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ABSTRACT 

AUTOMOBILE AIR BAG INFLATION SYSTEM 
BASED ON FAST COMBUSTION REACTIONS 

by 
Yacoob Tabani 

Current automobile air bag inflator technology is complex, expensive and 

environmentally unsafe. A new and novel air bag inflator based on fast combustion 

reactions of methane-oxygen mixtures has been developed and studied. The 

thermodynamics and mass flow parameters of this new inflator have been modeled and 

found to be in agreement with experimental results. 

The performance of the fast combustion inflator was evaluated in terms of 

pressure-time relationships inside the inflator and in a receiving tank simulating an air 

bag as well as the temperature-time relationship in the tank. 

In order to develop this fast combustion inflator, several critical issues were 

studied and evaluated. These included the effects of stoichiometry, initial mixture 

pressure and extreme hot and cold conditions. Other design and practical parameters, 

such as burst disk thickness and type, ignition device, tank purging gas, concentration of 

carbon monoxide produced and severity of temperature in the tank were also studied and 

optimized. Several inflator sizes were investigated and found to meet most of the 

requirements for a successful air bag inflator. 

A theoretical and integrated model has been developed to simulate the transient 

pressure and temperature as well as the mass flow rate from the inflator to the tank. The 

model is based on the change in the internal energy inside the inflator and the receiving 



tank as the mass flows from the inflator to the tank. The model utilizes the Chemical 

Equilibrium Compositions and Applications code developed by NASA to estimate the 

equilibrium conditions in the inflator. A large volume of experimental results made at 

different conditions were found to be in agreement with the integrated model. 

The fast combustion inflator developed during this research is simple in principle 

and construction and is environmentally attractive. 
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CHAPTER 1 

INTRODUCTION 

1.1 Objective 

The objective of this dissertation is to develop and study a new automobile air bag 

inflator based on fast combustion reactions of methane-oxygen mixtures. The combustion 

is performed by forced ignition using an electric match as a source of ignition. 

The performance of the inflator is evaluated in terms of pressure-time 

relationships inside the inflator and in a receiving tank simulating an air bag as well as the 

temperature-time relationship in the tank. Several important issues related to inflator 

design are studied and evaluated. These include the effects of stoichiometry, initial 

mixture pressure and extreme hot and cold conditions. Other practical issues, such as the 

concentration of carbon monoxide produced and the severity of temperature in the tank 

are also studied and optimized. 

	

A theoretical model has been developed to simulate the experimental results and 

to calculate the mass flow rate from the inflator to the tank. The model is based on  the 

change in the internal energy inside the inflator and the tank as the mass flows from the 

inflator to the tank. 

In this chapter, some general information about air bags is given first. This 

includes the safety aspect, brief history, elements and types of air bags as well as the types 

and design requirements of air bag inflators. This is followed by a discussion on current 

commercial inflator system and the novel combustion approach of this research. In the 

1 
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end, a description of previous relevant work in this field is given and the present work is 

discussed. 

1.2 General Information about Air Bags 

Automobile safety is among the major concerns in present day society. Present day 

automobiles are equipped with a variety of passive safety systems. These systems do not 

require any intervention of the occupant to be activated. Figure 1.1 shows different types 

of passive safety systems. Air bags belong to the class of passive restraint systems or 

supplemental restraint systems (SRS). 

Passive Safety Systems 

Passive Restraint Systems Others 

Reinforced Occupant Compartment 
Collapsible Steering Column 

Head Restraints 
Safety Glass 

Air Bags 
Motorized 

Belts 

Figure 1.1 Types of passive safety systems 

Air bags or supplemental inflatable restraints (SIR) are designed to supplement 

the protection offered by seat belts. Although seat belts should always be used as the 

primary means of protection, air bags .are necessary because belts allow some occupant 

movement as they pull tightly around their reels. In addition, there is some stretch 

designed into seat belts to keep,  people from stopping abruptly in crashes [1]. Because of 

this combination of looseness and stretch, belted front-seat occupants can still move 
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forward enough in crashes to hit the steering wheel, instrument panel or windshield. Air 

bags reduce the level of the chest's and head's acceleration due to inertia incurred by the 

occupant during the collision. The air bags perform this function by creating energy-

absorbing buffers between the occupants and the hard interior surfaces of vehicles [2]. 

Most air bags are designed to inflate in crashes equivalent to hitting a solid barrier 

at 10-12 miles per hour (mph). Mercedes and BMW use different inflation thresholds 

depending on whether or not people are using their seat belts. In these cars, thresholds of 

10-12 mph are used for unbelted occupants but thresholds are higher (about 16 mph) for 

people with belts because they are unlikely to be injured in crashes at slower speeds [2]. 

1.2.1 Safety Aspect of Air Bag 

Air bags have proven to be highly effective in reducing fatalities from frontal crashes. 

Frontal crashes result in 64 percent of all driver and right front passenger fatalities [3]. As 

of year-end 1996, air bags had inflated in about 1.2 million vehicles involved in crashes. 

In most of these crashes, there were only driver side air bags, but in about 150,000 

vehicles passenger side air bags also inflated. Driver side air bags reduce deaths by about 

14 percent in all kinds of crashes. Deaths in frontal crashes where air bags have inflated 

are reduced by about 26 percent among drivers using seat belts and by about 32 percent 

among drivers without belts. Passenger side air bags are reducing deaths among front-seat 

passengers by about 11 percent in all kinds of crashes. Deaths in frontal crashes where air 

bags have inflated are reduced by about 15 percent among right front passengers using 

their belts and about 22 percent among passengers without belts [4]. The National 

Highway Traffic Safety Administration (NHTSA) estimates that, between 1986 and 
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June 1 , 1997, air bags have saved 2,050 drivers and passengers (1,830 drivers and 220 

passengers) [9]. Based on current levels of effectiveness, air bags will save more than 

3,000 lives each year when all the passenger cars and light trucks and vans are equipped 

with dual air bags. This estimate is based on the current safety belt usage rate of about 68 

percent [3]. 

At the same time, air bags are causing fatalities in some situations, especially to 

children. As of June 9, 1997, sixty seven deaths reportedly have been caused by air bags 

inflating in low severity crashes. These deaths include 24 adult drivers, 3 adult passengers 

(a 98-year-old woman, an unbelted 57-year-old man, and an unbelted 66-year-old 

woman), 30 children between the ages of 1 and 9, and 10 infants in rear-facing restraints 

[4]. Most of these people are believed to be unbelted. 

The energy required to inflate air bags can injure people on top of, or very close 

to, air bags as they begin to inflate. In the first few milliseconds of inflation, the forces 

can seriously injure anyone struck by an inflating bag. Most air bag deaths involve people 

who were not using belts, were improperly belted, or were positioned improperly. 

Unbelted people, especially passengers, are at risk because they are likely to move 

forward if there is hard braking or other violent maneuvers before a crash. Then they can 

get too close to their air bags and be injured. Improperly positioned people at risk include 

drivers who sit very close to the steering wheel (less than 10 inches away) and infants in 

rear-facing restraints positioned in front of passenger air bags [2]. 

In March 1997, the National Highway Traffic Safety Administration (NHTSA) 

released a new regulation that will allow automobile manufacturers to install air bags in 
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new cars that deploy with 20 to 35 percent less force than the current air bags. Air bags 

now deploy at up to 200 mph [5]. 

The National Highway Traffic Safety Administration recognized that while  

depowered air bags would provide immediate benefits in a number of situations, they 

would not fully solve the problem of adverse effects from air bags and  could also reduce 

protection to unbelted occupants in higher speed crashes. The ultimate solution to the 

problem of adverse effects from air bags is the implementation of smart air bags. Smart 

air bags will reduce the injury risk even among people who have moved forward before 

their air bags inflate. For example, sensors will detect rear-facing infant restraints and 

automatically switch off air bags on the passenger side. Rates of air bag inflation will be 

tailored to crash severity so inflation forces will be lower in less serious crashes than in 

ones at higher speeds. Smart air bags could even recognize people's positions just before 

inflation and reduce the force if anyone is in a position to be harmed by the air bag [2]. 

Air bag-equipped vehicles represent an increasing proportion of cars on U.S. 

roads. In 1990, less than 2 percent of cars on U. S. roads were equipped with air bags [6]. 

As of July 1, 1997, about 32 percent (62 million) cars in the United States were equipped 

with driver side air bags. About 17 percent (33 million) also had passenger side air bags 

[9]. 

1.2.2 Brief History of Air Bag 

Historical references to  air bag concepts date back to the 1920s [7]. Patents for air bags 

began to be issued in the 1950's [1]. General Motors was the first domestic automobile 

manufacturer to offer air bags Commercially. Driver side air bags were optional on 
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several of General Motors's high end vehicles starting with the 1974 model year [7]. 

Mercedes was the first to reintroduce air bags, offering them for sale in the 1984 model 

year. They were optional on the driver's side on several models and became standard 

equipment across the line two years later [8]. 

Air bags received serious public attention in the late 1980s. Yet, in a relatively 

short period of time, the market for air bags has experienced extremely rapid growth [7]. 

In September 1993, the U.S. Congress and the National Highway Traffic Safety 

administration adopted a rule requiring air bags for both driver and the front-seat 

passenger in all passenger cars by 1998 and in all light trucks and vans by 1999 [13]. 

1.2.3 Basic Elements of an Air Bag System 

An automobile air bag system consists of three main elements or subsystems : the crash 

sensing equipment, the inflator and the inflatable bag. These elements are shown in 

Figure 1.2. 

 Inflator Crash Sensing Equipment 

Figure 1.2 Basic elements of an air bag system 

When a crash occurs, the rapid deceleration of the car causes the sensors to supply 

a firing signal to a pyrotechnic squib. The squib ignites the propellant in the inflator and 

the expanding gas deploys and inflates the air bag. The inflator is responsible for 

deployment of the air bag to a prescribed pressure and temperature over a period of up to 

approximately 100 msec [10]. 
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1.2.4 Types of Air Bags 

Three types of air bags are used in commercially available vehicles : the driver side and 

the passenger side air bags for frontal crashes (defined as initial and/or principal impact at 

10 to 2 o'clock position), and the side impact air bags for side crashes. Figure 1.3 shows 

the different types of air bags. 

Types of Air Bags 

Frontal Crashes Side Crashes 

Driver- 
Side 

Air Bag 

Passenger-Side 
Air Bag 

Side Impact 
Air Bag 

Figure 1.3 Types of air bags 

The frontal impact air bags are designed to absorb the vehicle occupant's kinetic 

energy during a crash so that the occupant comes to rest without sustaining injury. Energy 

absorption occurs when the occupant contacts and compresses the air bag, forcing gas to 

escape the bag. The side impact air bags, on the other hand, are not intended to absorb 

energy but to exert force and move the occupant away from the actual crash location. Side 

impact air bags are designed to protect occupants' chests, and they are likely to provide 

some head protection, too. Some side air bags are designed specifically to protect the 

head [2]. 
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1.2.4.1 Driver Side Air Bag : Driver side air bags are stored in the hub of the steering 

wheel. Driver side air bags inflate more quickly than its companion passenger side air 

bag. This is a design requirement due to the shorter distance between the driver and the 

steering column (versus passenger and the instrument panel). The entire inflation 

sequence takes place within 30 - 45 msec. Typical driver side air  bags measure 

approximately 714 mm ( 28 in) in diameter, are 152 mm (6 in) deep [7]. A driver side air  

bag usually has a volume of approximately 60 - 70 liters when inflated to its normal 

pressure of 2 to 3 psig and is roughly spherical in shape [11]. 

Driver side air bags are coated (impermeable) to increase fabric slip, facilitate 

deployment, protect the nylon fabric from hot gases, and precisely control gas escape 

during deployment. If for example, gas were to escape excessively, pressure in the  bag 

would be lowered and inflation times would be extended, reducing the effectiveness of 

the cushion during the ride-down sequence [7]. 

1.2.4.2 Passenger Side Air Bag : Passenger side air bags are mounted near the top of the 

instrument panel. The passenger side air bags must be designed to protect a broad range 

of occupant sizes and ages. In addition, the area covered by passenger side systems is 

more than twice that of the driver side units, and the distance between the dashboard and 

a passenger's head is twice that between the driver's head and the steering wheel. Finally, 

whereas drivers generally sit in the same position, front seat passengers ranging in size 

from children to adults ---- sit in many different positions. Passenger side air bags are 

fully inflated in 50-65 msec. Passenger side air bags measure approximately 280 mm (11 

in), 100 mm (4 in) and 130 mm (5 in) in width,  depth and height respectively [7]. A 
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passenger side air bag usually has a volume of about 150 liters when inflated to a pressure 

of 1 to 2 psig and is roughly tear-drop shaped [11]. 

Passenger side air bags are frequently left uncoated (permeable) because they do 

not have to inflate as rapidly and because the inside surface of the bag does not receive 

the high temperatures, high pressures, or hot particulate exposure of the driver side air 

bag, owing to the larger volume of the passenger side bag and the greater distance 

from the inflator [7]. 

1.2.4.3 Side Impact Air Bag : Side impact air bags are mounted either in the door 

(Mercedes and BMW) or in the seat (Volvo). Door-mounted systems designed primarily 

to protect the thorax or chest were the main goal when side air bags were being developed 

in the early 1990s. But now most of the side bags are seat-mounted [12]. In seat mounted 

systems, the bag moves with the seat and stays with the occupant. Therefore, seat-

mounted bags do not have to cover as wide of an area as the door-mounted bags do. 

The sensors for side impact air bag are located in the crush zone to trigger 

deployment. Because there is not much space between the door frame, where crash 

sensors typically are located, and occupants, the sensors for side impact air bags must 

detect an impact within 4-5 milliseconds compared with 15-20 milliseconds in a frontal 

crash. They also must inflate faster — within 20 milliseconds after initial impact. Side 

impact air bags are smaller than frontal bags. They usually have a volume of 6 to 20 liters 

[12]. Like the driver side air bags, side impact air bags are also coated to precisely control 

gas escape during deployment. 
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1.2.5 Air Bag Material and Packing 

Nowadays, most of the air bags are made of Nylon 6 and Nylon 6.6 materials in 420, 

630, or 840 denier [13]. Denier is the weight, in grams, of 9,000 meters of a given 

constant-density yarn. Nylon is strong and abrasion-resistant and ages well under a wide 

range of environmental conditions. 

Many driver side and side impact air bags are coated with neoprene or silicone to 

seal the bag and protect it from the heat of product gases. Neoprene is not fully 

compatible with nylon and is prone to heat-aging effects from temperature cycling, ozone, 

and other agents that can reduce the service life of the air bag fabric. In contrast, silicone 

coatings used in some applications have extended the fabric's service life to 15 years, as 

opposed to the 10-year life of neoprene. Further, silicone coatings are more compatible 

with air bag fabric recycling efforts because silicone polymers can tolerate the high heat 

required to melt and reprocess the air bag fabric. The major drawback of silicone coatings 

is their higher cost in comparison with neoprene [14]. 

Air bags are packed into inflator modules like parachutes. Popular folding patterns 

include accordion fold, reversed accordion fold, pleated accordion fold, and overlapped 

folds [13]. The gas that inflates air bags must be vented immediately so that occupants 

can ride the bag down. The gas is vented through openings located in the rear of the bags 

or through porous bag fabric. 

1.2.6 Types of Inflators 

There are currently three major types of inflator systems either under development or 

commercially available. 
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1.2.6.1 Pyrotechnic Inflator : This  type of inflator is in predominant use today. It 

consists of an igniter, a booster compound, a solid propellant (generally sodium  azide 

plus an oxidizer) and a metal  chamber housing the propellant, igniter  and filter. 

Advantages of this type of inflator are small size  and low weight. Disadvantages include 

cost, difficulty in handling and disposal of sodium azide which is  toxic [14]. 

1.2.6.2 Stored Gas Inflator : This type of inflator involves the utilization of a quantity  of 

stored compressed gas such as argon or nitrogen which is selectively released to inflate  

the air bag. Advantages of this type of system are greater environmental compatibility. 

Disadvantages are the significant additional space and weight of the cylinder required for 

safe storage of this highly pressurized gas [14]. 

1.2.6.3 Hybrid or Augmented Inflator : Hybrid inflators use a combination of gaseous 

combustion products and stored pre-pressurized gas to inflate the air bag. Advantages of 

hybrid inflators are more reliable air bag deployment at unusually high or low ambient 

temperatures and higher thermodynamic efficiency (defined as the percentage of 

propellant chemical energy that is converted into useful work i.e. pressurizing the bag) 

than conventional pyrotechnic inflators. The main disadvantage associated with hybrid 

models has been their larger size due to the necessity of storing pressurized gas at 10-20 

MPa (1450-2900 psi) for an extended period of time [14]. 
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1.2.7 Design Requirements of an Inflator 

Although each type of inflator has its own set of requirements, there are some general 

design requirements for all types of inflators, independent of the type of air bag. Some of 

these requirements are : 

1. Cost : The downsizing of air bag inflators can play an important role in reducing the 

cost. Smaller, more compact inflators can provide greater design flexibility, lower raw 

material cost, simplified assembly, improved visibility of instrument panel and 

control levers for safety and reduced potential for incidental injuries [14]. 

2. Emissions : The inflator should produce negligible particulate and toxic emissions. 

3. Power Consumption : The power needed to activate the device should be small. 

4. Recycling : The inflator should be recyclable after deployment of the bag and also at 

the end of car's service life. 

5. Longer Service Life : The inflator should be able to withstand large thermal and 

mechanical stresses and should be operational for at least 15 years with a minimal or 

no change in performance. 

6. Hot to Cold Performance Variation : There should not be more than 10% hot to cold 

performance variation (-40 °C to 90 °C). 

1.2.8 Tank Tests 

The most common way to evaluate the performance of an air bag inflator is to release the 

product gases into a Receiving Tank usually 20 to 120 liters in volume and observe the 

pressure-time relationship, the temperature-time relationship and the final product 

composition. Such investigations are commonly called tank tests and are widely used in 
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the automotive industry to test and validate inflator performance. Usually, the bag tests 

are performed in the very last stages of inflator development because they are more 

expensive and more time consuming. Figure 1.4 shows typical pressure-time curves 

inside the receiving tank for driver side, passenger side and side impact air bag  inflators. 

Nowadays, air bag inflators are specified by the outer envelope (module) size, 

number of moles of gas produced and the time during which 80 percent of the mass 

comes out of the inflator (t80%). Table 1.1 shows these parameters for the driver side, the 

passenger side and the side impact air bag inflators [48]. 

Table 1.1 Envelope sizes, number of moles of gas produced 
and t80%  for different types of inflators [48] 

Type of 
Inflator 

Envelope Size 
(mm) 

Moles of Gas 
Produced 

t80%  
(msec) 

Driver Side 240 x 165 x 80 1.0 40 

Passenger Side 395 x 22 x 125 2.0 - 2.5 60 

Side Impact 0.5 - 0.6 10 

1.3 Current Commercial Inflator System  

Currently, almost all commercially available air bag inflators contain sodium azide 

(NaN3) as the primary propellant. The oxidizing agent in these inflators may be copper 

oxide, molybdenum disulphide, iron oxide or silicon dioxide and varies with the 

manufacturer. A small quantity of a second substance called the enhancer such as 

potassium nitrate or boron potassium nitrate is added to facilitate ignition. For a typical 

composition consisting of sodium azide (NaN3), potassium nitrate (KNO3) and silicon 

dioxide (SiO2), the chemical reaction is given as : 
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tank for different types of inflators 
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10NaN3  + 2KNO3  5SiO2  4 5Na2O K2O 5SiO2  + 16N2  

15 

Although, the sodium azide system produces a breathable nitrogen gas, it has 

some negative aspects. Sodium azide is highly toxic to humans and the environment in its 

condensed form. Contact of an occupant's skin with a water/azide mixture tends to lower 

blood pressure. Also, if a water-azide mixture contacts metals particularly copper, it can 

form primary explosives. There is a concern for automobiles that are scrapped at the end 

of their lives without removal of the inflators. NaN3  propellants also produce solid 

reaction products (slag) which must be filtered, and the combustion process itself is 

relatively inefficient. In the combustion of sodium azide, the products of combustion are 

N2  (99.2%), H2O (0.6%) and H2  (0.1%). Other gases such as CO, CO2, NOx, NH3  and 

SO2  are also formed along with aerosols containing sodium hydroxide, sodium carbonate 

and other metallic oxides. Some of these gases like CO, NOx are not good for the 

environment.NH 

In the sodium azide system, the pressure in the combustion chamber varies from 

initial atmospheric (14.7 psi) to 10 MPa (1450 psi) or more after combustion [23]. The 

pressure in the discharge tank is usually between 172 kPa (25 psi) and 242 (35 psi). 

Usually, a driver side air bag is fully inflated in about 45 to 50 msec. In about 85 to 100 

msec after the impact the driver rides the bag down, unharmed as the air bag cushion 

defIates. 
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1.4 Novel Combustion Approach 

In this research, we have developed and studied a new technology for air bags using fast 

combustion reactions of methane and oxygen. The reaction between methane (CH

4

) and 

oxygen (0,) occurs as follows : 

CH4  + 2O2  --> CO2 + 2H2O 

1 mole 	2moles 	1 mole 	2 moles 

If the reaction is complete, methane is totally converted to carbon dioxide (CO-)) 

and water (H2O). Both of these products are environmentally safe. Using the Chemical 

Equilibrium Compositions and Applications Code [15,16] and the model of Hanna & 

Karim [52], the major species formed in the reaction of methane and oxygen are CO

2

), 

H2O, H, H2, O, O2, CO, OH, HCO, HO2  and H2O2. We have selected methane because it 

has simple structure and chemistry and also it has unusually high auto-ignition 

temperature. 

The  fast combustion inflator is expected to be cheaper than the sodium azide 

system because methane is cheaper and easily available as compared to sodium azide. 

Also, the equipment cost is expected to be much less than the sodium azide system 

because the equipment is relatively simple. In addition we do not require the expensive 

mechanism of filtration here, since we do not produce particulates. 

The immediate goal of the industry is to use this combustion-based device for side 

impact air bags; however, the technology is not restricted only to side impact air bags. It 

can be applied to driver side and passenger side air bags also. 
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1.5 Previous Relevant Work in this Field 

There is no published literature on the forced ignition of methane-oxygen mixtures in 

connection with air bags. Previously, work on forced ignition of methane and oxygen 

mixtures was performed by Steinle et al. [17] and Di Blasi et al. [53]. Steinle et al. 

performed forced ignition experiments by using heated wires located within the spherical 

combustion chamber having an inside volume of about 21 cc. The chrome-nickel wires of 

10 ohm and of about 3cm length and 0.06 mm diameter, wound in coils of 1 by 2 mm, 

were heated electrically. The temperature at ignition was measured from the temperature-

dependent resistance with a limited accuracy of about ± 50 K at about 1100 K (800°C). 

Di Blasi et al. performed numerical simulation of forced ignition of methane-oxygen 

mixtures. In their work, a methane-oxygen mixture of mole ratio 1:10 initially at rest at 

one bar pressure and 300 K temperature was considered. They compared a simple model 

proposed by Dryer and Glassman [18], containing two reactions and five chemical 

species with a detailed model of Westbrook [19], comprising 56 reactions and 18 

chemical species. In both cases the ignition source was located on the vertical wall. Their 

relevance to the present work is due to their investigation of the forced ignition of 

methane and oxygen system. 

Most of the work published in the field of air bag has been for pyrotechnic  

inflators or pyrotechnic in combination with stored gas [20-24,42-44]. The initial work on 

pyrotechnic inflator modeling was performed by Stevens et al. [20]. They have developed 

a computer program to simulate the performance of pyrotechnic inflator. However, there 

were many parameters involved in modeling the complex transient chemical 

thermodynamics of the burning igniter and propellant pellets, and the gas dynamics and 
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heat transfer associated with the internal combustion chamber and diffuser components. 

The uncertainty of many values of the input parameters, which must be provided by the 

users of the program, may affect the accuracy of the simulation results. 

Wang [21,42] developed a semi-analytical model to calculate the transient gas 

temperature and mass flow rate from the inflator. He treated the inflator as a single 

element generating gas at certain mass flow rate for the purpose of modeling the air bag 

inflation process. The author did not model the individual internal processes of the 

inflator. 

Butler et al. [22,43] developed a mathematical model to simulate the transient, 

thermochemical events associated with ignition and combustion of a pyrotechnic inflator. 

Two series of calculations were presented. The first was for a baseline test case of a 

conventional pyrotechnic inflator. The second series of calculations illustrated the 

influence of pre-pressurized inert gas on the performance of a pre-pressurized pyrotechnic 

inflator system. Performance of the inflators was measured in terms of the pressure-time 

and the temperature-time profiles in the inflator and the receiving tank as well as the 

pressure-time integrals at specified times after ignition. 

Materna [23,44] presented an analytical model which predicts the peformance of 

a pyrotechnic air bag inflator by accounting for the heat transfer, filtration, combustion, 

fluid flow and thermodynamic processes occurring during the inflation event. He 

considered all the essential aspects of the inflator, especially the details of the clogging of 

the filter. However, there were no mathematical details given in Materna's paper. 

The most comprehensive published model for a pyrotechnic air bag inflator was 

that presented by Chan [24] in which the propellant combustion, filter pressure drop and 
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cooling, nozzle and receiving tank behavior were all explicitly modeled. In addition to 

sodium azide system, a handful of work is also published on non-azide inflators 

[10,45,46]. 

1.6 Present Work 

The present work is based on the fast combustion reactions of methane-oxygen mixtures. 

The forced ignition of the mixture was performed experimentally by using an electric 

match as a source of ignition. 

The performance of the inflator is evaluated in terms of pressure-time 

relationships inside the inflator and in the tank as well as the temperature-time 

relationship in the tank. Several important issues related to inflator design are studied and 

evaluated. These include the effects of stoichiometry, initial mixture pressure and extreme 

hot and cold conditions. Other practical issues, such as the concentration of carbon 

monoxide produced and the severity of temperature in the tank are also studied and 

optimized. 

A theoretical model has been developed to simulate the experimental results and 

to calculate the mass flow rate from the inflator to the tank. The model is based on the 

change in the internal energy inside the inflator and the tank as the mass flows from the 

inflator to the tank. 

In Chapter 2, the experimental set-up is discussed and the experimental 

procedures are given. 

In Chapter 3, the experimental results are given. First, the design requirements for 

  
different types of air bag inflators ate given. The pressure and temperature results of a 
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typical experiment are discussed next This is .followed by a discussion of the major 

critical issues and other important requirements needed for the development of the 

inflator. Lastly, the application of fast combustion to different inflator sizes is discussed 

and the conclusions are formulated. 

In Chapter 4, a description of the theoretical model is given along with a 

comparison with the experimental results. Prior to discussing the model, the applicability 

of an ideal gas assumption is justified and the mass flow rate equation for one-

dimensional isentropic flow is given. This is :followed by a complete discussion of the 

model and a demonstration of the model by several experimental examples. 

In Chapter 5, the fast combustion inflator has been evaluated with the sodium 

azide inflator currently used in industry. A set of standards and criteria is used to measure 

and access the performance of the fast combustion inflator. 

In Chapter 6, the conclusions drawn from the above work are formulated. 



CHAPTER 2 

EXPERIMENTAL SET-UP AND PROCEDURES 

2.1 Introduction 

In this chapter, the experimental set-up is discussed and the experimental procedures are 

given. In the beginning, a brief description of each component of the experimental set-up 

is given. This is followed by the experimental procedures for the tank testing of 

combustion and ideal gas experiments. In the end, a brief description of gas 

chromatography and the procedure for gas chromatography is given. 

2.2 Experimental Set-up 

The experimental set-up is shown in Figure 2.1 and the schematic layout of the 

experimental set-up is shown in Figure 2.2. 

Figure 2.1 Experimental set-up 
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1 	Inflator 
2 	Burst disk mechanism 
3 	Receiving tank 
4 	Igniter 
5 	Inflator's pressure transducc 
6 	Methane cylinder 
7 	Oxygen cylinder  

8 	Inflator's thermocouple 
9 	Data acquisition box 
10 	Computer 
11 	Release valve 
12 	Inlet valve 
13 	Tank pressure transducer 
14 	Metering transducer 

Figure 2.2 Schematic layout of the experimental set-up 

2.2.1 Inflator 

The gases (methane and oxygen) from the individual cylinders are mixed and ignited 

inside a stainless steel inflator. The inflator is a cylindrical vessel with 3 in. inside 

diameter, 5 in. outside diameter and 18 in. length. The original inflator has a volume of 

2.085 liter. To perform experiments with different sizes of inflator, three different 

aluminum volume fillers are added inside the original inflator to make the inflator volume 

as 0.067 liter, 0.0246 liter, and 0.250 liter. One end of the inflator is closed while the 
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other end contains a burst disk arrangement (Figure 2.3). The burst disk mechanism is 

covered by two semi-circular flanges and a circular ring (Figure 2.4). Each of these 

flanges has five bolts. The burst disk mechanism is attached to the inflator by tightening 

these bolts. The flanges are covered by a circular ring which has a bolt to tighten it. 

Figure 2.5 shows the schematic of inflator and burst disk mechanism. The inflator has an 

inlet/exit port, a port for holding the igniter and several other ports for transducers and a 

thermocouple. 

Figure 2.3 Inflator 

In some of the experiments for side impact air bags, a small inflator, 0.0146 liter 

in volume is used. Table 2.1 shows all the inflator volumes used in this study. 
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Figure 2.4 Inflator and burst disk mechanism 

20 Inflator 
21 Orifice 
22 Burst disk 
23 Circular ring  

24 Semi-circular flange 
25 Inlet/exit port 
26 Igniter 
27 Adapter  

28 Switch 
29 Battery 
30 Receiving tank 

Figure 2.5 Schematic illustration of inflator and burst disk mechanism 
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Table 2.1 Inflator and receiving tank volumes 

Inflator Volume 
Liter 	(cu.in) 

Receiving Tank Volume  
Liter (cult) 

	

2.085 	(127.23)  

	

0.250 	(15.25)  

	

0.067 	(4.10)  

	

0.0246 	(1.50)  

	

0.0146 	(0.89) 

	

70.0 	(2.5) 

	

70.0 	(2.5) 

	

70.0 	(2.5) 

	

70.0 	(2.5) 

	

28.3 	(1.0) 

2.2.2 Burst Disk Mechanism 

The burst disk mechanism has an orifice of 0.75 in. The burst disk blocks the flow of gas 

from the inflator and through the orifice into a receiving tank or an air bag. A burst disk is 

a solid metal, differential pressure relief device with an instantaneous full-opening, non-

reclosing design. The burst disk ruptures in 1 to 3 milliseconds upon the application of a 

predetermined level of pressure in the inflator. This level of pressure is only available 

after ignition of the combustible mixture. 

2.2.2.1 Types of Burst Disk : 

I. Reverse Acting Burst Disk 

In a reverse acting burst disk, the pressure is acting on the convex side of the disk. When 

the pressure rating of the disk is reached, the disk snaps through its neutral position and 

reverses. The disk is opened by knife blade penetration or predetermined score lines. 

2. Tension Type Burst Disk 

In a tension type burst disk, the pressure is acting on the concave side of the disk. When 

the pressure increases beyond the allowable operating pressure, the disk starts to grow. 

This growth will continue as the pressure increases, until the tensile strength of the 
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material is reached and rupture occurs. The two types of burst disks are shown in Figure 

2.6 [25]. 

2.2.2.2 Materials of Burst Disk : The most commonly used materials for burst disks are 

aluminum, silver, nickel, monel, inconel and 316 stainless steel. Sometimes, liners such 

as Teflon or lead and coatings such as vinyl or Teflon are used to protect the disks in 

corrosive applications. 

   
 

  

       

    

(a) Reverse acting burst disk  (b) Tension type burst disk 

Figure 2.6 Types of burst disk 

2.2.2.3 Effect of Temperature on Burst Disk : The burst pressures decrease as 

operating temperatures increase. Table 2.2 shows the maximum temperatures for burst 

disk materials, liners and coatings [26]. 

The thicknesses of burst disk used in- this study and their pressure ratings are 

given in Table 2.3. The material of all burst disks is 316 stainless steel. The disks are 1 in. 

in diameter with an opening of 0.75 in except the burst disk for the 0.0146 liter inflator 

which is 0.670 in. in diameter and has an opening of 0.25 in. 
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Table 2.2 Maximum temperatures for burst disk materials, liners and coatings 

Material Maximum Temperature, °F (°C) 

Aluminum  
Silver  
Nickel  
Monel  
lnconel  
316 SS  

Lead  
Polyvinylchloride  

Teflon 

260 (126.7) 
260 (126.7) 
800 (426.7) 
800 (426.7) 
1000 (537.8) 
900 (482.2) 
250 	(121.1) 
180 	(82.2) 

400-500 (204.4-260.0) 

Table 2.3 Pressure ratings of different thicknesses of burst disks 

Thickness of Burst Disk 
(in.) 

Pressure Rating 
(psi) 

0.002  
0.003  
0.004  
0.010  
0.012  
0.015  
0.020  
0.025 

900 - 1050 
1400 - 1500 
1900 - 2000 
6000 - 7000 

Not rated 
Not rated 

10300 - 10600 
16300 - 17000 

The fully-hardened or annealed burst disks are sometimes used in industry. 

Annealed burst disks have uniform properties and give more consistent results. To 

compare the performance of annealed burst disks with the regular burst disks, some 

experiments are performed with annealed burst disks. These annealed burst disks are 

0.004", 0.010", 0.012" and 0.015" in thickness. 

2.2.3 Igniter 

The combustible mixture in the inflator is ignited with the help of an electric match or a 

pyrofuze wire. During the course of this research, three different types of electric matches 
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are used, M100 with 4 in. duplex lead wires, M103 with 18 in. lead wires and EL fuse V 

with 1.8 m duplex lead wires. These matches are manufactured by ICI and contain up to 

0.030 gram of lead mononitroresorcinate (LMNR) oxidizer mixture [27]. 

The pyrofuze wire used has a diameter of 0.020 in. and is manufactured by 

Pyrofuze Corporation. The pyrofuze wire consists of two metallic elements in intimate 

contact with each other. When these elements are brought to the initiating temperature 

(about 650 °C), they alloy rapidly resulting in flame and high temperature (about 2800 

°C). About 1360 Joules/gm (325 calories/gram) of thermal energy is released during this 

reaction. The outer jacket of pyrofuze wire consists of 5% Ruthenium and 95% Palladium 

whereas, the inner core consists of aluminum [28]. 

The igniter in our experimental set-up is powered by a 12 volt vehicle battery. An 

adapter is used to hold the igniter (Figure 2.7). A pair of electrical lead wire extends from 

Figure 2.7 Electric match and adapter 
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the adapter to the battery. The ignition of electric match or pyrofuze wire is controlled by 

a switch which is normally open. When the switch is closed, ignition occurs and the 

electric match or pyrofuze wire is ignited to initiate the combustion reaction (Figure 2.5). 

2.2.4 Pressure Transducers 

In this study, the pressure transducers are used for three purposes : 

1. To measure pressure inside the inflator, 

2. To measure pressure inside the receiving tank, and 

3. To meter the gases entering the inflator. 

The transducers used are either strain gage or piezoelectric. In the receiving tank, 

Data Instrument XPRO transducer with a pressure rating of 0 - 100 psi (or 0 - 200 psi) is 

used. To meter the gases, Data Instrument XPRO transducer with a pressure rating of 0-

3000 psi is used. Table 2.4 shows the different transducers used in the inflator. All 

pressure transducers have a response time of less than 1 msec. 

Table 2.4 Transducers used to measure pressure in the inflator 

Type Pressure Range (psi) 

Kistler 6730  
Kistler 217C  
Data Instrument XPRO  
Barksdale 403-09-0  
Data Instrument AB  
Data Instrument BF  
Sensotec Z/4834-01ZG  
Sensotec Z/a356-01 

0 - 15,000 
0 - 75,000 

0 - 3,000, 0 - 5,000 
0 - 10,000 
0 - 20,000 
0 - 20,000 
0 - 30,000 
0 - 60,000 

2.2.5 Thermocouples 

The thermocouples are used to measure temperatures inside the inflator and the receiving 

tank. In the receiving tank, three different types of thermocouple are used : a NANMAC 
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E12-3-E-U thermocouple and two OMEGA E type bare thermocouples (0.005" and 

0.0005" in diameter). These thermocouples are used in combination with NANMAC cold 

junction compensator and OMEGA signal conditioner which amplifies the voltage to 0-5 

V. The signal is sampled at a rate of about 2500 Hz (or 2500 points per sec). 

2.2.6 Data Acquisition System 

The data acquisition system consists of a data acquisition box and a computer. The data 

acquisition system converts the millivolt and milliampere output of the transducers into 

digital pressure. The data acquisition box provides the required voltage for igniting the 

electric match or pyrofuze wire. The data acquisition software 'NJIT' [29] allows us to 

take data with a variable sampling rate and to view the pressure and temperature data in 

real time. The data files from various experiments are used to analyze the results and to 

compare them with the theoretical model. 

2.2.7 Receiving Tank 

As mentioned in Section 1.2.8, the most common way to evaluate the performance of an 

air bag inflator system is to release the products of combustion from the inflator into a 

receiving tank. Once the required conditions for pressure, temperature and mass flow are 

satisfied in the tank, then the final testing is done with air bags. Nowadays, the testing for 

driver and passenger side air bags is usually done in 60 to 100 liter tank whereas, the 

testing for side impact air bag is usually done in-28.3 liter tank. In this study two different 

sizes of receiving tank are used, a 28.3 liter tank for 0.0146 liter inflator and a 70 liter 

tank for all other inflator sizes. The receiving tank has ports for transducers and 

thermocouples and also a purge valve to purge the tank with an inert gas (helium or 



31 

nitrogen). The gas sampling cylinder can also be attached to the tank to take samples of 

gas for gas chromatography analysis. Figure 2.8 shows the inflator and the tank 

connection together with the ports for transducer, thermocouple and the purging gas. 

Figure 2.8 Inflator and tank connection showing the ports for tank 
transducer, thermocouple and the purging gas. 
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2.3 Experimental Procedures 

2.3.1. Procedure for Combustion Experiments 

Following is the tank testing procedure for combustion experiments : 

1. Turn on the data acquisition box and make sure that all the transducers and 

thermocouples are connected to the system and their leads are connected to the data 

acquisition box. 

2. Attach a burst disk to the burst disk mechanism and attach this mechanism to the open 

end of the inflator by using the flanges and the ring. Attach the receiving tank to the 

inflator. 

3. If the receiving tank is to be purged, open the purging gas supply valve at the inlet of 

the tank and subsequently release the gas by opening the discharge valve attached to 

the tank. 

4. Cut the pyrofuze wire or the lead wire of the electric match to the required length and 

connect it to the adapter. Attach the adapter to the inflator. 

5. Open the inlet valve to the inflator. Purge the inflator with oxygen by connecting the 

oxygen hose to Quick Connect fitting located just before the inlet valve. Release 

oxygen by using the release valve. Repeat the purging process once more. 

6. Zero all the channels of the software again by pressing the key 'Z' from the keyboard. 

7. Disconnect the oxygen hose and attach the methane hose to the same Quick Connect 

fitting. Put a measured quantity of methane -- inside the inflator. In this study, the gas 

quantity is metered by measuring the gas pressure inside the inflator. The pressure is 

measured by a pressure transducer attached just upstream of the inlet valve and can be 

read from the computer screen. 
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8. Close the inlet valve to the inflator. Open the release valve and remove any excess 

methane from the fittings. Close the release valve. 

9: Disconnect the methane hose and attach the oxygen hose to the Quick Connect fitting. 

Build a pressure equal to or greater than the pressure of methane and open the inlet 

valve. Put a measured quantity of oxygen inside the inflator.  

10. Close the inlet valve again. Open the release valve and remove any excess oxygen 

from the fittings. Remove the methane hose and keep the release valve open. 

11. Start the data acquisition software by pressing the key 'S' from the keyboard and 

select a sampling rate. 

12. Measure the voltage in the lead to be connected to the igniter adapter with the help of 

a voltmeter. If there is no voltage, connect the lead to the igniter adapter. 

13. Ignite the electric match or pyrofuze wire by pressing any key of the keyboard.  

14. Take data for about 200 milliseconds, or any other required duration. 

15. Open the inlet valve to the inflator and the discharge valve of the receiving tank to 

release any product gas left in the system.  

2.3.2 Procedure for Ideal Gas Experiments 

Some  of the experiments are done with an ideal gas (nitrogen) to assess the accuracy of 

measured data. Following is the procedure for tank testing of ideal gas experiments : 

1. Turn on the data acquisition box and make sure that all the transducers are connected 

to the system and their leads are connected to the data acquisition box. 

2. Attach a burst disk (0.004") to the burst disk mechanism and attach this mechanism to 

the open end of the inflator by using the flanges and the ring. 
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3. Attach a gas motor (a device used to rupture the burst disk on command) to the tank 

side of the burst disk mechanism with the help of a rubber stopper. Attach the 

receiving tank to the inflator. 

4. Purge the receiving tank with nitrogen by opening the supply valve at the inlet of the 

tank and subsequently release the gas by opening the discharge valve attached to the 

tank. 

5. Open the inlet valve to the inflator. Purge the inflator with nitrogen by connecting the 

nitrogen hose to Quick Connect fitting located just before the inlet valve. Release 

nitrogen by using the release valve. Repeat the purging process once more. 

6. Zero all channels of the software by pressing the key 'Z' from the keyboard. 

7. Put a measured quantity of nitrogen inside the inflator. The quantity of nitrogen is 

metered by using the pressure transducer attached just upstream of the inlet valve. 

When the pressure in the inflator is equal to the nitrogen bottle (cylinder) pressure, 

further increase in inflator pressure is achieved by using a booster pump. 

8. Close the inlet valve to the inflator and remove any excess nitrogen from the fittings 

by opening the release valve. Remove the nitrogen hose. 

9. Start the data acquisition software by pressing the key 'S' from the keyboard and 

select a sampling rate. 

10. Measure the voltage in the lead to be connected to the gas motor wires with the help 

of a voltmeter. If there is no voltage, connect the lead to the gas motor wires. 

11. Activate the gas motor by pressing any key of the keyboard. Take data. 

12. Open the inlet valve to the inflator and _the discharge valve of the receiving tank. 
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2.3.3 Other Procedures 

The following procedures and precautions for the calibration and testing of 

instrumentation are given in Appendix A : 

Al. Procedure for the calibration of pressure transducers. 

A2. Procedure for the calibration of thermocouple. 

A3. Testing the burning time of electric matches. 

A5. Precautions, handling of electric matches and procedures for safety. 

2.4 Gas Chromatography 

The analysis of product gases from the tank is performed by using gas chromatography. A 

sample is collected in a sampling cylinder just after firing the shot. The sample is then 

analyzed for carbon monoxide (CO) by using gas chromatograph. 

2.4.1 Gas Chromatograph 

The GOW-MAC Series 550P Thermal. Conductivity Gas Chromatograph is used to 

perform gas analysis of the product gases [31]. The CTR I column [32] is used in the 

analysis. This column can separate Air, CO, CH4, CO2, 02, and N2. The calibration for 

CO is done by using three CO standards, 100 ppm, 1000 ppm and 1% in helium. The 

results from the chromatograph are plotted on HP3396 Series II Integrator [33]. The 

following parameters are used in the analysis : 

Flow rate column A = 60.0 ml/min (30.0 ml/min) 

Flow rate column B = 25.5 ml/min 

Current 	 = 150 mA 
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Detector temperature = 200°C 

Injector temperature = 45°C 

2.4.2 Procedure for Gas Chromatography 

1. The tank testing is performed as described above but the receiving tank is not purged 

with helium. A sample of product gases is taken from the receiving tank in a 50 ml. 

sampling cylinder. 

2. Set the current and the injector and detector temperatures of the Gas Chromatograph. 

3. Adjust the flow rate of column A (working column) and column B (reference column) 

of the chromatograph with the help of a flowmeter. 

4. A 10 ml sample is taken in a syringe from the sampling cylinder. The sample is 

injected in the chromatograph and the area of CO peak is noted using the HP3396 

Series II Integrator. The concentration of CO is obtained by using this area and the 

calibration curve from CO standards. 

5. Repeat step 4 three or four times and take the average of CO concentration. 

The procedure for the calibration of carbon monoxide is given in Appendix A4. 



CHAPTER 3 

EXPERIMENTAL RESULTS FOR THE DEVELOPMENT 
OF A FAST COMBUSTION INFLATOR 

3.1 Introduction 

The performance of an air bag inflator is customarily evaluated by observing the pressure-

time relationship in the inflator and the tank, the temperature-time relationship in the tank 

and the final combustion product composition [sections 1.2.8. and 2.2.7]. The tank 

pressure simulates the effect of gas volume required to fill an air bag. The tank 

temperature can be used to calculate thermal stresses and to assess the temperature in the 

bag. The inflator pressure is useful to determine the strength of an inflator, to guide in its 

design and to calculate the mass flow rate from the inflator to the bag. The product 

composition is useful to assess the gases formed in the reaction and to determine their 

toxic effects, if any. During this research, the inflator pressure, tank pressure and tank 

temperature were measured. Also, tank gas samples have been analyzed to determine the 

concentration of carbon monoxide. In this research, about 250 experiments were 

performed to develop and investigate this novel fast combustion inflator. 

In order to utilize the fast combustion inflator, there are several critical issues 

which need to be addressed. These include the effects of stoichiometry, initial mixture 

pressure and effects of extreme hot and cold operating conditions. Other design and 

practical parameters such as burst disk thickness and type, ignition device, tank purging 

gas and severity of temperature in the tank are also important to design an inflator 

successfully. It should be noted that this type of inflator is different than the sodium 

azide inflator, as described in Chapter 1. 
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In this chapter, the design requirements for different types of air bag inflator are 

given. The temperature and pressure results of a typical experiment are given next, and 

discussed in the light of the design requirements. This is followed by the discussion of the 

major critical issues and other important requirements needed for the development of the 

fast combustion inflator. Lastly, the application of fast combustion to different inflator 

sizes is discussed and the conclusions are formulated. In this chapter, the experimental 

results are discussed in reference to the development of a fast combustion inflator — i.e., 

the technology aspects of the development. More detailed discussions of the results based 

on thermodynamics and a comparison with the theoretical model are given in Chapter 4. 

3.2 Design Requirements for Different Inflator Types 

One of the objectives of this study was to optimize the pressure-time behavior in the 

receiving tank. Table 3.1 shows the design requirement for driver side, passenger side and 

side impact air bags [34]. Note that t80%  is the time when 80% of the mass should have 

come out the inflator. 

A driver side inflator for a 60 liter bag, needs to create a pressure of 50.75 psi in a 

28.3 liter tank in less than 50 msec. This inflator should produce a total of 1.0 mole of gas 

and 80% of this amount should come out of the inflator in less than 40 msec. A passenger 

side inflator for a 150 liter bag, needs to create a pressure of 84.10 psi in a 60 liter tank in 

less than 70 msec. The passenger side air bag inflator should produce about 2.0 - 2.5 

moles of gas and 80% of this amount should come out in less than 60 msec. A side 

impact air bag for a 12 liter bag, needs to create a pressure of 13.05 psi in a 28.3 liter 

tank in less than 15 msec. The side impact inflator should produce 0.5 - 0.6 moles of gas 
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and 80% of this amount should come out in less than 10 msec. The pressure in psi is 

always a gage pressure unless otherwise indicated and the time to attain the required 

pressure is the time after the ignition. 

Table 3.1 Design requirements for different types of air bag inflators [34] 

Type Driver Side Passenger Side Side Impact 

Bag volume, liter 60 150 12 

Inflator size 
(dia x length), mm 

95 x 40 61 x 250 25 x 135 

Inflator volume, liter 0.2835 0.7306 0.0662 

Tank volume, liter 28.3 60.0 28.3 

Tank pressure 
required, psi 

50.75 84.10 13.05 

Time to attain the 
reqd. pressure, msec 

50 70 15 

No. of moles of gas 
reqd., # 

1.0 2.0 - 2.5 0.5 - 0.6 

t go% , msec 40 60 10 

3.3 Results and Discussion of a Typical Experiment 

Consider an experiment with a 150/300 (methane = 150 psi, oxygen = 300 psi) mixture 

inside a 0.250 liter inflator. This inflator volume is about 10% smaller than the volume of 

driver side air bag inflator. The mixture is ignited with an electric match. The thickness of 

the burst disk used in the experiment is 0.010". The receiving tank (70 liter) is purged 

with nitrogen. The pressure and temperature curves for this experiment are shown in 

Figure 3.1. The figure shows that in about 7.5 msec after the current is supplied, ignition 

occurs and the pressure in the inflator increases very quickly. In the air bag industry, this 

time of sudden increase in pressure is referred to as the initial time (or t = 0). In our 
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device, the pressure in the inflator increases beyond the pressure rating of the burst disk. 

Normally, this takes place within 1 - 3 msec from ignition. Thus, about 10 cosec after the 

ignition, the burst disk ruptures and the products of combustion flow into the receiving 

tank. The pressure curve in the tank is not smooth in the beginning. This is due to the fact 

that in the tank, the product gases undergo expansion, until the pressure equals the 

ea uilibrium pressure. 
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Figure 3.1 Pressure and temperature curves for a typical experiment 
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The maximum pressure in the inflator shown in Figure 3.1(a), is usually not the 

actual peak pressure developed inside the inflator. The reason for this is that in most of 

the experiments, the data was sampled after every 0.4 msec and if the peak pressure 

occurred between two sampling events, it is not captured by the data acquisition system. 

Also, the inflator pressure goes negative after reaching the peak. This is due to the fact 

that after a sudden rise and drop of pressure, the beams in the strain gage transducers do 

not come back to their original shape in such a short time and it takes some time for them 

to come back to their original shape. 

Figure 3.1(a) shows that the maximum average tank pressure for this experiment. 

is about 34 psi and it drops to 30 psi in 50 msec. According to Table 3.1, we need a. 

pressure of 50.75 psi in a 28.3 liter tank. Since, the volume of our tank (70 liter) is about 

2.5 times of this tank volume, we need a pressure of 20.30 (=50.75/2.5) psi in our tank. 

This shows the pressure that we are getting experimentally is sufficient to inflate an air 

bag. 

The total number of product moles for this composition is about 0.4. This is about 

60% lower than the number of moles required for the driver side air bag inflator. The 

number of product moles can be increased by increasing the number of moles of the 

initial mixture or by using a hybrid inflator, as will be discussed in Chapter 5. Also, 

Figure 3.1 shows that most of the mass leaves the inflator in less than 5 msec. Based on 

such results, the requirement of t80% is also met. 

Figure 3.1(b) shows that the maximum temperature in the inflator is about 1000 K 

and it drops to about 850 K in 65 msec. This temperature is higher than the temperature 
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of 600 K [10] or 700 K [22] used in the literature for the azide inflator; however, these 

temperatures are not uncommon for combustion-based inflators [35,49]. 

3.4 Major Critical Issues in the Development of Fast Combustion Inflator 

In order to develop the fast combustion inflator, several critical issues were studied and 

evaluated. These included the effects of stoichiometry, initial mixture pressure and 

extreme hot and cold operating conditions (-40 °C and +90 °C). 

3.4.1 Effect of Stoichiometry 

During this research, the experiments were performed for stoichiometric, oxygen-rich, 

and methane-rich mixture compositions. The objective was to study the effect of 

stoichiometry on the dynamics inside the inflator and the tank, and to determine the final 

products' composition and their concentration. The corressponding experiments are 

summarized in Table 3.2. 

Table 3.2 Experiments to assess the effect of stoichiometry 

Stoichiometric 	 Oxygen-Rich 	 Methane-Rich 

Methane 	Oxygen 	Methane 	Oxygen 	Methane 	Oxygen 
(psi) 	(psi) 	(psi) 	(psi) 	(psi) 	(psi) 
20 	40 	20 	60 	30 	40  
30 	60 	20 	70 	30 	55  
40 	80 	20 	80 	35 	40  
90 	180 	30 	70 	40 	40  
100 	200 	120 	360 	120 	120  
125 	250 	150 	350  
135 	270  
150 	300  
155 	310  
210 	420 
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3.4.1.1 Stoichiometric Mixtures : The reaction between methane and oxygen occurs as 

follows : 

CH4  + 202  —> CO2  + 2H20 

A stoichiometric mixture means that the components of the gaseous mixture 

(methane and oxygen) were charged into the inflator in the stoichiometric ratio (1:2) for 

the methane-oxygen reaction. Since the inflator was purged with oxygen before the 

mixture was charged into it, a small quantity of oxygen is always present and it is to be 

added when making calculations. 

For stoichiometric mixtures, the peak pressure in the inflator increases with the 

initial pressure of the methane-oxygen mixture. Also, the pressure in the receiving tank 

increases with the initial pressure of the methane-oxygen mixture. Figure 3.2 compares 

the tank pressure curves for 20/40 (methane = 20 psi, oxygen = 40 psi) and 30/60 

(methane = 30 psi, oxygen = 60 psi) mixtures. Figure 3.2 shows that the tank pressure in 

the 30/60 case is about 15% higher than in the 20/40 case. 
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Figure 3.2 Tank pressure curves for different initial 
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3.4.1.2 Oxygen-Rich Mixtures : In this case, like the stoichiometric mixtures, the 

pressure in the tank increases with the initial pressure of methane-oxygen mixture. 

Figure 3.3 compares the tank pressure curves for different oxygen-rich mixtures. The 

average increase in tank pressure is about 10% for the 20/60 case compared with the 

20/80 case. 
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Figure 3.3 Tank pressure curves for different initial 
pressures of oxygen-rich mixtures 

3.4.1.3 Methane-Rich Mixtures : Like the stoichiometric and oxygen-rich mixtures, the 

maximum pressure in the tank increases with the initial pressure of methane-oxygen 

mixture. Figure 3.4 compares the results of stoichiometric (methane = 30 psi, oxygen = 

60 psi), oxygen rich (methane = 30 psi, oxygen = 70 psi) and methane rich (methane = 30 

psi, oxygen = 40 psi) mixtures. Figure 3.4 shows that for the same amount of methane, 

the tank pressure for the oxygen-rich mixture is slightly lower (less than 10%) than the 

tank pressure for stoichiometric mixture. Also, the tank pressure for the methane-rich 
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mixture is slightly higher (less than 10%) than the tank pressure for the stoichiometric 

mixture. 

(2.085 liter inflator)(Tank is not purged) 
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Figure 3.4 Comparison of stoichiometric, oxygen-rich and methane-rich mixtures 

These results indicate that the dynamics inside the inflator and the tank are not 

affected significantly by the stoichiomety of methane-oxygen mixtures. Based on these 

results, it was decided that the stoichiometric mixture is an ideal selection for the 

remainder of experimentation in this research. So, most of the testing was done with 

stoichiometric mixtures in order to get complete combustion of the reactants. 

3.4.2 Effect of Initial Mixture Pressure 

As mentioned above, most of the experiments in the later part of this research were 

performed with stoichiometric mixtures. The peak pressure in the inflator and the 

pressure in the tank increases with the initial mixture pressure. Also, the tank 

temperature increases with the initial mixture pressure. 
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Figure 3.5 compares the inflator and tank pressures and the tank temperature for 

three different initial mixture pressures : 30/60, 90/180 and 125/250 in a 0.250 liter 

inflator. Figure 3.5(a) shows that the peak pressure in the inflator increases with the initial 

(a) Inflator Pressure vs Time (0.250 liter inflator)(Tank is not purged) 
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mixture pressure. For a 30/60 mixture, the peak inflator pressure is 1380 psi, for a 

90/180 mixture, it is 6210 psi, and for a 125/250 mixture, it is 9960 psi. Figure 3.5(b) 

shows that the tank pressure also increases with the initial mixture pressure. For a 30/60 

mixture, the maximum average tank pressure is about 8 psi, for a 90/180 mixture, it is 

about 20 psi, and for a 125/300 mixture, it is about 30 psi. Figure 3.5(c) shows that the 

tank temperature also increases with the initial mixture pressure. For a 30/60 mixture, the 

maximum tank temperature is about 475 K, for a 90/180 mixture, it is about 850 K and 

for a 125/250 mixture, it is about 900 K. 

Figure 3.6 compares the experimental values of peak inflator pressure, the 

maximum average tank pressure and the maximum tank temperature for different initial 

mixture pressures. All these values are for a 0.250 liter inflator. The figure shows that the 

peak inflator pressure, the maximum average tank pressure and the maximum tank 

temperature increase with the initial mixture pressure. These values are in close 

agreement with our model --- see Chapter 4. 

3.4.3 Effect of Hot and Cold Ambient Conditions 

One of the requirements for commercial inflators is that they should operate equally well 

for ambient temperatures in the range from -40 °C to +90 °C. Their performance should 

not vary by more than ±10% from hot to cold [36]. 

To test the performance of the fast combustion inflators, some experiments were 

performed at hot and cold conditions. The experiments were performed for a 

stoichiometric mixture (methane = 210 psi, oxygen = 420 psi) in a 0.067 liter inflator. In 
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(a) Experimental Values of Peak Inflator Pressure for Different Initial 
Mixture Pressures(0.250 liter inflator)(Tank is not purged) 
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49 

all the cases, the mixture was ignited with an electric match and the thickness of the burst 

disk was 0.004". The receiving tank was purged with helium in all cases. The high 

temperature experiment was performed by heating the inflator with heater tape. The low 

temperature experiment was performed by cooling the inflator with dry ice. These 

experiments are summarized in Table 3.3. 

Table 3.3 Summary of hot and cold condition experiments 

Room Temp. Exp. High Temp. Exp. Low Temp. Exp. 
Room Temperature  
Vessel Temperature  
Time to attain the 
required temperature 

21 °C 
21 °C 

21 °C 
84 °C 

5 hours 

20 °C 
-20 °C 
3 hours 

Figure 3.7 shows the tank pressure curves for these three cases. The figure shows 

that the performance of the fast combustion inflator does not vary much in these three 

cases. The tank pressure curves for hot and cold experiments are in close agreement with 

the room temperature experiment in the first part of the curve but in the second part of the 

curve, the pressure for the room temperature experiment drops more rapidly. This might 

be due to gas leakage from the tank. Also, note that the pressure in the tank rises slowly 

unlike the other pressure curves we have seen so far. The reason for this is that when 

these experiments were performed, a snubber was attached to the tank transducer. A 

snubber is a filter device attached to the tank transducer to smooth out the pressure curve 

in the tank. 
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(Meth = 210 psi, Oxy = 420 psi)(0.067 liter inflator) 
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Figure 3.7 Tank pressure curves for room, high and low temperature experiments 

3.5 Satisfaction of Other Important Requirements 

In addition to the critical issues discussed above, there are other design and practical 

parameters, such as burst disk type and thickness, ignition device, tank purging gas, 

concentration of carbon monoxide produced and the severity of temperature in the tank 

which need to be studied and optimized. 

3.5.1 Effect of the Burst Disk Type and Thickness 

The burst disk is an important component of a fast combustion inflator and to study the 

influence of the burst disk thickness and type on the dynamics in the inflator and the tank 

was an important aspect of this research. 

A number of experiments were performed with burst disks of different 

thicknesses. Figure 3.8 compares the tank pressure traces obtained by using three 

different burst disk thicknesses. 

It is clear from Figure 3.8 that the thickness of the burst disk has no significant 

effect on the dynamics in the tank or on the time at which the disk ruptures. 
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(Meth = 150 psi, Oxy = 300 psi)(0.250 liter inflator) 
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Figure 3.8 Comparison of tank pressure curves for 
different thicknesses of burst disk 

A series of experiments was performed with annealed burst disks to see whether 

the type of burst disk has an effect on the dynamics in the inflator and the tank. Figure 3.9 

compares the pressure traces in the inflator using a regular and an annealed burst disk. 

Again, there is no significant difference in the tank pressure in the case of an annealed 

burst disk. 
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Figure 3.9 Comparison of regular and annealed burst disks 
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In the beginning of this research, it was thought that the pressure peak in the 

inflator might not be real. In order to verify that the peak pressure developed in the 

inflator was indeed real, we did some experiments with rated burst disks to see whether 

these disks would be ruptured by the pressure developed in the inflator. Table 3.4 shows 

the burst pressures for the rated burst disks that were used in this research. 

Table 3.4 Burst pressures for rated burst disks 

Burst Disk Thickness (in) Burst Pressure (psi) 
0.01 6,000 - 7,000 
0.02 10,000 
0.025 17,000 

Figure 3.10 shows the tank pressure curves for two experiments performed with 

0.025" burst disk. These experiments were performed for a 210/420 mixture (methane = 

210 psi, oxygen = 420 psi) in a 0.250 liter inflator with a 70 liter receiving tank. Since the 

burst disks were ruptured in both the cases, it can be concluded that the pressure peak in 

the inflator is real. This pressure should be considered while designing the fast 

combustion inflator. 
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Figure 3.10 Tank pressure curves for experiments performed with rated burst disks 
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3.5.2 Effect of the Ignition Device 

During this research, two different ignition devices were used to perform ignition : an 

electric match and a pyrofuze wire. Although, some of the experiments were performed 

with pyrofuze wire, electric matches proved to be more reliable. They gave a higher 

consistency of the results and were easier to use. 

A number of experiments were performed by placing the electric match at 

different positions inside the inflator to study the effect of the position of the match on the 

dynamics inside the inflator, but no significant difference in the dynamics were observed. 

3.5.3 Effect of the Tank Purging Gas 

To study the effect of the purging gas on the pressure trace in the tank, experiments were 

performed with three different purging gases : atmospheric air, helium and nitrogen. 

Figure 3.11 compares the tank pressure curves with helium and air as the purging gas. 

The figure shows that the tank pressure is slightly higher with helium than with air. 
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Figure 3.11 Comparison of tank pressure curves with helium 
and nitrogen as the purging gas 
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Figure 3.12 compares the pressure curves with nitrogen and air as the purging gas. 

The figure shows that the tank pressure is slightly lower with nitrogen than with air. 

These results are in agreement with our model given in Chapter 4. 

(Meth = 150 psi, Oxy = 300 psi)(0.250 liter inflator) 
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Figure 3.12 Comparison of tank pressure curves with 

nitrogen and air as the purging gases 

3.5.4 Concentration of Carbon Monoxide 

The chemical composition of the combustion products is also important in the design of 

an air bag inflator. In the fast combustion inflator, the major products of combustion are 

carbon dioxide (CO2) and water (H2O) but other gases such as carbon monoxide (CO) 

and oxygen (O

2

) are also formed in small quantities. During this research, the 

concentration of carbon monoxide in the tank was measured. This was done by collecting 

a sample of gas from the receiving tank and analyzing it for carbon monoxide using 

Thermal Conductivity Gas Chromatograph. In the carbon monoxide analysis, the tank 

was not purged because this simulates very closely to an actual air bag inflation. In an 

actual air bag inflation, as the bag inflates, some air enters the bag from outside. 
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Some of the results of the CO analysis for stoichiometric, oxygen-rich and 

methane-rich mixtures are given in examples 1, 2 and 3 respectively. 

Example I : The inflator was filled with a stoichiometric mixture (methane = 30 psi, 

oxygen = 60 psi). The four samples of the products of combustion from the receiving tank 

were analyzed for CO. The concentrations of CO obtained are shown in Table 3.5. The 

chromatograph for sample 3 is shown in Figure 3.13(a). 

Example 2 : The inflator was filled with an oxygen-rich mixture (methane =30psi, 

oxygen = 70 psi). The three samples of the products of combustion from the tank 

were analyzed for CO. The concentrations of CO obtained are shown in Table 3.5. The 

chromatograph for sample 1 is shown in Figure 3.13(b). 

Example 3 The inflator was filled with a methane-rich mixture (methane = 30 psi, 

oxygen = 40 psi) at room temperature. The four samples of the products of combustion 

were analyzed for CO. The concentrations of CO obtained are shown in Table 3.5. The 

chromatograph for sample 1 is shown in Figure 3.13(c). 

Table 3.5 Concentration of CO for different mixtures 

Sample No. Concentration of CO (ppm) 

30/60 Mixture 	30/70 Mixture 	30/40 Mixture 
1  
2  
3  
4  

Average : 

536 	 473 	 250 
525 	 550 	 248 
456 	 474 	 199 
357 	 ---- 	 173 
469 	 499 	 218 

According to General Motors (all other vehicle manufacturers have similar 

criteria), a total emission of 500 ppm of CO from all air bag sources in a 100 CFM 

volume is allowable. Typically, it is desired that one third of this level is produced by the 
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(b) CO Area = 20277 

(c) CO Area = 10716 

Figure 3.13 Chromatographs for different gas samples 
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driver side unit and two thirds by the passenger side unit. One eighth of the total is also 

allowed for a side impact air bag, should a side impact system deploy. Should the 

quantity of CO2 released exceed 2 percent of the gas in the 100 CFM volume then the CO 

limit is dropped to 450 ppm [37]. 

According to the American Conference of Industrial Hygienists, the short term 

exposure level (STEL) value for carbon monoxide is 400 ppm. This value times 5.5 (i.e. 

2200 ppm) is considered appropriate guidelines for air bag deployment conditions [50]. 

3.5.5 Severity of the Temperature in the Receiving Tank 

The temperature measurement in the tank is an important design parameter in the 

development of any air bag inflator because it reflects the temperature in the bag. The 

measurement of temperature in the tank is not easy because the response time of 

thermocouples are high if the flow rates involved are small. The only successful work on 

experimental measurement of tank temperature was published by Chan [24]. Although 

three different types of thermocouples were used to measure the tank temperature : a 

NANMAC E12 thermocouple and two OMEGA E type bare thermocouples (0.005" and 

0.0005" in diameter), the only accurate temperature measurements were done with the 

OMEGA 0.0005" bare thermocouple. 

Figure 3.14 shows the temperature traces inside the tank for two experiments 

performed with a 150/300 methane-oxygen mixture in a 0.250 liter inflator. In both cases, 

the tank was purged with nitrogen. The maximum temperature in the tank is about 1050 

K and it drops to 800 K in 200 msec. This temperature is higher than the temperature of 

600 K [10] or 700 K [22] for the pyrotechnic (sodium azide) inflators usually found in 
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the literature. However, no experimental measurement of temperature magnitude is 

published to date. Also, the temperature of 1000 K are not uncommon in combustion 

based inflators [35,49]. 
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Figure 3.14 Tank temperature curve for a 150/300 mixture 

Figure 3.15 shows the temperature curve inside the tank for a 30/60 mixture 

ignited in a 0.250 liter inflator. In this case the tank was not purged. We get a maximum 

temperature of about 480 K and it drops to 380 K in about 100 cosec. 

So, the conclusion is that at lower initial mixture pressures, the tank temperatures 

are lower than at higher initial mixture pressures. 
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Figure 3.15 Tank temperature curve for a 30/60 mixture 
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3.6 Application to Different Inflator Sizes 

As mentioned earlier, during this research, five different inflator sizes were used. The 

inflator and tank pressure increase with the increase in the inflator size for the same initial 

mixture pressure. 

2.085 Liter Inflator : The initial experiments of this research were done in 2.085 liter 

inflator. Most of the experiments to study the effects of stoichiometry and to measure the 

concentration of carbon monoxide in the tank were done with this inflator. Most of the 

experiments with this inflator were performed at initial pressures of 100 psi or less and in 

all the experiments, 70 liter receiving tank was used. Figure 3.16 shows the inflator and 

tank pressure curves for a 30/60 mixture. 

0.067 Liter Inflator : The volume of this inflator is about 2.7 times the volume of side 

impact air bag inflators commercially used at this time. In all the experiments, 70 liter 

receiving tank was used. The experiments with higher initial pressures started with this 

inflator. Figure 3.17 shows the inflator and tank pressure curves for a 150/350 mixture. 
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Figure 3.16 Inflator and tank pressure curves for a 30/60 mixture (2.085 liter inflator) 
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Figure 3.17 Inflator and tank pressure curves for a 150/350 mixture (0.067 liter inflator) 

0.0246 Liter Inflator : The volume of this inflator is equal to the volume of commercially 

used side impact air bag inflators. The experiments with this inflator were only performed 

for stoichiometric, 150/300 (methane = 150 psi, oxygen = 300 psi) mixture. In all the 

experiments, 70 liter receiving tank was used. 

0.0146 Liter Inflator : The volume of this inflator is about 50% smaller than the volume 

of commercially used side impact air bag inflators. Again, most of the experiments were 

performed with stoichiometric mixtures. Figure 3.18 shows the inflator and the tank 

pressure curves for a 150/300 mixture. A 28.3 liter receiving tank was used in all the 

experiments. 

0.250 Liter Inflator : This inflator is about 10% smaller than the present size of the 

commercially used driver side inflator. Most of the experiments performed with this 

inflator were for stoichiometric mixture and in all the experiments, a 70 liter receiving 

tank was used. Figure 3.19 shows the inflator and tank pressure curves for a 150/300 

mixture. 
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Figure 3.18 Inflator and tank pressure curves for a 150/300 mixture (0.0146 liter inflator) 

(0.250 liter inflator)(Tank purged with helium)(0.004" disk) 
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Figure 3.19 Inflator and tank pressure curves for a 150/300 mixture (0.250 liter inflator) 

From the above discussion, it is clear that the dynamics inside the inflator and the 

tank and the shapes of pressure-time curves inside the inflator and the tank are consistent 

for all inflator sizes. 
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3.7 Conclusions 

The experimental results were discussed for the development of fast combustion 

inflator. The following conclusions can be drawn from the discussion : 

1. The dynamic condition with respect to pressure variation with time (P-t) i.e., with 

respect to inflating an air bag in the required time is satisfied. 

2. Most of the design requirements are satisfied such as hot and cold operating 

conditions, concentration of carbon monoxide produced and the effect of burst disk. 

3. The experimental results are in agreement with the thermodynamics and mass flow 

model as discussed in Chapter 4. 

4. One main requirement that needs additional consideration is the number of moles and 

we propose to operate the system at high initial pressures or use it as hybrid system as 

discussed in Chapter 5. 



CHAPTER 4 

DEVELOPMENT OF THEORETICAL MODEL AND 
COMPARISON WITH EXPERIMENTAL RESULTS 

4.1 Introduction 

In this chapter, a description of the theoretical model called the fast combustion model is 

given along with a comparison with the experimental results. The model is based on the 

change in the internal energy inside the inflator and the receiving tank as the mass flows 

from the inflator to the tank. To simplify the model, it is assumed that : 

1. the gases inside the inflator and the tank behave as ideal gases. 

2. the mass flow from the inflator to the tank behave as one-dimensional isentropic flow. 

Prior to discussing the model, we first present and justify the applicability of an 

ideal gas assumption and give the mass flow rate equation for one-dimensional isentropic 

flow. This discussion is followed by a complete discussion of the fast combustion model 

and a demonstration of the model by several experimental examples. 

4.2 Development of Theoretical Model 

As presented above to simplify the model, it is assumed that the gases inside the inflator 

and the tank behave as ideal gases and the mass flow from the inflator to the tank behaves 

as one-dimensional isentropic flow. In this section we demonstrate and justify the 

applicability of these assumptions for the system and set-up of this research. 

63 
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4.2.1 Ideal Gas Assumption and justification 

The assumption of ideal gas is justified based on the analysis of gases and their 

thermodynamic properties. The reaction between methane (CH4) and oxygen (02) occurs 

as follows :   

CH4 + 2O2 ---> CO2 + 2H2O 

 

The products of combustion from the above reaction are carbon dioxide (CO

2

) and 

water (H2O) but other gases such as carbon monoxide (CO), oxygen (O2) and hydrogen 

(H2) are also formed in small quantities. In the inflator, the mixture is mostly composed 

of methane (CH4) and oxygen (O2) before combustion and carbon dioxide (CO

2

), water 

vapor (H2O), carbon monoxide (CO), oxygen (O2) and hydrogen (H2) after combustion. 

In the tank, the mixture is mostly composed of carbon dioxide (CO2), water vapor (H2O) 

and oxygen (O2). Other gases such as nitrogen (N

2

) and helium (He) are also present 

when the tank is purged with nitrogen (or air) and helium respectively. Table 4.1 gives 

the mass fractions of the primary inflator and tank gases for a 150/300 (methane = 150 

psi, oxygen = 300 psi) case. In this case, the tank is not purged, i.e. it is in equilibrium 

with atmospheric air. These mass fractions are calculated by using the CEA program. The 

gases shown in Table 4.1 form the majority of constituents. 

Table 4.1 Mass fractions of primary inflator and tank gases 

Gas Mass Fraction 
(Inflator) 

Mass Fraction 
(Tank) 

CO2  0.264 0.050 

H2O 0.343 0.041 

CO 0.168 --- 

O

2 

 0.117 0.213 

H

2 

 0.004 --- 

N

2 

 --- 0.684 
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We will justify that the ideal gas assumption can be used for both the inflator and 

the tank. Before we proceed, it seems reasonable to give a definition for some of the 

terms used later : 

I. Reduced Temperature : The ratio, T/Tc  is called the reduced temperature denoted by 

Tr; where Tc  is the critical temperature. 

2. Reduced Pressure : The pressure ratio, P/PC  is called the reduced pressure denoted by 

Pr; where Pc  is the critical pressure. 

3. Fugacity Coefficient : The fugacity coefficient, f/P measures the departure from 

ideal gas behavior. For an ideal gas, f/P = 1.0, i.e. the fugacity of an ideal gas is equal 

to the pressure of the ideal gas system. 

4. Compressibility Factor : The compressibility factor, Z defined as : 

Z= Pz/RT 

where P, v, R and T are the pressure, specific volume, ideal gas constant and 

temperature respectively. The compressibility factor measures the departure from 

ideal gas behavior, which is represented by Z = 1. 

The critical temperatures and pressures of inflator and tank gases are given in 

Table 4.2 [38,39]. First we look at the gases in the inflator, then at the tank. The 

maximum temperature and pressure in the inflator are 4215 K and 726 atm respectively 

[15,16]. Based on these values, the reduced temperature (Tr) and reduced pressure (Pr) are 

calculated and the corresponding values for fugacity coefficient (f/P) and compressibility 

factor (Z) are calculated. The values of the fugacity coefficient are calculated from 

the generalized Honari-Brown Fugacity Coefficient Charts [40] and the values of 
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compressibility factor are calculated from the generalized Nelson-Obert Compressibility 

Charts [40]. These values are given in Table 4.3. 

Table 4.2 Critical temperatures and pressures of gases 

Gas Critical Temperature, 
°C 	(K) 

Critical Pressure, 
atm 

Methane (CH4)  
Oxygen (O2)  
Carbon dioxide (CO2)  
Water (H2O)  
Carbon monoxide (CO)  
Hydrogen (H2)  
Nitrogen (N2)  
Helium (He) 

- 	82.5 	(190.5) 

	

-118.8 	(154.2) 

	

31.1 	(304.1) 

	

374.1 	(647.1) 
-139.0 (134.0) 
-239.9 ( 33.1) 
-147.0 (126.0) 

	

-267.9 	( 	5.1) 

45.8 
49.7 
73.0 

218.4 
35.0 
12.8 
33.5 
2.26 

Table 4.3 Fugacity coefficients and compressibility factors for the inflator gases 

Gas Pr Tr _ (f/P) Z 

CH4  

O2 

  
CO,  

H2O  
CO  
H2 

 

15.8 
14.6 
9.9 
3.3 

20.7 
56.7 

22.1 
27.3 
13.8 
6.5 

31.4 
127.3 

-1.0* 
-1.0* 
1.04 
1.02 

~1.0* 
N/A 

~1.0* 

-1.0* 
1.08 
1.03 

~1.0* 
N/A 

The values indicated by `*' in Table 4.3 are extrapolated from the charts. Also, the 

values for (f/P) and Z for hydrogen are not available (N/A) from the charts. But since the 

temperature in the inflator is much higher than the critical temperature of hydrogen, it can 

be assumed that hydrogen behaves as an ideal gas inside the inflator. 

The maximum temperature and pressure in the tank are 1500 K and 6.10 atm 

respectively [15,16]. Table 4.4 shows the values of Pr, Tr, (f/P) and Z for tank gases. 
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Table 4.4 Fugacity coefficients and compressibility factors for the tank gases 

Gas P1  Tr (f/P) Z 

CO2  
H2O  

0

2 

  
N

2 

  

He 

0.08 
0.03 
0.12 
0.18 
2.70 

4.93 
2.32 
9.73 
11.90 294.12 

1.0 
1.0 
1.0 
1.0 

N/A 

1.0 
1.0 
1.0 
1.0 

N/A 

The values of (UP) and Z for helium are not available (N/A) at these Pr and Tr. 

Again, since the temperature in the tank is much higher than the critical temperature of 

helium, it can be assumed that helium behaves as an ideal gas inside the tank. 

It is clear from. Tables 4.3 and 4.4 that all the major gases in the inflator and the 

tank behave as ideal gases. Therefore, it seems reasonable to assume that the mixtures of 

gases in the inflator and the tank behave as ideal gas mixtures. 

4.2.2 Description of One-dimensional Isentropic Mass Flow Rate Model 

The mass flow rate from the inflator to the tank, m calculated using the one dimensional 

laws for the isentropic flow of an ideal gas. The inflator and tank system is shown 

schematically in Figure 4.1. The following assumptions are made: 

1. Frictional effects are small and there is no heat transfer with the surroundings, thus 

the flow may be considered as reversible adiabatic or isentropic. 

2. One-dimensional flow and therefore, uniform fluid properties over any cross-section. 

3. Quasi-steady approximation holds. We neglect transient effects. This assumption will 

be justified by the agreement of the model and experiments. 

The equation for mass flow rate is derived from the continuity equation which is 

given as [41] : 	  
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Inflator 

Figure 4.1 Schematic of inflator and tank system 

The equation is as follows : 

where ; 

and 

m   = mass flow rate (kg/s) 

A 	= 	area of the orifice (m2) 

PI = pressure in the inflator (Pa) 

PT    = pressure in the tank (Pa) 

TI = temperature in the inflator (K) 
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TT  = temperature in the tank (K) 

ρ j, 	= density of inflator gases (kg/m3) 

ρT 	= density of tank gases (kg/m3) 

Vt = volume of the inflator (m3) 

VT = volume of the tank (m3) 

M1  = mass inside the inflator (kg) 

MT 

 = mass inside the tank (kg) 

CT  = velocity of tank gases (m/s) 

R 	= universal gas constant (J/kg K) 

y 	= ratio of specific heats 

M = Mach number 

If the pressure ratio (PT/PI) is smaller than the critical pressure ratio (Pc /P1), 

which is defined as : 

(4)  

the flow is choked and the mass flow through the orifice is maximum. The mass flow rate 

in this case is given as : 

(5)  

4.2.2.1 Validation of the One-dimensional Model Using an Ideal Gas : An ideal gas 

was used in the inflator to access --the accuracy of the measured data by comparing 

simulated and experimental data. In this case, nitrogen was selected as the ideal gas to 
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validate the model. A FORTRAN program 'FASTN2' was written to simulate the 

experimental data. The program is based on the assumptions described in section 4.2.2. In 

addition, it is assumed that the specific heats of nitrogen are constant. The program 

calculates the mass flow rate from the inflator to the tank and also calculates the 

temperature and pressure inside the inflator and the tank as a function of time. The 

program and a typical output from the program are given in Appendix B.2. 

Validation Example 1 : Consider the expansion of nitrogen at 849.54 psi (5960248.3 Pa) 

from a 0.250 liter inflator to a 70 liter tank. The burst disk (0.004" thick) was ruptured on 

command and nitrogen flows from the inflator to the tank. The tank was purged with 

nitrogen before the experiment. The input parameters for the program 'FASTN2' are 

shown in Table 4.5. In this case the ruptured area of the burst disk is 0.8 times the area of 

the orifice so the area is taken as 0.000228 m2  instead of 0.0002850 m2, which is the area 

of the complete orifice. 

Table 4.5 Input parameters for the ideal gas model (Example 1) 

Parameter Inflator 
 

Tank 
Pressure (Pa) 5960248.3 101351.7 
Temperature (K) 298.15 298.15 
Volume (m3) 0.000250 0.07 
Mass (kg) 0.01684 0.08020 

Figure 4.2 shows the pressure and the temperature curves inside the inflator and 

the tank. Figure 4.2 (a) and (b) show that the experimental pressure curves are in close 

agreement with the model. Figure 4.2 (a) shows that in the inflator pressure starts to drop 

at 13.5 msec when the burst disk is ruptured and at 33.5 msec, the inflator pressure is in 

equilibrium with the tank pressure. Figure 4.2 (b) shows that the experimental pressure 
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trace in the tank is not smooth in the beginning. This is due to the expansion when 

nitrogen enters the tank until the pressure equals the equilibrium pressure. The maximum 

pressure in the tank obtained from the model is 3.03 psi. From the experiment, the 

maximum average pressure in the tank is 3.20 psi. So, the difference is about 6%, which 

is acceptable. Figure 4.2 (c) contains the inflator and tank temperatures obtained from the 

model. It can be seen that the temperature in the inflator drops continuously from 298.15 

K to 95.3 K whereas the temperature in the tank increases from 298.15 K to 305.3 K and 

then it drops to 300.4 K. 

Figure 4.3 compares the mass flow rate from the inflator to the tank for the 

experiment and the model. The experimental mass flow rate is in close agreement with 

the model. The maximum difference between the experiment and the model is about 

10%. The experimental mass flow rate is calculated from the inflator and tank pressure 

curves using the FORTRAN Program `MFLOW'. The program and a typical output from 

the program are given in Appendix B.3. The figure shows that nitrogen starts to enter the 

tank at 13 msec and within another 20.5 msec, the whole mass of nitrogen is inside the 

tank. The pressure in the tank is maximum at this time (Figure 4.2(b)). Since the tank to 

inflator pressure ratio is less than the critical pressure ratio up to 28.4 msec, the flow is 

choked up to that time. 

Validation Example 2 : In this example, two experiments with the expansion of nitrogen 

at 877.12 psi (6150455.2 Pa) are considered. The inflator and tank volumes are 0.250 liter 

70 liter tank respectively. Again, the burst disk (0.004" thick) is ruptured on command 

and the tank is purged with nitrogen. ln the inflator, two transducers are used to measure 
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Figure 4.2 Pressure and temperature curves inside the inflator and the tank 
demonstrating the applicability of the one dimensional model 
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Mass Flow Rate vs Time 
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Figure 4.3 Comparison of theoretical and experimental mass flow rates 

the pressure : a Data Instrument's 3000 psi transducer (Trans. 1) and a Sensotec's 30,000 

psi transducer (Trans. 2). The input parameters for the program 'FASTN2' are shown in 

Table 4.6. In this case the ruptured area of the burst disk is 0.75 times the area of the 

orifice so the area is taken as 0.0002138 m2  instead of 0.0002850 m2, which is the total 

area of the orifice. 

Table 4.6 Input parameters for the ideal gas model (Example 2) 

Parameter Inflator Tank 

Pressure (Pa) 6150455.2 101351.7 
Temperature (K) 298.15 298.15 
Volume (m3) 0.000250 0.07 
Mass (kg) 0.01738 0.08020 

Figure 4.4 gives the pressure curves inside the inflator and the tank. Figure 4.4 (a) 

shows that the experimental pressure curves in the inflator, obtained from two different 

pressure transducers located at different positions in the inflator, are in close agreement 

with each other and they agree very well with the model. The pressure in the inflator 

starts to drop after about 12.0 msec when the burst disk is ruptured and after about 31.0 

msec, the inflator pressure is in equilibrium with the tank pressure. Figure 4.2 (b) shows 
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that the maximum pressure in the tank obtained from the model is 3.12 psi. From the 

experiment, the maximum average pressure in the tank is about 3.30 psi. So, the 

difference is again about 6%. 

From the above examples, it is clear that curves generated by the nitrogen 

experiments are in good agreement with the model. In the next section, we will describe 

the fast combustion model. 
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Figure 4.4 Comparison of inflator and tank pressure 
curves using nitrogen as an ideal gas 



75 

4.2.3 Description of Fast Combustion Model 

A theoretical model, called fast combustion model was developed to simulate the 

experimental results for the fast combustion inflator. The model is based on the change 

in the internal energy of the inflator and the tank as the mass flows from the inflator to the 

tank. The model is based on the assumptions described in section 4.2.2. In addition, it is 

assumed that the specific heats vary as a function of temperature. The specific heats are 

specified as polynomials of the form : 

Cp/R = a1  + a2T + a3T2  + a4T3  + a5T4 	 (6) 

The values of a1 , a2, a3, a4  and a5  are taken from the Chemkin Thermodynamic 

Database [47]. The polynomial fit of equation (6) span for two temperature ranges : 300-

1000 K and 1000 - 5000 K. In the inflator, specific heats are calculated for the 1000 - 

5000 K temperature range and in the tank, specific heats are calculated for the 300 - 1000 

K temperature range. Also, it is assumed that the mass fractions of different species are 

constant. The model uses the Chemical Equilibrium Compositions and Applications 

(CEA) code developed by NASA [15,16] to calculate the equilibrium conditions in the 

inflator. 

4.2.3.1 Chemical Equilibrium Compositions and Applications (CEA) Program : The 

program CEA is used to obtain the chemical equilibrium compositions of gas mixtures 

for assigned thermodynamic states. These states may be specified by assigning two 

thermodynamic state functions as follows : 
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a. temperature and pressure, tp 

b. enthalpy and pressure, hp 

c. entropy and pressure, sp 

d. temperature and volume (or density), tv 

e. internal energy and volume (or density), uv 

f. entropy and volume (or density), sv 

Chemical equilibrium is usually described by either of two equivalent 

formulations — equilibrium constants or minimization of free energy. However, with the 

minimization of free energy method each species can be treated independently without 

specifying a set of reactions a priori, as is required with equilibrium constants. Therefore, 

the minimization of free energy formulation is used in the CEA program. 

The conditions of equilibrium can be stated in terms of any of several 

thermodynamic functions, such as the minimization of Gibbs or Helmholtz energy or the 

maximization of entropy. Gibbs energy is most easily minimized if the thermodynamic 

state is characterized by temperature and pressure whereas, Helmholtz energy is most 

easily minimized if one wishes to use temperature and volume (or density) to characterize 

a thermodynamic state. 

The following assumptions are made in the CEA program 

1. All gases are ideal 

2. All condensed phases are pure 

3. The interactions among phases can be neglected 
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The equation of state for the mixture is : 

Pv=nRT 

where; 

P = pressure (Pa) 	 

v = specific volume (m-3/kg) 

n= 	moles per unit mass of mixture (kg-mole/kg) 

R = universal gas constant (J/kg-mole.K) 

T = temperature (K) 

An internal energy and volume (or density), uv problem is solved to find the 

equilibrium conditions in the inflator. A typical input and output of this problem for a 

150/300 (methane = 150 psi, oxygen = 300 psi) case is given in Figure 4.5. 

The results of CEA program are in close agreement (±10%) with the CHEETAH 

code [51]. CHEETAH is a thermochemical code that solves thermodynamic equations 

between product species to find chemical equilibrium. 

A FORTRAN program 'FASTCOMB' was written to simulate the experimental 

results for the fast combustion inflator. The program calculates the mass flow rate from 

the inflator to the tank. It also calculates the pressure and temperature variation with time 

inside the inflator and the tank. The flow chart for the program is given in Figure 4.6. The 

program and a typical output from the program are given in Appendix B.4. 

In the fast combustion model, a uv problem is first solved by using the CEA 

program. The output from this program and the other parameters such as volume, mass 
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INPUT  

reac fuel = CH4 mole = 0.104 t = 298 
oxid = O2 mole = 0.219 t = 298 

prob uv rho (g/cc) = 0.0347 
output cal massf 
end 

OUTPUT 

Pressure, atm 	 516.19 
Temperature, K 	 4148.77 
Density, g/cc 	 3.4709E-02 
Mol. Wt. 	 22.891 
Gamma 	 1.1409 
Mass Fractions : 
CO 	 0.16848 
CO2 	 0.26413 
COON 	 0.00015 
H 	 0.00087 
HCO 	 0.00006 
HO2 	 0.00141 
H2 	 0.00426 
HCOOH 	 0.00003 
H20 	 0.34353 
H202 	 0.00027 
O 	 0.01741 
OH 	 0.08171 
O2 	 0.11769 
O3 	 0.00001 

Figure 4.5 Input and output for a uv problem 

etc. are used as input for the FASTCOMB program. Based on the initial mass in the 

inflator and the tank, the initial internal energy is calculated. The inflator and tank 

pressures are then compared. If the inflator pressure is smaller than the tank pressure then 

the program stops. Otherwise, it calculates the specific heats, the mass flow rate and the 

fraction of mass going from the inflator to the tank. Based on this change in mass in the 

inflator and the tank, the new internal energies, temperatures, molecular weights and 



79 

pressures in the inflator and the tank are calculated. Then the time is updated and the 

whole procedure is repeated until the inflator pressure is less than or equal to the tank 

pressure. 

4.3 Comparison of Experimental Results with the Fast Combustion Model 

The experimental results are compared with the fast combustion model in the following 

examples : 

Example 1 : An experiment with 30/60 mixture inside a 0.250 liter inflator. A 0.004" 

thick burst disk is used and the tank is not purged so it is in equilibrium with atmospheric 

air. The experimental pressure and temperature curves are compared with the model. 

Example 2 : An experiment with 90/180 mixture inside a 0.250 liter inflator. A 0.004" 

thick burst disk is used and the receiving tank is not purged. The experimental pressure 

and temperature curves are compared with the model. 

Example 3 : An experiment with 125/250 mixture inside a 0.250 liter inflator. A 0.004" 

thick burst disk is used and the receiving tank is not purged. The experimental pressure 

and temperature curves are compared with the model. 

Example 4 : An experiment with 150/300 mixture inside a 0.250 liter inflator. A 0.015" 

thick burst disk is used and the tank is purged with nitrogen. The experimental pressure 

and temperature curves are compared with the model and the theoretical mass flow rate 

and the mass percentage out of the inflator as a function of time are presented. Also, the 

tank pressure and temperature curves obtained from the model are compared if the tank is 

not purged instead of purging it with nitrogen. 



No 

End 

Calculate mass flow rate 
Calculate the mass fraction 
going from inflator to tank 

Update time 

Moles of methane & oxygen 
Temperature of methane & oxygen 
Type of problem (uv) 
Density of initial gas mixture 

Input 

CEA program 
(Solution of uv problem) 
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Output 

Inflator pressure 
Inflator temperature 
Mol. wt. of gases 
Mass fractions of gases  

Inflator and tank volumes 
Mass in the inflator and the tank 
Tank pressure and temperature 
Gas constants 
Area of the orifice 
Time interval 

FASTCOMB 
Program 

Input 

Calculate the internal energy 
in the inflator and the tank 

Is Pinf  Pank? 

Yes 

Calculate the specific heats 
& the ratio of specific heats 

Calculate new internal energies 
in the inflator and the tank 
Calculate new temperatures 

Calculate new mol. weights 
Calculate new pressures 

Figure 4.6 Flow chart of the Fast Combustion Model 
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Example 1 : Consider an experiment with stoichiometric mixture (methane = 30 psi and 

oxygen = 60 psi) inside a 0.250 liter inflator. The mixture is ignited with an electric 

match. The thickness of the burst disk used in the experiment is 0.004". The receiving 

tank in this experiment is not purged so it is in equilibrium with atmospheric air. The 

input parameters for the CEA program are shown in Table 4.7. The output from the CEA 

program is given in Appendix B.5. 

Table 4.7 Input parameters for the CEA program (Example 1) 

Methane 	Oxygen 

Number of Moles 0.021 	 0.052 
Temperature (K) 298.15 	 298.15 
Density (g/cc) 0.008 

The equilibrium pressure and temperature of the inflator, the molecular weight 

and the mass fractions of product gases obtained as output from the CEA program are 

used as input to FASTCOMB program. The input data for FASTCOMB program is 

shown in Table 4.8. 

Figure 4.7 compares the pressure and the temperature curves with the fast 

combustion model. Figure 4.7(a) shows that the pressure is maximum at about 10.8 msec 

and then it starts to drop until it is in equilibrium with the tank pressure at 15.8 msec. 

Figure 4.7(b) shows that like the nitrogen experiments, the pressure trace in the 

tank is not smooth in the beginning. Again, this is due to the expansion of the product 

gases in the tank until the pressure is equal to the equilibrium pressure. In the tank, the 

pressure starts to increase at about 13.0 msec and it is maximum at about 17.8 msec. 
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Table 4.8 Input parameters for FASTCOMB program (Example 1) 

Parameter Value 

Inflator Pressure (Pa)  
Inflator Temperature (K)  
Inflator Volume (m3)  
Mass inside the Inflator(kg)  
Mol. Wt. ofInflatorGases(kg/mole)  
Tank Pressure (Pa)  
Tank Temperature (K)  
Tank Volume (m3)  
Mass inside the Tank (kg)  
Mol. Wt. of Tank Gases (kg/mole)  
Mass Fraction of CO2   
Mass Fraction of H2O  
Mass Fraction of H  
Mass Fraction  of H

2 

  
Mass Fraction of O  
Mass Fraction of O2  
Mass Fraction of CO  
Mass Fraction of OH  
Mass Fraction of HCO  
Mass Fraction of HO2   
Mass Fraction of HO 2  
Mass Fraction of O3 

10699701.52 
3807.85 

0.000250 
0.001996 

23.643 
101351.7 
298.15 

0.07 
0.082886 

28.96 
0.25207 
0.29529 
0.00089 
0.00313 
0.02564 
0.20502 
0.13216 
0.08469 
0.00001 
0.00094 
0.00010 
0.00001 

Figure 4.7(c) compares the experimental temperature curve with the temperature 

curve obtained from the fast combustion model. The figure shows that the magnitude of 

the temperatures are in close agreement but the experimental curve is slower than the 

curve obtained from the model. This might be due to the slow response time of the 

thermocouple at this flow rate. 

Example 2 : An experiment with 90/180 mixture (methane = 90 psi, oxygen = 180 psi) is 

considered. The mixture is ignited with an electric match. A 0.004" thick burst disk is 

used in the experiment. In this experiment the receiving tank is not purged. The input 

parameters for the CEA program are shown in Table 4.9. The output from the CEA 
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Figure 4.7 Comparison of pressure and temperature curves for a 30/60 mixture 
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program is given in Appendix B.6. The input data for FASTCOMB program is shown in 

Table 4.10. 

Table 4.9 Input parameters for the CEA program (Example 2) 

Methane Oxygen 
Number of Moles 0.062 0.135 
Temperature (K) 298.15 298.15 
Density (g/cc) 0.021 

Table 4.10 Input parameters for FASTCOMB program (Example 2) 

Parameter Value 
Inflator Pressure (Pa) 31311601.7 
Inflator Temperature (K) 4046.39 
Inflator Volume (m3) 0.000250 
Mass inside the Inflator (kg) 0.005335 
Mol. Wt. of Inflator Gases (kg/mole) 22.945 
Tank Pressure (Pa) 101351.7 
Tank Temperature (K) 298.15  
Tank Volume (m

3

) 0.07 
Mass inside the Tank (kg) 0.0802 
Mol. Wt. of Tank Gases (kg/mole) 28.00 
Mass Fraction of CO

2 
 0.26413 

Mass Fraction of H2O 0.34353 
Mass Fraction of H 0.00087 
Mass Fraction of H

2 

 0.00426 
Mass Fraction of O 0.01741 
Mass Fraction of O

2 

 0.11769 
Mass Fraction of CO 0.16848 
Mass Fraction of OH 0.08171 
Mass Fraction of HCO 0.00006 
Mass Fraction of HO

2 

 0.00141 
Mass Fraction of H

2O2 

 0.00027 
Mass Fraction of O3  0.00001 

The pressure and the temperature curves are compared with the fast combustion model in 

Figure 4.8. The experimental results are in good agreement with the model. The 
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Figure 4.8 Comparison of pressure and temperature curves for a 90/180 mixture 
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inflator pressure is maximum at about 12.5 msec and then it starts to drop until it is in 

equilibrium with the tank pressure at 18 msec. Figure 4.8(b) shows that the tank pressure 

starts to increase at about 15.0 msec and it is maximum at about 20 msec. Figure 4.8(c) 

shows that the experimental temperature curve is in close agreement with the model. 

Example 3 : Consider an experiment with 125/250 mixture (methane = 125 psi, oxygen = 

250 psi) inside a 0.250 liter inflator. The mixture is ignited with an electric match. The 

thickness of the burst disk used in the experiment is 0.004". The receiving tank is not 

purged so it is in equilibrium with atmospheric air. The input parameters for the CEA 

program are shown in Table 4.11. The output from the CEA program is given in 

Appendix B.7. The input data for FASTCOMB program is shown in Table 4.12. 

Table 4.11 Input parameters for the CEA program (Example 3) 

Methane 	 Oxygen 
Number of Moles  
Temperature (K)  
Density (g/cc) 

0.087 	 0.184 
298.15 	 298.15 

0.029 

The pressure and the temperature curves are compared with the fast combustion 

model in Figure 4.9. The figure shows that the experimental results for the inflator and 

the tank pressures are in close agreement with the model. Figure 4.9(b) shows that the 

maximum temperature obtained from the experiment is about 800 K whereas, from the 

model we are getting a value of about 913 K. This might be again due to slow response 

time of the thermocouple at the flow rate of this experiment. 



Table 4.12 Input parameters for FASTCOMB program (Example 3) 

Parameter Value 
Inflator Pressure (Pa) 
Inflator Temperature (K) 
Inflator Volume (m3)  
Mass inside the Inflator (kg)  
Mol. Wt. of Inflator Gases (kg/mole)  
Tank Pressure (Pa)  
Tank Temperature (K)  
Tank Volume (m3)  
Mass inside the Tank (kg)  
Mol. Wt. of  Tank Gases (kg/mole)  
Mass Fraction of CO2   
Mass Fraction of H2O  
Mass Fraction of H  
Mass Fraction of H2   
Mass Fraction of O  
Mass Fraction of O2   
Mass Fraction of CO  
Mass Fraction of OH  
Mass Fraction of HCO  
Mass Fraction of HO2   
Mass Fraction of H2O2   
Mass Fraction of O3  

43531579.0 
4112.54 
0.000250 
0.007282 
22.897 

101351.7 
298.15 

0.07 
0.082886 

28.96 
0.26201 
0.33984 
0.00089 
0.00423 
0.01827 
0.12303 
0.16734 
0.08259 
0.00005 
0.00134 
0.00024 
0.00001 

Example 4 : An experiment with 150/300 mixture (methane = 150 psi, oxygen = 300 psi) 

is considered. The mixture is ignited with an electric match. In this experiment, a 0.015" 

thick burst disk is used and the receiving tank is purged with nitrogen. The input 

parameters for the CEA program are shown in Table 4.13. The output from the CEA 

program is given in Appendix B.8. The input data for FASTCOMB program is shown in 

Table 4.13. 
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Figure 4.9 Comparison of pressure and temperature curves for a 125/250 mixture 
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Table 4.13 Input parameters for the CEA program (Example 4) 

Methane 	 Oxygen 
Number of Moles  
Temperature (K)  
Density (g/cc) 

0.104 		0.219 
298.15 	 298.15 

I 	 0.035 

Table 4.14 Input parameters for FASTCOMB program 

Parameter Value 
Inflator Pressure (Pa) 
Inflator Temperature (K) 
Inflator Volume (m3)  
Mass inside the Inflator (kg)  
Mol. Wt. of Inflator Gases (kg/mole)  
Tank Pressure (Pa)  
Tank Temperature (K)  
Tank Volume (m')  
Mass inside the Tank (kg) 
Mol. Wt. of Tank Gases (kg/mole)  
Mass Fraction of CO2   
Mass Fraction of H2O  
Mass Fraction of H  
Mass Fraction of H,  

Mass Fraction of O  
Mass Fraction of O

2 

  

Mass Fraction of CO  
Mass Fraction of OH  
Mass Fraction of HCO  
Mass Fraction of HO2   
Mass Fraction of H2O2   
Mass Fraction of O3  

52316746.5 
4148.77 

0.000250 
0.008673 
22.891 

101351.7 
298.15 

0.07 
0.082886 

28.96 
0.25874 
0.33236 
0.00093 
0.00413 
0.01991 
0.13464 
0.16372 
0.08399 
0.00004 
0.00122 
0.00020 
0.00001 

Figure 4.10 compares the pressure curves inside the inflator and the tank. The 

figure shows that the inflator and tank pressure curves obtained experimentally are in 

good agreement with the fast combustion model. Figure 4.10(e) shows that the magnitude 

of tank temperature is in agreement with the model but the experimental curve is slower 

than the one obtained from the model. 
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Figure 4.10 Comparison of pressure and temperature curves for a 150/300 mixture 

Figure 4.11 shows the mass flow rate from the inflator to the tank and the 

percentage of mass inside the tank. The figure shows that the product gases start to come 
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out of the inflator at 8 msec and within another 4.4 msec, the entire mass is inside the 

tank. Also, about 80% mass of th.e mass is inside the tank within first 1.6 msec which is 

one of the design requirements of the inflators --- see section 3.2. 

Figure 4.12 compares the tank pressure curves obtained from the model when the 

tank is not purged and when it is purged with nitrogen. The same trend for the tank 

pressure curve was obtained for the two purging gases experimentally --- see Chapter 3. 
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4.4 Comparison of Maximum Tank Pressure and Temperature 

The fast combustion model can be used to predict the maximum temperature and pressure 

in the tank for any initial pressure arid for any size of inflator or tank. Figure 4.13 

compares the predicted tank pressures and temperatures with the experimental values for 

different initial mixture pressures. The figure shows that the pressure and temperature in 

the tank increase linearly with the increase in the initial mixture pressure. 

The fast combustion model is unique and different from other models since it 

shows the dynamics of the inflator based on the fast combustion of methane-oxygen 

mixtures. The model not only gives the maximum pressure and temperature but also 

predicts the dynamic conditions. These dynamic conditions are important in inflating an 

air bag. Figure 4.14 compares the tank pressure and temperature curves for different 

initial pressures obtained from the model. The figure shows that both the tank pressure 

and the tank temperature increase with the increase in the initial mixture pressure. 

4.6 Conclusions 

I. An integrated model, "Fast Combustion Model", based on equilibrium 

thermodynamics and mass flow rate has been developed and compared with the 

experimental results. 

2. The experimental results for the transient pressure measurement in the inflator and the 

tank are in good agreement with the fast combustion model. 

3. The experimental results for transient temperature measurement in the tank are in 

good agreement with the model in terms of the magnitudes of temperature but the 

experimental curves are slower in time than the ones obtained from the model. The 
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Figure 4.13 Comparison of maximum tank pressure and temperature 
for different initial mixture pressures. 
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reason for this might be the slow response time of the thermocouple at the flow 

rates of these experiments. 

4. The fast combustion model is predictive for tank's pressure, temperature and mass 

flow rate and is sensitive to the nature of purging gas in the tank. 

5. The model is applicable for different initial mixture pressures and is expected to apply 

for different inflator sizes. 

6. Once the tank's temperature and pressure are predicted from the fast combustion 

model, we can find the composition of gas products in the tank, without 

experimentation using the Chemical Equilibrium and Applications (CEA) code. 

7. Like all other models, the fast combustion model has some limitations. The model did 

not consider heat transfer and if we want to see the pressure and time behavior for 

longer period of time, we have to include the heat transfer effects in the model. 



CHAPTER 5 

COMPARISON OF THE FAST COMBUSTION 
INFLATOR WITH CURRENT TECHNOLOGY 

5.1 Introduction 

In this chapter, we have evaluated our fast combustion inflator with the sodium azide 

(NaN3) inflator currently used in industry. Presently, the performance of the azide 

inflator sets the industry standards for a successful inflator. We will use these standards 

and criteria to assess the performance of our fast combustion inflator in terms of 

pressure-time, temperature-time, pressure impulse and the number of moles required for a 

successful air bag inflation system. 

Currently, the sodium azide (NaN3) based inflator is most commonly used in the 

U. S. air bag industry. Sodium azide-based system has been used in air bag applications 

because of its low combustion temperatures (about 1200 K) [10] and because its 

combustion products consist mostly of nitrogen gas (99.2%). However, along with 

nitrogen, this system produces considerable amounts of condensed-phase residues such as 

Na20, Na2SiO3  and FeO. The latter must be removed from the combustion products prior 

to entering the air bag. Furthermore, the design of the azide system is complex and 

expensive because it includes many dynamically-linked components, including : a squib 

igniter, an ignition enhancing sytem, the propellant grains assembly, filter system, 

controlled bursting foil and the exhaust nozzles. A major strict requirement of the azide 

inflator necessitates that all the elements in the inflator function optimally to minimize 

the delay time {24]. The delay time ' is the time between the supply of current and the 

instant of ignition. 
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In contrast, the fast combustion inflator does not produce particulate or 

objectionable gaseous emissions. There are no toxic compounds to complicate either the 

manufacturing or eventual disposal or recycling of the fast combustion inflator. This 

inflator has the advantage of simplicity of its basic process. 

As discussed in Chapters 3 and 4, the fast combustion inflator developed during 

this research satisfies most of the design and performance requirements of a successful 

inflator, including the tank pressure and temperature as a function of time, extreme hot 

and cold operating conditions, concentration of toxic gases in the products of combustion. 

However, for this inflator to be used in industry, it must satisfy all of the strict 

requirements mandated by industry standards. In this chapter, the fast combustion system 

is compared with the sodium azide system, especially on the basis of the published works 

of Butler et al. [22 ] and Wang [21]. In addition, we will attempt to show what is needed 

for the fast combustion inflator to be implemented in an actual air bag system. 

5.2 Review of the Sodium Azide Inflator Performance 

Butler et al. [22] developed a mathematical model to simulate the transient, 

thermochemical events associated with ignition and combustion of a sodium azide 

inflator. The performance of this inflator was also evaluated in terms of pressure-time and 

temperature-time profiles in the inflator and the receiving tank as well as pressure-time 

integrals at specified times after ignition. The process of inflating a vehicle air bag from 

the generated combustion gases was modeled by applying basic energy and mass 

conservation principles to various sub-components of the inflator and the receiving tank. 

Equally important, Wang [21] developed a semi-analytical procedure, called the 

dual pressure method, for computing the output from a pyrotechnic inflator (sodium 
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azide-based). In the dual pressure method, the pressures in the inflator and the tank are 

measured first. By using these pressures, the inflator output is computed in the form of 

the time histories of the gas temperature and mass flow rate. 

Analogous to Butler's work, Chan [24] presented a mathematical model in which 

the propellant combustion , filter pressure drop, heat transfer due to filter, nozzle and tank 

behavior were all considered. Inflator pressure and temperature are predicted from energy 

balance and an ideal gas equation. 

Materna [23] presented an analytical model which predicts the performance of a 

pyrotechnic (sodium azide-based) air bag inflator by accounting for the heat transfer, 

filtration, combustion, fluid flow and thermodynamic processes occurring during the 

inflation event. He considered all the essential aspects of the inflator. 

In all inflator models, including ours, the pressure and temperature were predicted 

from the energy balance using the assumption of ideal gas equation. 

5.3 Comparison of Fast Combustion System with the Sodium Azide System 

In this section, a comparison of fast combustion system with the sodium azide system will 

be presented in terms of pressure and temperature as a function of time, pressure impulses 

and the mass flow rate and the number of moles. 

5.3.1 Tank Pressure-Time Behavior 

Figure 5.1 compares the tank pressure curve for standard sodium azide system with the 

experimental tank pressure curve for fast combustion inflator having an initial mixture 

pressure of 210/420 (methane = 210 psi, oxygen = 420 psi) in a 0.250 liter inflator. The 

figure shows that in the case of fast combustion system, the maximum pressure in the 
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tank is attained in less than 10 msec after ignition; whereas, in the case of sodium azide 

system, the tank pressure is maximum in about 75 msec. The reason for this is that in the 

sodium azide system, the solid propellant keeps on generating gases at a slower rate 

inside the inflator. In contrast, in the fast combustion system, the whole mass is 

transferred into the tank within 5 - 10 msec after the burst disk ruptures. Based on the 

above discussion, we can say that fast combustion inflator satisfies the pressure-time 

requirement for inflating an air bag. 
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Figure 5.1 Comparison of tank pressure curves for the 
sodium azide and fast combustion inflators 

5.3.2 Tank Temperature-Time Behavior 

Figure 5.2 compares the tank temperature curves for the two systems. The figure shows 

that the maximum temperature for the fast combustion system is about 1000 K whereas 

for the sodium azide system, the maximum temperature is about 700 K. It should be 

noted that the temperature value given above for sodium azide is the value predicted from 

the model developed by Butler et al. [22], and not the actually measured value. The 1000 
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K tank temperature measured in the case of fast combustion inflator is not uncommon in 

combustion based air bag systems [35]. As shown in. Figure 5.2, the temperature of the 

fast combustion inflator decreases rapidly as a function of time and the difference 

between the two inflators becomes less at about 100 msec. 

1200 

1000 
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600 

400 Sodium Azide System (Butler et al.) 

2100   
Work) Fast Combustion System (This 

10 
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- 
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Figure 5.2 Comparison of tank temperatures for the sodium 
azide and fast combustion inflators 

5.3.3 Inflator Pressure-Time Behavior 

Figure 5.3 compares the inflator and tank pressure curves of the two systems. The figure 

shows that in the case of fast combustion system, inflator pressure rises and drops very 

quickly and reaches equilibrium with the tank pressure in about 5 msec after ignition, 

whereas, in the case of sodium azide system, the pressure keeps on increasing for up to 

about 30 msec after ignition. The reason for the latter is due to the continuous generation 

of gas from the solid propellant over time. Figure 5.3 also shows that in the case of 

sodium azide system, the maximum pressure in the inflator is about 2400 psi whereas, in 
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the case of fast combustion system, the inflator pressure ranges from 1,500 psi for a 30/60 

mixture to about 12,000 psi for a 150/300 mixture in a 0.250 liter inflator. 

140100 	 
120010 

Fast Combustion System (This Work) 
—Sodium Azide System (Butler et al.) 

Sodium Azide System (Wang) 
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Figure 5.3 Comparison of inflator pressures for the sodium 
azide and fast combustion inflators 

5.3.4 Pressure Impulse-Time Behavior 

According to Butler et al. [22], pressure impulse or pressure integration over time in the 

receiving tank is an important parameter in evaluating the performance of an inflator. The 

tank pressure impulse represents the momentum transferred from the bag to the occupant 

which is ultimately transferred to the vehicle occupant. If two inflators have the same 

tank impulse, it is expected that they have similar inflating abilities. Figure 5.4 compares 

the tank pressure impulse of the two systems and shows that the tank pressure impulse 

curves for fast combustion system is initially higher than the sodium azide system. In 

actual implementation, the pressure impulse can be modulated by using pulse-shaping, if 

required. Pulse shaping is accomplished by varying an orifice area in a time-dependent 

manner. Pulse shaping is necessary to lessen the stresses on the housing, air bag and 
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related structures and is a common design consideration in the air bag industry. In all, the 

fast combustion inflator meet the pressure impulse required for a practical fast responding 

air bag system. 
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Figure 5.4 Comparison of pressure impulse vs time for the sodium 
azide and fast combusiton inflators 

5.3.5 Mass Flow Behavior 

Figure 5.5 compares the theoretical mass flow rates of the two inflator systems --- the 

standard sodium azide inflator and the fast combustion with an initial mixture pressure of 

210/420 (methane = 210 psi, oxygen = 420 psi) in a 0.250 liter inflator. It can be seen that 

the mass flow rates of the two systems are quite different in behavior. In the case of fast 

combustion system, the total mass leaves the inflator in less than 5 msec after ignition. In 

contrast, for sodium azide system, the solid propellant keeps on generating gas for up to 

75 msec. If we calculate the area under the curves for two cases, we see that the total 

mass in the case of sodium azide system is roughly 76 gm (3 moles) whereas, in the case 

of the fast combustion system, it is about 12 gm (0.52 moles). Although, the two inflators 
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have different volumes, the comparison is only in respect to mass flow trend from the 

inflator to the tank. 

12 
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Figure 5.5 Comparison of mass flow rates for the sodium 
azide and fast combustion inflators 

5.4 Discussion 

In general, most of the requirements for a successful inflator such as pressure-time, and 

temperature-time behavior are satisfied by the fast combustion inflator. As described in 

section 5.3.4, to satisfy the pressure impulse requirement, a pulse shaping mechanism can 

be used to tailor the inflator requirement for various air bag types. Also, for the fast 

combustion inflator to satisfy the total mass (number of moles) requirement for an air bag 

system, we must adopt suitable strategies. 

In the fast combustion system, the total mass of gases for an initial mixture 

pressure of 630 psi (methane = 210 psi, oxygen = 420 psi) in a 0.250 liter inflator is 12.01 

gm (methane = 2.34 gm, oxygen = 9.67 gm) or 0.45 moles. This inflator size correspond: 

to a typical driver side air bag inflator. The number of moles of product gases forme 
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during the reaction is about 0.52. This is about half the number of moles required to 

inflate the driver side air bag and provide the required cushioning effects needed for full 

protection. The remaining challenge in our case is to satisfy the requirement of the total 

number of moles. 

The number of moles in the fast combustion inflator can be increased by two 

means : 

1. By increasing the initial mixture pressure : In order to satisfy the requirement of the 

number of moles, one possible solution is to increase the initial mixture pressure. 

Figure 5.6 shows the effect of increasing the initial mixture pressure from 210/420 

(methane = 210 psi, oxygen = 420 psi) to 350/700 (methane = 350 psi, oxygen = 700 

psi). The figure shows that if we increase the initial mixture pressure to 350/700, the 

number of moles of product gases will be approximately 0.86 but the maximum tank 

pressure and temperature will be 90 psi and 1650 K respectively. The high 

temperature in the tank might limit the use of higher initial pressure. In order to 

remedy this, the ideal option will be to use a hybrid system. 

2. By using a hybrid system : In a hybrid system, the products of combustion are mixed 

with another inert gas at ambient temperature before being discharged into a tank or 

an air bag. Since the combustion temperature in the fast combustion inflator is higher 

(about 4000 K), mixing of the combustion products with the inert gas will lower the 

average gas temperature in the tank. To use our system as a hybrid system, our 

combustion chamber will be coupled with the stored gas chamber to cool the gases 

(Figure 5.7). With a slight modification in the fast combustion model, it can be used 

to predict the behavior of a hybrid system. 
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Figure 5.7 Hybrid system 

Conclusions 

Based on the foregoing discussion, the following conclusions are formulated : 

I. 

	

	The fast combustion inflator satisfies most of the dynamic requirements needed for an 

air bag system including the pressure-time and the temperature-time behavior. 

2. In order to satisfy the pressure impulse requirement, a pulse shaping mechanism can 

be used to tailor the inflator requirement for various types of air bags. 

3. The remaining important requirement regarding the number of moles needed to 

achieve equivalent performance to the azide system can be accomplished in two ways 

namely : 

i) increasing the initial mixture pressure and/or 

ii) adopting a hybrid inflator design. 

4. We believe that the hybrid inflator, which is now a common practice in industry 

would be a preferred solution. 

5. The most suitable air bag inflator to be satisfied with the fast combustion system 

without any modifications is the side impact type. 



CHAPTER 6 

GENERAL CONCLUSIONS 

A new and novel air bag inflator based on fast combustion reactions of methane-oxygen 

mixtures has been developed and studied. The performance of the fast combustion 

inflator was evaluated in terms of pressure-time relationships inside the inflator and in a 

receiving tank as well as the temperature-time relationship in a tank. A theoretical and 

integrated model has been developed to simulate the transient pressure and temperature as 

well as the mass flow rate from the inflator to the tank. Conclusions drawn from this 

work are : 

1. The dynamic condition with respect to pressure variation with time i.e. with respect to 

inflating a bag in the required time is satisfied. 

2. The fast combustion system is a well behaved system, easy to activate and is 

applicable for different size inflators. 

3. Most of the design requirements are satisfied such as hot and cold operating 

conditions, concentration of carbon monoxide produced and the effect of burst disk. 

4. An integrated model, "Fast Combustion Model", based on equilibrium 

thermodynamics and mass flow rate has been developed to predict the dynamics and 

behavior of the new inflator. 

5. The experimental results for transient pressure measurement in the inflator and the 

tank are in good agreement with the fast combustion model. 

6. The experimental results for transient temperature measurement in the tank are in 

good agreement with the model in terms of the magnitudes of temperature but the 

experimental curves are slower in time than the ones obtained from the model. 
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7. The fast combustion model is predictive for tank's pressure, temperature, and mass 

flow rate. 

8. The model is applicable for different initial mixture pressures, inflator sizes and tank 

purging gases. 

9. The model can be used to predict results under hot and cold conditions. 

10. With a slight modification in the model, it can be used to predict the behavior of a 

hybrid inflator. 

11. In general, most of the requirements for a successful inflator are satisfied by the fast 

combustion inflator but we need to consider how to satisfy  the pressure impulse and 

the total mass or the number of moles requirements in the case of fast combustion. 

inflator. 

12. The pressure impulse requirement can be satisfied by a pulse shaping mechanism to 

tailor the inflator requirement for various types of air bags. 

13. The requirement for the number of moles needed to achieve equivalent performance 

to the azide system can be accomplished in two ways : 

i) increasing the initial mixture pressure and/or 

ii) adopting a hybrid inflator design. 

We believe that the hybrid inflator, which is now a common practice in industry 

would be a preferred solution. 

14. The most suitable air bag inflator to be satisfied with the fast combustion system 

without any modifications is the side impact type. 



APPENDLX A 

CALIBRATION PROCEDURES AND 
INSTRUMENTATION 

A.1 Procedure for the Calibration of Pressure Transducers 

1. Turn on the data acquisition box and start the software 'NJIT'. Attach the calibrated 

transducer and the transducer(s) to be calibrated to the inflator (or receiving tank). 

Zero all the channels by pressing the key 'Z' from the keyboard. 

2. Fill the inflator (or receiving tank)with a measured quantity of gas (say 1500 psi of 

oxygen) by opening the inlet valve. Discharge the gas (oxygen) by opening the release 

valve and at the same time hit any key of the keyboard to take data. 

3. Take data for about 4-5 minutes. 

A.1.1 Calibration Results of the Pressure Transducers 

Figure A.1 shows the calibration curves for Data Instrument XPRO (5000 psi) and 

Barksdale (10,000 psi) transducers. 

A.2 Procedure for the Calibration of Thermocouples 

1. Turn on the data acquisition box and start the software 'NJIT'. Zero all the channels 

of the software. 

2. Take a beaker filled with ice and insert a thermometer and the thermocouple to be 

calibrated inside the beaker. 

3. Read the temperature from the thermometer and the voltage from the thermocouple 

on the computer screen. Take readings from 0°C to 22°C (room temperature) at every 

2°C interval. 
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4. Put the beaker on the hot plate and take readings up to 100°C at 2°C intervals. 

5. Take a beaker filled with oil at -35°C and insert the thermometer and the 

thermocouple. Take readings at 2°C intervals up to room temperature. 

6. Find a linear least squares polynomial to fit the data. 

inflator Size = 2.085 liter 
1500 

	Data Instrument (5,10010 psi) Transducer 

1000 - Barksdale (110,000 psi) Transducer 

500 

0 

0 1 	 2 	 3 	 4 	 5 

Time (sec) 

Figure A.1 Calibration curves for Data Instrument (5,000 psi) 
and Barksdale (10,000 psi) transducers 

A.2.1 Calibration Results for Thermocouples 

The calibration result for NANMAC E12-3-E-U thermocouple is shown in Figure A.2. A 

computer program 'THERM' is written to find the best linear least squares polynomial 

through the calibration data. The program is given in Appendix B.1. The best linear least 

squares polynomial for the above thermocouple is : 
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Y = 318.6907 X - 0.1535053 

where : Y = temperature (°C) 

X = voltage (volt) 
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Figure A.2 Calibration result for NANMAC E12-3-E-U thermocouple 

A.2.2 Testing the Response Time of Thermocouples 

The response time of a thermocouple is defined as the time it takes for the thermocouple 

to produce 63.2% of its maximum output when subjected to a step-function of 

temperature [30]. The response time of thermocouple is tested by letting a drop of molten 

solder fall onto the surface of the thermocouple from a height of about 3 inches. The 

voltage change is measured using a memory oscilloscope. The summary of tests is given 

in Table A.1. Figure A.3 shows a typical output from the oscilloscope. 

Te
m

p
er

at
u

re
  (

C
)  



112 

Table A.1 Summary of tests for response time of thermocouple 

Resistance 
(ohm) 

Volt. Inc. (AV) 
(mvolt) 

Time Inc. (At) 
(msec) 

AV/At 
(mvolt/msec) 

(°C/msec) 

5.1 
5.9 

	6.1 
6.3 
6.1 
6.0  

Average : 

350.00 
321.87 
84.37 
184.37 
84.37 
140.62 

4.0 
7.0  

19.0 
9.0  
8.0 
6.0 

 

	

87.50 	27.73 

	

45.98 	14.51  

	

4.44 	1.25 

	

20.48 	6.38 

	

10.55 	3.35 

	

23.44 	7.30  

	

32.06 	10.37 

 
 

	

	   
 

 

	

 	 

Figure A.3 Output from the oscilloscope for the response time of thermocouple 

A.3 Testing the Burning Time of Electric Matches 

The burning time of electric matches is calculated by putting a 0.2 ohm resistor in series 

with and measuring the voltage across the match. The circuit diagram is shown in Figure 

A.4. Both types of electric match are tested. 

Type 1 : 18" (yellow wire) 

Type 2 : 1.8 m (white wire) 



1 	Oscilloscope (Channel 1) 
2 	Oscilloscope (Channel 2) 
3 	Electric match 
4 	Resistor (0.2 Ohm) 
5 	Battery 

Figure A.4 Circuit diagram for testing the burning time of electric matches 

The results for testing the burning time of electric matches are shown in Table 

A.2. A typical result from the oscilloscope is shown in Figure A.5. 

Table A.2 Results for testing the burning time of electric matches 

Match Type Volt. 
Inc.(AV) 

(volt) 

Time Inc.(At) 
(msec) 

Current (I) 
(ampere) 

(AV/At) 
(volt/msec) 

2  
2  
1  
1  
1  
1  
1  
1  

Average : 

1.39 
1.29 
1.50 
1.56 
1.49 
1.47 
1.46 
1.44 
1.45 

310E-03 
324E-03 
246E-03 
222E-03 
358E-03 
282E-03 
246E-03 
295E-03 

285.4E-03 

6.95 
6.47 
7.50 
7.78 
7.44 
7.37 
7.28 
7.22 
7.25 

4.48 
3.99 
6.10 
7.01 
4.16 
5.23 
5.92 
4.89 
522 
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Figure A.5 Output from the oscilloscope for testing the burning time of electric match 

A.4 Procedure for the Calibration of Carbon Monoxide 

1. Take a 10 ml sample in a syringe from a CO standard (say 100 ppm CO) and inject it 

in the chromatograph. Note the area of CO peak by using the HP3396 Series H 

Integrator. Repeat this procedure four or five times and take the average value of area. 

2. Repeat step 1 for other CO standards (1000 ppm and 1%). 

A.4.1 Calibration Results for Carbon Monoxide 

The calibration curves for carbon monoxide with two different flow rates used in the 

analysis are shown in Figure A.6. A typical output for a 10 ml sample of CO standard 

(1000 ppm) is shown in Figure A.7. 



25.5 

1.15 

1000000 — 

8010000 — 
Flow Rate Column A = 60 ml/min 

Flow Rate Column A = 30 ml/min 
6000100 — 

4000100 -- 

200000 — 

	f 	I 	I 	i 			11 

0 1000 2000 30010 4000 50100 61000 7000 8000 9000 10000 

Flow Rate Column Column B = 

Are
a  

B = 25.5 	ml/min  

CO Concentration (ppm) 

Figure A.6 Calibration curves for carbon monoxide 

CO Area = 41342 

Figure A.7 Typical output of 10 ml sample of CO standard (1000 ppm) 

A.5 Precautions, Handling of Electric Matches and Procedures for Safety 

A.5.1 Precautions : 

1. Check the voltage in the leads to be connected to the electric match adapter. Make 

sure that there is no voltage in the leads before connecting it to the adapter. 
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2. Make sure that all the leads from the pressure transducers, thermocouples and electric 

match are connected to the data acquisition box. 

3. Make sure that there are no gas leaks in the inflator, receiving tank and the other 

fittings. 

4. After the experiment, make sure that all the valves of gas cylinders are closed and the 

cylinders are chained all the times. 

5. Make sure that the inlet valve to the inflator is closed and the release valve is open 

before firing the shot. Also, before firing the shot, make sure that the supply and 

discharge valves of the receiving tank are closed. 

A.5.2 Handling of Electric Matches 

I. The electric matches used in this study are classified as Class C explosives and 

require a Class I-I license from the New Jersey Department of Labor to handle them. 

2. While handling the matches, avoid flame, temperatures over 71 °C, stray electrical 

currents, static electricity, and impact. To protect eyes, wear safety glasses with side 

shields. 

3. Electric matches are stored in a ventilated, non-sparking cabinet and are brought into 

the laboratory in a metal box which has a wood lining inside. Not more than 50 

matches are allowed in the work area. 

4. The storage of electric matches requires permits from the Newark Fire Department 

and the New Jersey Department of Labor. 
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A.5.3 Procedures for Safety 

1. Due to high pressures and high temperatures involved in the experiments, the 

experiments are performed in an explosion-proof laboratory with all the explosion-

proof fittings. 

2. The computer and the data acquisition system are kept outside the laboratory and the 

electric match is ignited by pressing any key of the computer keyboard. 



APPENDIX B 

COMPUTER PROGRAMS 

B.1 Program THERM 
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PROGRAM THERM 
* BY 
* YACOOB TABANI 

PROGRAM THERM 
INTEGER DIM 
PARAMETER (DIM=1 00) 
INTEGER I,N 
REAL X(DIM), Y(DIM), XY(DIM), XX(DIM) 
REAL SUMX, SUMY, SUMXY, SUMXX 

* Read in the no. of data points 
READ *, N 
PRINT *, 'N=',N 
PRINT *, 	 X 	 Y ' 
SUMX=0 
SUMY=0 
SUMXY=0 
SUMXX=0 

* Read in the values of X and Y 
DO 50 I=1, N 
READ *, X(I), Y(I) 
PRINT *, X(I), Y(I) 

* Calculate the sum of X,Y,XY and XX 
XY(I) = X(I) * Y(I) 
XX(I) = X(I) ** 2 
SUMX = SUMX 	X(I) 
SUMY = SUMY 	Y(I) 
SUMXY = SUMXY 	XY(I) 
SUMXX = SUMXX 	XX(I) 

50 	CONTINUE 

* Calculate the coefficients A and B of linear least 
* squares polynomial 

A = ((N*SUMXY)-(SUMX*SUMY))/((N*SUMXX)-(SUMX**2)) 
B = ((SUMXX*SUMY)-(SUMXY*SUMX))/((N*SUMXX)-(SUMX**2 

* Print the best linear least squares polynomial 
PRINT *,'THE BEST LINEAR LEAST SQUARES POLYNOMIAL I 
PRINT *,'Y=',A, ' X+',B 
END 



48 
X 	 Y 

-1.050000E-01 	-35.000000 
-9.520000E-02 	-33.000000 

	

-8.790000E-02 	-30.000000 

	

-6.350000E-02 	-26.000000 

	

-5.860000E-02 	-19.000000 
-4.880000E-02 	-16.000000 
-3.420000E-02 	-13.000000 
-2.930000E-02 	-10.000000 
-1.220000E-02 	 -5.000000 
-7.300000E-03 	 -2.000000 
-2.400000E-03 	 -1.000000 
0.000000E+00 	 0.000000 
1.710000E-02 	 7.000000 
2.930000E-02 	 10.000000 
4.400000E-02 	 15.000000 
5.130000E-02 	 18.000000 
5.860000E-02 	 20.000000 
6.840000E-02 	 22.000000 
8.550000E-02 	 28.500000 
1.001000E-01 	 30.000000 
1.026000E-01 	 34.000000 
1.050000E-01 	 35.000000 
1.074000E-01 	 36.000000 
1.123000E-01 	 37.000000 
1.172000E-01 	 38.500000 
1.197000E-01 	 39.000000 
1.221000E-01 	 40.000000 
1.270000E-01 	 42.000000 
1.343000E-01 	 44.000000 
1.416000E-01 	 46.000000 
1.490000E-01 	 48.000000 
1.538000E-01 	 50.000000 
1.612000E-01 	 52.000000 
1.661000E-01 	 54.000000 
1.685000E-01 	 55.000000 

	

1.783000E-01 	 56.000000 

	

1.832000E-01 	 59.000000 

	

1.856000E-01 	 60.000000 

	

2.027000E-01 	65.000000 

	

2.198000E-01 	 70.000000 

	

2.369000E-01 	 76.000000 

	

2.515000E-01 	 80.000000 

	

2.662000E-01 	 83.000000 

	

2.882000E-01 	 90.000000 

	

3.028000E-01 	 94.000000 

	

3.126000E-01 	 96.000000 

	

3.175000E-01 	 98.000000 

	

3.199000E-01 	100.000000 
THE BEST LINEAR LEAST SQUARES POLYNOMIAL IS : 

Y= 	318.690700X+ -1.535053E-01 
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B.2 Program FASTN2 
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PROGRAM FASTN2 
BY 

YACOOB TABANI 

PROGRAM FASTN2 
INTEGER DIM 
PARAMETER (DIM=800) 
REAL PI(DIM),TI(DIM),VI,MI(DIM),RI  (DIM),PT(DIM),TT(DIM),VT 
REAL MT(DIM),RT(DIM),CP,R,CV,GAMMA,A,DELT,TIME(DIM),PCRIT 
REAL UI(DIM),UT(DIM),PRATIO(DIM),B(DIM),C(DIM),MFL(DIM) 
REAL MACH(DIM),D(DIM),M(DIM) 
INTEGER J, K, N, COUNT 

* Initial Conditions 
* Inflator 

PI(1) = 5960248.3 
TI(1) = 298.15 
VI 	= 0.000250 
MI(1) = 0.01684 
RI(1) = 67.36 

* Tank 
PT(1) = 101351.7 
TT(1) = 298.15 
VT 	= 0.07 
MT(1) = 0.08020 
RT(1) = 1.1457 

* Properties of Nitrogen 
CP 	= 1040.04 

296.76 
CV 	= 743.28 
GAMMA = 1.399 

* Area of the orifice and time step 
A 	= 0.0002280 
DELT 	= 0.0004 

* Other constants 
TIME(1) = 0.0000 
COUNT = 0 

800 

* Critical Pressure Ratio 
PCRIT = (2.0/(GAMMA+1))**(GAMMA/(GAMMA-1)) 

* Calculate the internal energy in the inflator and the tank 
UI(1) = MI(1)*CV*TI(1) 
UT(1) = MT(1)*CV*TT(l) 
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* If the tank pressure is greater than or equal to the inflator 
* pressure then the program stops 

OPEN (UNIT=5, FILE='FASTN2F.OUT', STATUS='NEW') 
DO 200 J=1,N 
IF (PT(J) .GE. PI(J)) THEN 
GO TO 300 
ELSE 
GO TO 100 
END IF 

* Calculate the tank to inflator pressure ratio 
100 	PRATIO(J) = PT(J)/PI(J) 

IF (PRATIO(J) .LT. PCRIT) THEN 
B(J)=(PI(J)/(TI(J)**0.5))*((GAMMA/R)**0.5) 
C(J)=((2.0/(GAMMA+1))**((GAMMA+1)/(2.0*(GAMMA-1)))) 
MFL(J) = A*B(J)*C(J) 
ELSE 
B(J)=(PI(J)/(TI(J)**0.5))*((GAMMA/R)**0.5) 
MACH(J)=((2.0/(GAMMA-1))*(((PT(J)/PI(J))**((1-GAMMA) 

+ /GAMMA))-1))**0.5 
D(J)=(1+H(GAMMA-1)/2.0)*(MACH(J)**2)))** 

+ ((GAMMA+1)/(2.0*(GAMMA-1))) 
MFL(J) = A*B(J)*(MACH(J)/D(J)) 
END IF 

* Calculate mass fraction and mass in the inflator and the tank 
M (J) = MFL(J)*DELT 
MI (J+1) = MI(J)-M(J) 
MT(J+1) = MT(J)+M(J) 

* Calculate density in the inflator and the tank 
RI(J+1) = MI(J+1)/VI 
RT(J+1) = MT(J+1)/VT 

* Calculate new internal energy 
UI ( J+1) = UI (J) - (M (J) *CP*TI (J) ) 
UT (J+1) = UT (J) + (M(J)*CP*TI (J) ) 

* Calculate new temperatures 
TI (J+1) = UI(J+1)/(MI(J+1)*CV) 
TT(J+1) = UT(J+1)/(MT(J+1)*CV) 

* Calculate new pressures 
PI(J+1) = RI(J+1)*R*TI(J+1) 
PT(J+1) = RT(J+1)*R*TT(J+1) 

* Update time 
COUNT = COUNT + 1 
TIME (J+1) = TIME(J)+DELT 

200 	CONTINUE 
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* Print the values of the variables 
300 	WRITE (5,*) 'CRITICAL PRESSURE RATIO =',PCRTT 

WRITE (5,*) ' TIME 	 MFLOW 	 MASS' 
DO 400 K=1,COUNT 
WRITE (5,*) TIME(K),MFL(K),M(K) 

400 	CONTINUE 
WRITE (5,*) ' TIME 	 INFL MASS 	 TANK MASS' 
DO 500 L=1, COUNT 
WRITE (5,*) TIME(L),MI(L),MT(L) 

500 	CONTINUE 
WRITE (5,*) ' TIME 	 INFL IE 	 TANK 
DO 600 L=1, COUNT 
WRITE (5,*) TIME(L),UI(L),UT(L) 

600 	CONTINUE 
WRITE (5,*) ' TI 	 TT 	 PI 	 PT' 
DO 700 L=1,COUNT 
WRITE (5,*) TI(L),TT(L),PI(L),PT(L) 

700 	CONTINUE 
CLOSE (UNIT=S, STATUS='KEEP') 
END 



CRITICAL. PRESSURE RATIO = 	5.284503E-01 
TIME 	 MFLOW 	 MASS 

	

0.000000E+00 	 3.127464 	1.250985E-03 

	

4.000000E-04 	 2.848233 	1.139293E-03 

	

8.000000E-04 	 2.598189 	1.039275E-03 

	

1.200000E-03 	 2.373720 	9.494878E-04 

	

1.600000E-03 	 2.171846 	8.687383E-04 

	

2.000000E-03 	 1.989976 	7.959902E-04 

	

2.400000E-03 	 1.825850 	7.303401E-04 

	

2.800000E-03 	 1.677497 	6.709989E-04 

	

3.200000E-03 	 1.543190 	6.172758E-04 

	

3.600000E-03 	 1 .421412 	5.685648E-04 

	

4.000000E-03 	 1.310832 	5.243328E-04 

	

4.400000E-03 	 1.210276 	4.841105E-04 

	

4.799999E-03 	 1.118709 	4.474837E-04 

	

5.199999E-03 	 1.035215 	4.140860E-04 

	

5.599999E-03 	9.589823E-01 	3.835929E-04 

	

5.999999E-03 	8.892916E-01 	3.557166E-04 

	

6.399998E-03 	8.255028E-01 	3.302011E-04 

	

6.799998E-03 	7.670460E-01 	3.068184E-04 

	

7.199998E-03 	7.134133E-01 	2.853653E-04 

	

7.599998E-03 	6.641509E-01 	2.656603E-04 

	

7.999998E-03 	6.188527E-01 	2.475411E-04 

	

8.399998E-03 	5.771552E-01 	2.308621E-04 

	

8.799998E-03 	5.387318E-01 	2.154927E-04 

	

9.199998E-03 	5.032897E-01 	2.013159E-04 

	

9.599999E-03 	4.705650E-01 	1.882260E-04 

	

9.999999E-03 	4.403201E-01 	1.761280E-04 

	

1.040000E-02 	4.123408E-01 	1.649363E-04 

	

1.080000E-02 	3.864337E-01 	1.545735E-04 

	

1.120000E-02 	3.624236E-01 	1.449694E-04 

	

1.160000E-02 	3.401523E-01 	1.360609E-04 

	

1.200000E-02 	3.194760E-01 	1.277904E-04 

	

1.240000E-02 	3.002646E-01 	1.201058E-04 

	

1.280000E-02 	2.823997E-01 	1.129599E-04 

	

1.320000E-02 	2.657737E-01 	1.063095E-04 

	

1.360000E-02 	2.502885E-01 	1.001154E-04 

	

1.400000E-02 	2.358550E-01 	9.434199E-05 

	

1.440000E-02 	2.223916E-01 	8.895664E-05 

	

1.480000E-02 	2.098240E-01 	8.392958E-05 

	

1.520000E-02 	1.980842E-01 	7.923367E-05 

	

1.560000E-02 	1.868070E-01 	7.472279E-05 

	

1.600000E-02 	1.751917E-01 	7.007668E-05 

	

1.640000E-02 	1.631901E-01 	6.527602E-05 

	

1.680000E-02 	1.507916E-01 	6.031664E-05 

	

1.720000E-02 	1.379862E-01 	5.519448E-05 

	

1.760000E-02 	1.247635E-01 	4.990541E-05 

	

1.800000E-02 	1.111114E-01 	4.444455E-05 

	

1.840000E-02 	9.701233E-02 	3.880493E-05 

	

1.880000E-02 	8.243610E-02 	3.297444E-05 

	

1.920000E-02 	6.732164E-02 	2.692865E-05 

	

1.960000E-02 	5.152803E-02 	2.061121E-05 

	

2.000000E-02 	3.465426E-02 	1.386171E-05 

	

2.040000E-02 	1.464830E-02 	5.859320E-06 
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TIME 	 INFL MASS 	TANK MASS 

	

0.000000E+00 	1.684000E-02 	8.020000E-02 

	

4.000000E-04 	1.558901E-02 	8.145098E-02 

	

8.000000E-04 	1.444972E-02 	8.259027E-02 

	

1.200000E-03 	1.341045E-02 	8.362955E-02 

	

1.600000E-03 	1.246096E-02 	8.457904E-02 

	

2.000000E-03 	1.159222E-02 	8.544777E-02 

	

2.400000E-03 	1.079623E-02 	8.624376E-02 

	

2.800000E-03 	1.006589E-02 	8.697411E-02 

	

3.200000E-03 	9.394890E-03 	8.764511E-02 

	

3.600000E-03 	8.777614E-03 	8.826238E-02 

	

4.000000E-03 	8.209049E-03 	8.883094E-02 

	

4.400000E-03 	7.684716E-03 	8.935528E-02 

	

4.799999E-03 	7.200606E-03 	8.983938E-02 

	

5.199999E-03 	6.753122E-03 	9.028687E-02 

	

5.599999E-03 	6.339036E-03 	9.070095E-02 

	

5.999999E-03 	5.955443E-03 	9.108455E-02 

	

6.399998E-03 	5.599726E-03 	9.144026E-02 

	

6.799998E-03 	5.269525E-03 	9.177046E-02 

	

7.199998E-03 	4.962707E-03 	9.207728E-02 

	

7.599998E-03 	4.677342E-03 	9.236264E-02 

	

7.999998E-03 	4.411682E-03 	9.262830E-02 

	

8.399998E-03 	4.164141E-03 	9.287584E-02 

	

8.799998E-03 	3.933278E-03 	9.310670E-02 

	

9.199998E-03 	3.717786E-03 	9.332220E-02 

	

9.599999E-03 	3.516470E-03 	9.352351E-02 

	

9.999999E-03 	3.328244E-03 	9.371173E-02 

	

1.040000E-02 	3.152116E-03 	9.388787E-02 

	

1.080000E-02 	2.987180E-03 	9.405280E-02 

	

1.120000E-02 	2.832606E-03 	9.420737E-02 

	

1.160000E-02 	2.687637E-03 	9.435233E-02 

	

1.200000E-02 	2.551576E-03 	9.448840E-02 

	

1.240000E-02 	2.423785E-03 	9.461619E-02 

	

1.280000E-02 	2.303679E-03 	9.473629E-02 

	

1.320000E-02 	2.190720E-03 	9.484925E-02 

	

1.360000E-02 	2.084410E-03 	9.495556E-02 

	

1.400000E-02 	1.984295E-03 	9.505568E-02 

	

1.440000E-02 	1.889953E-03 	9.515002E-02 

	

1.480000E-02 	1.800996E-03 	9.523898E-02 

	

1.520000E-02 	1.717067E-03 	9.532291E-02 

	

1.560000E-02 	1.637833E-03 	9.540214E-02 

	

1.600000E-02 	1.563110E-03 	9.547687E-02 

	

1.640000E-02 	1.493033E-03 	9.554695E-02 

	

1.680000E-02 	1.427757E-03 	9.561222E-02 

	

1.720000E-02 	1.367441E-03 	9.567254E-02 

	

1.760000E-02 	1.312246E-03 	9.572773E-02 

	

1.800000E-02 	1.262341E-03 	9.577764E-02 

	

1.840000E-02 	1.217896E-03 	9.582208E-02 

	

1.880000E-02 	1.179091E-03 	9.586088E-02 

	

1.920000E-02 	1.146117E-03 	9.589386E-02 

	

1.960000E-02 	1.119188E-03 	9.592079E-02 

	

2.000000E-02 	1.098577E-03 	9.594139E-02 

	

2.040000E-02 	1.084715E-03 	9.595525E-02 
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TIME 	 INFL IE 	 TANK IE 

	

0.000000E+00 	3731.895000 	17773.040000 

	

4.000000E-04 	3343.979000 	18160.950000 

	

8.000000E-04 	3002.017000 	18502.920000 

	

1.200000E-03 	2699.895000 	18805.040000 

	

1.600000E-03 	2432.416000 	19072.520000 

	

2.000000E-03 	2195.129000 	19309.800000 

	

2.400000E-03 	1984.218000 	19520.710000 

	

2.800000E-03 	1796.399000 	19708.530000 

	

3.200000E-03 	1628.839000 	19876.090000 

	

3.600000E-03 	1479.090000 	20025.840000 

	

4.000000E-03 	1345.031000 	20159.900000 

	

4.400000E-03 	1224.820000 	20280.110000 

	

4.799999E-03 	1116.854000 	20388.080000 

	

5.199999E-03 	1019.736000 	20485.200000 

	

5.599999E-03 	932.243300 	20572.690000 

	

5.999999E-03 	853.307400 	20651.630000 

	

6.399998E-03 	781.990400 	20722.940000 

	

6.799998E-03 	717.468000 	20787.460000 

	

7.199998E-03 	659.014500 	20845.920000 

	

7.599998E-03 	605.990200 	20898.940000 

	

7.999998E-03 	557.829800 	20947.100000 

	

8.399998E-03 	514.033000 	20990.900000 

	

8.799998E-03 	474.156600 	21030.770000 

	

9.199998E-03 	437.807200 	21067.120000 

	

9.599999E-03 	404.635000 	21100.290000 

	

9.999999E-03 	374.328600 	21130.600000 

	

1.040000E-02 	346.610500 	21158.320000 

	

1.080000E-02 	321.232700 	21183.700000 

	

1.120000E-02 	297.973700 	21206.960000 

	

1.160000E-02 	276.635100 	21228.290000 

	

1.200000E-02 	257.039100 	21247.890000 

	

1.240000E-02 	239.026100 	21265.900000 

	

1.280000E-02 	222.452700 	21282.480000 

	

1.320000E-02 	207.189700 	21297.740000 

	

1.360000E-02 	193.121100 	21311.810000 

	

1.400000E-02 	180.142000 	21324.790000 

	

1.440000E-02 	168.157800 	21336.770000 

	

1.480000E-02 	157.082800 	21347.850000 

	

1.520000E-02 	146.839800 	21358.090000 

	

1.560000E-02 	137.358600 	21367.570000 

	

1.600000E-02 	128.589800 	21376.340000 

	

1.640000E-02 	120.523300 	21384.410000 

	

1.680000E-02 	113.150100 	21391.780000 

	

1.720000E-02 	l06.461500 21398.470000 

	

1.760000E-02 	100.448700 	21404.480000 

	

1.800000E-02 	 95.103380 	21409.830000 

	

1.840000E-02 	 90.418100 	21414.510000 

	

1.880000E-02 	 86.386940 	21418.540000 

	

1.920000E-02 	 83.006480 	21421.930000 

	

1.960000E-02 	 80.277530 	21424.650000 

	

2.000000E-02 	 78.208850 	21426.720000 

	

2.040000E-02 	 76.828030 	21428.100000 
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TT 	 TT 	 PI 	 PT 

	

298.150000 	298.150000 5960249.000000 101351.700000 

	

288.597400 	299.978300 5340433.000000 103584.200000 

	

279.512500 	301.410800 4794309.000000 105534.600000 

	

270.863900 	302.525500 4311811.000000 107257.800000 

	

262.623700 	303.384100 3884639.000000 108783.500000 

	

254.765700 	304.035800 3505686.000000 110136.900000 

	

247.266300 	304.519800 3168855.000000 111339.800000 

	

240.103400 	304.868000 2868902.000000 112411.100000 

	

233.256700 	305.106100 2601304.000000 113366.800000 

	

226.707500 	305.254900 2362151.000000 114220.900000 

	

220.438400 	305.331500 2148055.000000 114985.500000 

	

214.433300 	305.349800 1956074.000000 115671.200000 

	

208.677200 	305.321300 1783649.000000 116287.000000 

	

203.156500 	305.255200 1628548.000000 116840.900000 

	

197.858000 	305.159400 1488820.000000 117340.000000 

	

192.769800 	305.040200 1362757.000000 117790.200000 

	

187.880700 	304.902900 1248862.000000 118197.000000 

	

183.180200 	304.751700 1145817.000000 118565.000000 

	

178.658600 	304.590300 1052466.000000 118898.400000 

	

174.306700 	304.421600 	967784.100000 	119200.800000 

	

170.116000 	304.248000 	890870.500000 	119475.500000 

	

166.078400 	304.071500 	820925.800000 	119725.300000 

	

162.186500 	303.893800 	757241.900000 	119952.700000 

	

158.433200 	303.716100 	699190.900000 	120160.000000 

	

154.811800 	303.539500 	646214.000000 	120349.300000 

	

151.316200 	303.365000 	597813.800000 	120522.100000 

	

147.940500 	303.193100 	553547.100000 	120680.200000 

	

144.679200 	303.024400 	513018.100000 	120824.900000 

	

141.527000 	302.859400 	475872.800000 	120957.600000 

	

138.479100 	302.698300 	441794.400000 	121079.300000 

	

135.530900 	302.541400 	410499.000000 	121191.100000 

	

132.677900 	302.389000 	381731.700000 	121293.800000 

	

129.916100 	302.241000 	355263.400000 	121388.400000 

	

127.241600 	302.097500 	330888.100000 	121475.400000 

	

124.650600 	301.958600 	308420.100000 	121555.700000 

	

122.139600 	301.824300 	287692.100000 	121629.700000 

	

119.705300 	301.694500 	268552.900000 	121698.100000 

	

117.344700 	301.569200 	250865.800000 	121761.200000 

	

115.054600 	301.448200 	234507.400000 	121819.600000 

	

112.832400 	301.331500 	219365.700000 	121873.700000 

	

110.678800 	301.219200 	205361.700000 	121923.700000 

	

108.604800 	301.111900 	192479.200000 	121969.700000 

	

106.622300 	301.010100 	180704.100000 	122011.800000 

	

104.744600 	300.914400 	170022.200000 	122049.900000 

	

102.985600 	300.825400 	160419.500000 	122084.200000 

	

101.360100 	300.743700 	151882.900000 	122114.700000 

	

99.883240 	300.670000 	144400.400000 	122141.500000 

	

98.570780 	300.604900 	137962.500000 	122164.400000 

	

97.438510 	300.54000 	132563.800000 	122183.700000 

	

96.502460 	300.502900 	128205.600000 	122199.300000 

	

95.779580 	300.467300 	124901.800000 	122211.100000 

	

95.290900 	300.443300 	122696.600000 	122219.000000 
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PROGRAM MFLOW 
BY 

YACOOB TABANI 

PROGRAM MFLOW 
INTEGER DIM 
PARAMETER (DIM=800) 
REAL PI(DIM),TI(DIM),VI,MI(DIM),RI(DIM),PT(DIM),TT(DIM),VT 
REAL MT(DIM),RT(DIM),R,GAMMA,A,DELT,TIME(DIM),PCRIT 
REAL PRATIO(DIM),E(DIM),C(DIM),MFL(DIM) 
REAL MACH(DIM),D(DIM),M(DIM) 
INTEGER J,K,N,COUNT 

OPEN (UNIT=5, FILE='MFLOWB.INP', STATUS='OLD') 

* Read the input parameters 
READ (5,*) TI (1), TT (1), VI, VT 
READ (5,*) MI(1), MT (1), RI(1), RT(1) 
READ (5,*) R, GAMMA 

* Read the transient values of inflator and tank pressures 
DO 50 J=1,200 
READ (5,*) TIME(J), PI (J), PT(J) 

50 	CONTINUE 

CLOSE (UNIT=5, STATUS='KEEP') 

* Other variables and constants 
A 	= 0.0002850 
DELT = 0.0004 
COUNT = 0 
N 	= 43 

* Calculate the critical pressure ratio 
PCRIT = (2.0/(GAMMA+1))**(GAMMA/(GAMMA-1)) 

* If the tank pressure is greater than or equal to the inflator 
* pressure then the program stops 

OPEN (UNIT=5, FILE='MFLOWB.OUT', STATUS='NEW') 
DO 200 J=1, N 
IF (PT(J) .GE. PI (J)) THEN 
GO TO 300 
ELSE 
GO TO 100 
END IF 
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* Calculate the tank to inflator pressure ratio 
00 	PRATIO(J) = ABS(PT(J)/PI(J)) 

* Calculate the mass flow rate 
IF (PRATIO(J) .LT. PCRIT) THEN 
B(J)=(PI(J)/(TI(J)**0.5))*((GAMMA/R)**0.5) 
C(J)=((2.0/(GAMMA+1))**((GAMMA+1)/(2.0*(GAMMA-1)))) 
MFL(J) = A*B(J)*C(J) 
ELSE 
B(J)----(PI(J)/(TI(J)**0.5))*((GAMMA/R)**0.5) 
MACH(J)=((2.0/(GAMMA-1))*(((PT(J)/PI(J))**((1-GAMMA) 

+ /GAMMA))-1))**0.5 
D(J)=(1+H(GAMMA-1)/2.0)*(MACH(J)**2)))** 

+ ((GAMMA+1)/(2.0*(GAMMA-1))) 
MFL(J) = A*B(J)*(MACH(J)/D(J)) 
PRINT *, MFL(J) 
END IF 

* Calculate mass fraction and mass in the inflator and the tank 
M(J) = MFL(J)*DELT 
MI (J+1) = MI (J) -M(J) 
MT(J+1) = MT(J)+M(J) 

* Calculate density in the inflator and the tank 
RI (J+1) = MI (J+1) /VI 
RT(J+1) = MT(J+1)/VT 

* Calculate new temperatures 
TI (J+1) = PI(J+1)/(RI(J+1)*R) 
TT (J+1) = PT(J+1)/(RT(J+1)*R) 

* Update the counter 
COUNT = COUNT + 1 

200 	CONTINUE 

* Print the values of the variables 
300 	PRINT *,'CRITICAL PRESSURE RATIO =',PCRIT 

WRITE (5,*) 1  TIME 	 MFLOW 	 MASS' 
DO 400 K=1,COUNT 
WRITE (5,*) TIME(K),MFL(K),M(K) 

400 	CONTINUE 
WRITE (5,*) '  TIME 	 INFL MASS 	 TANK MASS' 
DO 500 L=1, COUNT 
WRITE (5,*) TIME(L),MI(L),MT(L) 

500 	CONTINUE 
WRITE (5,*)' PI 	 TI 	 PT 	 TT' 
DO 600 L=1, COUNT 
WRITE (5,*) PI(L),TI(L),PT(L),TT(L) 

600 	CONTINUE 
CLOSE (UNIT-5, STATUS= 'KEEP') 
END 



TIME 	 MFLOW 	 MASS 

	

1.800000E-02 	 3.910578 	1.564231E-03 

	

1.840000E-02 	 3.692148 	1.476859E-03 

	

1.880000E-02 	 3.322684 	1.329073E-03 

	

1.920000E-02 	 2.938350 	1.175340E-03 

	

1.960000E-02 	 2.669277 	1.067711E-03 

	

2.000000E-02 	 2.477256 	9.909025E-04 

	

2.040000E-02 	 2.323810 	9.295239E-04 

	

2.080000E-02 	 2.084569 	8.338278E-04 

	

2.120000E-02 	 1.887940 	7.551758E-04 

	

2.160000E-02 	 1.701194 	6.804775E-04 

	

2.200000E-02 	 1.523894 	6.095574E-04 

	

2.240000E-02 	 1.385917 	5.543670E-04 

	

2.280000E-02 	 1.254842 	5.019369E-04 

	

2.320000E-02 	 1.100312 	4.401249E-04 

	

2.360000E-02 	 1.014053 	4.056212E-04 

	

2.400000E-02 	9.316426E-01 	3.726570E-04 

	

2.440000E-02 	8.530546E-01 	3.412218E-04 

	

2.480000E-02 	7.782580E-01 	3.113032E-04 

	

2.520000E-02 	6.794774E-01 	2.717910E-04 

	

2.560000E-02 	6.414812E-01 	2.565925E-04 

	

2.600000E-02 	5.777352E-01 	2.310941E-04 

	

2.640000E-02 	5.175691E-01 	2.070276E-04 

	

2.680000E-02 	4.858152E-01 	1.943261E-04 

	

2.720000E-02 	4.307030E-01 	1.722812E-04 

	

2.760000E-02 	3.790615E-01 	1.516246E-04 

	

2.800000E-02 	3.535794E-01 	1.414318E-04 

	

2.840000E-02 	3.280306E-01 	1.312123E-04 

	

2.880000E-02 	2.619059E-01 	1.047624E-04 

	

2.920000E-02 	2.427326E-01 	9.709302E-05 

	

2.960000E-02 	2.234990E-01 	8.939960E-05 

	

3.000000E-02 	2.041937E-01 	8.167747E-05 

	

3.040000E-02 	1.687081E-01 	6.748325E-05 

	

3.080000E-02 	1.525388E-01 	6.101551E-05 

	

3.120000E-02 	1.362775E-01 	5.451101E-05 

	

3.160000E-02 	1.072488E-01 	4.289951E-05 

	

3.200000E-02 	9.412884E-02 	3.765153E-05 

	

3.240000E-02 	7.005187E-02 	2.802075E-05 

	

3.280000E-02 	6.010533E-02 	2.404213E-05 

	

3.320000E-02 	5.001856E-02 	2.000742E-05 

	

3.360000E-02 	3.971743E-02 	1.588697E-05 

	

3.400000E-02 	2.904246E-02 	1.161698E-05 

	

3.440000E-02 	1.411643E-02 	5.646574E-06 

	

3.480000E-02 	6.771553E-03 	2.708621E-06 
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PROGRAM FASTCOMB 
BY 

YACOOB TABANI 

PROGRAM FASTCOMB 
INTEGER DIM 
PARAMETER (DIM=100) 
REAL PI(DIM),TI(DIM),VI,MT(DIM),RI(DIM),PT(DIM),TT(DIM),VT 
REAL MT(DIM),RT(DIM),GAMMA(DIM),A,DELT,TIME(DIM) 
REAL UI(DIM),UT(DIM),PRATIO(DIM),B(DIM),C(DIM),MFL(DIM) 
REAL MACH(DIM),D(DIM),M(DIM),PCRIT(DIM) 
REAL CPCI(DIM),CPHI(DIM),CPCT(DIM),CPHT(DIM),CPPT(DIM) 
REAL CVCI(DIM),CVHI(DIM),CVCT(DIM),CVET(DIM),CVPT(DIM) 
REAL R,RC,RH,RP,CI(DIM),CT(DIM) 
REAL CPH1I(DIM),CPH2I(DIM),CP01I(DIM),CP02I(DIM) 
REAL CPCOI(DIM),CPOHI(DIM) 
REAL CPHOI(DIM),CPI1I(DIM),CPI2I(DIM),CP03I(DIM) 
REAL CPH1T(DIM),CPH2T(DIM),CP01T(DIM),CP02T(DIM) 
REAL CPCOT(DIM),CPOHT(DIM) 
REAL CPHOT(DIM),CPI1T(DIM),CPI2T(DIM),CP03T(DIM) 
REAL CVH1I(DIM),CVH2I(DIM),CVO1I(DIM),CV02I(DIM) 
REAL CVCOI(DIM),CVOHI(DIM) 
REAL CVHOI(DIM),CVI1I(DIM),CVI2I(DIM),CV03I(DIM) 
REAL CVH1T(DIM),CVH2T(DIM),CVO1T(DIM),CV02T(DIM) 
REAL CVCOT(DIM),CVOHT(DIM) 
REAL CVHOT(DIM),CVI1T(DIM),CVI2T(DIM),CV03T(DIM) 
REAL RH1,RH2,RO1,R02,RCO,ROH 
REAL RHO,RI1,RI2,R03 
REAL MCP(DIM),MOLCP(DIM),MOLP,MWI(DIM),MWT(DIM) 
REAL MFC,MFH,MFH1,MFH2,MFO1,MF02,MFCO,MFOH 
REAL MFHO, MFI1, MFI2, MFO3 
INTEGER J, K, N, COUNT 

* Initial Conditions 
* Inflator 

PI (1) = 52316746.5 
TI (1) = 4148.77 

VI 	= 0.000250 
MI(1) = 0.008673 
RI(1) = 34.69 
MWI(1)= 22.891 

* Tank 
PT(1) = 101351.7 
TT(1) = 298.15 
VT 	= 0.07 
MT(1) = 0.0802 
RT(1) = 1.1457 
MWT(1)= 28.00 
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* Mass Fractions 
MFC 	= 0.26413 
MFH 	= 0.34353 
MFH1 = 0.00087 
MFH2 = 0.00426 
MFO1 = 0.01741 
MFO2 = 0.11769 
MFCO = 0.16848 
MFOH = 0.08171 
MFHO = 0.00006 
MFI1 = 0.00141 
MFI2 = 0.00027 
MFO3 = 0.00001 

* Gas Constants 
R 	= 8314 
RC 	= 188.9 
RH 	= 461.9 
RH1 	= 8248.0 
RH2 	= 4124.0 
RO1 	= 519.8 
RO2 	= 259.8 
RCO 	= 296.8 
ROH 	= 488.8 
RHO 	= 286.5 
RI1 	= 251.9 
RI2 	= 244.4 
RO3 	= 173.2 
RP 	= 296.9 

* Area of the orifice and time step 
A 	= 0.0002850 
DELT 	= 0.0004 

* Other constants 
TIME(1) = 0.0000 
COUNT = 0 
N 	= 100 

* If the tank pressure is greater than or equal to the inflator 
* pressure then the program stops 

OPEN (UNIT=5, FILE=1F63N.OUT1', STATUS='NEW) 
DO 200 J=1,N 
IF (PT(J) .GE. P1(J)) THEN 
GO TO 300 
ELSE 
GO TO 100 
END IF 
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- Calculate the temperatures in Centigrade 
100 	CI(J) = TI(J) - 273.15 

CT(J) = TT(J) - 273.15 

* Calculate the specific heats 
CPCI(J)=(0.04453623E+02+0.03140168E-01*(TI(J))- 

+ 0.12784105E-05*(TI(J)**2)+0.02393996E-08*(TI(J)**3)- 
+ 0.16690333E-13*(TI(J)**4))*RC 

CPHI(J)=(0.02672145E+02+0.03056293E-01*(TI(J))- 
+ 0.08730260E-05*(TI(J)**2)+0.12009964E-09*(TI(J)**3)- 
- 	0.06391618E-13*(TI(J)**4))*RH 

CPH1I(J)=(0.02500000E+02)*RH1 
CPH2I(J)=(0.02991423E+02+0.07000644E-02*(TI(J))- 

+ 0.05633828E-06*(TI(J)**2)-0.09231578E-10*(TI(J)**3)+ 
+ 0.15827519E-14*(TI(J)**4))*RH2 

CP01I(J)=(0.02542059E+02-0.02755061E-03*(TI(J))- 
+ 0.03102803E-07*(TI(J)**2)+0.04551067E-10*(TI(J)**3)- 
+ 0.04368051E-14*(TI(J)**4))*RO1 

CPO2I(J)=(0.03697578E+02+0.06135197E-02*(TI(J))- 
+ 0.12588420E-06*(TI(J)**2)+0.01775281E-09*(TI(J)**3)- 
+ 0.11364354E-14*(TI(J)**4))*RO2 

CPCOI(J)=(0.03025078E+02+O.14426885E-02*(TI(J))- 
+ 0.05630827E-05*(TI(J)**2)+0.10185813E-09*(TI(J)**3)- 
+ 0.06910951E-13*(TI(J)**4))*RCO 

CPOHI(J)=(0.02882730E+02+0.10139743E-02*(TI(J))- 
+ 0.02276877E-05*(TI(J)**2)+0.02174683E-09*(TI(J)**3)- 
+ 0.05126305E-14*(TI(J)**4))*ROH 

CPHOI(J)=(0.03557271E+02+0.03345572E-01*(TI(J))- 
+ 0.13350060E-05*(TI(J)**2)+0.02470572E-08*(TI(J)**3)- 
+ 0.01713850E-12*(TI(J)**4))*RHO 

CPI1I(J)=(0.04072191E+02+0.02131296E-01*(TI(J))- 
+ 0.05308145E-05*(TI(J)**2)+0.06112269E-09*(TI(J)**3)- 
+ 0.02841164E-13*(TI(J)**4))*RI1 

CPI2I(J)=(0.04573167E+02+0.04336136E-01*(TI(J))- 
+ 0.14746888E-05*(TI(J)**2)+0.02348903E-08*(TI(J)**3)- 
+ 0.14316536E-13*(TI(J)**4))*RI2 

CPO3I(J)=(0.05429371E+02+0.01820380E-01*(TI(J))- 
+ 0.07705607E-05*(TI(J)**2)+0.14992929E-09*(TI(J)**3)- 
+ 0.10755629E-13*(TI(J)**4))*RO3 

CPCT(J)=(0.02275724E+02+0.09922072E-01*(TT(J))- 
+ 0.10409113E-04*(TT(J)**2)+0.06866686E-07*(TT(J)**3)- 
+ 0.02117280E-10*(TT(J)**4))*RC 

CPHT(J)=(0.03386842E+02+0.03474982E-01*(TT(J))- 
+ 0.06354696E-04*(TT(J)**2)+0.06968581E-07*(TT(J)**3)- 
+ 0.02506588E-10*(TT(J),, *4))*RH 

CPH1T(J)=(0.02500000E+02)*RH1 
CPH2T(J)=(0.03298124E+02+0.08249441E-02*(TT(J))- 

+ 0.08143015E-05*(TT(J)**2)-0.09475434E-09*(TT(J)**3)+ 
+ 0.04134872E-11*(TT(J)**4))*RH2 
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CPO1T(J)=(0.02946428E+02-0.16381665E-02*(TT(J))+ 
+ 0.02421031E-04*(TT(J)**2)-0.16028431E-08*(TT(J)**3)4- 
+ 0.03890696E-11*(TT(J)**4))*RO1 

CPO2T(J)=(0.03212936E+02+0.11274864E-02*(TT(J))- 
+ 0.05756150E-05*(TT(J)**2)+0.13138773E-08*(TT(J)**3)- 
+ 0.08768554E-11*(TT(J)**4))*RO2 

CPCOT(J)=(0.03262451E+02+0.15119409E-02*(TT(J))- 
+ 0.03881755E-04*(TT(J)**2)+0.05581944E-07*(TT(j)**3)- 
+ 0.02474951E-10*(TT(J)**4))*RCO 

CPOHT(J)=(0.03637266E+02+0.01850910E-02*(TT(J))- 
+ 0.16761646E-05*(TT(J)**2)+0.02387202E-07*(TT(J)**3)-
- 0.08431442E-11*(TT(J)**4))*ROH 

CPHOT(J)=(0.02898329E+02+0.06199146E-01*(TT(J))- 
+ 0.09623084E-04*(TT(J)**2)+0.10898249E-07*(TT(j)**3)- 
+ 0.04574885E-10*(TT(J)**4))*RHO 

CPI1T(J)=(0.02979963E+02+0.04996697E-01*(TT(J))- 
+ 0.03790997E-04*(TT(J)**2)+0.02354192E-07*(TT(J)**3)- 
+ 0.08089024E-11*(TT(J)**4))*RI1 

CPI2T(J)=(0.03388753E+02+0.06569226E-01*(TT(J))- 
+ 0.14850125E-06*(TT(J)**2)-0.04625805E-07*(TT(J)**3)+ 
+ 0.02471514E-10*(TT(J)**4))*RI2 

CP03T(J)=(0.02462608E+02+0.09582781E-01*(TT(J))- 
+ 0.07087359E-04*(TT(J)**2)+0.13633683E-08*(TT(J)**3)+ 
+ 0.02969647E-11*(TT(J)**4))*RO3 

CPPT(J)=(0.03298677E+02+0.14082404E-02*(TT(J))- 
+ 0.03963222E-04*(TT(J)**2)+0.05641515E-07*(TT(J)**3)- 
+ 0.02444854E-10*(TT(J)**4))*RP 

CVCI (J) =CPCI (J) -RC 
CVHI(J)=CPHI(J)-RH 
CVH1I (J) =CPH1I (J) -RH1 CVH2I(J)=CPH2I(J)-RH2 

CVO1I(J)=CPO1I(J)-RO1 

CVO2I (J) =CPO2I (J) -RO2 
CVCOI (J) =CPCOI (J) -RCO 
CVOHI (J) =CPOHI (J) -ROH 
CVHOI (J) =CPHOI (J) -RHO 
CVI1I(J)=CPI1I(J)-RI1 
CVI2I (J) =CPI2I (J) -RI2 CVO3I(J)=CPO31(J)-RO3 

CVCT(J)=CPCT(J)-RC 
CVHT(J)=CPHT(J)-RH CVH1T(J)=CPH1T(J)-RH1 

CVH2T (J) =CPH2T (J) -RH2 CVO1T(J)=CPO1T(J)-RO1 

CVO2T (J) =CPO2T (J) -RO2 
CVCOT (J) =CPCOT (J) -RCO 
CVOHT (J) =CPOHT (J) -ROH 
CVHOT (J) =CPHOT (J) -RHO 
CVI1T(J)=CPI1T(J)-Rh1 
CVI2T(J)=CPI2T(J)-RI2 
CVO3T(J)=CP03T(J)-RO3 
CVPT (J) =CPPT (J) -RP 
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GAMMA(J) = ((MFC*CPCI(J))+(MFH*CPHI(J))+ 
+ (MFH1*CPH1I(J))+(MFH2*CPH2I(J))+(MFO1*CPO1I(J))+ 
+ (MFO2*CPO2I(J))+(MFCO*CPCOI(J))+(MFOH*CPOHI(J))+ 
+ (MFHO*CPHOI(J))+(MFI1*CPI1I(J))+ 
+ (MFI2*CPI2I(J))+(MFO3*CPO3I(J)))/((MFC*CVCI(J))+ 
+ 	(MFH*CVHI(J))+ 
+ (MFH1*CVH1I(J))+(MFH2*CVH2I(J))+(MFO1*CVOlI(J))+ 
+ (MFO2*CVO2I(J))+(MFCO*CVCOI(J))+(MFOH*CVOHI(J))+ 
+ (MFHO*CVHOI(J))+(MFIl*CVI1I(J))+ 
+ (MFI2*CVI2I(J))+(MFO3*CVO3I(J))) 

* Calculate the initial internal energy in the inflator and the tank 
IF (J .EQ. 1) THEN 
UI(1) = MI(1)*((MFC*CVCI(1))+(MFH*CVEI(1))+ 

+ (MFH1*CVH1I(1))+(MFH2*CVH2I(1))+(MFO1*CVOlI(1))+ 
+ (MFO2*CVO2I(1))+(MFCO*CVCOI(1))+(MFOH*CVOHI(1))+ 
+ (MFHO*CVHOI(1))+(MFIl*CVI1I(1))+ 
+ (MFI2*CVI2I(1))+(MFO3*CVO3I(1)))*TI(1) 

UT(1) = MT(1)*CVPT(1)*TT(1) 
END IF 

* Calculate the mass flow from the inflator to the tank 
PRATIO (J) = PT(J)/P1(J) 
PCRIT(J) = (2.0/(GAMMA(J)+1))**(GAMMA(J)/(GAMMA(J)-1)) 
IF (PRATIO(J) .LT. PCRIT(J)) THEN 
B(J)=(P1(J)/(TI(J)**0.5))*((GAMMA(J)/(R/MWI(J)))**0.5) 
C(J)=((2.0/(GAMMA(J)+1))**((GAMMA(J)+1)/(2.0*(GAMMA(J)-1)))) 
MFL(J) = A*B(J)*C(J) 
ELSE 
B(J)=(P1(J)/(TI(J)**0.5))*((GAMMA(J)/(R/MWI(J)))**0.5) 
MACH(J)=((2.0/(GAMMA(J)-1))*(NPT(J)/PI(J))**((l-GAMMA(J)) 

+ /GAMMA(J)))-1))**0.5 
D(J)=(1+H(GAMMA(J)-1)/2.0)*(MACH(J)**2)))** 

+ ((GAMMA(J)+1)/(2.0*(GAMMA(J)-1))) 
MFL(J) = A*B(J)*(MACH(J)/D(J)) 
END IF 

* Calculate mass fraction and mass in the inflator and the tank 
M(J) = MFL(J)*DELT 
MI (J+1) = MI(J)-M(J) 
MT(J+l) = MT(J)+M(J) 

* Calculate density in the inflator and the tank 
RI(J+1) = MI(J+l)/VI 
RT(J+1) = MT(J+1)/VT 

* Calculate new internal energy 
UI(J+1) = UI(J)-(M(J)*((MFC*CPCI(J))+(MFH*CPHI(J))+ 

+ (MFH1*CPH1I(J))+(MFH2*CIPH2I(J))+(MFO1*CPO1I(J))+ 
+ (MFO2*CP02I(J))+(MFCO*CPCOI(J))+(MFOH*CPOHI(J))+ 
+ (MFHO*CPHOI(J))+(MFIl*CPIii(J))+ 
+ (MEI2*CPI2I(J))+(M17O3*CPO3i(3)))*Ti(3)) 
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UT(J+1) = UT(J)+(M(J)*((MFC*CPCI(J))+(MFH*CPHI(J))+ 
+ (MFH1*CPH1I(J))+(MFH2*CPH2I(J))+(MF01*CPO1I(J))+ 
+ (MFO2*CP02I(J))+(MFCO*CPCOI(J))+(MFOH*CPOHI(J))+ 
+ (MFHO*CPHOI(J))+(MFIl*CPI1I(J))+ 
+ (MFI2*CPI2I(J))+(MFO3*CP03I(J)))*TI(J)) 

* Calculate new temperatures 
TI (J+1) = UI (J+1) / (MI (J+1) * ( (MFC*CVCI (J) ) + 
(MFH*CVHI(J))+ 

+ (MFH1*CVH1I(J))+(MFH2*CVH2I(J))+(MFO1*CVOlI(J))+ 
+ (MFO2*CV02I(J))+(MFCO*CVCOI(J))+(MFOH*CVOHI(J))+ 

(MFHO*CVHOI(J))+(MFI1*CVI1I(J))+ 
+ (MFI2*CVI2I(J))+(MFO3*CVO3I(J)))) 

TT(J+1) = UT(J+1)/((MT(1)*CVPT(J))+((MT(J+1)-MT(1))* 
+ ((MFC*CVCT(J))+(MFH*CVHT(J))+ 
+ (MFH1*CVH1T(J))+(MFH2*CVH2T(J))+(MFO1*CV01T(J))+ 
+ (MFO2*CVO2T(J))+(MFCO*CVCOT(J))+(MFOH*CVOHT(J))+ 
+ (MFHO*CVHOT(J))+(MFI1*CVI1T(J))+ 
+ (MFI2*CVI2T(J))+(MFO3*CVO3T(J))))) 

* Calculate the molecular weight 
MCP(J+1) 	= MT(J+1)-MT(1) 
MOLCP(J+1)=(MCP(J+1)*1000)/MWI(1) 
MOLP = (MT(1)*1000)/MWT(1) 
MWI (J+1) =MWI (1) 
MWT(J+1)=(MT(J+1)/(MOLCP(J+1)+MOLP))*1000 

* Calculate new pressures 
PI (J+1) = (RI(J+1)*R*TI(J+1))/MWI(J+1) 
PT(J+1) 	(RT(J+1)*R*TT(J+1))/MWT(J+1) 

* Update time 
COUNT = COUNT + 1 
TIME(J+1) = TIME(J)+DELT 

200 	CONTINUE 

* Print the values of the variables 
300 	WRITE (5,*) ' COUNT=',COUNT,N 

WRITE (5,*)'TIME 	PRES RATIO 	CRIT PRES RATIO' 
DO 350 K=1, COUNT 
WRITE (5,*) TIME(K),PRATIO(K),PCRIT(K) 

350 	CONTINUE 
WRITE (5,*)' TIME 	 MFLOW 	 MASS' 
DO 400 K=1, COUNT 
WRITE (5,*) TIME(K),MFL(K),M(K) 

400 	CONTINUE 
WRITE (5,*)' TIME 	 INFL MASS 	 TANK MASS' 
DO 500 L=1,COUNT 
WRITE (5,*) TIME(L),MI(L),MT(L) 
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500 	CONTINUE 
WRITE (5,*)' TIME 	 INFL IE 	 TANK IE' 
DO 600 L=1,COUNT 
WRITE (5,*) TIME(L),UI(L),UT(L) 

600 	CONTINUE 
WRITE (5,*)' TI 	 TT 	 PI 	 PT' 
DO 700 L=1,COUNT 
WRITE (5,*) TI(L),TT(L),PI(L),PT(L) 

700 	CONTINUE 
CLOSE (UNIT=5, STATUS='KEEP') 
END 



	

COUNT = 	 12 	 100 

	

TIME 	 PRES RATIO CRIT PRES RATIO 

	

0.000000E+00 	1.937271E-03 	5.645452E-01 

	

4.000000E-04 	8.638904E-03 	5.639658E-01 

	

8.000000E-04 	1.721008E-02 	5.635213E-01 

	

1.200000E-03 	3.048640E-02 	5.630354E-01 

	

1.600000E-03 	5.054171E-02 	5.625408E-01 

	

2.000000E-03 	8.038997E-02 	5.620250E-01 

	

2.400000E-03 	1.239736E-01 	5.614901E-01 

	

2.800000E-03 	1.866390E-01 	5.609360E-01 

	

3.200000E-03 	2.754803E-01 	5.603642E-01 

	

3.600000E-03 	3.998631E-01 	5.597764E-01 

	

4.000000E-03 	5.720295E-01 	5.591742E-01 

	

4.400000E-03 	8.077232E-01 	5.585596E-01 

	

TIME 	 MFLOW 	 MASS 

	

0.000000E+00 	 7.876558 	3.150623E-03 

	

4.000000E-04 	 4.721460 	1.888584E-03 

	

8.000000E-04 	 2.977732 	1.191093E-03 

	

1.200000E-03 	 1.918157 	7.672629E-04 

	

1.600000E-03 	 1.264861 	5.059446E-04 

	

2.000000E-03 	8.506652E-01 	3.402661E-04 

	

2.400000E-03 	5.823665E-01 	2.329466E-04 

	

2.800000E-03 	4.050603E-01 	1.620241E-04 

	

3.200000E-03 	2.857921E-01 	1.143168E-04 

	

3.600000E-03 	2.042704E-01 	8.170816E-05 

	

4.000000E-03 	1.476802E-01 	5.907209E-05 

	

4.400000E-03 	8.979551E-02 	3.591820E-05 

	

TIME 	 INFL MASS 	TANK MASS 

	

0.000000E+00 	8.673000E-03 	8.020000E-02 

	

4.000000E-04 	5.522377E-03 	8.335062E-02 

	

8.000000E-04 	3.633793E-03 	8.523920E-02 

	

1.200000E-03 	2.442700E-03 	8.643030E-02 

	

1.600000E-03 	1.675437E-03 	8.719756E-02 

	

2.000000E-03 	1.169493E-03 	8.770350E-02 

	

2.400000E-03 	8.292268E-04 	8.804377E-02 

	

2.800000E-03 	5.962802E-04 	8.827672E-02 

	

3.200000E-03 	4.342561E-04 	8.843875E-02 

	

3.600000E-03 	3.199393E-04 	8.855306E-02 

	

4.000000E-03 	2.382311E-04 	8.863477E-02 

	

4.400000E-03 	1.791590E-04 	8.869385E-02 

141 
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TIME 	 INFL IE 	 TANK IE 

	

0.000000E+00 	65486.290000 	17723.130000 

	

4.000000E-04 	36948.120000 	46261.300000 

	

8.000000E-04 	21975.760000 	61233.670000 

	

1.200000E-03 	13393.580000 	69815.840000 

	

1.600000E-03 	8375.466000 	74833.960000 

	

2.000000E-03 	5352.496000 	77856.930000 

	

2.400000E-03 	3487.762000 	79721.660000 

	

2.800000E-03 	2312.269000 	80897.160000 

	

3.200000E-03 	1556.916000 	81652.510000 

	

3.600000E-03 	1063.109000 	82146.310000 

	

4.000000E-03 	735.241600 	82474.180000 

	

4.400000E-03 	514.553500 	82694.870000 

TI 	 TT 	 PI 	 PT 

	

4148.770000 	298.150000 	5.231675E+07 	101351.700000 

	

3676.247000 	737.974900 	2.949415E+07 	254797.100000 

	

3372.571000 	862.983300 	1.780437E+07 	306414.600000 

	

3092.358000 	926.126200 	1.097401E+07 	334557.900000 

	

2853.851000 	961.288500 6946480.000000 351087.000000 

	

2645.067000 	982.132000 4494066.000000 361277.800000 

	

2461.773000 	994.729500 2965696.000000 367668.000000 

	

2299.338000 	1002.518000 1991858.000000 371758.400000 

	

2154.332000 	1007.401000 1359139.000000 374416.000000 

	

2023.946000 	1010.505000 	940744.500000 	376169.000000 

	

1905.952000 	1012.500000 	659653.300000 	377341.200000 

	

1798.624000 	1013.796000 	468149.200000 	378134.900000 
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B.5 CEA Program Output for a 30/60 Mixture (Example 1) 

************************************************************************ 

NASA-LEWIS CHEMICAL EQUILIBRIUM PROGRAM CEA, DEC. 12, 1996 
BY BONNIE MCBRIDE AND SANFORD GORDON 

REFS: NASA RP-1311. PART I, 1994 AND NASA RP-1311, PART II. 1996 
************************************************************************ 

reac fue1=CH4 mole=0.02086448 t=298 
oxid=O2 mole=0.05195256 t=298 

prob uv rho(g/cc)=0.007988575 
output cal massf 
end 

THERMODYNAMIC PROPERTIES 
P, ATM 	 105.57 
T. K 	 3807.85 
RHO. G/CC 	 7.9886-3 
H. CAL/G 	 112.14 
U. CAL/G 	 -207.90 
G, CAL/G 	 -10152.4 
S, CAL/(G)(K) 	 2.6956 
M, (1/n) 	 23.643 
(dLV/dLP)t 	 -1.05134 
(dLV/dLT)p 	 1.8547 
Cp, CAL/(G)(K) 	 1.7079 
GAMMAs 	 1.1337 
SON VEL,M/SEC 	1232.1 

MASS FRACTIONS 
*CO 	 0.13216 
*CO2 	 0.25207 
COON 	 0.00004 
*H 	 0.00089 
HCO 	 0.00001 
HO2 	 0.00094 
*H2 	 0.00313 
H2O 	 0.29529 
H2O2 	 0.00010 
*O 	 0.02564 
*OH 	 0.08469 
*O2 	 0.20502 
O3 	 0.00001 
* THERMODYNAMIC PROPERTIES FITTED TO 20000.K 
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B.6 CEA Program Output for a 90/180 Mixture (Example 2) 

************************************************************************ 

NASA-LEWIS CHEMICAL EQUILIBRIUM PROGRAM CEA, DEC. 12, 1996 
BY BONNIE MCBRIDE AND SANFORD GORDON 

REFS: NASA RP-1311, PART I, 1994 AND NASA RP-1311. PART II, 1996 
************************************************************************ 

reac fuel=CH4 mole-0.0625934 t=298 
oxid=O2 mole=0.1354105 t=298 

prob uv rho(g/cc)=0.02134858 
output cal massf 
end 

THERMODYNAMIC PROPERTIES 
P, ATM 	 308.94 
T, K 	 4046.39 
RHO, G/CC 	 2.1349-2 
H, CAL/G 	 119.34 
U, CAL/G 	 -231.12 
G, CAL/G 	 -10855.1 
S, CAL/(G)(K) 	 2.7121 
M, (1/n) 	 22.945 
(dLV/dLP)t 	 -1.05103 
(dLV/dLT)p 	 1.7987 
Cp, CAL/(G)(K) 	 1.6212 
GAMMAS 	 1.1387 
SON VEL,M/SEC 	1292.2 

MASS FRACTIONS 
*CO 	 0.16372 
*CO2 	 0.25874 
COOH 	 0.00010 
*H 	 0.00093 
HCO 	 0.00004 
H02 	 0.00122 
*H7 	 0.00413 
HCOOH 	 0.00001 
H20 	 0.33236 
H202 	 0.00020 
*0 	 0.01991 
*OH 	 0.08399 
*02 	 0.13464 
03 	 0.00001 
* THERMODYNAMIC PROPERTIES FITTED TO 20000.K 
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B.7 CEA Program Output for a 125/250 Mixture (Example 3) 

************************************************************************ 

NASA-LEWIS CHEMICAL EQUILIBRIUM PROGRAM CEA, DEC. 12, 1996 
BY BONNIE MCBRIDE AND SANFORD GORDON 

REFS: NASA RP-1311, PART I, 1994 AND NASA RP-131 1, PART II, 1996 
************************************************************************ 

reac fuel=CH4 mole=0.08693535 t=298 
oxid=O2 mole=0.18409430 t=298 

prob uv rho(g/cc)=0.02914192 
output cal massf 
end 

THERMODYNAMIC PROPERTIES 
P, ATM 	 429.51 
T, K 	 4112.54 
RHO, G/CC 	 2.9142-2 
H, CAL/G 	 122.10 
U, CAL/G 	 -234.83 
G, CAL/G 	 -10983.7 
S, CAL/(G)(K) 	 2,7005 
M, (1/n) 	 22.897 
(dLV/dLP)t 	 -1.04988 
(dLV/dLT)p 	 1.7685 
Cp, CAL/(G)(K) 	 1.5710 
GAMMAS 	 1.1401 
SON VEL,M/SEC 	1304.9 

MASS FRACTIONS 
*CO 	 0.16734 
*CO2 	 0.26201 
COON 	 0.00013 
*H 	 0.00089 
HCO 	 0.00005 
HO2 	 0.00134 
*H2 	 0.00423 
HCOOH 	 0.00002 
H2O 	 0.33984 
H2O2 	 0.00024 
*O 	 0.01827 
*OH 	 0.08259 

*O2 	 0.12303 

O3 	 0.00001 
* THERMODYNAMIC PROPERTIES FITTED TO 20000.K 
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B.8 CEA Program Output for a 150/300 Mixture (Example 4) 

************************************************************************ 

NASA-LEWIS CHEMICAL EQUILIBRIUM PROGRAM CEA, DEC. 12, 1996 
BY BONNIE MCBRIDE AND SANFORD GORDON 

REFS: NASA RP-1311, PART I, 1994 AND NASA RP-131 1, PART II, 1996 
************************************************************************ 

reac fuel=CH4 mole=0.1043224 t=298 
oxid=O2 mole=0.2188684 t=298 

prob uv rho(g/cc)=0.03470858 
output cal massf 
end 

THERMODYNAMIC PROPERTIES 
P, ATM 	 516,19 
T, K 	 4148.77 
RHO, G/CC 	 3.4709-2 
H, CAL/G 	 123.70 
U, CAL/G 	 -236.46 
G, CAL/G 	 -11044.6 
S, CAL/(G)(K) 	 2.6919 
M, (1/n) 	 22.891 
(dLV/dLP)t 	 -1.04915 
(dLV/dLT)p 	 1.7509 
Cp, CAL/(G)(K) 	 1.5415 
GAMMAS 	 1.1409 
SON VEL,M/SEC 	1311.2 

MASS FRACTIONS 
*CO 	 0.16848 
*CO2 	 0,26413 
COOH 	 0.00015 
*H 	 0.00087 
HCO 	 0.00006 
H02 	 0.00141 
*H2 	 0.00426 
HCOOH 	 0.00003 
H20 	 0.34353 
H202 	 0.00027 
*0 	 0.01741 
*OH 	 0.08171 
*02 	 0.11769 
03 	 0.00001 
* THERMODYNAMIC PROPERTIES FITTED TO 20000.K 
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