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ABSTRACT 

SYNTHESIS AND CHARACTERIZATION OF LPCVD SIC FILMS USING 
NOVEL PRECURSORS 

by 
Mahalingam Bhaskaran 

A unique low pressure chemical vapor deposition (LPCVD) process has been developed 

to synthesize amorphous and crystalline SiC films using environmentally benign 

chemicals. The interrelationships governing the process variables, compositions and 

select properties of the resulting films were established. Such films can be used to 

produce high quality mask membrane for x-ray lithography. These films can also be used 

in fabricating high power electrical devices, and hetrojunction devices in conjunction 

with silicon. 

Amorphous SiC films were synthesized using a single precursor, ditertiarybutylsilane, 

at temperatures below 850°C. Compositional analysis performed on these deposits 

revealed that, in the deposition temperature range of 625 to 750°C, the composition of the 

deposits changed progressively from slightly silicon rich (55% Si) to slightly carbon rich 

(51%C). Above 750°C, there was a rapid increase in the carbon content from the near 

stoichiometric value to about 75%-C at 850°C. The stoichiometric films exhibited high 

stress values of 700 ± 50 MPa. Attempts to reduce the stress values resulted in films with 

excess carbon content of about 60%-C. From the high frequency C-V characterization, 

the dielectric constant for these films was estimated to be 10.1 ± 0.5. Temperature bias 

stressing studies revealed a trapped charge density of 0.869 X 107 
CM

-2 
within the bulk. 



Crystalline silicon carbide films were grown on silicon substrates using dichlorosilane 

and acetylene as precursors, in the temperature range of 950°C to 1050"C. The carbon 

content in the film was found to be increasing with the deposition temperature, when the 

flow ratio of precursors was one. The carbon composition was also found to be sharply 

dependent on acetylene flow, for constant deposition temperature and pressure. 

Stoichiometric films were achieved for dichlorosilane to acetylene flow ratio of 4:1. X-

ray diffraction studies confirmed the growth of β-SiC with <I I 1> orientation in all the 

cases. The voltage-current relationship for Si-film-metal structure showed a diode 

behavior with an ideality factor of 4.03 in the diffusion current dominating regime. 
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CHAPTER 1 

INTRODUCTION 

The purpose of this thesis was to develop a process for synthesizing amorphous and 

crystalline silicon carbide films on silicon wafers, and to study the properties of such 

films. The motivation for this study stems from the fact that many properties of silicon 

carbide make it an attractive candidate as a mask membrane material in x-ray lithography. 

The following sections briefly describe the lithographic process in general and x-ray 

lithography in particular. The application of silicon carbide in x-ray lithography is 

described. An overview of previous research work done on SiC is also presented. Then 

the motivation for this study and its significance is described. Finally, the chapter 

concludes with a discussion on the fundamental aspects of chemical vapor deposition, a 

process employed to synthesize SiC films. 

1.1 Review of Lithography 

Lithography is a process in Integrated Circuit (IC) fabrication, where a pattern on a 

membrane, representing geometric shapes of electric circuit is reproduced on a 

semiconductor wafer coated with a thin layer of silicon dioxide or silicon nitride and a 

layer of photo-sensitive resist [1]. These geometric shapes define various regions in an 

integrated circuit such as the implantation regions, the contact windows and bonding pad 

areas. In such a process, electromagnetic radiation (typically in UV-visible region) is 

passed through a membrane which is transparent to that radiation. The membrane holds a 

1 
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pattern representing the geometric shapes of the electric circuit. The pattern is made out 

of material which is opaque to that radiation and thereby creating sharp shadow image on 

to the semiconductor wafer containing photoresist layer. The exposure of the photoresist 

layer to the radiation alters the chemical bonding of the resist material. By exploiting this 

property, either the exposed or the unexposed regions can be selectively removed by 

etching, leaving behind the oxide or nitride layer for subsequent processing steps. The 

schematic for a lithographic process is shown in figure 1.1. Since this technique uses 

radiation in the UV-visible region, it is called optical lithography. It is, at present, the 

most widely adapted technique for the pattern transfer. 

As the IC technology advances, the demand for the fabrication of electrical devices 

with dimensions of less than a micron is also on the increase. However, optical 

lithography is not suitable for such fabrication as this method imposes severe restriction 

on the resolution of the pattern that is reproduced. This is due to the large wavelength of 

the optic radiation (2000 to 4000 A), resulting in diffraction effects as the radiation passes 

through the membrane, when pattern line widths of less than a micron are used. Hence 

other methods such as electron beam lithography, ion beam lithography, and x-ray 

lithography are being developed. 

1.1.1 Comparison of Lithographic Techniques 

A comparison of these lithographic techniques is summarized in Table 1.1. Electron 

beam lithography uses a highly focused electron beam to a spot size of about 0.1 pm, and 

with energies of a few thousand electron volts, to register micron and sub-micron 
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geometries [2]. It involves highly automated and precisely controlled operations 

resulting in greater depth of focus than the optical lithography. Also, direct patterning on 

a semiconductor wafer without using a mask is possible using this method. The 

disadvantages of this method are limited pattern resolution due to the so called proximity 

effect, low throughput (approximately five wafers per hour) and high equipment cost. 

Proximity effect refers to the phenomenon of irradiation of neighboring atoms of resist 

layer due to backscattering of incident energetic electrons. The backscattering electrons 

will change the chemical properties of the portions of resist layers which are located at 

several microns away from the incident beam. This imposes a limit on the minimum 

spacing between pattern features. 

In ion beam lithography, as the name implies, energetic ions around 60 keV are used 

instead of electrons. The heavier mass of ions compared to that of electrons produce less 

backscattering effects. Therefore proximity effects are reduced much, resulting in higher 

resolution of the reproduced pattern. This technique is also used in direct-writing mode 

without a mask. But, this technology is still in its initial stage of development. 

X-Ray lithography uses a shadow printing method similar to optical lithography. 

Since the x-ray wavelength involved will be about 5 to 30 A, diffraction effects are 

eliminated, resulting in high resolution. 

Apart from that, x-Ray lithography has other advantages. X-rays can penetrate 

through dust particles of low atomic number [3], hence, this method is immune to 

contaminants present in the system. The low absorption of x-rays in the resist material 

results in uniform exposure and thereby vertical resist profiles can be formed. 
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X - ray radiation 
(λ = 5 - 30 A) 

Au or Cr lines 
representing 
pattern 	900 A) 

SiC mask 
membrane ( 
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-Thin Si02  layer to 
be patterned 

Silicon wafer 

Figure 1.1 A schematic representation of a lithographic process. 

Table 1.1 Comparison of lithographic techniques 

X-ray Optical 	e-beam Ion beam 

Source 	Radiation 	 
(λ =5-30A) 

Radiation 
(X=2000- 
4000A) 

Energetic 
electrons (few 
thousand eV) 

Energetic ions 
(around 60 

keV) 

Resolution 	= 0.3 µm 	j 	1.0 µ m 

=

 0.5 	µm = 100A 

Registration 	0.3 µm 0.5 pm 0.2 µm  

Limiting effects 	- 	 diffraction 
effects 
	proximity 

	effects 

Throughput high high low low 

Cost 	 low low 
	

high high 



Scattering effects within the resist layer are minimized in this method. Finally, x-ray 

lithography has higher throughput than that of electron beam or ion beam lithography. 

These advantages make x-ray lithography an important process technique in the future 

ultra-scale integrated (ULSI) circuit technology, where the critical dimension of circuit 

device is around 0.5 µm. 

One of the key issues in the development of x-ray lithography is the fabrication of the 

mask membrane. The fabrication of x-ray masks requires the use of an x-ray transparent 

membrane material with low atomic number on top of which is patterned a x-ray absorber 

consisting of a material with high atomic number, to provide good pattern definition 

contrast. The membrane material for an x-ray mask technology aimed at providing 0.5-

0.2 micron feature dimensions must meet several requirements [I]: 

• High x-ray transmission (> 80% at 4 to 15 A) 

• Adequate optical transmission for alignment purposes (> 60% at 6330 A) 

• High modulus of elasticity to hold the pattern (> 10" Pa) 

• Low tensile stress (< 200 Mpa) 

• Low defect density (< 0.1 cm-2  ) 

• Long lifetime (> 106  exposures at 100 mW cm-2  flux) 

• Radiation hardness (< 10 nm of distortions at absorbed doses > 103  kJ cm-3  ) 

• Low cost (< $5,000) 
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1.1.2 SiC as a Candidate for X-ray Mask Membrane Material 

Among the numerous choices of materials available for x-ray mask membrane, four have 

emerged as most promising; these are silicon, silicon nitride, boron nitride and silicon 

carbide. Silicon with a relatively high modulus of elasticity (~1.5 x 10" Pa) has proven 

to be radiation-hard under synchrotron-generated x-ray exposure. However, its low 

optical transmission (-20%) at 6330 A limits its usefulness with current optical alignment 

techniques. Silicon nitride has proven to be resistant to high doses of radiation and has 

reasonable x-ray and optical transmission. Its major drawback is in the difficulty of 

adjusting the film stress within the required range [4]. Boron nitride exhibits many 

properties that are required by a mask membrane. It has the highest optical transmission 

(> 65% at 6330 A), and x-ray transmission (>90 % at 4 A) characteristics. It has been 

produced in large areas with very low defect densities (~0.1 cm-2  ). But boron nitride 

cannot withstand long or high x-ray radiation. Prolonged exposure to x-ray radiation 

degrades the film stress and optical properties. 

Silicon carbide exhibits an optical transmission of about 60% at 6330 A. It is hard 

towards very high doses of x-ray radiation [5]. Silicon carbide also has superior 

mechanical stability with a high Young's Modulus (~ 4X10" Pa) [6] and it is known to 

be the hardest material besides diamond. Its mechanical strength along with its 

susceptibility towards x-ray radiation makes it an excellent choice as a mask membrane 

material for x-ray lithography. 
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In view of aforementioned features of silicon carbide, many research works have been 

done on this material for its potential applications. The following sections will paintcut 

some of the research work done in this field and also will highlight the significance of 

this study. 

1.2 Literature Overview 

The development of SiC as a mask membrane material for x-ray lithography and as a 

semiconductor material has been pursued for more than thirty years. Many research 

papers have been published so far on various topics such as SiC single crystal growth on 

silicon wafers and mechanism involved in the process, amorphous SiC growth, thin film 

SiC characterization, x-ray mask membrane fabrication, SiC semiconductor device 

fabrication and its electrical behavior. This chapter will describe some of them to 

enunciate the trend of research on this material. 

1.2.1 SiC as X-ray Mask Membrane Material 

The prospects of x-ray lithography were discussed in detail by H. Luthje [3]. In this 

paper, different types of lithographic methods were mentioned along with their 

advantages and disadvantages. Then, the importance of x-ray lithography was discussed. 

This paper also addressed the key issues of x-ray lithography, such as x-ray sources, 

alignment system, x-ray resist materials and silicon carbide as a potential mask 

membrane material. In a paper published by A. Heuberger [7], the problems encountered 

with x-ray technology for sub-micron lithography were examined and approaches to 
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solutions were discussed. The importance of mask membrane material were stressed and 

the properties of certain mask membrane material such as silicon nitride, silicon carbide 

and silicon were compared. In another study, a a-SiC x-ray mask was fabricated for sub-

micron devices and a pattern displacement test was reported by U. Mackens and others in 

SPIE [8]. The membrane was found to have a high Young's modulus with excellent 

transparency for synchrotron and optical radiation. Patterns with 0.5 micron thickness 

had been generated by e-beam lithography as well as mask copying by using synchrotron 

orbit radiation. Almost similar results were given by H. Luthje, B. Matthiessen, M. 

Harms and A. Bruns [6]. 

1.2.2 Earlier Studies on the Synthesis of Amorphous SiC 

Non hydrogenated SiC film for x-ray mask synthesis was reported by A. Madouri, A.M. 

Gosnet and J. Bourneix [9] and their properties were investigated. In that study, the 

stability of the film was found to be related to the strength of the chemical bond. The 

films were made by a rf triode sputtering system. The a-SiC HIP target was sputtered 

with a rf power of 0.25 W cm-2  under an argon pressure of 3 to 4 mTorr with the substrate 

temperature of 450°C. However, they could be able to achieve a membrane with an area 

of about 9 mm2  for a 0.5 µm thick film. Amorphous SiC was deposited onto fused silica 

by CVD using gas mixtures of SiH4, CH4  and H2 and its properties were reported by Y.J. 

Park, Y.W. Park and J.S. Chun [10]. Here, the atomic composition of hydrogen was 

found to be decreased as the deposition temperature was increased. Accordingly, the 

optical band gap was also found to be increased by increasing the deposition temperature. 
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Amorphous silicon carbide films synthesized by plasma enhanced CVD, r.f glow 

discharge methods, r.f. sputtering methods have studied extensively. Electrical and 

optical properties of such films grown by glow discharge of silane and ethylene gas 

mixtures were reported by D.A. Anderson and W.E. Spear [12]. In that study, it has been 

concluded that composition can be varied by volume ratio of precursors. Both optical 

and absorption and d.c. conductivity showed marked changes in behavior at a 

composition of 32% Si and 68% C. If the silicon content exceeds about 32%, the 

electrical transport takes place in extended states but, below this value, changes to 

hopping conduction. This result was attributed to the tendency of excess carbon to bond 

in the three-fold graphite coordination. Specimens prepared by this method were found 

to have an appreciably lower overall density of gap states than sputtered or pyrolytically 

deposited material. The role of addition of hydrogen in the formation of a-SiC from silane 

and ethylene mixtures was studied by Scott Meikle, Yoshiko Suzuki and Yoshinori 

Hatanaka [13]. In this study, the deposition rate was found to be increased as the 

hydrogen partial pressure fraction was increased up to 50%. The optical band gap was 

found to be decreased as the H2  pressure fraction was increased. XPS measurements 

showed that the density of Si-C bond increased as the slope of the optical edge becomes 

steeper. 

The effect of boron doping on hydrogenated a-SiC were studied by H.D. Mohring et 

al.[14]. Here, the band gap, refractive index, Penn gap and Urbach energy remain 

unchanged. An atmospheric pressure plasma jet generated by inductively coupled rf 
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discharge and containing vapors of Si compounds in argon-carrier gas was used to 

deposit a-SiC films [15]. Rapid deposition up to 10 µm min-1  could be achieved in this 

method. Highly photoconductive hydrogenated a-SiC films were prepared by alternating 

monolayer deposition and hydrogen passivation by plasma enhanced CVD in multi zone 

apparatus. This was reported by A. Asano, T. Ichimura and H. Sakai [16]. In this, films 

with photoconductivity of 3 x 10-5  S 	an optical band gap of 1.91 eV was prepared. 

In another study, a high rate deposition around 10µm per hour with a optical band gap of 

2 to 2.1 eV and with high photosensitivity exhibiting a conductivity change more than 

104  of magnitude under illumination with 50 µW cm-2  in intensity was investigated using 

a glow discharge in SiH4-C2H2-H2 mixture gas. This was reported by Y. Nakayama, S. 

Akita, M. Nakano and T. Kawaura [17]. It was showed that C2H2  based gas system has 

high efficiency of the carbon incorporation into the films. Most of amorphous SiC film 

fabrications have been based on rf glow discharge or sputtering methods resulting in 

hydrogenated a-SiC films. 

1.2.3 Earlier Studies on the Synthesis of Crystalline SiC 

Generally, crystalline SiC films grown on Si substrate exhibit interface defects. This 

problem has been addressed by many people and this is generally attributed to lattice 

mismatch between SiC and Si (about 20%) [19] and the difference in the thermal 

coefficient of expansion between film and substrate [20]. Films with crystalline defects 

show excessive stress and cracks. Several works have been published to solve the above 

problem. A two step process to grow single crystal SiC on Si was reported by H.P. Liaw 
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and R.F. Davis [21). Here, Si wafers with 10  or 6°  off axis from the (100) plane and 2°  

and 4°  off axis from the (111) plane were used. Initially, Carbon was deposited on and 

reacted with the Si substrate to form an approximately 15 nm thick chemically converted 

layer containing Si and C in progressively varying ratios as a function of depth. This was 

followed by the deposition of both Si and C to form the β-SiC films. Silane and ethylene 

gas mixtures were used in cold wall CVD reactor to deposit these films. The stress in 

these films was also found to be optimal in these cases. Films of p+ microcrystalline 

SiC:H films were deposited and studied by B. Goldstein and C.R. Dcikson and others 

[18]. These films grown by conventional rf glow discharge showed conductivites 2 - 2 x 

10-3  Q cm-I  and activation energies 0.05 to 0.1 eV with carbon concentrations of 0-6 

atomic %, respectively. Increasing carbon content was found to suppress the 

microcrystallinity. 

Shigehiro Nishino et al. studied the growth of single crystal films by chemical vapor 

deposition with r.f sputtered SiC intermediate layer [19]. They found that even though 

the sputtered layer was polycrystalline, the subsequent layer deposited by CVD was a 

single crystal. The crystallinity of the deposited layer was strongly affected by the 

thickness of the sputtered layer, the substrate temperature during sputtering, and the 

temperature of chemical vapor deposition. In another study, P. Rai-Choudhury and N.P. 

Formigoni found that single crystal SiC can be grown on Si substrates with pyrolysis of 

SiC14  and CH4  only at high deposition temperature of not less than 1500 °C [21]. Use of 

acetylene and dichlorosilane as precursors in the deposition of polycrystalline film and 

single crystal films by LPCVD method was noted by two groups [22, 23]. H. Nagasawa 
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and Y. Yamaguchi [22] used an unusual technique of alternating the supply of precursors 

for short duration of time. However, this process also relied on growth of an intermediate 

buffer layer of SiC achieved by reacting acetylene with Si substrate. The same authors 

along with Tsutomu Shoki, Isao Amemiya, Hiroyuri Kosuga and Osamu Nagarekawa 

developed a LPCVD process with the same precursors to develop polycrystalline SiC 

films to make x-ray mask membranes suitable for x-ray lithography [23]. They did not 

describe the growth process in detail, but studied certain properties of the films such as 

mechanical strength and optical transmission. 

Hetro-epitaxial SiC was synthesized and studied by M. Yamada, et.al. [11] in a cold 

wall LPCVD reactor at 1000 °C and at 3.5 Torr using a gas mixture of SiHCl3, C3H8  and 

H2. The stress for such films was found to be 4 X 109  dyn cm-2 and Young's modulus 

was determined as 4.7 X 1012  dyn cm-2. A carbonization layer was formed before SiC 

was grown. This was found to be effective in improving the crystallinity. The formation 

of the buffer layer mitigates a lattice mismatch of 20% between SiC and Si and enhances 

the epitaxial growth. It resulted in decreased film stress. 	Optical absorption properties 

of crystalline SiC material were reported by two groups [24, 25]. Intrinsic optical 

absorption of single crystal silicon carbide has been measured in both cubic and 

hexagonal type modifications by Hekrert R. Philipp [24]. It was found that at longer 

wavelengths the cubic structure absorbs the radiation more strongly. The electron affinity 

of silicon carbide is estimated from photoelectric data to be about 4 eV. The absorption 

of light in alpha SiC of photons of energy 2.6 to 3.3 eV has been measured and reported 

by W.J. Choyke and Lyle Patrick [25]. Here, the measurements showed that the 
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interband transitions are indirect, requiring the absorption or emission of a phonon of 

energy of 0.09 eV. The minimum energy gap was found to be 2.86 eV at 300 K, and 

above this temperature the slope of the band gap - temperature curve was found to be -3.3 

X 10-4  eV/degree. 

1.2.4 SiC as a Semiconductor Device Material 

As an application to solar cell fabrication, high conductive p-type microcrystalline SiC:H 

was prepared using electron cyclotron resonance plasma CVD. This was done by Y. 

Hattori, D. Kruangam, T. Toyama, H. Okamoto and Y. Hamakawa [26]. Such films with 

an optical band gap of 2.25 eV exhibited a dark conductivity as high as 10 S cm -̂1, 

Utilizing this material as a wide-gap hetrojuction contact in amorphous silicon solar cell, 

a conversion efficiency of 12% had been obtained with a large open circuit voltage. 

Hetrojunction of a-SiC and c-Si were studied by K. Sasaki, M.M. Rahman and S. 

Furukawa [27]. I-V characteristics of a p-type a-SiC/n-type c-Si diode, in which an a-SiC 

layer has been deposited by L-coupled plasma CVD method, were reported in that study. 

The n-value of diode was found to be 1.1 for planar diode structure and localized state 

density at the interface was also found to be small. Similarly, a solar battery made of a-

SiC/c-Si structure showed good result as observed by M. M. Rahman and S. Furukawa 

[28]. 

One of the earliest work published on the study of SiC-Si hetrojunction diodes was 

done by Don M. Jackson, Jr. and Robert W. Howard [29]. In that work, they synthesized 

SiC films by vapor-phase decomposition and hydrogen reduction of silicon tetrachloride 
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and propane. The mesa diodes formed by n-type SiC and p-type Si showed appropriate 

current-voltage characteristics. These diodes showed a sensitivity to white light in that, 

the incident light increased the forward and the reverse saturation currents. They also 

reported that a junction rectification occurs in the SiC-Si structure, for 1 µm thick film. 

a-SiC high voltage (400V) Schottky barrier diodes were fabricated and their electrical 

characteristics were reported by Bhatnagar.M [30]. Here, such a-SiC Schottky barrier 

diodes showed an on-state current density of 100 A cm-2  for a temperature range of 25 to 

200 °C. The reverse I-V characteristics showed a sharp breakdown voltage of 400 V at 

25 °C. 

In conclusion, many papers were published on the fabrication and characterization of 

silicon carbide films in both amorphous and crystalline forms. The trend of research on 

this field is to understand the silicon carbide growth mechanism on silicon substrates, to 

reduce the defects produced on the silicon-silicon carbide interface, and to upgrade the 

membrane fabrication process. 

1.3 Significance of this Study 

It can be noted from the earlier section that amorphous SiC films are generally fabricated 

by r.f glow discharge, r.f plasma CVD or sputtering methods. Such films are not free 

from impurities. The glow discharge methods and plasma CVD methods which involve 

ions from hydrocarbon always yield inferior films with hydrogen as impurities. 

Although, hydrogenated SiC finds many applications [9,10,11,16], non-hydrogenated 

films are preferred for mask membrane, because the presence of hydrogen degrades the x- 
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ray hardness of the film. In the case of crystalline SiC films, the stress developed in the 

film during the growth can be reduced by employing above mentioned process due to the 

low deposition temperature. This is because one of the reasons for the stress built up in 

the film is due to a difference in the coefficient of thermal expansion between the film 

and substrate. But, again due to impurity incorporation, these films exhibit high defects 

in the crystal structure and therefore show poor electrical performance. 

Low pressure chemical vapor deposition is an alternate choice for synthesizing films 

with superior qualities such as uniform thickness and high purity. It has additional 

advantages like conformal step coverage, high throughput and low cost. Such advantages 

have not remain unnoticed. But, current CVD processes used in the synthesis of SiC 

films have traditionally relied on the use of silane as the source for silicon and large 

choice of hydrocarbons as the source for carbon. However, as widely acknowledged, 

silane is pyrophoric and explosive, and as such is a serious safety hazard in a laboratory 

or manufacturing environment. Very few papers have been published on this key issue 

and therefore further investigation is warranted. 

This study investigated a unique LPCVD process for synthesis of both amorphous and 

crystalline films using novel safe precursors. Ditertiarybutylsilane (DTBS) with a 

chemical formula of (C4H9)2SiH2  is a safe alternate precursor to silane that has flash point 

of 15 °C. This study addressed the use of that organosilane as a single precursor for 

synthesizing amorphous SiC films. Dichlorosilane (SiH2Cl2), which is safer than silane, 

was used along with acetylene (C2H2) for the synthesize of crystalline films. In this 

study, the film growth kinetics were examined first and then the interrelationships 



16 

between process variables, compositions, and select properties of the resulting deposits 

were also examined. Then the study contemplated on growing defect free films to make 

free standing membranes on silicon wafers. Furthermore, electrical characterizations of 

such films were performed for the potential applications of them in fabricating electrical 

devices. 

In view of aforementioned goals of study, the following sections will discuss the 

fundamental principles involved in chemical vapor deposition and also concludes with 

advantages and disadvantages of CVD process in comparison with other conventional 

methods of film deposition. 

1.4 Chemical Vapor Deposition 

Chemical Vapor Deposition (CVD) is one of the most important methods of film 

formation used in the fabrication of very large scale integrated (VLSI) silicon circuits, as 

well as of microelectronic solid state devices in general. In this process, chemicals in the 

gas or vapor phase are reacted at the surface of the substrate where they form a solid 

product. A large variety of materials, practically all those needed in microelectronic 

device technology, can be created by CVD. These materials comprise insulators and 

dielectrics, elemental and compound semiconductors, electrical conductors, 

superconductors and magnetics. In addition to its unique versatility, this materials 

synthesis and vapor phase growth method can operate efficiently at relatively low 

temperatures. For example, refractory oxide glasses and metals can be deposited at 

temperatures of only 300°  to 500°C. This feature is very important in advanced VLSI 



17 

devices with short channel lengths and shallow junctions, where lateral and vertical 

diffusion of the dopants must be minimized. This also helps in minimizing process-

induced crystallographic damage, wafer warpage and contamination by diffusion of 

impurities. 

1.4.1 Fundamental Aspects of CVD 

Chemical vapor deposition is defined as a process whereby constituents of the gas or 

vapor phase react chemically near or on the substrate surface to foul' a solid product. This 

product can be in the form of a thin film, a thick coating, or if allowed to grow, a massive 

bulk. It can have a single-crystalline, poly-crystalline, or amorphous structure. Chemical 

and physical conditions during the deposition reaction can strongly affect the composition 

and structure of the product. This deposition technology has become one of the most 

means of creating thin films and coatings in solid state microelectronics where some of 

the most sophisticated purity and composition requirements must be met. 

Chemical reaction type basic to CVD include pyrolysis, oxidation, reduction, 

hydrolysis, nitride and carbide formation, synthesis reactions and chemical transport. A 

sequence of several reaction types may be involved to create a particular end product. The 

chemical reactions may take place not only on the substrate surface (heterogeneous 

reaction), but also in the gas phase (homogeneous reaction). Heterogeneous reactions are 

much more desirable, as such reactions selectively occur only on the heated surfaces, and 

produce good quality films. Homogeneous reactions, on the other hand are undesirable, 

as they form gas phase clusters of the depositing material, which will result in poor 
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adherence, low density or defects in the film. Thus one important characteristic of CVD 

application is the degree to which heterogeneous reactions are favored over homogeneous 

reactions. This film could be a thin film or a thick coating and should be less volatile to 

remain on the substrate. 

1.4.2 Transport Phenomena of CVD 

CVD of the film is almost always a heterogeneous reaction. The sequence of the steps in 

the usual heterogeneous processes can be described as follows: 

1. Arrival of the reactants 

a. bulk transport of reactants into the chamber, 

b. gaseous diffusion of reactants to the substrate surface, 

c. adsorption of reactants onto the substrate surface. 

2. Surface chemistry 

a. surface diffusion of reactants, 

b. surface reaction. 

3. Removal of by-products 

a. desorption of by-products from the substrate surface, 

b. gaseous diffusion of by-products away from the substrate surface, 

c. bulk transport of by-products out of the reaction chamber. 

The steps are sequential and the slowest process is the rate determining step. 
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The sequential steps of deposition process can be grouped into (i) mass transport-

limited regime and (ii) surface-reaction-limited regime. If the deposition process is 

limited by the mass transfer, the transport process occurred by the gas-phase diffusion is 

proportional to the diffusivity of the gas and the concentration gradient. The mass 

transport process which limits the growth rate is only weakly dependent on temperature. 

On the other hand, it is very important that the same concentration of reactants be present 

in the bulk gas regions adjacent to all locations of a wafer, as the arrival rate is directly 

proportional to the concentration in the bulk gas. Thus, to ensure films of uniform 

thickness, reactors which are operated in the mass-transport-limited regime must be 

designed so that all locations of wafer surfaces and all wafers in a run are supplied with 

an equal flux of reactant species. 

If the deposition process is limited by the surface reaction, the growth rate, R, of the 

film deposited can be expressed as R = Ro* exp(-Ea/RT), where Ro  is the frequency 

factor, Ea  is the activation energy - usually 25-100 kcal/mole for surface process, R is the 

gas constant, and T, the absolute temperature. In the operating regime, the deposition rate 

is a strong function of the temperature and an excellent temperature control is required to 

achieve the film thickness uniformity that is necessary for controllable integrated circuit 

fabrication. 
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Figure 1.1  Deposition rate as a function of substrate temperature exemplifying diffusion 
controlled and surface-reaction controlled regimes 

On the other hand, under such conditions the rate at which reactant species arrive at 

the surface is not as important. Thus, it is not as critical that the reactor be designed to 

supply an equal flux of reactants to all locations of the wafer surface. It will be seen that 

in horizontal low pressure CVD reactors, wafers can be stacked vertically and at very 

close spacing because such systems operate in a surface-reaction-rate limited regime. In 

deposition processes that are mass-transport limited, however, the temperature control is 

not nearly as critical. As shown in Figure 1.1, a relatively steep temperature range, and a 

milder dependence in the upper range, indicating that the nature of the rate-controlling 

step changes with temperature. 
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1.4.3 Film Growth Aspects of CVD 

In general, lower temperature and higher gas phase concentration favor formation of 

polycrystalline deposits. Under these conditions, the arrival rate at the surface is high, but 

the surface mobility of adsorbed atoms is low. Many nuclei of different orientation are 

formed, which upon coalescence result in a film consisting of many differently oriented 

grains. Further decrease in temperature and increase in supersaturation result in even 

more nuclei, and consequently in finer-grained films, eventually leading to the formation 

of amorphous films when crystallization is completely prevented. Amorphous films 

include oxides, nitrides, carbides and glasses are of great technical importance for 

microelectronics applications. 

Deposition variables such as temperature, pressure, input concentrations, gas flow 

rates, reactor geometry and reactor opening principle determine the deposition rate and 

the properties of the film deposit. 

1.5 Low Pressure CVD Process 

The most important and widely used CVD processes are atmospheric pressure CVD 

(APCVD), low pressure CVD (LPCVD) and plasma enhanced CVD (PECVD). Only 

LPCVD is discussed in detail below as this process is employed in this study. 

Most low pressure CVD processes are conducted by resistance heating and less 

frequently infrared radiation heating techniques to attain isothermal conditions so that the 

substrate and the reactor walls are of similar temperature. The deposition rate and 

uniformity of the films created by all CVD processes are governed by two basic 
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parameters (i) the rate of mass transfer of reactant gases to the substrate surface and (ii) 

the rate of surface reaction of the reactant gases at the substrate surface. Lowering the 

pressure to below atmospheric pressure enhances the mass transfer rate relative to the 

surface reaction rate thus making it possible to deposit films uniformly in a highly 

economical close spaced positioning of the substrate wafers in the standup position. 

1.5.1 Mechanism Involved in Film Deposition 

The mass transfer of the gases involve their diffusion across a slowly moving boundary 

layer adjacent to the substrate surface. The thinner this boundary layer and the higher the 

gas diffusion rate, the greater is the mass transport that results. Surface reaction rates, on 

the other hand, depend mainly upon reactant concentration and deposition temperature. 

High deposition rates are attainable with LPCVD despite the fact that the operating total 

pressure is usually two to four orders of magnitude lower than atmospheric CVD. This is 

due to the fact that the large mole fraction of reactive gases in LPCVD, and no or little 

diluent gas is required. Wafer spacing has a marked effect on the deposition rate of all 

types of films, the deposition rate increasing linearly with increasing spacing since the 

quantity of available reactant per wafer increases. 

1.5.2 Factors Affecting Film Uniformity 

Some of the main factors affecting the film thickness uniformity in LPCVD are the 

temperature profile in the reactor, the pressure level in the reactor and the reactant gas 

flow rates. To obtain a flat thickness profile across each substrate wafer throughout the 

reactor requires a judicious adjustments of these parameters. In tubular reactors, increase 
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in temperature or pressure, increases the deposition rate upstream, thereby using up more 

reactant gases and leaving less to react at the downstream end; the opposite effect takes 

place on lowering the temperature and pressure. Similar effects occur with variations of 

the reactant gas flow rates at constant gas partial pressure, or with changes in the size and 

number of the wafers processed per deposition run. The uniformity of thickness and step 

coverage of these films are very good. These films have fewer defects, such as particulate 

contaminants and pinholes, because of their inherently cleaner hot wall operations and the 

vertical wafer positioning that minimize the formation and composition of 

homogeneously gas phase nucleated particulates. 

1.6 Advantages of CVD 

Thin films are used in a host of applications in VLSI fabrication, and can be synthesized 

by a variety of techniques. Regardless of the method by which they are formed, however, 

the process must be economical, and the resultant films must exhibit uniform thickness, 

high purity and density, controllable composition and stoichiometries, high degree of 

structural perfection, excellent adhesion and good step coverage. CVD processes are 

often selected over competing deposition techniques because they offer the following 

advantages: 

1. A variety of stoichiometric and non stoichiometric compositions can be deposited by 

accurate control of process parameters. 

2. High purity films can be deposited that are free from radiation damage without further 

processing. 
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3. Results are reproducible. 

4. Uniform thickness' can be achieved by low pressures. 

5. Conformal step coverage can be obtained. 

6. Selective deposition can be obtained with proper design of the reactor. 

7. The process is very economical because of its high throughput and low maintenance 

costs. 

1.7 Limitations of CVD 

Fundamental limitations of CVD are the chemical reaction feasibility and the reaction 

kinetics that govern the CVD processes. Technological limitations of CVD include the 

unwanted and possibly deleterious but necessary by-products of reaction that must be 

eliminated, and the ever present particle generation induced by homogeneous gas phase 

nucleation that must be minimized. 



CHAPTER 2 

EXPERIMENTAL PROCEDURE 

2.1 Introduction 

Silicon carbide thin films with varying composition and properties were synthesized in a 

LPCVD reactor by adjusting various deposition parameters including temperature, 

pressure, gas composition and time of deposition. The experiments yielded a variety of 

films which were carefully subjected to physical and chemical analyses. These 

characterization procedures were aimed at standardizing the processing conditions to 

produce films that are suitable for making x-ray mask membrane. Fourier transform 

infrared (FTIR) analyses were done on the synthesized films to examine the vibrational 

modes of the deposited material. Stress in the films was measured and calculated from 

the principle of radius of curvature difference of the substrate. Refractive index and 

thickness of the films were measured by ellipsometry and interferometry respectively. 

The optical transmission of the films were measured using a UV-visible 

spectrophotometer. The elemental composition analyses were done by Rutherford 

Backscattering (RBS), Auger elcetron spectroscopy (AES) and X-ray photoelectron 

spectroscopy (XPS). X-diffraction analysis were performed in order to verify the 

amorphous or crystalline nature of the deposits. Mechanical properties such as Young's 

Modulus and hardness of these films were measured using Nano Instruments. Surface 

roughness studies, in the case of poly crystalline films were done by atomic force 

microscopy. Electrical characterizations such as high frequency capacitance-voltage and 

current-voltage relationships for substrate-film-metal structure were performed. From 
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these measurements parameters like dielectric constant, trapped charge density, 

breakdown voltage, and idiality factor were estimated. The following sections describe 

the experimental setup and brief theoretical aspects of characterization procedures. 

2.2 LPCVD Reactor 

The low pressure chemical vapor deposition reactor is schematically shown in figure 2.1. 

The horizontal reaction chamber consisted of a fused quartz tube of 142cm in length and 

11.5 cm in diameter which was encapsulated with a three-zone Lindberg heating furnace. 

The heating furnace used Lindbar silicon carbon heating elements which could raise the 

temperature of the reaction chamber up to 1200 °C. The entire tube was insulated from 

the environment by a ceramic enclosure. A varying temperature profile could be set 

within the three zones, even though this facility was rarely used. Temperature control 

and stability was achieved by the associated electronic feedback circuits, which included 

Platinel II thermocouples, that sensed the temperature of the reaction zone. The 

temperature inside the furnace was confirmed against the setting by using a calibrated K 

type thermocouple and were controlled within ±5°  with respect to the set temperature. 

The pressure inside the chamber was monitored at the input end of the furnace by an 

MKS baratron gauge with a range of 10 torr. 

The other end of the reaction chamber was connected to a vacuum station comprised 

of a booster pump and a mechanical backing pump. Booster pump was used to enhance 

the flow of gases and thereby the pumping speed. Mechanical backing pump did the real 

pumping and this combination provided a vacuum of as low as 5 milli torr. 
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Figure 2.1 Schematic representation of the LPCVD reactor 

Booster pump was a Ruvac single stage roots pump operated at 220 V supply and that 

the backing pump was a Trivac dual stage rotary vane pump. Nitrogen ballast gas was 

used in the pump to dilute any hazardous outgoing gas. Apart from this, an oil filter 

system was used to filter micron sized particles from the pump oil, which would help in 

increasing the lifetime of the pump. The reaction chamber was sealed on both ends by 

end caps and metallic lids. During heating process, thermal expansion of 0-rings may 
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cause leakage of outside air in to the system. To avoid this problem, end caps designed 

for this reactor have a provision for cold water circulation (not shown in the figure) to 

prevent overheating of the 0-rings. A manual valve at the output end was used to control 

the removal rate of gases and thereby maintaining a steady pressure inside the chamber. 

Precursors were delivered inside the chamber, in a controlled manner using mass flow 

controllers. In the case of DTBS, an MKS 200 sccm vapor-phase flow controller Model 

1150B-162M was used to measure and control the flow rate of DTBS. The calibration of 

these flow controllers is described in later section. A spare nitrogen mass flow controller 

was installed to incorporate any necessary additional reactant gas into the chamber or for 

back filling. This spare controller could be calibrated for gases other than nitrogen. 

A carrier gas for DTBS was not required since it has a low vapor pressure (200 Torr 

@ 25°C). Other reactants were metered by means of Applied Materials model AFC 550 

automatic N2  mass flow controllers which were calibrated to regulate respective gases. 

All delivery lines were stainless steel with VCR type connections. 

2.3 Pre-Deposition Procedure 

2.3.1 Leak Check 

Air leak into the chamber may cause due to improper delivery line connections and 

improper chamber end cap connection. Such leakage will affect the quality of deposits 

and result in useless experiments. Therefore, routine leak checks were conducted keeping 

all valves and mass flow controllers fully open. After evacuating the chamber, the 

manual valve was closed and from the pressure rise in the reactor the leak rate was 
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calculated. Typical leak rates were of the order of 4 mTorr/min. This was mostly due to 

outgassing from the deposits on the chamber wall resulted from the previous depositions. 

2.3.2 Flow Rate Calibration 

Generally flow rate of the precursor is expressed in units of sccm, i.e., standard cubic 

centimeter per minute. This is the volume that would be occupied by the precursor, which 

is measured at standard temperature and pressure, as result of flow for one minute. In 

order to verify the rate of flow, the precursor was delivered into the CVD reaction 

chamber at a known initial pressure and at room temperature, using the standard flow 

controller which was set to control at desired flow. The manual output valve was then 

closed and the rise in chamber pressure over a fixed time interval was measured. 

Assuming that the temperature inside the reaction chamber was at Tr  (i.e., room 

temperature) and precursor to be an ideal gas under these conditions, Ideal Gas Law 

gives, 

PV = nRT 	 (2.1) 

Since chamber volume, V, is fixed, and was determined by the geometrical 

measurements, 

P R*Tr  
	= const 	 (2.2) 

n 	V 
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(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

where, t is the time. 

At standard condition of temperature (273 K) and pressure (760 Torr) therefore, 

and, 

Substituting equation (2.3) into (2.5), gives flow rate at room temperature of Tr, 

or, 

Where, V is the volume of the reaction chamber (which was measured as 16,700 cm-3), 

Tr  is the room temperature and AP/At is the rate of increase in pressure. Equation 2.7 

was used to calibrate the flow rate of the reactants. Special mass flow controllers for 
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some of the reactants used, such as acetylene, were not commercially available, and 

therefore a correction of N2 mass flow controllers which were employed to meter these 

gases, was necessary. The flow conversion factor was obtained from the manual 

provided by the suppliers of mass flow controllers, and that was verified by taking the 

ratio of the actual flow rate of the reactant gas (which was measured by the above 

procedure) to the actual flow rate of nitrogen. 

2.4 Deposition Procedure 

2.4.1 Wafer Loading 

Films were synthesized on virgin silicon and quartz substrates. The specification of 

silicon wafers are depicted in table 2.1. Fused quartz substrate had the same diameter of 

that of silicon. These substrates were first labeled and weighed, using an electronic 

weighing balance up to an accuracy of 0.01 mg. Then, they were mounted vertically on a 

fused silica boat with 12 single wafer slots and 10 double wafer slots. Single and double 

wafer slots alternated along the length of the boat with a distance of 1.25 cm between 

them. Dummy wafers were placed at the first and the last position in each experiment. 

For convenient handling of boat, the first dummy wafer was mounted on the second 

single wafer slot at 6 cm from the front end of the boat. The virgin wafers were placed on 

subsequent slots. Some wafers need to be deposited on one side only, in order to measure 

the stress of the film. This was accomplished by placing two wafers together, back to 

back, on a double wafer slot. The quartz boat was then placed with its front at 65 cm 
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downstream, ensuring that they were placed in the middle zone of the furnace. The front 

end of the chamber was then closed and the chamber was pumped down. 

2.4.2 Film Deposition 

The reaction chamber and the reactant delivery lines were evacuated for about 30 

minutes. The reaction chamber was then gradually heated to the deposition temperature 

and stabilized for fifteen minutes to ensure thermal equilibrium. Water circulation and 

fans were used to cool the end cap 0-rings. Once thermal equilibrium was reached, the 

reactants were allowed to flow for stipulated time. 

After the deposition, the furnace was left for cooling at its normal rate. The chamber 

was opened next day, by breaking the vacuum. This was done by delivering a fixed flow 

of nitrogen in to the chamber, when the output valve was completely closed. This would 

bring the chamber to the atmospheric pressure and thereby enabling the front lid to open. 

Table 2.1 Specifications of the Si wafer 

Source Silicon Sense Inc. 
Diameter 100 mm 
Orientation <100> 
Thickness 525 ± 25 µm 
Type/Dopant p/Boron 

n/Phosphorus 
Resistivity 5 - 15 Q-cm 
Grade Test 



33 

2.5 Film Characterization Techniques 

2.5.1 Initial Analysis 

Once the wafers were taken out, they were weighed again. The difference in weights 

before and after the reaction would give the mass of the film deposited. The mass 

divided by the time of deposition would give the deposition rate. 

Film thickness was measured by Nanospec Interferometer which bases its estimates on 

the monochromatic light interface fringes formed within a zone limited by the sample 

surface and a semi-transparent mirror. The thickness of the film deposited on one side 

was measured at five different points on the wafer i.e. 1 cm off both edges of both the 

equatorial and the longitudinal axis, and at the center, as shown in figure 2.2. Uniformity 

in radial distribution of the deposits was then estimated from the relationship: 	max -  

Tmin)/(Tmax  + Tmin)*100 where, T is the average film thickness. 

Figure 2.2 Schematic diagram of a typical silicon wafer showing points where thickness 
was measured 
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An optical microscope, Reichert Wein (BTL 122815), was used to detect cracks, gas 

phase nucleation clusters, and other defects in the films. 

2.5.2 Refractive Index Measurements 

Refractive index of the was determined using ellipsometry. The measurement technique 

is mainly concerned with the measurement of changes and the state of polarization of 

light upon reflection with the surface. It employs monochromatic, plane polarized light 

with its plane of polarization 45°  to the plane of incidence. When the elliptically polarized 

light is reflected from an absorbing substrate its state of polarization is changed. 

The ellipticity of the reflected beam is determined by the relative phase difference 8 

and azimuth 41. An in-built computer program numerically solves the equations 

generated by these 8 and Ψ and the refractive index and the thickness of the film is 

obtained. The index of refraction is an important parameter which gives indication of 

stoichiometry of the film. This parameter is also used in measuring thickness using 

interferometry. The index of refraction measurements for the samples that were 

synthesized, were collected at NASA Lewis Research Center on a home-built rotating 

analyzer ellipsometer using a 75 W Xe arc lamp, a computer-controlled double gradient 

monochomator, and calcite polarizers. Measurements were taken in the range of 500-720 

nm in 20 nm steps at three angles of incidence (72, 73, 74°). 
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2.5.3 Infra-red Spectroscopic Studies 

Infra red spectroscopy is a powerful method by which one can detect the presence of 

particular type of molecular vibration. Materials will absorb certain frequencies in the 

infra-red region (wavelengths of 2 to 25 microns) because of the excitation of vibrational 

energy transitions in molecular species. In the same way the electronic transitions in 

atoms can absorb radiation of specific frequencies, the vibration of a molecule (stretching 

or bending) will have a resonance value, and it will be excited by any radiation of this 

frequency. When IR radiation of a particular frequency impinges a sample containing 

molecular species, it may or it may not be absorbed. If all frequencies are passed 

through, some will be absorbed to varying degrees depending on the molecular species 

involved. The intensity of the return radiation therefore depends upon the vibrational 

mode of the molecules. The presence of a particular molecular vibration can be detected 

by an absorption or transmission peak in the spectrum. 

Infrared spectroscopic analysis was done on a routine basis using a Perkin Elmer 1600 

series FTIR spectrophotometer and Perkin Elmer 580 spectrophotometer to determine the 

bonding characteristics of the deposits. 

2.5.4 Stress Measurements 

Stress develops in the film due to difference in the thermal coefficient of expansion of the 

film and the substrate, lattice mismatch between a crystalline film and the substrate, and 

also due to defects developed in the bulk during the growth process, which is termed as 
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intrinsic stress. The stress in the film will, cause the substrate to slightly bend after the 

deposition resulting in some radius of curvature. 

Reflecting mirror 
He-Ne laser beam source 

Surface bending due to tensile 
stress of the deposited film 

Image screen 

Si wafer 

R - R' is the radius of curvature of bending 

Figure 2.3 Schematic representation showing the experimental setup to measure the 
radius of curvature of the bending of silicon substrate due to stress in the 
film. 

Stress of the film can be calculated using Stony's formula 

σs = ED2/6(1 -v)Rt 	 (2.8) 

where E and v are Young's modulus and Poisson ratio of the substrate. D, t are the 

substrate and film thickness' respectively, R is the radius of curvature of the composite. 

By convention R is negative for a convex wafer surface (compressive film stress) and 

positive for a concave wafer surface (tensile film stress). 
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Film stress was determined with a home-built system that measured changes in the 

radius of curvature of a wafer resulting from deposition on a single side. Such 

depositions were achieved by placing two wafers back to back. The experimental setup 

to measure the radius of curvature of the substrate bending is shown in the figure 2.3. 

The distance between two points generated by light from two fixed and parallel He-Ne 

lasers was determined after reflection from the surface of a wafer before and after 

deposition. An angled mirror was used to project the reflection of the two points onto a 

wall where their separation could be more accurately measured. 

In the present set of experiments, for the wafers used, Young's modulus of the 

substrate was taken as 1.85 X 1011  Pa with a Poisson ratio of 0.3. Substrate average 

thickness was 525 pm. Considering the geometry of the instrument used, the equation 

(2.8) reduces to 

(2.9) 

where R' is the difference of the deflection of the projected laser spots after and before 

deposition. 

2.5.5 X-ray Diffraction Studies 

X-ray diffraction patterns were studied to verify the crystalline or amorphous nature of 

the deposited films using IBM PC based Rigaku diffractometer with a Cu target and 

operating at 45 kV and 40 mA. Typical beam size of the radiation was 150 A. 
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2.5.6 Optical Transmission Studies 

The optical transmission of the films were measured using a Varian DMS 300 UV/visible 

spectrophotometer over a range of wavelength from 200nm to 900nm. This was carried 

out with samples deposited on quartz substrate. The optical transmission of SiC films 

were of particular interest at a wavelength of 6320 A, since x-ray mask alignment 

equpiments rely on light rays around this wavelength. From the optical transmission 

spectrum, it is possible to estimate the optical band gap [31]. The optical band gap is 

determined from the calculated values of absorption coefficient, a. The intensity of the 

transmitted wave, I, through a film of thickness t, is related to the intensity of incident 

wave Io  by Beer-Lambert law 

(2.10) 

If the average thickness of the film is known, then absorption coefficient for each 

wavelength can be calculated. The absorption coefficient of semiconducting films in the 

high-absorption region ( a > 104  cm-I  ), assuming parabolic band edges and energy-

independent matrix elements for interband transitions, is given according to Tauc [32] by 

the following equation: 

(2.11) 

where hγ, Eg(opt) and K i  denote the photon energy, optical energy gap, and an energy-

independent constant, respectively. Formally, the optical band gap Eg(opt) is obtained as 

the intercept of the plot of (a*hγ) I/2  against hγ. 
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2.5.7 Compositional Analysis 

The elemental composition and chemical states were studied by X-ray photoelectron 

spectroscopy (XPS) and Auger electron spectroscopy (AES) using a Perkin-Elmer 570 

ESCA/SAM. Unmonochromotized Al Ka x-rays (1486.6 eV, 25W) were the X-ray 

photoelectron spectroscopy (XPS) excitation source; a 5kV, 1µA electron beam was 

rastered over a square 250 µm on a side during Auger analysis. The base pressure of the 

system during analysis was 2 X le Torr. Auger depth profiles were generated using a 4 

kV, 3 µA Ar ion beam rastered over a 5 X 8 mm area. The core level binding energies 

were referenced to the Au 4f7/2  line at 83.9 eV. A low energy electron gun was also used 

for charging neutralization. Atomic compositions were calculated from XPS peak areas 

using the Perkin Elmer software cross-sectional values which had been previously 

verified using standard SiC materials. 

The Rutherford backscattering spectroscopy (RBS) measurements were taken using a 

High Voltage Engineering AK accelerator with He+ ions at an energy of 1.8 MeV to 

corroborate the ESCA data. All compositional results were reported with +3% error. 

The ESCA analyses were performed by Dr. Herman J. Boeglin at Olin Hunt Inc., and 

RBS analyses were performed by Dr. Robert Pfefer at Fort Monmouth. 

2.5.8 Hardness and Young's Modulus Measurements 

The hardness and Young's modulus of the SiC films were determined using a Nano 

Instruments indenter. The system consisted of a diamond tip, with the same area-to-depth 

ratio as the traditional Vickers pyramid, mounted on a loading column that was 
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suspended on thin leaf springs as shown in figure 2.4. At the top of the loading column 

was a coil and magnet assembly that provided a controlled loading force with a resolution 

of about 0.5 µN. The position of the indenter was determined by a capacitance 

displacement gauge which allows one to detect displacement changes of 0.2-0.3 rim. In 

this work, the maximum drift rate prior to testing was 0.1 nm/s, the loading rate was 200 

µN/s to a maximum load of 4.5 mN, the hold time was I min, and the ambient 

temperature was kept constant with 1°  at 21 °C. In all cases a minimum of 16 indents 

were performed on each sample. 

As reported for a variety of materials, [33,34] a typical load displacement curve for a 

SiC deposit is shown in figure 2.5. The initial increase in that 

Figure 2.4 Schematic representation showing the setup to measure hardness of SiC film. 



Displacement, h (nm) 

Figure 2.5 Typical load displacement for a SiC film. 

curve represents the observed displacement due to an increased loading at a constant rate 

of 200 µN/s to a maximum of 4.5 mN. The second segment of the curve represents the 

unloading at the same constant rate down to 20% of maximum load. From that latter 

segment, the defoiniation contact depth hp  and elastic recovery depth he  can be measured. 

A linear least squares fit of the upper segment extrapolated down to 0 yields the value of 

hp. The difference between the maximum displacement and hp  yields the value of he. 

The hardness is obtained at the maximum displacement using the formula 

H=P/A 	(2.12) 

41 
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where P is the applied load and A is the contact area calculated from the known geometry 

of the indenter 

(2.13) 

Assuming that the area in contact remains constant during initial unloading and adopting 

Sneddon's solution for the elastic deformation of an isotropic elastic material, the elastic 

modulus is obtained from the contact stiffness S, the slope of the unloading curve, given 

by 

(2.14) 

where h is the displacement of the indenter, and Er  is the composite moduus for the 

indentersample combination 

where Ef  and E, are Young's moduli for film and indenter, respectively, and vf  and v, are 

Poisson's ratios for the film and the indenter, respectively. Since v appears as a quadratic 

term and therefore represents only a small correction, of  was taken as 0.3, while the 

values for the diamond indenter E. and v• were taken to be 1010 GPa and 0.213, 

respectively. 

2.5.9 Electrical Characterization of SIC Thin Films 

2.5.9.1 Wafer Preparation: Two sets of wafers were employed to study interface 

behavior and other electrical parameters. One set of wafers were used as obtained. The 

other set of wafers were undergone standard RCA cleaning followed by furnace pre- 
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clean. Such furnace pre-cleaned wafers along with the as obtained wafers were loaded 

immediately into the CVD furnace for film deposition. Standard RCA cleaning was done 

by dipping wafers in a chemical bath containing 5:1 H2SO4:H202  at 110°C for 10 

minutes. The wafers were rinsed in hot de-ionised (DI) water at 80°C for 10 minutes, and 

they were rinsed again in cold DI water for 5 minutes, and spin dried. In order to remove 

the native oxide, wafers were dipped in solution 100:1 H20:HF for 1 minute. 

Subsequently, the wafers were rinsed in cold DI water for 10 minutes and spin dried. 

Films were deposited under optimum conditions, such that they exhibit nominal stress 

values. 

2.5.9.1 Metallization: To study electrical characteristics of the synthesized films, the 

films were coated with pure Al dots to form a substrate-film-metal structure. This was 

done in an evaporator, and the important parameters of deposition is given in Table 2.2. A 

mask was used to obtain Al dots of diameter 300µm and 500µm on the silicon carbide 

film, while a uniform coating of Al is deposited on the back surface (Si surface of the 

stress monitor). 

Table 2.2 Parameters for metallization of SIC thin films 

Base pressure 10-6  Torr 

Heating source Tungsten filament (resistance heating) 

Evaporating source Al wire 

Purity of evaporating source 99.9999% (Al) 

Rate of deposition 50 A/min. 
Ultimate thickness of deposit 900 A 
Substrate temperature room temperature 

Distance between the filament and the 
substrate 

200 mm 

Size of the dots  300 µm and 600pm diameter 
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2.5.9.2 Electrical Parameters Measurements: High frequency capacitance - voltage 

(C-V) measurement was done for the amorphous films on p-type Si substrates. All 

samples went through a forming gas annealing at 450°C for 30 minutes after evaporation 

of Al dots through a shadow mask. The back side SiC was removed by plasma etching 

(if necessary) and Al was deposited for back contact as explained in the previous section. 

HF C-V measurements were done using HP 4145B semiconductor parameter analyser 

inconjunction with Boonton 72VD capacitance meter. The experimental setup is shown 

in figure 2.5. The dielectric constant of the SiC films were measured at different 

positions along the axis of the wafer. Bias-temperature stress measurements were also 

made to find out if there are trapped charges in the insulator. This was done by applying 

a positive and negative polarity of ~ 1MV/cm for 30 minutes at 165°C and repeating the 

HF C-V measurements. From the shift in the plot, the interface trapped charges were 

estimated. To find out the nature of the charges, bias-temperature aging studies were 

done on the samples. The flat-band voltages was determined from the HF C-V plot. The 

current voltage characteristics for Si-SiC-metal structure were conducted using HP 4145B 

wherein a standard diode circuitry was employed. 

2.6 Membrane preparation 

The process of producing free standing silicon carbide membranes involved etching the 

silicon carbide from a central circular region on the back side of the wafer using an 

Applied Materials Plasma II AMP 3300 plasma etch reactor at a typically RF power of 

500 W, frequency of 100 kHz, and a base pressure of 2 mTorr. The etch gas consisted of 
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30 sccm 02  and 10 sccm 92 % CF4  / 8 % 02  mixture. Under these conditions the etch 

rate was close to 50 Amin. Subsequent etching through the exposed silicon substrate 

was achieved using a 50% KOH in water mixture at a temperature of ~80 °C which took 

—8 h to clear the 500 µm substrate. 

Figure 2.5 Experimental setup to measure the high frequency C-V characteristics of Si-

SiC-metal structure. 



CHAPTER 3 

RESULTS AND DISCUSSION 

3.1 Introduction 

The results of various characterization studies that were performed on the samples of 

amorphous and crystalline SiC films are described in the following sub-sections of this 

chapter. These characterizations were aimed at standardizing the synthesizing process, so 

that the resulting films are suitable for making x-ray lithographic masks. As explained 

earlier, the initial study was aimed at synthesizing amorphous SiC films which can render 

smooth surface and thereby minimizing the x-ray scattering effects. In the following 

sections, the growth kinetics of amorphous SiC films with respect to various LPCVD 

parameters are discussed. The effect of such parameters on the composition, mechanical 

and optical properties of the films are deduced. 	Electrical characterization were 

performed to investigate the insulating or conducting behavior of these films. Certain 

electrical parameters such as dielectric constant, trapped charge density, and dielectric 

breakdown voltage were estimated from these characterizations. The electrical 

characterization was aimed at exploring the potential applications of SiC films that were 

synthesised by this method in fabricating electrical devices. Then, the reason for 

pursuing the synthesis of crystalline films and their characterization results are explained. 

Finally, the chapter concludes by summarizing the LPCVD parameters that produced 

films with optimum qualities required for fabricating x-ray masks. 

46 
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3.2 Results and Discussion on Characterization Studies of Amorphous SiC Films 

LPCVD silicon carbide films have traditionally been deposited at high temperatures 

(>1000°C) using two precursors to provide the stoichiometric composition. [6,35]. In this 

study, DTBS is used as single precursor to produce amorphous silicon carbide films at 

lower temperatures. This method results in fewer process variables and thus a simpler 

interpretation of the kinetics. 

3.2.1 Growth Kinetics Study 

The deposition rates were determined as a function of processing parameters using DTBS 

flow rates in the range of 5 to 60 sccm, pressures in the range of 0.05 to 0.3 Torr, and 

temperatures in the range of 600 to 850 °C. The range of deposition temperature was 

decided from the decomposition data given by the manufacturer of DTBS, Olin Hunt Inc. 

The deposition pressure range and the flow range of the precursor, were limited by the 

monitoring or controlling devices of these parameters. 

3.2.1.1 Growth Kinetics with Respect to Flow Rate: Figure 3.1 illustrates the variation 

in deposition rate as a function of the square root of DTBS flow rate at constant 

conditions of temperature (650°C) and pressure (0.2 Torr). The observed linear 

dependence can be explained by recognizing that the rate .of laminar flow in the annular 

region can affect the partial pressure of DTBS in the interwafer region. The small 

variation in film thickness measured across the wafers (<5%) is indicative of uniform 

composition in the gas phase and therefore a high diffusion rate. As the DTBS flow rate 
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is increased in the annular region, the pumping rate in this region must increase 

accordingly in order to maintain the desired constant pressure of DTBS in the interwafer 

region until a maximum concentration (pDTBs/RT) is approached. Thus, the dependency 

of deposition rate on flow rate is expected to exhibit the same dependency as that 

observed for pressure as seen below. For the aforementioned processing conditions, the 

composition of the deposits, as determined by ESCA, appeared to be independent of flow 

rate in the range of 5-60 sccm and to be close to the stiochiometric value of SiC. 

3.2.1.2 Growth Kinetics with Respect to Pressure: In Figure 3.2, the deposition rate is 

plotted as function of the square root of pressure for constant conditions of temperature 

(650°C) and flow rate (30 sccm). For values less than 300 mTorr, a linear dependency is 

observed. Such behavior is in contrast to that reported for the synthesis of silicon from 

silane [36] and the synthesis of SiC from diethylsilane [37] both of which follow a 

Langmuir-Hinshelwood reaction mechanism where the initial dependency of growth rate 

on pressure is linear and given by [38]. 

(3.1) 

where k is the reaction rate constant, Ea  is the activation energy, R is the gas law constant, 

T is temperature, p is the partial pressure of the reacting gas, and K is the adsorption 

equilibrium constant. However, if it is assumed that two adjacent adsorption sites are 

necessary due to the bulkiness of the t-butyl group, the above equation becomes 

(3.2) 
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Figure 3.1 Variation of growth rate as a function of the square root of DTBS flow rate. 

G
R

O
W

T
H

 R
A

T
E

 (
m

g/
hr

)  

r
  

0
  

E
  

 11
 4
 

Figure 3.2 Variation of growth rate as a function of the square root of pressure. 
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When KpDTBs is small compared to I, the observed square root dependency on pressure 

occurs. 

An alternate explanation for the square root dependency is to assume that the 

adsorption specie is the organosilylene which necessitates a gas-phase dissociation of the 

organosilane as follows 

(3.3) 

where the pressure of the (C4H9)2Si  is related to the pressure of (C4H9)2SiH2  through the 

equilibrium constant 

(3.4) 

The pressure of DTBS in the Langmuir-Hinshelwood reaction mechanism is thus 

replaced by (K"pDTBs)1/2  since [(C4H9)2Si] = [H2] yielding 

Upon collecting the temperature contributions, the above rate equation becomes 

(3.5) 

(3.6) 
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which will be used to estimate the change in enthalpy for this dissociation reaction. 

Similar to the flow rate study, the composition of the deposits showed little variation with 

pressure over the investigated range and was determined to be close to SiC. 

3.2.1.3 Growth Kinetics with. Respect to Temperature: Generally, the rate of most 

reactions increases as the temperature is raised. It can be stated approximately that the 

rate doubles for every 10°K increase in temperature. But the temperature dependence of 

rate has been found to fit the expression proposed by Arrhenius: 

(3.7) 

where, A is the pre-exponential factor (nearly independent of temperature) and Ea  is 

Activation. Energy, which has to be supplied for the reaction to occur. Activation energy 

depends upon the chemicals that take part in the reaction. R is the gas constant and is 

equal to 1.98717 cal/Kmol and T is the absolute temperature of the reaction. Taking 

natural logarithm on both sides of the above equation, and plotting a graph on logarithmic 

growth rate versus reciprocal of temperature, leads to a straight line with negative slope, 

This type or curve is called Arrhenius plot. The negative slope of the curve gives the 

ratio between Activation Energy and Gas constant. By determining the slope of the 

curve, the activation energy for the reaction can be calculated. 
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The temperature-dependent behavior of the deposition rate is shown in figure 3.3 For 

a constant flow rate of 30 sccm and pressure of 0.2 Torr, the deposition rate is seen to 

follow an Arrhenius behavior in the range of 600-675°C with an activation energy of 24 

kcal mol l  ( 1.04ev/atom). This behavior is consistent with the existence of a single-rate 

limiting step controlling the deposition process. The observed activation energy is 

substantially lower than the value of 40 kcal moi l  which was common to that reported in 

the synthesis of silicon from SiH4[39] silicon from chlorosilane precursors [40] and 

silicon carbide from DES [37]. The difference in the values of the activation energy can 

be used to estimate the value of AL! from equation 6 which turns to be about --32 kcal 

mol-1  for the dissociation of DTBS. 

Figure 3.3 Variation of growth rate as a function of reciprocal temperature for a-SiC. 
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At temperatures above 675°C, the deposition rate was observed to decrease reflecting 

a combination of factors including the transition into the mass-transfer limited regime and 

the adsorption of decomposition products which act as retardants to the growth process. 

In the range between 625 to 750°C, the composition of the deposits changed 

progressively from slightly silicon rich to slightly carbon rich as shown in figure 3.4. 

Above 750°C, there was a rapid increase in the carbon content from the near 

stoichiometric value to about 75% C at 850°C. It is worth noting that the RBS results 

yielded compositional values for Si that were systematically higher that those obtained 

from ESCA over the investigated temperature range. This is believed to be due to an 

overestimate of the stopping power value for carbon at 1.8 meV in the rump simulation 

program used to fit the RBS data. The primary decomposition pathway for DTBS is 

believed to involve silylene formation either by extrusion of H, or C4H10  [41]. For 

similar dialkylsilanes, the hemolytic cleavage of Si-C bonds were noted to be negligible 

below 725°C but to be important at higher temperatures. The availability of this 

additional carbon source enhances adsorption on the surface, thus causing the observed 

increase in the carbon content with higher temperatures. 

In figure 3.5, a plot of deposition rate as a function of wafer position reveals an 

increase in the depletion as the temperature is increased between 600 and 800°C. This is 

consistent with an increased rate of consumption of DTBS as the temperature is raised. 

At constant temperature, depletion effects as a function of pressure or DTBS flow rate 

were much smaller and could not be correlated to changes in either parameter. 
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Figure 3.4 Variation of silicon concentration in the silicon carbide films using ESCA (at 
a depth of 150 A) and RBS as a function of deposition temperature for 
constant pressure (200 mTorr) and DTBS flow rate (30 sccm). 
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Figure 3.5 Growth rate of the ith wafer normalized to that of the 2nd wafer as a function 
of wafer position for deposition temperatures above 800°C. 
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At deposition temperatures above 800°C, there was a reversal in trend as the depletion 

effects decreased with higher temperatures as seen in figure 3.5. This is believed to be 

due to an increase in the decomposition of DTBS into hydrocarbon species which occupy 

surface sites thus liberating the silicon species to occupy other sites further down the 

reactor chamber. 

3.2.2. Characterization of a-SiC Films 

3.2.2.1 Infra-red Spectroscopic Studies: Figure 3.6 shows a typical IR spectrum of a-

SiC sample deposited at 750°C. The presence of strong peak centered around 790 cm-1  

shows the presence of Si-C vibration mode. All a-SiC samples deposited over the above 

mentioned temperature range showed this vibrational mode. It is interesting to note that, 

these spectrum do not show any peak around 2300 cm-1 , corresponding to C-H vibration, 

or any peak around 2100 cm-I , corresponding to Si-H vibration, indicating the absence of 

hydrogen in the bulk. Conventional SiC synthesizing methods which rely on other 

hydrocarbons always show the presence of hydrogen in the film as an impurity. The 

presence of hydrogen in the film is a disadvantage, since such impurity will result in the 

phase transformation of SiC, when they are exposed to strong x-ray doses in the x-ray 

lithographic process. The absence of hydrogen in the film indicates the superiority of this 

process. 

3.2.2.2 X-ray Diffraction Studies: The x-ray diffraction patterns indicated that the films 

were indeed amorphous at the deposition temperature of 850°C, and below. Al. the 
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Figure 3.6 FTIR spectrum of a-SiC sample deposited at 750°C showing strong Si-C 
vibration mode. 

Figure 3.7 X-diffraction spectrum of a-SiC sample deposited at 900°C, revealing <111> 

oriented 3-SiC peak. 
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deposition temperature of 900°C, the pattern presented in figure 3.7 reveals, in addition to 

the expected (400) Si substrate peak, the emergence of a peak at 35.3°  which is attributed 

to β-SiC. 

3.2.3 Compositional Analysis 

The Auger depth profile, (figure 3.8) taken on a sample deposited at 650°C indicates that 

the composition is uniform through the bulk of the deposit. Although oxygen was 

detected on the surface of the film, there was a negligible amount observed within the 

film. The ESCA analysis revealed two types of carbon species, one with a binding 

energy.around 283.2 eV characteristic carbon in carbides,[11, 12], and the other at a 

binding energy of 284.5 eV characteristics of carbon in a more neutral specie such as 

graphite. At 700°C most of carbon (~90%) was observed to be present as, while at 850°C 

most of the carbon (-70%) was present as a neutral specie (figures 3.9 and 3.10). 
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Figure 3.8 The Auger depth profile, taken on a sample of a-SiC deposited at 650°C 



Cl RVES FITTED TO 
EXPERIMENTAL DATA 

A 

Figure 3.9 ESCA spectrum for a sample of a-SiC deposited at 700°C, showing peaks 
corresponding to carbon as neutral and carbide species. 

BINDING ENERGY (EV) 

Figure 3.10 ESCA spectrum for a sample of a-SiC deposited at 850°C, showing peaks 
corresponding to carbon as neutral and carbide species. 
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3.2.4 Analysis of Mechanical Properties 

Figure 3.11 and Figure 3.12 represent plots of Young's modulus and hardness as a 

function of deposition temperature. In both cases, there appears to be an increase in these 

values as the deposition temperature is raised to 750°C. This increase parallels the 

increase in the carbon content in the deposits until the stoichiometric SiC composition is 

reached. At 750°C, the values for hardness and Young's modulus were close to 20 and 

200 GPa, respectively. These values are with a factor of 5 of the diamond used for the 

indenting process and attest well to the strength of these amorphous films. Above 750°C, 

the decrease in the values for both hardness and Young's modulus reflect the deviation 

from stoichiometry and the increased presence of carbon in a neutral charged state. 

3.2.5 Stress Analysis 

In the compositional regime where the films were silicon-rich, the deposits were observed 

in all cases to be tensile on the silicon substrates as evidenced by the presence of the 

crystallographically oriented cracks shown in figure 3.13. These cracks are believed to 

arise from the epitaxial precipitation of the excess silicon along a preferred direction of 

the underlying substrate. For films 7000A in thickness deposited at 800°C under constant 

conditions (15 seem DTBS, 200 mTorr), the stress values were near 100 MPa. Above 

800°C, the stress decreased rapidly achieving values near zero at 810°C and becoming 

compressive with values exceeding 250 MPa at 825°C. These changes in stress parallel 

the compositional changes and can be readily correlated to the carbon content of the 

films. At the constant deposition temperature of 825°C, a change in the reaction chamber 
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Figure 3.11 Plot of Youngs modulus of a-SiC films as a function of deposition 
temperature. 

TEMPERATE (C) 

Figure 3.12 Plot of hardness of a-SiC films as a function of depostion temperature. 
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pressure from 200 down to 100 mTorr was observed to alter the composition of the 

deposits from Si0,5C075  to Si0.42C0.58  due to an increased hydrocarbon removal at the 

higher pumping rate. This reduction in carbon content resulted in higher film stress 

values. 

At a deposition temperature of 850°C, with DTBS flow rates in the range of 5-

15sccm. and pressures in the range of 50 to 100 mTorr, free-standing tensile membranes 

4 cm in diameter were produced. 

Figure 3.13 Optical microscopic picture showing the crystallographically oriented micro 
cracks of a-SiC deposited on <100> Si substrate, with a magnification of 
110. 
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3.2.6 Optical Characterization 

3.2.6.1 Optical Transmission Characteristics: Figure 3.14 shows typical optical 

transmission spectrum for a micron thick film deposited on a quartz substrate under 

stoichiometric conditions. The optical transmission was studied between the wavelength 

of 400 and 850 nm. The percentage transmission around red wavelength of 6320A is of 

particular interest, since optical alignment instruments in x-ray lithographic process use 

optics around this wavelength. A minimum value of optical transmission of around 50% 

around 6320A is required for a micron thick film in order for carrying out the alignment 

process. Even though films deposited under stoichiometric conditions showed a 

transmission of around 50% for a micron thick film, these films exhibited high stress 

values and developed cracks during etching. The membranes that could be produced 

were high in carbon content and exhibited undesirable low optical transmission 

characteristics (<20% for films of one micron in thickness). 

3.2.6.2 Optical Band Gap Estimation: An useful parameter, optical band gap, can be 

estimated from a optical transmission spectrum as explained in chapter 3. Figure 3.15 

shows a plot of square root of (αhv)1/2  versus (1w). The intercept of the tangent to the 

portion of the curve showing sharp absorption edge, is the value of optical band gap, 

which came out to be 1.77 eV for the case a-SiC film. 
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Figure 3.14 Optical spectrum of a one micron thick a-SiC film depostied at 750°C. 

Figure 3.15 A plot to estimate the optical band gap for the sample depostied at 750°C. 
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3.2.7 On the Optimization of Stress and Optical Transmission 

As explained in the earlier section, films with desired level of optical transmission 

showed excessive tensile stress, whereas films with optimal stress values (around 100 

MPa) showed poor optical transmission. Several attempts were made to optimize either 

stress values at lower deposition temperature of around 700°C, or to improve optical 

transmission for films deposited at higher temperature of around 850°C, with which 

membranes could be produced. In the following sub-sections, such studies and their 

results are explained. 

3.2.7.1 Methods to Improve Optical Transmission by Adding Ammonia: The effect 

of adding NH3  to DTBS in order to alter the mechanical and optical characteristics of the 

films was investigated. Although no significant change in growth rate was noted as a 

function of NH3  flow rate for constant conditions of temperature (800°C), DTBS flow 

rate (30 sccm), and pressure (0.2 Torr), the C and N content of the deposits varied while 

the Si content remained fairly constant. It is apparent from figure 3.16 that the C content 

decreases rapidly while the N content correspondingly increases until they become nearly 

equal at equal DTBS and NH3  flow rates (30 sccm). A smaller compositional change is 

seen to occur when the NH3  flow rate (60 sccm) increases to twice that of DTBS. At 

higher flow rate ratios, the composition of the deposits remained fairly fixed with a N 

concentration close to 40% and a residual C content of nearly 20%. 
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AMMONIA FLOW RATE (seem) 

Figure 3.16 Composition as a function of NH3  flow rate for films deposited at a 
temperature of 800°C, pressure of 200 mTorr, and DTBS flow rate of 30 
sccm. 

N113 FLOW RATE (sccm) 

Figure 3.17 Variation of the optical transmission normalized to 1µm thick SiC films as a 
function of NH3  flow rates for films deposited at a temperature of 800°C, 
pressure of 200 mTorr, and DTBS flow rate of 30 sccm. 
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These SiCxNy deposits exhibited significant improvement in the optical transmission as 

shown in figure 3.17, but also caused the film stress to increase beyond acceptable levels 

for membrane formation as evidenced by the presence of cracks. The incremental 

addition of NH3  to DTBS caused the IR peak of the resulting deposits to broaden and 

shift to higher reciprocal wave numbers to reflect the presence of the Si-N vibrational 

mode centered at 830 cm-1  as shown in figure 3.18. 

Figure 3.18 IR spectrum showing the broadening of SiC peak due to increase in N 
content. 
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3.2.7.2 Methods to Optimize Stress Values for a-SiC Films Deposited at 750°C: 

Since attempts to improve optical transmission by adding ammonia failed, following 

methods were tried to control the stress of the deposited stiochiometric films, since the 

optical transmission was maximum for such films. 

(1) SiC films were deposited on wafers already coated with BN films of around 1500 A. 

The idea is to compensate for the mismatch of the thermal coefficient of expansion 

between Si wafers and SiC films. BN has a negative value of thermal coefficient of 

expansion with respect to Si, thus always resulting in compressive stress that could 

compensate for tensile stress of SiC. 

(2) SiC films were deposited on wafers already coated with Si02  films of around 4000 A. 

Here, the aim was to eliminate any effect that could result in increse in intrinsic stress due 

to defects that were formed between Si-SiC interface. 

(3) SiC films were deposited at 750°C along with 15 sccm of Borne complex and 200 

sccm of NH3. This attempt was to incorporate boron and nitrogen in the SiC films to 

relieve the stress due to the bigger size of such atoms. 

(4) Acetylene was added to DTBS at a deposition temperature of 650°C to increase the 

carbon composition that could result in stoichometric SiC and at the same time thermal 

contribution to the stress could be minimized. 

(5) SiC films were deposited at 750°C on Si wafers that were baked at 1000°C for 10 

miniutes in 200 sccm H2  environment. Here, the aim was to remove the native oxide on 

Si wafers in-situ [50] so that this could result in lower interface defects. 
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All these attempts did not reduce the stress to the required level of 100 to 200 MPa. 

Therefore attempts to make membranes out of these films also failed. 

(6) In an another method samples deposited at 750°C was annealed for one hour at 

1000°C. In this case, annealing was expected to releave intrinsic bulk stress. However, 

the annealing caused the sample crack heavily in crystallographic direction. Subsquent x-

ray diffraction study confirmed that, the sample was crystallized due to annealing. The x-

ray diffraction spectrum for the annealed sample is shown in the figure 3.19. 

Z00429.. PAW  

SIC ANNEALED AT 1050 750 PREP 1MICRON 

2* Angle of Incidence 

Figure 3.19 X-ray diffrction spectrum of a-SiC sample that was depostied at 750°C and 

annealed at 1000°C in vaccum showing micro-crystallinity. 
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(7) Two layers of SiC were deposited on Si wafers. The first layer was depostied at 

900°C which always resulted in high compressive stress and the second layer was 

deposited at 750°C on top of it. Several experiments were done by depositing varying 

thickness of underneath layer. The aim was to reduce the overall bulk stress. It was 

interesting to note that the overall bulk stress was reduced as the thickness of the bottom 

layer was increased. From this it was concluded that SiC films deposited at 750°C have 

high intrinsic stress and that the interface growth defects or mismatch in the coeffeicient 

of thermal expansion did not contribute that much to the stress value. It is beleived that 

low density of amorphous film is the main reason for such intrinsic stress. 

3.2.8 Electrical Characterization Results of a-SiC Films 

Figure 3.20 shows a high frequency C-V plot for a a-SiC film deposited at 850°C, 100 

mTorr. The study was made on the sample deposited under optimized condition so as to 

produce membrane. The plot shows that the film exhibits insulating property. The 

dielectric constant for this sample was calculated from the value of accumulation 

capacitance. 

The dielectric constant E was measured using the formula 

(3.8) 

where εsic  permittivity of silicon carbide which is equal to εo * s, o is permittivity of 

free space and Er  is the dielectric constant of the film, 

Csic  is the accumulation capacitance, 
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A is the circular area of substrate-film-metal structure with 500µm in diameter, 

d is the thickness of the film,which is mesured as 4109 ± 210 A. 

Value of Er  thus evaluated came out to be in the range of 9.4 to 10.7 when measured 

across the wafer. Flat band voltage was estimated from the plot, corresponding to the flat 

band capacitance (CFB). CFB  was calculated from the expression [47]: 

(3.9) 

where 	εsic and εSi  are the permittivity of the film and substrate respectively. 
d 	is the thickness of the film. 
k Boltzman constant. 
T temperature in °K. 
ppo  substrate doping density which is taken as 1016  cm-3. 
q 	charge of electron. 

Total flat band capacitance for 500 µm came out to be 39.6 pF and estimated VFB  came 

out to be -3.4 V, indicating presence of substantial amount of fixed charges. 

In order to obtain the information about trapped charges in the film, temperature bias 

stressing experiment was performed as explained in the previous chapter. C-V plot 

obtained after the stressing experiment is shown in figure 3.21. Curve (1) is for sample 

without temperature bias stressing. Curve (2) is for sample with temperature bias 

stresssing and for both positive and negative bias polarity. The curve did not shift for 

negative bias. As noted by Nicollian and Brews [47], this showes that the first moment 

of oxide trapped charged is reduced. Gate bias polartiy has no effect. The retracing of 

the C-V curve after both positive and negative bias stressing clearly indicated the 

dominating trapped charges in the bulk of the film. The trapped charge density was 
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estimated from the product of shift in the flat band voltage and the accumulation 

capacitance per unit area. 

Shift in the flat band voltage (∆VFB) due to temperature-bias stressing (165°C, 30 min) 

AVFB  = 0.6V 

Therefore, the trapped charges = (∆VFB) * (εsic d) == 1.391 C 

Trapped charge density = 0.869 X 107  cm-2. 

In an attempt to estimate the interface behavior, quasi static C-V measurement was 

performed using HP 4140B. However, no meaningful C-V curve could not be obtained 

due to the highly leakage current through the bulk. Hence, no interface properties could 

be investigated under the presence circumstances. The dielectric breakdown voltage was 

found to be more than 250 MV/m. However, exact value could not be estimated due to 

the thickness of the film. 
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Figure 3.20 High frequency C-V plot for Si-SiC-Al (MIS) structure. The SiC film was 
deposited at 850°C, 100 mTorr. The Al dot was 500 µm in diameter. 
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Figure 3.21 High frequency C-V plot for the MIS structure for (I) the sample without 
temperature bias stress (2) after the temeperature bias stress was performed. 
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3.3 Results and Discussion on Characaterization Studies of Crystalline SIC Films 

As described in the earlier sub-sections, there exists a tradeoff in controlling the stress 

and the optical transmission of amorphous SiC films synthesised. Therefore, a study 

towards the synthesis of crystalline SiC was pursued. Crystalline SiC films were grown 

on Si <100> substrates using dichlorosilane and acetylene as precursors. The following 

sub-sections will describe the growth kinetics and characterization results for these films. 

3.3.1 Growth Kinetic Study 

The deposition rates were determined as a function of processing parameters using 

precursors flow rates of 10 to 50 sccm, pressures in the range of 0.1 to 0.75 Torr, and 

temperatures in the range of 950 to 1050°C. The growth kinetics with respect to 

temperature was analysed first by choosing the flow rate of precusors arbitarrily to 50 

sccm. The temperature range was decided by decompositon rate of dichlorosilane and the 

upper limit of the LPCVD furnace. Selecting the optimum deposition temperature, the 

growth kinetics with respect to precursor flow rates and precursor flow ratio were 

analysed. 

3.3.1.1 Growth Kinetics with Respect to Temperature: Figure 3.22 shows the 

variation in deposition rate as a function of deposition temperature for constant precursors 

flow rate of 50 sccm each, and for a constant chamber pressure of 0.2 Torr. The 

deposition rate followed an Arrhenius behavior between 950 to 1025°C, with an 

activation energy of 58 kcal/mole (~2.517 eV/atom). This activation energy is higher 
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than that of the observed activation energy for the synthesis of amorphous SiC films, but 

close to the reported values by others [8] for the synthesis of crystalline SiC. Above 

1025°C, the depostion rate was found to decrease due to mass-transfer limitation. At the 

deposition temperature of 950°C, the film exhibited the presence of excess silicon. The 

stress of the film under this deposition condition was found to be slightly compressive. At 

all other deposition temperatures, the film showed excess carbon ranging from 51 to 55%. 

The stress of films under these conditions could not be determined accurately due to 

heavy deposition of material, resulting in cracks. 

3.3.1.2 Growth Kinetic Study with Respect to Flow of Precursors: The growth rate 

study with respect to total flow, ranging from 10 sccm to 50 sccm for both precursors, 

with flow ratio equal to one, was done at a deposition temperature of 1000°C, and with 

chamber pressure of 200 mTorr. The variation of deposition rate with respect to the flow 

rates is shown in the figure 3.23. The observed linear dependency for flow rates above 10 

sccm explains the Langmuir-Hinshelwood reaction mechanism, if the flow rate is 

expected to exhibit the same dependency as that for pressure, as explained elsewhere. 

The carbon composition was in the range of 50 to 68% for these flow rates. These carbon 

rich films showed poor optical transmission and at the same time high stress values, in 

the range of 400 - 500 MPa. 
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Figure 3.22 Variation of deposition rate as a function of reciprocal temperature for 13-
SiC. 

Figure 3.23 Variation of deposition rate as function of precursors flow rate for β-SiC, at 
a deposition temperature of 1000°C, chamber pressure of 200 mTorr and 
precursors flow ratio 1:1. 
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In the flow ratio study, which was performed with a constant flow of 20 sccm of 

dichlorosilane (which was chosen for optimum total depositon, so that, stress could be 

measured properly), and under the above mentioned deposition temperature and pressure, 

the deposition rate follwed a linear dependency on acetylene flow rate. This is shown in 

figure 3.24. 

Figure 3.24 Variation of deposition rate as a function of precursors flow ratio for β-SiC. 

3.3.2 Characterization Crystalline SiC Films 

3.3.2.4 Infra-red Spectroscopic Studies: Figure 3.25 shows a typical IR spectrum of 

SiC sample deposited at 1000°C, with dichlorosilane and acetylene flow of 20 and 5 sccm 

respectively, under a chamber pressure of 500 mTorr. Such spectrum showed a peak 
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around 790 cm-1, like that of one for amorphous SiC films, confirming the presence of 

Si-C vibration mode. Here also, the absence of hydrogen in the bulk was confirmed by 

noting the fact that no observable peak centered around 2100 or 2300 cm-1  was present. 

3.3.2.5 X-ray Diffraction Studies: All x-ray diffraction studies performed on these 

samples showed a strong peak at 35,3°  showing the presence of <Ill> oriented β-SiC 

films. Figure 3.26 shows such a typical spectrum deposited at 1000°C, with equal 

precursors flow rate. 

3.3.3 Composition Analysis 

The ESCA analysis were performed on all samples deposited under conditions explained 

in previous sections. When flow ratio of precursor was equal to one, all samples showed 

excess carbon content between 51 to 55%, for deposition temperatures of 975 to 1050°C. 

The carbon composition was sharply dependent on the flow ratio of precursors as shown 

in figure 3.27. The stoichiometric composition could be achieved for a dichlorosilane to 

acetylene flow ratio of 4:1. Once the flow ratio was kept constant at 4:1, the deposition 

temperature has no effect in the composition, as shown in figure 3.28. For 20 sccm of 

dichlorosilane, and for deposition temperature of 1000°C, with a chamber pressure of 200 

mTorr, film composition was found to be near stoichiometry, for the flow of 5 sccm of 

acetylene. 
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Figure 3.25 FTIR spectrum of a β-SiC sample deposited at 1000°C, with dichlorosilane 
to acetylene flow ratio of 4:1, and chamber pressure of 200 mTorr. 
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Figure 3.26 X-diffraction spectrum of a β-SiC sample deposited at 1000°C, with 
dichlorosilane to acetylene flow ratio of 4:1, and chamber pressure of 200 
mTorr, showing a strong peak corresponding to <111> β-SiC orientation. 
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ACETYLENE FLOW RATE(sccm) 

Figure 3.27 Variation of Si-C percentage composition as a function of acetylene flow 
rate. 

Figure 3.28 Variation of percentage composition of Si-C as function of deposition 
temperature. 
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3.3.4 Stress Analysis 

It was found that the stress of films deposited with equal precursor flow rates were all 

high in the range of 500 to 700 MPa irrespective of deposition temperature. The lowest 

stress value was exhibited by stochiometric film, deposited at 1000°C, with 

dichlorosilane and acetylene flow of 20 and 5 sccm each, and with chamber pressure of 

200 mTorr. However, that stress value was around 400 MPa which is still a high value to 

make membrane. 

The experiments performed by varying the pressure, with chamber temperature of 

1000°C, 20 sccm of dichlorosilane and 5 sccm of acetylene revealed that increasing the 

chamber pressure resulted in decreased stress values, 	without change in film 

composition. Under the chamber pressure of 500 mTorr, films with stress values of 

around 250 MPa could be achieved. With this stress values, membrane could be 

produced. 

Even though, membranes could be made under the above mentioned conditions, the 

reproducibility of film stress was difficult due to the fact that the stoichiometry of the 

film is sensitive to the acetylene low flow rate of around 5 sccm. 

It was aimed to reduce the stress of the film further for other applications. In this 

view, an entire kinetic study was performed by varying the deposition temperature from 

950 to 1050°C, with chamber pressure of 500 mTorr, keeping the dichlorosilane and 

acetylene flow at 20 and 7.5 sccm respectively. 	It was interesting to note that the 

composition of the films were remain unchanged for different deposition temperatures 

ranging from 950 to 1025°C, keeping other conditions same, but at the same time, stress 
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values showed a decreasing trend with increasing deposition temperature. Figure 3.29 

shows the variation in stress with respect to the deposition temperature. For the 

deposition temperature of 1000°C, the stress values were minimal of around 200 MPa. 

Further increase in temperature caused severe depletion effects and thereby restricting the 

advantage of depositing at higher temperatures. 

Thus optimum deposition conditions to produce SiC membranes were determined. It 

is emphasized at this point, that the stoichiometric composition is critically depend on 

acetylene flow which is between 5 and 7.5 sccm. 

3.3.5 Surface Morphological Studies 

Surface morphology was analysed by atomic fouce microscopy for a sample depsoited 

under stoichiometric conditions showed an average surface roughness of 6nm. This is 

shown in the figure 3.30. 

Generally, crystalline SiC films show large surface roughness of about 50 nm. 

Surface smoothness is a key issue from x-ray mask membrane point of view, since rough 

surface will scatter x-ray radiation. However, this synthesizing process produced films 

with above mentioned average roughness which is acceptable in x-ray lithography. This 

also indicates the superiority of the process. 
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Figure 3.29 Variation in the stress of β-SiC films as a function of deposition temperature. 

Figure 3.30 Atomic Force Microscopic picture showing the surface morphology of a 
β-SiC sample deposited at 1000°C, with dichlorosilane and acetylene flow 
rate of 20 and 5 sccm respectively, and under the chamber pressure of 500 
mTorr. 
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3.3.6 Optical Characterization 

3.3.6.1 Optical Transmission Characteristics: Figure 3.31 shows typical optical 

transmission spectrum for a 1.2 µm thick sample with stoichiometric Si-C composition. 

It is evident from the figure that such samples showed desired optical transmission of at 

least 50% around 6320 A of wavelength. Films with excessive carbon content of more 

than 50%, showed poor optical transmission. Membranes with 4 cm in diameter could be 

produced consistently with desired optical transmission. 

3.3.6.2 Optical Band Gap Estimation: A plot used to estimate the optical band gap is 

shown in figure 3.32. This plot is for the sample for which optical transmission was 

depicted in the previous figure. The estimated optical band gap came out to be 1.92 eV 

which is close to the accepted literature value of 2.01 eV at room temperature. 

3.3.7 Electrical Characterization 

Stoichiometric crystalline SiC samples were found to behave like semiconductor. This 

was evident from the I-V analysis performed on a substrate-SiC-metal structure. Both, 

forward and reverse current-voltage characteristics were measrued at temperatures from 

20 to 220 °C instep of 50 °C. Such I-V curves are shown in figure 3.33 and 3.34. The 

systematic change in the I-V characteristics at different temperatures clearly indicate the 

diode behavior. This observation could be correlated to the earlier studies performed on 

such samples [46] indicating an intrinsic n-type conductivity for crystalline SiC (~ 10 6  

cm-3
) which was grown on p-type substrate. Ideality factor was estimated from forward l- 
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V curve and came out to be 4.03 at 20°C, and as 4.17 at 120°C, in the diffusion current 

dominating regime. This structure also exhibited high leakage current density in the 

order of 0.7 A cm-2. This is attributed to the interface defects that are developed due 

lattice mismatch between the film and the substrate. 

Figure 3.31 Optical transmission spectrum for 1 µm thick β-SiC sample deposited at 
1000°C, with dichlorosilane and acetylene flow rates of 20 and 5 sccm 
respectively, and under chamber pressure of 200 mTorr. 
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Figure 3.32 A plot to estimate the optical band gap for the sample deposited under the 
conditions mentioned in figure 3.30. 

Figure 3.33 Forward current-voltage characteristic of silicon-β SiC-metal structure at 
various temperatures ranging from 20 C (1) to 220°C (5) in step of 5 °C. 
The film was deposited under conditions mentioned in figure 3.31. 
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Figure 3.34 Reverse current-voltage characteristic of silicon-β SiC-metal structure at 
various temperatures ranging from 20°C (1) to 220°C (5) in step of 50°C. 
The film was deposited under conditions mentioned in figure 3.31. 
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CHAPTER 4 

CONCLUSIONS 

This project demonstrated the development of a unique low pressure chemical vapor 

deposition process for fabricating amorphous and crystalline silicon carbide films using 

safe chemicals. The initial goal of this project, which was aimed at developing a process 

for synthesizing amorphous SiC films that can be used to produce high quality mask 

membranes in x-ray lithography, was achieved. A single precursor, ditertiarybutylsilane 

was used to synthesize amorphous films in the temperature range of 600 to 850°C. This 

precursor is non pyrophoric, as against conventional precursors like silane that are used to 

synthesize silicon carbide films. The precursor is also a source for both silicon and 

carbon. The synthesizing processes rendered films with high degree of thickness 

uniformity (within ±5% along the surface of the wafer), and with good adhesion with the 

substrate. 

The infrared spectroscopic studies of the deposited samples confirmed the presence of 

a Si-C vibrational mode around 790 cm-I  in all cases. In addition, absence of hydrogen in 

the films was also confirmed, which indicates the superiority of these deposits over films 

synthesized by conventional plasma assisted CVD or glow discharge methods. The x-ray 

diffraction measurements that were conducted to verify the amorphous nature of the 

deposit showed that films deposited below 850°C were amorphous in all cases. The 

results of the elemental composition analysis performed on these samples showed that the 

silicon and the carbon content could be controlled by the deposition temperature and that 

87 
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in the deposition temperature range of 625 to 750°C the composition of the deposits 

changed progressively from slightly silicon rich (55 ± 3%) to slightly carbon rich (51 ± 

3%). Above 750°C, there was a rapid increase in the carbon content from the near 

stoichiometric value to about 75%-C at 850°C. The Auger depth profile taken on these 

samples indicated that the composition was uniform through the bulk of the deposit. 

Also, it was found that, above 800°C, lowering the chamber pressure resulted in 

decreased carbon content of the deposits. The stoichiometric control (which is generally 

critical in the synthesis of amorphous films) was well established for this process. 

High frequency C-V characterization conducted on a-SiC samples showed that the 

films exhibit insulating properties. The dielectric constant for these films was measured 

to be 10.1 ± 0.5. Such films also showed a breakdown voltage of 2.5 X 106  V cm'. 

Aforementioned quantities were in close agreement with values reported by others [2, 

48]. From the temperature bias stress studies, the trapped charge density was estimated to 

be 0.869 X 107  cm-2, which is at least twice an order of magnitude less than that for SiO2  

films synthesized by CVD methods. 

Stress analysis performed on the stoichiometric amorphous films showed high tensile 

stress of 700 ± 50 MPa. It was found that to obtain free standing membranes film stress 

values of about 100 MPa were required. This was a major challenge since increasing the 

carbon content in the film while reducing the film stress also lowered the optical 

transmission. Experiments were conducted that led to a set of optimum processing 

parameters for minimizing optical absorption (to ~20% transmission), due to excess 

carbon content, while maintaining the necessary stress level of 100 MPa. To further 
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minimize stress and optical absorption, microcrystalline / polycrystalline SiC films were 

prepared and investigated. An improvement in transmission to a valueof 50% (at only 

200 ± 50 Mpa) was obtained at the expense of surface smoothness. 

Polycrystalline SiC films were grown on Si (100) substrates using dichlorosilane and 

acetylene as precursors at 950 to 1050°C. The carbon content in the film was found to 

increase with deposition temperature, keeping the flow ratio of precursors equal to one. 

The carbon composition was also found to be sharply dependent on acetylene flow, for 

constant deposition temperature and pressure. Stoichiometric films were achieved for a 

dichlorosilane to acetylene flow ratio of 4:1. For that flow ratio, the stress of the 

deposited film was found to decrease as the deposition temperature was increased from 

950 to 1050°C. The IR spectroscopic studies conducted on all the samples confirmed the 

presence of a strong peak due to Si-C coupling and the absence of Si-H bond vibrations. 

X-ray diffraction confirmed the growth of β-SiC with <111> orientation in all the cases. 

Atomic force microscopic studies conducted on a stoichiometric sample deposited at 

1000°C revealed an average roughness of about 6 nm for 1µm thick film with 50% 

transmission, which is acceptable for lithographic processing for 0.l 	resolution. 

Forward and reverse current-voltage relationships were studied for a substrate-film-

metal structure at different temperatures ranging from 20 to 220°C in step of 50°C. 

Measurements revealed that the structures had diode characteristics with ideality factors 

ranging from 4.03 at 20°C to 4.17 at 120°C. The devices had high leakage current 

densities of about 0.7 A cm-2  at 20°C. Such high leakage current densities may be 

tolerable in high power devices. The fact that the device avalanche breakdown voltages 
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were more than 80 V indicates that these films could be employed as high voltage / high 

power devices. 

The fabrication parameters could be further studied and optimized to develop SiC thin 

film structures for low power electrical devices. Suggested investigations that might be 

pursued to achieve low power high quality device structures are listed below: 

(1) A study could be pursued to reduce the leakage current through the device. Such 

high leakage current is attributed to interface defect densities that are formed due to the 

lattice mismatch of SiC (4.3 A) and Si (5.43 A) and stacking faults that are formed 

during the film growth, thus resulting in trapping centers at the interface. The 20% lattice 

mismatch has to be brought down to at least 14% [49] in order to reduce the leakage 

current appreciably. This might be achieved in several ways. One method is to grow a 

carbonized layer of Si with a deposited SiC film on top of it. This could be accomplished 

by first in-situ cleaning of the native oxide layer of the substrate at 1000°C, in H2  ambient 

for 10 min, and then forming a pitted carbonized layer with acetylene for 5 min [50], 

followed by the growth of a stoichiometric SiC film on top of it by the method developed 

in this study. The lattice mismatch could also be varied by directly depositing SixC1-x 

layers first and progressively changing x with thickness until the stoichiometric value is 

reached. This could be easily achieved by changing the acetylene flow values as done in 

the process developed in this research. Another approach that could be tried would be to 

use Si substrates with substrate surface orientations either 1°  to 6°  off-axis from the (100) 

plane or 2°  to 4°  off-axis from (111) plane, as reported by H.P Liaw et al. [21]. 
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Another approach that is worth investigating is to employ substrates other than Si. 

From figure 4.1, which shows the lattice constants and bandgaps of column IV, III-V, and 

II-VI semiconductors [51, it can be inferred that materials like ZnS, AlP, GaP, and 

associated temeary compounds might be alternate substrate choices. Such materials 

might be grown on low cost Si (which has ~0% lattice mismatch with the above 

mentioned compounds). By grading their composition, the lattice constant for the top 

layers could be made to match SiC. It is interesting to note that the lattice constant of 

sapphire (A1,03 ) is within 20% of SiC [49]. 

Figure 4.1 Bandgap versus lattice constant data for the column IV, III-V, and II-VI 
semiconductors. (After reference 51). 

(2) Diode structures based on doped p and n-type SiC films should have lower leakage 

currents than the SiC/Si hetrojunction structures, since SiC has larger band gap (2.2 eV) 

[48] than that of Si (1.1 eV). In-situ p and n-type doping could readily be achieved by 
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incorporating additional precursors such as PH3  for phosphorus and B.H6, and B(CH3)3  

for boron doping. Doping by ion implantation might also be possible, with crystal lattice 

damage removed by annealing. 

(3) The ideality factor might be lowered by doping the deposited SiC films, i.e., 

introducing phosphorus at the film/substrate interface. The effect of doping levels on 

interface stress and surface state density could be studied. 

(4) The voltage-current relationship of diode structures made with doped a-SiC layers 

deposited on Si substrates could be studied. Such doped a-SiC film junctions could be 

used in the fabrication of high temperature bipolar transistors [52]. 

(5) Similarly doped a-SiC films on a-Si layers could be studied. a-Si/a-SiC superlattice 

structures could possibly be high quality solar cells [53]. a-Si layers can be readily grown 

at temperatures around 850°C using dichlorosilane alone. Doped a-SiC layers could be 

grown using DTBS and additional precursors. 

In conclusion, this research has shown that the required fabrication processes for the 

growth of SiC thin film layers allow for a variety of amorphous and polycrystalline thin 

film structures to be constructed. Thus it should be possible to fabricate many different 

types of novel electrical and optoelectronic devices utilizing the properties of the wide 

bandgap material silicon carbide. 
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