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ABSTRACT

SHAPED CHARGES HAVING A POROUS TUNGSTEN LINER

-AN EXPERIMENTAL AND THEORETICAL STUDY

OF METAL COMPRESSION,

JET FORMATION, AND PENETRATION MECHANICS

by
Brian Edward Fuchs

The use of porous tungsten as a liner for shaped charges to improve their penetration was

proposed by Ki-Hwan Oh in his invention disclosure "Shock Extrusion of Ingots from

Powders or Solids", at the New Mexico Institute of Mining and Technology, Socorro NM

on June 7, 1988. The intention was to increase the ductility of the normally brittle metal

by heating the liner to a high temperature by shock compaction during its acceleration just

before jet formation.

The feasibility of increasing the ductility of tungsten in this way is the subject of

the present study. The theory and prior experimental studies of porous metal compression

by shock waves are reviewed, with special attention to ways for determining the

temperature of the compressed material. In this theoretical study a new equation of state

is developed, and experimental shaped charges with porous tungsten liners are designed

and tested. One of the shaped charges was also modeled on a computer for this study.

An improved equation of state for porous tungsten is developed and compared

with experimental data from the literature and other equations of state. The proposed

equation of state shows improved correlation to experimental data for tungsten with high

initial porosity. This is achieved while maintaining the close correlation to data obtained

by most equations of state at higher initial densities.



After preliminary studies, two shaped charge liner designs having porous tungsten

liners with initial densities of 65% and 80% of the solid density were designed,

manufactured, and test fired. Steel target plates were used to determine the penetration.

As shown by the flash radiography, the jets formed were particulated on a small scale,

causing the density of the jets to diminish with distance from the charge. A relatively long

distance between the shaped charge and the target plates was required to provide room for

the flash radiographs. This caused low jet densities and a particulated jet that had little

penetration into the target plates.

The jet formation for the liner with initial density 65% of the solid was modeled by

continuum hydrodynamic computations using Lawrence Livermore National Laboratory's

CALE computer code. Near zero strength was used for the jet after formation, as well as

a fitted equation of state for tungsten with low initial porosity. The modeling confirmed

that low strength in the jet formation caused the fine particulation of the jet as it stretches.

By using a combination of techniques developed in this work, improved

temperature determinations were made. These indicated that the temperature of the

shock-compressed tungsten liner varied from 350°C at the sides of the cone to 2,087°C at

the apex. The shaped charge needs to be redesigned in order to achieve the temperatures

of approximately 1000°C required to beneficially change the properties of tungsten. The

study concludes with recommendations for future work. Proposals for shaped charges

with initially porous tungsten liners that may form coherent jets are made. A test method

to verify predicted penetration characteristics of finely particulated jets, developed in this

study, is discussed.
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CHAPTER 1 

INTRODUCTION 

A variety of methods are available for concentrating the mechanical effect of a detonation. 

A commonly used method utilizes the Monroe effect, Ref. (1), also known as the cavity 

effect. This is based on the observation that a plate next to an explosive will have a deeper 

dent after detonation in areas close to where the explosive contained a cavity. The cavity 

allows the explosive's reaction products room to be accelerated into the cavity, focusing 

the momentum to impact the opposite side of the cavity. The effect is enhanced if the 

cavity is lined with some non-reacting material, usually metal. Frequently, the cavity and 

liner are cone-shaped, and the arrangement is referred to as a "shaped charge". 

In the utilization of a shaped charge the explosive is first detonated. The 

detonation is a rapid chemical reaction that drives a shock wave through the material. The 

chemical reaction is completed in a thin layer just behind the shock wave. The detonation 

wave on impact with the liner causes a shock wave to travel through the liner. The initial 

shock accompanied by the following high pressure gas collapses the liner towards the axis 

of the cone. The solid liner at the extreme strain rates caused by the detonation behaves 

as liquid. The collapse forces the inner layer of the liner into a rapidly moving jet, 

concentrating the force of the detonation, and a following slower slug. The jet, with its 

high velocity, has the ability to penetrate large distances of a target material. Shaped 

charges are used in commercial, demolition, and military applications. Typical civilian 



applications include perforator charges for increasing the flow from oil wells, and for 

clearing plugged exits for molten iron in steel mills. 

Shaped charge performance depends on many factors, such as the density, 

velocity, straightness, and breakup time of the jet. Straight, coherent uniform jets of high 

density and velocity deliver the deepest penetration. Density and velocity are material 

dependent. Jet straightness is related to the symmetry of collapse of the liner, which is 

principally determined by the structural symmetry and uniformity of the liner, and the 

symmetry of the detonation shock wave. Physical uniformity of the liner is a matter of 

fabrication; symmetry of the shock wave depends on the uniformity of explosive fill and its 

initiation. Confinement, in the form of an external casing, surrounding the explosive 

charge, may also affect the symmetry to some extent. Jet break-up is related to the plastic 

deformation properties of the material before and after shocking. High speeds of sound 

within the jet material are desirable because they permit higher speeds of liner collapse 

before compressibility effects cause formation of incoherent jets. 

1.1 	Possible Shaped Charge Liner Materials 

Liners are typically made from oxygen free copper, which can undergo large plastic 

deformation without breaking, are easily fabricated, and are economical and readily 

available. However, they have only moderately high density. Many materials have a 

higher density than copper, and would be potentially more effective than copper as a liner 

for shaped charges. The Los Alamos publication "Selected Hugoniots", Ref (2), provides 

a listing of those that have been used in explosive systems. 
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Table 1 Material Properties from Selected Hugoniots 

Material Density 

Po 

gm/cc 

Speed of Sound 

co 

km/sec 

Iridium 22.284 3.916 

Platinum 21.419 3.598 

Rhenium 21.021 4.184 

Gold 19.240 3.056 

Tungsten 19.224 4.029 

Tantalum 16.654 3.414 

Mercury 13.540 1.490 

Hafnium 12.885 2.964 

Rhodium 12.428 4.807 

Palladium 11.991 3.948 

Thallium 11.840 1.862 

Thorium 11.680 2.133 

Lead 11.350 2.051 

Silver 10.490 3.229 

Molybdenum 10.206 5.124 

Bismuth 9.836 1.826 

Copper 8.930 3.940 



By selecting the materials from this list that have a higher speed of sound than copper, a 

selection of materials that might be used to fabricated superior shaped charges is made. 

These materials in order of the highest speed of sound to the lowest are: molybdenum, 

rhodium, rhenium, tungsten, and palladium. These speeds of sound are fitted from shock 

speed/particle velocity measurements and are appropriate for the present investigation 

since they are based on high pressure shock conditions. They differ from the 

conventionally determined and reported speeds of elastic sound which, for example are 

5.22 and 4.76 km/sec for tungsten and copper, respectively Ref. (3). 

Based solely on speed of sound and density considerations, these materials would 

be more suitable than copper. However most are too expensive to be practical for use in 

shaped charges. Only molybdenum and tungsten are available in sufficient quantities at 

reasonable cost. While molybdenum has the higher speed of sound, tungsten's 

significantly higher density makes it the more attractive alternative. Tungsten is brittle at 

room temperature, but has greater ductility at elevated temperature. If the ductility 

problem could be overcome, tungsten would make a superior liner for shaped charges. 

1.2 	Porous Tungsten as a Shaped Charge Liner Material 

In the course of collapse of a solid metal liner leading to formation of the jet, the 

temperature of the material is raised, but not to a degree sufficient to permit plastic 

deformation of fully dense tungsten. Porous metal can be compacted by the "free flight 

powder compaction forging" method developed at the Center for Explosives Technology 

Research at the New Mexico Institute of Technology at the New Mexico Institute of 

4 



Mining and Technology, Socorro, NM, Ref (4). In explosive compaction of porous 

materials, including porous tungsten, the compaction aspect will contribute an incremental 

heating component. The question is whether this incremental heating component, under 

shock conditions as they might exist in a shaped charge, would contribute sufficient 

additional heating beyond that normally experienced by the non-porous material to permit 

plastic deformation of tungsten. Porous brittle metals are being utilized in shaped charges 

for oil well perforation, where the intention is to avoid the creation of a slug which could 

block the hole. Little is known about the pertinent effects of porosity in these oil well 

perforators. 

The temperature dependence upon the properties of tungsten is known under a 

pressure around one atmosphere. These properties were determined under equilibrium 

conditions over longer time periods, much longer than those prevailing under shock 

compression conditions in shaped charges. Crystal growth that can occur under the static 

conditions at which these temperature dependencies were determined cannot occur in the 

extremely short time periods of the shock process. The effect of temperature on 

tungsten's properties under short-term shock conditions cannot be projected from data 

obtained under long-term observations, but must be determined experimentally. 

5 



1.3 	Research Objectives 

In order to evaluate the feasibility of porous tungsten as a shaped charge liner the 

following research objectives were pursued: 

1. A new equation of state for porous tungsten was developed and utilized for 

computing shock temperatures. 

2. Computer modeling of the jet formation process was completed to verify the 

assumptions concerning strength properties and collapse process of the shocked material 

in a porous tungsten shaped charge. Equation of state parameters were fitted for porous 

tungsten. 

3. Shaped charges were designed, fabricated, and tested. 

6 



CHAPTER 2 

LITERATURE SURVEY 

The literature survey for this work covers several diverse areas of warhead design. In 

order to clarify the literature survey, detonations have been separated from shocks. The 

review of detonations has been placed in the appendix. 

2.1 	Shock Waves in Solids 

Ideal detonation waves are extremely rapid forms of combustion characterized by a 

constant velocity shock wave which initiates and supports the following chemical reaction. 

The detonation transmits or generates shock waves into adjacent non reacting materials. 

The extreme pressure from detonations is far beyond the mechanical strength of materials. 

Therefore, the internal stresses caused by the material's strength may be ignored for such 

conditions. It is more important to consider the compressibility of solids. 

2.1.1 Fundamental Equations of Shock Discontinuities in Solids 

One dimensional shock interactions are assumed. Figure 1 shows the conditions at either 

side of a shock front propagating through a solid at rest. 

There are five unknown variables required to determine the final state of the 

system: density, pressure, shock velocity, energy, and particle velocity. Some information 

on the relationships between these variables can be obtained from the conservation 

equations, forming the Rankine-Hugoniot relations, Refs. (5) and (6). 
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The equation for the conservation of mass with a coordinate system moving with 

the detonation front is used. In this coordinate system, the undisturbed material is moving 

with a velocity us  toward the front. The variable up  is the particle velocity of the shocked 

material in a fixed reference frame. 

pous  = p(us  —u p ) 	 (2.1) 

where: 	p is the density 

Po is the initial density 

us  is the shock speed 

up  is the particle velocity 

In applying the conservation of momentum, a control volume expanding with the front is 

used in a fixed reference frame. The control volume then includes all of the shocked 

material. The shock velocity moves forward at velocity us  taking in the material at rest, 

uo = 0, and Po  to a final velocity of up. The conservation of momentum becomes: 

P - Po  = pou s u p 	 (2.2) 

where: 	Po  is the initial pressure 

P is the shock pressure 

The quantity polls  is defined as the shock impedance 

This work follows the convention in detonation and shock physics where the 

specific internal energy is represented by the variable e, and not the variable u used in 

thermodynamics, since u is used here for velocity. 

8 



(2.3) 

(2.4) 

From the Conservation of Energy: 

The conservation of energy can be expressed as a function of pressure and volume. From 

equation 2.1: 

and equations 2.1 and 2.2 

into equation 2.3 with the assumption that P0=0 

which reduces to 

The equations of mass, momentum, and energy are not sufficient to solve for the 

five unknowns. An equation of state describing the properties of the specific material 

considered is required. The simplest and most commonly used form of an equation of 

state is the linear us-up  fit. 

9 



(2.5) 

(2.6) 

(2.2) 

where: 	us  = shock speed, 

up  = particle velocity. 

c = a fitting constant, approximately the speed of 

sound, about 8 km/s to 0.7 km/s. 

s = a fitting constant, about 2 to 0.7. 

This equation represents both condensed solids and liquids. Sometimes a up2  term 

containing a third constant is added to improve the fit. The state for all possible shocks 

can be plotted on a curve, the Hugoniot curve. Using equations 2.2 and 2.5: 

This yields the solid Hugoniot curve in the pressure versus particle velocity plane. The 

Hugoniot curves are typically plotted in the pressure verses particle velocity plane. An 

example with a variety of materials is shown in Figure 2. This figure also shows the 

reverse Hugoniot and expansion isentropes for several explosives (see Appendix 1).  

The Rayleigh line is defined as the line joining the initial state and the shocked 

state. In the pressure particle velocity plane, its slope is given by the conservation of 

momentum, equation 2.2: 

Under some conditions, such as certain phase changes, the Rayleigh line cannot be 

drawn to the final pressure without crossing the Hugoniot curve at lower pressures. For 

these conditions there are two shock waves of different velocities. 

10 



(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

Other relationships can be developed among the variables. Some are these 

relationships are given, using the simplifying assumption that Po=0, Ref. (5). 

2.1.2 Shock Waves from Plate Impacts 

In situations when the initial particle velocity is not zero, for example with colliding plates, 

the equations must be modified to allow for an initial velocity. The matching of shock 

conditions between two dissimilar materials is also possible. These conditions are 

represented in Figure 3, showing the one-dimensional interaction between two materials 

following a plane impact. 

Equation 2.1 becomes: 

11 



(2.13) 

(2.14) 

(2.12) 

(2.15) 

Equation 2.2, with an initial velocity and pressure, becomes: 

Equation 2.5, for an initially moving body becomes: 

When the materials interact, not only must these conservation conditions be met 

but the pressure and the mass velocity must also be continuous and equal at the boundary. 

The state of the materials must change to meet these conditions. The above equations can 

be used to solve the pressure, particle velocity, and shock speed at the plane of contact, 

collision. The solution is often easier to obtain graphically by using the Hugoniot chart, 

Figure 2, and equation 2.6. For the conditions in Figure 3, a graphical solution is shown 

in Figure 4. 

The Hugoniot curve for the projectile material is reflected in the pressure axis and 

moved in the velocity axis such that the initial velocity is at zero pressure. This accounts 

for the initial conditions and for the shock wave moving backwards within the material. 

The density of the solid shocked once can be determined from equation 2.12: 

by using equation 2.5 to eliminate the shock speed us. 
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Equation 2.15 cannot be used for repetitive shocks if po  is taken as the unshocked 

value of density. The temperature, and therefore the density, will have been changed by 

the preceding shocks. 

The graphical method is easily applied to many problems, see Figure 4. Since the 

Hugoniot curves are frequently reflected, many Hugoniot graphs are placed on 

transparencies. Reflections of the materials are then made by flipping one Hugoniot curve 

over and placing it on another chart. Wax pencils are then used to mark the charts and 

determine the state of the materials. If the shocks are assumed not to attenuate, the 

materials after a chain of interactions or reflections in the shock waves can easily and 

clearly be graphically determined. 

2.1.3 Shock Transfer Between Materials 

When a shock wave passes from one material to another, the shock compression 

properties of both materials must be considered. The interactions can be subdivided into 

three types, with reference to the initial materials: (1) shocks into material with a higher 

shock impedance, (2) shocks into material with the same shock impedance, and (3) shocks 

into material with a lower shock impedance. If the impedances are equal the shock 

pressure remains unchanged, as if a shock were being transmitted within the same 

material. For higher impedance target materials, such as the shock being transmitted from 

a light into a heavy material, a shock wave is reflected back into the light material. This 

increases the pressure in both the impacting and the impacted material (see 

Figure 5). 
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The relative impedances of the materials determine the reflected pressures within 

the materials. For low impedance materials, such as a shock being transmitted from a 

heavy to a light material or even into air, the pressure is reduced. Since shock waves do 

not exist that lower pressure, a rarefaction wave enters the impacting material, as shown in 

Figure 6. Unlike the shock wave, the rarefaction wave is not a discontinuity; the pressure 

in it is reduced gradually over a finite distance. It is often possible to still use the 

Hugoniot curve to describe the release of pressure in the material, since this closely 

matches the isentrope Ref. (6). 

2.1.4 The Shock Interactions of Detonations 

The procedures applied above are equally applicable to interactions of detonations and 

non-reacting media. A brief discussion on the shock physics of detonation is given in the 

appendix. The Hugoniot chart in Figure 2 includes not only solid Hugoniot curves, but 

also the Hugoniots curves and expansion isentropes for some typical explosives. The 

chart has the explosive Hugoniot curves reflected about the initial conditions, the CJ point, 

represented by a dot on each Hugoniot curve. The CJ point and detonations are discussed 

in the appendix. By presenting the chart in this fashion the pressures and particle 

velocities for the one-dimensional interactions between these explosives and any of the 

other materials are immediately obtainable. 
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2.1.5 The Stability of Shock Waves 

When a pressure pulse travels through a material, the material is brought to a state of 

higher pressure, temperature, and density. Consequently the speed of sound in the 

material is increased. For the mass behind the shock front, it is the speed c + up  that 

determines the communication of conditions on the shock front. The large value of c + up  

causes a degradation of the pressure at the front, Ref. (5). 

From thermodynamics, for a release along the isentrope: 

de=Tds - Pdv 	 (2.16) 

for ds = 0, then 

de = -Pdv 	 (2.17) 

Initially solid materials have a final volume, at zero pressure, which is slightly 

larger than the initial volume. This is due to the heating of the material by the shock wave, 

Figure 7. 

A reflected wave within the material can combine with a rarefaction wave to form 

a strong tensile wave. If the magnitude of the tension is such that it exceeds the ultimate 

strength of the material, fracture will occur. This is called spalling. The spalled surface on 

metals has a distinctive rough appearance that experts can easily identify. 	This 

phenomenon has been utilized in anti-tank weapons such as the high explosive plastic or 

HEP charges. These charges can destroy some armored vehicles without penetrating. 

The response to this has been the addition of spall liners to the inside of the vehicles and 

spaced armor. 
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2.2 	The Effect of Porosity on Shock Properties 

The previous relations were derived for non-porous materials and require modifications to 

provide a simplified explanation of the shock properties of porous materials. Porous 

materials have relatively large changes in volume in shock processes. From equation 2.4, 

e = 1 /2  P(v0-v), it can be seen that after shock compaction porous materials have much 

higher internal energies and temperatures at the compressed state. The speed of sound in 

these materials is greatly increased due to the large compression and high temperature. 

The shock compression can be separated into three different regions, see Figure 8: 

Ref. (7) 

1. At low pressures elastic compression prevails, without permanent damage 

to the material. 

2. At higher pressures beyond the yield strength of the porous material, void 

collapse begins. This begins the plastic region of the collapse process. 

3. At higher pressures yet, the voids have collapsed and the material is fully 

dense. 

For relatively high porosity materials in the elastic portion of the shock, Hugoniot 

curve changes in volume are due mostly to the changing geometry of the pores. For 

materials with lower porosity, the change in volume is due more to the compression of the 

solid portion of the material. Shock pressures from detonations are generally much 
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greater than the elastic portion of the Hugoniot curve. The elastic portion of the 

Hugoniot curve is not required or covered in this work. 

The release portion porous materials differs from that of solid materials. The 

volume at zero pressure after release is typically smaller than the initial volume due to the 

void collapse, see Figure 9. An initially solid material will have a slightly larger volume 

due to internal heating. 

At low pressures and high initial porosities the plastic portion of the Hugoniot 

curve is governed more by pore collapse than by compression of the solid portion of the 

material. At higher pressure the compression of the solids becomes significant. A physical 

description of the shock Hugoniot curve for completely compressed materials can be 

extended to the partially compressed region to account for the compression of the solid 

portion. For this reason the completely compressed region will be covered first. 

2.2.1 Initially Porous Materials Completely Shock Compressed 

2.2.1.1 Mie-Gruneisen Equation of State: The Mie-Gruneisen equation of state was 

originally developed from statistical mechanics of crystals, Ref. (8) (5). This equation of 

state has been applied to higher pressure and energy states with a moderate amount of 

success. This equation of state assumes: 

where: 

γ

= is defined as the Gruneisen gamma 
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(2.7) 

(2.4) 

(2.20) 

This equation of state derives its theoretical basis from the theory of the lattice 

structure of solids, which does not apply to states other than crystalline solids. Despite 

this, the Mie-Gruneisen equation of state has been applied to liquids with energies not far 

off the solid Hugoniot curve. In application the pressure and energy of an initially solid 

Hugoniot curve is used as a basis for finding the pressure of the porous material at the 

same volume. This is shown in Figure 10. The pressure is computed by the following 

equation: 

where: PH  = pressure of porous 

material along its Hugoniot 

Ps  = pressure of solid at the same volume 

eh  = energy of the porous material 

es  = energy of the solid at the same volume 

By using the pressure, volume relationship, equation 2.7, for the solid material: 

(2.19) 

and equation 2.4 for the energy terms 

in equation 2.19, the relationship between volume and pressure can be determined for the 

porous material: 
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(2.7) 

A plot of equation 2.20, Figure 11, shows that for large porosities, increasing 

shock pressures are predicted to cause an increase in volume. This conclusion is 

supported by Krupnikov et. al. Ref. (9). Data from Krupnikov et. al. and other sources, 

Ref. (9)(10)(11)(12)(13) were examined, table 1. A comparison between these data and 

the Mie-Gruneisen equation of state is shown in Figure 12. The Oh-Persson incomplete 

compaction equation, covered later, was used for this graph. 

The tungsten data supports the conclusion of Krupnikov et. al. For the lowest 

initial densities the specific volume on the porous Hugoniot curve increased with 

increasing shock pressures. This behavior is not as pronounced as the Mie-Gruneisen 

equation of state predicts. The data show that this is because the value of the Mie-

Gruneisen gamma decreases with increasing internal energies. 

Shock compression experiments with porous materials tend to show variations in 

the measured pressures. This is possibly due to density variations within the matrix for 

which an average value may not be suitable. 

2.2.1.2 Volume Limitations on the Mie-Gruneisen Equation of State: The us-up  

equation of state for a solid material predicts a volume for which the pressure goes to 

infinity, Ref. (14). From equation 2.7: 
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Then 

(2.21) 

(2.19) 

(2.4) 

(2.22) 

is assumed to be limited 

(2.23) 

expressions is possible. Then:  

Only the second of these 

The Mie-Gruneisen equation of state yields another point at which 

For equation 2.19: 

using equation 2.4 for the energy of the porous material 

where: v∞  is the initial specific volume of the porous material 

then 

and rearranging 

then 
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(2.24) 

(2.25) 

(2.26) 

(2.27) 

This limiting case for porous materials predicts that the material cannot be 

compressed beyond a limiting specific volume. For large initial volumes, with large initial 

porosity, this theory predicts that the solid volume of the material is not achievable at any 

pressure. This phenomenon has been reported in the literature for cotton wool, Ref. (15). 

2.2.1.3 The Griineisen Parameter Determined from Ambient Conditions: 	The 

Gruneisen gamma can be deteimined from some of the typical material properties 

measured at low pressures and ambient conditions that are available in material 

handbooks, Ref. (5). 

Since: 

and: 

Then 

The volumetric thermal expansion is: 
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(2.28) 

(2.29) 

(2.30) 

The isothermal compressibility is: 

Then the Gruneisen parameter can be expressed as: 

Figure 12 shows the computed Mie-Gruneisen equation of state pressures for 

porous tungsten. The Mie-Gruneisen equation of state predicts the pressures accurately 

for low initial porosities, but rapidly becomes inaccurate at high initial porosities. From 

this figure it can be seen that the value of  must be diminishing at higher temperature 

and energy states. McQueen et. al. also investigated the Gruneisen parameter and 

determined it to be nearly constant within the temperature ranges experienced in most 

shock interactions. Ref. (16). 

The temperature dependence of Gruneisen's gamma was studied by Sternberg. 

Ref. (17). He determined that the constant gamma equation of state is valid up to a 

substantial fraction of the melt temperature. This explains the success of the constant 

gamma equation of state for low initial porosity. 

2.2.1.4 Gruneisen Parameter and the Speed of Sound: 

For partial derivatives: 
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from 

(2.18) 

(2.31) 

(2.33) 

(2.34) 

Then 

(2.35) 

(2.36) 

Where the Mie-Gruneisen equation of state: 

For partial derivatives: 

(2.32) 

or 

Then 

Since the speed of sound, c, is 

And the speed of sound equals 
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(2.7) 

(2.37) 

(2.38) 

(2.39) 

and for the Mie-Gruneisen equation of state 

If a linear us-up fit is used for the Hugoniot curve 

and 

Rarefaction waves, which reduce the pressure on shocked materials, travel at the 

local speed of sound. The speed of sound changes depending upon the state of the 

material. By using equation 2.36 the relationship between the Mie-Gruneisen gamma and 

the state could be determined by studying the release wave. 

2.2.1.5 Gruneisen Parameter and Temperature Calculations: The Mie-Gruneisen 

equation of state can be used to calculate the temperature of the shocked states, see 

Ref. (5). 
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(2.16) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

From thermodynamics: 

Then: 

From the definition of the specific heat: 

and from the Maxwell relations: 

then: 

Using the Mie-Gruneisen equation of state, the value of  can be expressed by: 

Using equations 2.45 and 2.44 in equation 2.16: 
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(2.47) 

(2.4) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

By restricting the differentials to a path along the Hugoniot curve: 

For a shock process, equation 2.4 applies 

The change in energy along the Hugoniot curve is then: 

Equating  in equations 2.47 and 2.48: 

This is a differential equation of the form: 

The value of  can be determined from the equation of state and the Rankine- 

Hugoniot relationships developed earlier. The solution, which Meyers has solved is: 

This equation must be numerically integrated. 
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(2.52) 

(2.42) 

(2.54) 

The temperature within the material decreases as the material undergoes an 

isentropic release. For this situation, equation 2.44 becomes: 

Solving equation 2.52, with a constant 

where: 

subscript o is for the undisturbed material 

subscript I is for the shocked material 

subscript 2 is for the released state 

2.2.1.6 Gruneisen Parameter and Specific Heat Relations: Coperthwaite Ref. (18) 

studied the Mie-Gruneisen gamma in relation to the specific heat at constant volume. 

From the definition of specific heat at constant volume: 

With the Maxwell relationship 

27 

(2.53) 



(2.55) 

(2.56) 

(2.43) 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

equation 2.42 becomes 

Taking the derivative with respect to volume at constant temperature: 

Using the Maxwell Relationships 

Then 

For a constant specific heat at constant volume 

For a constant specific heat at constant volume the above equation will have an equation 

of state for pressure, volume, and temperature with the general form: 

The equation of state for energy, pressure, and volume is obtained from manipulation of 

equation 2.58: 
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Integration yields: 

(2.62) 

is required for an accurate representation of more than the pressure of value of 

Then: 

(2.61) 

The assumption of a constant C is equivalent to the assumption made in the Mie- 

Gruneisen equation of state assumption that the value o:  is a function of volume 

only. Specific heat at constant volume varies with temperature. Kormer et al., Ref (19), 

and Krupnikov et. al., Ref. (9), have studied variable specific heat equations of state in 

relation to the Gruneisen parameter. 

From the development of the Mie-Gruneisen equation of state it is shown that the 

higher energy state off the Hugoniot curve. This value is required for the determination of 

the speed of sound and the temperature of shocked states. 

Zharkov and Kalemin have suggested tungsten as an ideal material in which to 

study the energy dependence of the Gruneisen gamma because of the very high melting 

point, Ref. (15). They also report the value of the Mie-Gruneisen gamma for a ideal 

electron Fermi gas as equal to 2/3. 
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In the Mie-Gruneisen equation of state the value of must increase with decreasing 

(2.63) 

The value of 

seen in 

(2.64) 

(2.65) 

2.2.1.7 The Constant Derivative Limitations Mie-Gruneisen Equation of State: 

volumes for a constant y. In order to increase the applicability of the equation of state the 

Constant Derivative Limitations Mie-Gruneisen equation of State uses 

Ref (20): 

then remains constant. This reduces the increase seen in the Mie- 

Gruneisen equation of state but does not reflect the decreasing value of 

experimentation. 

The constant derivative Mie-Griineisen equation of state also has a limiting 

volume. Following the earlier development the limiting volume would be: 

For the constant derivative equation of state the pressure of the porous material 

can be determined, in the same manner as equation 2.20. 
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(2.66) 

(2.67) 

(2.68) 

(2.69) 

2.2.1.8 The Oh and Persson Equation of State for Porous Materials: This equation 

of state uses the approximate relationship that the change in energy with volume is equal 

along states of constant pressures and along the Hugoniot curve, Ref. (21),(22),(23). 

Utilizing thermodynamics, shock physics, and equation 2.66, Oh and Persson 

developed a new relationship for γ: 

This introduces a variable relationship between γ and energy, which is known to 

exist. The formulation was empirically modified to better fit experimental data and to 

match the low energy states: 

The pressure of the initially porous material is given by: 

Equations 2.68 and 2.69 are the Oh and Persson equation of state for completely 

compacted initially porous metals that have undergone shock compaction. Oh and 

Persson's model has been used to compute the Hugoniot curves of several metals, Figures 

13, 14, 15. These plots use Oh and Persson's incomplete compaction equation, covered 

later, in addition to the modified gamma formulation. This affects only the lowest 

pressure portion of the curves. The equation of state performs well, even though the 
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approximation that  and the possible changes in structure (state and crystal 

structure) are ignored. 

Oh's gamma function at zero energy is equal to To, the value of the Oruneisen 

parameter at ambient conditions. The value obtained from equation 2.28 should be 

utilized to determine this value. The values obtained from shock experimentation are from 

low initial porosities, and therefore low energies, and will closely match this value. 

Johnson's review, Ref. (23) of the equation of state was highly critical. He 

determined a loss of accuracy at high internal densities. Oh and Persson's original paper 

overstated the applicability and range of the equation of state, but the usefulness and 

accuracy can be seen in Figures 13, 14, 15. The Oh and Persson equation of state is 

particularly useful as a first approximation for the porous Hugoniot of metals where the 

only experimental data available is for the solid Hugoniot. The loss of accuracy at high 

initial densities can be anticipated from an equation of state that is not fitted to a particular 

data set. The equation has introduced an energy term into the relationship which can 

reasonably be expected. 
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2.2.2 Partially Compressed Relationships 

Equations of state for the partially densified regions can be divided into two general types, 

rate independent and rate dependent equations of state. The shock processes are assumed 

to be instantaneous changes in state. The rate dependent equations of state, while 

successful in computer models that spread the shock wave over several cells, do not 

reflect this physical model. These equations have been used successfully in modeling the 

release isentrope of both completely and incompletely densified materials. The rate 

independent forms do not reflect a possible increase in porosity in the release process, 

although breakup can occur. 

2.2.2.1 Partially Compressed Region Rate Independent Forms: 

2.2.2.1.1 	Snow-Plow Model: In studies that assume complete compression of the 

initially porous material and negligible internal strength, the snow plow model has been 

applied, Ref. (5). In this model the material is assumed to compress without resistance to 

the specific volume of the solid and then follow the Hugoniot curve of the solid material. 

This model cannot be utilized for very porous materials because of the large internal 

energy differences, or for materials with any appreciable strength. It was an early 

approximation and is no longer utilized. 
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(2.71) 

(2.74) 

(2.75) 

2.2.2.1.2 	Herman's P-a Model: In 1969 Heiman proposed the P-a theory, Ref. 

(24), to account for the plastic portion of the porous Hugoniot curve. In this theory 

porosity is defined as: 

where: 	a = porosity 

v = specific volume 	 (2.70) 

v 	= the specific volume of the 

solid at the same pressure 

and temperature 

The equation of state for a solid material is: 

The equation of state for the porous material is then 

and (2.73) 

Since the pressure and energy are related along the Hugoniot curve, the porosity can be 

simplified as: 

Herman then proposed a polynomial fit for the plastic region: 

A cubic form was used to fit experimental data. The Mie-Gruneisen equation of state was 

used to account for the energy differences experienced in porous compression. 
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(2.76) 

(2.77) 

The P-a equation of state thermodynamically and physically describes the process 

of porous compression within the plastic region. 	This equation of state, with 

modifications, became a basis for much of the following work. 

2.2.2.1.3 	Boades Exponential P-a Model: Boade suggested an exponential P-a 

model: Ref. (25) 

2.2.2.1.4 	Oh and Persson's Incomplete Compaction: In examining Boades' 

results, Oh and Persson investigated possible theoretical bases for the success of Boade's 

exponential P-a model, Ref. (26). Rewriting 

equation 2.76: 

where: vs1= the specific volume of the solid portion 

subscript 1, values at state 1, the elastic limit for the initially porous 

material. 
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(2.78) 

(2.79) 

Where: 

They assumed that during the plastic deformation the increase in strength due to 

work hardening is approximately equal to the decrease in strength due to deformation 

heating. This allowed the utilization of green compaction to the problem Ref. (26). Using 

James linear fit to the Meyer work hardening index: 

where: n is the Meyer work hardening index 

With the approximation that v1 ≈ v∞ (the initial porous volume) and v i vo  (the solid 

volume at zero pressure): 

where: ay  = yield strength 

which can be rewritten as: 

the specific volume of the solid material absent the 

voids at a given pressure 

For low pressures the volume of the solid portion of the material, v,(P), can be 

approximated by the solid specific volume, at zero pressure. As the pressure increases, 

the decreasing volume of the solid portion must be accurately reflected. This equation of 
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(2.80) 

where: 

(2.81) ap

(2.82) 

state has successfully been applied to a variety of metals. It has the advantage of 

providing the incomplete compaction Hugoniot curves of materials without prior 

experimentation. When reliable experimental data are available, Boade's exponential P-a 

equation of state will necessarily provide a better fit, as it is fitted to the data and has the 

same form as Oh's and Persson's equation. 

2.2.2.2 Rate Dependent Forms: 

2.2.2.2.1 Butcher's Rate Dependent Form: Rate dependent pore collapse models have 

also been used to describe the pore collapse in porous materials. Butcher, studying 80% 

dense polyurethane suggested a model of: Ref. (27) 

= the time rate of change of the recoverable (elastic) porosity 

= the time rate of change of the plastic porosity 

ae  is given by: 

 is then given by: 
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(2.83) 

(2.84) 

(2.85) 

T is a material time constant (2.86) 

where: 

= instantaeous stress rate if entire deformation were elastic 

M(a) a function of the elastic change in porosity 

Peg  = an equilibrium pressure 

co  = initial solid speed of sound 

ce = elastic wave velocity 

pso = initial density of the solid matrix 

To  = relaxation time 

Butcher concluded that this was an oversimplification of the pore collapse process. 

2.2.2.2.2 	Carrol and Holts Spherical Pore Collapse Model: Carrol and Holt, Ref. 

(28), expanded on Butcher's work. They assumed a sphere of material, outer radius b, 

with a spherical pore of average diameter a. The initial porosity αo is then: 

The porosity is then given by: 

The dynamic pore collapse relation is given as: 

where: Y is the yield strength 
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(2.88) 

(2.89) 

(2.90) 

Q is a function defined as 

Peq is the equilibrium pressure from static pore collapse relation 

(2.87) 

where G is the shear modulus 

Equation 2.85 is simplified by assuming constant porosity during the elastic and 

elastic plastic phases, up to a critical pressure. The porosity is then changed only in the 

plastic pore collapse phase. 

where: 

2.2.2.2.3 	TEPLA-F Model: Johnson and Addessio Ref. (29)(30) have developed 

the TEPLA-F rate dependent equation of state for porosity. This model has been used for 

both porous compaction and to track the porosity that can occur during a release process. 
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(2.91) 

(2.92) 

In the TEPLA-F equation of state the pressure in the solid portion of the matrix is 

calculated separately. The pressure of the material is then: 

subscript s is for the solid portion of the material 

The equation of state is defined in differential form as: 

where: ' signifies the solid portion of the material 

s = entropy 

T = temperature, the temperature of the porous material is assumed 

equal to 

the porous material is assumed equal to the temperature of the solid 

p = pressure 

P = function of v' and e' yielding pressure 

Q = function of v' and e' yielding temperature 

v = volume 

with: 
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(2,93) 

(2.94) 

(2.95) 

Ourson, Ref. (31), studied ductile failure in metals at stresses lower than those 

experienced in shock wave interactions. Johnson and Addessio applied this methodology 

to high strain rates. This paper, Ref. (32), shows some developments in the rate of change 

of porosity with pressure. For this equation of state the rate of change in porosity is: 

In this equation of state the pressure in the solid portion of the matrix is calculated 

separately. The model assumes that some porosity is always present, or the (14) becomes 

zero and the strain becomes infinite. The pressure of the material is then: 

Subscript s is for the solid portion of the material 

Using the Mie-Gruneisen equation of state and the shock Hugoniot equations in the above 

equation; 



(2.97) 

(2.98) and 

(2.99) 

(2.100) 

for compression 

(2.101) 

(2.102) 

The plastic strain is : 

where: 

τr = a rate sensitive parameter with units of times 

= equilibrium stress, a projection of the current 

stress state , onto a yield surface 

The volumetric and deviatoric plastic strain rates are obtained from: 

(2.96) 

The equilibrium stress is the scaled material stress to the yield surface: 

Substitution of equations 2.93 into 2.97 yields 

The version used in the CALE Code presented later in this work was modified to 

some degree from the above developments, Ref. (33). For this case: 
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squeezed out, 

(2.103) 

(2.104) 

where: 	P.m= minimum pressure used in the computation 

Pc = compaction pressure, pressure at which the voids begin to be 

For materials in tension with increasing porosity the rate of change of porosity equation is 

modified to: 

The rate dependent forms of the porous equation of state are a simplification of the 

pore collapse process. Optical micrographs by Wright, Flinn, and Korth, Ref. (34) of 

explosively compacted 304 stainless steel and Staudhammer and Murr's, Ref. (35), study 

of compacted tungsten and 304 stainless steel rods show a much more complex 

phenomenon. These reports show that the compaction is not of spherical voids in a 

matrix. The void collapse is not uniform. The material collapses in the direction of the 

shock wave. Localized jetting and melting occurs. 

The rate independent foul's of the porous equation of state, on the other hand, 

ignore the time required for the pores to collapse. Equilibrium of the shocked material is 

assumed to be instantaneous. For most materials with extremely small pore sizes the time 

for the material to reach equilibrium is very short. The rate independent forms also ignore 

the inhomogeneities caused by local heating and melting. It is not feasible to model most 

porous materials with each pore represented in the mesh. The approximations from the 

rate independent or the rate dependent methods must be accepted. 
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(2.105) 

(2.106) 

2.3 	Gurney Method for Estimating the Velocity of Metal Driven by a Detonation 

In a shaped charge the explosive drives the walls of the liner to a higher velocity than the 

initial particle velocity due to the shock wave. This is caused by the acceleration of the 

liner by the detonation products between the time the detonation wave impacts the liner 

and the collapse of the liner. 

R.W. Gurney, Ref. (36)(37) developed a method for determining the velocity of 

metal fragments created by a detonation. This method is rather simplistic, but the results 

obtained correlate well with experiments. The model assumes a linear velocity distribution 

throughout the reacted gases, and a constant velocity within the wall. 

Gurney's assumption creates a partitioning of the available kinetic energy between 

the gases and the wall. For an explosive driving a plate, Figure 16, the energy available to 

move material is from the chemical reaction, E. The mass of the explosive and its 

detonation gases, is defined by the variable C, and the mass of the metal plate is M. For a 

differential mass m: 

Where: V = The material velocity 

For a uniform plate velocity 

A linear velocity distribution is assumed for the detonation gasses. The gasses at the wall 

are moving with the metal at a velocity of V. The gasses on the free surface are moving 
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then 

(2.107) 

(2.108) 

(2.110) 

(2.111) 

with a velocity of  This yields a velocity distribution of: 

then the conservation of energy yields: 

The conservation of momentum requires that: 

(2.109) 

from which 
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(2.112) 

then: 

The Gurney constant,  is determined experimentally from a cylinder test at 

an expansion ratio of seven times the initial value, Ref. (38). This is a point where the 

metal wall has approximately achieved its maximum velocity and the cylinder wall has not 

yet fragmented. The same method has been applied to a variety of geometies, cylinders, 

sandwiched plates, spheres, etc. 
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2.4 	Shaped Charges 

There is a variety of methods for concentrating the energy available from detonations. A 

common method is through the use of the Monroe or hollow cavity effect. Increased 

efficiency is obtained if the cavity is lined with some non-reacting material. The 

arrangement is called a shaped charge. A variety of cavity shapes have been used, but 

conical liners are covered here. A typical shaped charge has the configuration shown in 

Figure 17. 

2.4.1 Shaped Charge Jet Formation 

The detonation wave travels from the detonator of the charge down. As it travels it 

collapses the liner onto itself. The collapse point, where the liner material meets, also 

travels down the charge. The material entering the collapse point divides and forms two 

masses: the leading and faster moving jet and the slower slug. A typical collapse is shown 

in Figure. 18 

For the analysis of the collapse process, the velocity of the collapsing walls must 

be known. The Ourney method, covered in section 2.3, predicts the wall velocities 

accurately, except during the initial acceleration portion. Typical models approximate this 

acceleration with a variety of approximations. The amount of explosive interacting with 

the copper wall changes (decreases) as the detonation moves down the charge. Problems 

of this type were studied by Pugh, Eichelberger, and Rostoker in 1952, leading to the PER 

theory, Ref. (39)(40). This is a variation of the earlier Birkoff et. al. theory, which had a 

constant collapsing wall velocity. 
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(2.113) 

(2.114) 

(2.115) 

(2.116) 

For the present development, the details of the initial acceleration of the liner will 

be ignored. With this approximation, and the geometry in Figures 18 and 19, the 

relationship between the angle, θ, and the collapsing wall velocity is: 

The vector relationship, Figure 20,at the moving junction from the law of sines 

the collapse point velocity is: 

An incompressible flow approximation is used in this analysis. This approximation 

works well if the liner material does not undergo supersonic flow. The internal strength of 

the material can be ignored at these extreme pressures. A coordinate system moving with 

the collapse point is used to simplify the problem. Under these conditions the material 

flows straight into the collapse point, as shown in Figure 21. 

The first conservation equation can now be applied to the problem. The first 

equation applied is the Bernoulli equation. For this problem, this reduces to: 

For this condition the liner is unconfined, and the pressure remains constant. The liner 

material moves, in this coordinate system, at equal speed into the collapse point, into the 
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(2.122) 

(2.123) 

(2.124) 

jet, and into the slug. The influx angle determines how large a fraction of the liner mass 

will flow into each. Using the sign conventions for velocity: 

In the fixed coordinate system: 

and 

Using equations 2.118 and 2.119 in equations 2.115 and 2.116 

and 

(2.117) 

(2.118) 

(2.119) 

(2.120) 

(2.121) 

equation 2.113 can now be used to eliminate the angle 0 in equations 2.120 and 2.121. 

The mass of the liner, m, entering the jet, mj and the slug, ms, can now be 

investigated. By applying the conservation of mass: 
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(2.125) 

(2.126) 

(2.127) 

(2.128) 

(2.129) 

(2.130) 

From the conservation of momentum, along the x-axis 

From Figure 22 it can be seen that the angle 13  is not convenient to calculate. The 

angle is depended upon the variations in the liner contour. The angle β+, Figure 22, 

would be much more amenable to computations, as it is independent of contour. 

The PER theory uses cylindrical coordinates of the point M (r,z) and the 

coordinates of P' (X tan A, X). Using the collapse velocity of the wall and the geometry 

in Figure 21, the time since the detonation has passed a point (elapsed time from the start 

of motion), t: 

Where: Z = the axial coordinate 

r = the radial coordinate 



(2.131) 

By definition the slope is 

(2.132) 

(2.133) 

Using equations 2.130 and 2.131 to fin( , and equating to tan B 

(2.134) 

(2.135) 

and 

The time at which the point reaches the axis, the collapse point, is determined by 

setting r = 0 in equation 2.131. 
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(see Figures 23 and Equation 2.114 and the relationships 

(2.136) 

24) are used to simplify equation 2.135. 

The above simplified theory provides an adequate understanding of shaped charge 

functioning. The model ignores compressibility effects and real material properties. 

Computational models have been used to account for these effects. Some codes use 

variations of the above development to create a quasi one dimensional code. This is 

possible because the equations allow for simple computations to be made in the radial 

directions in axisymmetic geometries. These codes do not predict the breakup of the 

shaped charge jet when the collapse velocity is above Mach 1.2, which has been 

determined experimentally to occur, Ref. (41). 

2.4.2 Shaped Charge Jet Penetration 

Shaped charge jets velocities vary along the length of the jet. This is a result of the larger 

amount of explosives surrounding the tip of the liner than other parts of the cone. This 

causes the regions closer to the tip to collapse faster and form a faster portion of the jet. 

The jet then stretches with time and distance. While this causes the jet to reduce in 

diameter, the longer jet causes a deeper penetration into the target. There is a limit to this 

effect, however, since the jet cannot stretch indefinitely and eventually breaks up. Walters 

and Zukas give an excellent description of the penetration process, Ref. (40). 
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(2.137) 

(2.138) 

By using equation 2.137 to solve for in equation 2.138: 

(2.139) 

The initial analysis of the penetration process will examine a jet, or rod, of uniform 

velocity, density, and constant length. As in the analysis for the formation of the jet, the 

internal strength of the material is neglected. For the rod in Figure 24 a coordinate system 

moving with the penetration is chosen. 

For this problem steady state conditions are assumed to exist throughout the 

penetration. The pressure is then the pressure at the interface of the rod and the target. 

From Bernoulli's equation: 

It is assumed that there is no residual penetration after the rod is eroded away. The 

penetration, Φ , is then the penetration velocity times the time of penetration: 

While this analysis is very simplistic, it provides a very useful relationship between 

penetration and the densities of the jet and the target. An interesting development in 

equation 2.139 is that it predicts that the penetration is independent of the velocity of the 

rod. Clearly this is possible if the interaction pressures are in the range where strength 

considerations can truly be neglected. From equation 2.139 another interesting derivation 
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(2.141) 

(2.142) 

is possible. Many materials of different density are available for the target. If weight 

the only consideration in selecting a target to prevent complete penetration: 

W = PO unit square) pt 	 (2.140) 

where: W = Weight per unit surface area at a thickness that just defeats 

penetration 

For two target materials of different density, p1  > p2  : 

and 

the ratio of weights for material 1 and 2 is: 

Since p i  is greater than p2  the weight of material 1 to stop the penetration is greater than 

that of material 2. From this development it is seen that targets with higher densities stop 

the penetration in a shorter distance, but the same level of protection is obtained from a 

thicker and lighter layer of a lower density material. 

A more complete and more accurate analysis has been made for variable velocity 

jets, Ref. (40). The jet is assumed to have a linear velocity profile, with a faster velocity at 

the tip. This assumption leads to a virtual origin. For this development the jet is at a point 
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(2.143) 

(2.144) 

and the position of the tip of the jet: 

(2.145) 

Solving for the penetration velocity U: 

(2.137) 

(2.146) 

along the axis at time zero. As the jet develops it stretches, with the tip moving at a 

constant velocity, and a linear velocity profile is established. With these assumptions the 

jet velocity at any point and time is determined by: 

The time required for the jet to reach the target is: 

where: 

Vtip  = the tip velocity 

x 50 = the distance from the virtual origin to the target 

t o  = the time required to reach the target 

equation 2.137 is still applicable 
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(2.147) 

(2.148) 

(2.149) 

(2.150) 

(2.151) 

The second root might be negative, which is not possible, this solution is discounted. 

Equation 2.139 in differential form: 

The penetration depth, in terms of the impinging velocity and time, is: 

By definition: 

The differential relation between the jet velocity and penetration is: 

Using equations 2.147 and 2.151 to eliminate the penetration velocity: 
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Integrating both sides of equation 2.153 

Then: 

Solving for the jet velocity: 

equation 2.150 becomes:  

(2.152) 

(2.153) 

(2.154) 

(2.155) 

(2.156) 

(2.157) 
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(2.158) 

This yields the penetration as a function of time. As the penetration progresses the 

velocity of the impinging jet decreases. At some point the pressures induced are so low 

that strength considerations of the target and jet materials become significant, and finally 

the penetration stops. These situations are approximated by choosing a cutoff velocity at 

which the penetration supposedly stops. This velocity is above the actual cutoff velocity 

in order to account for the effects of material strength. The total penetration then can be 

stated as: 
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Conservation of momentum 

Conservation of energy, for no chemical reactions 

(2.159) 

(2.160) 

(2.161) 

2.5. Computer Modeling of Shock Waves and Detonations 

A method for computer modeling shock wave interactions was first proposed by Von 

Neumann and Richtmyer in 1950 Ref. (43). Their proposal was for a one dimensional 

model which was later incorporated in the highly successful SIN code, 

Ref. (42). Modern computer codes for shock interactions, hydrocodes, model in two and 

three dimensions. Computers cannot model the materials as in a continuous form; instead, 

a mesh must be used. The material can either move through the mesh, Eulerian, or the 

mesh can move with the material, Lagrangian. For multiple materials, the Eulerian system 

must account for cells with mixed materials, but high strain rates are a problem. In 

Lagrangian codes, the cell can remain a pure material, but the cells can become severely 

distorted, causing a failure of the code. 

In Lagrangian codes the differential conservation equations are, Ref. (5)(42): 

Conservation of mass 
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In Eulerian codes the differential conservation equations are, Ref. (5)(42): 

Conservation of mass 

Conservation of momentum 

Conservation of energy, for no chemical reactions 

A relation Between Lagrangian and Eulerian Referentials 

(2.162) 

(2.163) 

(2.164) 

(2.165) 

In computer modeling these equations are rewritten as difference equations. The 

time step size becomes a critical factor in the accuracy of the model. The Courant 

condition, Ref. (31), is frequently used to determine the time step. The Courant condition 

is where the time step is less than the least time in the problem for a sound wave to 

completely cross a cell. 

A mixed form of computer modeling, which allows for movement of the mesh and 

material through it, has been developed. These arbitrary Lagrange Eulerian (ALE) models 

allow the mesh to move with areas of interest, and avoid the extreme distortions of cells. 

The ALE codes have been successfully used in modeling shaped charges, with their 

relatively complex formation process. 
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Shock waves bring about instantaneous changes in state. For a finite difference the 

discontinuity cannot be modeled. In order to model the shock front, a concept of artificial 

viscosity is utilized. A viscous term is added that spreads the shock wave front over 

several cells. The more spread out the pressure wave, the less instability is exhibited in the 

pressure wave. If the wave is spread out too far, a poor representation of shock 

interactions is obtained. 

A disadvantage of using artificial viscosity is the loss of energy caused by the 

model approximately integrating the Hugoniot curve for the energy. The actual energy in 

a shock process is one half the pressure times the change in volume. 

For solid materials, this approximation is moderately accurate, and corrections are 

not frequently applied. For porous materials, with large change in volumes, this 

approximation is insufficient. 
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(3.1) 

CHAPTER 3 

NEW EQUATION OF STATE FOR THE SHOCK COMPACTION OF POROUS 
TUNGSTEN 

In order to compute the properties of the shock compacted porous tungsten an improved 

equation of state was desired that had an improved comparison to the available data and 

did not require the numerical integration in the Oh and Persson equation of state. After 

the literature search, this process was started with a study of the behavior of the Oh and 

Persson equation of state. 

3.1 An Investigation of the Behavior of the Oh and Persson Equation of State 

At large energies the Oh and Persson gamma, equation 2.68 

asymptotes to 

(2.68) 

The value of gamma is then only a function of energy, and the parameters in the linear us  

u, equation of state speed of sound. 
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As the pressure approaches infinity 

is zero. 

Oh and Persson's gamma function has another critical volume at which the 

pressure reaches infinity. If the energy is assumed to be very large, equation 3.1 can be 

used for the gamma function in equation 2.18 and solved to: 

which has the solution 

using equation 2.4 for the energies 

then 

The Oh and Persson gamma predicts infinite pressure only when the solid 

Hugoniot curve has infinite pressure. This can only happen if the value of 

Al'tshuler Ref. (44) has given the value of y at high energies as .5, determined from 

quantum-statistical calculations. By equation 2.23, this would mean that materials with an 

initial density of less than 20% of the solid could not be compressed to the solid density by 

a shock wave. 

(3.2) 

(3.3) 

(2.4) 



term and the functions o 

(3.4) 

3.2 	Modifications to the Oh and Persson Equation of State 

Oh and Persson's equation of state requires a numerical integration for solution. With the 

large number of cells and time steps in a numeric code, this equation of state produces a 

very slow and inefficient code. For the current investigation a procedure is required to 

which modifies the equation of state such that a solution to the integral can be determined. 

The Oh and Persson equation could be approximately factored into two parts in the 

following manner: 

If the above equation is approximated by dropping the 

and µ are assumed such that: 

Then: 

The solution to equation 2.69 becomes: 
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(3.5) 

(3.6) 

(3.7) 

(3.8) 

Which reduces to 

The above equation was further modified to assure a gamma that matches the 

measured value at low energies. The logarithmic term was also removed to improve the 

fit to experimental data and the √2e term was halved. The equation of state then 

becomes: 

The use of the above equation, the approximate Oh and Persson equation of state, 

has greatly increased the speed of computer programs using an energy dependent gamma 

equation of state. The approximate Oh and Persson equation of state performs well when 

compared to the Oh and Persson equation of state. The results are discussed in the next 

section. 

This equation of state, like the original, has the value of the initial Grüneisen 

parameter at zero energy. For very high energy states the value is approximately: 
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(3.9) 

(3.10) 

This is half the value of the Oh and Persson model at very high energy states. Better 

agreement to data can be achieved if the value of c is fitted to experimental value. The 

value may be separate from the value from the linear us  up  equation of state for the solid. 

This equation was further modified to account for the high energy value of the 

Gruneisen parameter of .5. The Gruneisen parameter is approximated by separating out 

the high energy value form the low energy: 

When value of the Gruneisen parameter in equation 3.6 is replaced by the value of the low 

energy gamma, equation 3.6 becomes: 

And equation 3.7 becomes: 

This represents the new equation of state developed for this work. 
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3.3 	Utilizing the Full Range Equations of State 

A full range equation of state must be capable of handling the complete and incomplete 

compaction regimes. Numeric hydrocodes determine pressure as a function of volume. 

The rate independent equations have the porosity as a function of pressure. The rate 

dependent equations have the time rate change of the porosity as a function of the 

pressure. The following development uses the Oh and Persson incomplete compaction 

routine. 

The full range Hugoniot curve can be determined from equations 2.67, 2.79, and 

the Rankine Hugoniot shock condition. Solutions to these two equations become 

complicated. Equation 2.67 relates the compaction as a function of pressure. Equation 

2.79 relates the pressure as a function of volume and pressure along the Hugoniot curve of 

a solid material at the same volume. These equations cannot be solved simultaneously. 

To solve the equations an iteration procedure is used starting at the total volume 

and a guess at the pressure. Next an estimate of the volume of the porous material in the 

absence of voids is calculated from the pressure. The pressure of a solid at this volume is 

calculated. The shock energies from equation 2.4 are used in equation 2.67 to solve for 

Oh and Persson's 7. Equation 2.69 is integrated using the volume of the porous material 

in the absence of voids to calculate the pressure. If the initial pressure and the final 

pressure do not match, another iteration is tried with a new pressure. This procedure is 

tedious and utilizes too much computer time to be feasible in obtaining the Hugoniot 

curve for a porous material. Complicating the problem is the integral required for the Oh 
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and Persson equation of state. By trial, a ten step numeric integral is required to fit the 

experimental data well. 

The procedure has been implemented in MY1DL, Ref. (45), a one dimensional 

Lagrangian hydrodynamic computer code. Some changes in the code where required to 

accurately model porous materials. The energy of the porous material is computed using 

equation 2.4 for each time step until the pressure starts to decrease. This eliminates the 

inaccuracies caused by the numeric integral along the Hugoniot curve used in the code to 

determine energy. Once the pressure starts to decrease the code follows an isentropic 

release. 

The iterations required to use the Oh and Persson full range equation of state were 

not efficient in the code, requiring a much longer time to run. It was not added to a two 

dimensional hydra-code for this reason. 

Comparison between different fully compacted equations of state were made using 

the Oh and Persson incomplete compaction equation. Figures 13, 14 and, 15, show the 

Oh and Persson full-range equation of state in comparison to data for three materials. The 

equations of state perform extremely well for these materials. In comparison, Figure 12 

shows the Mie-Gruneisen equation of state, which has excellent agreement at low initial 

porosities, but very poor agreement at low initial densities. Figures 24, 25 and, 26 show 

the approximate Oh and Persson equation of state. This equation performs at high initial 

porosities much better than the Mie-Gruneisen equation of state, but not as well as the Oh 

and Persson equation of state. 
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A further examination of the equations of state was made for tungsten. Table 1 

shows the measure shock parameters for porous tungsten available from the literature. 

Table 2 shows a comparison of the Mie Gruneisen equation of state to the pressures using 

two different methods. The first used equation 2.20 directly. The second uses equation 

2.19 with an energy calculated from equation 2.4 and the experimentally obtained data. 

The quality of the methods was determined using the average of the square of the 

measured pressure minus the calculated pressure. This value is similar to the least mean 

square value minimized in the optimization of lines and curves. For the values using 

equation 2.20, the value of this number was 12,036. For the numbers using the energy 

calculated from the tests the value is 1,239. 

This comparison demonstrates some of the problems in using the Mie-Gruneisen 

equation of state. A pressure can be calculated for a given volume, energy, and 7 (from 

either experimentation or modeling) which does not lie on the Hugoniot curve predicted 

by the Mie-Gruneisen equation of state. 

The large variations in calculated pressure show another problem with incomplete 

compaction equations. When the material is porous the volume changes rapidly with 

pressure. Small changes in measured pressure are reflected in large change in the volume 

of the solid portion of the material. The solids are relatively stiff, and these errors show 

up as large errors in the calculated pressure and energy of the solid portion. 

Another comparison was conducted for the approximate Oh and Persson equation 

of state, Table 3. The average of the square of the measured pressure minus the 

calculated pressure was 1,047, with an average error of 3.29 GPa. This was calculated 
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using a value of c in equation 3.7 of 3.7, which was selected to improve the fit. For a 

value of c from the linear us  up  equation of state of 4.029 the value was 1,074, with an 

average error of 2.18 Gpa. Changes in the value of c provided only a minimal increase in 

accuracy. This equation of state provided improved accuracy in comparison to the Mie-

Gruneisen equation of state. Comparison between the approximate Oh and Persson 

equation of state and the data is shown in Figure 16, with a 3.7 value of c. 

The proposed equation of state given in equation 3.9 was also compared to the 

data available, Table 4. The average of the square of the measured pressure minus the 

calculated pressure was 825, with an average error of 1.64 Gpa. This represents a better 

fit to the data than the Mie-Gruneissen, Oh and Persson, or the approximate Oh and 

Persson equations of state. Comparison between the proposed equation and the data is 

shown in Figures 27 and 28. 

The proposed equation of state appears to be a considerable improvement over 

both of the Oh and Persson equations of state. It has the great advantage, in addition, that 

it provides for much faster numerical treatment of the hydrodynamic computation 

problem. 
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(4.1) 

CHAPTER 4 

DESIGN OF THE SHAPED CHARGE 

4.1 	Liner Design 

4.1.1 Tungsten as a Shaped Charge Liner Material 

From the earlier development, the penetration of a shaped charge jet into a target material 

is given by: 

Materials with higher densities will provide deeper penetration. Copper, the most 

commonly used material for shaped charge liners, has a density of 8.930 gm/cc, Ref. (2). 

Tungsten has a density of 19.224 gm/cc, Ref. (2). From the above equation tungsten 

could provide a 47% deeper penetration. 

The speed of the jet penetrating the target also affects the ultimate penetration. 

Higher collapse speeds will provide faster jets. However the speed of collapse must not 

exceed the speed of sound in the liner material by a large factor. When the collapse speed 

exceeds the sound speed, standing shock waves cause the jet to disintegrate. The speed of 

sound of the liner material is the ultimate controlling factor. Copper has a linear us-up  fit 

speed of sound of 3.940 km/sec, Ref. (2). Tungsten has a slightly higher linear us-up  

equation of state speed of sound, 4.029 km/sec, Ref. (2). A similar relation holds true for 
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the ambient speed of sound for tungsten, 5.22 km/sec and for copper, 4.76 km/sec. Ref. 

(3). Thus a tungsten jet can be driven to a higher jet speed than a copper jet. 

The ideal shaped charge jet material undergoes large plastic deformation at high 

strain rates before failure. This assures long continuous jets. The oxygen free copper 

used in most shaped charge jets is able to undergo extreme deformation before failure. In 

contrast, tungsten is a very brittle material. Tungsten's high density and high speed of 

sound make its consideration as a shaped charge liner worthwhile. 

Some efforts have been made to use tungsten in shaped charge liners. Jamet and 

Lichtenberger Ref. (46) and Fu et. al. Ref. (47) have investigated the use of a copper 

tungsten mixture for shaped charges. Both reported delayed breakup times. The breakup 

in both cases formed small particles. The break-up of the typical copper lined shaped 

charge, by contrast, forms large approximately oval shaped pieces. 

Lassila Ref. (48) reported that tungsten shaped charge liners are most likely 

damaged during the shock loading and release process. Lassila believed the tungsten 

reconsolidates when the opposite sides if the liner collide during the collapse. Problems 

with high temperature embrittlement were noted. 

4.1.2 Design of the Liners 

Because of the long lead time required in procuring porous tungsten shaped charge liners 

the design was completed before the modeling. This required making estimates of the 

oblique shock pressure. The pressures were reduced from the shock pressure and 

temperatures were calculated after shocking and release using equations 2.51 and 2.53, 
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outlined earlier. Liner porosities were selected to assure that the tungsten would not melt 

after the initial shock and isotropic release process, as melted jets would not be coherent. 

The final state of these materials would be solid, as tungsten has a melting point of 

3,410 +/- 20 degrees centigrade, Ref. (49). The above approximation ignores the increase 

in energy caused by the material recompresion and release during the collapse process. A 

65 % initial density liner was selected in the belief that it would remain solid throughout 

the collapse process and jet consolidation. 

Tungsten's properties are highly variable. Its strength and brittleness are highly 

dependent upon temperature and manufacturing process. The shocked material would not 

easily fit into any of the mentioned processes of Yih and Wang, Ref. (49). Powder 

metallurgy, while not at the same extreme strain rates or internal energies, is estimated to 

be the most similar process. Figures 29 and 30 indicate that the greatest plastic behavior 

should be expected at about 1000°C. 

A shaped charge geometry was selected. It was based upon an existing research 

liner with a 42 degree angle. The charge is small, allowing it to be tested less expensively. 

The thickness of the liner was selected to provide sufficient mass for the explosive to 

propel, assuring the wall velocity is equal to or less than that of a known and well 

operating copper lined shaped charge, to assure the shaped charge is not overdriven. 

Procuring liners became a difficult problem. It was desired to test at least two 

densities of liner material for comparison. The first liner selected had a density of 65% of 

the solid material. This liner was provided by Astro Met. of Cincinnati Ohio. The 

processing methods are proprietary. All that could be found out was that the liner 
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material was formed to shape, with minor finishing cuts. The material has 2 µm pore size, 

uniformly distributed. Inspection of the liners showed that liner wall thickness variations 

exceeded specification, Table 4 and Figure 31. Curved jet formation was expected. The liners 

received were extremely brittle. One was dropped in handling and shattered, with no visible 

plastic deformation. 

Because of funding limitations only one other porosity could be attempted. Astro 

Met.'s process could not provide the higher density tungsten required. Sylvania Metals in 

Towanda, Pennsylvania. could provide 80% porous tungsten in bar stock, but would not 

provide the machined pieces. The stock was purchased. The materials were extremely brittle 

and hard. Ferromatic in Totawa, New Jersey, was selected to do the machining. The initial 

design was to have equal weight liners of both 65% and 80% initial density liners. The liners 

were to be of identical dimensions, except for the liner thickness. In this manner the two tests 

would have approximately equal jet characteristics with materials at different energy levels, see 

Figure 32. Because of the brittle nature of the material, this design was not feasible. Half of 

the bar stock was lost in the first efforts of machining the parts. Modifications where made in 

the tip region to allow the lathe to hold a thickened portion of the liner. As the tip region 

generally does not have the time to accelerate to full velocity, its contribution to the jet 

formation is small. This modification was the least intrusive, see Figure 33. In fabrication the 

thickened end broke off. A cap was machined from aluminum to prevent the detonation 

products from interfering with the shaped charge jet formation. The final tested liner is shown 

in Figures 34 and 35. A direct comparison between the two liners densities is not possible 

because of the large number of modifications. 
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assumed constant (4.2) 

4.1.3 Heat Transfer Within the Shocked Material 

For shock compaction considerations the porous material is generally assumed to be 

homogeneous. For this assumption to be valid the heat transfer throughout the material 

must be rapid. A heat transfer estimate was made for the 65% porous material with a 2 µ 

m pore size. Assuming a spherical pore, a hot spot of tungsten of equal size within an 

infinite mass of tungsten the following heat transfer equation applies: 

For the Initial Conditions: 

T=3000 °C at r=0 to 2 gm 

T=298 °C at r=2 pm to infinity 

The above approximation was solved numerically. After 0.4 µ seconds the 

temperature at the core was 322.27 °C. Even with this crude approximation, because of 

the extremely quick heat transfer from the pores, the material is near equilibrium at the 

collapse point. 

4.2 	Explosive Loading 

Proper explosive loading is required for optimal performance of a shaped charge. If the 

liner is tilted in relation to the charge, the collapse will be non uniform, and the jet will be 

tilted. The jet will also be tilted if the detonation wave is not uniform. A booster charge 

and alignment fixture, Figures 36 and 37 is used to assure proper initiation. Proper 

alignment of the liner was troublesome because of the poor quality of the liner edges. A 

loading fixture was made to hold the liner in the body during loading, Figures 38 and 39. 
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CHAPTER 5 

EXPLOSIVE TESTING AND ANALYSIS 

5.1 	Explosive Testing 

The loaded shaped charges where tested at ARDEC, Picatinny Arsenal, NJ, at the 1600 

explosive test site. Flash radiography was selected to observe the shaped charge jets and 

the collapse process. 

The flash radiograph provides a 30 ns exposure of radiation. The x-ray heads are 

each powered by a capacitor bank. Because of the limitations of the x-ray tubes, a 

separate head is used for each exposure. The x-ray film is located behind the event, so a 

shadowgraph is formed. The separate heads cause multiple exposure to be offset from 

each other. Kodak 8" x 10" XAR-5 film was used with a 3M brand Trimax 1-12 

intensifier screen. The relatively large anode in flash radiograph machines causes some 

image blurring. By maximizing the distance between the tube head and the event, and 

minimizing the distance between the event and film, the blur is minimized. Protecting the 

film is critical in explosive testing. A half inch thick aluminum plate and 2" of foam are 

used in front of the film. Behind the film 2" of foam and a half inch of plywood are used, 

as the film is ejected from the test area by the detonation product. 

A witness plate is located beyond the film to record penetration. The relatively 

large distance between the shaped charge and the witness plate allows a long time for 

curvature of the jet to develop from radial velocity components. With the variations 

76 



measured in the liner contour the curvature should be large, and little penetration was 

anticipated. 

The shaped charge, film cassette, and the witness plate were placed on a wooden 

stand, which was destroyed in each test. The charge was supported on the extreme ends, 

away from the liner area, with the opening of the liner pointed horizontally at the witness 

plates. This prevents reflected shock waves from the supports interfering with a uniform 

liner collapse, which would contribute to a curved jet formation. 

An exploding bridge wire detonator, EBW, was used to initiate the charge. These 

detonators require large voltages for initiation, and specially constructed firing units. The 

use of these detonators greatly increase the safety of explosive testing. The test set up is 

shown in Figures 40-46. 

5.2 	Test Results 

A cast TNT explosive fill was used in the shaped charge. This was a poor choice, as cast 

TNT is difficult to initiate, particularly in small sizes. The charge did not detonate, but 

was smashed by the shock from the booster pellet. The next effort was to use cast TNT 

with 5% by weight RDX. RDX is a high detonation velocity powder explosive almost 

insoluble in molten TNT, that would provide ignition points for the TNT. The small 

amount of RDX assure that the energy of the fill and its detonation velocity would not be 

greatly increased. 
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Since the explosive used was not standard, the data for the equation of state was 

not available. The Cheetah Thermodynamic detonation code, Ref. (50), was used to 

compute the JWL equation of state coefficients. 

The test formed cohesive jets, as shown in Figures 47 and 48. The shaped charge 

jets were curved, as was anticipated from the inspection data on the liners. The other 

striking aspect of the jets was the lack of visible particles as the jet stretched. The jets 

maintain the same diameter while they stretched. The jets must be increasing their 

porosity as they stretch, instead of necking down and particulating. This is only possible if 

the material has near zero strength after the collapse process. 

A jet that is stretching in this manner would have some peculiar penetration 

characteristics. For a conventional jet, the diameter reduces as the jet stretches. If the 

length of the jet is doubled, each element of the jet would also double in length and 

provide approximately twice the penetration, assuming a linear jet velocity profile. For 

this jet a doubling of the length would decrease the density by half. The increase in 

penetration from each element would only be 41%, see equation 4.1. 

Examination of the witness plate and the test chamber after the test showed 

another interesting feature of the porous liner. No slug was discovered, nor any evidence 

of one found on the witness plate. It is surmised that the slug also had very little strength 

and broke up prior to or upon hitting the witness plate. 

The 80% density liner was also tested. The radiograph, Figure 49, shows that the 

jet was not cohesive. Because of the large changes from the desired liner no further 

attempts were made. 
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CHAPTER 6 

COMPUTER MODELING OF THE DETONATION AND COMPARISON TO 
TEST RESULTS 

6.1 	Computer Modeling 

The problem was computer modeled utilizing Lawrence Livermore National Laboratories 

CALE, 2 -D ALE (arbitrary Lagrangian -Eurlerian hydrocode), Ref. (33). This code was 

selected for several reasons. It has a very good reputation in modeling shaped charges. 

The ALE modeling routine can handle the severe mesh distortions associated with the 

collapse of a shaped charge liner. The code has routines to add back energy lost due to 

the approximation of a shock front as a non-discontinuous surface. 

The version of the TEPLA-F equation of state in the CALE code was used. The 

data for the fit was not available, so a fit was created utilizing the data in Table 1. To 

eliminate the effects of incomplete compaction only the higher pressure data, where 

complete compaction has occurred, was utilized. The crush curve, equations 2.101 and 

2.102, can then be ignored as it is assumed the material is completely densified in the 

compaction process. The data for low initial density materials was also eliminated to 

reduce the effects of their very high internal energies which are not be experienced in the 

modeling. The mean square difference was determined for each set of coefficients and a 

fit was determined by trial and error which provided the least mean square error between 

the measured and fitted pressure. The form of the equations used in CALE is: 
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(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

where: Ps  = The solid pressure 

Pc = The compaction pressure (pressure at which the porosity begins to 

squeezes out 

The values used were: 

AO 0 

Al 3.313 

A2 1.64 

A3 0.165 

BO 2.585 

B1 .2965 

B2 -.01255 
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6.2 	Comparison Between Model and Testing 

The initial configuration is shown in Figure 50. The results of the model are shown in 

Figures 51 through 59. The film results were measured with a Gaerdner film analyzer, 

with a resolution of .001 mm. This resolution is greater than that of the film. The jet tip 

speed was measured between two flash radiographic exposures. The jet and slug diameter 

were determined at the exposure 20 µs after the function of the detonator. The 20 µs 

would correspond to 18.2 µs in the modeling due to the time delay in the functioning of 

the detonator. The modeling at a time of 17 µs was used to determine the jet and slug 

diameters. These determined values of jet velocity and jet and slug diameters are 

summarized as: 

CALE Modeling Analysis of Radiographic Film 

Jet Tip Velocity cm/µs 0.638 0.641 

Jet Diameter cm 0.24 0.20 

Slug Diameter cm 0.43 0.30 

These figures agree very well. The shape of the jet in the model and on the 

radiograph are very similar. The fine particulation of the jet confirmed the estimation of 

near zero yield strength. 

Figures 58 and 59 show the axial velocity and density along the jet at 20µs. The 

velocity at this early time did not have a linear relationship with distance from a collapse 

point. This is typical of shaped charges. At later times the relationship is more linear. 
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(6.6) 

The virtual origin assumption, section 4.2, improves with distance from the origin. Figure 

60 shows the reduction in density along the jet. The further the jet is from the collapse 

point (where the model indicated complete pore collapse exists) the more time the jet has 

to elongate. 

The pressure on shocking the porous material ranged from 29.58 Gpa at the apex 

of the cone, which is nearly normal to the detonation, to about 7.4 GPa towards the base 

of the charge. 

Equation 2.49 was solved numerically to determine the temperature of the shocked 

material. The Hugoniot curve was determined, utilizing the Oh-Persson incomplete 

compaction equation, equation 2.79, and the proposed gamma function given in equation 

3.9. Equation 3.9 was also used to compute the value of gamma in equation 2.49. This 

method of computation was selected over the approximate integral in equation 2.51 

because of the amount of data available on the thermal properties of tungsten. 

Yih and Wang's Ref. (49) collection of properties for tungsten provided the effect 

of variation with temperature in the variables of: specific heat at constant pressure, bulk 

compressibility, and the linear expansion coefficient. From the equation relating specific 

heat at constant volume and pressure, Ref. (51): 

where: 

cv= the specific heat at constant volume 

c= the specific heat at constant pressure 

v= the specific volume 
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(6.7) 

(6.8) 

(6.9) 

a = the linear expansion coefficient 

KT = the isothermal bulk compressibility 

The thermal expansion coefficient was calculated by modifying the equation in Yih 

and Wang for the thermal expansion , for temperature in °C, based upon the length at 25 

°C: 

The values of the constants where taken as that of a powder metallurgical rod, 

8.69e-3, 3.83e-4, and 7.92e-8 respectively. The values were not adjusted for the porosity 

of the material. The effect of porosity was not accounted for with any of the values used, 

it is being assumed the specific heat is not dependent upon the porosity. 

The specific heat at constant pressure, for temperature in °K, was given by: 

The bulk compressibility, for temperature in °C, was given as: 

When the variables were calculated, the value of the proposed gamma changed 

very little. For the pressure on the sides of the shaped charge the value was reduced to 

about 1.53. For the apex of the liner, which experienced the greatest shock, the value was 

1.51. A constant Mie-Gruneisen equation of state would have been applicable to this 

problem. The initial temperature of the material was assumed to be 20 °C. The final 

temperatures at shock compression were determined to be about 623 °K (350 °C) at the 

sides of the cone and about 2,360 °K (2,087 °C) at the apex. This is well below the 

melting point of the tungsten. 
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CHAPTER 7 

DISCUSSION AND CONCLUSIONS 

The investigation into shaped charges using porous tungsten liners necessitated an 

investigation of the Mie-Gruneisen equation of state, to find the temperatures generated in 

the shocked material, and of the properties of the shaped charge jet. 

7.1 	Equations of State for Porous Materials 

The Mie-Gruneisen equation of state and the relationships between the Gruneisen 

parameter and state properties where investigated. The Gruneisen parameter is required 

for the determinations of shock pressure, temperature, and the speed of sound of shocked 

materials. A constant Gruneisen parameter is required if the constant specific heat at 

constant volume is assumed to be constant. At very high internal energies and 

temperatures, the specific heat at constant volume changes with energy and the constant 

gamma assumption is therefore not valid. 

The Oh-Persson equation of state, which reduces the Gruneisen parameter for high 

internal energy states, does not predict the larger volumes at higher shock pressures 

known to exist for materials of low initial porosity. The Oh-Persson equation of state 

requires a numerical integration to determine the value of gamma. This increases the 

computer time required to model a problem. An approximate Oh-Persson equation of 

state was developed that eliminates the numeric integration, but does not allow for the 
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(3.9) 

progressively larger volumes at higher shock pressures seen in materials with high initial 

porosities. 

A proposed equation of state for shocked porous tungsten was developed. The 

new equation of state has a minimum value of the Gruneisen parameter at high energies 

and adds a component based upon the internal energy: 

The term added, a constant equal to 0.5, is equivalent to the approximate Oh-Persson 

equation of state with the value of gamma reduced by one-half. This equation of state has 

the high and low energy asymptotes that match the known values of y, as well as a 

functional relationship similar to Oh-Persson's equation of state. 

7.2 	Porous Tungsten Jets 

Tungsten shaped charges were fabricated with an explosive charge of 95% TNT and 5% 

RDX. The liners where made from 65% solid density tungsten with an included cone 

angle of 42°. Flash radiographs of the detonating charges where used to record the jet. 

The measured jet velocity was 0.638 cm/µs. The jet broke up into small particles instead 

of necking down and breaking into beads, as do most copper lined shaped charges. No 

slug was recovered after the testing. 

Computer modeling was conducted to investigate the breakup phenomenon noted 

for the porous tungsten jet. A fit was developed for the TEPLA-F equation of state for 
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high initial porosity tungsten. The computer model had a jet speed of 0.641 cm/µs, very 

close to that of the test. The porous tungsten was modeled with zero strength, in order to 

match the breakup phenomenon shown in the testing. The model accurately predicted the 

breakup seen in the test. It is concluded that the porous tungsten under these conditions 

has near zero strength. 

The density of the jet is reduced for longer stand off distances. This reduces the 

penetration capability of the jet, making it suitable only as a small stand-off item. The 

shaped charge did not leave a solid slug after the collapse process, due to the low 

mechanical strength of the shocked porous tungsten. 

As indicated by the modeling and the jet temperature computations, the jets in this 

study did not have shock pressures high enough to elevate the jet temperatures much 

beyond that of systems with solid liners. Shock temperature calculated for walls of the 

liner was about 350 °C. 
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CHAPTER 8 

RECOMMENDATIONS 

The recommendations for future study are separated into two different categories. The 

first relates to obtaining a solid jet that stretches with a solid density, reducing diameter 

instead of density. The second relates to the predicted penetration characteristics of a jet 

that stretches with uniform diameter, but reducing density. 

8.1 	Design of a Porous Lined Shaped Charge 

An improved design would significantly increase the temperature of the liner material. 

This could be achieved in a number of ways; by utilizing a more normal impact of the 

detonation wave, by utilizing a much higher initial porosity, or utilizing a higher energy 

explosives, or a combination the above. This increased temperature may greatly increase 

the ductility of tungsten and eliminate the extremely fine fragmentation that is exhibited in 

the 65% initial density tungsten liner in this work. 

8.2 	Penetration by a Jet with Linear Density and Velocity Distributions 

Modeling indicated that the density for the jet is approximately linear along the axis of 

symmetry. For a jet that remains solid equation 2.152 relates the penetration to the jet 

velocity for a jet with a linear velocity distribution. A similar equation can be developed 

for a jet with linear velocity and density distributions. 

For a linear density distribution 
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(8.1) 

(8.3) 

(7.4) 

where: ps = the solid density of the jet 

For the linear velocity distribution assumption, for any point along the jet 

x = v t 	 (8.2) 

The density as a function of time is then given by 

Substituting the above equation into equation 2.152 

A series of penetration velocity experiments would show if the assumption of a 

linear density distribution is valid. These experiments are conducted by placing thin time 

of arrival probes between witness plates. 
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Figure 1. One Dimensional Shock Wave 
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Figure 2 LASL Shock Hugoniots Ref(2) 



Figure 3 Shock Waves from Plate Interactions 



Figure 4 Graphical Solution for Shock Matching 



Figure 5 Shock Transfer into a Material of Higher Shock Impenance 



Figure 6 Shock Transfer into a Material of Lower Shock Impedance 



Figure 7 Isentropic Release of a Shocked Material 



Figure 8 Shock Compression of a Porous Material 



Figure 9 Isentropic Release of Initially Shocked Tungsten 

Initial Density 65% of Solid Density 



Figure 10 Pressure Computation by the Mie-Gruneisen Equation of State 



Figure 11 Shock Compaction of Porous Tungsten 
Mie- Gruneisen Constant Gamma Equation of State 



Figure 12 Shock Compaction of Porous Tungsten 
Mie- Gruneisen with Oh's Compaction Compared to Data 



Figure 13 Shock Compaction of Porous Tungsten 

Oh- Persson Equation of State Compared to Date 



Figure 14 Shock Compaction of Porous Copper 
Oh- Persson Equation of State Compared to Data 



Figure 15 Shock Compaction of Porous Iron 
Oh- Persson Equation of State Compared to Data 



Figure 16 Gurney Method for Estimating the Velocity of Metal Driven by a Detonation 



Figure 17 Typical Conical Shaped Charge Configuration 



Figure 18 Typical Conical Shaped Charge Collapse 



Figure 19 Geometry of Collapsing Shaped Charge 



Figure 20 Vector Diagram at the Collapse Point 



Figure 21 Formation of the Jet and Slug in Relation to the Collapse Point 



Figure 22 Geometry of Collapsing Shaped Charge for Variable Collapse Velocities 



Figure 23 Jet Penetration for Jet Velocity V and Penetration Velocity U 



Approximate Oh- Persson Equation of State 



Figure 25 Shock Compaction, of Porous Copper 
Approximate Oh- Persson Equation of State 



Figure 26 Shock Compaction of Porous Iron 
Approximate Oh- Persson Equation of State 



Proposed Equation of State Compared to Shock Data 



Figure 28 Shock Compaction of Porous Tungsten 
Proposed Equation of State on the Pressure Volume Plane 
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Figure 40 Shaped Charge Parts for 65% Liner 



Figure 41 Shape Charge Parts for 80% Liner 



Figure 42 Explosive Test Setup 



Figure 43 Placement of Radiographic Film 



Figure 44 Shaped Charge Prior to Explosive Test 



Figure 45 Test Stand After Explosive Test 



Figure 46 Witness Plate After Explosive Test 
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Figure 55 CALE Model at 17 µs 



Figure 56 CALE Model at 19 µs 
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Figure 57 CALE Model at 20 µs 
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Figure 58 CALE Model, Axial Velocity along Jet 



Figure 59 CALE Model, Density along Jet 
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Table 2 	Shock Compression Data for Porous Tungsten 

Percent Initial Density Pressure 
Gpa 

Volume cm3/gm Reference 

97.00 19.71 .0489 8 
97.00 36.61 .0466 8 
97.00 57.99 .0448 8 
97.00 58.54 .0447 8 
97.72 501 .0316 7 
97.72 198 .0379 7 
80.00 1.99 .0628 9 
80.00 1.98 .0628 9 
80.00 2.71 .0596 9 
80.00 2.33 .0613 9 
80.00 1.71 .0641 9 
80.00 4.89 .0521 9 
80.00 5.89 .0517 9 
80.00 7.63 .0519 9 
80.00 6.16 .0517 9 
80.00 3.42 .0553 9 
80.00 3.86 .0536 9 
65.75 1.19 .0656 10 
65.75 1.21 .0657 10 
65.75 1.62 .0613 10 
65.75 1.62 .0656 10 
65.75 1.63 .0615 10 
65.75 2.15 .0579 10 
65.75 2.15 .0579 10 
65.75 2.17 .0582 10 
65.75 2.55 .0559 10 
65.75 3.14 .0540 10 
65.75 3.77 .0535 10 
65.75 4.39 .0511 10 
65.75 5.27 .0513 10 
65.75 6.14 .0522 10 
65.75 11.8 .0523 10 
65.75 15.7 .0519 10 
65.75 30.2 .0516 10 
65.75 43.4 .0475 10 
65.75 89.2 .0469 10 
65.75 104.5 .0467 10 
60.00 .82 .0726 11 
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Table 2 	Shock Compression Data for Porous Tungsten 
(Continued) 

Percent Initial Density Pressure 
Gpa 

Volume 
cm3/gm 

Reference 

60.00 2.33 .0560 11 
60.00 4.26 .0532 11 
60.00 5.55 .0530 11 
60.00 5.90 .0533 11 
60.00 6.24 .0533 11 
59.20 376 .0427 7 
57.19 132 .0476 7 
57.19 31.5 .0511 7 
51.35 91 .0593 7 
47.70 324 .0427 7 
46.82 116 .0528 7 
33.67 262 .0557 7 
32.89 21.9 .0538 7 
25.23 18.5 .0553 7 
23.41 205 .0681 7 

Percent initial density calculated with a density of solid tungsten of 19.224 gm/cc 
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Table 3 	Mie-Gruneisen Pressure Calculations 

Percent Initial Measured 	Volume 	Calculated 	Calculated 
Density 	Pressure 	 Pressure 	Pressure with 

Equation 2.20 Energy Calculated 
from Data and 
Equation 2.19 

Gpa 	cm3/gm 	Gpa 	Gpa 

97.00 19.71 0.049 20.751 21.666 
97.00 36.61 0.047 38.995 42.109 
97.00 57.99 0.045 55.278 62.332 
97.00 58.54 0.045 56.238 63.458 
97.72 501.00 0.032 232.533 482.95 
97.72 198.00 0.038 136.883 193.83 
80.00 1.99 0.063 -11.508 -8.140 
80.00 1.98 0.063 -11.117 -7.848 
80.00 2.71 0.060 -15.516 -11.673 
80.00 2.33 0.061 -15.011 -11.251 
80.00 1.71 0.064 -5.893 -3.984 
80.00 4.89 0.052 4.027 4.146 
80.00 5.89 0.052 3.884 4.281 
80.00 7.63 0.052 1.149 2.413 
80.00 6.16 0.052 3.480 4.015 
80.00 3.42 0.055 -4.053 -2.678 
80.00 3.86 0.054 1.178 1.580 
65.75 1.19 0.066 138.579 32.635 
65.75 1.21 0.066 130.899 31.945 
65.75 1.62 0.061 83.284 27.554 
65.75 1.62 0.066 44.114 16.796 
65.75 1.63 0.062 79.582 26.782 
65.75 2.15 0.058 47.781 20.522 
65.75 2.15 0.058 47.781 20.522 
65.75 2.17 0.058 43.514 19.100 
65.75 2.55 0.056 34.666 16.876 
65.75 3.14 0.054 22.589 12.693 
65.75 3.77 0.054 10.608 7.296 
65.75 4.39 0.051 18.201 11.801 
65.75 5.27 0.051 10.115 7.926 
65.75 6.14 0.052 1.462 3.323 
65.75 11.80 0.052 -1.654 3.662 
65.75 15.70 0.052 0.713 6.765 
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Table 3 	Mie-Gruneisen Pressure Calculations 
(Continued) 

Percent Initial Measured 
Density 	Pressure 

Volume Calculated 
Pressure 
Equation 2.20 

Calculated 
Pressure with 
Energy Calculated 
from Data and 
Equation 2.19 

Gpa 	cm3/gm 	Gpa 	Gpa 

65.75 30.20 0.052 2.544 13.909 
65.75 43.40 0.048 31.531 38.829 
65.75 89.20 0.047 36.459 65.930 
65.75 104.50 0.047 38.1/14 75.317 
60.00 0.82 0.073 383.997 8.115 
60.00 2.33 0.056 64.729 18.488 
60.00 4.26 0.053 7.808 5.660 
60.00 5.55 0.053 -0.983 2.284 
60.00 5.90 0.053 -3.954 0.928 
60.00 6.24 0.053 -4.824 0.638 
59.20 376.00 0.043 76.752 323.37 
57.19 132.00 0.048 30.728 102.46 
57.19 31.50 0.051 5.678 21.22 
51.35 91.00 0.059 -34.740 35.54 
47.70 324.00 0.043 76.752 369.54 
46.82 116.00 0.053 -4.571 97.952 
33.67 262.00 0.056 -19.624 364.65 
32.89 21.90 0.054 -10.088 37.57 
25.23 18.50 0.055 -17.713 57.51 
23.41 205.00 0.068 -59.660 394.68 

Oh Persson Incomplete Compaction Equation used with all Calculated Values 
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Table 4 	Approximate Oh-Persson Equation of State Pressure Calculations 

Percent Initial 	Measured 	Volume 	 Calculated Pressure 
Density 	 Pressure 	 Approximate 

Oh Persson E.O.S. 

GPa 	 cm3/gm 	 Gpa 

97 19.71 0.0489 21.6674 
97 36.61 0.0466 42.12541 
97 57.99 0.0448 62.366 
97 58.54 0.0447 63.49811 
97.72 501 0.0316 474.8366 
97.72 198 0.0379 193.4774 
80 1.99 0.0628 -8.13248 
80 1.98 0.0628 -7.84107 
80 2.71 0.0596 -11.6598 
80 2.33 0.0613 -11.0164 
80 1.71 0.0641 -3.9813 
80 4.89 0.0521 4.145771 
80 5.89 0.0517 4.278804 
80 7.63 0.0519 2.407003 
80 6.16 0.0517 4.01198 
80 3.42 0.0553 -2.67732 
80 3.86 0.0536 1.578878 
65.75 1.19 0.0656 40.3937 
65.75 1.21 0.0657 38.83605 
65.75 1.62 0.0613 31.0336 
65.75 1.62 0.0656 17.5222 
65.75 1.63 0.0615 29.90826 
65.75 2.15 0.0579 21.75326 
65.75 2.15 0.0579 21.75326 
65.75 2.17 0.0582 20.09038 
65.75 2.55 0.0559 17.53847 
65.75 3.14 0.054 12.97067 
65.75 3.77 0.0535 7.347128 
65.75 4.39 0.0511 11.98667 
65.75 5.27 0.0513 8.029957 
65.75 6.14 0.0522 3.30643 
65.75 11.8 0.0523 3.601187 
65.75 15.7 0.0519 6.652299 
65.75 30.2 0.0516 13.49536 
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Table 4 	Approximate Oh-Persson Equation of State Pressure Calculations 
(Continued) 

Percent Initial 	Measured 	Volume 	 Calculated Pressure 
Density 	 Pressure 	 Approximate 

Oh Persson E.O.S. 

GPa 	 cm3/gm 	 Gpa 

65.75 43.4 0.0475 38.38907 
65.75 89.2 0.0469 62.23634 
65.75 104.5 0.0467 70.07532 
60 0.82 0.0726 43.39688 
60 2.33 0.056 22.27697 
60 4.26 0.0532 5.694991 
60 5.55 0.053 2.263003 
60 5.9 0.0533 0.914961 
60 6.24 0.0533 0.627663 
59.2 376 0.0427 232.4244 
57.19 132 0.0476 87.9622 
57.19 31.5 0.0511 20.32179 
51.35 91 0.0593 30.06455 
47.7 324 0.0427 245.9228 
46.82 116 0.0528 79.11195 
33.67 262 0.0557 223.4276 
32.89 21.9 0.0538 35.56309 
25.23 18.5 0.0553 58.85825 
23.41 205 0.0681 281.6295 
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Table 5 	 Proposed Equation of State Pressure Calculations 

Percent Initial 	Measured 	Volume 	 Calculated Pressure 
Density 	 Pressure 	 Proposed Equation 

of State 

GPa 	 cm3/gm 	 Gpa 

97.00 19.71 0.049 21.683 
97.00 36.61 0.047 42.190 
97.00 57.99 0.045 62.423 
97.00 58.54 0.045 63.564 
97.72 501.00 0.032 478.27 
97.72 198.00 0.038 193.54 
80.00 1.99 0.063 -8.116 
80.00 1.98 0.063 -8.019 
80.00 2.71 0.060 -11.914 
80.00 2.33 0.061 -11.251 
80.00 1.71 0.064 -4.079 
80.00 4.89 0.052 4.132 
80.00 5.89 0.052 4.239 
80.00 7.63 0.052 2.275 
80.00 6.16 0.052 3.958 
80.00 3.42 0.055 -2.806 
80.00 3.86 0.054 1.533 
65.75 1.19 0.066 41.443 
65.75 1.21 0.066 40.067 
65.75 1.62 0.061 32.703 
65.75 1.62 0.066 18.777 
65.75 1.63 0.062 31.588 
65.75 2.15 0.058 23.190 
65.75 2.15 0.058 23.190 
65.75 2.17 0.058 21.438 
65.75 2.55 0.056 18.692 
65.75 3.14 0.054 13.744 
65.75 3.77 0.054 7.639 
65.75 4.39 0.051 12.563 
65.75 5.27 0.051 8.240 
65.75 6.14 0.052 3.112 
65.75 11.80 0.052 3.074 
65.75 15.70 0.052 6.086 
65.75 30.20 0.052 12.592 
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Table 5 	 Proposed Equation of State Pressure Calculations 
(Continued) 

Percent Initial 	Measured 	Volume 	 Calculated Pressure 
Density 	 Pressure 	 Proposed Equation 

of State 

GPa 	 cm3/gm 	 Gpa 

65.75 43.40 0.048 38.212 
65.75 89.20 0.047 62.240 
65.75 104.50 0.047 70.446 
60.00 0.82 0.073 35.031 
60.00 2.33 0.056 23.812 
60.00 4.26 0.053 5.884 
60.00 5.55 0.053 1.927 
60.00 5.90 0.053 0.404 
60.00 6.24 0.053 0.0532 
59.20 376.00 0.043 270.12 
57.19 132.00 0.048 91.285 
57.19 31.50 0.051 19.350 
51.35 91.00 0.059 26.673 
47.70 324.00 0.043 298.97 
46.82 116.00 0.053 82.02 
33.67 262.00 0.056 276.26 
32.89 21.90 0.054 31.95 
25.23 18.50 0.055 49.42 
23.41 205.00 0.068 301.20 
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APPENDIX 

A.1 Introduction 

This work has covered the formation mechanics of shaped charges references to the 

physics of the detonation process. For clarity a summary description of the detonation 

process was separated from the thesis and placed in this appendix. The appendix covers 

the theory of ideal detonations and briefly describes the background and the equation of 

state used for the explosive in the computer modeling of the shaped charge. 

Detonations are an extremely rapid form of combustion that may take place in a 

material which contain the fuel and the oxidizer, in the form of a mixture or within the 

molecules, required for the combustion. A detonation can convert chemical energy at an 

approximate rate of 1010  watts/cm2, as compared to the approximate total electric energy 

generating capacity of the U.S., which is 4 x 1011  watts, Ref (1). In a detonation a shock 

wave in the material produces a rapid chemical reaction, which in turn supports the 

detonation. Because of the supporting combustion, a detonation shock wave travels at a 

constant velocity. The reaction zone behind the detonation front is typically only a few 

millimeters thick. 	Although detonations include chemical reactions, detonation 

phenomenona can be studied through an analysis of the physics of the event. 
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A.2 Detonations 

A.2.1 Chapman Jouget Detonation, Simplest Theory 

The simplest theory uses the following assumptions: 

one dimensional flow 

steady jump discontinuities to complete reaction and equilibrium states 

A detonation propagating into the unreacted material at constant velocity 

Steady state 

For a detonation propagating at velocity D into an explosive at rest, the conditions 

shown in appendix Figure 1 apply. 

For this system there are five unknown variables required to determine the final 

state of the system: density, pressure, temperature, detonation velocity and particle 

velocity. Some information on the relationships between these variables can be obtained 

from the conservation equations, ref (1). 

For the conservation of mass, with a coordinate system moving with the 

detonation front, the unreacted material is moving with a velocity D towards the front. 

The variable u is the particle velocity of the reacted gases in a fixed reference frame. 

poD = p(D — u) 	 (A.1) 

For the conservation of momentum, a control volume expanding with the detonation front 

is used in a fixed reference frame. The control volume then includes all of the reacted 

gases. The detonation front and control volume move forward at velocity D taking in the 

unreacted material at pc, to a final velocity of u. The conservation of momentum becomes: 
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(A.2) 

(A.2) 

(A.1) 

(A.2) 

The same equation can be developed using a reference frame moving with the 

shock front and the conservation of mass above, equation A.1. For this case the 

conservation of momentum is: 

Simplifying, equation A.2 is obtained: 

(A.3)  

(A.4)  

By eliminating the particle velocity, u, from equations A.1 and A.2 the Rayleigh 

line is developed: 

From equation A.1 

Rearranging equation A.2 

Adding Equation A.1 to A.2 



(A.5) 

(A.6) 

Grouping terms and multiplying by D 

If the detonation velocity is eliminated instead, the particle velocity as a function of 

pressure and specific volume is obtained. 

The Rayleigh Line was developed by eliminating the particle velocity from the 

conservation of mass and momentum (equations A.1 & A.2). The slope of the line is 

dependent upon the detonation velocity. The line represents all of the possible states 

allowed, dependent upon the conservation of mass and momentum, for a particular 
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(A.7) 

(A.8) 

detonation velocity. These states have not accounted for the energy released from the 

detonation. 

Application of the conservation of energy 

From the conservation of energy: 

By eliminating u and D from equations A.1, A.2, and A.7, the Hugoniot curve is 

developed. 

The Hugoniot curve was developed by eliminating the particle velocity, u, and the 

detonation velocity from the conservation equations for mass, momentum, and energy, 

equations A.1, A.2, and A.7. This curve is a description of the allowed states of the 

reacted gases, unlike the Rayleigh line which is applicable to the entire process. The 

curve's location is dependent upon the heat of detonation. The curve does not include the 

initial state unless the heat of detonation is set equal to zero, as for a non-reacting 

material. 

A.2.2 Intersections between the Rayleigh Line and the Hugoniot Curve 

At this point in the development there are three equations available: conservation of mass, 

momentum, and energy. However there are five unknown variables: the detonation 

velocity, the particle velocity, and three state variables: final pressure, density and 

temperature. Even with an applicable equation of state there are not enough equations to 

determine the final state. Some assumptions must be made to solve the problem. By 
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using both the Hugoniot curve and the Rayleigh line, a description of the process can be 

derived from the intersection of the two. The Rayleigh line will be used to show the 

variations of states for different detonation velocities, and the Hugoniot curve is used to 

describe the variations in final state of the reacted gases. In later development, the 

Hugoniot curve is also used to relate varying degrees of reaction to the final state. 

With an expression for the equation of state, the state is obtained as a function of 

the detonation velocity by the intersection of the Rayleigh line and Hugoniot curves. The 

development to this point is insufficient to yield the characteristic detonation velocity, 

known to exist from experimentation. 

The Hugoniot curve follows the possible states of the reacted gases for all 

detonations, and is unique for each material and its degree of reaction, assumed complete 

for the simplest theory. The Hugoniot curve is a rectangular hyperbola in the P-v plane. 

The Rayleigh line is dependent upon the detonation velocity, see appendix Figure 2. 

From the chart it can be seen that three types of conditions may exist: two, one, 

and no intersections between the Rayleigh line and Hugoniot curves. For slow 

detonations, D < Dcj, no intersection exists, and there is no solution. For one detonation 

velocity, one intersection exists, the CJ point. The CJ point is named after Chapman and 

Jouget independent developers of the simplest theory. For higher detonation velocities, 

D > Dcj, two intersections exist, one at a lower or weak point and one at an upper or 

strong point. 

165 



(A.5) 

A.2.3 Thermodynamics about the CJ Point 

Thermodynamics can be used to determine the sonic conditions at the CJ point, 

Ref (2). Since the Rayleigh line and Hugoniot curves are tangent at the CJ point: 

From Equation A.5 

(A.9) 

Rearranging 

Differentiating 

Then from equation A.5 

For the Hugoniot curve 

Solving for the pressure 
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(A.8) 



(A.11) 

(A.13) 

Differentiating 

From thermodynamics between equilibrium states 

Tds = de + Pdv (A.12) 

Using de from the differential of the Hugoniot curve, 

Then from equations A.12 and A.13 

Dividing by dv 
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(A.14) 

Then solving for 

(A.15). 

At some point the adiabatic curve passing through the CJ point has the same slope 

as the Hugoniot curve, Ref (3). By comparing the slope of dP/dv  for the Rayleigh line, 

equation 10, and the Hugoniot curve, equation A.14 becomes: 

It can be seen that the slopes are equal only when ds = 0, then, 

The curve presenting equation A.15 goes through Po, vo  the initial conditions of the 

material. Since ds = 0 at the CJ point, the Rayleigh line and Hugoniot curve are not only 

tangent to each other, but are also tangent to the isentrope for the completely reacted 

material. The condition of ds = 0 can also be used to relate the flow to the speed of sound 

in the reacted material. 

At the CJ point 

ds = 0 
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(A.16) 

(A.17) 

then: 

(Al) 

Then 

becomes 

Since the slopes are tangent at the CJ point 

From the definition of the speed of sound 

Then 

From the conservation of mass 

Then 
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(A.5) 

which gives: 

D = u + c 	 (A.18) 

Sonic conditions exist at the CJ point. The conditions at the intersections above 

and below the CJ point, with higher detonation velocities, remain to be determined. Since 

the conditions are sonic it is reasonable to assume that any rarefactions from behind will 

not catch up to the detonation wave. The detonation wave will behave as if it were 

followed only by gases at the CJ pressure. 

Sonic conditions on the upper and lower intersections 

From the Rayleigh line 

From the conservation of mass 

Then 

Using Equation A.17 

At the CJ point the equation is equal, as shown earlier. On the lower intersection, 

flow is subsonic, u + c > D and P < Pcj. On the upper intersection, the flow is supersonic, 

u + c < D and P > Pcj On the possible upper intersections, above the CJ point, the c 
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(A.8) 

velocity of sound exceeds the detonation velocity. Any rarefaction waves will catch up to 

the detonation front and slow it down. These solutions can therefore be disregarded as a 

possible steady state solution. On the lower intersections, below the CJ point, solutions 

are also rejected. Explanations in the literature vary, but are consistently poor or 

incorrect. A reason for disregarding the weak solution is covered with the ZND model, 

where it is much more clear. 

With the assumption that the final state is at the CJ point, a complete 

determination of the final state can be made with a suitable equation of state. The 

assumption of a Chapman-Jouget detonation is used in place of a missing equation. 

A.2.4 The Zeldovich-Von Neumann-Doering (ZND) Model 

In the Chapman-Jouget or simplest model, the shock wave and chemical reaction are 

assumed to be infinitely thin and occur simultaneously. In the ZND model, a finite and 

irreversible reaction zone follows an infinitely thin shock wave, Ref.(1). This model 

replaces the single Hugoniot curve in the simplest theory a Hugoniot curve for complete 

reaction 

(λ, = 1) with a Hugoniot curve that changes continually with the degree of reaction. From 

the equation of the Hugoniot curve, equation A.8: 

it can be seen that for a degree of reaction of 0 the change in energy is zero, and the 

Hugoniot curve passes through the initial condition, and remains below and to the left of 

the Hugoniot curves for higher degrees of reaction. The shifting of the Hugoniot curve 
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(A.19) 

with the degree of reaction, causes the pressure and specific volume to vary throughout 

the reaction. The thickness of the reaction zone is a factor that effects how ideally the 

detonation behaves, how close to the CJ development. The detonation process in 

appendix Figure 1 is then replaced by that of appendix Figure 3. 

The dependence of the state on the degree of reaction can be shown on a modified 

pressure specific volume plot, see appendix Figure 4. The shock wave initially compresses 

the unreacted material, and follows the Hugoniot curve for a degree of reaction of 0, to a 

pressure higher than in the simplest theory at the point the Rayleigh line and unreacted 

Hugoniot curve meet. As the material goes through the reaction, its properties follow the 

Rayleigh line until it intersects the Hugoniot curve. In this model, there is no path to the 

lower or weak intersection as the material would have to take a path through a region with 

a degree of reaction greater than 1. This relates well to the simplest theory where the 

weak intersection was discounted without a proper explanation. 

A.2.5 JWL (Jones-Wilkins-Lee) Equation of State 

In the JWL equation of state the isentrope through the CJ point is written 

as, ref (6): 

where: A,B,C,R1,R2, and w are constants and 

The energy along this isentrope is determined from the Maxwell relationship: 

172 



Using the energy and pressure as reference values along the isentope in equation A.3, the 

equation of state becomes: 

(A.20) 

A.2.6 Computations of Detonation Parameters 

The computer modeling of one dimensional Chapman-Jouget detonation is complicated by 

the requirement of knowing the final products of detonation. Either assumed products of 

detonation, sometimes called a frozen composition, are used or the equilibrium 

composition must be determined. The products of detonation are not always gaseous, and 

like any form of combustion the process is not complete. The products are not the 

optimum for the highest heat of detonation. The mixed composition causes problems in 

the development of mixture rules for the total properties of the reacted material. The 

following is a very brief description of the thermodynamic numeric Tiger and Cheetah 

codes, Ref. (7)(8). 

The Tiger and Cheetah code determines the final composition by minimizing Gibbs 

free energy of the major products of detonation. The code also allows for the use of 

frozen compositions. Since the properties are required for all products of combustion, the 

code is made manageable by limiting the products of detonation. This does not cause 

problems since many of the products not accounted for form only a small percentage of 

the total reacted products. This material can accurately be neglected in numerical models. 
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A.21) 

(A.22). 

(A.23)  

(A.24)  

(A.25)  

The Tiger and Cheetah codes calculates the thermodynamic variables using 

separate equations of state for gaseous, solid, and condensed, equations of state. Since 

the code is modular, containing many separate subroutines, it is possible to configure the 

code to use different equations of state. The pressure is computed using only the gaseous 

products, as the condensed constituents do not appreciably contribute to the pressure. 

The Tiger routine starts the calculations at an estimated CJ point. This estimate is 

obtained by performing a constant volume expansion explosion point calculation. The 

code then performs calculations that ideally converge to the CJ point. The code then steps 

to the next pressure along an approximation to the Hugoniot curve: 

The next estimation of the specific volume is obtained by using an expression for 

the CJ state: 



(A.5) 

(Al) 

(A.18) 

The process continues until the CJ state specific volume converges to a point 

where very little change occurs between successive iterations. Conditions for the 

conservation of mass and elemental balance, energy, and final composition, which changes 

with pressure, are maintained during the operations. The following equations to calculate 

the final velocities are: 

and from equation A.18 

Because of the complexity of the program, a complete description is not given. It 

should be noted that the procedures shown and equations are a small fraction 'of those 

required in such a program. 

The expansion along the isentrope, starting at the CJ point, is a measure of the 

performance of the explosive charge. The Tiger and Cheetah code have been written such 

that the properties along the isentrope may be determined. This allows for the comparison 

of performance between two different compositions. The Cheetah Code also fits JWL 

parameters to the isontropic expansion calculations, providing a means to model systems 

prior to cylinder testing. 
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Appendix Figure 1 One Dimensional Detonation 



Appendix Figure 2 Rayleigh Lines at Different Detonation Velocities 



Appendix Figure 3 Hugoniot Curves at Different Degrees of Reaction 



Appendix Figure 4 One Dimensional Detonation with a Finite Reaction Zone 
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