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ABSTRACT 

VIBRATION CONTROL OF ROBOTIC MODULES 
USING INPUT SHAPING ALGORITHM 

by 
Murat Eren 

In this thesis, vibration control using input shaping algorithm is studied. 

Vibration Control of flexible structures is an important problem and has been 

an active research area. Different approaches have been developed for vibration 

control which can be divided roughly into feedback and feedforward methods. 

Feedback methods need measurements and on-line calculation of the controller 

outputs. Although feedback methods are generally more robust and have a number 

of well known performance advantages, proper use of feedforward control can also 

significantly improve the speed of response of the system. 

Input shaping is one of these feedforward methods. It has been successfully 

applied to many control problems even in the presence of modeling uncertainties and 

structural nonlinearities. In many industrial problems, the objective is to position 

a load in minimum time without exciting the vibratory modes. hi input shaping, 

the aim is to give zero energy to these modes by performing "input prefiltering" or 

equivalently pole-zero cancellation in the command feedforward path. To carry out 

this prefiltering function, the natural frequency (ωn) and the damping ratio (0 of 

the plant are required for the shaper design [I]. 

This work is organized as follows; in the hardware part, basic information 

about a cartesian robotic module, an EXC controller, a VME controller, and a 

Dalanco Spry digital signal processing board is given. In Chapter 3 the input shaping 

technique is introduced. In Chapter 4 control system design and implementation of 

Zero Vibration (ZV). Zero Vibration & Derivative (ZVD), and Extra Insensitive (El) 

shapers are given. In Chapter 5 results of ZV, ZVD, and El shapers will he given. 



Comparison and suggestions for improvement are also given in this chapter. 

concluding remarks are given in Chapter 6. 

ii 



VIBRATION CONTROL OF ROBOTIC MODULES 
USING INPUT SHAPING ALGORITHM 

by 
Murat Eren 

A Thesis 
Submitted to the Faculty of 

New Jersey Institute of Technology 
in Partial Fulfillment of the Requirements for the Degree of 

Master of Science in Electrical Engineering 

Department of Electrical and Computer Engineering 

January 1997 



APPROVAL PAGE 

VIBRATION CONTROL OF ROBOTIC MODULES 
USING INPUT SHAPING ALGORITHM 

Murat Eren 

Dr. Tirnothy N. Chang Thesis Advisor 	 Date 
Associate Professor of Electrical and Computer Engineering, NJIT 

Dr. Andrew Meyer, Committee Member 
	

Date 
Professor of Electrical and Computer Engineering, NJIT 

Dr. Edwin Hou, Committee Member 	 l 	Date 
Associate Professor of Electrical and Computer Engineering, NJIT 



 
 
 
 
 
 
 
 
 
 
 
 
 
 



BIOGRAPHICAL SKETCH 

Author: 	Murat Eren 

Degree: 	Master of Science in Electrical Engineering 

Date: 	 January 1997 

Undergraduate and Graduate Education: 

• Master of Science in Electrical Engineering, 
New Jersey Institute of Technology, Newark, NJ, 1997 

• Bachelor of Science in Electronics and Telecommunication Engineering, 
Istanbul Technical University, Istanbul, Turkey, 1992 

Major: Electrical Engineering 



To my family 

V 



ACKNOWLEDGMENT 

First of all. I would like to thank the committee members. I would especially 

like to thank Dr. Timothy N. ('hang, for financially supporting me. During my thesis 

he helped me in every possible way. He is a great. advisor. I got a. lot of theoretical 

and practical knowledge from him, 

I would like to thank to my family, for their support. and understanding. I 

do not think I would have been able to accomplish much without their support.. 

Especially my sister Nalan Eren, she always gave positive comments when I had 

problems. 

I also would like to thank Kedar A. Godboley for helping me in software and 

debugging programs and algorithms. 

v i  



TABLE OF CONTENTS 

Chapter 	 Page 

1 INTRODUCTION 	  1 

1 .1 Objective 	  

1.2 General Description of System 	  

2 HARDWARE DESCRIPTION 	  

2.1 Linear Robot Module  	7 

2.1.1 H Module 	  

2. 1 .2 M Module  	S 

2.2 	EXC Controller [2]  	9 

2.2.1 Servo Parameter Setting  	10 

2.3 VME Controller  	14 

2.3. -1 	Introduction  	11 

2.3.2 Adept MV-S A Series Controller 	  15 

2.3.3 System Processor (030)  	15 

2.3.4 System Input/Output Module (S10) 	  16 

2.3.5 Adept Graphics Modules (VGB) 	  17 

2.3.6 AdeptMotion VME. Interface Module (VMI) 	  I 7 

2.:3.7 Analog Input/Output. Module (A10) 	  91 

2.3.8 Manual Control Pendant (MCP) 	  21 

2.4 Dalanco Spry Board [3] 	  22 

2.4.1 A/D Converter 	   24 

2.4.2 D/A Converter 	  

2.5 Interface Circuitry 	  24 

3 INPUT SHAPING ALGORITHM 	  26 

3.1 Derivation and Details of Input Shaping Method [4, 5] 	  98 

vii 



TABLE OF CONTENTS 
(Continued) 

Chapter 	 Page 

4 CONTROL SYSTEM DESIGN 	  33 

1.1 Closed Loop System 	  33 

4.2 Plant Transfer Function 	  31 

4.3 Implementing Input. Shaping 	  36 

4.3.1 Implementing ZV Shaper 	  37 

4.3.2 Implementing ZVD Shaper 	  38 

4.3.3 Implementing El Shaper 	  39 

5 RESULTS 	  41 

5.1 Results of The ZV Shaper 	  41 

5.2 Results of ZVD Shaper 	  44 

5.3 Results of El Shaper for V=0.05 	  47 

5.4 Comparison Between ZV, ZVD, and EI 	  50 

5.5 	Suggestions for Improvement 	  51 

6 CONCLUSIONS 	   53 

APPENDIX A SOFTWARE 	  55 

APPENDIX B HAR.DWARE SPECIFICATIONS 	  69 

REFERENCES 	  

viii 



LIST OF TABLES 

Table 	 Page 

2.1 	Specifications of H and M Modules  	9 

2.2 Motor and Encoder Specifications  	9 

2.3 Position Loop Parameters 	  I3 

2.4 Velocity Loop Parameter Settings 

2.5 	Filter Parameter Settings  	14 

5.1 	Position error [mm] in different times for ZV 	  50 

5.2 Position error [mm] in different times for ZVD 	  50 

5.3 	Position error [mm] in different times for El (V=0.05) 	  51 

B.1 Motor and Encoder Specifications 	  69 

]3.2 Connector CNI 	  70 

B.3 Signal Description 	  71 

13.4 Analog Outputs 	   72 

13.5 Analog Inputs 	  73 

IX 



LIST OF FIGURES 

Figure 	 Page 

1 System Overview 	  

1.2 	View of 11 and M Modules 	5 

1.3 	View of VME Controller  	5 

1.4 	View of PC Part  	6 

2.1 	Inside view of 11 and M Modules  	S 

2.2 General Setup of EXC Controller  	11 

2.:3 EXC Servo Block Diagram 	  12 

2.4 VME Controller Command Flow 	  15 

2.5 VME Controller Block Diagram 	  17 

2.6 VME Controller and AdeptMotion VMI Interface Panels (VMP) 	 19 

2.7 P( to DSP Data. Flow 	  22 

2.8 	Interface Circuit  	25 

3.1 General System Configuration for Input Shaping System 	  26 

3.2 Illustration of Input Shaping Algorithm 	  27 

3.3 ZV Shaper 	   31 

ZVD Shaper 	  31 

3.5 El Shaper 	  30 

4.1 	Closed Loop Diagram of System 	  33 

4.2 	Plant with Proportional Controller  	3'l 

4.3 	10 Sequential Step Response of System for Kp=6  	  35 

4.4 	Filtered Acceleration Data. (fc=I5 Hz) 

4.5 Step Response of Closed Loop System With P1) Control 	  37 

4.6 Z\/ Shaper After Convolution 	  38 

1.7 ZVI) Shaper After Convolution 	 39 



LIST OF FIGURES 
(Continued) 

Figure 	 Page 

4.8 El Shaper After Convolution 	  40 

5.1 	Result. of Z\' Shaper: Experiment #1 	  41 

.5.2 Result of ZV Shaper: Experiment #2 	  12 

5.3 Result of ZV Shaper: Experiment #3 	  42 

5.4 	Result of ZV Shaper: Experiment. #4 	  13 

5.5 Result of ZV Shaper: Experiment #5 	  43 

5.6 Result of ZVD Shaper: Experiment #1 	  44 

5.7 Result of ZVD Shaper: Experiment. #9 	  .15 

5.8 Result of ZVD Shaper: Experiment #3 	  45 

5.9 Result of ZVD Shaper: Experiment #4 	  16 

5.10 Result of ZVD Shaper: Experiment. #5 	  16 

5.11 Result:. of El Shaper For V=0.05: Experiment # 1 	   

5.12 Result of El Shaper For V=0.05: Experiment #2 	  18 

5.13 Result of EI Shaper For V=0.05: Experiment #3 	  48 

5.14 Result of El Shaper For V=0.05: Experiment #4 	  19 

5.15 Result: of El Shaper For V=0.05: Experiment #5  	19 

xi 



CHAPTER 1 

INTRODUCTION 

1.1 Objective 

Control of flexible structures is an important problem and an active area of research. 

There are a number of control algorithms currently available which can be roughly 

divided in to two groups: feedback and feedforward approaches. Input shaping is one 

these feedforward algorithms. It has been successfully applied for vibration control 

of flexible structures. 

The objective of this thesis is to implement several types of input shapers 

to reduce residual vibration of a. 2 axis cartesian robot. A significant effort has 

been spent in hardware construction of this work, therefore hardware will fi rst  be  

described in Chapter 2. The limitations of each hardware will be given in this chapter. 

Input shaping is a. versatile and effective method to for command vibration control. 

The derivation and implementation of the method will be given in Chapter 3 and 

Chapter 4. Results and suggestions for improvements will be in Chapter 5 and finally 

conclusions will be given in Chapter 6. 

1.2 General Description of System 

The system hardware consists of a. two axis cartesian robot, an Adept VME 

controller. a. DSP installed IBM compatible PC, and an interface circuitry between 

the VME controller-robot and the VME controller-PC. Figure (1.1 ) shows system 

overview and following figures, Figure (1.2), (1.3), and (1.4) shows actual system 

view. From Figure (1.1) VME controller sends position data to PC via. its serial 

port. DSP in PC gets position data, calculates control action, and sends control 

action to linear module via. amplifier. Before P( sends control action to linear 

module, proportional and integral gains of \IMF must  be zeroed. The purpose of 

1 
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this step is to disable VME to control the linear module. Figure (1.2) shows the two 

axis cartesian robot mounted on vibration free table. 	module is the x axis and 

M module is they axis. Figure (1.3) shows VME control part of the system. On 

the left part there is Manual Control Pendant (MCP) and on the right. side of figure 

partly VMI Interface Panels (VMP) can be seen. And finally in Figure (1.4), PC 

part of the system can be seen. In the middle of figure there is charge amplifier and 

signal generator. Charge amplifier is used for accelerometer and signal generator is 

used for debugging software and DSP. To interface PC and VME a summer circuit. 

is used. This circuit. basically makes DAC voltage matching between VME and PC. 

It simply multiplies DSP output by 2 since VME output range is ±10 V and DSP's 

output is ±5 V. For DSP Dalanco Spry's Model 310 data. acquisition and signal 

processing board is used. This board is a. TMS320C31 based board and it. has 4 

ADC (14 bits) inputs and 2 DAC (12 bits) outputs. In early stages of this thesis 

before VME Controller was shipped to us, an EXC controller was applied to perform 

the initialization tests. Some descriptions of the EXC Controller will also be given 

in this chapter. 

For control algorithm input shaping will be used. Input shaping is an open 

loop compensator of which vibrational motion is eliminated after the input ends. 

In input shaping a sequence of impulses is convolved with reference input. Closed 

loop eigenvalues determine the amplitudes, and application times of these impulse 

sequence. So frequencies and damping of. the modes of vibration has to be known. 

There are several methods for shaper design. In this work Zero Vibration (ZV), 

Zero Vibration & Derivative (ZVD), and Extra Insensitive (El) methods will be 

explained and applied. In ZV shaper method residual vibration will be zero after 

impulse sequence ends. To increase robustness of the shaper design to modeling 

errors in the natural frequency ωo, and damping ratio ζ, the partial derivatives of 

the ZV constraints with respect to ωo and ( are also constrained to zero. Basically 
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in ZVD an extra zero is put to the exact location of the closed loop poles. ln El a 

finite residual vibration at the modeled frequency is allowed. But frequencies slightly 

above and below the modeled frequency will be zero. This method will increase the 

frequency insensitivity. 

Input shaping has become an active area of research after the publication of 

[2]. For more information readers should refer to [3, 4, 5, 6. 7, 8]. 



Figure 1.1 System Overview 
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Figure 1.2 View of II and M Modules 
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Figure 1.3 View of VME Controller 



Figure 1.4 View of PC Part 
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CHAPTER 2 

HARDWARE DESCRIPTION 

In this chapter, the experimental hardware is described in the following five sections: 

1. H and M linear robot modules [9]; 

 
2. EXC controller [10]; 

3. VME controller and robot interface; 

4. Digital Signal Processor (DSP) [11]; 

5. VME and DSP interface. 

2.1 Linear Robot Module 

The cartesian robot system consists of one H Module, one M Module, and two 

amplifiers. Internal construction of the modules and their respective reference 

directions are shown in Figure (2.1). The robot modules are essentially hall-screw 

chives. Depending on the mechanical characteristics such as travel and payload 

ratings, the modules are classified as H, M. and S where the II and M types are used 

in this work. 

2.1.1 H Module 

The H module is the largest module with the highest payload arid moment capacity. 

H module consists of a 20 mm pitch ball screw. two 25 mm linear guides and a 

300 watt motor without a holding break. The dimensions are 180 mm (7") wide, 

90 mm (3.5") in height and 1000 mm (40") length. Refer to Table (2.1) for the 

performance specifications. 

7 



Figure 2.1 Inside view of H and M Modules 

2.1.2 M Module 

The M module is a mid size module. It consists of a 20 mm pitch ball screw;  two 

25 mm linear guides and a 300 watt motor without a holding break. The dimensions 

are 116 mm (4.6") wide, 85 mm (3.4") in height and 550 mm (21.34") length. The 

standard M modules are supplied with direct-mount motors. Performance specifi-

cations of the M modules are given in Table (2.1) whereas the motor and encoder 

specifications are given in Table (2.2). A more detailed table about motor and 

encoder is given in Appendix B. 

8 
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Table 2.1 Specifications of H and M Modules 

Module 
Type 

Stroke 
(mm )  

Max. 
Speed 

(mm/sec) 

Repeatability 
(± mm/ ± in 

 

Ball 
screw 
Pitch 
(mm) 

Max 
Payload 

(kg/lb) 

Motor 

Count 

Hated 
Thrust 

Force 
(N/lb) 

11-module 1000 1200 0.01/0.0001 20 60/132 Direct 300/67 
M-module 550 1200 0.01/0.0004 20 60/132 Direct 300/67 

Table 2.2 Motor and Encoder Specifications 

Motor 300W AC servo motor 

Position feedback 2000 lines/revolution 
Maximum frequency: 150 KHz 

Maximum Motor Speed 3600 r.p.m. 

Power Single phase 180-240 VAC 
Required Power: 
1170 VA max. (at max. torque) 

2.2 EXC Controller [10] 

The EXC Controller is a multi-function, multi-axis controller with a built-in dual-

axis or triple-axis servo driver. It is capable of executing following set of motion 

commands: 

* Sequential commands: Inner. conditional jump, repetition, etc. 

e Move commands: Triple-axis linear interpolation (linear motion between two 

points in three-dimensional space), dual-axis arc interpolation (start point, 

transit point and end point), etc. 

• Palletizing commands. 

• Hand and other subordinate unit control through 32 general purpose inputs 

and outputs. 

Capacity of 100 programs and 5000 steps maximum. 



10 

With the above-shown features, the EXC controller is capable of feedforward 

compensation, digital filtration and some other control features for general performance 

motion control. Standard setup and block diagram of the EXC Controller is given 

in Figure (2.2) and Figure (2.3). In Figure (2.2), user has the option to give manual 

robot position commands or program controller from "Teaching Box". 	Figure (2.3) 

shows EXC controller block diagram. By tuning controller gains and filter parameters 

required motion characteristics can be obtained. 

The EXC controller is available as a compact rack mount type and a stand-

alone type. The stand alone type was used in this work. 

For each modular axis. a filtered PI controller with feedforward control has been 

pre-programmed in the EXC for servo control of the modules. The user can further 

customize a number of parameters such as controller gains and filter frequencies. 

2.2.1 Servo Parameter Setting 

e Position loop proportional gain: Decrease this gain if overshoot, noise 

and/or vibrations are too great. 

e Velocity loop proportional gain: Increase this gain if overshoot is too great. 

Decrease it if noises or vibrations are too great. 

▪ Velocity loop integration frequency: Decrease this value if overshoot is 

too great. 

Normally, change the settings of the velocity loop proportional gain ;  velocity 

loop integration frequency and position loop proportional gain in this order. 
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Figure 2.2 General Setup of EXC Controller 
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Position Loop 

Table (2.3) lists the position loop adjusting parameters and their setting procedures. 

Table 2.3 Position Loop Parameters 

Item Description Units 
Setting Range 

Gain 

Position 	loop 	proportional 	gain.. 	The 
positioning 	time is 	shorter 	with 	a greater 
gain. 	However, a greater gain causes greater 
overshoot or vibrations. 

- 0.01~31.00 

Dead band 
The speed command is zeroed with a position 
error less than a set value in order to reduce 
minute vibrations clue to small errors. 

counts 0'4095 

F/F Gain 

Position loop feedforward compensation gain. 
Traceability to a command is better with a 

 
greater F/F gain. 	However, a greater gain 
causes greater overshoot or vibrations. 

- 0.00 ti  1.00 

Velocity Loop 

Table (2.4) lists the velocity loop adjusting parameters and their setting procedures. 

Filter 

Table (2.5) lists the filter adjusting parameters and their setting procedures. 

The EXC Controller is useful in rapid system configuration and integration. 

However its lack of programmability severely limits its use in control system devel-

opment. Therefore it was subsequently replaced by a VME controller which has a 

more open architecture. 
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Table 2.4 Velocity Loop Parameter Settings 

Item 
I 

Description Units 
Setting 
Range 

Gain 

Velocity loop proportional gain. The velocity 
trace 	is 	more 	accurate 	with 	a 	greater 
gain. 	However, a greater gain causes more 
vibrations. 

0.1 	255.0 

I frequency 
 

Velocity 	loo) 	integration 	frequency. 	The 
positioning time is shorter with a greater I 
frequency. 	However, a greater I frequency 
causes more overshoot or hunting. 

I z 0 I 	127.0 

I limit 
The I limit gives an 	upper limit to pulses 
collected by integration to improve overshoot. 

0.0~100.0 

Dead Band 
The torque command is zeroed with a position 
error less than a set value in order to reduce 
minute vibrations clue to small errors. 

counts 0~4095 

Table 2.5 Filter Parameter Settings 

Item Description Units 
Setting 

 
Range 

1st low pass Cut-off frequency of the first low-pass filter Hz 10 	400 
2nd low pass Cut-off frequency of the second low-pass filter Hz 1.0400 

1st notch Center frequency of the first notch filter Hz 10^400 

2nd notch Center frequency of the second notch filter Hz 10~400 

2.3 VME Controller 

2.3.1 Introduction 

In this work Adept VME controller is used. It is more flexible and more powerful 

than EXC controller. Figure (2.4) shows basic command flow of VME controller. The 

robot position commands in user program are interpreted by V+ operating system 

and then motor position commands are formed. 

The Adept MV series controllers are based on the VMEbus specification, and 

the slide-in modules are designed to the 6U VME size. Our system is an Adept MV-8 

A-Series controller with the following features: 
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Figure 2.4 VME Controller Command Flow 

2.3.2 Adept MV-8 A Series Controller 

The Adept MV-8 controller is an 8-slot chassis. It requires two modules: 

• The System Processor module (030 or 040); 

• The System Input/Output (SIO) module; 

The System Processor module takes one slot and System Input/Output module takes 

two slots. The remaining five slots can he populated with various combinations of 

optional Adept modules. Our system has one VGB graphics hoard, one VMI motion 

interface module and one A10 analog input-output module in additional to the SIO 

and the 030 System Processor. These electronic modules are now described: 

2.3.3 System Processor (030) 

The 030 is a single-slot 6U VME module that can serve as the main system processor 

for an Adept MV controller. The CPU for this module is a Motorola 68EC030 

microprocessor running at 40 MHz. It is possible to populate 4 modules. The 
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module can be configured with 2, 4, or 8 MB of DRAM, and this memory can be 

upgraded in the field. This module also includes a Motorola 68882 math coprocessor. 

The 030 module has two serial I/O ports on the front of the module: one is an RS-

232 port, and the other is an RS-422/485 port. The 030 can he used either as the 

main system processor, or as an auxiliary processor in Adept MV controller system. 

Each Processor Module must have a unique address setting. If additional 030 or 040 

modules are installed one of them must be set to main, the others must be set to 

auxiliary processors. This setting is clone by jumpers on the processors modules. 

2.3.4 System Input/Output Module (SIO) 

The System Input/Output module (S10) is also required for all Adept MV controller. 

The SIO is a two-slot 6U VME slave module that handles the basic I/O functions 

for an Adept MV controller. Communication between the system processor(s) and 

this board occurs over the VMEbus. The Adept system information is stored in 

non-volatile RAM (NVRAM) on the 510 module. The SIO module features include: 

• 3.5" high-density 1.44 MB floppy drive. 

• Internal hard drive (256 MB). 

• Digital I/O connector for 20 channels (12 input. 8 output). All channels are 

opto-isolated. Additional digital I/O can be made available by installing one 

or more DIO channels. 

• Three general-purpose RS-232 serial I/O ports. 

• Connector for an optional External Front Panel. 

The SIO module controls the system Emergency Stop (E-Stop) circuitry. The system 

real-time clock/calendar functions are also handled by SIO module. 
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2.3.5 Adept Graphics Modules (VGB) 

The VGB is required for A-Series Adept MV controllers. The VGB is a single-slot 6U 

VME module that serves as the graphics processor and controls the video output to 

the color monitor. The VGB has connectors for the monitor, keyboard, and pointing 

device (mouse, trackball, etc.). The VGB also has a direct Video Bus connection to 

the VIS module in AdeptVision VME system. 

2.3.6 AdeptMotion VME Interface Module (VMI) 

Adept Motion VME product consists of a hardware and software package that 

provides high performance coordinated motion control for industrial automation 

devices. The hardware consists of an Adept MV controller with one or several Adept-

Motion VME modules (VMI) installed. 

Figure 2.5 VME Controller Block Diagram 

The VMI is required to run the AdeptMotion VME product. The VMI module 

is a single-slot 6U VME module designed to control four axes of motion for use with 

the Adept Motion VME product. Each VMI module has four servo drive outputs, 

four incremental encoder inputs, and digital I/O for each machine and amplifier 
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control. All external device inputs and outputs are opto-isolated. The VMI has 

four ±10 V analog command outputs that arc used to command the motor drive 

amplifiers. The analog commands are generated by Four DAC. The AdeptMotion 

VME control software runs on the V+ Operating system. 'Phis product can be 

integrated into an Adept automation system with additional features such as: vision 

guidance and inspection, and conveyor tracking. AdeptMotion VME motion control 

system is cornpatible with most industry standard motor drives that accept a ±I0 V 

analog input signal for current (torque) or velocity commands. AdeptMotion ME 

includes a motion interface module that plugs into the backplane of the Adept MV  

controller, thus permitting the use of Adept's powerful V+ programming language 

and operating system. The VMI module's connections to user equipment are divided 

into three groups: 

• The encoder: 

• The machine; 

• 
The  servo; 

With a set of cables and Motion Interface mounting panels (VMP), connections 

between VMI and the application hardware can be made. VMP panels have sockets 

for user supplied opto isolation modules (12 VDC). 

AdeptMotion VMI Interface Panels (VMP) 

The three motion interface panels serve as the interface between the VMI Module 

and the application hardware. VMPM is interface panel for machine cable, VM PS 

interface panel for servo cable, and VMPE interface panel for encoder cable. The 

VMP panels also provide mounting sockets for all 1/0 modules used in conjunction 

with the dedicated discrete input/output signals. The VMP's also provide detectable 

barrier type screw terminal strips for all field wiring terminations. 
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Figure 2.6 VME Controller and AdeptMotion VMI Interface Panels (VMP) 
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The VMPS is used to interface to the Servo Drive amplifiers. lt provides one 

digital input (DF) and one digital output (DE) for each of four channels. It also 

provides one analog output (CD) for each of lour channels. The function of VM PS 

is to optically isolate the signals, and to perform voltage level shifting, for example, 

to interface 241V user circuits to the Adept MV controller. 

• DE (output) : The DE signals are outputs to the drives which command the 

drives to enable motor power. 

• DF(input) : The DF input is used to indicate a drive fault, such as over-

temperature, over-current, etc., and causes all drives to power down via the 

DE signals. 

• CD (output) : The CD outputs provide a command signal to each of the drives. 

Maximum output is ±10 V into a 10 KΩ input resistance. These analog outputs 

are rated at 100 mA (max) per channel. 

The VMPE is used to interface to the encoders. It supports up to 4 encoder 

channels, with differential input (A, B, and Index) for each encoder. Each channel 

is designed to interface directly to the encoders which use industry A 13 quadrature 

outputs and an optional zero index channel. The control system measures all position 

variables in units of encoder counts. For a given encoder there will he 4 encoder 

counts per slot in encoder, because of the quadrature decoding of the encoder's A 

and B phases. 

All torque values are in units of "DAC output counts". The AdeptMotion VME 

hardware contains one DAC per motor that accepts a digital input value (in DAC 

output counts) and produces an analog output voltage proportional to the input. 

A DAC command may range from -32767 to +32767 (depending of configuration in 

SPEC utility). corresponding to a -10V to 10V output. respectively. Then a current 

(or voltage. depending upon the amplifier design) is applied to the motor that is 



21 

proportional to the DAC command. The exact amount of current depends on the 

gain of amplifier. The resulting shaft torque applied to the load will depend upon the 

design of the motor. Electric motors generate a torque that is roughly proportional 

to the current by the amount called the "torque constant" of the motor. 

2.3.7 Analog Input/Output Module (AIO) 

The Analog Input/Output module (A10) is a VMEbus compatible 6U VME slave 

1/0 module, capable of performing both analog-to-digital and digital-to-analog 

conversions, with 12-bit resolution.. The A10 module can support 1.6 different input 

channels (or 32 single-ended inputs) and 4 output channels. In single ended mode 

each input is assigned a single input pin, referenced to a common analog ground. In 

differential mode, each input is assigned a separate -I- and - terminal. The two modes 

are mutually exclusive so that the module will accept either all single-ended inputs 

or all differential inputs but not a combination of both. Selection of differential 

vs. single ended inputs is totally independent of the voltage range. Choice will 

depend solely on the electrical characteristics of your analog voltage source/device. 

Selection is clone via jumpers. Three jumper selectable voltage inputs ranges are 

supported. Within each range, there are four software selectable gain values (total 

12 gain settings). Four outputs can he configured as either voltage (5 mA max) or 

current loop (4-20 mA). Power of analog outputs is provided by on-board DC/DC 

converter. 

2.3.8 Manual Control Pendant (MCP) 

The MCP is hand-held control unit that can he added to any Adept MV controller 

system that includes a VFP(VME Front Panel). The MCP connects to the front 

of the VFP. The MCP is available in two versions: the operator's pendant and the 

programmer's pendant. The operator's pendant has a palm-activated "hold-to-run" 

switch connected to the remote emergency stop circuit; the programmer's pendant 
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does not have this switch. MCP is often used to manually control a robot or a motion 

device during system development. The MCP includes function keys and a 2-line by 

40-character LCD display that are fully programmable. An Emergency Stop push 

button switch on the MCP shuts off high power at. the Adept MV controller. 

2.4 Dalanco Spry Board [11] 

During developing software in V+ environment, we have seen that cycle time 

resolution was 1 ms and also V+ operating system does not have a compiler, it has 

an interpreter, all the programs you write are interpreted line by line. In implemen-

tation of input shaping time resolution is important. For our application we needed 

ms time resolution So for these reasons we decided to use TMS320C31 DSP 

board with sampling rate of 10 KHz. 

The controller implemented in Dalanco Spry's Model 310 data acquisition and 

signal processing board. Figure (2.7) shows PC to DSP data flow. 

PC 

Figure 2.7 PC to DSP Data Flow 

The heart of board is TMS320C31, a low cost 32 hit floating point digital 

signal processor with 60 us single-cycle instruction execution time and 2Kx32 word 
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of internal RAM. It can perform single cycle multiplications on 24-bit integer and 

32-bit floating point values. Parallel instructions can be used to gain even higher 

throughput;. The arithmetic logic unit. (ALU) performs single cycle operations on 

32-bit integer, 32-bit logical, and 40-bit floating point data. The TMS320C31 has 

28 internal registers. All of these registers can be operated upon by the multiplier 

and ALU, and can be used as general purpose registers. The total memory space 

of the TMS320C31 is 16M (million) 32-bit words. Program, data, arid I/O space 

are contained within this 16M word address space. It has 2 general purpose 32-

bit timer/event counter and 2 bi-directional serial ports. Each serial port can be 

configured to transfer 8, 16, 24, or 32 bits of data per word. The on-chip Direct 

Memory Access (DMA) controller can read from or write to any location in the 

memory map without interfering with the operation of the CPU [12]. 

The base 10 address of the Model 310 in the host PC is selectable on 8 byte 

boundaries. Our board's base 10 address is 300H. The Model 310 board is also 

equipped with 512K words of static memory. Model 310 holds a single bank of 32 

bit wide memory. User can select one of the PC interrupts INT10, 1.1, 12, 15. Arid 

also the host PC can send an INT 0 interrupt to C31. It has two internal clocks, 

TCLK0 and TCLK1. TCLK1 is not used by the Model :310A, while TCLKO is used 

to trigger conversion on the A/D hoard. The Model 310 has 4 ADC arid 2 DAC 

channels. The TMS320C31 controls the following Model 310 parameters by writing 

to a latch mapped at memory location OFFFFFFh: 

• The next A/D input channel to be sampled. (Chan 0-3) 

• The gain setting of the Programmable Cain Amplifier. (1-8) 

In terms of software tools, there are two board-specific programs: the D300 debugger 

and the A3xx assembler assembler. Furthermore, a Texas Instrument C30/C40 C-

compiler/assembler/link is also available [13. I4]. 
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2.4.1 A/D Converter 

ADC starts conversion by bringing the convert pin low. This strobe is generated by 

the output of the onchip clock TCLK0. And then the data is read -if ready at the 

Serial Port Data Receive Register. TCLK0 can be programmed in two ways. First 

it can be programmed as an 10 pin; second as a clock signal. In the second way 

desired sampling rate can be given. 

Type Maxim 121 or equivalent (Mbit) 

Maximum Range 150 KHz (310A), 300 KHz (31013) 

Input Voltage Range 5 Volts 

Data. Format 16 bit, two's complement binary code placed in 14 MSB 

2.4.2 D/A Converter 

The D/A Converter is connected to the three transmit lines of the serial port. The 

DSP polls the Serial Port Global Control Register to determine if the serial port 

transmit buffer is ready for a new data. Upon notification of readiness, the new data 

word may be written to the Serial Port Data Transmit Register. The D/A output 

will be updated with the value in the lower 16 bits of the 32 bit data word after 

reception of the data word. 

Type 1 AD-7243 (31.0A), 2 AD7243 (310B) 

Range 250 KHz Single / 140 KHz dual channel 

Input Voltage Range 5 Volts 
Data Format 16 bit, twos complement binary code placed in 12 	LSB, 

2.5 Interface Circuitry 

In interface circuitry we need a summer to match the ±5 V output of DSP board 

to the ±10 V output of VME. It will also do buffering. Figure (2.8) is the interface 

circuit between C31 and VME controller. 
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Figure 2.8 Interface Circuit 

Let 

Vx1 = V,1 when ( VC31 = 0) 

Vx2 = Vx when  ( V VME = 0) 

then 

If we let R1  = 2R and R2  = R3  = R then 

if we choose R4  = R and R5 = 4R then we get V0 

V0 = 	V VME + 2V C31 



CHAPTER 3 

INPUT SHAPING ALGORITHM 

Input shaping is an open loop compensator which shapes the actuator input such 

that vibrational motion is eliminated after the input is ended. The method is based 

on the notion that superimposed impulse responses can exactly cancel one after the 

last impulse. Implementing input shaping control involves convolving a sequence of 

impulses with the reference inputs. The critical parameters of the scheme are the 

amplitudes and application times of the impulses. Impulse amplitudes are a function 

of modal damping while application times are a function of both modal damping and 

frequency. An important assumption of input shaping control is that the frequencies 

and dampings of the modes of vibration are known a priori. Figure (3.1) illustrates 

a typical input shaping scheme where the closed loop eigenvalues affect the shaper 

design. Note that numerator dynamics of the system (zeros) are not considered in 

designing an impulse sequence [5, 14 

Figure 3.1 General System Configuration for Input Shaping System 
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Figure 3.2 Illustration of Input Shaping Algorithm 

Figure (3.2) is an illustration of input shaping algorithm. The amplitudes A 1 , 

A2 , and the application times of these impulses must be determined. After these 

parameters are found, the unshaped input is convolved with these impulses and result 

of this convolution gives the shaped input. This input is the control input to the 

closed loop system. 
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3.1 Derivation and Details of Input Shaping Method [4, 5] 

An uncoupled, linear;  vibratory system of any order can be specified as a cascaded 

set of second order poles with the decaying sinusoidal response: 

(3.1) 

where A is the amplitude of the impulse;  w0  is the undamped natural frequency 

of the plant, 	is the clamping ratio of the plant, t is time, to  is the time of the 

impulse input. The impulse is usually a torque or velocity command to an actuator. 

Equation (3.1) specifies the acceleration or velocity response, y(t), at some point of 

interest in the system. First the two impulse case will be considered. The end or the 

duration of the input is the time of the second (last) impulse. 

(3.2) 

where 

The amplitude of the vibration for a multi-impulse input is given by: 

(3.3) 

The BJ  are the coefficients of the sine term in (3.1) for each of the N impulse inputs;  

the t j  are the times at which the impulses occur;  and w is the natural frequency. 

Elimination of vibration after the input has ended requires that the impression for 
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 equal to zero at the time at which the input crick, tN. This is true if both 

squared terms in (3.3) are independently zero, yielding: 

(3.4) 

(3.5) 

where Aj is the amplitude of the jth impulse, 	is the time of the jth impulse, and 1N  

is the time at which the sequence ends. Equations (3/1) and (3.5) can be simplified 

further, yielding: 

(3.7) 

In order to increase robustness of impulse shaping sequence to modeling errors in 

the natural frequency ω0 and the damping ratio (, the partial derivatives of 7N 

constraints with respect ω0 and ( are also constrained to zero. This yields: 

(3.8) 

(3.9) 

Therefore two more unknowns must he added ( A3 and 13  ) by increasing the input 

from two to three inputs. The general formula concerning this process is: 

(3.10) 

(311) 
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After this process input is robust for system frequency variations of 	±20 

percent. For the four impulse case input is robust for system frequency variations of 

-30 percent +40 percent. 

The aim of input shaping is essentially-, to add zeros to the system function at 

the exact locations of the system modes (poles). Let's assume that the system 

consists of a pair of complex poles at .s = 	± jw. If an impulse sequence 

is input to the system then laplace transform of the 

output will be 

(3.12) 

and set the location of complex zeros contributed by shaped 

input, equal to complex system poles. This results, 

(3.13) 

where t1  is the application time of the second impulse and is got from e±jwl1= — 

or t1  = 	. Thus 

now we got 

(3.14) 

if we let α0  + α1  = 1 to ensure that the shaped input voltage has the same amplitude 

as the reference amplitude, we get 

(3.15) 
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(3.16) 

For ZVD case two pairs of complex zeros, rather than one, are added to the system 

function at the exact location of the pair of the complex poles. Robustness to the 

system uncertainty is improved since there are two zeros in the vicinity of each 

complex pole rather than one. Full. detail can be found in [6]. Figures (3.3), 

(3.4), and (3.5) show the parameters for Zero Vibration (ZV), Zero Vibration & 

Derivative (ZVD), and Extra Insensitive (El) shapers. 

(3.17) 

(3.18) 



Curve fit formulas for El shapers are: 

= 0.2497 + 0.2496V + 0.800.1ζ  -F .233Vζ  

0.4960ζ2  + 3.173Vζ 2  

A2  = 1 - (A l  + A2) 

A3  = 0.2515 + 0.2147V — 0.8325ζ  + 11.415Vζ  + 

0.8518ζ2  — 4 .901 Vζ2  

T1  = 0 

T2 	= (0.5000 + 0.4.616 Vζ  + 4 .262Vζ  + 1 .756 Vζ3  + 

8.578V2ζ  — 108.6V-2ζ2  + 337.0 V2ζ3)Td 

= Td 

(good for 0 ≤  ζ  ≤  0.3 and 0 ≤  V ≤  0.15 ) 
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CHAPTER 4 

CONTROL SYSTEM DESIGN 

In this chapter, a design model for the modules will be derived from experimental 

data. This is followed by a discussion of various input shaping designs: Zero 

Vibration (ZV), Zero Vibration & Derivative (ZVD), and Extra Insensitive (El). 

4.1 Closed Loop System 

Figure 4.1 Closed Loop Diagram of System 

A schematics of the closed loop system is shown in Figure (4.1) where the 

module's position value is generated by encoder. A V+ program residing in the 

VME system sends this value to the PC via its serial port. The PC then writes this 

position data to a dual ported memory location (1000H) which is "simultaneously" 

accessible by the TMS320C31 DSP to calculate the proper control action. Finally, 

the control signal is sent to robot via the power amplifier. 

33 
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4.2 Plant Transfer Function. 

In this section the process for determining plant transfer function will be explained. 

In our case, the plant is the linear module whose transfer function is in the form of: 

In order to find the transfer function, proportional feedback is applied to the 

Figure 4.2 Plant with Proportional Controller 

plant as shown in Figure (4.2). Since C(s) = K p  closed loop transfer function after 

rearranging the coefficients becomes: 

For Kp  = 6, a set of closed loop responses are plotted in Figure (4.3). Furthermore, 

data collected from an accelerometer with sampling rate of 10 KHz is first filtered 

and then plotted in Figure (4.4). 

From these responses, Td  (period of damped vibration), and M p  (overshoot) 

can be readily determined according to the following formulas: 



Figure 4.3 10 Sequential Step Response of System for Kρ=6 

Figure 4.4 Filtered Acceleration Data (fe =15 Hz) 
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where wo  and c  are respectively, the natural frequency and damping factor. Moreover, 

since: 

from these formulas, it is determined that T = 0.5010 and Ko  = 10.9811. Therefore, 

the open loop transfer function of the plant is given by: 

4.3 Implementing Input Shaping 

Since the switch time of the shaper depends directly on the plant's (open loop Or 

closed loop) natural frequency, it is advantageous to apply pre-conditioning feedback 

to increase the natural frequency. 

Before implementing input shaping, a PD control is first applied to the plant to 

increase the natural frequency. For all of the tests, movement will be from x = 154000 

encoder counts to x = 144000 encoder counts or equivalently from x = 385 mm to 

= 360 mm. 

The PI) control was tuned online to optimize the closed loop response so that 

a. suitable balance between natural frequency and clamping factor is obtained. It was 

observed that with Kp 40 and Kd  = 100, the plant characteristics are most suited 

for input shaping. Step response of this pre-conditioned closed loop system plotted 

in Figure (4.5) from which it is determined that: 

= 0.1315 

= 0.2050sec 
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Figure 4.5 Step Response of Closed Loop System With PD Control 

4.3.1 Implementing ZV Shaper 

First ;  a ZV shaper will be applied to position the linear robot. The parameters of a 

ZV shaper are given by equations (3.17) and (3..18) which are repeated below: 
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Figure 4.6 ZV Shaper After Convolution 

Figure (4.6) shows ZV shaper output. This will be the input to the plant instead 

of one step amplitude of 25 mm. From this figure the switch time is 0.1025 sec. After 

switch time output of shaper will jump from 	2.5 mm to 25 mm. 

4.3.2 Implementing ZVD Shaper 

For ZVD shaper coefficients are: 



Figure 4.7 ZVD Shaper After Convolution 

Figure (4.7) shows ZVD shaper output. This will be the input to the plant 

instead of one step amplitude of 25 mm. ZVD shaper has 2 switch times. First is at 

0.1025 sec and second at 0.2050 sec. 

4.3.3 Implementing EI Shaper 

For V = 0.05 ζ  = 0.1315 and Td  = 0.2050 sec 

A 1  = 0.3868 

A2 = 0.4406 

A3 = 0.1726 

= 0 sec 

T2  = 0.1039 sec 

T3 = 0.2050 sec 
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Figure (4.8) shows El shaper output. This will be the input to the plant instead 

of one step amplitude of 25 win. Like ZVI) shaper, El shaper has 2 switch times. 

First is at 0.1039 sec and the second at 0.2050 sec. 

Figure 4.8 El Shaper After Convolution 



CHAPTER 5 

RESULTS 

In this chapter, the results of various input shaping designs will be given. This is 

followed by suggestions for improvement of system performance. 

5.1 Results of The ZV Shaper 

Figures (5.1), (5.2), (5.3), (5.4) and (5.5) show the results of ZV shaper under 5 

consecutive trials. From these results, it is observed that the vibration of the linear 

module has been significantly attenuated. In fact, the amount of overshoot beyond 

the 25 mm reference level has been reduced from 80 % to about 2 % . The settling 

times, for all cases, are within 0.25 sec. Although all the trials are satisfactory, the 

lack of robustness of the ZV design is evident in the significant difference of transient 

responses. 

Figure 5.1 Result of ZV Shaper: Experiment #1 
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Figure 5.2 Result of ZV Shaper: Experiment #2 
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Figure 5.3 Result of ZV Shaper: Experiment #3 



Figure 5.4 Result of ZV Shaper: Experiment #4 
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Figure 5.5 Result of ZV Shaper: Experiment #5 
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5.2 Results of ZVD Shaper 

Figures (5.6), (5.7), (5.8), (5.9) and (5.10) show the results of ZVD shaper under 5 

consecutive trials. Same as the ZV shaper, it is observed that the vibration of the 

linear module has been significantly attenuated. The amount of overshoot beyond 

the 25 mm reference level has been reduced from SO % to about 2 	. The settling 

time for ZVD shaper is longer than ZV shaper since there are 2 switching times. 

But most importantly ZVD is more robust than ZV shaper. Transient responses are 

more consistent than ZV case. 

Figure 5.6 Result of ZVD Shaper: Experiment #1 



Figure 5.7 Result of ZVD Shaper: Experiment #2 
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Figure 5.8 Result of ZVD Shaper: Experiment #3 



Figure 5.9 Result of ZVD Shaper: Experiment #4 
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Figure 5.10 Result of ZVD Shaper: Experiment #5 
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5.3 Results of EL Shaper for V=0.05 

Figures (5.11), (5.12), (5.13), (5.14) and (5.15) show the results of El shaper under 

5 consecutive trials. El shaper also significantly reduces the system vibration after 

impulse sequence ends. The amount of overshoot beyond the 25 mm reference level 

has been reduced from 80 % to about 2 % . The settling time for El, as in ZVI) 

shaper is longer than ZV shaper since there are 2 switching times. The transient 

response is more consistent than ZV shaper. V is a design parameter and must be 

tuned for the best system response. 

Figure 5.11 Result of El Shaper For V=0.05: Experiment #1 



Figure 5.12 Result of El Shaper For V=0.05: Experiment #2 

Figure 5.13 Result of El Shaper For V=0.05: Experiment #3 
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Figure 5.14 Result of El Shaper For V=0.05: Experiment #4 

Figure 5.15 Result of El Shaper For V=0.05: Experiment #5 
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5.4 Comparison Between ZV, ZVD, and EI 

In this section comparison between different algorithms will be given  ( ∆T = 0.1025 sec ). 

Table 5.1 Position error [nun) in different times for ZV 

ZV 2∆T 3∆T 4∆T 

#1  +0.2600 +0.21125 -1-0.2425 

#2 +0.7350 -0.5400 -0.5375 

#3 +0.3370 +0.3300 -0.3300 

#4 +0.2250 +0.2200 -0.2200 

#5 +0.5875 -0.4850 -0.4825 
RMS 0.21.11 0.1721 0.1718 

% Vibration 0.8457 0.6805 0.6872 

Table 5.2 Position error [min] in different times for ZVD 

ZVD 2∆T 3AT 4∆T 

#1 +0.4675 +0.0050 	+0.0050 

#2 +0.51.50 -0.1200 -0.1200 

#3 +0.0000 -0.1400 -0.1375 

#4 +0.1775 -0.2625 -0.2625 

#5 +0.5525 -0.3875 -0.387.5 

RMS 0.1812 0.1006 0.1005 

4 Vibration 0.7217 0.4025 0.4019 

From these plots, the following conclusions can be drawn: 

• ZVD & DI (V=0.05) are more "robust" than ZV, as evident from the 

consistency of their transient responses. 

* As expected % Vibration for El is less than % 5. 

• ZV performs faster because of shorter switching and significant system 

damping. 

• In terms of the level of residual vibration. it is noted that ZVD has significantl y 

lower level of steady state error, in agreement with the theoretical predictions. 
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Table 5.3 Position error (mm) in different times for El (V=0.05) 

El 2! 	1' 3∆T 4∆T 

#1  +1.9725 -1.5625 -0.4725 

#2 +2.6675 -1.0750 -0.4350 

#3 +1.9300 -0.5125 -0.4425 

#4  +1.1900 +0.0300 -0.1150 

#5 +2.2675 -0.7175 -0.5525 

RMS 0.9228 0.4183 0.1933 

% Vibration 3.6912 
1.6734 

 0.7734 

5.5 Suggestions for Improvement 

The installation of the linear robots is an evolutionary sequence of effort. The EXC 

controller is the easiest to install yet the least flexible. For the VW, controller, 

the lack of compiler is an important disadvantage for system development. During 

this work, it is observed that every additional line added to V+ program severely 

decreased the execution time of the application software. As a result V+ may be 

sufficient for end-user applications but for advanced control, the VME controller 

must be augmented by a compiler for faster program execution times. This was the 

main reason to acid TMS320C31 to system, To further improve the system response, 

a number of changes can he incorporated. 

Software Improvements 

• deadbeat control for fast, feedback control, 

• accelerator feedback loop to improve transient, 

• an integrator loop to overcome the friction in the system, 

• for faster program execution VME system has to have a compiler, 
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Hardware Improvements 

• a decoder to read the modules' position directly, thereby increasing the 

bandwidth of the system, 

• better shielding to reduce noise level. 



CHAPTER 6 

CONCLUSIONS 

In this work vibration control of robotic modules using input shaping algorithm is 

studied. Input shaping is an actively used algorithm for vibration control of flexible 

structures. The effectiveness of input shaping has been proved on may different 

systems. There are various input shaper design methods of which ZV, ZVD, and 

El techniques are applied in this work. Robustness to the modeling errors lead 

different types of input shapers. To increase robustness to these modeling errors 

additional constraints are added to ZV constraints. Otherwise if natural frequencies' 

and damping ratios of the closed loop system were known ZV shaper would be the 

optimum case. Input shaping is a feedforward method. Addition of the feed forward 

methods can dramatically reduce the complexity of feedback methods. 

In this thesis we have installed the application hardware arid implemented 

several input shaper methods and made comparison between them. We have seen 

that input shaping is an extremely easy and effective method. We have reduced 

overshoot from 80 % to 2 %. For all of the methods the settling time reduced from 

1 sec to 0.25 sec. ZV shaper gave the best performance because of shorter switching 

time and significant system damping. ZVD and El shaper were more robust since 

they had more consistent transient responses. 

In this work significant effort spent on hardware application. First we have 

started with EXC controller. 	Due to its lack of flexibility and programming 

capabilities we have switched to VME controller. VME controller was much more 

flexible and powerful than EXC controller but program execution times were not 

fast enough. Its lack of compiler was the major disadvantage. For example in a 

simple program which basically gets data from ADC multiplies data by 2 and sends 

it to output. the execution time was 0.174 ins. Every "aio.in" command which gets 

data from ADC adds 0.1 ms to program execution time. For these reasons we have 
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decided to use Dalanco Spry's DSP board. First. VW, controller's proportional 

and integral gains zeroed to disable VME to control the linear module. A program 

residing in VME sent position via its serial port to PC with 250 Hz sampling rate. 

To increase the time resolution in DSP we have used 10 KHz  sampling rate. 

As a result we have shown that input shaping improves settling time and 

positioning accuracy by reducing residual vibrations in computer controlled machines. 



APPENDIX A 

SOFTWARE 

In this chapter software part of thesis will be explained. In this work following 

programs have been developed. 

• Program in VME part. 

• Program►  in C31 part. 

1. PID 

2. ZV 

3. ZVD 

4. El 

• 	Program in host part. 

A.1 VME Program 

'The program in VME is written in V+ which is a specific language used for Adept 

VME modules. This program►  basically gets the encoder position by using Advanced 

Servo Library [15] function "sl.read". As it'll be seen in program in stead of directly 

sending position value, conversion is done in order to reduce the packet size and 

to increase overall sampling rate. By doing so packet size became from 9 bytes (if 

position is 6 digits) to 4 bytes with suppressing (it and LE 

In early stages of thesis we've seen that Adept uses following packet for serial 

line communication. Let's suppose we want to send 123456 encoder counts position►  

value to PC: what we see at PC is: 

32 49 50 51 52 53 54 I3 I0 
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by using "S" option in write command we suppressed CR. and LF (1:3 10). Since 

position is in [0400000] we needed actually 3 bytes to represent encoder value. Poi. 

this reason before we send position value some conversions wade. And resulting 

3 bytes value are sent over serial line. With this program sampling rate is 250 

samples/sec in 19200bps. 

;Program in VME that send position value to PC 

.PROGRAM serial() 

AUTO $password[15] 

AUTO slun 

AUTO encpos 

$password[1] = "adept" 

CALL sl.init($password[], status []) 

ATTACH (slun, 4) "SERIAL:1" 

IF IOSTAT(slun) < 0 GOTO 100 

TYPE "Serial Communication Program is in infinite loop" 

WHILE TRUE DO 

10 	c = GETC(slun,l) ; program waits 55 (arbitrarily chosen) 

IF c <> 55 GOTO 10 ; from PC for synchronization 

CALL sl.read(1, sl.motpos, encpos, error) ; get position 

$a = $LNGB(encpos) ; convert position value 

a1 = ASC($MID($a,4,1)) ; to 3 bytes 

a2 = ASC($MID(Sa,3,1)) 

a3 = ASC($MID($a,2,1)) 

WRITE (slun) $CHR(a1), $CHR(a2), $CHR(a3), /S ; send position 

IF IOSTAT(slun) < 0 GOTO 100 ; if there is an error go to 100 

END 

CALL sl.asl.cleanup() 

100 IF (IOSTAT(slun) < 0) THEN 

TYPE IOSTAT(slun), " ", $ERROR(IOSTAT(slun)) 

END 

DETACH (slun) 

.END 



A.2 C31 
A.2.1 PID 

Following program is used to apply PI D to plant. 

/* TIMPERO 	SAMPLING FREQUENCY 

	

2500 	 2.5khz 

	

625 	 10 khz 

	

1250 	 5 khz 

	

25000 	 250 hz 

sampling freq=6.25Mhz / Timper0 

*/ 

extern long y,ui,count,newpos,error; 

void main(){ 

long deltat,yref,en,enml,shape,sum_e,u; 

float kp,ki,kd,kpp,kii,kdd,a1,prop,integ,deriv; 

int first; 

asm(" 	.bss 	_y,1"); 

asm(" 	.global 	_y"); 

asm(" 	.bss 	_ui,1"); 

asm(" 	,global 

asm(" 	.bss 	_count,1"); 

asm(" 	.global 	_count"); 

asm(" 	.bss 	_newpos,1"); 

asm(" 	.global 	_newpos"); 

asm(" 	.bss 	_error,1"); 

asm(" 	.global 	_error"); 

asm(" .word 	start"); 

asm(" .space 	3fh"); 

asm("start:"); 

asm(" LDP 	Oh"); 

asm(" LDI 	1800H,ST"); 

asm(" LDI 	0985H,SP"); 

asm(" LDI 	@IOF_SET_XF1,RO"); 

asm(" LDI 	RO,I0F"); 

asm(" LDI 	@CTRL,AR7"); 

asm(" LDI 	1000h,AR1"); 

asm(" LDI 	@POINTER,AR2"); 

asm(" LDI 	@LATCH_AREA,AR3"); 

asm(" LDI 	@LATCH_VAL,R0"); 

asm(" STI 	RO,*+AR3(0)"); 

57 



asm(" LDI 	@SERGLOBA,R0"); 

asm(" STI 	RO,*+AR7(64)"); 

asm(" LDI 	@SERTIMOVAL,R0"); 

asm(" STI 	RO,*+AR7(70)"); 

asm(" LDI 	@SERTIMO,RO"); 

asm(" STI 	RO,*+AR7(68)"); 

asm(" LDI 	@SERPRTXO,R0"); 

asm(" STI 	RO,*+AR7(66)"); 

asm(" LDI 	@SERPRTRO,R0"); 

asm(" STI 	RO,*+AR7(67)"); 

asm(" LDI 	@SERGLOB0,R0"); 

asm(" STI 	RO,*+AR7(64)"); 

asm(" LDI 	18H,R0"); 

asm(" STI 	RO,*+AR7(64H)"); 

asm(" LDI 	0,R0"); 

asm(" STI 	RO,*+AR7(20H)"); 

asm(" LDI 	@TIMPERO,R0"); 

asm(" STI 	RO,*+AR7(28H)"); 

asm(" LDI 	@TIMGBOSTART,R0"); 

asm(" STI 	RO,*+AR7(20H)"); 

count=0; 

newpos=10; 

infinite_loop: 

asm("next_sample:"); 

asm(" LDI 	*+AR7(20H),R0"); 

asm(" AND 	800H,R0"); 

asm(" BZ 	next_sample"); 

asm("n1:"); 

asm(" LDI 	*+AR7(20H),R0"); 

asm(" AND 	800H,R0"); 

asm(" BNZ 	n1"); 
asm(" NOP"); 

asm(" NOP"); 

asm(" LDI 	@IOF_SET_XF1,R0"); 

asm(" LDI 	RO,I0F"); 

asm("wait_sample:"); 

asm(" LDI 	*+AR7(64),R2"); 

asm(" AND 	01H,R2"); 

asm(" BZ 	wait_sample"); 

asm(" LDI 	@IOF_RESET_XF1,RO" 

asm(" LDI 	RO,I0F"); 

asm(" LDI 	*+AR7(76),R3"); 

asm(" ASH 	-18,R3"); 

asm(" LDI 	6e20h,R2"); 
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asm(" LDI 	AR2,R1"); 

asm(" CMPI 	R2,R1"); 

asm(" BZ 	skip_mem_write"); 

asm(" SIT 	R3,*AR2++(1)"); 

asm("skip_mem_write:"); 

/*********************************************************************/ 

/***** CONTOL ALGORITHM STARTS FROM HERE *****************************/ 

asm(" LDI 	*+AR1(0),R3"); /*get position from mem. location 1000h */ 

asm(" STI 	R3,@_y"); 

yref=144000; 	 /* move from 154000 to 144000 */ 

kp=40.0; 

ki=0.0; 

kd=100.0; 

enml=en; 

en=y-yref; 

if(first==0) { 

enml=en; 

first=1; 

asm(" LDI 	*+AR1(1),R3"); 

asm(" STI 	R3,@_newpos"); 

if(newpos==10) { 

sum_e=sum_e+en; 

prop=kp*en; 

integ=ki*sum_e; 

deriv=kd*(en-enm1); 

asm(" LDI 	0,R3"); 

asm(" STI 	R3,*+AR1(1)"); 

} 

u=prop+integ+deriv; 

u=u*0.0051175; 	/* 1/400000*2047=0.0051175 */ 

ui=(long)u; 

if(ui>2045) ui=2045; 

if(ui<-2046) ui=-2046; 

asm("try_send:"); 

asm(" LDI 	*+AR7(64),R2"); 

asm(" AND 	02H,R2"); 

asm(" BZ 	try_send"); 

asm(" LDI 	@_ui,R3"); 

asm(" AND 	OFFFH,R3"); 

asm(" STI 	R3,*+AR7(48H)"); 



goto infinite_loop; 

asm("IOOF_AMASK 	.word OEH"); 
asm("I0F_SET_XF1 .word 62H"); 
asm("IDF_RESET_XF1 .word 22H"); 
asm("CTRL 	.word 808000H"); 

asm("POINTER 	 .word 2000H"); 

asm("TIMGBOCONHI .word 6H"); 

asm("TIMGBOCONLO .word 2H"); 

asm("TIMGBOSTART .word 3C1H"); 

asm("TIMGBOSTOP 	.word 381H"); 

asm("TIMGBORESTART .word 341H"); 

asm("TIMPERO 	 .word 625"); 

asm("SERGLOBA 	.word 150144H"); 

asm("SERGLOBO 	.word 0C150144H"); 

asm("SERPRTX0 	.word 111H"); 

asm("SERPRTRO 	.word 111R"); 

asm("SERTIMO 	 .word 3CFH"); 

asm("SERTIMOVAL 	.word 01h"); 

asm("XVALUES 	 .word 809300H"); 

asm("LATCH_VAL 	.word OH"); 

asm("LATCH_AREA 	.word OFFFFFFH"); 

} 
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A.2.2 ZV 

In order to apply ZV just small part of the PID.C program is changed, therefore only 

difference will be given: 

/*********************************************************************/ 
/***** CONTOL ALGORITHM STARTS FROM HERE *****************************/ 

asm(" LDI 	*+AR1(0),R3"); /*get position from mem. location 1000h */ 

asm(" STI 	R3,@_y"); 

yref=144000; 	 /* move from 154000 to 144000 */ 

shape=-10000; 

kp=40; 

ki=0; 

kd=100; 

deltat=1025; 

a1=0.6027; 

kpp=kp; 

kii=ki; 

kdd=kd; 

if(count<deltat) shape=shape*al; 

if(count<20000) { 

kpp=40; 

kii=0; 

kdd=100; 

sum_e=0; 

count++; 

} 

yref=154000+shape; 

enm1=en; 

en=y-yref; 

probe=y; 

asm(" LDI 	_probe,R3"); 

asm(" LDI 	6e20h,R2"); 

asm(" LDI 	AR2,R1"); 

asm(" CMPI 	R2,R1"); 

asm(" BZ 	skip_mem_write"); 

asm(" STI 	R3,*AR2++(1)"); 

asm("skip_mem_write:"); 

if(first==0) { 

enm1=en; 
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first=1; 

} 

asm(" LDI 	*+AR1(1),R3"); 

asm(" STI 	R3,@_newpos"); 

if(newpos==10) { 

sum_e=sum_e+en; 

prop=kpp*en; 

integ=kii*sum_e; 

deriv=kdd*(en-enml); 

asm(" LDI 	0,R3"); 

asm(" STI 	R3,*+AR1(1)"); 

u=prop+integ+deriv; 

u=u*0.0051175; 	/* 1/400000*2047=0.0051175 */ 

ui=(long)u; 

if(ui>2045) ui=2045; 

if(ui<-2046) u1=-2046; 

asm("try_send:"); 

asm(" LDI 	*+AR7(64),R2"); 

asm(" AND 	02H,R2"); 

asm(" BZ 	try_send"); 

asm(" LDI 	@_ui,R3"); 

asm(" AND 	OFFFH,R3"); 

asm(" STI 	R3,*+AR7(48H)"); 

goto infinite_loop; 
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A.2.3 ZVD 

/*********************************************************************/ 

/***** CONTOL ALGORITHM STARTS FROM HERE *****************************/ 

asm(" LDI 	*+AR1(0),R3"); /*get position from mem. location 1000h */ 

asm(" STI 	R3,@_y"); 

yref=144000; 	 /* move from 154000 to 144000 */ 

shape=-10000; 

kp=40; 

ki=0; 

kd=100; 

deltat=1025; 

a1=0.3633; 

a2=0.4789; 

kpp=kp; 

kii=ki; 

kdd=kd; 

if(count<deltat) shape=shape*a1; 

if((count>=deltat) && (connt<2*deltat))shape=shape*(al+a2); 

if(count<200000) 

kpp=40; 

kii=0; 

kdd=100; 

sum_e=0; 

count++; 

} 

yref=154000+shape; 

enml=en; 

en=y-yref; 

error=y; 

asm(" LDI 	@_error,R3"); 

asm(" LDI 	6e20h,R2"); 

asm(" LDI 	AR2,R1"); 

asm(" CMPI 	R2,R1"); 

asm(" BZ 	skip_mem_write"); 

asm(" STI 	R3,*AR2++(1)"); 

asm("skip_mem_write:"); 

if(first==0) { 

enml=en; 

first=1; 



} 

asm(" LDI 	*+AR1(1),R3"); 

asm(" STI 	R3,@_newpos"); 

if(newpos==10) { 

sum_e=sum_e+en; 

prop=kpp*en; 

integ=kii*sum_e; 

deriv=kdd*(en-enml); 

asm(" LDI 	0,R3"); 

asm(" STI 	R3,*+AR1(1)"); 

} 

u=prop+integ+deriv; 

u=u*0.0051175; 	/* 1/400000*2047=0.0051175 */ 

ui=(long)u; 

if(ui>2045) ui=2045; 

if(ui<-2046) ui=-2046; 

asm("try_send:"); 

asm(" LDI 	*+AR7(64),R2"); 

asm(" AND 	02H,R2"); 

asm(" BZ 	try_send"); 

asm(" LDI 	@_ui,R3"); 

asm(" AND 	OFFFH,R3"); 

asm(" STI 	R3,*+AR7(48H)"); 

goto infinite_loop; 
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A.2.4 EI 

/*********************************************************************/ 

/***** CONTOL ALGORITHM STARTS FROM HERE *****************************/ 

asm(" LDI 	*A-AR1(0),R3"); /*get position from mem. location 1000h */ 

asm(" STI 	R3,@_y"); 

yref=144000; 	 /* move from 154000 to 144000 */ 

shape=-10000; 

kp=40; 

ki=0; 

kd=100; 

/*for V=0.05*/ 

T2=1039; 

T3=2050; 

A1=0.3868; 

A2=0.4406; 

kpp=kp; 

kii=ki; 

kdd=kd; 

if(count<T2) shape=shape*A1; 

if((count>=T2) && (count<T3))shape=shape*(A1+A2); 

if(count<200000) { 

kpp=40; 

kii=0; 

kdd=100; 

sum_e=0; 

count++; 

} 

yref=154000+shape; 

enml=en; 

en=y-yref; 

error=y; 

asm(" LDI 	@_error,R3"); 

asm(" LDI 	6e20h,R2"); 

asm(" LDI 	AR2,R1"); 

asm(" CMPI 	R2,R1"); 

asm(" BZ 	skip_mem_write"); 

asm(" STI 	R3,*AR2++(1)"); 

asm("skip_mem_write:"); 



if(first==0) { 

enml=en; 

first=1; 

} 

asm(" LDI 	*+AR1(1),R3"); 

asm(" STI 	R3,@_newpos"); 

if(newpos==10) { 

sum_e=sum_e+en; 

prop=kpp*en; 

integ=kii*sum_e; 

deriv=kdd*(en-enm1); 

asm(" LDI 	0,R3"); 

asm(" STI 	R3,*+AR1(1)"); 

} 

u=prop+integ+deriv; 

u=u*0.0051175; 	/* 1/400000*2047=0.0051175 */ 

ui=(long)u; 

if(ui>2045) ui=2045; 

if(ui<-2046) ui=-2046; 

asm("try_send:"); 

asm(" LDI 	*+AR7(64),R2"); 

asm(" AND 	02H,R2"); 

asm(" BZ 	try_send"); 

asm(" LDI 	@_ui,R3"); 

asm(" AND 	OFFFH,R3"); 

asm(" STI 	R3,*+AR7(48H)"); 

goto infinite_loop; 
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A.3 Host Program 

This is the program that runs in PC. It gets position and writes it to certain memory 

position (1000H) in C31. 

#include<stdio.h> 
#include<stdlib.h> 
#include<bios.h> 
#include<dos.h> 
#define COM2 	1 
#define DATA_READY Ox100 

#define SETTINGS ( OxEO 1 Ox00 ( Ox100 1 0x03) 
extern co80320(); 
void main(void){ 

char a,c[10]; 
int run=0,1=0,status,*newdata; 
long perr,s[2]; 
union x{ 
char c[4]; 
long position; 
}y;  

clrscr(); 

a=inportb(0x02f8); 
a=inportb(0x02f8); 
a=inportb(0x02f8); 
a=inportb(0x02f8); 
a=inportb(0x02f8); 
a=inportb(0x02f8); 

xx: outportb(0x2f8,55); 

status = bioscom(3, 0, COM2); 
if (status & DATA_READY){ 

a=inportb(0x02f8); 
y.c[i]=a; 
i++ ;  

} 
status = bioscom(3, 0, COM2); 
if (status & DATA_READY){ 

a=inportb(0x02f8); 
y.c[i]=a; 
i++; 



} 

status = bioscom(3, 0, COM2); 

if (status & DATA_READY){ 

a=inportb(0x02f8); 

y.c[i]=a; 

i++; 

} 

if(i==3){ 

y.c[3]=0; 

i=0; 

if((y.c[2] & Ox80 )!=0){ 

y.c[3]=Oxff; 

} 

if((y.position<O) || (y.position>400000)) goto vv; 

s[0]=y.position; 

s[1]=10; 

sendio(s,2,0x10001,0x300); 

perr=y.position-144000; 

printf("\n%ld",perr); 

flushall(); 

if(run==0){ 

run=1; 

go320(0x300); 

} 

} 

vv: 

if(kbhit()==0) goto xx; 

h1t320(0x300); 

} 
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APPENDIX B 

HARDWARE SPECIFICATIONS 

Table B.1 Motor and Encoder Specifications 
Control Input Torque Command 

Rated torque at 3.3v 
Maximum torque=3x rated torque 

Motor 300w AC servo it 
Position feedback 2000 lines/revolution 

Maximum frequency:150 Khz 
Maximum Motor Speed 3600 r.p.m. 

I/O Input 
Drive Enable 
Alarm Clear 
Brake Release 
Output: 
Drive Fault 
Positive Negative Overtravel 

Alarms Main Voltage Error (M V E) 
Overhead(OH) 
Control Power Under Voltage(CUV) 
Motor Over Current(OC) 
Encoder Cable Break(LOS) 

Power Single phase I80-2/10VAC 
Required Power: 
1170VA max. (at max. torque)  

CN1 is the connector between VMP interface panel and amplifier. Table (B.2) 

gives CN1 connector pinouts. Table (B.3) gives signal decriptions of CN1 connector. 
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Table B.2 Connector CN 
I 24V GND In 24VDC Ground 
2 I3R- In Brake Release (-) 

3 BR+ In Brake Release ( -I-) 
Not connected 

5 CD- In Torque Command Ground 

6 CD+ In Torque Command 

7 CD- In Torque Command Ground 

S Alarm Clear In Alarm Clear 

9 DE- In Servo On (-) 

10 DE+ In Servo On (+) 

11 Not connected 
12 +24VDC In 24VDC 

13 Not connected 
14 Not connected  

15 Not connected 
1  Not connected 
17 NO- Out Negative Over Travel (-) 

1S NO+ Out Negative Over Travel (+) 

19 PO- Out Positive Over Travel (-) 

20 PO+ Out Positive Over Travel (-F) 

21 DF- Out Driver Fault (-) 

22 DF+ Out Driver Fault 	+) 
23 S GND  Signal Ground (Line driver ground) 

24 5 GND Signal Ground (Line driver ground)  

25 Not connected 
26 1- Out Encoder Phase I (-) 

27 I+ Out Encoder Phase I (+) 

28 B- Out 1  Encoder Phase B (-) 

29 B-1- Out Encoder Phase B (+) 

:30 A- Out I Encoder Phase A (-) 

31 I A+ Out Encoder Phase A (+) 

32 Not connected  
33 Not connected 

 34 Not connected 
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Table B.3 Signal Description 
DE+ 
DE- 

Drive Enable/Servo On input. 
Enabling DE after I/F output closed makes 
motor servo turn on. 

Alarm 
Clear 

Alarm Clear Input. 
All alarms except LOS can be reset by this 
input. Alarm clear input should be one-shot 
input. 	If the Alarm clear input is always 
on, the alarm function cannot work. 	Before 
clearing alarm output, 	the cause of alarm 
should be removed. (to prevent a fatal error. 

BR+ 
BR- 

Brake release input. 
Enabling 	BR 	releases 	the 	motor 	break. 
24 	VDC 	has 	to 	be 	supplied 	to 	pin 	.12 
(+24 VDC) referenced to pin I (24 V CND) 
for releasing the brake. 

DF+ 
DF- 

Drive Fault/Alarm Output. 
In case of alarm condition, DF contact will 
be open state and motor servo will be turned 
off. 

NO+ 
NO- 
PO+ 
PO- 

Over travel sensor output. 
The slider moves into over travel position 
and the NO (PO) contact will be in open 
state. 	If the modules are not connected to 
the amplifier or sensor cables are broken. NO 
(PO) contacts will he open state. 

CD- 
CD- 

Torque command input. 
Analog voltage input is proportional to the 
motor output torque. 
Command input voltage: ±10 VDC. 
Input impedance: 20 KΩ 

A+ 
A- 
3+ 

Encoder outputs. 
2000 counts/rev. 
1+, I- 
I count/rev. 
Maximum frequency is 150 KHz for Phase 
A&B. 
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Table B.4 Analog Outputs 
Number of channels 
Accuracy 
Resolution 12 bits 
Overall error ± 1/2 LSB 
Differential Linearity ± LSB 
Voltage output characteristics 
Ranges 0-5 V, 0-10 V, ± 5 V, 

±

10 V 
Output Current, maximum 5 mA @ +10 V 
Settling Time 7 µs 
Offset Temperature Coefficient 75 ppm/°C 
Gain Temperature Coefficient 100 ppm/°C 
Current Loop Output Characteristics 
Range 4-20 ink Non-isolated 
Compliance voltage 10 V @ 	20 in A 
Loop supply voltage +15 V to +30 V 
Settling time 50 µs 
Load resistancerange 50-500W 
Offset temperature coefficient 75 ppm/°C 
Gain temperature coefficient 100 ppm/°C 
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Table B.5 Analog Inputs 
Number of Channels 
In single-ended mode 32 
[n differential mode 16 

A/D input full scale voltage ranges (gain=1) 
Unipolar 0-5 V, 0-10 V 
Bipolar ±2.5 V, 

±

5 V, ±10V 
Programmable Gain 
Range 1 1, 2, 5, or 	10 
Range 2 1, 2, 5, or 10 or 40 
Range 3 10, 20, 50, or 100 
Maximum input voltage 
Power on 44 V 
Power off 30 V 
Input impedance 
With 22 MW resistor 17 MW min. 
Without 22 MW resistor 100 MW min. 
Bias Current ±100 nA 
Input Capacitance 225 pF max. 
Operating Common Mode Voltage 14V 
Accuracy 
Resolution 12 bits 
Overall errror ± 1/2 LSB 
Differential linearity ± 1/2 LSB 
Common Mode Rejection Ratio 60 dB, ruin. 
Speed 
Conversion time 
Single mode 25 µs 
All other modes 50 µs 
Throughput 

Single mode 40 KHz 

All other modes 20 kHz 
External trigger to sample 25 µs 
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