of the CGS, and delivers the output to the browser. The CGI

42

application can use the supplied parameters to perform almost. any task: make a

database query, annotate a document., or send an electronic mail message.

Another drawback of HTML is, one can not design user interfaces for which

complex client side computation and display is required. Java provides the solution

to this limitation. Java has the capability of virtually handling any kind of complex

interface. We decided to use Java based client, for the Creator. To make the data

persistent Java still needs some interface to talk to the server. We used CGIs as our

interface. Other possible interfaces are discussed in chapter 5.

4.3 Essential Features of a Vocabulary Creator

A vocabulary creator should have the following features as a minimum.

• Add/Delete/Edit a Concept to the vocabulary.

• Add/Remove/Edit an attribute of a concept.

• Add/Remove/Edit values of the attribute.

• Add/Remove/Edit Relationships in a concept.

• Add/Remove/Edit Relationships values.

Other features includes a good search mechanism, which allows a user to

retrieve information from the vocabulary.

• We started to develop a creator initially with the essential requirements.

4.4 System Architecture

The architecture of the WC to composed of five components

1) A Java Based WWW Browser

2) An HTTP Server

43

Figure 4.1 Architecture of IVT

3) CGI Mediator

4) APIs

5)
OOHVR

The following steps are followed in response to a user's request.. A user activates

a request e.g. a. new Concept. addition, from the Java based browser. The browser

activates the CGI mediator on the HTTP server by using the HTTP protocol. CGI

Mediator which calls the corresponding APIs for the request and these APIs actually

communicate with the ONTOS database to make changes accordingly. If the request

is a query from a user than the resulting data is passed back to the. COI program,

which delivers the data to the HTTP server, and it is sent back to the Client. Detailed

information about CGI, APIs and OOHVR. is given in the next section. A Java based

browser design is discussed in section 4.6.

4.5 Back-End Design

4.5.1 OODB Schema for a General Vocabulary

By using the Creator one can build any kind of vocabulary. We designed a schema

which can allow editing of a general semantic network. We decided to use a relatively

simple schema, which is shown in Figure 4.2. Any concept would be an instance of

44

Figure 4.2 Schema for a general Vocabulary for IVC

MV_Concept which has Name as an attribute. It contains a. set of MV_Property. The

MV_Property is a base class for MV_Attribute and MV_Relationships, it contains time

Name of the property. MV_Attribute has attribute value which actually saves the

value of attribute. MV_Relationships has a reference to a target. concept for the

relationship. Since MV_Concept contains a set of Properties it can have more than

one Attribute and Relationship.

4.5.2 APT Design

Application programmers Interfaces (API) are functions developed as a library. They

provide an easy access to the database for an Application programmer. We have

designed a. set of APIs for all possible editing or browsing requests. These A Pis call

the ONTOS database to provide a desired functionality. A list of the APIs is given

in APPENDIX C.

4.5.3 Common Gateway Interfaces

CGIs are a main component of the Creator. They provide an interface between

the APIs and HTTP server. As discussed before, the CGIs are the programs which

provide dynamic data to the Web. Our CGIs has to perform the requested APIs. To

45

accomplish that, we designed a protocol for client and server synchronization. First

we'll provide the general details about the CGIs. Then we'll discuss the Protocol we

have adopted for the client and server synchronization and error checking.

CGIs are executable programs which are executed by the HTTP server upon

request of the client. They can take data in two different ways. They can give hack

results in only one way i.e writing to the standard output. Data input, to CGIs can be

given by Standard input (POST Method) or by environment variables (GET Method)

. Environment variables are good for the cases when one has to transfer a smaller

amount of data to the CGIs. Because of our data size we decided to use Standard

Input (POST Method) for providing data to CGIs.

The client actually prepares for a connect string i.e. a. (Universal Resource

Locator) URL. A URL contains the type of protocol to be used, the server to he

connected, name and path of CGI program and a list of parameters to be passed to

the CGI program. We used the HTTP protocol as our connection protocol.

For example a. server name is object.njit.edu:200 (where 200(1 is a. port number

of the HTTP server), and the CC! program is oohvr/oohvr.cgi and we have to pass

variables NAME=Text and EMAIL=xyz@homer.njit.edu to CGI. Then the. URL

would be

http://object.njit.edu:2000/õohvr/oohvr.cgi?NAME=Text&

EMAIL=xyz@homer.njit.edu

More than one parameter can be passed by "k" separated strings. The Text

here is the value of the parameter, which should be in an encoded form. The

encoded form is to change all spaces to "+" and special characters in hexadecimal

number representing ASCII code of the character. This whole creation of URL is

done on the client side. The above URL would instruct the HTTP server to run

the program oohvr.cgi and pass NAME=Text&EMAIL=xyz@homer.niit.edu to the

46

program, which reads this string from the standard input. After performing the

desired request, the is output on standard Output.

To call the APIs from a remote side, we take a variable name FUNCTION.

The value of the variable would tell the CGI program to call a specific API. Let. us

suppose to run an API ListAllConcepts, the URL would be

http://object.njit.edu:2000/õohvr/oohvr.cgi?FUNCTION=List AllConceptes.

The CGI program in the begining will see the name of the function from

FUNCTION variable and would call MV_List_All_Concepts. The result. of the API

is sent to the Standard Output. which would be redirected to client by the HTTP

server. For the APIs which need some parameters to be passed to, they are passed

by using the Name=Value. E.g. to call ListAllChilern the API need the name of the

parent concept so the URL would be constructed as following

http://object.njit.edu:2000/õohvr/oohvr.cgi?FUNCTION=ListAllChildern

&PARENT=ENTITY

If an API requires more than one parameters the parameter are sent by concate-

nating desired parameter names and their values at the end of URL proceeded by

"&" sign.

The CGI returns OK in first hne of output to represent that. the request. has

been fulfilled . f the first line doesn't contain OK, then that moans there is some

error occurred. In this case the first line represents the Error message. In the case Of

a successful query the lines followed by OK contains the results of the query. f there

is nothing after the OK line, that. means the data is not. available or the request was

just an edit operation to he performed.

47

4.6 Front-End Design

4.6.1 The Notion of Neighborhoods

One of the problems that we had to face was how to display a vocabulary. Our

initial choice was to use a graphical display of the vocabulary network which shows

whole vocabulary on the screen. We have built an experimental layout. algorithm and

fed it the InterMED hierarchy, i.e., all the nodes and the IS-A connections between

them, but no attributes and no relationships. The result was a picture that, was

too overwhelming to be of any use (11). It can he described as having a center that

is entirely black with no recognizable features whatsoever. In addition, the layout.

algorithm was intensive in computational time.

The general problems we face in viewing a graphical diagram of a vocabulary

are large scale and high complexity, particularly in comparison with the limited size of

display media (e.g., a. computer screen) and limited human-comprehension capacity.

The complexity issue was previously discussed in [12], where the ratio of edges to

nodes was proposed as a quantitative measure of diagram complexity. Even if we

can display a diagram of, say, 50 concepts and 200 connecting relationships (lines)

on a single page of paper or on a monitor, such a diagram is overwhelming to most.

users. And 50 concepts usually represents a small fraction of a. CMV.

To cope with these difficulties, we define the notion of various forms of concept

neighborhoods (or neighborhoods, for short) in CMV diagrams.

Definition (Neighborhood): The neighborhood of a concept; V in a CMV diagram

contains V and 	children and parents (with respect to the IS-A hierarchy) as well

as any concepts related to V via non-hierarchical relationships.

Definition (Two-level Neighborhood): The two-level neighborhood of a concept

V in a CMV diagram contains V's neighborhood and V's sibhngs, grandparents, and

grandchildren (with respect to the IS-A hierarchy).

48

Definition (Indirect Ancestors): The indirect ancestors of a concept V are the

ancestors of V excluding V's parents.

Definition (Indirect Descendants): The indirect descendants of a concept V are

the descendants of V excluding V's children.

Definition (Extended Neighborhood): The extended neighborhood of a concept.

V contains V's neighborhood and V's siblings, indirect ancestors, and indirect.

descendants.

Note that these definitions are valid both for the concept. diagram and the

area class diagram of a CMV when it. is modeled as an OODB, as discussed in the

previous section. We refer to the respective neighborhoods as concept. neighborhoods

and (area) class neighborhoods when it is necessary to draw a distinction.

A neighborhood diagram displays only a portion of limited sizc and complexity

of the entire CMV diagram, and thus affords a user a much more comprehensible

view. As we will explain later, navigating through a CMV network via successive

"center" shifts from a concept. to another concept in its neighborhood facilitates

search traversals.

To use an analogy, navigation is like looking at the night sky with a telescope

that magnifies a. small portion. By moving the telescope slowly, the astronomer

achieves a "sliding" clear view of a substantial portion of the sky. He uses his limited

view to obtain an overall view and focus in on objects of interest.

The various kinds of neighborhoods give the user of the vocabulary flexibility

in the choice of "focus." At each stage, a user can select a suitable view based

on the size of the neighborhood and the desired information. For example, if a

concept's neighborhood contains only six nodes, the user might choose the two-level

neighborhood or even the extended neighborhood. On the other hand, for a large

neighborhood, the ordinary neighborhood display might. be more appropriate.

49

There are, however, problems in creating such an interface to the CMV:

1. The number of children of a concept might be so large as to not fit on the

screen.

2. The neighborhood layout may be time consuming to generate on demand as it

could differ considerably from the layout of the same concepts in the context

of the whole vocabulary diagram.

It is clear from the above discussion that. nothing is perfect, in terms of a good

view for the user. So we decided to give the user a choice of more than one type of

views. A user in the start of the program will see only the root and the first. level

of the vocabulary. That means only,first level neighbor be shown while the root

is the focused element. After that a user can expand any child of Root. to see the

second level neighbor i.e. one can view the vocabulary as needed.

To decrease the complexity some other views are, provided to a user in which 1)

First Level Neighbor, second level neighbor, ancestorial view and descendent. view.

The ancestor view starts from the bottom and goes up to the root of the vocabulary.

This would be a somewhat simple view because usually a concept doesn't have many

multiple parents. Descendent view starts from the given concept and goes all the

way to the bottom. We can say it. is a top to bottom view. We are planning to

have n-level neighborhood view in which a user can give n as a parameter and the

program generates the view.

4.6.2 Programming Details

The skeleton of the program consists of three main parts.

API Calling Component.

Layout Manager.

50

User Interface.

We will discuss them separately.

4.6.2.1 API Calling Component

This component basically provides an interface to the CGIs discussed in the previous

section. The component is designed as a separate Java class OOhvrCGI. It provides

all the APIs to other components. Other components of the program would call those

APIs just like they are calling APIs from a local system. It provides a transparent

interface to Server APIs. Due to this feature it can be changed with any other

interface, like RMIs or CORBA and we don't, have to change other components of

the program.

The OOhvrCGI contains all available APIs declarations with the same number

and types of parameters as they are for APIs. Those API functions basically build the

URL string discussed in the last section and calls CallServer a function of OOhvrCGI.

That function calls the URL and gives the results hack. If there is an error, a public

boolean variable of the class would give the indication to the calling object,.

4.6.2.2 Layout Manager

If we take concepts as nodes and relationships between them as edges then a

Vocabulary is nothing hut its a directed Graph. The layout manager keeps track of

the graph and has the ability to apply au algorithm on the graph for the layout. of

the concepts on the screen.

4.6.2.3 User. Interface

The user Interface is the central part of IVC. It. provides a graphical view, dialog

boxes and frames to user. The user interface calls other components of the program

when needed. It gets data from the server by using the OOhvrCGI class and pass

51

it to Layout manager which apples the layout algorithm on the graph. Then user

interface shows the vocabulary. The user can select. a particular concept and can

apply the different functions. Like one can select a concept and press the Properties

button to see and edit all the properties of the concept.. The property editor is

a dialog box which provides the Attributes and Relationships with their values in

separate list. boxes. All essential features discussed in -1.3 Section are included in the

system.

CHAPTER 5

FUTURE WORK

The current architecture of INT uses CGIs for user for client server communication.

In the following we'll discuss some other ways of client server communication and

try to find out the differences in them in terms of query executation time.

5.1 Performance Criteria

The following times are considerable for giving a quick response to a user on his

requests

5.1.1 Connection Establishment Time

Our network is based on the TCP/IP protocol. The establishment time is to translate

the server name to an IP address from a DNS server. Then finding out the route to

the destination for the virtual circuit, and actually setting up the virtual circuit.

5.1.2 Request Placement Time

Request placing time depends upon the amount, of data transfer for the request since

some APIs need more data as arguments.

5.1.3 Database Access Time

This time is actually the setting up time for a query. A process is forked to access

the database by HTTP server and estabhshes connection to databases.

5.1.4 Data Retrieval Time

This time totally depends upon the way the APIs retrieve data. from a database and

can be decreased by any optimization to the APIs if possible.

53

5.1.5 Data Transfer Time

This time is dependent upon the following factors:

Current Traffic size on the network.

Amount of data to transfer.

Distance data has to travel.

5.1.6 Presentation Time

This is the layout and client. side calculation part on data which may be required.

In the case of the Creator this time is very important. The Creator has to apply a

layout algorithm on the schema graph.

5.2 Different Options Available for Client Server Communication

5.2.1 Common Gateway Interfaces

A way to transfer dynamically generated data from the HTTP server side upon

client request. Upon request, the data is retrieved from the API's and is sent. to the

client where the client side program can present it. For each and every CGI request,

the client has to establish the connection, i.e. our time consideration Connection

Establishment time is always delaying the response time. For the database accessing,

every time a process has to he forked by the HTTP server. It needs setting up time

by the operating system and for each request database opening time which is also

considerable time. All these are acutely performance drawbacks of CGIs. But on

the other hand CGIs are easy to develop and setup and no special client is always

necessary to access data. An HTTP browser can be used directly to browse the data.

54

5.2.2 TCP/IP Based API Server

This approach can provide better performance than CGIs. We can design a TCP/IP

based server which can continuously listen on an assigned port of the server for an

API request. The server, at start time, can open the database. This eliminates the

need of forking a process on each request. The client can set. up a TCP/IP virtual

circuit in the start of the program. Then only an API call is needed. I.e. setting up

time will be once only while database access time would also be improved. Minor

changes to the APIs may be needed for a better database access time.

5.2.3 Java RMIs

Java Remote method invocation can he a good alternative to TCP/IP based server,

because developing a TCP/IP based server is not an easy task. RMI server can

approximately give the same performance as a TCP/IP server can give. RMIs

are the way of calling methods of Java object on remote machines which actually

runs on the server side and returns data on client side transparently. RMI gives a

better performance as compared to CGIs since (Start. of client program) setup time

is required once. The main problem is that. our system has to call the APIs written

in C++. I.e. we need an Interface. between Java and C/C++. JNI (Java Native

Interface) can be used to call APIs written in C++.

5.2.4 Using CORBA

Common Object, Request Broker Architecture is a standard for remote object

binding. CORBA is similar to RMIs except that it is a language independent Archi-

tecture. In RMI we have to use JNIs for Java to C++ interface CORBA can be

used for direct binding of server's C++ objects 10 client's Java objects.

55

5.3 Conclusion

• We need a. change in the architecture for better performance.

• TCP/IP based API server is the best option available but. at the same time

it is hard to develop. Since we only needed to provide an interface between

Java and C++ at. this stage, RMIs of Java is second best option CORBA

can widen our future work, which can allow us to create client other than Java

language.

APPENDIX A

CGIs CODE

The code for the CGIs is presented here.

#include"api/include/MV_ut.h"
#include"api/include/MV_api.h"

#include<iostream.h>

#include <stdlib.h>

#include <stream.h>

#include <string.h>

#include "cgic.h"

#define PARENT 	1

#define CHILDREN 2

/* 	LIST OF FUNCTIONS AVAILABLE FROM CGI */

#define OKFLAG "OK\n"
#define NO_FUNCTION "NO\n"

*define ERROR_FLAG "ERROR\n"
#define CONTINUE "CONTINUE\n"

#define fnCHILDREN "CHILDREN"
// PARENT=" " would be parameter

#define fnPARENT 	"PARENTS"
// CHILD=" " 	would be parameter

#define fnAttribValue 	 "AttribValue"

#define fnAllAttribValue 	"AllAttribValue"

#define fnAllRelationValue 	"AllRelationValue"

#define fnRelationShipValue 	"RelationValue"

#define fnChangeAttribVaI. 	"ChangeAttribValue"

#define fnChangeRelationVal 	"ChangeRelationValue"

#define fnAddChild 	 "AddChild"

#define fnAddProperty 	"AddProperty"

#define fnAllConcepts 	 "AllConcepts"

#define fnAddRelationshipValue "AddRelationshipValue"

#define fnCreateNewRelation 	"CreateNewRelation"

#define fnDeleteAttribute 	"DeieteAttribute"

56

#define fnDeleteRelation 	"DeleteRelation"

#define fnRemoveAttributeValue "RemoveAttributeValue"

#define fnRemoveRelationValue "RemoveRelationValue"

#define fnDeleteConcept 	"DeleteConcept"

void Child_Parent(char *,int);

void AttribValue(char *CName,char *PName=0,char FLAG=1);

void List_All_Concepts();

cgiMain(void)
{

char Function[30];

char hst[100];

cgiFormStringNoNewlines("FUNCTION", Function, 30);

cgiHeaderContentType("text/html");

if(!strcmp(Function,fnCHILDREN)){

char parent[100];

cgiFormStringNoNewlines("PARENT", parent, 100);

Child_Parent(parent,CHILDREN);

}else if(!strcmp(Function,fnAllConcepts)) {

List_All_Concepts();

}else if(!strcmp(Function,fnPARENT)){

char child[100];

cgiFormStringNoNewlines("CHILD",child,100);

Child_Parent(child,PARENT);

}else if(!strcmp(Function,fnAttribValue))f

char concept[100];

char attr[100];

cgiFormStringNeNewlines("CONCEPT",concept,100);

cgiFormStringNoNewlines("ATTRIBUTE",attr,100);

AttribValue(concept,attr,0);

}else if(!strcmp(Function,fnAddProperty)){

char concept[100];

char prop[100];

cgiFormStringNoNew1ines("CONCEPT",concept,100);

cgiFormStringNoNewlines("PROPERTY",prop,100);

MV_Create_Attribute(concept,prop);

fprintf(cgiOut,OKFLAG);

}
else if(!strcmp(Function,fnAllAttribValue)){

char concept[100];

cgiFormStringNoNewlines("CONCEPT",concept,100);

AttribValue(concept);

57

58

}

else if(!strcmp(Function,fnDeleteConcept)){

char concept[100];

cgiFormStringNoNewlines("CONCEPT",concept,100);

MV_Delete_Concept(concept);

fprintf(cgiOut,OKFLAG);

}
else if(!strcmp(Function,fnAllRelationValue)){

char concept[100];

cgiFormStringNoNewlines("CONCEPT",concept,100);

AttribValue(concept,NULL,3);

}

else if(!strcmp(Function,fnAddRelationshipValue)){

char concept[100],target[100],Relation[100],*RRelation;

cgiFormStringNoNewlines("CONCEPT",concept,100);

cgiFormStringNoNewlines("Relation",Relation,100);

cgiFormStringNoNewlines("Target",target,100);

if(MV_Show_Reverse_Relationship(Relation,RRelation))
{

MV_Add_Relationship_Value(concept,Relation,target);

MV_Add_Relationship_Value(target,RRelation,concept);

fprintf(cgiOut,OKFLAG);

delete Relation;

} else{

fprintf(cgiOut,"NO REV. RELATION");

}

}
else if(!strcmp(Function,fnCreateNewRelation)){

char concept[100],target[1001,Relation(100],revRelation(1001];

cgiFormStringNoNewlines("CONCEPT",concept,100);

cgiFormStringNoNewlines("RELATTON",Relation,100);

cgiFormStringNoNewlines("RevRELATION",revRelation,100);

cgiFormStringNoNewlines("Target",target,100);

MV_Create_Relationship(concept,Relation,target,revRelation);

fprintf(cgiOut,OKFLAG);
}

else if(!strcmp(Function,fnRelationShipValue)){

char concept[100];

char attr[100];

cgiFormStringNoNewlines("CONCEPT",concept,100);

cgiFormStringNoNewlines("ATTRIBUTE",attr,100);

AttribValue(concept,attr,2);

}else if(!strcmp(Function,fnChangeAttribVal)){

59

char CName[100];

char PName[100],oValue[100],Value[100];

cgiFormStringNoNewlines("CONCEPT",CName,100);

cgiFormStringNoNewlines("ATTRIBUTER,PName,100);

cgiFormStringNoNewlines("OLDVAL",oValue,100);

cgiFormStringNoNewlines("VALUE",Value,100);

MV_Change_Attribute_Value(CName,PName,oValue,Value);

fprintf(cgiOut,OKFLAG);

}else if(!strcmp(Function,fnChangeRelationVal)){

char CName[100];

char PName[100],oValue[100],Value[100];

cgiFormStringNoNewlines("CONCEPT",CName,100);

cgiFormStringNoNewlines("ATTRIBUTE",PName,100);

cgiFormStringNoMewlines("OLDVAL",oValue,100);

cgiFormStringNoNewlines("VALUE",Value,100);

MV_Change_Relationship_Value(CName,PName,oValue,Value);

fprintf(cgiOut,OKFLAG);

}else if(!strcmp(Function,fnAddChild)) {

char Parent[100],Child[100];

cgiFormStringNoNewlines("PARENT",Parent,100);

cgiFormStringNoNewlines("CHILD",Child,100);

MV_Create_Concept(Child,Parent);

fprintf(cgiOut,OKFLAG);

}else if(!strcmp(Function,fnDeleteAttribute))

char CName[100];

char PName[100];

cgiFormStringNoNewlines("CONCEPT",CName,100);

cgiFormStringNoNewlines("ATTRTBUTE",PName,100);

MV_Delete_Attribute(CName,PName);

fprintf(cgiOut,OKFLAG);

}else if(!strcmp(Function,fnDeleteRelation)) {

char concept[100],target[100],Relation[100],revRelation[100];

cgiFormStringNoNewlines("CONCEPT",concept,100);

cgiFormStringNoNewlines("RELATTON",Relation,100);

cgiFormStringNoNewlines("RevRELATION",revRelation,100);

cgiFormStringFoNewlines("Target",target,100);

MV_Delete_Relationship(concept,Relation,target,revRelation);

fprintf(cgiOut,OKFLAG);

}else if(!strcmp(Function,fnRemoveAttributeValue)) {

char. CName[100];

char PName[100],Value[100];

cgiFormStringNoNewlines("CONCEPT",CName,100);

cgiFormStringNoNewlines("ATTRIBUTE",PName,100);

cgiFormStringNoNewlines("VALUE",Value,100);

60

MV_Remove_Attribute_Value(CName,PName,Value);

fprintf(cgiOut,OKFLAG);

}else if(!strcmp(Function,fnRemoveRelationValue)) {

char CName[100];

char PName[100],Value[100];

cgiFormStringNoNewlines("CONCEPT",CName,100);

cgiFormStringNoNewlines("RELATION",PName,100);

cgiFormStringNoNewlines("VALUE",Value,100);

MV_Remove_Attribute_Value(CName,PName,Value);
fprintf(cgiOut,OKFLAG);

}else
{

fprintf(cgiOut,"Sorry: Function %s is not Implimented",Functio:

}
return 1;

void List_All_Concepts()
{

into number=0;

char **list;

char CName[200];

MV_List_All_Concept(number,list);

if (number == 0) {

fprintf(cgiOut," Vocabulary doesn't have Any Concept\n");

} else {

fprintf(cgiOut,OKFLAG);

for(int i=0;i<number;i++)
{

if(list[i])

fprintf(cgiOut,"%s\n",list[i]);
else

fprintf(cgiOut,"\n");

}

mv_free(number,list);

}

}

void Child_Parent(char *parent,int FLAG)
{

int number=0;

char **list;

61

switch(FLAG)
{

case CHILDREN:

MV_List_Children(parent,number,list);

break;

case PARENT:

MV_List_Parents(parent,number,list);

break;

}
if(number == 0)

{

fprintf(cgiOut,CONTINUE);

fprintf(cgiOut,

" Concept %s don't have Children/Parent\n",parent);

}
else
{

fprintf(cgiOut,OKFLAG);

for(int 1=0;i<number;i++)
{

if(list(i])

fprintf(cgiOut,"%s\n",list(i]);

else

fprintf(cgiOut,"\n");

}
mv_free(number,list);

}

}

void AttribValue(char *CName,char *PName,char FLAG)

{
int number=0;

char **list;

switch(FLAG)
{

case 0:

MV_Show_Attribute_Value(CName,PName,number,list);

break;

case I.:

MV_List_All_Attribute_Value(CName,number,list);

break;

case 2:

MV_Show_Relationship_Value(CName,PName,number,list);

break;

62

case 3:

MV_List_All_Relationship_Value(CName,number,list);

break;
}

if(number == 0) {

fprintf(cgiOut,"%s\n","Dose'nt have value");

} else {

fprintf(cgiOut,OKFLAG);
for(int i=0;i<number;i++)

if(list[i])

fprintf(cgiOut,"%s\n",list[i]);

else

fprintf(cgiOut,"\n");

mv_free(number,list);

}

}

APPENDIX B

JAVA CLASSES AND THEIR CODE

The code for the IVC is presented here.

/**
* File: newoohvr.java

* Project Title: VOCABULARY CREATOR

* Author: Muhammad Arif

* Last updated on : 07/09/97

* Last updated by : Muhammad Arif

*/

import java.applet.Applet;

import java.awt.*;

import java.util.*;

import EDU.auburn.VGJ.gui.*;

import EDU.auburn.VGJ.graph.*;

import EDU.auburn.VGJ.algorithm.tree.*;

import EDU.auburn.VGJ.algorithm.GraphAlgorithm;

import java.util.Stack;

/**

* Main Applet class which activates the Schema Frame. And Initializes

* the CGI class
*/

public class newoohvr extends Applet

{

OohvrSchema mainSchema;

GraphWindow gwin;

int nodeno;

NewFrame SchemaFrame;

SchemaCanvas gCnv;

double view;
/**

CGI variable
*/

OOhvrCGI cgi;

final int OVAL=1;

final int RECTANGEL=2;

63

64

/**

* 	Main initialization function which actvates the CGI and Schema frame

*/

public void init()

{

nodeno=0;

cgi=new 00hvrCGI("http://object.njit.edu:2000","-arif/oohvrC.cgi",this);

// Creating an Instance of cgi which http

// server and oohvrC.cgi as CGI prog. name.

view=20; 	 // Initial value of view

String root=cgi.GetRoot(); // Getting the root of Vocabulary

mainSchema=new 0ohvrSchema(root,RECTANGEL,"IN");

// Creating Schema as Directed graph

int rootId=mainSchema.getRootId();

String str0=cgi.GetChild(root);

int k=0;

int no_of_children = cgi.ReadTotal();

for(int i=0;i<no_of_children;i++)
{

k++;

int id=mainSchema.AddChild(root,str[i]);

System.out.println(k+":"+str[i]);

}

System.out.println("Total : "+k+" Generated");

SchemaFrame=new NewFrame(mainSchema,cgi);

SchemaFrame.resize(600,600);

gCnv=new SchemaCanvas(mainSchema,SchemaFrame);

SchemaFrame.UpdateCanvas(gCnv); // just updates Schemacanvas variable

ScrolledPanel vPanel=new ScrolledPanel(env);

SchemaFrame.add("Center",vPanel);

gCnv.setMouseMode(gCnv.SELECT_NODES);

SchemaFrame.pack();

SchemaFrame.show();

SchemaFrame.Refreash();

65

/**

* File: OohvrSchema.java

* Project Title: VOCABULARY CREATOR

* Author: Muhammad Arif

* Last updated on : 07/09/97

* Last updated by : Muhammad Arif
*/

import java.applet.Applet;

import java.awt.*;

import java.util.*;

import EDU.auburn.VGJ.gui.*;

import EDU.auburn.VGJ.graph.*;

import EDU.auburn.VGJ.algorithm.tree.*;

import EDU.auburn.VGJ.algorithm.GraphAlgorithm;

import java.util.Stack;

/**

* The schema is a Directed graph b/w diffrent concepts. Showing the

* relationship b/w them.
*/

public class OohvrSchema extends Graph
{

private int CShape;

private String CLabelPosition;

private int Rootld;

Hashtable NameToIndex;

/*

* Schema Constructor which takes Root of the schema and shape type for

* Concept displaying. Two options OVAL and RECTANGLE are currently

* available.

* And the position for the concept names, TN, OUT are available.
*/

public OohvrSchema(String root,int Shapev,String pos)

{

super(true);

NameToIndex=new Hashtable();

CLabelPosition=pos;

Node N=new Node();
if(Shapev==1)

CShape=N.OVAL;

else

CShape=N.RECTANGLE;

RootId=AddNewNode(root);
}

/**

* Returns the current root of the schema
*/

public int getRootId()
{

return Rootld;

}
/**

* Sets Id as new root.
*/

public void setRootId(int id)
{

Rootid=id;
}

/**

* Adds a new node in the graph by having concept name.
*/

int AddNewNode(String Labelv)
{

int id;

id=insertNode();

Node NewNode=getNodeFromIndex(id);

NewNode.setShape(CShape);

NewNode.setLabel(Labelv);

NewNode.setPosition(10,10);

NewNode.setLabelPosition(CLabelPosition);

System.out.println(id+":"+Labelv+" In Add");
NameToIndex.put(Labelv,new Integer(id));

return id;

/**

* Adds new child when Parent Id is given with new child's name.

* Returns the new child's ID.
*/

int AddChild(int ParentId,String Child)
{

Integer inVal;

int id;

inVal=(Integer)NameToIndex.get(Child);

if(inVal==null)

id=AddNewNode(Child);

66

67

else

id=inVal.intValue();

AddEdge(id,ParentId);

System.out.println(id+":"+Child+" In AddChild");

System.out.println("Size of hash table:"+NameToIndex.size());

return id;
}

/**

* Adds a new child by taking Parent name and Child name

* Returns the new child ID as return value.
*/

public int AddChild(String Parent,String Child)
{

int id;

int no=((Integer)NameToIndex.get(Parent)).intValue();

System.out.print("Adding to "+no+" i.e "+Parent);

return AddChild(no,Child);
}

/**

* Adds a new edge b/w two given nodes while nodes Ids are given.
*/

void AddEdge(int idParent,int idChild)

{

insertEdge(idParent,idChild);

}
/**

* Adds a new edge b/w two given nodes while nodes names are given.
*/

public void AddEdge(String Parent,String Child)
{

insertEdge(((Integer)NameToIndex.get(Parent)).intValue(),

((Integer)NameToIndex.get(Child)).intValue());

}

public void LabelEdge(String Parent,String Child, String label)
{

Edge eg=getEdge(((Integer)NameToIndex.get(Parent)).intValue(),

((Integer)NameToIndex.get(Child)).intValue());

eg.setLabel(label);

68

public void removeEdge(String source, String destination)
{

int Source_id = ((Integer)NameToIndex.get(source)).intValue();

int Dest_id = ((Integer)NameTandex.get(destination)).intValue();

removeEdge(Source_id,Dest_id);

}

// added by Gowtham on 07/09/97
/**

* This function removes a child from the present schema given the

* the parent name and the child name
*/

public void RemoveChild(String parent, String child)
{

int child_id,parent_id;

child_id = ((Integer)NameToIndex.get(child)).intValue();

parent_id = ((Integer)NameToIndex.get(parent)).intValue();

//cleanup

removeEdge(child_id,parent_id);

removeNode(getNodeFromIndex(child_id));

if(NameToIndex.remove(child) == null) // removes entry from hashtable

{

System.out.println("Shucks");

};

System.out.println("Number of elements in the hash table"+

NameToIndex.size());

}

public boolean isNodepresent(String name)
{

return NameToIndex.containsKey(name);
}

public Edge getEdge(String str1, String str2)

int id1 = ((Integer)NameToIndex.get(str1)).intValue();

int id2 = ((Integer)NameToIndex.get(str2)).intValue();

return getEdge(idl,id2);

public int AddParent(String Child, String Parent)
{

Integer inVal = (Integer) NameToIndex.get(Parent);

int child_id,parent_id;

//obtain parent id (allocate node if parent not present)

if(inVal == null) // node does not exist
{

parent_id = AddNewNode(Parent);
}

else
{

parent_id = inVal.intValue();

}
// obtain child id

child_id = ((Integer) (NameToindex.get(Child))).intValue();

AddEdge(child_id,parent_id);

return parent_id;

}

public int get_nodeid(String str)

Integer id = (Integer) (NameToIndex.get(str));

if(id != null)
{

return id.intValue();
}

return -1;

}
}

/**

* File: OOhvrCGI.java

* Project Title: VOCABULARY CREATOR

* Author: Muhammad Arif

* Last updated on : 07/09/97

* Last updated by : Muhammad Arif
*/

import java.net.*;

69

70

import java.io.*;

import java.util.*;

import java.applet.Applet;

import java.awt.*;

import EDU.auburn.VGJ.gui.MessageDialog;

/**

This class provide transparent inteface to API's using CGI calls

*/

public class OOhvrCGI

{

int TotalRead;

String Server,cgiName;

Applet oohvr;
/**

* Indicator about the status of last CGI call
*/

public boolean OK;
/**

* Constructor takes HTTP server name, CGI file and path name and
* the calling Applet reffrence to show the status.
*/

public OOhvrCGI(String sr,String cgiNam,Applet ohvr)
{

Server=sr;

OK=false;

cgiName=cgiNam;

oohvr=ohvr;

/**

Actual CGI call to server takes the call string as input.
*/

String[] CallServer(String CallString)
{

Frame fr2=new Frame();

Message msg=new Message(fr2,"Wait","Contacting to "+Server. 12 +

	 ",false);

//MessageDialog(fr2,"Wait","Getting Data",true);

msg.show();

System.out.println("Calling : "+CallString);

TotalRead=0;

OK=false;

oohvr.showStatus("Connecting to "+Server+" 	

71

CallString=Server+"/"+cgiName+"?"+CallString;

String Str[]=new String[4000];

try {

URL url = new URL(CallString);

DatalnputStream URLinStream=new DatalnputStream

(url.openStream());
String tmpStr;

oohvr.showStatus("Connected Waiting for Data ");

msg.UpdateMessage("Contected Waiting for Data 	");

boolean flg=false;

tmpStr = URLinStream.readLine();

if(tmpStr.equals("OK")) // OK would come from server
{

if (flg)
{

msg.UpdateMessage("Retrieving Data 	");

flg=false;
}

else
{

msg.UpdateMessage("Retrieving Data 	");

flg=true;

}

while ((tmpStr = URLinStream.readLine())!=null)

Str[TotalRead++]=tmpStr;

OK=true;

}
else

if(!tmpStr.equals("CONTINUE"))
{

Frame fr=new Frame();

MessageRox mbox=new MessageBox(fr,"Errorl",

"Error. Message from Server: "+tmpStr,true);
mbox.show();

}
OK=true;

}

oohvr.showStatus("Data Retrieved ");

msg.End();

URLinStream.close();

} catch (MalformedURLException mexp)

72

Frame fr=new Frame();

MessageBox mbox=new MessageBox(fr,"Exception!",

"Exception Occured during Data retriveval:

mexp,true);

mbox.show();

System.err.println("MalFormedURL: "+mexp);

System.out.println("Called : "+CallString);
}

catch (IOException ioexp)
{

Frame fr=new Frame();

MessageBox mbox=new MessageBox(fr,"Exception!",

"Exception Occured during Data"
" retriveval: "

+ioexp,true);
mbox.show();

System.err.println("I/O Exception : "+ioexp);

System.out.println("Called : "+CallString);

}
return Str;

}
/**

Returns the total number of lines read from last API call.
*1

public int ReadTotal()
{

return TotalRead;
}

/**

* Returns the root of Vocabulary. It's static value ENTITY for
* this version which cab be dynamic by adding a CGI call to

* server in future.
*/

public String GetRoot()
{

return "ENTITY";
}

/**
• API: Returns the properties of given concept.
*/

public String[] GetProperties(String cons)

String Str[];

73

String CallString;

CallString="FUNCTION=AllAttribValue&CONCEPT=n+

URLEncoder.encode(conc);

Str=CallServer(CallString);

return Str;
}

/**

* API: Returns all the childern of given concept.
*/

public String[] GetChild(String parent)

{

String Str[];

TotalRead=0;
String CallString;

CallString=flF1JNCTION=CHILDFtEN&PARENT=H+URLEncoder. encode (parent)

Str=CallServer(CallString);

return Str;

}
/**

* API: Returns all relationships from a concept.

*/

public String[] GetRelations(String conc)

{
String Str[];

String CallString;
CallString="FUNCTION=AllRelationValue&CONCEPT="+

URLEncoder.encode(conc);

Str=CallServer(CallString);

return Str;
}

/**

* API: Deletes a given concept from the Vocabulary.
*/

public String[] DeleteConcept(String conc)
{

String Str[];

String CallString;

CallString="FUNCTION=DeleteConcept&CONCEPT="t

URLEncoder.encode(conc);

Str=CallServer(CallString);

return Str;

}
/**

* API: Get all the concepts available in the Vocabulary.

74

*/

public String[] GetAllConcepts()
{

String Str[];

String CallString;

CallString="FUNCTION=AllConcepts";

Str=CallServer(CallString);

return Str;

}
/**

* API: Get the parent of a given concept.

*/

public String[] GetParent(String child)
{

TotalRead=0;

String CallString;
CallString="FUNCTION=PARENTSCHILD="+

URLEncoder.encode(child);

String Str[];

Str=CallServer(CallString);

return Str;
}

/**

* API: Add a new child to given parent concept.
*/

public void AddNewChild(String Parent,String Child)
{

TotalRead=0;

String CS;

CS="FUNCTION=AddChild&CHILD="+URLEncoder.encode(Child);

CS=CS+"&"+"PARENT="+URLEncoder.encode(Parent);
String Str[];

Str=CaliServer(CS);
}

/**

* API: Add A new property to given concept.
*/

public void AddNewProperty(String Concept,String pName)

TotalRead=0;

String CS;

CS="FUNCTION=AddProperty&CONCEPT="+URLEncoder.encode(Concept);

CS=CS+"&"+"PROPERTY="+URLEncoder.encode(pName);

String Str[];

75

Str=CallServer(CS);

}
/**

* API: Change the property value of given concept provided that

* the old value to concept is also given.

*/

public void ChangePropertyValue(String CName,String PName,

String LVal,String NVal)

{
TotalRead=0;

String CS;

CS="FUNCTION=ChangeAttribValue&CONCEPT="+URLEncoder.encode(CName);

CS=CS+"&"+"ATTRIBUTE="+URLEncoder.encode(PName);

CS=CS+"&"+"OLDVAL="+URLEncoder.encode(LVal);
CS=CS+"&"+"VALUE="+URLEncoder.encode(NVal);

String Str[];

Str=CallServer(CS);
}

/**

* API: Change the relationship value of given concept provided that

* the old value of relationship is also given.
*/

public void ChangeRelationValue(String CName,String PName,

String LVal,String NVal)

{
TotalRead=0;

String CS;

CS="FUNCTION=ChangeRelationValue&CONCEPT="+URLEncoder.encode(CName);

CS=CS+"&"+"ATTRIBUTE="+URLEncoder.encode(PName);

CS=CS+"&"+"OLDVAL="+URLEncoder.encode(LVal);

CS=CS+"&"+"VALUE="+URLEncoder.encode(NVal);
String Str[];

Str=CallServer(CS);

}
/**

* API: Adding a new Relationship to a Concept target concept is

* also given.
*/

public void AddRelationValue(String CName,String rName,

String tConceptName)

{

TotalRead=0;

String CS;

76

CS="FUNCTION=AddRelationshipValue&CONCEPT="+URLEncoder.encode(CName);

CS=CS+"&"+"Relation="+URLEncoder.encode(rName);
CS=CS+"&"+"Target="+URLEncoder.encode(tConceptName);

String Str(];

Str=CallServer(CS);

}
/**

* API: Creating a new Relationship to a Concept target concept is
* and reverse relationship name is also given.
*/

public void CreateNewRelation(String CName,String rName,

String tCName,String rrName)
{

TotalRead=0;

String CS;

CS="FUNCTION=CreateNewRolation&CONCEPT="+URLEncoder.encode(CName);

CS=CS+"&"+"RELATION="+URLEncoder.encode(rName);

CS=CS+"&"+"Target="+URLEncoder.encode(tCName);
CS=CS+"&"+"RevRELATION="+URLEncoder.encode(rrName);

String Str[];

Str=CallServer(CS);

}
/**

* API: Deleting an attribute from a Concept.

*/

public void DeleteAttribute(String CName,String PName)

{

TotalRead=0;

String CS;

CS="FUNCTION=DeleteAttribute&CONCEPT="+URLEncoder.encode(CName);

CS=CS+"&"+"ATTRIBUTE="+URLEncoder.encode(PName);

String Str[];

Str=CallServer(CS);

}
/**

* API: Deleting relationship from a Concept.
*/

public void DeleteRelation(String CName,String rName,

String tCName,String rrName)

TotalRead=0;

String CS;

CS="FUNCTION=DeleteRelation&CONCEPT="+URLEncoder.encode(CName);

77

CS=CS+"&"+"RELATION="+URLEncoder.encode(rName);

CS=CS+"&"+"Target="+URLEncoder.encode(tCName);
CS=CS+"&"+"RevRELATION="+URLEncoder.encode(rrName);

String Str[];

Str=CallServer(CS);
}

/**

* API: Removing an Attribute value 	from a Concept value value

* to that property is also provided.

*/

public void RemoveAttributeValue(String CName,String PName,String PValue)
{

TotalRead=0;

String CS;

CS="FUNCTION=RemoveAttributeValue&CONCEPT="+URLEncoder.encode(CName);
CS=CS+"&"+"ATTRIBUTE="+URLEncoder.encode(PName);

CS=CS+"&"+"VALUE="+URLEncoder.encode(PValue);

String Str[];

Str=CallServer(CS);

}
/**

* API: Removing a Relationship from a Concept

* relationship name is also given.
*/

public void RemoveRelationValue(String CName,String rName,String Value)
{

TotalRead=0;

String CS;

CS="FUNCTION=RemoveRelationValue&CONCEPT="+URLEncoder.encode(CName);

CS=CS+"&"+"RELATION="+URLEncoder.encode(rName);

CS=CS+"&"+"VALUE="+URLEncoder.encode(Value);

String Str[];

Str=CaliServer(CS);

}

};

import java.awt.*;

public class NList extends List
{

String prop[];

PropertyDialog pd;

78

PropertyEditor ped;

public NList(int no,boolean v,String pro[],PropertyDialog pdb)

{
super(no,v);

prop=pro;

pd=pdb;

}

public NList()

{
super();

}

public NList(int rows, boolean multipleSelections)

{

super(rows,multipleSelections);

}

public boolean mouseDown(Event ev,int x,int y)

//if(ev.clickCount==2)

System.out.println("You are Editing "+getSelectedItem());

return true;

}

// deselectAll deselects all selected items in the list

public void dese].ectA].i()
{

int i;

for(i=0; i< getItemCount(); i++)

{

if(isSelected(i) == true)

{

deselect(i);

}

}

public boolean is_Itempresent(String str)
{

for(int i=0; i<countItems(); i++)

if(str.equalsIgnorecase(getItem(i)))

return true;

}

return false;

}
}

import java.awt.List;

public class Enhanced_list extends List

{

public Enhanced_list()
{

super();
}

public Enhanced_list(int x)
{

super(x);

}

public Enhanced_list(int x, boolean bool)
{

super(x,bool);
}

public boolean isPresent(String str)
{

for(int i=0; i<countItems();
{

if(str.equals(getItem(i)) == true)

{

return true;

}

}

return false;

}

}

/**

* File: MessageBox.java

* Project Title: VOCABULARY CREATOR

* Author: Muhammad Arif

79

80

* Last updated on : 07/09/97

* Last updated by : Muhammad Arif
*/

import java.awt.*;

/**

* Message box which shows messages to user.

*/

public class Message extends Frame

{

Label Msg;

/**

* MessgageBox gets Frame and String for heading and boolean true

* for showing buttons or not, To diffrentiate b/w Status messages

* of Data transfer or Error message.

*/

public Message(Frame par,String Head,String Message,boolean bt)

{

super(Head);

Panel pnl=new Panel();

Msg=new Label(Message);

pnl.add(Msg);

add("Center",pnl);

Panel pnl2=new Panel();

if(bt)
{

pnl2.add(new Button("Ok"));

pnl2.add(new Button("Cancel"));

add("South",pn12);

resize(300,150);

move(250,250);

}

/**

* event handler.
*/

public boolean handleEvent(Event ev)

{

if(ev.id == Event.ACTION_EVENT)

{

if("Ok".equals(ev.arg))

{

show(false);

dispose();

return true;

}

if("Cancel".equals(ev.arg))
{

show(false);

dispose();

return true;

}

return false;

}

public void UpdateMessage(String str)
{

Msg.setText(str);

}

public void End()
{

dispose();

}

};

/**

* File: MessageBox.java

* Project Title: VOCABULARY CREATOR

* Author: Muhammad Arif

* Last updated on : 07/09/97

* Last updated by : Muhammad Arif
*/

import java.awt.*;

/**

* MessageBox dialog which shows messages to user.
*/

public class MessageBox extends Dialog

81

82

Label Msg;

private boolean Okclicked;

/**

* MessgageBox gets Frame and String for heading and boolean true

* for showing buttons or not, To diffrentiate b/w Status messages

* of Data transfer or Error message.

*/

public MessageBox(Frame par,String Head,String Message,boolean bt)

super(par,Head);

Panel pnl=new Panel();

Msg=new Label(Message);

pnl.add(Msg);

add("Center",pnl);

Panel pnl2=new Panel();

if (bt)

{

pnl2.add(new Button("Ok"));

pnl2.add(new Button("Cancel"));

}

add("South",pnl2);

resize(300,150);

Okclicked = false;

}
/**

* event handler.

*/

public boolean handleEvent(Event ev)
{

if(ev.id == Event.ACTION_EVENT)

{

if("Ok".equals(ev.arg))

{

Okclicked = true;

show(false);

return true;

}

if("Cancel".equals(ev.arg))
{

Okclicked = true;

show(false);

return true;

}
}

return false;

}

public void UpdateMessage(String str)
{

Msg.setText(str);

}

public void End()
{

dispose();

}

public boolean Ok_clicked()
{

return Okclicked;
}

};

/**

* File: NewChild.java

* Project Title: VOCABULARY CREATOR

* Author: Muhammad Arif

* Last updated on : 07/09/97

* Last updated by : Muhammad Arif
*/

import java.applet.Applet;

import java.awt.*;

import java.util.*;

import EDU.auburn.VGJ.gui.*;

import EDU.auburn.VGJ.graph.*;

import EDU.auburn.VGJ.algorithm.tree.*;

import EDU.auburn.VGJ.algorithm.GraphAlgorithm;

import java.utii.Stack;

/**

* A dialog box to take new Child name from the user.
*/

public class NewChild extends Frame

83

84

NewFrame ooh;

TextField fld;

String Parent;

Panel pnl,pl;

/**

* Constructor takes Parent of the new child and main frame reffrence.

*/

public NewChild(String pParent,NewFrame ohv)

{

super("New Child of "+pParent);

setLayout(new BorderLayout());

ooh=ohv;

pnl=new Panel();

pnl.setLayout(new FlowLayout());

Parent=pParent;

pni.add(new Label("Child's Name : "));

fld=new TextField(30);

pnl.add(fld);

add("Center",pnl);

pl=new Panel();

pl.add("Center",new Button("OK"));

pl.add("Center",new Button("Cancel"));

add("South",p1);

pack();

move(200,200);

show();

}
/**

* 	Envent handler for the dialog.

*/

public Boolean handleEvent(Rvent ev)

{

if(ev.id == Event.ACTION_EVENT)

{

if("OK".equals(ev.arg))

{

ooh.AddNewChild(Parent,fld.getText());

dispose();

return true;

}else if("Cancel".equais(ev.arg))
{

dispose();

return true;

85

}

return false;
}

}

import java.util.*;

import java.awt.*;

import java.awt.event.*;

class PropertyEditor extends Dialog

{

// 	PropertyDialog pd;

TextField fld;

String name,oval;

Panel pnl,pl;

// 	NList mylist;

private boolean Ok_clicked,Cancel_clicked;

public PropertyEditor(String Name,String Value,Frame fr)

{

super(fr,true);

setTitie("Properties/relationships editor");

setLayout(new BorderLayout());

// 	 pd = pdb;

pnl=new Panel();

pnl.setLayout(new FlowLayout());

name=Name;

ovai=Value;

// 	 mylist =

pnl.add(new Label(Name+" : "));

System.out.println("Length of String "+Value.length());
fld=new TextField(Value,3B);

pnl.add(fld);

add("Center",pnl);

pl=new Panel();

pl.add(new Button("OK"));

pl.add(new Button("Cancel"));

add("South",pl);

pack();

resize(preferredSize());

86

System.out.println("Property Editor Should PopOut");

//initialize button related variables

Ok_clicked = false;

Cancel_clicked = false;

}

/* Event handler */

public boolean handleEvent(Event ev)
{

if(ev.id == Event.ACTION_EVENT)

if("OK".equals(ev.arg))
{

// 	 pd.UpdateProperty(name,oval,fld.getText(),mylist);

//

	

	 dispose();

Ok_clicked = true;

show(false);

return true;

if("Cancel".equals(ev.arg))
{

// 	 dispose();

Cancel_clicked = true;

show(false);

return true;

}

}

return false;

public boolean is_Okclicked()
{

return Ok_clicked;

}

public boolean is_Cancelclicked()
{

return Cancel_clicked;

public String getText()
{

return fld.getText();
}

}

class NewRelationshiptype extends Dialog
{

//declare dialog components

TextField text;

Label label;

Panel panel,bpanel;

private boolean Ok_clicked,Cancel_clicked;

public NewRelationshiptype(Frame fr)
{

super(fr);
// initialize components

text = new TextField(20);

label = new Label("Enter new RelationShip type");

panel = new Panel();

bpanel = new Panel();

panel.add(label);

panel.add(text);

bpanel.add(new Button("OK"));

bpanel.add(new Button("CANCEL"));

add("South",bpanel);

add("Center",panel);

// initialize button related variables

Ok_clicked = false;

Cancel_clicked = false;

}

public boolean handleEvent(Event evt)
{

if("OK".equals(evt.arg))

{

return true;

87

}

if("CANCEL".equals(evt.arg))
{

dispose();

return true;
}

return false;
}

}

class NewProperty extends Dialog
{

PropertyDialog pdlg;

TextField fld;

String Parent;

Panel pnl,pl;

private boolean Ok_clicked,Cancel_clicked;

public NewProperty(String Concept,PropertyDialog pd,Frame fr)
{

// 	super(fr,"New Property of "+Concept);

super(fr,true);

setTitle("New Property of. "+Concept);

setLayout(new BorderLayout());

pdlg=pd;

pnl=new Panel();

pnl.setLayout(new FlowLayout());

Parent=Concept;

pnl.add(new Label("New Property Name : "));

fld=new TextField(30);

pnl.add(f1d);

add("Center",pnl);

pl=new Panel();

pl.add(new Button("OK("));

pl.add(new Button("Cancel"));

add("South",pl);

pack();

Ok_clicked = false;

Cancel_clicked = false;

}

88

89

public boolean handleEvent(Event ev)

{

if(ev.id == Event.ACTION_EVENT)

{

if("OK".equals(ev.arg))

{

// 	 pdlg.AddNewProperty(Parent,fld.getText());

// 	 dispose();

Ok_clicked = true;

if((fld.getText()).length() != 0)

{

show(false);
}

return true;
}

if("Cancel".equals(ev.arg))
{

// 	 dispose();

Cancel_clicked = true;

show(false);

return true;
}

}

return false;
}

public String getText()

{

return fld.getText();

public boolean is_Okclicked()

{

return Ok_clicked;

public boolean is_Cancelclicked()

return Cancel_clicked;

90

class NewRelation extends Dialog
{

// 	PropertyDialog pdlg;

TextField fld;

NList conList,relList;

String Parent;

Panel pnl,pl;

OOhvrCGI cgi;

private boolean Ok_clicked,Cancel_clicked;

public NewRelation(String Concept,OOhvrCGI cg,Frame fr)

{
super(fr,true);

setTitle("New Relation of "+Concept);

cgi=cg;

setLayout(new BorderLayout());

// 	 pdlg=pd;

pnl=new Panel();

pnl.setLayout(new FlowLayout());

Parent=Concept;

conList=new NList(10,false);

String strn=cgi.GetAllConcepts();

for(int i=0;i<cgi.ReadTotal();i++)

conList.addItem(str[i]);

relList=new NList(10,false);

String str2[]=cgi.GetRelations(Concept);

for(int i=0;i<cgi.ReadTotal();i+=2)
{

if(relList.is_Itempresent(str2[i]) == false)
{

relList.addItem(str2ri]);
}

//pnl.add(new Label("Relation Name: "));

//f1d=new TextField(30);

pnl.add(relList);

add("North",pnl);

add("Center",conList);

pl=new Panel();

pl.add(new Button("OK"));

pl.add(new Button("Cancel"));

91

pl.add(new Button("New Relation"));

add("South",pl);

pack();

Ok_clicked = false;

Cancel_clicked = false;

}

public boolean handleEvent(Event ev)
{

if(ev.id == Event.ACTION_EVENT)

{

if("OK".equals(ev.arg))
{

/* 	 cgi.AddRelationValue(Parent,relList.getSelectedTtem(),

conList.getSelectedItem());

if(cgi.OK == true)
{

// 	dispose();

show(false);

}

else

{

MessageBox msg = new MessageBox(new Frame(),

"Warning","CGI operation failed",true);

} */

show(false);

Ok_clicked = true;

return true;

}

if("Cancel".equals(ev.arg))
{

//

	

	 dispose();

show(false);

Cancel_clicked = true;

return true;

}

if("New Relationship".equals(ev.arg))
{

System.out.println("New Relationship button clicked");

92

NewRelationshiptype xyz = new

NewRelationshiptype(new Frame());

return true;

}
}

return false;

}

public boolean is_Okclicked()
{

return Ok_clicked;

}

public boolean is_Cancelclicked()
{

return Cancel_clicked;
}

public String get_Selectedrelation()
{

return relList.getSelectedItem();

}

public String get_Selectedconcept()
{

return conList.getSelectedltem();
}

public class PropertyDialog extends Dialog // implements ActionListener.
{

OOhvrCOI cgi;

TextField fld;

PropertyEditor ped;

NewFrame aplt;

Panel pnl,lpnl;

NList propList,relList;

String pro[];

String rel[];

String Name;

Button ok,edit,del,add;

int Active_list_box;

93

boolean Dialog_active;

boolean Ok_clicked;

String[] selection_buffer = new String[50];

int changed;

public PropertyDialog(NewFrame ap,0OhvrCGI ocgi,String conc,

String properties[],String relations[],int totl,int tot2)
{

super(ap,true);

setTitle("Properties and Relationships of "+conc);

aplt=ap;

System.out.println("Starting Property and Attributes Dialog");

pro=properties;

rel=relations;

Name=conc;

setLayout(new BorderLayout());

pnl=new Panel();

lpnl=new Panel();

Label centerlabel = new Label("" Attributes v Relationships",

Label. CENTER);

System.out.println("Panel Created");

lpnl.setLayout(new BorderLayout());

// button panel

ok = new Button("OK");

edit = new Button("Edit");

del = new Button("Delete");

add = new Button("Add");

pnl.add(ok);

pnl.add(edit);

pnl.add(del);

pnl.add(add);

System.out.println("Creating List");

propList = new NList(10,false,properties,this);

relList = new NList(10,false,relations,this);

propList.select(0); 	// Selects the first

//Item in the properties list

94

Active_list_box = 0;

propList.setName("Properties");

relList.setName("Relations");

// add the action listeners

// 	 propList.addActionListener(this);

// 	 relList.addActionListener(this);

// add the focus listener to the class components

propList.addFocusListener(new fAdapt(this));

relList.addFocusListener(new fAdapt(this));

// add the items to the list boxes

for(int i=0;i<tot1;i+=2)

propList.addItem(properties[i]+"="+propertiest[i+1]);

for(int i=0;i<tot2; i+=2)

relList.addItem(relations[i]+"="+relations[i+1]);

System.out.println("List Updated");

lpnl.add("North",propList);

lpnl.add("Center",centerlabel);

1pnl.add("South",relList);

add("Center",lpnl);

add("South",pnl);

cgi=ocgi;

Dialog_active = false;

Ok_clicked = false;

changed = 0;

for(int j=0; j<50; j++)
{

selection_buffer[j] = null;

}

public void UpdateProperty(String name,String oval,String nval,NList li.)
{

if(li == propList)

95

ogi.ChangePropertyValue(Name,name,oval,nval);
}

else

{

cgi.ChangeRelationValue(Name,name,oval,nval);
}

UpdatePropertyValues(li);

}

void UpdatePropertyValues(NList li)

{

String properties[];

if(li == propList)

{

properties=cgi.GetProperties(Name);

propList.clear();

for(int i=0; i<cgi.ReadTotal(); i+=2)

propList.addItem(properties[i]+"="+properties[i+1]);
}

else
{

properties=cgi.GetRelations(Name);

relList.clear();

for(int i=0;i<cgi.ReadTotal();i+=2)

relList.addItem(properties[i]+"="+properties[i+1]);
}

}

public boolean is_Okclicked ()
{

return Ok_clicked;

}

public boolean handleEvent(Event ev)
{

if(ev.id == Event.ACTION_EVENT)

// if the ok button is depressed

if("OK".equals(ev.arg))
{

Ok_clicked = true;

show(false);

return true;

96

}

/* 	 if("Ok".equals(ev.arg)) // Ok from Message Box

//TAKE CARE OF IT IN THE END

{

if(ev.target == (Object) propList)
{

String tmp=propList.getSelectedItem();

cgi.RemoveAttributeValue(Name,

tmp.substring(0,tmp.indexOf(1=')),

tmp.substringamp.indexOf('=))+1,tmp.length()));

UpdatePropertyValues(propList);

}

else
{

String tmp=relList.getSelectedItem();

cgi.RemoveRelationValue(Name,

tmp.substring(0,tmp.indexOf('=')),

tmp.substringamp.indexOf('=)+1,tmp.length()));

UpdatePropertyValues(relList);

}

return true;

}

*/

// If the edit button is depressed

if("Edit".equals(ev arg))
{

Frame fr = new Frame();

if((Active_list_box == 0) && (Dialog_active == false))
{

Dialog_active = true;

String tmp=propList.getSelectedItem();

ped=new PropertyEditoramp.substring(0,
tmp.index0f('=')),tmp

.substringamp.indexOf('=')+1,

tmp.length()),fr);

ped.setModal(true);

ped.pack();

ped.move(200,200);

ped.show(true);

97

System.out.println("Comes here");

// button handlers for "ped"

if(ped.is_Okclicked() == true)

{

System.out.println("Comes here too");

UpdateProperty(tmp.substring(0,tmp.indexOf('=")),

tmp.substring(tmp.index0f('=')+1.
,tmp.length()),

ped.getText(),propList);

System.out.println("It works !!!");

Dialog_active = false;

ped.show(false);

ped.dispose();

}

if(ped.is_Cancelclicked() == true)

System.out.println("It works !!!");

ped.dispose();

Dialog_active = false;

}
}

if((Active_list_box ==1) && (Dialog_active == false))
{

Dialog_active = true;

String tmp=relList.getSelectedItem();

ped=new PropertyEditoramp.substring(0,

tmp.indexOf()=')),

tmp.substring(tmp.indexOfe=3)+1

Amp.length()),fr);

ped.setModal(true);

ped.pack();

ped.move(200,200);

ped.show(true);

// button handlers

if 	== true)

{
System. out: println("Tt works !!!");

UpdateProperty(tmp.substring(0,tmp.indexOf('=')),

tmp.substring(tmp.indexOfe=1)+1
,tmp.length()),

ped.getText(),relList);

98

ped.dispose();

Dialog_active = false;

}

if(ped.is_Cancelclicked() == true)
{

System.out.println("It works !!!");

ped.dispose();

Dialog_active = false;

}

}

return true;

}

// If the add button is depressed

if("Add".equals(ev.arg))

Frame fr = new Frame();

if((Active_list_box == 0) && (Dialog_active == false))

{

Dialog_active = true;

NewProperty nchld=new NewProperty(Name,this,fr);

nchld.setModal(true);

nchld.show(true);

// button handlers

if(nchld.is_Okclicked() == true)

if(nchld.getText()).length() 1= 0)

System.out.println("Comes here");

AddNewProperty(Name,nchld getText());

nchld.disposeO;

Dialog_active = false;

1

else

System.out.println("Invalid entry");

}
}

if(nchld.is_Cancelclicked() == true)

99

System.out.println("Cancel clicked");

nchld_dispose();

Dialog_active = false;

}

}

if((Active_list_box == 1) && (Dialog_active == false))

{

Dialog_active = true;

NewRelation nRelsh=new NewRelation(Name,cgi,fr);

nRelsh_move(250,250);

nRelsh.setModal(true);

nRelsh.show(true);

// button handlers

if(nRelsh.is_Okclicked() == true)

{

if((nRelsh.get_Selectedrelation() != null) &&

(nRelsh.get_Selectedconcept() != null))

{
cgi.AddRelationValue(Name,

nRelsh.get_Selectedrelation(),

nRelsh.get_Selectedconcept());
if(cgi.OK == false)

{
MessageBox msg = new MessageBox (new

Frame(),

"Warning",

"CGI operation failed",true);

}
else
{

// include the new 1S-A link

String str = new String();

str = nRelsh.get_Selectedrelation() + "=" +

nRelsh.get_Selectedconcept();
System.out.println(str);

relList.addItem(str);

selection_buffer[changed] =

nRelsh.get_Selectedconcept();

changed++;

nRelsh.dispose();

100

else

{

System.out.println("no items selected");
}

Dialog_active = false;

}

if(nRelsh.is_Cancelclicked() == true)
{

nRelsh.dispose();

Dialog_active = false;

}
}

return true;

}

// If the delete button is depressed

if("Delete".equals(ev.arg))
{

Frame fr = new Frame();

if(Active_list_box == 0)

{

MessageBox mbox=new MessageBox(fr,"Warning",

"Do You want to Delete "

+propList.getSelectedItem(),true);

mbox.move(250,250);

mbox.setModal(true);

mbox.show(true);

if(mbox.Ok_clicked() == true)
{

String tmp=propList.getSelectedItem();

cgi.RemoveAttributeValue(Name,

tmp substring(0,tmp.indexOf('=')),

tnp.substring(tmp.indexOf('=')+1,tmp.length()));

UpdatePropertyValues(propList);

}

}

else

{

MessageBox mbox3=new MessageBox(fr,"Warning",

"Do You want to Delete "

+relList.getSelectedItem(),true);

101

mbox3.move(250,250);

mbox3.setModal(true);

mbox3.show(true);

if(mbox3.0k_clicked() == true)
{

String tmp=relList.getSelectedItem();

cgi.RemoveRelationValue(NameAmp.substring(0,

tmp.indexOf('=')),

tmp.substringamp.indexOf('=')+1,

tmp.length())):

UpdatePropertyValues(relList);
}

return true;

return false;

}

public String] get_newconstraints()

return selection_buffer;

}

void AddNewProperty(String Parent,String pName)

{

cgi.AddNewProperty(Parent,pName);

if(cgi.OK)

propList.addItem(pName+"=");

}

/*

public void actionPerformed(ActionEvent evt)

Frame fr = new Frame();

if(evt.getSource() == (Object) propList)
{

String tmp=propList.getSelectedItem();

ped=new PropertyEditor(up.substring(0,tmp.indexOf('=')),

tmp.substringamp.indexOf()=')+1,

tmp.length()),tbis,propList,fr);

ped.setModal(true);

ped.move(250,250);

102

ped.show(true);

System.out.println("You are Editing "+

propList.getSelectedItem());

System.out.println("It works,yipee!!");

}

if(evt.getSource() == (Object) relList)
{

String tmp = relList.getSelectedItem();

ped = new PropartyEditor(tmp.substring(0,tmp.indexOf('=')),

tmp.substring(tmp.indexOf('=')+1,

tmp.length()),this,relList,fr);

ped.setModal(true);

ped.move(250,250);

ped.show(true),

System.out.println("You are Editing"+

relList.getSelectedItem());

System.out.println("It works,yipee!!");

}

}
*/

};

class fAdapt extends FocusAdapter

{

PropertyDialog myDialog;

//class constructor method

public fAdapt(PropertyDialog pd)
{

myDialog = pd;

}

public void focusGained(FocusEvent e)

{

if((e.getID() == FocusEvent.FOCUS_GAINED) &&

getSource() == myDialog.propList))
{

myDialog.Active_list_box = 0;

System.out.println(myDialog.Active_list_box);

103

if((e.getlD() == FocusEvent.FOCUS_GAINED) &&

(e.getSource() == myDialog.relList))

{
myDialog.Active_list_box = 1;

System.out.println(myDialog.Active_list_box);
}

}

}

/**

* File: SchemaCanvas.java

* Project Title: VOCABULARY CREATOR

* Author: Muhammad Arif

* Last updated on : 07/09/97

* Last updated by : Muhammad Arif
*/

import java.applet.Applet;

import java.awt.*;

import java.util.*;

import EDU.auburn.VGJ.gui.*;

import EDU.auburn.VGJ.graph.*;

import EDU.auburn.VGJ.algorithm.tree.*;

import EDU.auburn.VGJ.algorithm.GraphAlgorithm;

import java.util.Stack;

/**

• Canvas for showing schema graph.

*/

public class SchemaCanvas extend3 GraphCanvas
{

/**

* Contructor for canvas takes Schema Graph, and frame reffrence
*/

public SchemaCanvas(OohvrSchema s,Frame Nf)
{

super(s,Nf);
}

/* 	public boolean mouseDoun(Event evt,int x, int y)
{

System.out.println("Mouse is moving over me"+x+":"+y);

return (super.mouseDown(evt,x,y));

*/
}

import java.awt.*;

import java.awt.event.*;

import EDU.auburn.VGJ.graph.*;

import java.util.Hashtable;

public class listframe extends Dialog
{

Enhanced_list myList,selectList;

Button done,cancel,Add,Remove;

int no_of_items;

Set selected_set;

private Hashtable hash;

public listframe(String[] contents,int number,NewFrame frame)
{

super(frame,"List of children",true);

resize(600,600);

no_of_items = number;

GridBagLayout layout = new GridBagLayout();

GridBagConstraints c = new GridBagConstraints();

setLayout(layout);

// SETUP THE GRIDBAGLAYOUT

c.insets = new Insets(2,5,2,5);

// set up label 1

c.gridx = 1;

c.gridy = 1;

c.gridwidth = 1;

c.gridheight = 1;

c.anchor = GridBagConstraints.CENTER;

c.fill = GridBagConstraints.HORIZONTAL;

c.weightx = 0.0;

104

105

c.weighty = 0.0;

Label label1 = new Label("Candidates");

layout.setConstraints(labell,c);

add(label1);

// set up label 2

c.gridx = 11;

c.gridy = 1;

c.gridwidth = 1;

c.gridheight = 1;

c.anchor = GridBagConstraints.CENTER;

c.fill = GridBagConstraints.HORIZONTAL;

c.weightx = 0.0;

c.weighty = 0.0;

Label label2 = new Label("Chosen");

layout.setConstraints(label2,c);

add(label2);

// setup the list box

c.gridx = 1;

c.gridy = 2;

c.gridwidth = 10;

c.gridheight = 10;

c.anchor = GridBagConstraints.CENTER;

c.fill = GridBagConstraints.BOTH;

c.weightx = 1.0;

c.weighty = 1.0;

myList = new Enhanced_list(10,false);

for(int i=0; i<number; i++)

myList.addItem(contents[i]);// fill the list box with

// the children concepts

layout.setConstraints(myList,c);

add(myList);

// setup ya list box

c.gridx = 11;

c.gridy = 2;

c.gridwidth = 10;

c.gridheight = 10;

c.anchor = GridBagConstraints.CENTER;

c.fill = GridBagConstraints.BOTH;

c.weightx = 1.0;

c.weighty = 1.0;

selectList = new Enhanced_list(10,false);

layout.setConstraints(selectList,c);

add(selectList);

// Add the "done" button

c.gridx = 2;

c.gridy = 12;

c.gridwidth = 2;

c.gridheight = 2;

c.anchor = GridBagConstraints.CENTER;

c.fill = GridBagConstraints.HORIZONTAL;

c.weightx = 0.0;

c.weighty = 0.0;

done = new Button("DONE");

layout.setConstraints(done,c);

add(done);

// Add the "Ade button

c.gridx = 4;

c.gridy = 12;

c.gridwidth = 2;

c.gridheight = 2;

c. anchor = Gl-idBagConstraints.CENTER;

c.fill = GridBagConstraints.HORIZONTAL;

c.weightx = 0.0;

c.weighty = 0.0;

Add = new Hutton("Add all");

layout.setConstraints(Add,c);

add(Add);

//Add the "Remove all" button

c.gridx = 8;

c.gridy = 12:

c.gridwidth = 2;

c.gridheight =2;

c.anchor = GridBagConstraints.CENTER;

106

107

c.fill = GridBagConstraints.HORIZONTAL;

c.weightx = 0.0;

c.weighty = 0.0;

Remove = new Button("Remove all");

layout.setConstraints(Remove,c),

add(Remove),

// allocate selected set

selected_set = new Set();

// Initialize hash table

hash = new Hashtable(),

}

public Set get_selected()

return selected_set;

}

// class event handler function

public boolean handleEvent(Event ev)

if(ev.id == Event.ACTION_EVENT)

if("DONE".equals(ev.arg))

System.out.println("Clicked on ok");

show(false);

return true:

if("Add all".equals(ev.arg))

{

System.out.println("Clicked on add");

for(int i=0; i<no_of_Aems;

if(aelectList.isPresent(myList.getItem(i)) == false)
{

selected_set.includeElement(i);

selectList.addItem(myList.getItem(i));

108

hash.put(myList.getItem(i),new Integer(i));

}
}

return true;

}

if("Remove all".equals(ev.arg))

{

System.out.println("Clicked on remove");

while(selected_set.isEmpty() != true)

{

selected_set.removeElement(selected_set.first());

}

hash.clear();

selectList.clear();

return true;
}

}

if(ev.id == Event.LIST_SELECT)

{

if(ev.target == (Object) myList)

{

if(selectList.isPresfint(myList.getSelectedItem()) == false)

{

selectList.addItem(myList.getSelectedItem());

selected_set.ncludeElement(

myList.getSelectedIndex());

hash.put(myList.getSelectedItem(),

new Integer(myList.getSelectedIndex()));

System.out.println(selected_set);

return true;

}
}

if(ev.target == (Object) selectList)
{

int x = selectList.getSelectedIndex();

String str = selectLAt.getTtem(x);

Integer y = (Integer) hash.get(str);

selected_set.removeElement(y.intValue());

hash.remove(str);

selectList.delItem(x);

System.out.println(selected_set);

return true;

}

}

return false;
}

}

/**

* File: ViewFrame.java

* Project Title: VOCABULARY CREATOR

* Author: Muhammad Arif

* Last updated on : 07/09/97

* Last updated by : Muhammad Arif
*/

import java.applet.Applet;

import java.awt.*;

import java.util.*;

import EDU.auburn.VGJ.gui.*;

import EDU.auburn.VGJ.graph.-;

import EDU.auburn.VGJ.algcrithm tree.*;

import EDU.auburn.VGJ.algorithm.GraphAlgorithm;

import java.util.Stack;

/**

• Main window in which schema would be shown
*/

public class ViewFrame extends Frame
{

0ohvrSchema mainSchema;

SchemaCanvas gCnv;

double view;

OOhvrCGI cgi;

Frame fr;

PropertyDialog propDlg;

char ViewType;
/**

* 	Constructor takes schema graph, Schema canvas and CGI

109

* 	and reffrences.

*/

public ViewFrame(OohvrSchema g,00hvrCGI ocgi)

{

super();

ViewType='d';

view=1;

cgi=ocgi;

mainSchema=g;

setLayout(new BorderLayout());

Panel pnl=new Panel();

pnl.add(new Button("+"));

pnl.add(new Button("-"));

pnl.add(new Button("Layout Graph"));

pnl.add(new Button("Properties"));

pnl.add(new Button("ChangeView"));

pnl.add(new Button("Attributes"));

pnl.add(new Buttcn"Relationships"));*/

add("North",pnl);

}

public void UpdateCanvas(SchemaCanvas cnv)

{
gCnv=cnv;

}

/**

* Event handler for the main window.

*/

public boolean action(Event evt, Object arg) {

if ("+".equals(arg)) { // To Increase view size

view=view+1;

gCnv.setScale(view);

System.out.println("Added in view");

return true;
}else

if ("ChangeView".equals(arg)) { // To Increase view size

if(ViewType=='d')

ViewType='r';

else

ViewType='d';

Refreash();

return true;

}else

110

111

if ("-".equals(arg)) { // To decrease view size

view=view-1;

if(view<0) view=1;

gCnv.setScale(view);

gCnv.update(true);

System.out.println("Subtracted in view");

return true;

}else 	 // show up the property window

// for selected concept

if("Properties".equals(arg))

{

//Status="Contacting Server Wait 	";

//shcwStatus(Status);

Node root = gCnv.getSelectedNode();

if(root!=null)
{

String selected=root.getLabel();

String propli]=cgi.GetProperties(selected);

int nopropi == cgi.ReadTotal();

boolean attOK = cgi.OK;

String prop2[]=cgi.GetRelations(selected);

int noprop2 = cgi.ReadTotal();

boolean relOK 	cgi.OK;

if(attOK == ,:rue && relOK==true)
{

/* fr•new Frame();

fr resize(50,50);

System.out println("Activating My Dialog");

proplg=new PropertyDialog(fr,this,cgi,

oelectEd,prop1,prop2,nopropl,noprop2,'A');

propDlg.show();

propDlg.resize(310,410);*/

}

}

return true;

1

else

if ("Layout Graph".equals(arg)) { // Relayout the graph.

/*double i=gCnv.SELECT_NODES;

if(gCnv==null)

System.out.println("Canvas Null");

Node root = gCnv.getSelectedNode();

GraphAlgorithm alg=new TreeAlgorithm('d');

mainSchema.removeGroups();

mainSchema.pack();

String msg=alg.compute(mainSchema,gCnv);

gCnv.update(true);

System.out.println("Layout:"+msg);

Refreash();

return true;

}

return false;

}
/**

* Runs the layout algorithem on the graph and

* Updates the screen with now layout.

*/

public void Refreash()

{

gCnv.setSelectedNode(mainSchema.getRootId());

mainSchema.setDirected(false);

GraphAlgorithm alg=new TreeAlgorithm(ViewType);

mainSchema.removeGroups();

mainSchema.pack();

String msg=alg.compute(mainSchema,gCnv);

mainSchema.setDirected(true);
gCnv.update(true);

System.out.println("Layout:"+msg);

}

}

/**

* File: NewFrame.java

* Project Title: VOCABULARY CREATOR

* Author: Muhammad Arif

* Last updated on : 07/09/97

* Last updated by Muhammad Arif

*/

import java.applet.Appl.et;

import java.awt.*;

import java.util.*;

import EDU.auburn.VGJ.gui..*;

112

import EDU.auburn.VGJ.graph.*;

import EDU.auburn.VGJ.algorithm.tree.*;

import EDU.auburn.VGJ.algorithm.GraphAlgorithm;

import java:util.Stack;

/**

Main window in which schema would be shown

*/

public class NewFrame extends Frame

{
DohvrSchema mainSchema;

SchemaCanvas gCnv;

double view;

OOhvrCGI cgi;

Frame fr;

PropertyDialog propsDlg;

char ViewType;

Menu MainMenu,Options

MenuBar mb;

int Expansion_number;

/**

* 	Constructor takes schema graph, Schema canvas and CGI

* 	and reffrences

*/

public NewFrame(OolvrSchema g,OOhvrCGI ocgi)

{

super();

MainMenu = new Menu("View");

MainMenu.add(new MenuItem("Ancestor View"));

MainMenu.add(new MenuItem("Childern View"));

MainMenu.add(new Menuitem("First Level Neighborhood"));

MainMenu.add(new MenuItm("Exit"));

Options = new Menu("Options");

Options.add(new MenuItem("Select Detail"));

mb=new MenuBar();

mb.add(MainMenu); mb.add(Options);

setMenuBar(mb);

113

ViewType='d';

view=1;

cgi=ocgi;

mainSchema=g;

setLayout(new BorderLayout());

Panel pnl=new Panel();

pnl.add(new Button("+"));

pnl.add(new Button("-"));

pnl.add(new Button("New Child"));

pnl.add(new Button("Layout Graph"));

pnl.add(new Button("Properties"));

pnl.add(new Button("Expand"));

pnl.add(new Button("Detract"));

pnl.add(new Button("ChangeView"));

add("North",pnl);

Expansion_number = 5;
}

public void UpdateCanvas(SchemaCanvas cn)

{

gCnv=cn;

}
/**
* Event handler for the mail window.

*/
public boolean action(Event evt, Object arg)

{

if(evt.arg.equals("Ancestor View"))

{

Node root = gCnv.getSelectedNode();

System.out.println("Activating Ancestor View");

if(root!=null)

{

into id=0;

String selected-root.getLabel();

Stack stk=new Stack();

stk.push(selected);

OohvrSchema os=new OohvrSchema(selected,2,"IN");

while(!stk:empty())

{

String Child=(String)stk.pop();

114

String stri=cgi.GetParent(Child);

for(int i=0;i<cgi.ReadTotal();i++)

{

id=os.AddParent(Child,str[i]);

stk.push(str[i]); }

/* 	String rel[]=cgi.GetRelations(Child);

for(int k=0:k<cgi.ReadTotal();k+=2) {

if(!rel[k].equals("SUBCLASS_OF") &&

!rel[k].equals("SUPERCLASS_OF"))

os.Adehild(Child,rel[k+1]);
os LabelEdge(Child,rel[k+1],rel[k]);
} 			} */

		

}

os.setRootId(id);

ViewFrame vf=new ViewFrame(os,cgi);
vf.resize(800,700);

SchemaCanvas scnv=new SchemaCanvas(os,vf); scnv.setMouseMode(scnv.SELECT_NODES);

vf.UpdateCanvas(scnv);

ScrolledPanel vPanel=new ScrolledPanel(scnv);

vf.adC"Center",vPanel);

vf.pack();

vf.show();

vf.Refreash(); }

return true;

}

if(evt.arg.equals("Childern View"))

{

Node root = gCnv getSelectedNode();

System out.println("Activating Child View");

if(root!=null)

{

int id:

String selected=root.getLabel(); Stack stk=new Stack();

stk push(selected);

OohvrSchema os=new OohvrSchema(selected,2,"IN"); while(!stk. empty())

{

115

String Parent=(String)stk.pop();

String str[]=cgi.GetChild(Parent);

for(int i=0;i<cgi.ReadTotal();i++)

id=os.AddChild(str[i],Parent);

stk.push(str[i]);

}

ViewFrame vf=new 	ViewFrame(os,cgi);

vf.resize(800, 700);

SchemaCanvas scnv=new SchemaCanvas(os,vf);

scnv.setMouseMode(scnv.SELECT_NODES);

vf.UpdateCanya(scnv);

ScrolledParel vPanel=new ScrolledPanel(scnv);

vf.add("Center',vPanel);

vf.pack();

}

return true;

}

if(evt.arg.equEls("First Level Neighborhood"))

{

System.out.println("Activating Neightborhood View");

Node root = gCnv getSelectedNode();

if(root!=null)
{

int id;

String selected=root.getLabel();

OohvrSchema os=new OohvrSchema(selected,2,"IN");

String str[]=cgi.GetParent(selected);

for(int i=0; i<cgi.ReadTotal();i++)

id=os:AddChild(str[i],selected);

}

String str2[]=rgi.GetChild(selected);

for(int i=0;i<cgi.ReadTotal();i++)

id=os.AddChild(selected,str2[i]);

ViewFrame vf=new ViewFrame(os,cgi);

vf.resize(800,700);

SchemaCanvas scnv=new SchemaCanvas(os,vf);

116 String

scnv.setMouseMode(scnv.SELECT_NODES);

vf.UpdateCanva(scnv);

ScrolledPanel vPanel=new ScrolledPanel(scnv);

vf.add("Center",vPanel);

vf.pack();

vf.show(),

vf.Refreash();

}

return true,

}

if(evt.arg.equals("Exit");
{

dispose(),

}

if(evt.arg.equals("Select Detail"))

{
// pop up the dialog box for selecting no of children

select_detail = new

Info_box("Number of children during expansion",

3,this);

select_detail.move(200,200);

select_detail.setModal(true);
select_detail.pack()

select_detail show(true);

if(select_detail.Ok_click() == true)
{

Expansion_number =

select_detail.get_tExtfieldvalue();

}
.

if ("+".equals(arg)) { /1 To increase view size view=view+1;

gCnv.setScale(view);

System.out.println("Added in view");

return true;

}

if ("ChangeView".equals(arg)){ 	// To Increase view size

117

118

if(ViewType=='d')

ViewType='r':

else

ViewType='d';

Refreash():

return true;

}

if ("-".equais(arg)) { // To decrease view size

view=view-1;

if(view<O) view=1;

gCnv.setScaleview);

gCnv.update(true);

System.out.println("Subtracted in view");

return true;

} 	 // show up the property window

// for selected concept

if("Properties" equals(arg))

{

//Status="Contacting Server Wait "; 	//showStatus(Status);

Node root 	= gCnv.getSelectedNode();

if(root!=null)

{

String selected=root.getLabel();

String prop1[]=cgi.GetProperties(selected);

int noprop1 = ogi.ReadTotal(); boolean attO

boolean attOK = cgi.OK;

String prop2[]=cgi.GetRelations(selected);

int noprop2 = cgi.ReadTotal();

booloan relOK

if(attOK == true && relOK==true)
{

system.out println("Activating My Dialog");

propDlg=new propertyDialog(this,cgi,selected,propl

prop2,noprop1,noprop2);

propDlg.setModal(true); propDlg.pack();

propDlg.resize(310,410);
propDlg.move(200,200); propDlg.show(true

propDlg.show(true);

if(propDlg.is_Okclicked == true)
{

// code to add new links (..f any)

//Implemented only for SUB_CLASS relationships

String[] new_cons = new String[50];

new_cons = propDig.get_newconstraints();

for(int x=0; new_cons[x] != null; x++)

{

System.out.println("New entry = "+new_cons[x]);

int id = mainScheema.get_nodeid(new_cons[x]);

if(id != -1)
{

mainSchema.AddEdge(selected,new_cons[x]);

}

else

{

System.out.println("Node"+new_cons[x]+

"may not be inserted correctly");
}

}

Refreash();

propDlg.dispose();

}

}
else

{

System.out.printin("Something messed up");

}

else

{

System.out println("Node not selected");

}

return true;

}

if("Expand".equals(arg))

Node root = gCnv.getSelectedNode();

int no_of_children
if(root!=null)

119

120

{

String selected=root.getLabel();

String child[]=cgi.GetChild(selected);

no_of_children = cgi.ReadTotal();

if(no_of_children>0)

if(no_of_children <= Expansion_number)

for(int i=0; i<no_of_children; i++)

if(mainSchema.isNodepresent(child[i])==
true) 	//child already present

mainSchema.AddEdge(child[i],selected);

else

mainSchema.AddChild(selected,child[i]);

//adds children nodes

// ADD ADDITIONAL LINKS IF ANY...

String Parents[] = cgi.GetParent(childr[i]);

int no_of_additional_links = cgi.ReadTotal();

if(no_of_additional_links > 1)

for(int j=0; j<no_of_additional_links;j++)

if(Parents[j].equals(selected))

System.out.println(

"This link already exists");

else

System.out.println(

"Link Needed");

if(mainSchema.isNodepresent(

Parents[j]) == true)

{

mainSchema.AddEdge(

child[i],Parente[j]);

121

}

// end if

} // end for
}

else

{

System.out.println("no more IS A links

+" for"+child[i];

// end if
}

// end for

}

else

{

// 	 code to display a list box of concepts listframe

 childlist = new listframe(child,

no_of_children,this);

childlist.pack();
childlist.show(true);

childlist.move(200,200);

Set selected_set = new Set();

selected_set = childlist.get_selected();

System.out.println("In NewFrame"+selected_set);

if(oelected_set.isEmpty() == false)

// do only if an item is selected

{

while(selected_set.isEmpty() == false)

int z = selected_set.first;); //

	 System.out.println(z);
selected_set.removeElement(z);

if(mainSchema.isNodepresent(child[z])

== false)

// check if child already exists

mainSchema.AddChild(selected,
child[z]); //adds children nodes

// ADD ADDITIONAL LINKS IF ANY...

String Parental] = cgi.GetParent

(child[z]);
int no_of_additional_links =

122

cgi.ReadTotal();

if(no_of_additional_links > 1)

for(int j=0;

j<no_of_additional_links; j++)

if(Parents[j].equals(

selected))

System.out.println

("This link already exists");

}

else

{

System.out.println

("Link Needed");

if (

mainSchema.isNodepresent(Parents[j]) == true)
{

mainSchema.AddEdge(child[z],Parents[j]);

}

} // end if

} // end for

}

}

else

mainSchema.AddEdge(child[z], selected);

System.out.println(child[z]+" already exists");

}

}

System.out.println("In NewFrame after removal"+selected_set);

}

} //end if no_of_children <= 5

}

else

{

System.out.println("No Children, no expansion");

Refreash();

}

else

123

System.out.println("Node not selected");

}

return true;

}

// 	 Refreash();
}

else
{

System.out.println("Node not selected");

}

return true;

}

if ("New Child".equals(arg)) { // Add a new child to a

// selected concept

Node root = gCnv.getSelectedNode();

if(root!=null)
{

String parent=root.getLabel();

NewChild nch=new NewChild(parent,this);

}

else

{

System.out.print.ln("Node not selected");

}

return true;

}

if ("Layout Graph".equals(arg)) // Relayout the graph.

{

/* 	 double i=gCnv.SELECT_NODES;

if(gCnv==null)

System.out.println("Canvas Null");

Node root = gCnv.getSelectedNode();

GraphAigorithm alg=new TreeAlgorithm('d');

mainSchema.removeGroups();

mainSchema.pack();

String msg=alg.compute(mainSchema,gCnv);

gCnv.update(true);

System.out.prntln("Layout:"+msg);

*/

Refreash();

return true;

}

if(evt.id == Event.WINDOW_ICONIFY)

{

System.out.println('comes here, great!");

return false;

/**

* Runs the layout algorithm on the graph and

* Updates the screen with new layout.

*/

public void Refreash()

{

env.setSelectedNode(mainSchema.getRootId());

mainSchema.setDirected(false);

GraphAlgorithm alg=new TreeAlgorithm(ViewType);

// 	 mainSchema.rnmoveGroups();

// 	 mainSchema.pack();

String msg=alg.compute(mainSchema,gCnv);

mainSchema.setDirected(true);

gCnv.update(true);

System.out.println("Layout:"+msg);

}

/**

• Add a new child to the concept by calling the APT

• from CGI

*/

public void AddNewChild(String Parent , String Child)

{

cgi.AddNewChild(Parent, Child);

if(cgi.OK)

mainSchema AddChild(Parent,Child);

Refreash();

}

}

124

APPENDIX C

API DESCRIPTION

The definition of APIs is presented here.

/***
*

* Funciton MV_List_Children

* Input: [ConceptName 7 Concept name.

* Output:[number Number of children

[list] keeps all children name

* Description:

* Function caller need to release the memory.

* delete list [number][];
*
***/

void MV_List_Children(ConceptName,int& number, char ** &list);

/***

* Function

 MV_List_Parents

Input: [ConceptName] Concept name.

Output:[number] Number of children

	[list] keeps all parent name

Description:
Function caller need to release the memory.

delete list [number] [];

*

******************* **/

void MV_List_Parents(chart ConceptName,int& number, char ** &list);

/*****

**

	Function MV_Show_Attribute_Value
Input: [ConceptName] Concept name.

[AttributeName] Attribute name.

Output:[number 1 Number of value of this attribute

[list] keeps 	all value of this attribute:

Description:
Function caller need to release the memory.

125

126

delete list [number][];

***/

void MV_Show_Attribute_Value(char* ConceptName,
char* AttributeName,
int& number,char** &Value);

/***
*

Function MV_ShowRelationship_Value
Input: [ConceptName] Concept name.

[AttributeName] relationship name.
Output:[number 1 Number of value of this Relationship

[list] keeps all concept name of this Relationship
Description:

Function carer need to release the memory.
delete list [numbed[];

*
***/

void MV_Show_Relationship_Value(char* ConceptName,
char* RelationshipName,
int& number,char** &Value);

/***
*

Funciton MV_List_All_Property_Value
* (MV_List_All_Attribute_Value)
* (MV_List_All_Relationship_Value)

Input: [ConceptName] Concept name.
Output:[number] keeps the number of list

* [list] store property name and value
* Example: list [1] 	"SUBCLASS _ OF" <- property name
* list[2] = "ENTITY" <- value
* list [3] = "NAME" <- proper ty name

* list[4] = "Procedure" <-
*
* Description:

Function caller need to release the memory:
delete list [number] [];

*
***/

127

void MV_List_All_Property_Value(char* ConceptName,

int& number, char ** &list);

void MV_List_All_Attribute_Value(char* ConceptName,

int& number, char ** &list);

void MV_List_All_Relationship_Value(char* ConceptName,

int& number, char ** &list);

/***

Funciton MV_Change_Attribute_Value

* Input: [ConceptName] 	Concept name.

[

 AttributeName], 	Attribute name.

[Value] Jew value.

* Output: 0 if no such :oncept exist or

no such attribute exist in this concept

* 1 normal update

* Description:

If no such attribute 	exist in this certain concept,

* function will 	 return without any change.

* If the front end 	needs some error codes, I need to

* rewrite this function
*

**/

int MV_Change_Attribute_Value(char* Concept Name,

char* AttributeName.

char* oldValue,

char* Value);

/***

*

Function MV_Change_Relationship_Value

Input: [Concept Name]concept name:

[RelationshipName] Relationship name.

[CNarm] New Target Concept name.

Output: 0 if no such conceit exist or

no such attribute exist in this concept

1 normal update

Description:

* 	 If no such attribute 	exist in this certain concept,

function will return without any change.

If 	front end AP needs some error codes, I need to
rewrite this function.

128

***/

	

int MV_Change_Relationship_Value 	char* ConceptName,

char* AttributeName,

char* OName,

char* CName);

/***

Funciton MV_Show_Number_Of_Children

Input: [ConceptName] Concept Name.

Output:[number] Number of children.

* Descriptioin:

* This function takes a ConceptName and return the number

* of its children:
*

	

*** /

void MV_Show_Number_Of_Children(char* ConceptName, int& number);

/***

*

Function MV_Show_Number_Of_Parent

Input: [ConcoptName] concept name.

Output:[number] Number of

 parents.
Descriptioin:

This function takes a ConceptName and return the number of its parents.

*

/

	

void MV_Show_Number_Of_Parents(char* ConceptName,int& number);

/***

*

Function MV_Does_Property_Exist

Input: [PropertyName] Property Name.
Output: [IntroNode] if we have this property, this IntroNode

* keeps the node first introduced this property.

* Descriptioin:
This function return 1 if we do have this Property and

* setup the value of IntroNode. Return 0 if we don't have this property and * IntroNode point to NULL

129

***/

int MV_Does_Property_Exist(char* PropertyName,char* &IntroNode);

/***

*

Funciton MV_Create_Attribl:te

Input: [ConceptName] Concept Name

[AttributeName] Attribute Name

Output: None

Descriptioin:

This function will add Attribute in Concept and

* PROPAGATE this attribute to all the descendents of

* Concept with NULL value. If same descendants of

* Concept already have this Attribute, this function will

* not add anything to it. *
..

***/

void MV_Create_Attribute(char* ConceptName,char* AttributeName);

/***

*
Funciton MV_Delete_Attribute

Input: [ConceptName] Concept Name [Attribute Name] Attribute Name

Output: None

Descriptioin:
This function will delete Attribute in Concept and

recurrsively delete all this attribute from its

* descendents. IF THE NODE IS NOTTHE PLACE WHICH

* INTRODUCES THIS ATTRIBUTE, THE FUNCTION WILL RETURN

* AND DO NOTHING.

*

***/

void MV_Delete_Attribute(char* ConceptName,char* AttributeName);

/***

Funciton MV_Create_Relationship

Input: [Rel1] Relationship Name

[Rel2] Reverse Relationship Name

[CNamel] Concept Name which introduce Rel1

130

[CName2] Concept Name which introduce Rel2

Output: None

Descriptioin:

This function will add relationships in Concepts and

PROPAGATE these relationships to all the descendents of

Concept with NULL value. If some descendents of

Concept already have the Relationship, this function will

not add anything to it.

***/

void MV_Create_Relationship(char* CName1, char* Rel1, char* Came2,char* Rel2);

/

*

Function MV_Delete_Relationship
Input: [Rel1] Relationship Name

[Re12] 	Reverse Relationship Name

[CName1] Concept Name which introduce Rel1

[CName2] Concept Name which introduce Rel2 2

Output: None

Descriptioin.

This function will remove relationships in Concepts and PROPAGATE this deletation to all the descendents of CName1 and Cname2. If some decendents of CName1 and

* CName2 don't have those Relationships, this function will.

* just return and

***/

void MV_Delete_Relationship(char* CName1, char* Rel1, char* Came2,char* Rel2);

/

*** *

Function MV_Find_Lowest_Common_Node

Input: [CName1] first concept name

[CName2] second concept name

Qutput:[LCNode] Lowest common node of two input nodes. Descriptioin :

If 	CName1 is ancestor of CName2, then LCNode will be

* set up as CName1, vice cersa.

* Currently we don't have a perfect algorithm to judge

131

* which node is LC. So, I use greedy algorithm from

* CName1. In other words, if you exchange the order

* of CNamel and CName2, you may get different answer.

* **/

void MV_Find_Lowest_Common_Node(char* CName1,char* CName2, char* & LCNode);

/** **

*

Funciton MV_Create_Concept

Input: [ConceptName] concept name

[ParentName] parent name

Output:none

Descriptioin;

This function create a new concept with same property

* as its parent has. The value of its properties will be

* null except NAME and SUBCLASS_OF *

**/

void MV_Create_Concept(char* ConceptName,char* ParentName);

/** **

*

Funciton 	ist_

Input: Notim,g

* Output: All con._z2:-.13 	...abase

Descriptio:

*

**/

void MV_List_All_Concept(int& number, char ** &list);

/** **

*

Funciton MV_Add_Attribute_Value

* Input: [ConceptName] concept name

* [AttributeName] attribute name

* [Value] a value

Output: 0 if no such concept exist or no such attribute exist in this concept

1 normal update

* Descriptioin:

132

* Add one attribute-value pair into this certain concept.
* If this concept has a pair of thisattribute with
* value NULL, then this pair will be changed to
* attribute-value with Value.

**/

int MV_Add_Attribute_Value(char* ConceptName, char* AttributeName, char* Value);

/**

*

Funciton MV_Add_Relationship_Value
Input: [ConceptName] concept name

* [RalationshipName] relationship name
[TargetConcept] target concept

Output: 0 if no such concept exist or
no such relationship exist in this concept

1 normal update
Descriptioin:

Add one relationship-value pair into this certain concept.
If this concept 	a pair of this relationship with
valve pointer to NULL then this pair will, be changed

* to relationship-value point to target concept. *

**/

int MV_Add_Relationship_Value(char* ConceptName, char* RelationshipName, char* Value);

/** *

*

Funciton MV_Remove_Attribute_Value
Input: [ConceptName] concept name

* [AttributeName] attribute name
[Value] value concept

Output: 0 if no such concept exist or
no such attribute exist in this concept

1 normal update
Descriptioin:

Remove

one attribute-value pair into this certain concept.

*

If the pair is the last pair of this attribute, this

133

* function will keep this pair and clean the value to NULL.
*

**/

int MV_Remove_Attribute_Value(char* ConceptName,
char* AttributeName,
char* Value);

/************************************** ***************************
*

*

Funciton MV_Remove_Relationship_Value
Input: [ConceptName] concept name

* [RelationshipName] relationship name
[Value] value concept

Output: 0 if no such concept exist or
no such relationship exist in this concept

1 normal update
Descriptioin:

Remove one relationship-target pair from this certain concept.
If the pair is the last pair of this relationship, this
function will keep this pair and clean the value to NULL.

*

** /

int MV_Remove_Relationship_Value(char* ConceptName,
char* RelationshipName,

char* TargetConcept);

/************************************** ***************************

/************************************** ***************************
*

*

Funciton MV_Show_Reverse_Relationship
Input: [RelationshipName] relationship name

[RevRelationshipName] a pointer to carry the reverse relationship name

Output: 0 if no such concept exist or

1 normal query
Descriptioin:

This function will return the reverse relationship name to the caller. The caller has the responsibility to clean the memory of RevRelationship Name.

**/

int MV_Show_Reverse_Relationship(char* RelationshipName,

134

char* & RevRelationshipName);

int MV_List_Descendant(char* ConceptName,int& number, char ** &list);

//

// MV_Delete_Concept tiil need to be optimized

// If we delete concept A, all decendants of A will be deleted, too.

// If A or its decendants Introduced an; relationship, we will abort this

// operation.

// Problem: if concept B uses Relationship R to point to one of A's decendants

// what should we do? (R' is introduced above of concept A.)

//

int MV_Delete_Concept(char* ConceptName);

int MV_List_All_Relationship_In_One_Node(char* ConceptName,

int& number, char

char ** &list);

REFERENCES

1. Goldfarb C. SGML Handbook. New York: Oxford University Press, 1990.

2. J. J. Cimino. Personal communication. Associate Professor Medicine, Medical
Informatics, Columbia University, 1996.

3. J. J. Cimino, P. D. Clayton, G. Hripcsak, and S. B. Johnson. Knowledge-based
approaches to the maintenance of a large controlled medical terminology.
JAMIA, 1(1):35 50, 1994.

4. J. J. Cimino, G. Hripcsak, S. B. Johnson, and P. D. Clayton. Designing
an introspective, multipurpose, controlled medical vocabulary. In Proc.
Thirteenth Annual Symposium on Computer Applications in Medical
Care, pages 513 517. Washington, DC, November 1989.

5. William M. Detmer and Edward H. Short.liffe. A model of clinical query
management. that supports integration of biomedical information over
the world wide web. Section on Medical Informatics, Stanford University
School of Medicine, 1994.

6. D. H. Fischer. Consistency rules and triggers for multilingual terminology. In
Proc. TKE'93, Terminology and Knowledge Engineering, pages 333 342,

1993.

7. H. Gu, J. Cimino, M.. Helper, .1. Geller, and Y. Perl. Utilizing OODB schema
modeling for vocabulary management. In .1. Cimino, editor, Proc. 1996

AMM Annual Fall Symposium, pages 274 278, Washington, DC, October

199G.

8. Michael Kifer, Won Kim, and Yehoshua Sagiv. Querying object-oriented
databases. In Proc. 1992 .4CM SWAMI) Conference on Management

of Data, San Diego, CA, Juno 1992.

9. L. Liu, M. Halper, H. Cu, J. Geller, and Y. Purl: Modeling a vocabulary in
an object-oriented database. In K. Barker and M. T. Ozsu, editors,

CIKM-96, Proc: 5th Int'l Conference on Information and Knowledge
Management, pages 179 188, Rockville, MD, November .1.996.

10. L. Lin, M. Halper, H. Gu, J. Galler, and Y. Pod. Controlled vocabularies in
OODBs: Modeling issues and implementation. In preparation, 1997.

11:. Y. Perl and J. Geller. Using object-oriented databases to make medical vocab-
ularies comprehensible. NJIT Research, 5, 1997. 	appear.

12. Y. Peri, J. Geller, and H. Cu: Identifying a forest hierarchy in an OODB
specialization hierarchy satisfying disciplined modeling. In Proc. First
IFCIS Int'l Conference on Cooperative Information Systems (CoopIS96),
pages 182-195, Brussels, Belgium, 1996.

135

136

13. Berners-Lee T, Cailliau R, Luotonea A, Frystyk Nielsen H, and Secret A. The
world-wide web. Communication 	of the ACM, pages 37(8)-76, 1994.

14. Stanley B. Zdonik and David Maier editors. Readings in Object-Oriented
Database Systems. Morgan Kaufmann Publishers, Inc., San Mateo, CA,
1990.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: An Overview of OOHVR
	Chapter 3: Preprocessor Design and Implementation
	Chapter 4: Designing A Vocabulary Creator
	Chapter 5: Future Work
	Appendix A: CGIs Code
	Appendix B: JAVA Classes and Their Code
	Appendix C: API Description
	References

	List of Figures

