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ABSTRACT 

DEVELOPMENT OF A MATHEMATICAL MODEL 
OF GAIT DYNAMICS 

by 
Tae Ho Choi 

There exists hypothesis that gait selection is strongly correlated with mechanical energy 

efficiency in normal subjects. The hypothesis is experimentally proven, and intuitively 

taken for granted. However, it is not mathematically proven that the minimum energy 

consumption hypothesis is the underlying principle for the normal human gait. To prove 

the hypothesis we have developed a mathematical model of human walking, in which it is 

possible to predict an optimal gait at any given speed of walking based on the principle of 

minimum mechanical energy consumption. 

This improved model, which includes the double-support phase of walking as well 

as the swing phase, is an extension to the previous model studied in the author's master 

thesis which included only the swing phase; with this improved model it is possible to 

calculate the mechanical energy loss during an entire walking cycle. This permits the 

unique determination of an optimal gait for any given speed of walking which minimizes 

the mechanical energy loss per unit length of motion. The hypothesis that minimum 

energy is consumed in normal gait is tested by comparing the predicted gait with that 

actually observed experimentally. Reasonable results are obtained and it is confirmed that 

minimum energy consumption is the underlying principle determining the characteristics of 

human gait. Nevertheless, there is some discrepancy between the theoretical and empirical 

data; to reduce the discrepancy it will be necessary to develop a more detailed model 

which permits, for example, the stance leg to bend, and the foot of the swing leg to move 

as an independent segment. To facilitate this task a generalized model of walking is 

developed and recommended for future research. 
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CHAPTER 1 

INTRODUCTION 

1.1 Objective 

Human walking may appear simple, but it is controlled by complicated coordination 

between various elements, and there are numerous theories and mathematical models in 

the literature for analysis of human body dynamics using rigid-body idealization. The 

theories and models say that the swing leg acts as a free pendulum and muscular control is 

not necessary during the swing phase, that there are many other forces and moments 

acting on the swing leg in addition to gravity(Fenn 1930; Beckett and Chang 1968) and 

that it seems reasonable to expect the movement of the legs would be made in such a way 

as to reduce the muscular effort to a minimum consistent with physical conditions imposed 

on the walker (e.g. constant walking speed, step length or step frequency) (Inman 1966). 

Experimentally it is found that the energy consumption per unit walking distance is a 

minimum at a particular chosen step frequency(Elftman 1966; Ralston 1974). This result 

led Inman(1966) to describe locomotion as the translation of the mass center through 

space along a path requiring the least expenditure of energy. Beckett and Chang(1968) 

solved for joint moment effects in the swing leg that produces a prescribed swing phase 

gait in such a way as to give a minimum expenditure of energy. Mochon and 

McMahon(1980) have developed a mathematical model to predict the form of swing 

period vs. walking speed relationship. Lacker et al.(1993) have extended the coupled 

pendulum model of Mochon and McMahon(1980) to include joint viscosity, and improved 

the model resulting in output characteristics that better match the experimental data. 

Nevertheless, neither the Mochon and McMahon's model nor Lacker et al.'s extension to 

it, include the double-support phase. Therefore, an improved model incorporating the 

double-support phase as well as the swing phase is to be proposed in this dissertation. 
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1.2 Outline 

In this research we have developed a mathematical model of human walking including 

both the swing phase and the double-support phase. In this two dimensional three angle 

model the body is represented by a three-coupled pendulum system, one inverted 

pendulum for the stance leg and two for the thigh and shank of the swing leg, 

respectively.(See Figure 2.1) The foot of the swing leg is rigidly attached to the shank at 

a right angle. It is assumed that the muscles act only to establish an initial velocity of the 

limbs at the beginning of the swing phase and the double-support phase. The swing leg 

and the rest of the body then moves through the remainder of the swing and double-

support phases entirely under the influence of gravity and joint viscosity. 

There are 11 independent structural parameters in the model. They are the lengths 

of the thigh, shank and foot, the masses of thigh, shank and upper body, the mass centers 

of the thigh and shank, and the viscous coefficients of the ankle, hip and knee joints. Total 

body mass and limb lengths are readily measured; masses and mass centers of limbs are 

taken from data published by Dempster(Veau 1977). With these information we can write 

the dynamic equations with the joint viscous coefficients as unknown parameters. The 

Downhill Simplex method(Press 1992) is then used to estimate joint viscous coefficients 

by a least square curve fitting procedure that minimizes the difference between the 

measured and modeled angle vs. time curves. 

To validate this simple and primitive model and to test the minimum-energy-

consumption hypothesis it is necessary to compare theoretical data with experimental data 

in normal subjects. The theoretically derived angle vs. time history is compared with 

tracings measured on a Vicon 370 Motion Analysis System. Then the particular gait 

parameters at a specific walking speed that consumes the minimum energy are identified 

and compared to the measured data. 

We surveyed all the possible solutions for various values of the ratio between swing 

and double-support duration, step length and toe-off angle. These parameters vary with 



walking speed. Thus a gait space is identified to produce a complete ensemble of model 

walks, consistent with a given model individual(set of structural parameters). And at each 

gait a two-point boundary value problem algorithm is used to solve the dynamic equations 

to match the two point configurations, which are the toe-off and heel-strike 

configurations. From the solution we can determine the dynamic variable values at each 

instant during the walking cycle and the net muscle forces required at the beginning of the 

swing and double-support phases. From these dynamic variables the energy loss during 

the walking cycle can be calculated. Mechanical energy losses are due to joint viscosities, 

impacts at heel-strike and full range of joint motion. The total energy loss is the energy 

the body must re-supply for the subsequent walking cycle. In addition the model predicts 

relationships between parameters(swing duration, double-support duration, step length 

and toe-off angle) and walking speed based on the hypothesis that gait selection is strongly 

correlated with mechanical energy efficiency in normal subjects. Finally, an attempt was 

made by comparing the theoretical and experimental data about consumed energy during 

walking to verify that the gait selected by a subject is the most efficient gait energetically. 

In addition a generalized 2-D(two dimensional) walking model is proposed which 

generates the dynamic equation for a system of any number of segments. In this method 

the relation matrix(R), viscous matrix(B) and mass matrix(M) are defined. The relation 

matrix shows the relationship of segment connections, and contains the information about 

the length of every segment and the mass center of every point mass. The viscous matrix 

gives information about the joint viscosity between any two segments, and the mass matrix 

contains information about the mass of each point mass. If these three matrices are 

known, then we can get the dynamic equations of the system without the long and tedious 

derivation using the Lagrangean. With the Lagrangean, if the number of variables are no 

greater than three, the derivation is relatively simple. But, when the number of variables is 

greater than three, the derivation is not simple. It is proposed that the model developed in 

this dissertation be expanded by adding more segments to the foot, thigh and shank, and 
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by incorporating provision for bending the foot and stance leg. The methodology in this 

dissertation can be readily be expanded toward that effect. 

The theoretical results will be compared with experimental results to validate the 

significance of the proposed mathematical model. In addition to adding more segments to 

the present model in the future we will also improve the present two phase model to 

incorporate multiple phases. In multiple phase model, the energy input from impulsive 

muscular force occurs at more than two points in the walking cycle at the beginnings of 

the swing phase and the double-support phase; this model is expected to produce better 

results. 



CHAPTER 2 

PREVIOUS WORK DONE 

As explained above, Mochon's model(1980) includes both the swing leg and the stance 

leg. Beckett's model(1968) includes only the swing leg, negating the possibility of energy 

transfers between legs. In Mochon's model energy is conserved during the swing phase, 

but in Beckett's model energy is not conserved. Beckett's idea is that forces and moments 

that are imposed at the joints of the leg may produce motion that is consistent with the 

geometrical constraints and in such a way as to yield minimum energy expenditure. 

Consequently, Lacker and et al.(1993) have modified Mochon's model with Beckett's 

concept, and extended it using an algorithm which calculates the mechanical energy losses 

during the swing phase and at heel strike due to velocity dependent dissipating forces, i.e. 

viscous, and impact forces on the joints. However, Lacker's(1993) model did not 

consider the double-support phase, and therefore the energy losses that take place over an 

entire walking cycle(the swing phase and the double-support phase) could not be 

calculated. In this thesis work the model has been improved to include the double-support 

phase, and the total amount of mechanical energy that needs to be re-supplied during each 

step of a periodic walking cycle has been calculated. 

2.1 Dempster's Anthropometric Data 

The mathematical model requires anthropometric data for the evaluation of the parameters 

which are used in the equations. In their research Mochon and McMahon(1980) used 

Dempster's data(Veau 1977); Dempster's data are summarized in Appendix A. In our 

research the lengths of limbs are taken from experimental data, but masses and mass 

centers of limbs are estimated from the Dempster's data. 
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Dempster's data was derived from eight male cadavers of "more or less medium" build. 

They ranged in age from 52 to 83 years. Heights ranged from 61.1 to 73.5 inches and 

weights from 109.25 to 159.5 lb(Veau 1977). 

2.2 Three Angle Model for the Swing Phase 

Figure 2.1 Schematic representation of the model during the swing phase; the solid line 
represents the initial configuration, and the regular line the final configuration. 

Mochon and McMahon(1980) model introduced a mathematical model of the swing phase 

of walking. This model is two dimensional, and ballistic in the sense that, after the initial 

velocity of a limb is prescribed, the subsequent swing phase motion solution is obtained by 

assuming that it is entirely the consequence of "free-fall" in a constant gravitational field 

without any energy losses. The body is represented by three links, one for the stance leg 

and two for the thigh and shank of the swing leg. The foot of the swing leg is rigidly 

attached to the distal link by a 90 degree angle, and therefore does not constitute a 

separate link. It is assumed that the muscles act only to establish an initial configuration 

and velocity of the limbs at the beginning of the swing phase. The swing leg and the rest 
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of the body then move throughout the remainder of the swing phase entirely under the 

action of gravity. The toe-off and heel-strike configurations are shown in. Figure 2.1 

where the step-length is represented as SL, and the length of the foot as d. 

The mathematical equation of the model has a nonlinear form as follows: 

Lengths of the leg, thigh and shank, respectively. 

Distances of mass center of the leg, thigh and shank, respectively. 

Masses of the body, leg, thigh and shank, respectively. 

Angles that the leg, thigh and shank make with the vertical, respectively. 

The theoretical time history of angles θ, θ and  are obtained by solving 

equation(2.1) with parameter values given in Tables 2.1, 2.2 and 2.3 when the step-length 

is 0.57916 (m) and the the swing time is 51 x (1/120)sec. The theoretical output is 

compared with experimental data in Figure 2.2. 

Table 2.1 Lengths of limbs 
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Table 2.2 Mass centers of limbs from proximal joints 

Limb Leg(Zl) Thigh(Zt ) Shank(Zs ) 
Mass center(m) 0.30553 0.16252 0.16142 

Table 2.3 Normalized masses of limbs to total body mass(Mt  = 1.0 kg)  
Limb Leg(Z

l

) Thigh(

Zt

) Shank(

Zs

) 
Mass(kg) 	0.157 0.097 0.06 

Figure 2.2 demonstrates that the theoretical curve(solid) of the stance leg matches the 

experimental curve(regular) very well, but the theoretical curve of the shank of the swing 

leg has large discrepancy from the experimental curve. It says that the theoretical shank 

kicks abnormally high in the air during the swing phase. 

Figure 2.2 Comparison of the theoretical and experimental of the swing phase using 
equation(2.1): solid lines represent the theoretical data, and regular lines represent the 
experimental data. 

2.3 Joint Viscous Effects 

Lacker and et al(1993) improved Mochon's model and expanded the mathematical 

equations to include energy loss due to viscous effects at the ankle, knee and hip joints, 

and energy losses from impacts at full-leg extension and heel-strike. When these energy 



losses are taken into account, the qualitative as well as quantitative theoretical predictions 

are in closer agreement with experimental findings of the swing phase. 

The mathematical equations of the model including joint viscous effects are 

represented in equation(2.2). 

where (a, b, c) are the joint viscous coefficients of the ankle, hip and knee joints. By 

adjusting the values of a, b and c the theoretical curves are fitted to the experimental 

curves. The optimum theoretical output of equation(2.2) with a = b = c = 0.012379 

(N•m•sec) is compared with the experimental data in Figure 2.3. The solid lines are the 

theoretical data, and the regular lines the experimental data. Figure 2.3 demonstrates that 

the shank does not kick as high as in Figure 2.2. In this case the theoretical curves match 

the experimental curves better than in the case with no joint viscous effects, and it 

suggests that the model has been improved. 

Figure 2.3 Comparison of the theoretical and experimental data of the swing phase using 

equation(2.2) with the joint viscous coefficients a = b = c = 0.012379 (N.m.sec): solid 
lines represent the theoretical data, and regular lines represent the experimental data. 



(2.3) 

The ultimate source of energy for skeletal work is the oxidation of foodstuffs. 

Consequently, the measurement of the oxygen consumption provides a measure of the 

metabolic energy expenditure of the body. After analyzing experimental data, Passmore 

and Draper(1965) recommended the following relationship between metabolic energy 

expenditure(E), ventilation rate(V) and the percent oxygen concentration of expired air 

where E is in Kcal/min, and V is the volume of air expired in liters per minute (liter/min). 

During walking, a great increase in energy expenditure occurs compared to the basal 

metabolic rate, reflecting the metabolic cost of moving the body against gravity, and of 

accelerating and decelerating the various segments. Ralston(1974) showed that an 

empirical quadratic equation of the form 

Ew = + mv2 	 (2.4) 

adequately predicted the energy cost of walking at speeds up to about 100m/min(3.73 

mile/h). Ew is the metabolic energy expenditure in cal/min/kg, v is walking speed in 

m/min, and b and m are constants. Data from various investigations were used to derive 

the equation, and b = 32 and m = 0.0050 were determined empirically. The curve is 

shown in Figure 2.4. Dividing Ew by the walking speed v yields the curve Em (top curve 

on Figure 2.4) which measures the metabolic energy cost per unit walking distance 

(normalized by body weight) as a function of walking speed. This curve is concave 

upward, and while fairly flat over a broad range of speeds(65-100 m/min), still exhibits an 

energetically optimal walking speed. The equation of the curve is given by 

where Em is expressed as cal/m/kg. Differentiating Em with respect to v and equating to 

zero, yields a minimal value of Em equal to 0.80 cal/m/kg, corresponding to an optimal 
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speed equal to 80 m/min. Ralston also showed that a person's natural walk tends to adopt 

a speed close to this energetically optimal speed. After we develop a mathematical model 

of the whole walking cycle including the swing and double-support phases, these curves 

will be compared with theoretical model predictions. 



CHAPTER 3 

RESEARCH PROCEDURE 

3.1 Assumptions 

Human walking is a complex phenomenon. Therefore, idealizations are needed to develop 

a walking model. There are three elements in our walking model. One is the stance leg, 

and other two are the thigh and shank of the swing leg. The foot of the swing leg is 

rigidly attached to the shank. The upper body is represented as a mass which is 

concentrated at the hip. The entire mass of each limb segment is represented as a point 

mass located at the mass center. The mass of the foot is incorporated in the mass of the 

shank. There are three energy dissipating terms, They are 1) the energy losses from joint 

contact at full knee extension, 2) ground impact losses at heel-strike, and 3) the damping 

effects at the joints that are assumed to be proportional to joint angular velocity. Joint 

viscous coefficients(the constant of proportionalities) are assumed to be independent of 

walking speed. Mechanical energy inputs to the body by muscles occur only at the 

beginning of the swing and double-support phases. Left and right parameters are assumed 

to be the same, which means that the model is assumed to be symmetric. At heel-strike it 

is assumed that the swing leg is not bent so that the swing leg assumes a straight line(full 

knee extension). We can draw the heel-strike configuration if step-length and leg length 

are known. 

3.2 Generalized 2-D Mathematical Walking Model 

The development of the dynamic equations of a walking model usually involve the 

derivation of a complex set of equations. When the number of variables are larger than 

three, the derivation process is tedious and subject to numerous sources of error. In this 

dissertation a general method is introduced which can systematically produce the dynamic 

equations of a simple and error free two dimensional walking model with arbitrary 

12 
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branching pattern. The derivation of this generalized 2-D mathematical walking model is 

shown in Appendix C. This general derivation is designed to be flexible and amenable to 

expansion. 

Equation(3.1) in Appendix C is the relation matrix R which contains the information 

of segment connections and limb lengths, equation(3 .2) is the mass matrix M containing 

the masses of each segment, and equation(3.3) is the matrix B in which the viscous 

coefficients of the joints are represented. With these matrices the dynamical equations of a 

walking model can be obtained systematically. If the dynamical equations are compared 

with the dynamical equations which were obtained from the long process of equation 

derivation using the Lagrangian, we can see that the results are the same. The derivation 

process of equations using the Lagrangian is shown for the three variable case in Appendix 

B. The systematic sequence of obtaining the dynamic equations of a walking model with a 

specific number of segments is explained in Appendix C, and summarized in the six steps 

below. It is assumed that there are S number of segments and P number of point masses 

in the system. 

Step 1:  

The relation matrix R is P x S and is formed as follows(see Appendix C.1). Consider the 

p-th point mass on the i-th segment of the system. Then, the i-th segment is the last 

segment of the path to the p-th point mass from the origin, and all other segments of the 

path are called forefather segments of the i-th segment. 

where each element of R is given by 



ifs = i, 

if the s-th segment is a forefather segment of the i-th segment, 

otherwise. 

In the mass matrix M, mp  is the mass of the p-th point mass(see Appendix C.2). 

The joint viscous coefficients are represented in matrix B(see Appendix C.4.1.2). 

where bt,- is the joint viscous coefficient between the i-th and j-th segments, and b10  is the 

viscous coefficient of the joint with which the i-th segment is connected to the origin of 

the system when the i -th segment does not have forefather segments. The origin is shown 

as (0, 0) in Figure 3.1. 

Step 2:  

Determine the coefficient matrices C, C and C—  for Lagrangian equations(see Appendix 

C.3). 

where θ is the angle each segment makes with the horizontal line.  



Step 3:  

Determine the generalized gravitational forces Fgv(see Appendix CA.1.1). 

where 

Step 4:  

determine the generalized joint viscous forces Fvis(see Appendix CA.1.2). 

where 

Step 5:  

Using equations(3.5), (3.6), (3.7) and (3.9) the dynamic equations of a walking model for 

the swing phase can be obtained as follows(see Appendix C.4.2): 

which can be rewritten as 

Step 6:  

Using the constraint h(θ) = 0 which the dynamical equations satisfy (for example the toe 

of the swing leg should be on the ground during the double-support phase) calculate 

H(see Appendix C.4.3): 



where 

The dynamic equations of a walking model for the double-support phase are: 

where X(t) is the time dependent Lagrange multiplier that enforces the mechanical 

connstraints. With this procedure it becomes straightforward and systematic to write 

dynamic equations of the mathematical walking model. In the following section the 

procedure will be applied to the three-angle walking model. 

3.3 Complete Three Angle Model for the Swing and Double-Support Phases 

Figure 3.1 The three-angle walking model; θ, is the angle of the stance leg, and θ2  and 

θ3  are the angles of the thigh and shank of the swing leg, with respect to the horizontal. 
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3.3.1 Swing Phase 

In the three-angle walking model there are three segments and four point masses. The 

three segments are the stance leg(L1), the thigh and shank of the swing leg(L1, La). The 

four point masss are the mass of the stance leg(m1), the mass of the upper body(mu), and 

the masses of the thigh and shank of the swing leg(mt, ms). The schematic diagram is 

shown in Figure 3.2. With this diagram we will follow the steps outlined in the previous 

section, and derive the dynamic equations of the walking model. 

According to equation(3.1) the relation matrix for the three angle model is: 

where z1  is the mass center of the stance leg, zu  of the upper body, and zt and z of the 

thigh and shank of the swing leg. The mass centers are shown in Figure 3.2. 

According to equation(3.2) the mass matrix is: 

According to equation(3.3) the joint viscous coefficient matrix is obtained as follows: 

where a, b and c are joint viscous coefficients of the ankle, hip and knee, respectively.  

From equation(3.4) the coefficient matrix is: 



which can be written: 

From equations(3.5) and (3.6) the values C*  and C" are obtained: 

From equation(3.8) P is: 

From equation(3.7) generalized gravitational force F, is: 

From equation(3.9) generalized joint viscous force Fvis  is: 



From equation(3.11) the dynamic equations of the walking model for the swing phase: 

Some modifications are necessary before these equations can be compared to the ones in 

Appendix B. The changes are necessitated due to differences in Figure 3.1 and Figure B.1 

in Appendix B. In Figure 3.1 angles(θ1, θ2, θ3) are measured counter-clockwise with 

respect to the positive horizontal line to make the result more general. In Figure B.1 

angles(θ, 	θ) are measured counter-clockwise with respective to the vertical line to make 

the maximum magnitude of the angles less than 90 degrees. Another difference is the 

mass center of the leg. In Figure 3.1 the mass center of the stance leg is measured from 

the origin. In Figure B.1 the mass center of the stance leg is measured from the proximal 

joint to the body. Therefore, the mass center of the leg, z, in Figure 3.1 is equal to L1 -z1  in 

Figure B.1. The differences are summarized in the Table 3.1. With these differences 

accounted for, equations (3.15), (3.16), (3.18) and (3.19) above are identical equations 

(B.5), (B.6), (B.7) and (B.9), respectively. 

Table 3.1 The differences of variables and parameters in Figure 3.1 and Figure B.1. 



3.3.2 Double-Support Phase 

There is a constraint that the toe of the swing leg remains on the ground during the 

double-support phase. As shown in Appendix B this constraint results in one more 

dynamic variable(θ1, 02, θ3) equation for the double-support phase. The constraint of the 

double-support phase - the toe of the swing leg should be on the ground - is obtained as 

equation(B.10) in Appendix B. 

If we consider the constraint h(θ1, θ2, θ3) = 0, the mathematical equation for the double-

support phase can be written as equation(3.13). To obtain equation(3.13) we need to 

know Vh (gradient of h) and H = V • VT h (Hessian matrix of h), where V his defined as 

and 

H can be written as 





When we compare equations(3.21) and (3.22) with equation(B.14) and (B.15), 

respectively, we can see that the derived dynamic equations using the generalized 2D 

walking model are identical with those derived using the Lagrangian. According to 

equation(3.13) the dynamic equations of a walking model for the double-support phase is: 

When we take into account differences in Figure 3.1 and Figure B.1, the equation is the 

same as equation(B.18) in Appendix B. 

3.4 Model Parameters 

In our walking model there are 11 independent structural parameters, 4 independent gait 

parameters and 3 independent dynamic variables. These are described below. A complete 

assignment of these parameters determines a complete walking gait cycle. 



3.4.1 Structural Parameters 

The three length parameters are the lengths of the thigh(Lt), the shank(Ls) and the 

foot(Lf). The length of the leg is LI  =L + L5. The three mass parameters are the masses 

of the thigh(m,), shank(ms) and upper body(m„). The mass of the foot is considered to be 

included in the mass of the shank. The mass of the leg is m1 = m + ms. The mass of the 

upper body is placed at the hip joint point(see Figure 3.1). The two independent mass 

center parameters are the mass centers of the thigh(zt) and the shank(zs). The mass center 

of the leg(z1) is: 

The three viscous parameters are the joint viscous coefficients of the ankle(a), knee(b) and 

hip(c) joints. Therefore, there are eleven independent structural parameters to be given to 

the mathematical equation of the model. 

Of these eleven structural parameters, the lengths can be measured directly on each 

subject. However, the masses and mass centers of the thigh and shank cannot be 

measured. These parameters are obtained from Dempster's data(Veau 1977). The three 

viscous parameters can likewise not be measured directly. These parameters must be 

determined indirectly from experimental data by curve fitting. For a specific subject these 

structural parameters are assumed constant and indepenent of walking speed. 

3.4.2 Independent Gait Parameters 

There are four independent gait parameters. They are the toe-off angle(a), the step 

length(SL), the duration of the swing phase(Ts) and the duration of the double-support 

phase(TD), The walking speed(V) is SL(Ts+TD). With different gait parameters the 

mathematical model produces different gait solutions. Of all the possible gait solutions, 

the gait that consumes minimum energy is considered to be the optimum solution. 
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3.4.3 Independent Dynamic Variables 

There are three independent dynamic variables in our model. Those variables are the 

angles for the stance leg(θ1), and the thigh(θ2) and shank(%) of the swing leg(Figure 3.1). 

Once they are determined, the stick figure of the gait can be generated using length 

parameters. Once the mathematical equations of the model are solved, model output 

yields the numerical values of (θ1, θ2, θ3, θ1', θ2', θ3', θ1", θ2", θ3") as a function of time. 

With these model data, the energy dissipation as a function of time can be calculated. 

3.5 Numerical Method 

3.5.1 Two-Point Boundary Value Problem 

The problem of finding gait trajectories can be mathematically regarded as solving a two-

point boundary value problem. The two boundary points are the initial and final 

configurations of the walking phase(i.e. swing and double-support phases). If the step-

length and the toe-off angle are known, these two boundary configurations can be 

determined. If, in addition to these 2 boundary points, the duration of the walking 

phases(Ts  and T0) are also specified, then enough information is prescribed to, solve the 

equations of motion for the model (i.e. for the complete dynamics of the gait phase). The 

solution is obtained numerically using the shooting method(Press 1992). 

The shooting method solves the two-point boundary problem by iteration. Each 

iteration is a solution of the initial value problem in which the initial configuration and a 

tentative guess for the initial velocity are given (4th order Runge-Kutta method). The 

initial value problem is solved up to the time Ts  for the swing phase, and to the time To for 

the double-support phase. The configuration of the model at this time is compared to the 

specified final configuration. The difference between them (114) is used to find the next 

new guess for the initial velocity using a multidimensional root-finding algorithm. The 

iteration process continues until Ildll is less than a preselected value. The iteration process 

is explained in Appendix D. 



25 

3.5.2 Structural Parameter Identification 

Of the structural parameters, the weights and mass centers of limbs, and the joint viscous 

coefficients can not be measured. The weights and mass centers of limbs are obtained 

from Dempster's data(Appendix A), but there are no data for joint viscous coefficients. 

To estimate these parameters the downhill simplex method(Jacoby 1972) is used. it is a 

multidimensional minimization method, that is, it finds local minima of a function of more 

than one independent variable. The advantage of this method is that it is simple to 

implement because it requires only function evaluations, and not derivatives. 

During the process of the downhill simplex method, theoretical gait trajectories with 

different joint viscous coefficients are compared with the experimental gait trajectory, and 

the joint viscous coefficients which produce the minimum error between the theoretical 

gait data and the experimental gait data are the selected values. These joint viscous 

coefficients are picked as the true joint viscous coefficients. The down-hill simplex 

method is explained in Appendix E. 

3.6 Calculation of Consumed Energy 

During the swing phase, knee-lock, heel-strike and viscous mechanical energy losses are 

considered, and during the double-support phase only the viscous mechanical energy loss 

is considered. It is the sum of these mechanical energy losses that need to be resupplied 

by the muscles(equation(3.24)). 

	

E(loss) = loss(knee-lock) + loss(heel-strike) + 	loss(viscosity). 	(3.24) 

If E(loss) is known, the energy loss per minute during walking is: 

	

Ew = E(loss).60/(Ts+TD). 	 (3.25) 

The energy loss per unit walking distance can also be obtained as 

	

Em = E(loss) / Step-length . 	 (3.26) 

In the gait space, containning all the possible model gait trajectories with different gait 

parameter values, that trajectory which consumes the minimum energy per unit walking 



distance is hypothesized to be the optimum trajectory selected by the central nervous 

system. 

The mechanical energy in this model at any instant is: 

Kinetic energy and potential energy are derived in Appendix C, and C* and pi  are defined 

in equations (3.15) and (3.17), respectively. Each energy loss term is explained below. 

3.6.1 Knee-Lock Energy Loss 

Before the swing leg hits the ground, the thigh and shank of the swing leg become rigid at 

full knee extension. This joint impact at full knee extension consumes mechanical energy. 

It is assumed that knee-lock occurs just before the heel-strike of the swing leg. In 

Appendix F the change of limb velocities after knee-lock is shown. With this result, the 

energy loss due to knee-lock can be calculated: 

where Tbk and Tak are the times before and after knee-lock, respectively. 

3.6.2 Heel-Strike Energy Loss 

Heel-strike marks the end of the swing phase. At heel-strike the velocities of the limbs are 

suddenly changed because of ground impact. In Appendix G the change of limb velocities 

at heel-strike is derived. The heel-strike energy loss is: 

where Tsf  and Tdi are the times at the end of the swing phase, and at the beginning of the 

double-support phase, respectively. 



3.6.3 Energy Loss Due to Viscosity 

Our walking model is assumed to move under gravity without any energy input during 1 

swing and double-support phases. (Energy input can occur in the model only at 

beginning of each phase.) Viscous forces represent the only non-conservative forces 

equations of motion that are satisfied during both of these phases. Therefore, if we km 

the energy at the beginning and at the end of each phase, then the mechanical energy 1( 

from viscous terms is calculated to be the difference between the mechanical energy at 

beginning and the mechanical energy at the end of each phase. If starting times of the 

swing and the double support phases are Ts; and Td, respectively, and the final time of 

swing and double support phases are Tsf  and Tdf, then the viscous energy loss is: 

loss(viscosity) = loss(swing phase) +loss(doubl e - support phase) 

3.6.4 Basic Metabolic Energy Consumption 

Basal Energy Expenditure(BEE) is the energy consumed at rest; this energy differs from 

person to person. The consumed energy in men is higher than in women, is higher in 

younger people than in older people, and is higher in a sitting position than when prone or 

supine. The Basal Energy Expenditure is estimated to be around 25-32 cal/min/kg. In 

equation(2.4) the BEE is assumed as 32 cal/min/kg. In comparing the theoretical results 

with the with the experimental ones, 32 cal/min/kg of BEE are added to the energy losses 

that was calculated theoretically. 



CHAPTER 4 

PREPARATION OF EXPERIMENTAL DATA 

4.1 Raw Data 

The experimental data were taken in the Motion Analysis Laboratory of the Kessler 

Institute for Rehabilitation in West Orange, NJ using the VICON 370 Movement Analysis 

System. The VICON system generates the three dimensional coordinates of markers 

attached to critical points on the walking subject. The data have information about x-, y-

and z- coordinates of markers which are attached to the subject. The markers are attached 

to the Anterior Superior Iliac Spine(ASIS), hip, thigh, knee, tibia, ankle, heel and toe on 

left and right sides and an additional maker is at the sacrum. They are shown in Figure 

4.1. For this model only the hip, knee, ankle, heel and toe markers are recorded and 

utilized. These are represented by open circles in Figure 4.1. 

Figure 4.1 Positions of markers to get raw data 



4.2 Projection on the Sagittal Plane 

The walking model is a two dimensional one. Therefore, it is necessary to convert data 

collected in a three-dimensional coordinate system into a two-dimensional sytem. To this 

end the raw data are projected onto the sagittal plane of the body. If an arbitrary unit 

vector on the sagittal plane is given by u = (xu, yu,0) with x2  + y2  = 1, then the projected 

vector P(xp, 	yp, z

u

) of a vector V(x, y, z) in 3D coordinate space is : 

The process of obtaining the projected vector is explained in Appendix G. 

Figure 4.2 The sagittal plane on which the three dimensional data are projected. 
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The laboratory frame coordinate system is such that x-direction is in floor plane and 

parallel to walkway, y-direction in floor plane and perpendicular to walkway, and z-

direction orthogonal to floor plane and up. The experimental layout was such that the 

sagittal plane was almost parallel with the x-z plane because the walking direction was in 

the x-direction. Therefore, the projected x- and z-coordinates are very similar to the x-

and z-coordinates derived from the three dimensional raw data, and in normal gait there is 

little difference in the two dimensional data whether or not the projection is applied. Here, 

the process of projection is included for the general case when the sagittal plane is not 

parallel with the x-z plane. This may occur with significant gait pathology such as in 

stroke and amputees. 

4.3 Angles of the Thigh and Shank of the Swing Leg 

From the projected two dimensional coordinate data of markers, the angles of the thigh 

and shank of the left and right legs are calculated. For the thigh a line is drawn from the 

hip marker to the knee marker, and another line is drawn from the knee marker to the heel 

marker for the shank as shown in Figure 4.3. Angles are measured with respect to the 

vertical: 

Figure 4.3 The thigh and shank lines of the left and right legs 



The calculated angles as a function of time are shown in Figure 4.4. The time axis is 

measured in times of frame number; the Vicon 370 system collects data at a 120 

frames/sec. For the shank a line can be drawn from the knee to the ankle instead of the 

heel. But, if a line is drawn from the knee to the ankle for the shank, the knee of the swing 

leg appears hyper-extended before heel-strike. In normal walking the swing leg does not 

hyper-extend. Hyper-extending in experimental data occurs due to mispositioning of the 

markers. It is for this reason that the line is drawn from the knee to the heel instead of the 

ankle. Hyper-extended data are shown in Figure 4.5, with the hyper-extension highlighted 

by a dotted circle. 

Frame (1/120 sec) 

Figure 4.4 Measured angles of the thigh and shank of the left and right legs measured 
with respect to the vertical. 



Frame (1/120 sec) 

Figure 4.5 Measured angles of the thigh and shank of the left and right legs measured 
with respect to the vertical: hyper-extended knee area is highlighted with a dotted circle. 

In Figure 4.4 the difference between the thigh and shank curves of the same leg is 

the angle which the knee of a leg bends while walking. Careful examination of Figure 4.4 

reveals that in this subject the right leg bends less than the left leg while walking. The 

right and left leg experimental curves in this subject are not symmetric. Because the 

mathematical model is a symmetrical one, it is necessary to select either the right or left 

leg's measured data to compare to the output from the mathematical model. The model 

dictates that the swing leg becomes a straight line at heel-strike; therefore it is the right leg 

data that is selected because the angle between the right thigh and right shank at heel-

strike is smaller than that of the left leg. 

4.4 Angle of the Stance Leg 

The stance leg of the model is represented by one segment, and the thigh and shank of the 

stance leg form a straight line during the entire walking cycle. Because the right leg is 

selected as the swing leg in section 4.3, it is the left leg that is selected as the stance leg. 



To determine the angle of the stance leg, a line is drawn from the left hip to the left ankle 

as shown in Figure 4.6, and measured with respect to the vertical. 

Figure 4.6 The stance leg 

The angle of the stance leg is measured with respect to the vertical: 

Figure 4.7 The angle of the stance leg when a line is drawn from the hip to the ankle, and 
the angles of the thigh and shank of the swing leg.  
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The calculated angle of the stance leg, and angles of the thigh and shank of the swing leg, 

as calculated from the measured data are shown together in Figure 4.7. The arrows 

indicate the maximum positive and negative values of the angle of the stance leg. 

We can draw a line from the hip to the heel instead of the ankle. For this case the 

result is shown in Figure 4.8.  

Figure 4.8 The angle of the stance leg when a line is drawn from the hip to the heel, and 
the angles of the thigh and shank of the swing leg. 

The curves in Figure 4.7 and Figure 4.8 look similar, but, in Figure 4.7, the 

difference between the maximum positive and negative values of the stance leg's angle is 

smaller than in Figure 4.8. In the mathematical walking model the maximum positive and 

negative values of the stance leg's angle are equal. Therefore, it seems more appropriate 

to represent the stance leg with a straight line between the hip and ankle markers than 

between the hip and heel markers. 
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4.5 Smoothing the Data 

There are small fluctuations in experimental data as can be seen in Figure 4.7. 

Fluctuations are adequately smoothed by averaging 7 consecutive data points. Data points 

are collected at the rate of 120 per second. This smoothing process does not have much 

effect on the theoretical results, but was necessary because of the flexibility of the wooden 

platform over which the subject was required to walk. The averaged data is: 

The smoothed data is shown in Figure 4.9. 

Figure 4.9 Smoothed angle data 

4.6 Experimental Data of a Walking Cycle 

The experimental data is collected over several walking cycles; it is necessary to select of 

one walking cycle - double-support and swing phases. The left leg is selected as the 

stance leg, and the right leg is selected as the swing leg. Therefore, the double-support 

phase begins when the left heel hits the ground(heel-strike), and ends when the right toe 

takes off from the ground(toe-off). When the double-support phase ends, the swing phase 
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begins, and that ends when the right heel hits the ground. From z-coordinates of the heel 

and toe of the left and right legs, the durations of the double-support and swing phases are 

determined. The z-coordinates of the heel and toe of the left and right legs are shown in 

Figure 4.10. The double-support phase is marked as 'D', and the swing phase is marked 

as 'S'. The duration of the double-support phase is 10 frames(10 x 1/120 sec), and the 

duration of the swing phase is 51 frames(51 x 1/120 sec). The line 'a' marks the time 

when the left-heel hits ground, the line 'b' when the right-toe lifts off ground and the line 

'c' when the right-heel hits ground. 

Figure 4.10 The measured z-coordinates of the heel and toe of the left and right legs 

For the subject of our research 10 trials of data were collected at a self-selected 

walking speed in the range of normal walking speeds, with each trial comprising three or 

four steps. However, the durations of the double-support and swing phases are different 

for each step. Therefore, the duration of the double-support phase, and the duration of 

the swing phase were averaged for all steps. The averaged duration of the double-support 

phase is 9.71 frames, and the swing phase 50 frames. Unfortunately, there is no 

experimental data of one step whose double-support duration is 10 frames, and swing 
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duration 50 frames. One step whose double-support duration is 10 frames, and swing 

duration 51 frames is selected as the sample experimental data. Finally, the experimental 

angle data of the double-support and swing phases of the sample walking cycle are 

obtained and shown in Figure 4.11. This data will be used to determine the joint viscous 

coefficients of the mathematical walking model by curve fitting in the next chapter. 

Figure 4.11 Experimental data of a single complete walking cycle: double and swing 
phases 

4.7 Experimental Values of Structural and Gait Parameters 

To compare the theoretical and experimental data, the theoretical data should be obtained 

with the same numerical values for the structural parameters and independent gait 

parameters as experimental data. The experimental data is the source of the limb lengths, 

step-length and toe-off angle that is applied to the mathematical model for ultimate curve 

fitting. Limb lengths are: 



The calculated limb lengths from the experimental data are shown in Table 4.1. As the 

limb lengths of the left and right legs are not equal, the averaged limb lengths are used for 

the mathematical equations. 

Table 4.1 Lengths of limbs for model input 

Left 	 Right 	 Average 

Foot (mm) 	 191.81 	 189.92 	 190.86 

Thigh (mm) 	 359.83 	 390.83 	 375.33 

Shank (mm) 	385.58 	 353.19 	 369.38 

Leg (mm) 	 745.41 	 744.02 	 744.71  

If the x-, y- and z-coordinates of the left leg's heel at the beginning of the double-support 

phase are given as HLeft(xL, yL, 4), and the x-, y- and z-coordinates of the right leg's heel 

at the end of the swing phase are given as HRight(xR, YR, zR), then the step-length is: 

The toe-off angle is the shank's angle at the beginning of swing phase, and it is -53,10  

from the experimental data. The measured independent gait parameters are summarized in 

Table 4.2. These are model inputs for curve fitting procedure to identify viscous 

parameters of the experimental subject. 
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Table 4.2 Independent gait parameters 

Step-length 	 579.16 mm 

Toe-off angle 	 -53.1°  

Swing Duration 	 51 x (1/120) sec 

Double-support duration 	 10 x (1/120) sec 



CHAPTER 5 

THEORETICAL RESULTS FROM THE MATHEMATICAL MODEL 

The theoretical output from the mathematical model will yield the angles(θ1, θ2, θ3), 

velocities(θ 1", θ2", θ3') and accelerations (θ 1 ", θ2", θ3") of the three limbs as a function of 

time. The stick figures of the theoretical walking gait can be drawn with the angles(θ 1 , θ2, 

θ3). The system energy at any instant can be calculated with the angles(θ1, θ2, θ3) and 

velocities(θ1', θ2', θ3') from equation(3.27), and the energy loss per unit walking distance 

can be calculated from equation(3.26). Using equation(3.26) the optimum gait of 

minimum energy consumption for a specific walking speed can be determined. With these 

results the relationships between the basic variables of walking - step length(SL), step 

rate(steps/min), swing duration(Ts), double-support duration(TD), toe-off angle(α ) and 

energy expenditure(E) as a function of walking speed(V) - can also be determined. 

5.1 Joint Viscous Coefficients 

To obtain theoretical results from the dynamic equations of the mathematical walking 

model, it is necessary to first define the values of the structural parameters of the dynamic 

equations. The values of lengths of limbs can be measured directly.(Table 2.1) For the 

values of mass and mass center of limbs, Dempster's data can be used.(Table 2.2 and 2.3) 

However, to deduce the joint viscous coefficients, the Down-hill Simplex method is used 

as explained in section 3.4.2 because these data are not provided in Dempster's tables. 

The outputs of the down-hill simplex method are shown in Table 5.1 and Figure 4.1. 

Figure 5.1 shows the best fit curves between the theoretical and experimental data of the 

angles of the leg, thigh and shank when the joint viscous coefficients are 0.012379 

N*m*sec. 

40 
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Table 5.1 Joint viscous coefficient values 

joint ankle hip knee 

joint viscous coefficient(N.m.sec) 0.012379 0.0 2379 0.012379 

Figure 5.1 The best fit curves comparing the theoretical and experimental data of the 
angles of the leg, thigh and shank angles when the values of the joint viscous coefficients 
are 0.012379 (N.m.sec); solid lines represent the theoretical data, and regular lines 
represent the experimental data. 

In the development of this model each joint was at first assigned its own specific viscous 

coefficients; Figure 5.2 demonstrates the comparison between the measured and 

theoretical curves when the Down-hill Simplex method was used to deduce a specific 

viscous coefficient for each joint. The curves in Figure 5.2 demonstrate a better 

correspondence than those in Figure 5.1. However, when a stick figure of the walking 

gait is developed from the data in Figure 5.2, the toe of the swing leg penetrates the 

ground, and this is considered to be physically unrealizable. 	The reason for this 

phenomenon is because the foot of the swing leg is assumed to be rigidly attached to the 

swing leg by a right angle. The Downhill-Simplex method does not take into 

consideration the position of the swing leg's toe. To keep the toe above the ground, a 
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different set of the joint viscous coefficient values must be assigned. Either, or both of the 

joint viscous coefficients of the knee and ankle can be decreased. The joint viscous 

coefficient of the hip, though its effect is smaller than that of the other two, can also be 

changed. There is no systematic way to find the best set of joint viscous coefficients 

which keep the toe above the ground. Consequently, the joint viscous coefficients for all 

three joints are assigned the same value, and Figure 5.1 is the result of the best fit curve. 

Frame (1/120 sec) 

Figure 5.2 The best fit curves comparing the theoretical and experimental data of the 
angles of the leg, thigh and shank angles when the values of the joint viscous coefficients 
are 1.08607, 0.0 and 0.1 1(N•m•sec) for the ankle, hip and shank, respectively; solid lines 
represent the theoretical data, and regular lines represent the experimental data. 

5.2 Survey in the Gait Space 

Figure 2.3 displays data only of the swing phase, but Figure 5.1 displays data of the entire 

walking cycle - swing and double-support phases. With this entire walking cycle data, it is 

now possible to survey the gait space to find the optimum gait that consumes minimum 

mechanical energy per unit walking distance. In this walking model there are 4 

independent gait parameters - step length(SL), swing duration(Ts), double-support 



duration(TD), and toe-off angle(a). The effect these parameters have on the gait dynamics 

and energetics are examined below. 

To determine the optimum gait of minimum mechanical energy consumption per unit 

walking distance it is necessary to calculate the energy losses of every gait for all different 

values of the gait parameters. This task can be accomplished with a suitable software 

program. However, to simplify the problem, the range of parameters are limited to those 

values that are physically realizable. For example, the toe-off angle is limited to the range: 

The minimum and maximum toe-off angles are calculated in Appendix H. The walking 

speed is also limited to 40 (m/min) < V < 120 (m/min) by the theoretical model. Gait 

speeds outside this range cannot be considered as normal gaits as explained in section 5.5. 

The step-length(SL), the swing duration(Ts) and the double-support duration(TL) are then 

constrained by: 

The number 60 sec/min is necessary because SL  is expressed in units of 'm', Ts and TD in 

units of 'sec', and V is in m/min. For a specific walking speed, the consumed energy for 

every possible gait is calculated for all different values of gait parameters, and the gait with 

the minimum mechanical energy consumption per unit walking distance is considered as 

the optimum gait for that walking speed. 

5.2.1 Gaits for Different Swing and Double-Support Times 

From equation(5.2), the step-length(SL), the swing duration(Ts) and the double-support 

duration(TD) are not independent for a specific walking speed(V). At a specific walking 

speed, the sum of swing duration and double-support duration is given by Ts  + T1)  = V/SL,. 

This value is constant as long as V and SL  are constant; if Ts  is increased, Ti)  must be 

decreased and vice versa. To determine the effects of Ts  and T0, a step of length 57.92 
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cm, and toe-off angle of 53.1° with the walking speed 68.36 m/min are selected because 

these are close to normal walking step-length, toe-off angle and walking speed of the 

experimental data. The results can, however, be applied to any other step-lengths and toe-

off angles. 

With the step-length and the toe-off angle constant, the gait solutions for different 

values of Ts  and TD  are shown in Figure 5.3 ~ 5.5. In Figure 5.3, where Ts  is too small, 

the toe of the swing leg penetrates into the ground. If Ts  is gradually increased, there is a 

specific value of Ts  when the toe just clears the ground; this value of Ts  is 0.425 sec, and 

the gait for this case is depicted in Figure 5.4. If Ts  is increased further, then the toe 

clears the ground by several millimeters, but the shank kicks high in the air, This is shown 

in Figure 5.5. However, the energy consumption of walking is increased as the swing 

duration increases for a specific walking speed keeping the step-length and the toe-off 

angle constant. This is shown in Table 5.2 and Figure 5.6. Therefore, it can be said that, 

at a specific walking speed, there is only one specific Ts, which satisfies both the 

conditions that the toe does not penetrate into the ground, and that the consumed 

mechanical energy per unit walking distance is a minimum. 

Figure 5.3 The stick figure of the gait with SL  = 57.92 cm, Ts  = 0.408 sec, and TD = 
0.100 sec. The toe penetrates the ground in the dotted ellipse. 



Figure 5.4 The stick figure of the gait with SL  = 57.92 cm, Ts = 0.425 sec, and TD = 
0.083 sec. The toe just clears the ground in the dotted ellipse. 

Figure 5.5 The stick figure of the gait with SL  = 57.92 cm, Ts = 0.442 sec, and To = 
0.067 sec. The toe clears the ground by several millimeters in the dotted ellipse. 

Table 5.2 demonstrates that the consumed energy decreases as the swing duration 

decreases at a constant walking speed. If the swing duration decreases more than a 
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specific value, the toe penetrate into the ground and the gait is considered to be physically 

unrealizable. This is the case when the swing duration is 49 x (1/120) sec and shown as 

shaded area in Table 5.2. 

Table 5.2 Consumed energy per walking cycle when the swing duration is increased at a 
constant walking speed of 68.36 m/min. 

Swing Time 

1/120 sec) 

49 

50 51 52 53 54 55 56 

Double-support 

Time (1/120 sec) 

12 11 10 9 8 7 6 5 

Consumed Energy 

(cal/min/kg) 

26.47 26.93 27.50 28.20 29.05 30.08 31.37 33.03 

Figure 5.6 Consumed energy vs. swing time when the walking speed is 68.36 m/min. 

5.2.2 Gaits for Different Step-Lengths 

To demonstrate the effect of the step-length for a specific walking speed(V), the step- 

length is altered by changing T = Ts  + T1). The step-length is defined as SL  = VI'. For 
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each step-length the consumed energy is calculated under the constraint that the toe does 

not penetrate into the ground. The result is shown in Table 5.3 and Figure 5.7. These 

results demonstrate that there is an optimum step-length of minimum mechanical energy 

consumption per unit walking distance for a specific walking speed. The optimum step-

length satisfies both conditions that the toe does not penetrate into the ground and that the 

consumed energy is minimum. In Table 5.3 that optimum step-length is 0.551 m, and the 

consumed minimum energy is 25.69 cal/m/kg. 

Table 5.3 Consumed energy when the step-length is increased at a constant walking 
speed of 68.36 m/min 

Step-length 

(m) 

0.522 0.532 0.541 0.551 0.560 0.570 0.579 0.589 

Consumed Energy 

(cal/mm/kg) 

27.23 26.33 25.87 25.69 25.73 25.92 26.22 26.62 

Figure 5.7 Consumed energy vs. step-length at a constant walking speed of 68.36 m/min. 
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5.2.3 Gaits for Different Toe-Off Angles 

To observe the effect of the toe-off angle for a specific walking speed, the step length, 

swing duration and double-support duration are kept constant. For different toe-off 

angles consumed energy is calculated when the toe of the swing leg is constrained to 

remain above ground. The algorithm reveals that there is a specific toe-off angle which 

yields the minimum energy consumption. Table 5.4 and Figure 5.8 demonstrate the 

relationship between the consumed energy and different toe-off angles. The optimum toe-

off angle satisfies both conditions that the toe of the swing leg does not penetrate into the 

ground and that the consumed energy is minimum. From Table 5.4 the minimum 

consumed energy is 27.26 cal/min/kg when the toe-off angle is -55°. 

Table 5.4 Consumed energy for different toe-off angles at a constant walking speed of 
68.36 m/min 

toe-off angle 

(degree) 

-52 -53 -54 -55 -56 57 -58 -59 

consumed energy 

(cal/min/kg) 

27.78 27.53 27.35 27.26 27.28 27.43 27.73 28.24 

Figure 5.8 Consumed energy vs. toe-off angle at a constant walking speed of 68.36 
m/min 
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5.3 Optimum Gait for a Specific Walking Speed 

From the above results it can be calculated that, when the walking speed is given, there is 

only one set of independent gait parameters - swing duration(Ts), double-support 

duration(TD), step-length(SL) and toe-off angle(a) - which satisfy both the conditions that 

the toe of the swing leg does not penetrate into the ground and that the consumed energy 

is minimum. These specific values of independent gait parameters determine the optimum 

gait for a specific walking speed. The theoretical data of independent gait parameters and 

consumed energy of the optimum gait for different walking speeds are tabulated in Table 

5.5. The theoretical data shows that the global optimum walking speed is 69 m/min. 

Table 5.5 Basic walking variables of the optimum gait for different walking speeds 

V 

(in/min) 

TS  

(sec) 

1/120 

TD  

(sec) 

1/120 

SL  

(m) 

α  

(degree) 

Ew 

(cal/min 

/kg) 

Em 

(cal/m 

/kg) 

n 

(steps 

/min) 

91.1 

SL/n 

(mlsteps 

/min) 

0.00482 40.0 52 27 0.43889 54 42.38 1.0596 

50.0 50 16 0.45833 55 45.81 0.9163 109.1 0.00420 

60.0 50 13 0.52500 57 52.39 0.8731 114.3 0.00459 

69.0 49 9 0.55583 56 55.81 0.81 124.1 0. 00448 

70.0 49 9 0.56389 56 59.08 0.8440 124.1 0.00454 

80.0 50 7 0.63333 58 70.38 0.8798 126.3 0.00501 

90.0 51 5 0.70000 55 83.53 0.9281 128.6 0.00544 

100.0 51 4 0.76389 59 99.48 0.9948 130.9 0.00584 

110.0 52 3 0.84028 58 118.89 1.0808 130.9 0.00642 

120.0 54 3 0.95000 61 142.70 1.1892 126.3 0.00752 
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Figure 5.9 shows the graph of the consumed energy of the optimum gait for different 

walking speeds. Ew is the consumed energy per minute per kg(cal/min/kg), and Em is the 

consumed energy per unit walking distance per kg(cal/m/kg) 

U 10 20 30 40 50 60 70 80 90 100 110 120 130 140 

Walking Speed (m/min) 

Figure 5.9 Theoretical consumed energy of the optimum gait for different walking speeds 

5.4 Other Variables vs. Walking Speed 

The above results suggest that there is an optimum gait for a given walking speed. Other 

variables such as the step-length, step-rate, step-length/step-rate, swing duration, double-

support duration and toe-off angle at different walking speeds are shown in Figures 5.10-

5.15. 
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0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 

Walking Speed (m/min) 

Figure 5.10 Theoretical predictions of step-length vs. walking speed assuming optimum 
mechanical efficiency 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 

Walking Speed (m/min) 

Figure 5.11 Theoretical predictions of step-rate vs. walking speed assuming optimum 
mechanical efficiency 
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0 	10 20 30 40 50 60 70 80 90 100 110 120 130 140 

Walking Speed (m/min) 

Figure 5.12 Theoretical predictions of step-length / Step-rate vs. walking speed assuming 
optimum mechanical efficiency 

Walking Speed (m/min) 

Figure 5.13 Theoretical predictions of swing duration vs. walking speed assuming 
optimum mechanical efficiency 



0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 

Walking Speed (m/min) 

Figure 5.14 Theoretical predictions of double-support duration vs. walking speed 
assuming optimum mechanical efficiency 

Walking Speed (m/min) 

Figure 5.15 Theoretical predictions of toe-off angle vs. walking speed assuming optimum 
mechanical efficiency 

5.5 Optimum Gaits for Low and High Walking Speeds 

When the gait space is surveyed by changing independent gait parameters to obtain the 

optimum gait for different walking speeds, the solutions for low and high walking speeds 

deviate from that of the normal walking gait. The solution for a low walking speed(30 

m/min) is shown in Figure 5.16; the flat area of the curve of the stance leg shows that the 
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stance leg remains immobile and even moves a little backward in the early stage of the 

swing phase. This region is circled by a dotted line in Figure 5.16. To demonstrate the 

backward movement, the dotted area in Figure 5.16 is expanded in Figure 5.17. The 

optimal solutions for other walking speeds less than 40 m/min have the same 

characteristics. These characteristics cannot be considered "normal" and it is concluded 

that this mathematical model is invalid at low walking speeds. 

Frame (1/120 sec) 

Figure 5.16 Theoretical results for a low walking speed of 30 m/min 



Frame (1/120 sec) 

Figure 5.17 The expanded curve of the leg's angle of the dotted area in Figure 5.16 

The theoretical optimum gait for a high walking speed of 120 m/min is shown in Figure 

5.18. For clarity, the stance leg is displayed in bold only at the beginning of the double-

support phase(line 'A') and at the end of the swing phase(line '13'). The step-length seems 

to be large compared to the leg length. The gait does not appear stable and comfortable 

because of the long step-length. Any theoretical gait above this walking speed may not be 

acceptable as the normal gait. The gait might appear more normal if the step-length 

becomes smaller. Therefore, it is to be expected that the step-length becomes smaller. To 

compensate for the decreased step-length, it becomes necessary to increase the step-rate at 

a high walking speed. To increase the step-rate, the push-off of the stance leg starts 

earlier, before the swing leg contacts the ground, and the heel of the stance leg has left the 

ground even though the toe of the stance leg remains on the ground during the double-

support phase. However, in this model, the heel of the stance leg remains on the ground 

until the heel of the swing leg contacts the ground as can be seen in Figure 5.18. This 

might be the reason why the theoretical output deviates from the normal gait for higher 

walking speeds. 
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CHAPTER 6 

COMPARISON WITH EXPERIMENTAL DATA 

In order to validate the mathematical model the theoretical results will be compared with 

the results obtained from experimental measurements. Figure 5.1 demonstrates that the 

angles of limbs as calculated from the model can match experimental data relatively well. 

However, we are not satisfied with this alone. It is also necessary to compare consumed 

energy and other variables such as step-length, step-rate and step-length/step-rate. 

Experimental and empirical data of these variables are shown in Table 6.1.(Ralston 1974) 

Table 6.1 Averaged values of Ew, Em, SL, n and SL/n for 4 different walking speeds(V) 
from 10 male, and 10 female subjects 

Speed 

(m/min) 

Ew 

(cal/min/Kg) 

Em 

(cal/m /Kg) 

SL 

(m) 

n 

(steps/min) 

Su n 

(m/steps/min) 

Males 

24.4 35.0 1.43 0.41 59.5 0.0069 

48.8 43.9 0.90 0.59 84.4 0.0070 

73.2 58.8 0.80 0.72 102.2 0.0072 

97.6 79.6 0.82 0.84 116.3 0.0070 

Females 

24.4 35.0 1.43 0.41 60.0 0.0068 

48.8 43.9 0.90 0.57 86.7 0.0066 

73.2 58.8 0.80 0.67 109.0 0.0061 

97.6 79.6 0.82 0.77 126.8  0.0064 

In Table 6.1 Ew and Em are obtained from equations (2.4) and (2.5), respectively. Table 

6.1 is the averaged data for 4 different walking speeds from 10 male and 10 female 

subjects. In this section these averaged data will be used for comparison with theoretical 

data from Table 5.5. The experimental and theoretical data of consumed energy, step- 
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length, step-rate and step-length/step-rate vs. walking speed are compared in Figures 6.1, 

6.2, 6.3 and 6.4, respectively. 

The theoretical and experimental data of consumed energy can be said to agree 

relatively well around normal walking speed range, but discrepancy between them 

increases as the walking speed increases. 

Walking Speed (m/min) 

	Ew(Empirical) —Ew(Theoretical) 	Em(Empirical) —Em(Theoretical) 

Figure 6.1 Comparison of consumed energy 

The theoretical and experimental data of the step-length data show that they 

increase almost linearly as the walking speed increases, even though the theoretical data is 

a little concave and the experimental convex. 
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Walking Speed (m/min) 

—a— Theoretical  Male(Experimental)  Female(Experimental) 

Figure 6.2 Step-length vs. walking speed 

The experimental data of the step-rate increases almost linearly as the walking speed 

increases, but the theoretical data shows convex characteristic. 

Walking Speed (m/min) 

• Theoretical D Male(Experimental) A Female(Experimental) 

Figure 6.3 Step-rate vs. walking speed 
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It is generally known that the step-length/step-rate is almost constant as the walking 

speed increases. The experimental data of the step-length/step-rate seems to be constant 

as the walking speed increases. The theoretical data of the step-length/step-rate shows 

concave characteristic as the walking speed increases. It is because the step-rate shows 

convex characteristics as the walking speed increases. 

Figure 6.4 Step-length/Step-rate vs. walking speed 

Table 6.2 Comparison of independent gait parameters between the theoretical global 
optimum and experimentally self-selected gaits 

Theoretical 
Global Optimum Gait 

Experimentally 
Self-Selected gait 

Swing Duration (x 1/120 sec) 49 51 

Double-support Duration (x 1/120 sec) 9 10 

Step-length (m) 0.55583 0.57916 

Toe-off Angle (degree) -56 -53.1 

Walking Speed (m/min) 69.0 68.36 
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Table 6.2 shows comparison of independent gait parameters between the theoretical 

global optimum and experimentally self-selected gaits. The close agreements between 

them are quite interesting and encouraging considering how simple the model is. 



CHAPTER 7 

DISCUSSION 

7.1 Gait for Normal Walking Speed 

The relatively close agreement between theoretical and experimental data at normal 

walking speed(80 m/min) in Figure 6.1 suggests that this walking model is relatively good 

for the prediction of optimum gait. However, there are still discrepancies between 

theoretical and experimental data. When a person walks, the knee of the stance leg 

maintains a slight bend. At heel strike the knee of the swing leg bends a little as well. In 

this model the stance leg is a straight line, and the swing leg becomes a straight line at 

heel-strike. Therefore, its theoretical data cannot be expected to match the experimental 

data precisely. In an attempt to account for these bends, when preparing experimental 

data of the stance leg, a straight line is drawn from the hip to the ankle, and the angle 

which the line makes with the vertical line is calculated. However, it could be better to 

add one more segment to the mathematical model and allow the knee of the stance leg to 

bend; the stance leg should be separated into a thigh segment and a shank segment. This 

would create a four dynamic angle model, and it is expected that the theoretical data 

would more closely match the experimental data than the three angle model used in this 

dissertation. 

7.2 Gait for Fast Walking Speed 

The predicted energy consumption curve(Figure 6.1) shows that the discrepancy between 

the theoretical and experimental data becomes larger as the walking speed increases. In 

this model the heel of the stance leg remains on the ground until the heel of the swing leg 

contacts the ground. In human walking, when the walking speed increases, the heel of the 

stance leg has lifted off the ground, even though the toe of the stance leg remains on the 

ground, before the heel of the swing leg contacts the ground. This means that the push off 

62 



63 

of the stance leg has already begun before the double-support phase has started that is, 

before the swing leg has made contact with the ground. This transient state between the 

swing and the double-support phases becomes larger in duration, and the double-support 

phase becomes shorter, as the walking speed increases. When the walking speed increases 

even further, the double-support phase eventually disappears and the walking gait changes 

into a running gait. Therefore, to expand the predictive utility of the model to higher 

walking speeds, it is necessary to incorporate a third walking phase between the start of 

swing and heel lift of the stance leg. To this end the origin of the stance leg needs to be 

shifted from the heel to the toe so that the segment from heel to the proximal end of the 

toe can function as an independent segment, thus adding a fifth segment and dynamic 

angle to the model. 

7.3 Gait for Slow Walking Speed 

For slow walking speed(< 40m/min) the model was unable to predict an optimal and 

realizable gait. At slow walking speed, at the theoretical optimum gait at which the 

energy consumption is minimum and the toe of the swing leg is constrained from 

penetrating into the ground, the stance leg moves back and forth during walking as 

demonstrated in Figure 5.17. This suggests that the body does not behave like a free 

pendulum at the slow walking speeds because the model is based on the assumption of a 

coupled free pendulum. In the model energy is supplied as an impulse to the body at the 

beginning of each walking phase, but physiologically energy is supplied as continuous 

input during the double-support phase. If the double-support duration becomes long as 

the walking speed decreases, the constrained free pendulum of our model is not a valid 

model for the double-support phase; it is necessary to improve the double-support phase 

by designing a new algorithm with provision for continuous energy input. Even in the 

swing phase, the hamstring and quadriceps muscle group are active and participate in 
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accelerating and decelerating the body. At slow walking speeds muscle activity is 

continuous in the swing phase in order to maintain balance. 

7.4 Joint Viscous Coefficients 

The model described here differs from other models reported in the literature by 

incorporating joint viscous coefficients of the ankle, hip and knee. Initially a specific 

viscous coefficient was defined for each joint. However, there was large discrepancy 

between theoretical and experimental data when each joint was assigned a specific viscous 

coefficient. With the joint viscous coefficients the same values, the theoretical energy 

consumption during walking matches the experimental data relatively well. The results of 

this research effort suggest that the joint viscous coefficients are important parameters in 

the development of a valid mathematical walking model; however, the coefficients cannot 

be measured directly. In this project the numerical values for the coefficients were 

deduced by curve-fitting the theoretical time history of the angles between the model 

components and the measured angles of the lower extremities. It ought to be possible to 

devise a more direct method for measuring the joint viscous coefficients, and therefore 

directly validating model predictions. 

7.5 Experimental Data 

The experimental data revealed that the limb lengths of the left and right legs are not 

exactly equal. This is probably due to actual physical assymetries in the experimental 

subject, imprecise placements of the reflective markers on the subject, or slight movements 

in the position of the markers as the subject walked back and forth within the calibration 

volume of the Vicon 370 Motion Analysis System. It is estimated that the measured 

angles may be in error by as much as 20%; thus the quantitative results derived for the 

joint viscous coefficients are unreliable, their qualitative contribution to the mathematical 

model is demonstrated. 
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7.6 Experimental Energy Consumption Curve 

To validate our mathematical walking model the theoretical data about energy 

consumption during walking were compared with empirical data which obtained from 

oxigen consumption of the human body. The empirical data are not results of direct 

measurement of consumed energy. Therefore, it is assumed that there is tight coupling 

between mechanical and metabolic energy consumption. This would be true for only well 

designed mechanical system in which chemical energy transforms to mechanical work. 



CHAPTER 8 

CONCLUSION 

The mathematical walking model developed here is a highly idealized model of human 

walking with only three segments(stance leg, thigh and shank of the swing leg). It has 

been improved by adding velocity-dependent energy dissipation terms contributed by joint 

viscous coefficients, and an important kinetic energy loss that occurs as a result of the 

heel-strike impact at each step. it is a complete walking cycle model, with both of the 

swing and double-support phases being considered in the model. Thus the consumed 

energy of the entire walking cycle can be calculated from the model. It predicts, at each 

walking speed, an optimum gait and optimizes the parameters such as swing duration, 

double-support duration, step length and toe-off angle that minimize the mechanical 

energy loss per unit walking distance. These optimal walking solutions can be obtained 

using only the body structural parameters such as segment lengths, masses, mass centers 

and joint viscosities. 

The theoretical output data are compared with experimental data to validate the 

model. The results show that the model is a relatively good one, and that it can be used to 

explore human gait. From the results it can be concluded that the hypothesis that gait 

selection is strongly correlated with mechanical energy efficiency in normal subjects is 

theoretically substantiated. 

The three angle model is an adequate one for normal walking speeds. At higher-

than-normal walking speeds( > 120 m/min), the model begins to fail because there is an 

uncertain period between the swing and double-support phases during which the heel of 

the stance leg has been off the ground and propelled the body before the heel of the swing 

leg contacts the ground. The model also fails at lower walking speeds( < 40 m/min). The 

reason might be because the human body does not move as a free pendulum at low 

walking speeds. 
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The gait that consumes the minimum energy occurs when the toe just clears the 

ground. When the toe is lifted above the ground-clearance level, the energy consumption 

increases. 

The generalized 2-D mathematical walking model can be used for the expansion of 

the model to a model with any number of segments. The two-point boundary solution 

method can be extended to handle multiple phases of motion with muscle impulses at each 

inter-phase obtained as model output. 

From the primitive, yet effective, model a more sophisticated model can be 

developed that is suitable for understanding and improving the gait in amputees and other 

gait-impaired individuals. This model should also be helpful in gait trainning and in the 

design of more effective prostheses. 

The following steps are recommended to expand the capability of the model: 

1. Allow the knee of the stance leg to bend in order to achieve a better correspondence 

between the theoretical and experimental data. 

2. Uncouple the foot from the shank so as to allow the foot to flex and extend in order to 

improve the model at higher walking speeds. This will require the addition of an 

additional walking phase in which the foot of the stance leg pushes the body before the 

heel of the swing leg contacts the ground. 

3. There is no proven theory that the body moves as a free pendulum during the double-

support phase. If the double-support duration is relatively short, it might not make any 

difference whether the energy input during the double-support phase is an impulse or a 

distrbuted one. However, if the double-support duration is increased, it will be 

necessary to consider the fact that the body is controlled during the double-support 

phase. The quadriceps muscle group is used for acceleration, even in the swing phase, 

and the hamstring group is used for deceleration. 

4. The upper body segments are assumed as one mass in our model. It is possible to 

extend our model by attaching trunk and arm segments. 
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5. The 2-D walking model can be expanded into a 3-D model. 

6. Joint viscous coefficients are assumed equal in each joint in this research. Specific 

coefficients should be derived for each joint. 



APPENDIX. A 

DEMPSTER'S DATA 

Dempster's data(Veau 1977, 211-212) is shown below in Table A.1 and Table A.2. They 

are ratios of segment weight to body weight, and ratios of center of mass to segment 

length to proximal end. 

Table A.1 Segmental Weight / Body Weight Ratios 

Segment Dempster's Data(%) Adjusted Dempster's 
Data(%) 

Head 7.9 8.1 

Trunk 48.6 49.7 

Upper arm 2.7 2.8 

Forearm 1.6 1.6 

Hand 0.6 0.6 

Total arm 4.9 5.0 

Forearm and hand 2.2 2.2 

Thigh 9.7 9.9 

Calf 4.5 4.6 

Foot 1.4 1.4 

Total leg 15.7 16.1 

Calf and foot 6.0 6.1 

Sum 97.7 100.0 

The sum is calculated as Head + Trunk + 2*(Total arm + Total leg). As the sum is not 

exactly 100%, Dempster's data is slightly adjusted to make the sum 100% 
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Table A.2 Center of Mass / Segment Length Ratios to Proximal End 

Segment Dempster's Data(%) 

Head 43.3 

Arm 43.6 

Forearm 43.0 

Hand 49.4 

Forearm and hand 67.7 

Thigh 43.3 

Calf 43.3 

Foot 42.9 

Total leg 43.3 

Calf and foot 43.7 



APPENDIX B 

MATHEMATICAL WALKING MODEL OF THREE ANGLES 

Figure 8.1 Configuration of the leg, thigh and shank at toe-off 

xl = -(Ll - zl) sin θ  xt  = -(Ll - z-l) cos θ.θ  

yl =   (Ll - zl) cos θ  yt  = -(Ll - zl) sin θ.θ  

xu  = -Ll  sin θ  xu = -Ll cos θ.θ  

yu = Ll cos θ  yu  = -Ll sin θ.θ  

xl = -L l sin θ + z t sin σ  xt  = -L, cos θ.θ +zt  cos φ.φ  

yl  =  Ll  cos θ - zt  cos σ  yt = -L, sin θ.θ+zt sin φ.φ  

xs = -L, sin θ + Lt sin + zs sin σ  xs = -Ll cos θ.θ + Lt cos φ.φ cos σ.σ  ys = - Ll cos θ + Lt cos φ cos σ 

ys = Ll cos  +  Lt sin 0 - zs sin CI  

where 

L1

, L1, Ls 	Lengths of the leg, thigh and shank 

z1, zt, zs 	Distances of the center of mass of the leg, thigh and shank m1
, m1, ms 	Masses of the leg, thigh and shank 

mu , mT 	Masses of the upper body and the total body 

θ, φ, σ 	Angles that the leg, thigh and shank make with the vertical line 

θ, φ, σ 	Velocities of the leg, thigh and shank 

L f 	Length of the foot 

SL 	 Step length 
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Lagrange's equations of motion can be derived as follows: 

Then, Lagrange's equations are obtained as follows: 

The mathematical equations of the three angle model for the swing phase are given as 



or 

We can rewrite as follows: 

B.2 Joint Viscous Effects 

There are three joints in the system. They are ankle, hip and knee joints, of which the joint 

viscous coefficients are a, b and c, respectively. The joint viscous forces can be found 

(Wells 1967, 61), and the dynamic equations are obtained as follows: 

B.3 Double-Support Phase 

There is a constraint that the toe of the swing leg is fixed on the ground during the double-

support phase. This constraint gives one more independent in the dynamic variables(θ, θ, 

c) equation of the mathematical model for the double-support. The constraint can be 

expressed as follows: 

where Lf  is the foot length, SL is the step length, and a is defined as in Figure B. 1 . 

After rearranging equations, we get 



Squaring and adding both equations, we get 

Removing L12  from both sides, we get 

If we consider the constraint h(9, 0, a) = 0, the mathematical equation for the double-

support phase can be derived as follows: 

where 

and X is the Lagrange multiplier(Greenwood 1977, 55). We need one more equation to 

solve the system with a constraint because one more variable X. is introduced into the 

system. To find the necessary equation we differentiate the constraint h(θ, θ, 0) = 0 twice. 



Rearranging terms, we get 

Then, equation(B.13) can be written as follows: 

After comparing equations(B.12) and (B.14), we can find 
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If we put together equations(B.11) and (B.16) in matrix form, and use the property of 

equation(B.17), the mathematical equations for the double-support phase can be obtained 

as follows: 



APPENDIX C 

GENERALIZED 2-D MATHEMATICAL WALKING MODEL 

C.1 Relation Matrix 

Let us assume that a system consists of many connected segments and point masses on 

segments. The relation matrix R shows the relationship of connection between segments 

of the system. Each row of R represents a point mass of the system, and has the 

information about the path from the origin of the system to the point mass. Each column 

represents a segment, and has the information about the usage of the segment for every 

path to point masses. For a system with S segments and P point masses, the relation 

matrix R has the form as 

The path from the origin to the p-th point mass may consist of many segments. Let us 

assume that the p-th point mass is on the i-th segment of the system. Then, the i-th 

segment is the last segment of the path, and all other segments of the path are called as 

forefather segments of the i-th segment. Using the above information each element r ps  of 

R can he determined as follows: 

if = i, 

if the s-th segment is a forefather segment of the i-th segment, (C.1) 

otherwise. 

where 
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z p  : mass center of the p-th particle from the joint with its forefather segment 

Ls  :1 ength of the s-t h segment 

p = 1, 2, 	P (P : total number of particles) 

s = 1, 2, ... S (S : total number of segments). 

After the relation matrix R is determined, x- and y-coordinates of point masses can be 

where 

θs : angle of the s-th segment with respect to the horizontal right direction 

(counterclockwise) . 

An example is given to show the method to obtain a relation matrix. There are four 

segments and five point masses in the example as shown in Figure C.1. Each segment has 

one mass, but the 4-th segment has two masses. The mass centers of two point masses on 

the 4-th segment are expressed as m4,, and m4,2, and center of masses are expressed as 41 

and z4,2. 

For the below diagram, the relation matrix can be obtained according to 

equation(C. I). It is given as follows: 
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Figure C.1 A generalized 2-D system with 6 point masses and 5 segments 

From equation(C.2) and (C.3), x- and y-component of the velocity of point masses can be 

determined as follows: 



C.2 Potential Energy 

The total potential energy of a system can be calculated by adding up potential energies of 

all the point masses of the system.  

where 

C.3 Kinetic Energy 

The total kinetic energy of a system can be calculated by adding up kinetic energies of all 

the point masses of the system. When the mass and the velocity of the p-th point mass are 

mp  and vi,, respectively, the kinetic energy of the point mass is given as ep  = (1/2) mpvp2. If 



Substitute equation(C.4) and (C.5) into equation(C.6). 

where 

Then, the total kinetic energy can be written in a compact form as 

where 



C.4 Lagrangian Equations 

For a system of S indenpendent variables, the Lagrangian equations take the form(Wells 

1967, 60) 

where s = 1, 2, 	S, and generalized forces Fos are given for two dimensional space as 

Apply equation(C.7) to equation(C.8). 

Using the above results, re-write the equation(C.8) as 

Equation(C.10) can be re-written in matrix form as 



where 

C.4.1 Generalized Forces 

It is assumed that there are two generalized forces in the walking system. They are 

gravitational and joint viscous forces. Therefore, generalized forces of the system can be 

written as 

where 

C.4.1.1 Generalized Gravitational Forces According to equation(C.9) the generalized 

gravitational forces can be written as 



where 

Therefore, the generalized gravitational forces can be written in matrix form as 

C.4.1.2 Generalized Joint Viscous Forces A simple diagram of segments is drawn in 

Figure C.2 to explain the method how to get the generalized joint viscous forces(Wells 

1967, 61). 
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Figure C.2 Connection diagram of child, acting and forefather segments 

: joint viscous coefficient between the acting and the forefather segments 

joint viscous coefficient between the acting and the child segments 

angle of the acting segment from the horizontal line 

angle of the forefather segment from the horizontal line 

angle of the child segment from the horizontal line 

When all coordinates of a system are varied simultaneously, the total work SWtotal  can be 

written in the form 

and the bracket [...]i 	which is the coefficient ofsθi , is the generalized joint viscous 

force 	. The angle between the acting and forefather segments can be found as 

(θa —θf. + π ) in Figure C.2. Therefore, the work 5 W done by the joint viscous force 

between the acting and forefather segments is 



There is a negative sign because the joint viscous force is dissipative. Similarly, the work 

W done by the joint viscous force between the acting and child segments can be 

obtaind as 

Adding the equations (C.13) and (C.14), we get, after collecting terms, 

The coefficient of 0a  in equation(C.15) is the generalized joint viscous force 

That is, 

Many segments may be connected to each joint of the acting segment. Let us assume that 

n forefather segments are connected to one joint, and m child segments are connected to 

another joint. Then, the work done by joint viscous forces can be written as 

where 

work done by the joint viscous force between acting and i-th forefather segments 

work done by the joint viscous force between acting and j-th child segments 

After applying equations (C.13) and (C.14) into (C.17), and collecting terms, take the 

coefficient of 0a . Then, an equation similar to equation (C.16) can be obtained as 



where 

joint viscous coefficient between the acting and i-th forefather segments 

joint viscous coefficient between the acting and j-th child segments 

If the acting segment is the s-th segment of the system, of which the total number of 

segments are S, equation (C.18) can be re-written as 

where bsi  is the viscous coefficient between s-th and i-th segments. From equation(C. 18), 

the following property can be found about b31 . 

where bio is the joint viscous coefficient between the i-th segment and the origin, and 

si_=0  when there is no joint viscous coupling between s-th and i-th segments. 

Then the generalized joint viscous forces can be written as 

and viscous coefficient matrix B is defined as 

where bij satisfies equation(C.19). 



C.4.2 Lagrange Equations without Constraints 

If equation (C.12) and equation (C.20) are substituted into equation (C.11), the dynamic 

equations of a non-constrained system can be written as 

Equation (C.21) is used as the mathematical model for the swing phase of a walking cycle. 

C.4.3 Lagrange Equations with Constraints 

If n constraints are expressed in the form 

where 

, the dynamic equations of a constrained system can be written as 

where 

Here, X's are Lagrange multipliers(Greenwood 1977, 55). Because of constraints, n new 

variables(Vs) are introduced into the system. To solve equation (C.23), n more equations 

are necessary. For this purpose differentiate equation(C.22). 



Differentiate equation(C.24) one more time. 

where 

and 

From equation(C.25), 

Rearrange equation(C.23) and put equations (C.23) and (C.26) together. The dynamic 

equations of a constrained system can be written as 



During the double-support phase of a walking cycle, the constraint is that the toe of a foot 

is on the ground. Because of this constraint, equation(C.27) can be used for the double-

support phase. Equation(C.21) is a special case of equation(C.27). Therefore, 

equation(C.27) can be called as the generalized 2-D walking model. 



APPENDIX D 

SHOOTING METHOD 
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Figure 0.1 Flowchart of the shooting method 



APPENDIX E 

DOWN-HILL SIMPLEX METHOD 

The down-hill simplex method which was used to find joint viscous coefficients b = (b1, 

b2, b3) is explained below. Here, b1 , b2  and b3  are viscous coefficients of the ankle, hip and 

knee joints, respectively. The simplex method is based on the comparison of the objective 

function values E(b), which is the difference between the theoretical data and experimental 

data, at the (n+1) vertices of a general simplex and moving this simplex towards the 

optimum point. This movement is achieved by three basic operations: reflecton, expansion 

and contraction. 

Figure E.1 The reflection(b'), expansion(be), and contraction(bc) operations in the 

simplex method 

The operation of moving the point of the simplex where the function is largest through the 

opposite face of the simplex to a lower point is called reflection. In reflection b is 

replaced by br, and br is given by 

The operation of expanding the simplex in the direction along which a further 

improvement of the function value than in reflection may be expected is called expansion. 



The simplex contracts itself in the transverse direction and tries to ooze down the valley. 

This operation is called contraction. In contraction bh  is replaced by bc where bc  is given 

by 

Otherwise, if there is a situation where the simplex is trying to pass through the eye of a 

needle, it contracts itself in all directions, pulling itself in around its lowest(best) point. 

Every b' is replaced by 0.5*(b' + b'). Suggested values are a = 1, y = 2 and ß  = 

0.5(Nelder 1965, 308). 

The iteration steps of the simplex method is shown in Figure E.2, and each step is 

explained as follows: 

1. The initialization step to find the initial simplex which assures that its vertices span the 

full n-dimensional space. The initial simplex is given by as follows: 

where X is a constant which is the guess of the problem's characteristic length scale. 

2. The vertices bh, bs, b' and the centroid of the simplex(b°) are determined, and 

convergence test is performed. If the test is passed, the iteration process stops. 

[bh  : the vertex corresponding to the highest E(b). 

b : the vertex with the second highest value of E(b) 

b' : the vertex with the lowest value of E(b). 

b°  : the centroid of all b' except bh 



and the convergence criterion is 

3. bh is reflected and the value E(b) is computed. 

4. If E(bs) > E(b') > E(b') then bh  is replaced by br, and the process is restarted from step 

I. 

5. If E(b') < E(b'), we expand the new simplex further in the direction br-b°. The 

expansion is successful if E(be) < E(b'), and in this case bh  is replaced by be. In the case 

of failure bh  is replaced by b', and in either case we restart from step 1. 

6. If the reflection (step 2) produces br such that E(bh) > E(br) > E(bs), we replace bh  by 

br  and make the contraction move. The contraction is also applied if E(bi) > E(bh). 

7. If E(bh) > E(b'), then bh  is replaced by bc  and the procedure is restarted from step 1. If 

E(bh) < E(bc), the current simplex is shrunk about the point b' as follows: 

and we restart from step 1.  



Figure E.2 Flowchart of the down-hill simplex method 



Let angular variables after knee-lock as 

APPENDIX F 

ANGULAR VELOCITIES OF LIMBS AFTER KNEE-LOCK 

Angular velocities of the thigh and shank of the swing leg after knee-lock are calculated 

from the conservation law of momentum. The definition of variables are in Appendix B. 

The calculation process is as follows: 

The x-component of momentum of each mass at any instant is given by 

The total x-component of momentum is biven by 

The y-component of momentum of each mass at any instant is given by 

The total y-component of momentum is biven by 

The x-components of momentum before and after knee-lock must be same. 

The y-components of momentum before and after knee-lock must be same. 



Then, from the equations of x and y components of momentum, we get 

Therefore, after knee-lock, angular velocity of the stance leg is given by 

and angular velocities of the thigh and shank of the swing leg are given by 



APPENDIX G 

PROJECTION 

We want to project a vector V = (x, y, z) on a plane of which one unit vector is given by u 

First, we find a normal vector to the plane. the normal 

vector can be written as  •Next, the vector V is projected on the normal 

vector n, and we get a new vector V. The magnitude of V„ is V.n, and the direction of 

V„ is same as the normal vector n. Therefore, V„ can be written as 

If the vector V„ is substracted from the vector V, the projected vector P can be obtained. 
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APPENDIX H 

RANGE OF TOE-OFF ANGLE 

The range of toe-off angle is limited by the configuration of the leg, thigh and shank. The 

configuration at toe-off is shown in the Figure H.1 and H.2. At toe-off the hip should be 

on the circle A. The knee of the stance leg should be on the circle B. The knee of the 

swing leg should be on the circle C. Equations of circles A, B and C are given by 

The minimum toe-off angle is shown in the Figure H.1, and the maximum toe-off angle is 

shown in the figure H.2. 

Figure H.1 The minimum toe-off angle 

The knee of the swing leg is expressed as the point P8. If the point moves to the left, the 

swing leg bends backward. This is not the possible configuration. Therefore, the point 

moves to the left until the swing leg becomes a straight line. At this point the toe-off 

angle becomes minimum. To find the minimum toe-off angle we should know the 



coordinate of point P7(x7, y7). The point P7(x7, y7) is the crossing point between the 

circles A and D. Equation of the circle D is given by 

If we subtract equation(H.4) from equation(H.1), we get 

If we substitute equation(H.5) into equation(H.1), we get 

Therefore, the minimum toe-off angle can be obtained as 

Figure 11.2 The maximum toe-off angle 



The point P6 is the position of the hip at heel-strike. At toe-off, if the hip point P7 is 

behind the point P6, it means that the body moves backward during the double-support 

phase. It is not an normal walking movement. Therefore, the point P7 can not be behind 

the point P6. When the points P6 and P7 coincide, the maximum toe-off angle is 

obtained. To find the maximum toe-off angle from the Figure H.2, we should know the 

The point P8 is the crossing point between the circles C and E. Equation of the circle E is 

given by 

To get the coordinate of point P8, we subract equation(H.8) from equation(H.3). 

After rearranging terms, we get 

If we apply equation(H.9) into equation(H.8), we get 

where 



From equation(H.10), we can get 

From the Figure H.2, we know x8  is the greater number. 

If we substitute equation(H.11) into equation(H.9), we can get y8. 

The angle ZP8P3P5  can be obtained as 

Thw angle ZP8P30  can be obtained as 

Therefore, the maximum toe-off angle can be obtained as 
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