





ABSTRACT

AN INVESTIGATION OF THE OXYGRAPHIC RESPONSE OF STRESSED
BOVINE BLOOD

by
Cristin McKenna

Oxygraphic profiles of stressed bovine blood in a temperature controlled 2 ml
reactor vessel provide the basis for an investigation of blood’s response to various
conditions. This response is broken down into an initial response (within 3 seconds), the
response over 1 hour and the response over 24 hours. Fast-assay runs which investigate
the initial response display a dose-response relationship when chemically stressed by
phenol. Phenol concentrations in the 1,000 ppm range indicate a decrease in dissolved
oxygen (DQO) and higher phenol concentrations of over 20,000 an increase in DO. In
addition to phenol concentration, other factors investigated with respect to the initial
response are the effects of temperature, blood amount, DO before blood is added, blood

&
age, blood aeration, addition of 1-butanol, and handling stress.

Long term response profiles for blood exposed to phenol or other stresses (such as
decreased osmotic pressure or increased temperature); indicate the existence of
oxygraphic activity in the form of molecular oxygen peaks (MOPs). A technique is
presented which summarizes the activity of these long term response profiles conveniently

with a single number in micrograms Oy/ml packed cells. Also, attempts to predict the

appearance of MOPs based on oxygraphic profiles, and, separately, on pH, are presented.



The effect on the DO consumption rate, during the first hour of the run, of osmotic
stress, blood amount, phenol concentration is also explored. The oxygraph, traditionally
used by enzymologists to investigate enzyme kinetics through observation of DO, has
potential applications in developing toxicity assays for xenobiotics.

Key words: boviné blood, oxygen concentration, xenobiotic, molecular oxygen peak,

phenol, MOP
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CHAPTER 1

INTRODUCTION

1.1 Objective
Elucidating the interaction between the immune system and its environment is an exciting
and challenging area of environmental science. This research delves into that portion of
this interaction which involves oxygen, blood, and phenol. The objectives of this work
center around the use of an oxygraph to observe bovine blood i vifro under various
conditions. The primary focus of this work is on blood stressed by a selected toxicant,
phenol. Other stressful conditions that were observed include temperature and osmotic
stress. These oxygraph observations were conducted in two time frames: fast assay runs
(under 3 seconds), and long term runs (5 hours and up). The primary work utilizing the
oxygraph was buttressed by additional work including observation of pH in the reactor

concomitantly with oxygraph measurements.

1.2 A Brief Overview of Oxygen’s Role in Mammals
Because Environmental Science brings many disciplines to bear on the areas it
encompasses, a brief introduction to pertinent biological aspects of this problem is
presented. This is intended to allow scientists without a strong biological background to
comprehend the nuances of the work presented herein.
The sometimes extreme specialization required to become adept in any scientific

discipline can cause researchers to become cut off from all but a small circle of like-



minded individuals. In the general interest of scientific sharing and this researcher’s
personal goal to always eschew obfuscation, a “quick and dirty” dash through the halls of
biology is presented.

As the reader will see, oxygen’s essential role in vastly different capacities of
mammalian life make it a molecule of variable service. In mammals, blood is pumped by
the heart to the capillaries via arteries (large blood vessels) and returns from the capillanies
via veins (which are also large blood vessels). In the capillaries, which are a complex
network of very thin walled blood vessels, gas exchange takes place. The primary purpose
of this blood circulation is to supply all the cells of the body with oxygen and to remove
carbon dioxide and other waste products from the cells. Besides pumping blood to all
areas of the body, the heart also pumps blood separately to the lungs where carbon
dioxide is released to the environment and oxygen is taken into the body through the
alveoll,

The hearts of mammals are separated into two atria and two ventricles. The
heart’s exquisite structure ensures that blood coming from the lungs which is oxygenated
(has relatively large amounts of oxygen and small amounts of carbon dioxide) is sent to
the rest of the body without mixing with the deoxygenated blood which is sent to the
lungs to get rid of the relatively large amounts of carbon dioxide it carries and replenish its
oxygen supply. As the reader may already have suspected, the practical upshot of all this
is that mammals breathe in oxygen and breathe out carbon dioxide. This process on a

much smaller, namely single cell, level is referred to as cellular respiration.



(5]

1.2.1 Cellular Respiration

Hamlet: Your worm is your only emperor for diet: we fat all creatures else to fat us, and
we fat ourselves for maggots: your fat king and your lean beggar 1s but variable service,
two dishes, but to one table: that’s the end.

King: Alas, alas!

Hamlet: A man may fish with the worm that hath eat of a king, and eat of the fish that
hath fed of that worm.
(Shakespeare, Act IV, Sc. 11, 20-30)

And what is that “one table”? A worm’s gut. Just as food cycles through various
creatures, so does oxygen. One could consider the “one table” to be oxidation. It is no
use to eat food for energy without a way to release the energy contained in the chemical
bonds in food. “The stepwise release of energy from food molecules, accompanied by
storage of the energy in short-lived energy intermediates (Arms and Camp 1987, 1116),”
is cellular respiration. Because of oxygen’s essential role in aerobic cellular respiration,

supplying all cells of the body with oxygen is requisite for mammalian life.

1.2.2 Hemoglobin
The oxygen needed for cellular respiration is carried by hemoglobin. Hemoglobin is
contained in the blood cells known as erythrocytes (the cells formerly known as red blood
cells). Hemoglobin is a protein molecule composed of four polypeptide chain subunits
which can each bind one molecule of oxygen.

Hemoglobin’s four subunits undergo cooperative binding of oxygen. This means

that once one molecule is bound by one subunit, it becomes easier for the next oxygen



molecule to bind. This cooperative binding affects all four subunits and leads the
hemoglobin’s characteristic sigmoidal shape of the oxygen binding curve seen in Figure
1.1 in Appendix A. (Campbell 1991, 187). The physiological implication of this sigmoidal
curve is that hemoglobin becomes nearly fully saturated when the oxygen concentration in
the surrounding medium is high (such as in the lungs) but releases oxygen easily when the
oxygen concentration in the surrounding medium is low (such as the capillaries)
(Matthews and van Holde 1990, p223).

One of hemoglobin’s many fascinating facets which warrants exposition in this work is the
Bohr effect. Hemoglobin’s cooperative binding behavior help it perform its essential role
in supplying the body with oxygen while removing carbon dioxide. When the body is
expending a Iot‘ of energy in heavy exercise, the muscles can undergo fermentation to
supply more energy than would otherwise be available. Under these conditions of heavy
exercise, lactic acia, a byproduct of fermentation, can build up in the muscles. This lactic
acid lowers the pH in the surrounding area. This lower pH decreases hemoglobin’s
affinity for oxygen and thus increases the amount of oxygen released to this area. This
phenomenon is known as the Bohr effect and can be see in Figure 1.1 in Appendix 1.
Note that the sigmoidal curve is intact at all pH levels. (Matthews and van

Holde 1991, 231).



1.2.3 Immune Response

All animals have defense mechanisms that protect them from disease. Immune responses
have evolved to help protect animals from pathogenic agents such as bacteria, viruses,
eukaryotic (non‘-bacterial) invaders, and exogenous chemicals. Defenses against the last
pathogenic agent, exogenous chemicals, help the body cope, for example, with chemicals
introduced Yia food, such as chemicals found in plants.

An Inevitable byproduct of civilized life is anthropomorphic production of
substantial quantities of chemicals. Some of these chemicals occur naturally while others
are entirely synthetic. These chemicals can and do enter the biosphere intentionally, such
as chlorine in water or medicine prescribed by a doctor, or unintentionally, such as
industrial and QOmeStic releases in leaks and spills. Both types of chemicals can elicit an
immune response in organisms. Exogenous substances enter organisms through three
primary routes: inﬁalation, ingestion, and dermal absorption (absorption through the skin).
As a result, the immune system honed by countless generations of evolution 1s facing
challenges that 1t may or may not be able to overcome.

The primary portion of the immune response which involves oxygen is production,
from dissolved oxygen, of radical oxygen species which are used to destroy pathogenic
substances. There are oxygen-dependent killing mechanisms in blood which utilize
oxidizers such as hydrogen peroxide to attack invading bacteria. These bacteria are
attacked and ingested by certain leukocytes (formerly known as white blood cells),
particularly macrophages and granulocytes in a process called phagocytosis. Once inside
the leukocyte, the bacteria are destroyed. This phenomenon is covered in greater detail in

Section 2.1.

L



CHAPTER 2
LITERATURE REVIEW

There are many studies which examine oxygen in blood but the vast majority of these
studies focus on erythrocytes which carry oxygen to all the body’s cells using hemoglobin
to carry the oxygen. The interaction between oxygen and leukocytes is in comparison
little studied, yet is of great interest to this research due to the possibility of an immune
response influence in the oxygraphic profiles. The experiments presented in this work are
completely unaddressed in the literature as they represent a truly novel approach to
examining blood. This literature survey presents several areas of investigation hopefully of

interest to any reader interested in this research.

2.1 Respiratory Burst

In a respiratory burst by activated macrophages, O, is catalyzed to superoxide anion. The
superoxide anion generates other powerful oxidizing agents including hydroxyl radicals
and singlet oxygen ( Kuby 1994). These chemical species have potent antimicrobial
properties (Rautelin and von-Bonsdorff er al., 1994, 667). Excess hydrogen peroxide is
destroyed within the organism by catalase or by reduced glutathione (Erslev 1985).

During phagocytosis, a respiratory burst takes place in activated macrophages
(Sanguinetti 1992, 20). In a respiratory burst, molecular oxygen is consumed as

superoxide and hydrogen peroxide are generated, along with other powerful oxidizing



agents including hydroxyl radicals and singlet oxygen (Kuby 1994,). Polymorphonuclear
leukocytes have the ability to liberate large amounts of reactive oxygen species.

The biochemical basis for the respiratory burst is the activation of an enzyme
which catalyzes the one electron reduction of oxygen to O, oxidizing NADPH
(nicotinamide-adenine dinucleotide phosphate) to NADP™ (nicotinamide adenine
dinucleotide phosphate). This accounts for the consumption of oxygen that occurs during
the respiratory burst. Also during the respiratory burst, one molecule of oxygen and one
molecule of hydrogen peroxide are produced by the reaction of O, with itself (Babior
1984, 959).

These chemical species have potent antimicrobial properties. Production of
Reactive Oxygen Intermediates (ROI) by the NADPH oxidase of neutrophils is a major
mechanism of bacterial killing and, in pathologic circumstances, tissue damage (Waddell et
al. 1994, }8485).- Not all ROIs are released at once. In one study which examined

different methods of provoking ROI release, H,O, (hydrogen peroxide) was produced
without concomitant O, release. Excess hydrogen peroxide is disposed of within the

organism by catalase or by reduced glutathione (Erslev 1985). NADPH oxidase is the
oxidative burst enzyme (Sozzani et al. 1994, 3895). The initiation of oxidants and
maximal rate of their generation can initiate without protein kinase C and phospholipase D
but these substances are required to sustain oxidase activity (Watson et al. 1994, 91).

In studies of the respiratory burst, time and dose dependent stimulation of
superoxide anion production was induced through addition of beta-naphthylamine (Ciarn
1992, 1841). This and other studies of respiratory burst indicate immune systems reacting

to molecules with a mechanism previously shown only in response to bacteria. The



respiratory burst of phagocytes is not fully understood. Many of the body's immunological
defenses respond especially well to proteinaceous invaders (Kuby 1994) but the
respiratory burst can be triggered in response to many nonproteinaceous substances such
as methotrexate, an anti-cancer drug (Gresader ef al. 1994, 679). Other respiratory burst
stimulators include heat-inactivated Haemophilus influenzae type b, and phorbol myristate
acetate (Wolf er al. 1994, 235),

Neutrophils can be primed to increase the percentage of cells generating an
oxidative burst in response to subsequent stimulation (Daniels ez al. 1994, 465). Several
types of cells can undergo the respiratory burst and these cells do not always respond in
tandem. An illustrative example of this phenomenon is a study by Turyna et al. (1994)
indicates that turpentine and thioglycollate cause a decrease and lipopolysaccharide an
increase in respiratory burst activity of rat alveolar macrophages while these three
compounds all cause an increase in respiratory burst activity in rat peritoneal
macrophages. This is not to suggest that the respiratory burst never occurs in tandem
amongst a cell population. In a novel study using neutrophils from pig blood, it was found
that neutrophils stimulated to undergo respiratory burst can activate a second, chemically
separated, but optically coupled population of neutrophils (Shen et al. 1994, 963).

In one study, native and synthetic collagen-like polypeptides stimulated the release
of superoxide anion and hydrogen peroxide from alveolar macrophages. These effects
were reported to be dose and time dependent, reaching a maximum after 72 hours (Laskin
1994, 58). However, these findings relate only to the respiratory burst which is an uptake

of oxygen, as opposed to the oxygen release which is the subject of this report.



H,0,- forming oxidase activities include glucose, xanthine, fatty acyl, fatty-acyl
CoA (Coenzyme A) oxidases, and NAD(P)H-O, oxidoreductase activity (Turner ef al.
1985, 13163). As noted in a review article by Hellstrand ef al. (1994, 4940), catalase is a
scavenger of H,O,, SOD scavenges superoxide anion, mannitol and deferoxamine
scavenge hydroxyl radicals, taurin scavenges hypochlorous acid, and NG- monomethyl-L-

arginine (L-NMMA) inhibits nitric oxide synthetase.

2.1.1 Measurement of the Respiratory Burst

Zueller and Sullivan report that although luminol-CL (chemiluminescence) is a sensitive
measure of phagocyte respiratory burst activity, this method 1s limited because the nature
of oxidation products contributing to the light emission and the their site of generation
remain incompletely defined. To describe more precisely the oxidative burst of monocytes
and neutrophils, Zueller and Sullivan measured superoxide anion release by cytochrome ¢
reduction. In addition they distinguished the extracellular release of hydrogen peroxide
from hydrogen peroxide generation by using a phenol red oxidation. For an index of
intracellular peroxide production, a flow cytometric determination of dichlorofluorescein
oxidation was used. Measurement of hydrogen peroxide production by haemocytes can
be quantified by using horseradish peroxidase-dependent oxidation of phenol red while
superoxide anion generation can by quantified with reduction of nitroblue tetrazolium.
(Pipe 1992, 111) Generation of superoxide radicals can be detected by reduction of
ferricytochrome ¢ and spin trapping (Shen er a/. 1994, 963). Oxidative burst reactions can

be measured by chemiluminescence (Rautelin er al. 1994, 667).
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2.2 Respiratory Burst and the Environment

Exogenous insult of free radicals to the respiratory tract may derive from polluting
environmental agents, cigarette smoke, drugs, and toxic compounds (Sanguinetti 1992,
20). The types of exogenous substances which can trigger the respiratory burst is very
wide and includes many types of bacteria, fungi, unicellular parasites and metazoa (larval
stages of schistosomes). The respiratory burst can be unleashed upon both phagocytized
particles (such as bacteria) and targets too large to be ingested (such as a fungal hypha).
In either casé, the destructive power of the radical oxygen species released during the
respiratory burst can take their toll on both the target and the attacker (Babior 1984, 961).

It is known that excessive production of reactive oxygen species by alveolar
macrophages in response to inhaled toxic substances is a major cause of oxidative lung
injury (Harrison et al. 1994, 1110). It has been demonstrated by Grzybowski ef al. (1994,
18) that patients with atopic asthma had a defect in skin granulocyte migration. This study
concluded that the ability of granulocytes from skin infiltrations to migrate was inversely
proportional to the degree of oxidative burst in patients with atopic asthma. The
respiratory burst can be stimulated by dialysis membranes which has led to examination of
reactive oxygen intermediate production by human neutrophils with different dialysis
membranes as an early marker for biocompatibility (Rosencranz ef al. 1994, 300). The
neutrophil oxidative burst response as measured by the reduction of ferricytochrome-c by
superoxide or the oxidation of dihydrorhodamine 123 by H,0, is recommended by Lemke
et al. (1994, 104) to study the effects of biocompatibility on neutrophil function in

haemodialysis patients during extracorporeal circulation.
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The microassay recorder used in this dissertation is more cost effective than either
of these methods and it is hoped that the work done here will lay the foundation towards

an extracorporeal immune assist device.

2.3 Inhibitors and Stimulators of the Respiratory Burst

There is much interest in dampening the respiratory burst (Gressder ef al. 1994, 679;
Courreges ef al. 1994, 135; Rosenkranz ef al. 1994, 300; Rabe er al. 1994, 166) because
increased pr(;duction of reactive oxygen intermediates following medication administration
(Wolf et al. 1994, 235) can be damaging to tissues (Waddell er a/. 1994 18485). The
potential for stimulated microglia to generate oxygen free radicals may have implications
in several degenerative neurological diseases (Klegeris and McGeer 1994, 83). Klegeris
and McGeer compared adult with newborn rat macrophages and microglia. They lysed
the cells with deo;:ycholate or disrupted them with sonication then measured oxygen
consumption in the microglia. This implies that the stress of the stir bar in the microassay
reactor may not prevent the reactions we are trying to study .

Apoxynin (4-hydroxy-3-methoxy-acetophenone) acts as an inhibitor of the
respiratory burst and has been administered orally to rats as an anti-inflammatory agent
('t Hart and Simons 19992, 119). Administration of native antioxidant enzymes such as
catalase and superoxide dismutase have been suggested to protect the lungs from
oxidative injury (Harrison ef al. 1994, 1110). Immunoglobulin A, a respiratory burst
inhibitor, acts in a dose-dependent manner (Wolf et al. 1994, 235).

Melia azedarach leaf extract's effect on the respiratory burst and phagocytic

capability of mouse peritoneal exudate cells was examined by Courreges et al. (1994 135)



12

Inhibition of phagocytosis was observed to be time and dose dependent; this inhibition
reverted 48 hours after removing the extract from the culture medium. Other compounds
which dose-dependently inhibit superoxide anion generation include sulfonated shale oil
fractions (Rabe et al. 1994, 166). Supplemental zinc blocked the exercise-induced
increase in reactive oxygen species in a study of five male runners (Singh et al. 1994,
2298) The synthetic opoid peptide methionine enkephalinamide is reported to be an
extremely potent inhibitor of the respiratory burst of neutrophils (Rickinger er al. 1994,
118).

Azelastine hydrochloride suppresses neutrophil respiratory burst both in vivo and
in vitro but neutrophil superoxide dismutase activity is negligibly suppressed by Azelastine
(Osaki ef al. 1994, 331). This is just one example of the separation of reactive oxygen
species production from respiratory burst activity.

Despite the potentially damaging effects of overstimulation of the respiratory
burst, the fact remains that the respiratory burst and production of reactive oxygen
intermediates (ROIs) have evolved as defense mechanisms (Adema and van Deutekom-
Mulder ef al. 1993, 379; Passwell and Shor ef al. 1994, 277; and Rautelin and von-
Bonsdorft et al. 1994, 667) and as such, their selective stimulation may be regarded by
some as beneficial (Zeller and Sullivan 1992, 449; Daniels and Elmore ef al. 1994, 465;
Turna, Bos, and Jurek 1994, 101). In this vein of investigation, researchers have observed
a lower respiratory burst response in HIV (Human Immuodeficiency Virus)-infected
children and adults. They imply that the decreased ability of the phagocytic cells to
produce reactive oxygen intermediates may be a contributing factor in HI'V-infected

patients' increased susceptibility to bacterial and fungal infections (Chen and Roberts e al.



1993, 544). It is interesting that in patients with common variable immunodeficiency,
monocytes exhibited reactive oxygen species generation (Aukrust ef al. 1994, 232). The
presence of intracellular Leishmania amastigotes (a parasitic organism) in human
mononuclear phagocytes decreases the oxidative burst and may contribute to parasite
survival (Passwell ef al. 1994, 277). Examination of the effects of the therapeutic use of
interferon-alpha revealed that interferon-alpha may protect against viral infection indirectly

by promoting neutrophil respiratory burst responses (Little ef al. 1994, 802). Human
neutrophils in vitro were found to release large quantities of O2 in response to tumor

necrosis factor (TNF) alpha. Another study investigated TNF-alpha's enhancement of the
effect of radiation against human colon tumor xenografts. This study suggests that
themechanisms of action may be related to increased oxygen radical production (Gridley ef
al. 1994, 1107).

Investigation into the chemiluminescent process used inhibitors of oxygen radicals
and enzymes. Catechol-like phenols suggested the involvement of NADPH-oxidase and
peroxidase in oxidative metabolism of mussel hemocytes. This study suggested a variable
immunocapacity for individuals and separated hemocyte subpopulations. (Noel et
al.1993. 483) A study involving macrophage-like defense cells (hemocytes) showed
similarities to the production of reactive oxygen intermediates (ROIs) by mammalian
leukocytes during respiratory burst. Coincubation but not preincubation with five
different catechol-like phenols inhibited oxidative activities of zymosan-stimulated

hemocytes. According to this study's authors, Adema et al., their findings imply
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similarities in composition and regulation of the ROI-generating mechanisms of both
mammalian and snail defense cells.
The oxygen solubility in water exposed to water-saturated air at atmospheric

pressure can be found in Table 2.1 in Appendix 2.

2.4 Phenol
Benzene is a known human myelotoxin and leukemogen. Benzene is metabolized by liver
cytochrome p-450 monooxygenase to phenol. Subsequent hydroxylation of phenol by
cytochrome p-450 monooxygenase results in the formation of hydroquinone, (a bone
seeking species, accumulating in bone marrow) (Subrahmanyam and Ross er a/. 1991,
495). It is well established that benzene requires metabolism to phenol to induce its
effects (Subrahmanyam and Ross er a/. 1991, 495).

Phenol, as a benzene metabolite, 1s a well studied toxicant. For example, urinary
phenol levels have long been used in occupational and public health research and practice
as an indicator of benzene exposure (Schulte 1991, 435). Phenol's oxidative fate has also
been explored. Some researchers suggest that peroxidative metabolism of benzene’s
phenolic metabolites may be responsible for the increased free radical activity and toxicity
produced by benzene in bone marrow (Schulte 1991, 435). Also, bone marrow cells and
their microsomal fractions isolated from rodents following benzene treatment have a

higher capacity to form oxygen free radicals (Subrahmanyam and Ross ef al. 1991, 495).



2.4.1 Respiratory Burst and Phenol
Phenol has been examined as a stimulator of the respiratory burst with subsequent damage
to the body (Haynes e a/.1993, 49; Simons ef al. 1990, 251).

Peripheral‘blood leukocytes contain a variety of enzymes that are capable of
metabolizing xenobiotics. Especially important is the enzyme myeloperoxidase (MPO)
which is a peroxidase/oxidase and generates the powerful oxidant hypochlorous acid.
MPO or MPO-generated oxidants are capable of oxidizing a wide variety of compounds
and a broad range of functional groups (Hofstra and Utrecht 1993, 221). Other examples
of chemicals such as aspirin and salicylate are transformed by human polymorphonuclear
leukocytes (PMN) as measured by Haynes ef a/.(1993, 49). In this paper, it was also
reported that some phenols e.g. S-aminosalicylate inhibited H,O, production.

Diethyldithiocarbamate (DDC) is a superoxide dismutase inhibitor (Pipe 1992,
111). Phenols isolated from the traditional medicinal plant Picrorhiza kurroa also inhibit
the release of superoxide anion (O2-) by activated human neutrophils. Interestingly,
Picrorhiza leaves the neutrophils' phagocytic activity intact (Simons et al. 1990, 251).
This study by Simons er al. states that catechols react directly with reactive oxygen
species (ROS) from the oxidative burst. For the activation of the orthomethoxy-
substituted catechols the combined activity of ROS and myeloperoxidase (MPO) is
obligatory. Catechols with a dimethoxy substitution cannot be activated metabolically by

neutrophil-derived ROS.



CHAPTER 3

MATERIALS AND METHODS

Bovine blood is routinely collected from the carotid arteries of freshly killed cows at a
slaughterhouse. During the course of this study, blood from several cows is used. The
blood is kept on ice during transportation from the slaughterhouse to the NJIT
Biotechnology Laboratory. The blood is collected directly into one - gallon containers
(3,785 ml) with 407 ml of pre-chilled anticoagulant. ACD anticoagulant consists of 3.95 g
citric acid, 10.9 g sodium citrate, and 12.1 g dextrose, all anhydrous, diluted to 407 ml
with distilled water. Fresh blood is poured to fill the containers and when full, the

containers are stoppered and mixed gently. The blood is kept on ice during transportation

and stored at 4 C until use.
Leukocyte rich samples are obtained through centrifugation of blood in 15 mli test
tubes and subsequent removal and use of the buffy coat. The buffy coat is the leukocyte

rich interface between plasma and erythrocytes produced by centrifugation of blood.

3.1 Measurement of Amount of Blood Cells
Immediately before each run, the blood is gently mixed and the hematocrit measured. In
this work, the term hematocrit is used interchangeably with packed cell volume (PCV).
Blood is drawn into a microcapillary tube and centrifuged in a Damon/IEC Division IEC
MB centrifuge - microhematocrit. The hematocrit is then measured with a Damon

microcapillary reader. Hematocrit refers to the volume of packed red blood cells. For the

16
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purposes of this work, packed cell volume (PCV) and hematocnt (HCT) are regarded as
interchangeable.

In this work, all measurements of blood cells are reported as packed cells because
the microhematocrit is designed to measure packed cell volume. Most of these packed
cell volumes are applied to whole blood which is what the instrument was designed for.
When the packed cell volume is applied to leukocyte enriched blood, then the HCTs are
much lower, therefore measurement may be less accurate. To check this, the packed cell
volume at low HCT was measured and calibrated using an improved Neubaur
hemocytometer.

There are 5.7 x 10° erythrocytes/i1l of bovine blood of packed cell volume 37.4
(Schlaim et a/. 1975, 123). Therefore, there would be 3.0 x 10° erythrocytes/ul of bovine
blood of packed cell volume 2.0. Cell counting in the hemocytometer revealed that in a
sample measured E;y our microhematocrit instrument there are 4.4 x 10° erythrocytes/pil of
bovine blood of packed cell volume 2.0. This indicates that PCV is not a precise indicator

of the number of cells at low packed cell volume.

3.1.1 Differential Leukocyte Count
A differential leukocyte count was generously performed by Dr. Marguerite Hoey,
D.V.M, of the Arlington Dog and Cat Hospital on three samples.

For this procedure, the packed cell volume (PCV) is measured as described above
but using Lancer Critocap Micro-Hematocrit Capillary Tube Reader (Sherwood Medical,
St. Louis MO 63103) and MP Readacrit Centrifuge (Clay Adams/ Beéton, Dickinson &

Co Parsippany NJ 07054).
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The total solids content in the plasma is measured with a Goldberg refractometer
£10400 (American Optical Co., Buffalo NY) which has an accuracy of +/- 0.1 g/dL

The differential leukocyte count is a count of the different types of leukocytes
within a blood sample. The red cells are lysed and the remaining white cells are counted in
a hemocytometer. This gives the number of white cells per volume blood. Then, a stain
of the blood is prepared using different dyes to help tell the types of leukocytes from each
other. 100 cells of this stain are counted and the number of each type is the percentage of
each type of leukocytes of each type in the blood sample. From these two pieces of
information, the total number of each type of leukocyte is determined by multiplying the
two numbers together.

The hgmocytometer used is the improved Neubaur Levy Ultra Plane (Clay-Adams
NY, NY). The; red cells are lysed using the Unopette Microcollection /n Vitro Diagnostic
System for the Eﬁumeration of Leukocytes in Whole Blood (Becton-Dickinson, Division
of Becton, Dickinson and CO. Rutherford, NJ 07079). Each unopette contains a 1.98 ml
reservoir which contains 28.6 ml glacial acetic acid, USP purified water to 1 liter. To this
unopipette is added 20 ul blood. The dilution ratio is 1:100.

The differential blood stain slide is prepared using the Diffquick Stains for staining
blood smears and bone marrow (Volu-Sol Stat Stain Statim Stain Buffered blood staining
solutions Cas# 68 from Volu-Sol, Inc. 5095 West 2100 South Salt Lake City, Utah
84120).. This consists of three stains: Fixative (VDF-016), Solution 1 (VDE-016), and
Solution 2 (VDB-016). The slide with the blood on it is dipped into each stain for 5

seconds.



19

3.2 Bioreactor Oxygen Measurement
All reactions are conducted in a 1.9 ml reactor (Figure 3.1 in Appendix 3) with a
temperature controlled water jacket surrounding the reactor. For anaerobic runs, the
reactor vessel is stoppered so that the system does not undergo gas exchange with the
environment. A YSI 5331 oxygen probe measures dissolved oxygen concentration while
the blood is stirred with a magnetic stir bar. A chart recorder is used to record molecular
oxygen concentrations.

This extremely powerful method of oxygen concentration observation has its roots
in the study of oxidative pharmaceutical kinetics (Poulsen, Ziegler, and Sofer 1976). The
reactor is carefully cleaned with soap and cotton swabs between runs (chlorine bleach for
the short runs). The bioreactor is calibrated by bubbling with air to determine baseline

concentrations (Greenberg ef al. 1985), and with N; to determine zero oxygen

concentration.

3.2.1 Discussion of Potential Probe Interferences

According to the instructions for the 4004 Clark Oxygen Probe, eight gases have been
tested for response. Carbon monoxide, carbon dioxide, and hydrogen show a response of
only 1% as compared to oxygen. Helium and ethylene elicit no response. Hydrogen
sulfide causes the probe to give a lower reading if it coats the probe. The probe is cleaned
between runs to remove any buildup which might be present.

Chlorine produces 2/3 O; response. Nitrous oxide and nitric oxide produce 1/3 O,

response. Chlorine may be present but the only pathway we know of for formation of



chlorine gas in blood is through myeloperoxidase activity on chlonides and halogens and is
therefore also an indication of oxidation. In the case of chlorine, nitric oxide, or nitrous
oxide formation, this activity is still an indication of oxidation.

If the peaks are caused by nitric oxide or nitrous oxide, there would be three times
the number of moles of these gases compared with the number of moles of oxygen in the
peaks if the peaks are caused by oxygen. The presence of this amount of either nitric
oxide or nitrous oxide would imply an oxygen reservoir of greater magnitude than the one

implied if the peaks are oxygen and our postulates regarding the MOPs (in Chapter 4)
could reasonably be applied to NO and NO;. When compared to control runs with no

blood, these profiles seem to be indications of oxygraphic activity.
Temperature also affects probe reading. The probe is calibrated daily at the
temperature to be used that day. Additionally, addition of ice cold saline serves as a

control for the temperature effects of adding cold blood to the reactor.

3.2.2 Description of a Typical Run
The reactor is first filled with water or saline and the temperature of the reactor is
recorded. The oxygen concentration is calibrated by saturating with air bubbled through
the reactor liquid. Then, blood is added to the reactor producing a near immediate initial
response in oxygen concentration in the reactor.

This initial response has a measurable maximum velocity. When phenol is added to
the reactor either before or after the blood is added, the initial response may be an initial

rise in the dissolved oxygen concentration in the reactor. In order to measure the initial



response’s velocity, the chart speed is set at 10 mm/sec. These runs are very short (3-5
seconds each).

After the initial response, a more gradual oxygen consumption continues, usually
until the oxygen concentration in the reactor reaches zero. This decreasing or zero
oxygen concentration continues for several hours (from 1 to 48 hr., avg. = 16.1 hr) at
which time the oxygen concentration in the reactor may suddenly increase and then
decrease, forming a molecular oxygen peak (MOP). Many discrete MOPs may occur
before the run 1s complete. For these long term runs, a much slower chart speed is used
(1-2 mm‘/min). In the long term runs, the reactor may be filled with saline or water (the

latter provides osmotic stress).

3.5 Sample Calculations
3.3.1 Maximum Amount of Hemoglobin (Hb) that Each Blood Sample Could Hold:
L. Erythrocytes contain 330g Hb/L packed erythrocytes (Garby and Meldon  1977).
There are 588 amino acids in Hb which weigh approximately 64680 amu,
2. (330 g Hb/L packed erythrocytes)(1L/1000 mi)(6.02 x 1023 molecules HB/64680 g

Hb in I mol Hb) = 3.1 x 1018 molecules Hb/ml packed erythrocytes,

3. (3.1 x 1018 molecules Hb/ml packed erythrocytes)(4 molecules O, /molecule Hb) =

1.2 x 101 molecules Oy/ml packed erythrocytes, and



(3]
()

4. (1.2 x 10" molecules Oy/ml packed erythrocytes)(32 g/mole 0,/6.02 x 1023
molecules/mole) = 6.5 x 10 g Oy/ml packed erythrocytes = 650 ug O/ml packed

erythrocytes.

3.4 Cell Viability Tests

3.4.1 Vital-Nonvital Stain
The procedure for identification of vital and nonvital leukocytes is adapted from DeRenzis
and Schechtman (1973). This method uses two dyes, trypan blue and neutral red, to
distinguish vital from nonvital cells. The dead cells stain blue and the live cells stain red.

Add equal volume of cell suspension and 0.04% neutral red in balanced salt
solution. After incubating at 37°C for 10 minutes, add an equal volume of 0.5% trypan
blue in balanced salt solution. Incubate for 2-3 minutes further. Cells should now be
visibly stained either ruby red or peacock blue (they’re quite beautiful). Ifa cell contains
both colors 1t was damaged during the staining procedure. If all cells look dark

pink/purple, the staining procedure was unsuccessful and should be redone.

3.5 Leukocyte Rich Blood
Leukocyte rich blood is obtained by two methods for these experiments. The buffy coat

method is by far the most frequently used method for these experiments.

3.5.1 Buffy Coat Method
In this method, several samples of about 15 ml whole blood are placed in test tubes which

are then spun in a Safety Head Centrifuge (Clay Adams, Parsippany NJ) at speed “5” on
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the centrifuge dial for about 10 minutes. The result of this spinning is that the blood cells
sink to the bottom of the tube, the plasma is at the top, and at the interface is a buffy coat

containing a leukocyte rich layer of cells which are then removed with a Pasteur pipette.

3.5.2 Erythrolysed Blood Samples

Samples are prepared by adding packed blood cells to distilled water and then adding
NaCl solution to form a balanced salt solution. This procedure was designed to eliminate
the erythrocytes because they are more susceptible than the leukocytes to bursting from
the change in osmotic tension. The resulting solution is then spun down in the centrifuge
and the cells form a pellet at the bottom of the tube and are removed. Microscopic
examination of the resultant pellet indicated that many erythrocytes remained and so this

method was only used a few times.

3.6 pH Measurements
The pH is measured using a 13 mm diameter pH electrode with an epoxy body and
Ag/AgCl reference cell type (Cole-Palmer 1-800-323-4340). The probe is inserted into
the top of the reactor and pH data are recorded on the same chart recorder as the DO
(using a second pen on the same chart recorder). In all runs in which the pH is monitored,

the glass stopper is not inserted into the reactor so that the pH probe can be inserted.



CHAPTER 4

OXYGRAPHIC PROFILES OF PHENOL STRESSED BOVINE BLOOD

Blood added to a saline filled, magneucally stirred reactor produces an initial decrease in
dissoived oxygen (DO) in the reactor. This response occurs almost immediately upon

addition of blood to the reactor. The amount (nmol O;) and maximum velocity of the

initial response (nmol/ml/sec) can be quantified. The iniual response is influenced by the
amount of blood injected and the temperature of the reactor. It is also profoundly
influenced, in a dose-response manner, by the concentration of phenol present in the
reactor. When phenol concentrations are sufficiently high (generally 20,000 ppm or
more), the blood reieases oxygen. The fast-assay runs take place within 3-5 seconds of
blood addition to a r-e‘actor.

A second series of experiments examines the DO profile for many hours after
blood addition to the reactor. Addition of phenol to bovine blood cell bioreactors affects
the long-term DO concentration profiles and increases the probability that the blood will
subsequently release oxygen and produce a molecular oxygen peak (MOP). Long term

assays are analyzed for MOP activity, each run yielding a single number representing total

activity. Activities as high as 1,300 ug Oy/ml packed cells have been observed for

stressed, leukocyte enriched blood.

24



4.1 Introduction and Background
4.1.1 Molecular Oxygen Peak (MOP)
An MOP as defined in this paper consists of a discrete increase followed by a decrease in
oxygen concentration. MOPs usually last upwards of one hour. The release of O, as

defined in the MOP has not to the best of our knowledge heretofore been reported.

4.1.2 Choice of Phenol as a Model Chemical Stress Agent
Phenol, as a beﬁzene metabolite, 1s a well studied toxicant and has been selected as the
chemical stress agent for this study. Benzene is a known human myelotoxin and
leukemogen. It is well established that benzene requires metabolism to phenol to induce
its effects (Subrahmanyam 1991, 495). Urinary phenol levels have long been used in
occupational and public health circles as an indicator of benzene exposure (Schulte 1991,
435). Oxidation of phenol has been explored. Some researchers suggest that peroxidative
metabolism of benzene’s phenolic metabolites may be responsible for the increased free
radical activity and toxicity produced by benzene in bone marrow. Also, bone marrow
cells and their microsomal fractions isolated from rodents following benzene treatment
have a higher capacity to form oxygen free radicals (Subrahmanyam 1991, 495).

The ability of leukocytes to metabolize xenobiotics is well known (Hofstra and
Uetrech 1993, 221). Due to its action as a toxicant, phenol does not readily lend itself to
clinical application, but its study in vitro can reveal the general mechanics and kinetics of

dose-dependent stimulation of the MOP.



4.1.3 Potential Applications of this Research

DO profiles are potentially useful in determining the ability of blood cells to defend against
various stresses, especially those due to chemicals in the environment. While phenol is
used as a model compound, blood cell bioreactors have potential applications as sensors
for calibrating or detecting environmental pollutants, pharmaceuticals, and other
xenobiotics. Blood cell bioreactors also may be used to test patient donor blood
sensitivities or to activate immune properties of the cells. This work has potential
applications in determining general oxygraphic capabilities of blood, and in identifying
human subpopulations sensitive to chemical pollutants and other xenobiotics, including
pharmaceuticals.

The exper%ments and results stemming from the work described in this
communication may serve as a basis for inexpensive, quantitative alternatives to extant
toxicological tests. dther potential applications are in determining the oxygraphic vitality
of blood as well as identifying of subpopulations which are more prone to react adversely

to a particular pollutant, drug, or treatment regimen.

4.2 Results and Discussion
4.2.1 Oxygraphic Recording of a Blood Age Study
Figure 4.1 demonstrates several key aspects of the work presented in this chapter. Each
run is a replication of the oxygraph chart recording. In Run 1, an air saturation baseline is
obtained by bubbling air through water in the temperature controlled reactor vessel. The
dissolved oxygen (DO) is recorded throughout the duration of the run. The second run

shows the zero oxygen level in the reactor. The readings at zero and air saturation DO
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provide us with a calibrated instrument and because the amount of oxygen required to
saturate water fully at a given temperature is known, accurate quantitation of all oxygraph
measurements is possible.

Runs 3-6 are 24 hour observations of the same size blood samples subjected to the
same phenol stress at the same temperature. The blood for each of these runs was taken
from the same iz vifro source, thus the samples differ only in age, each sample being one
day older than its predecessor. Each of these runs provides us with two types of
information. First‘, note that immediately upon addition of blood to the reactor, there is an
initial response, in this case an initial decrease in the DO in the reactor. For Runs 3-5, this
initial response appears to be quite similar. Run 6 has a larger initial response than the
previous runs. By significantly expanding the chart speed, to 10 mm/sec, we can measure
both the amount of oxygen involved and the velocity of this initial response. Observations
of the initial response of blood are dubbed “fast-assay” runs. The fast-assay runs provide
very interesting observations, as will be shown in Figures 4.2 -4.4.

The second major type of observation is also shown in Figure 4.1. Long term DO
profiles often provide the opportunity to observe MOPs. Note that in Run 5, the MOP
commences when the DO in the reactor is zero. This is interesting indeed, as hemoglobin
would not have any oxygen bound to it if the surrounding medium contained zero oxygen.
Also note the variability in the profile for these samples. Although these samples differ
ostensibly in age by one day, there is considerable variation in the time of MOP onset, the
duration and magnitude of the MOPs, and in the number of MOPs which appear. In the

final run, no MOPs are observed. The variability is typical of these experiments and has



led to the examination of MOP occurrence as a statistically probable phenomenon. This

statistical examination of MOP occurrence is presented in Figure 4.5

4.2.2 Initial Response vs. Amount of Blood Added
Fast-assay runs indicate the dose-response relationship observed in Figure 4.2 which
relates the initial response to the amount of blood added and the amount of phenol present
in the reactor before blood addition. The initial response may be a decrease in DO in the
reactor (dubbed an “initial drop”) or it may be an increase in DO in the reactor (dubbed an
“initial ise”). There is a dose-response relationship for both the amount of blood added
and the amount of phenol present in the reactor before blood addition.

There is a similar dose-response relationship when the velocity of the initial
response is examined in the same manner as the amount of oxygen in the initial response.

Figure 4.3 in Appendix 4 contains the velocity of the initial response .

4.2.3 Initial Response per Milliliter of Packed Cells

Figure 4.4 summarizes these data and provides an examination of the dose-response
relationship as a function of the milliliters of packed cells (n=90, coefficient of
determination or R-squared = 0.98 for the amount of oxygen in the initial response and
0.99 for the velocity of the initial response). In Figure 4.4, both the amount of oxygen
present in the initial response (the slope of each line from Figure 2) and the velocity of that
initial response are shown. Both indicate dose-response relationships and are useful

indicators for a rapid assay.
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As examination of toxicological effects of pollutants is likely to continue and
become more refined, the demand for tests such as these fast-assay runs can only increase.
These fast-assay runs are technically simple and inexpensive and rapid. They could
provide information about subpopulations sensitive to a particular drug or pollutant, as

well as give an indication of tolerant subpopulations.

4.2.4 Statistical Examination of MOP Incidence

Figure 4.5 and Tal;le 4.1 both refer to oxygraphs of stressed blood which were conducted
for much, much longer than the runs introduced as fast-assay runs. The fast assay runs
take a few seconds each while these long term runs are often 24 hour runs.

Figure 4.5 shows the statistical analysis of MOP occurrence. The effects of
various types of s%resses are examined. MOPs are more likely to be observed in the reactor
when blood is stressed. High concentrations of phenol, at the 2,000 ppm level, yield the
highest oxygraphic activity (48%, n=56 runs) when compared to lower concentrations of
200 ppm and under (31%, n=49 runs, (1-p) = 0.9222). Higher temperature, 42C, yields
more MOP activity (50%, n=125 runs,) than lower temperature, 32C, (34%, n=79 runs,
(1-p) = 0.9474). Leukocyte enriched blood yields more MOP activity (78%, n=18) than
ordinary blood (30%, n=118, (1-p) =0.999032). The quantity (1-p) is the probability that
the response falls within the Normal curve. A decrease in osmotic pressure increases the
chance that the blood will subsequently and suddenly release oxygen to form the MOP.
Likelihood of MOP generation by blood in distilled water is higher (38%, n=120 runs)

then in saline solution (23%, n=31 runs, (1-p) = 0.9057).
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4.2.5 Quantitation of Runs with High MOP Activity

Table 4.1 is an in-depth quantitative examination of four particularly active runs which

yielded MOPs. The MOPs’ existence may be of interest to the scientific community

because of the conclusions stemming directly from their observation under the conditions

that they are observed, that is, a reactor with no external oxygen source.

Table 4.1 Quantitation of selected long-term runs with high MOP activity. Each runis
described and MOP oxygen generation summed. Whether MOP oxygen is consumed or
simply shifts from reservoir to reservoir, the total oxygraphic activity for long term runs
may be represented.by a single number, micrograms O, per ml of packed cells shown in

the last row. Long term summaries are reduced to a single row as shown in this table.

Run # 143-1 212-2 213 216-1

amount blood (ml) 0.015 0.3 0.4 0.35

whole (wh) or leukocyte- wh Ir Ir Ir

rich (Ir) blood

ppm phenol in reactor 105 158 210 0.5

temperature ("C) 42 30 32 32

MOPs, peaks per run, 4 2 6 2

Time (hr) of peaks,’ 3.1,11.6, 16.6, | 22.5,25.7 | 32.4,34.2,61.6, | 1.0,29
19.3 70.4,77.0, 81.2

g Oz/peak 2.1,2.1, 2.8, 44,29 34,3.1,15.2, 2.35,
0.7 13.7, 158, 13.1 0.8

Average hours per MOP 12 22 18 22

Duration of run 50 44 110 44

O; found in all peaks 7.64 7.35 64.18 3.14

(mg)

Maximum hemoglobin 3.45 6.08 1.35 1.22

0, capacity in run (mg)

Erythrocyte/leukocyte 5.1/0.8 9.0/12.0 2.0/48.0 10.3/03

content of blood (ul)

Oxygraphic activity 1,310 350 1,280 260

(1g O, /ml packed cells)




4.2.6 Implications of MOP Occurrence

Looking at Run 5 in Figure 1, one is compelled to attempt some clarification of this
puzzle: namely, what is the source of oxygen for MOPs that start at zero saturation? We
have hundreds of hours of data showing MOPs arising from zero DO.

Control runs show no MOPs with water, saline, or plasma alone. No MOPs arise
upon addition of phenol to water, saline, or plasma alone. MOP activity is present only
when blood cells are present. Many of these discrete increases in oxygen concentration
take place when the dissolved oxygen concentration is zero. At zero dissolved oxygen
concentration, hemoglobin would have given up all of its oxygen so hemoglobin, as
currently understood, is likely not the oxygen reservoir from which the MOPs are derived.

Three postulates are presented:

1. The MéP 1s not an equilibrium-dependent release of oxygen. Therefore this
cannot be a conventional oxygen source such as hemoglobin, myoglobin, or oxygen
dissolved in lipids or water because as currently understood, these oxygen releases are
equilibrium dependent; at zero DO, they store no oxygen.

2. An increase in DO that 1s not equilibrium dependent may be explained by an
oxygen reservolr within the blood. It is not an undetected leak from the atmosphere
because there is a net positive pressure (a liquid column in the cannulus) on the reactor
vessel, and leaks, even small ones, are easily visible through the clear glass of the 1.9 ml

reactor vessel.

3. The existence of the MOPs indicates the existence of an oxygen reservoir

within the reactor vessel, or a unique and new property of hemoglobin. That these MOPs



do not occur with water or saline or phenol alone or in any combination without blood
implies that the oxygen reservoir is within the blood.
4. That the MOPs increase the DO in the reactor in a discrete, non-equilibrium

manner points to a storage mechanism such as O, being locked physically within a

macromolecule or similar trapping environment, or to chemical bonding within metals or
peroxides. This implies a potential catalytic energy barrier capable of containing oxygen
against a concentration gradient.

0> 1s the simplest form for the oxygen source for the MOPs, It could be stored

physically as oxygen as a polymer of oxygen within a chemical or electrochemical cage or
it could be stored chemically, as a peroxyacid or as a metallic oxide, or attached within a
large protein molecule. The existence of a catalytic energy barrier requires some

activation energy to release the Oy, the measurement of which is an area of planned

research for our group.

4.3 Conclusions
The fast assay runs hold great promise for developing a rapid toxicity test or a supporting
test for other toxicological evaluations. The dissolved oxygen probe during long-term
runs can prove a powerfully accurate and precise measure of the overall state of a given
blood sample. The existence of MOPs and their implications will hopefully lead to new
and exciting discoveries about the action and nature of blood. Long term assays also are

of potential use in developing a new toxicity test. The molecular and cellular level



response to xenobiotics 1s a dynamic research area that will benefit from the information in

this dissertation.



CHAPTER S

AERATION STUDIES

In this chapter, the effect on the dissolved oxygen (DO) consumption rate of osmotic
stress, blood amount, phenol concentration, and temperature is explored. It is largely the
results of these experiments which have prompted the thinking behind the fast assay runs.
The initial goal of these aeration studies is to design an assay for blood which requires less
than one hour to perform. The results of the aeration studies make an assay of a few
seconds in duration seem feasible.

Examination of the rate of oxygen consumption in blood as a function of stress is a
logical part of any work examining the oxygraphic response of stressed bovine blood.
This goal is complicated by the fact that, as the reader might suspect from the previous
discussion of a typical run, the vast majority of the time in typical closed reactor runs
involves zero DO readings. Aeration of the reactor immediately after blood addition
increases the DO concentration and thus yields more data regarding oxygen consumption
rate as a function of DO.

Examining changes in the rate of DO consumption as a function of stress has
proven a promusing line of investigation. The initial response of blood addition to the
reactor is a rapid and often large decrease in oxygen concentration in the reactor foiiowed
by a much slower rate of decrease in oxygen concentration. The two areas of DO

consumption which seem likely candidates for examination with respect to stress are: the



initial response, examined in the fast assay runs using an open top reactor (presented in
Chapter 6); and the subsequent slower rate of DO consumption, examined in these
aeration studies. These runs are aerated and the reactor subsequently closed. They
provide clues to the MOP puzzle as well as examine the effects of various stressors on DO
consumption in a closed reactor.

The purpose of aeration is simply to raise the DO concentration in the reactor.
This provides several interesting advantages over the non-aerated runs. First, there is a
greater arﬁount of oxygen in the reactor, therefore there is more oxygen to be consumed.
More data are gleaned from these runs before they reach zero DO.

Herﬂoglobin’s characteristic sigmoidal binding curve with respect to oxygen
concentration is essential to its function but could really complicate matters if one
compares two experiments in which one has not only a different stress level but also a
different DO in thé reactor. The initial response of blood addition to the reactor often
brings the DO in the reactor well beyond hemoglobin’s sigmoidal range.

One way to avoid this is through reaeration beyond hemoglobin’s sigmoidal range,
as in these studies. Another way, employed in the fast assay runs, is to use very small
amounts of blood which won’t cause such a dramatic decrease in DO in the reactor.

Thus, by raising the DO in the reactor to near the air saturation level, and by taking
measurements above the saturation of hemoglobin, about 50% of air saturation, it is
possible to minimize, or at least normalize, the effects of hemoglobin’s action on these

experiments.
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5.1 Experimental Procedure for Aeration Studies
The aeration studies are similar in most respects to all the runs discussed up to this point.
The only difference between the aeration studies and all other studies discussed in this
dissertation is that in the aeration studies, immediately after blood addition a syringe is
used to re-aerate the reactor.

To aerate the reactor, the entire reactor contents are drawn into a syringe and
squirted back into the reactor several times or until the DO in the reactor, as measured by
the oxygraph, reaches approximately air saturation. Then, the glass stopper is placed into
the reactor and the experiment continues for 24 hours. The result, which can be observed
as a chart recording throughout this procedure, is that the oxygen concentration in the
reactor is higher than if no syringe aeration had taken place.

Two other methods of aeration were examined before the syringe method was
selected. Aeration by bubbling air through the reactor in the same manner as is done when
checking the air saturation level of water or saline in the reactor before each run was
attempted several times. This method is impractical once blood is in the reactor due to the
extreme foaming that results when air is bubbled through the reactor after blood has been
added. Foaming is likely due to the high protein content of blood. Oxygenation by
addition of hydrogen peroxide was successful, but deemed inappropriate due to the
possibility that oxygen radicals are involved in the phenomenon being observed in these
experiments. To add another generator of oxygen radicals seems an unnecessary

complication that might interfere with the experimental results.
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5.2 Quantitative Analysis for Aeration Studies
The kinetics of O, release from blood are analyzed in Lineweaver-Burk fashion, where the
x-axis is 1/[O,] and the y-axis is 1/r where r is the rate of DO consumption(change in [O,]
/change in time).

These data are analyzed in Lineweaver-Burk style for several reasons. First, this
method makes possible comparison between runs with different DO concentrations
because it plots the inverse of the DO instead of the DO. The process of re-aeration with
syringe p;oxddes a higher DO level in the reactor but it does not provide the exact same
DO level each time. Therefore a technique such as this, which compares relatively
different DO levels in the reactor is desirable. Also, Lineweaver-Burk style analysis is
traditionally used to examine the kinetics of enzyme reactions and is familiar to many
biologists and biochemists.

Points neér air saturation are selected for analysis because this reduces the effects
of hemoglobin oxygen storage. Further, as the DO level in the reactor nears zero, its
inverse gets huge and the resulting range of values for data on oxygen concentration
becomes unwieldy.

These graphs do not examine MOP peaks. MOPs are not discussed in this chapter
at all. These graphs record the oxygen concentration in the blood as the oxygen

concentration decreases after addition of blood and reaeration of the reactor.

5.2.1 Kgr
Examination of the aeration studies points inexorably to the observation that there is a

rotation when the various conditions of stress are applied. “Rotation” refers to the
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observation that in blood samples varying in one of the four experimental conditions
examined, one sample will have a much steeper slope of the best fit line.

Kgr refers to the slope of the best fit lines which compare the rate of DO
consumption to the amount of oxygen in the reactor. Ky 1s expressed in units of 1/hr. The
greater the Kg, the lower the rate of DO consumption as DO in the reactor decreases.
Because these plots are double reciprocal, a steeper slope actually means that that run had
a slower rate of oxygen consumption at the lower oxygen concentrations. A lower Kg

implies a hjgher stress.

5.2.2 Conventions for Figures in this Chapter
For all figures in this chapter, the following conventions are observed in the interest of
clarty.

1. All runs in which the reactor is filled with saline have dashed best fit

lines. All runs in which the reactor is filled with water have solid best fit lines.
2. All runs in which the reactor is 30-32 °C have thin best fit lines and are
described as 30 °C. All runs in which the reactor is 40-43 °C have heavy best fit lines and

are described as 42°C.

5.3 Results of Aeration Studies
For each experimental parameter explored, Figures (5.1-5.16) are included. One figure of
each stress condition examined is in the chapter text. Additional figures for each stress are

found in Appendix 5. Tables 5.1-5.4 record the Kgs for each figure.
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5.3.1 Osmotic Stress

The runs done in water are under greater osmotic stress than the run in saline. All other
conditions being equal, runs in a saline filled reactor have a steeper slope, thus a greater
Kz, than runs in a water filled reactor. Since a greater Ky indicates less stress, this is the
result one would expect. Therefore, runs in a water filled reactor had a greater rate of DO
decrease as DO in the reactor decreased than runs in a saline filled reactor. A typical pair
of runs demonstrating the effects of osmotic stress i1s shown in Figure 5.1. Further

examples (Figures 5.2-5.5) are in Appendix 5.

Table 5.1 Ky Values for Osmotic Stress (Figs 5.1-5.5). Water is more stressful than
saline. Therefore a lower Ky (indicative of greater stress) in water compared with saline is
expected, and is observed, in these results.

Amount of Amount of Temperature Kr with Ki with
blood phenol Saline Water
(ml) : (ppm) O (1/hr) (1/hr)
0.1 100 30 5.18 0.17
0.015 100 42 28.23 0.82
0.05 100 42 4431, 13.94 1.97
(two runs)
0.1 100 42 1.90, 2.32 -1.17
(two runs)
0.2 0 42 34.01 -0.62
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5.3.2 Temperature

All other conditions being equal, runs in a reactor at 42 "C have a greater Ky than runs at
30°C. Therefore, runs at 30°C have a greater rate of DO consumption as DO in the
reactor decreases than runs at 42°C. If Ky indicates both less stressful conditions and the
reaction rate, this result is counterintuitive since one would generally expect a reaction
rate to increase with temperature. However, these Ky indicate more stress at hypothermic
conditiox?s‘ Figure 5.6 shows a comparison of Ky values at different temperatures.

Further examples (Figures 5.7-5.10) are in Appendix 3.

Table 5.2 Ky Values for Temperature (Figs 5.6-5.10). The Ky at 42 °C is greater than the
Kz at 30°C. Therefore, if greater Ky indicates less stressful conditions, 42 °C is less
stressful to blood than 30°C.

Amount of Amount of Saline or Ky at 42 °C Ky at 30 °C
blood phenol water
(ml) (ppm) (1/hr) (1/hr)
0.01 525 water 3.98 -0.11
0.015 100 saline 28.23 491
0.05 100 saline 4431, 13.94 3.64
(two runs)
0.1 100 water -1.17 0.17
0.1 100 saline 1.90, 2.32 5.18
(two runs)
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5.3.3 Amount of Blood

47

All other conditions being equal, the less blood injected into the reactor, the greater the

Kg. Therefore, the more blood injected, the greater the rate of DO decrease in the reactor

as DO in the reactor decreased. This is what one would expect. Since blood is

responsible for the DO consumption , there will be more of whatever is consuming oxygen

if more blood is added. There are more data points on the figures showing the blood

amount, such as Figure 11, than on the other graphs in this chapter.

Table 5.3 Ky Values for 100 ppm phenol and different amounts of blood in the reactor

(Figs 5.11-5.13) As amount of blood increases, the DO consumption rate increases. This
is what one would expect. Since blood is responsible for the DO consumption, there will
be more of whatever is consuming oxygen if more blood is added.

Temp.

O

42

42

saline

or

water

saline

saline

water

Ki with
0.01 ml
blood
(1/hr)
3.64,3.45
(two runs)

na

na

Ki with
0.015 ml
blood
(1/br)

491

9.37

Ky with
0.05 ml
blood
(1/hr)

3.37

44 31,5.57
(two runs)
0.58, -0.05

(two runs)

Ki with
0.1 ml
blood
(1/hr)

na

Ky with
0.2 ml
blood

(1/hour)

na

0.26

na

na (not available): no runs were done with these conditions
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5.3.4 Concentration of Phenol in the Reactor
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The trends observed in phenol stressed blood are initially puzzling since phenol at low

concentrations appears to have an acceleratory effect on DO consumption while phenol at

high concentrations has an inhibitory effect on DO consumption. This is consistent with

observations of phenol and DO consumption rate by Lakhwala. (1991). According to

Fayaz, at low concentrations, phenol is oxidized by bacteria, causing an increase in DO

consumption. At high phenol concentrations, phenol’s toxic effects on bacteria begin to

have an'inhibitory effect on oxidation and the result is lower DO consumption rate.

The non linear effects of phenol on blood are observed by both these aeration

studies and the fast assay runs discussed in Chapter 6.

Table 5.4 Ky Values for different phenol concentrations in the reactor; variations from
100 ppm ( Figs 5.14-5.16). The non-linear effect of phenol on blood’s DO consumption
observed in this table is explored further in Chapter 6 in phenol’s dose-response curve,

Amount

of blood

(ml)

0.1

0.01

0.2

Temp.

0

42

saline

or

water

saline

water

saline

Ky with

0 ppm
phenol
(1/hr)

na

na

34.01

K with
100 ppm
phenol
(1/hr)

8.32

0.49

3.16

K; with
475 ppm
phenol
(1/hr)

11.24

na

na

Kr with
525 ppm
phenol
(1/hr)

na

0.66

na




-uondwnsuod
O pesealoul ue FuISNed UOHEPIXO JUBDIXO] Ylim JU91SISU0d s1 uondunsuod O s,poojq uo jouayd Jo 10312 183Ul UOU SIY], "PIAISSqO
10U S SIY) “JoA9MOL] ¥ 1912213 B 9ARY 0] jouayd yim uru oY) 109dxd pinom suo ‘poo|q 0} [ryssalis 9q 03 palopisuod si jouayd
UIS "D, T 1B 101081 PIJ|Yy SUI[RS Ul POO[Q [W 7' 10 uondwnsuod ()] uo J03dBal Y} ul uoenuadued jousyd Jo 109y p1°S N3y

(twyjowu) [zol/1

0L00 8000 9000 ¥00 0
_ ~ I 2 _ | ——= 0000

wdd oot lll@\l\- -
7 — ’ -
O 4 G¢00 =
\ )
\ -

4
1012801 Ul jouayd ou y . r 0G00 <
wdd p, ‘
‘1019821 211 ul [joudyd] a1 qum pajaqe; st aulj yoeg
.mu UMOYS aIB Z-bb pue z-zpl suny |
4

7 TP 1B 1019821 POJ{1} SUI[ES Ul POO[q 9]0 W 7°()
4 1010821 [jousyd] jusioyip

’ — GL00




5.4 Advantages and Drawbacks of Aeration Studies
Unlike many tmmunological and toxicological methods, this method does not require
expensive, hard to handle chemicals or protocols such as those using monoclonal
antibodies, or rigorously aseptic techniques. We are not trying to study a systemic
immune response, rather we are looking only at the cellular response. The results are
straightforward in that the only reaction parameter we track is oxygen and, as with all
reaction kinetics tracking, each run is data-rich.

\The observation of rotation of runs is encouraging in its implication that we had
achieved an indication of the stress conditions of a blood sample. The rotation is a very
qualitative indication of stress and this method could stand improvement in terms of
quantitation. The fast assay runs and the in-depth quantitation of MOPs are both more
quantitative than the aeration runs.

Although the double-reciprocal examination of these phenomena has several
advantages (discussed in Section 5.2 Quantitative Analysis for Aeration Studies), this
method of analysis is labor intensive. Computerized techniques are recommended in case
large numbers of runs are anticipated.

The extremely reproducible trend in rotation in these runs is encouraging. Itisa
consistent observation that runs which had been aerated consumed oxygen more slowly
than runs which had not been aerated. This observation is so obvious to the naked eye
observing the oxygraph chart recorder that it was decided to compare aeration runs and
non-aeration runs separately. A characteristic example of this difference in oxygen

consumption between aeration and non-aeration runs is shown in Figure 5.17 in Appendix



5. This phenomenon is not a drawback as such but it is considered a drawback because it

presents a complication to the widespread use of this assay as a blood stress indicator.
These aeration runs stem from the previous 24 hour runs and the realization that

valid observations may be made about the stress state of a blood bioreactor system within

one hour.



CHAPTER 6

FAST ASSAY RUNS

The experiments and results stemming from the fast assay experiments described in this
chapter may serve as an introduction to an inexpensive, intensely quantitative alternative
to extant toxicological tests.

As introduced earlier in this work, blood added to a saline filled reactor produces
an initial response in the DO in the reactor. In the absence of high concentrations of
phenol, this initial response is usually a decrease in dissolved oxygen (DO) in the reactor.
The nitial response is influenced by the amount of blood injected and the temperature of
the reactor. The initial response is also profoundly influenced, in a dose-response manner,
by the concentration of phenol present in the reactor. When phenol concentrations are
sufficiently high (generally 20,000 ppm or more), the initial response may be an increase in

DO in the reactor.

6.1 Additional Methods for Fast Assay Runs
Blood is injected into a 2 ml saline filled reactor. This reactor is surrounded by a
temperature-controlled water jacket. In the experiments described in this chapter, phenol
may be added to the reactor before the blood has been added.
When blood is added to the reactor, a near immediate initial response in DO in the
reactor occurs. When the initial response is a decrease in DO in the reactor, it is called an

“initial drop” (ID). The ID's amount (nmol O,) and its velocity (IDV)(nmol/ml/sec) can



be quantified. When the initial response is an increase in DO in the reactor, it is called an
“initial rise” (IR). This initial rise and its velocity (IRV) can be quantified in the same
manner as the initial drop.

Labeled oxygraph recordings showing the ID, IDV, IR and IRV are shown in
Figure 6.1 in Appendix 6.

Each run is about 3-5 seconds long. The results from these experiments are very
reproducible within any given blood sample. Each run is repeated 3-4 times. The initial
response and its velocity 1s measured as described in Chapter 4. For all tables in this
chapter, the amount of oxygen in the initial response and its velocity is reported as the
average of 3-5 runs. When the initial response is shown on a graph, each run is shown
separately unless noted otherwise.

The prébe used to measure dissolved oxygen (DO) concentrations is temperature
sensitive. Ice cold saline 1s used as a control to show temperature effects on the DO

reading of adding cold liquid to the reactor

6.1.1 Conventions for Tables in this Chapter
For the purposes of these tables, examination of the initial response is split into two
components, the initial drop (ID) which is a decrease in DO in the reactor and the initial

rise (IR) which is an increase in DO in the reactor.

6.2 Initial Response as a Function of Phenol Concentration
and Amount of Blood Added

Figure 6.2 compares the initial response with amount of blood added. This is a repeat of
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the experiment shown in Figure 4.1, done on 7/17/96. The runs shown in Figure 6.2 were
done two days after the experiment shown in Figure 4.1. As in Figure 4.1, there is a dose
response relationship between the initial response and both the amount of blood added and
the concentration of phenol in the reactor. These figures demonstrate that the amount of
oxygen in the initial response is directly related to the amount of blood injected into the
reactor.

The initial response velocity compared to the amount of blood added and
concer;tration of phenol in the reactor is shown in Figure 6.3 in Appendix 6. Figure 6.3
demonstrates that the initial response’s velocity is directly related to the amount of blood

injected into the reactor.

6.3 Initial Response per Milliliter of Packed Cells
The slope of each line in Figure 6.2 is plotted against the concentration of phenol in the
reactor. As a result, Figure 6.4 shows the initial response per milliliter of packed cells
This is based on the runs shown in Figure 6.2 and indicates that the initial response is a
function of blood amount.

Figure 6.4 and Figure 4.4 are the same type of experiment done two days apart
using the same blood sample. The trends in both are in the same direction but the intensity
of the initial response has changed. The initial response examined by nmol O, per ml of
packed cells has decreased by 40 % in two days when comparing the experiment done on
7/19/96 with the experiment done on 7/17/96. The effects of blood age on the initial

response are explored further in Section 6.6.4.



6.4 Dose Response Curve of the Initial Response with
a Wide Range of PhenolConcentrations
t

Figure 6.5 shows the dose-response curve of one blood amount stressed with a wide range
of phenol concémrations on 7/15/97. As with many dose-response curves, this one is not
linear. A closer look at the low range of phenol concentration appears in Figure 6.6. In
Appendix 6 is the companion examination of this experiment’s velocity (both the whole
range of phenol concentrations, in Figure 6.7, and the closer examination of the lower
concentrations of phenol, in Figure 6.8.)

This dose-response curve is measured on two different occasions, on 7/15/96 and
on 7/23/96. The data for the latter, which exhibit basically the same dose-response curve
as 7/15/96, appear in Figures 6.9-6.12 Appendix 6.

In both curves the response at lower phenol concentrations is an initial decrease in
the DO in the reactor. This initial decrease in the DO in the reactor decreases in
magnitude as phenol concentration increases until a plateau is reached after about 1,000
ppm phenol which continues until about 20,000 ppm phenol. During this plateau, the
initial response remains the same despite increasing phenol concentrations. At about
20,000 ppm phenol, the initial response becomes an initial rise in the DO in the reactor
which may or may not still be accompanied by the initial drop. Sometimes there is an ID
but not an IR and vice versa. Sometimes there is both an ID and an IR. When the ID and

IR occur in the same run, the ID always occurs before the IR.
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6.4.1 The Basic Dose-Response Curve for Blood and Phenol
A basic description of this dose response curve of phenol, seen in Figures 6.5-6.12,
consists of three phases of the dose response curve: the low, middle, and high ranges of
phenol concentfation. In the low range (0-1,000 ppm phenol), the initial response is a
decrease in DO in the reactor. The initial response in the low range is inversely
proportional to the concentration of phenol in the reactor. In the middle range (1,000-
20,000) the initial response is a decrease in DO in the reactor. The initial response
remains constant during this “plateau” range. In the high range (20,000 and over), the
initial response includes an initial rise of DO in the reactor. Note that the values given for
low, middle and high are approximate. These values fluctuate somewhat between
different blood samples.

The dose-response curve of phenol and blood is largely consistent with previous
work done in the NJIT Biotechnology Lab. As mentioned in Chapter 5, Section 5.3.4,
addition of phenol at low concentrations to bacterial bioreactor systems causes increased
DO consumption as the phenol is oxidized by the bacteria. Then, as phenol concentration
increases, the DO consumption is inhibited as the bacteria’s oxidation mechanism
undergoes substrate inhibition by phenol. Thus, at very high concentrations, phenol’s
toxic effects overwhelm the bacteria’s ability to detoxify the phenol. It has not been
established what substance within the blood is responsible for the initial response
described in this dissertation. However it is not unreasonable to speculate that some
similar enzymes which would oxidize phenol and would have similar DO consumption

responses to phenol are present in both bacteria and blood.



Unlike the bacteria dose-response relationship, the blood fast assay runs don’t
indicate increased DO consumption at low phenol concentrations. However they do
evidence a change in the magnitude and direction of the response with increasing phenol

concentrations, since the initial response eventually becomes an initial rise.

6.5 Serial Addition of Blood into High Concentration of Phenol
In this experiment, 20 pl aliquots of blood were added sequentially to a saline filled
reactor with 31600 ppm phenol. This allows examination of the following query:
Does DO in the reactor above air saturation have an effect on the initial response? It
appears, from Figure 6.13, that the initial response is independent of DO increases above
air saturation to about 420 nmols in the reactor (about 220 nmols/ml saline). The
fluctuation in iﬁitial response above 220 nmols/ml could be due to the effects of increased

DO or a change in the blood during the initial rise affects the sensitivity of the DO probe.

6.6 Examination of the Effects of Temperature, Size of Sample, and Phenol
Concentration on the Initial Response

Table 6.1 shows the effects of blood age, temperature and size of sample on fast assay
runs. Note that the larger sample always gives a larger initial response and a faster IDV or
IRV. The higher the temperature, the smaller the ID and IDV but the greater the IRV.
The effect of one day’s aging for all three temperatures appears to be minimal. Each value
is the average of 3-5 runs. It is clear from this table that the phenomenon which causes

the initial response is temperature sensitive.
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6.7 Examination of the Initial Response of an Additional
Toxicant (1-butanol) and Comparison with Phenol

According to the Merck index, in rats, the LD;, of phenol is 0.530 g/kg while the of 1-
butanol 1s 4.36 g/kg. This means that phenol is roughly eight times more toxic than 1-
butanol. Of course, the LDs, is an organismal effect while the fast assay measures
molecular and cellular responses. Despite these impediments to extrapolation, it is still
reasonable to expect that phenol should be much more toxic than 1-butanol. If, as is our
contention, inhibition of initial drop, and stimulation of initial rise are to be considered
responses to stress then butanol would be considered far less toxic than phenol by our
assay.

All injections in the study presented in Table 6.2 are 0.2 ml blood of HCT 2.25.
The blood was prepared by mixing 2 ml of blood into 20 ml saline. An injection of 20 ml
of the original sample which had HCT 30% erythrocytes and 1% leukocytes, the initial
response is an initial drop of 102.7 nmol O,.

Butanol is not totally miscible with the blood so the maximum saturation of
butanol in water, 80,300 ppm is used as the maximum concentration of butanol in the
reactor.

An interesting comparison would be of the respective concentrations of phenol and
butanol necessary to give the same initial rise. It is possible to compare the concentration
of butanol that produces an initial rise of 13.8 nmol O (which is 80,300 ppm butanol) with
the concentration of phenol that would be necessary to produce an initial rise of 13.8 nmol

O,. This is done by interpolating, from the initial rise at 17,700 and 35,300 ppm phenol,
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what the phenol concentration would be if the initial rise were 13.8 nmol Q,. This
concentration of phenol is 23,000 ppm phenol. (80,300/23,000) is about 3.5 therefore
according to our test, phenol is about 3.5 times more toxic than butanol. According to the

Merck Index, phenol is about 8.2 times more toxic than butanol.

Table 6.2 Comparison of the effect of butanol and phenol on the initial response of 20 pl
whole blood. If, as is our contention, inhibition of initial drop, and stimulation of initial
rise are to be considered responses to stress then butanol would be considered far less
toxic than phenol by our assay. According to the Merck index, in rats, the LDs, of phenol
is 0.530 g/kg while the of 1-butanol is 4.36 g/kg, thus phenol is about 8.2 times more
toxic than butanol.

Runs done 3/3/97 38.5°C

ID O, IR O,
(nmol) (nmol)
Reactor filled with saline  -11.1 0
(no phenol or butanol)
17,700 ppm phenol -13.9 6.9
35,300 ppm phenol -2.1 52.6
52,900 ppm phenol -2.8 60.3
80,300 ppm 1-butanol -5.5 13.8

6.8 Exploration of Possible Influences on the Initial Response
If these fast assay runs are to serve as the basis for a toxicity test, then interfering

influences must be kept at a minimum.
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6.8.1 Effects of Handling Stress

The effects of both the removal of plasma and the stress of spinning in the centrifuge are
examined in this table. Three samples of blood from a single 100 ml aliquot are examined.
The first sample is whole blood, not spun in the centrifuge. The second sample is whole
blood spun down in the centrifuge and resuspended. This third is whole blood spun down
in the centrifuge, the plasma removed, and a volume of saline equal to the amount of
plasma removed added to the remaining packed cells which were then resuspended in
saline.

The whole blood not spun gives a much less intense response than the samples that
subjected to centrifugation. This indicates that the stress of handling and spinning in the
centrifuge does not dampen the response, instead this treatment makes the cells more
likely to react. There is minimal difference between the samples which were both spun.
The removal of plasma does not affect the response so it is unlikely that plasma is involved
in the initial response.

Leukocyte rich blood for most of these experiments is obtained by spinning blood
in the centrifuge and removing the leukocyte rich buffy coat. Since it has been observed
and noted that leukocyte rich blood is more likely to produce a MOP than is whole blood,
these centrifuge stress studies provide a crucial control.

In light of these results, what appears to be a leukocyte rich blood response is in
some of our experiments indistinguishable from a spinning stress response. The
fractionated blood 3 minute assays presented later are all obtained either without spinning

or with spun and resuspended whole blood as a control.



Table 6.3 Effect of Handling Stress on the Initial Response. The whole blood not spun
gives a much less intense response than the samples subjected to centrifugation. This
indicates that the stress of handling and spinning in the centrifuge does not dampen the
response, instead this trearment makes the cells more likely to react. There is minimal
difference between the samples which were both spun. The removal of plasma does not
affect the response so it is unlikelv that plasma is involved in the response.

Runs done 11/18/96 38C
all injections are 20 pl ppm ID O. ID max IR O, IR max
of whole blood phenol vel vel
nmol nmol/sec nmol nmol/sec
whole blood not spun
0 -45.9 -48.2 0 0
31600 -13.4 -20.1 9.6 5.2
whole blood spun and
resuspended
0 -22.9 -22.9 0 0
31600 0 0 21.0 19.5
whole blood spun, plasma
decanted, and
resuspended in saline
0 -19.1 -21.1 0 0
31600 0 0 22.9 19.1

6.8.2 Comparison of the Effects of Phenol on Whole blood and Leukocyte Rich
Blood

The examination of whole blood in comparison with leukocyte rich blood at several
temperatures provides an interesting effect. If leukocvies were responsible for the
observed initial response, one would expect the leukocvie rich samples to give the most
intense response. However, as is clear from Table 6.4, this is not the case. Therefore the
results of this particular experiment do not support the hypothesis that leukocytes are

responsible for the initial response.

68
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6.8.3 Effect on the Initial Response of the DO level in the Reactor Before Blood is 70
Added

As is demonstrated in Figure 6.14, the DO level in the reactor has an effect on the initial
response. As the DO in the reactor before blood addition increases, the initial drop
increases. Whether the DO in the reactor is depleted by blood addition or by N>, the
change in the initial drop is the same amount, therefore this change is DO dependent not
blood dependent.

All runs done in this chapter have been done with the DO in the reactor at air
saturatior; before the blood is added to avoid dealing with the effects of DO in the reactor
at the beginning of the run. This avoids dealing with hemoglobin (as explained in the
aeration chapter) and any other unknown influences which contribute to the effect of DO

level before blood is added.

6.8.4 Effects of Blood Age on the Initial Response

The effect of blood age at different phenol concentrations is shown in Table 6.5. All runs
are 20 pl blood and 36-38 C. The response is not unidirectional and is noted here as an
indication of the fairly large range of response that is considered normal. It should be
noted that in biological systems, the range of normal response is often large. Each value 1s

the average of 3-5 runs.
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The overall trend of the dose response relationship is consistent; increased phenol
causes decreased ID and high concentrations of phenol cause an IR. The magnitude of the

initial response fluctuates day to day.

Table 6.5 Effect of Blood Age on the Initial Response of 20 il of whole blood.

36 C
DATE ppm phenol ID O, ID maxvel IR O, IR muax vel
nmol nmol/sec nmol nmol/sec
11/12/96 0 -47.4 -69.5 0 0
3160 -42.1 -49.3 0 0
31600 -24.2 -43.6 50.5 30.3
11/13/96 0 -50.7 -33.8 0 0
3160 -42.3 -50.1 0 0
31600 -25.4 -35.9 31.7 23.7
11/14/96 0 -435.6 =547 0 0
3160 521 -52.7 0 0
31600 -21.7 -35.6 33.8 23.7
11/18/96 0 -43.9 -48.2 0 0
31600 -13.4 -20.1 9.6 5.2
11/27/96 0 -76.3 -83.3 0 0
31600 -29.9 -42.3 18.0 9.4

6.8.5 Effect of Blood Aeration on the Initial Response
The initial response of aerated whole blood is compared with non-aerated whole blood.
The aerated blood is prepared by drawing about 1 ml of blood into a syringe and squirting

it back out into a beaker. This is repeated several times. The aerated blood has a larger



initial rise but a smaller initial drop than the non aerated blood. This is what one would
expect if aeration serves to restock hemoglobin or some other reservoir within blood.
Because of the method of syringe aeration (described in Section 5.1), aerated blood is
handled more ihan non-aerated blood. The effects of handling stress on blood, as
examined in Section 6.8.1, could be responsible for the observed difference in the aerated

and non-aerated samples.

Table 6.6 The Effect of Aeration on Blood’s Initial Response; 20 ul Whole Blood in
Each Injection. The aerated blood has a greater initial rise but a lesser initial drop than the
non aerated blood. This is what one would expect if aeration serves to restock
hemoglobin or some other reservoir within blood.

Runs done 11/27/96 38C

0 ppm phenol in each run  ID 0, ID maxvel IR O, IR max vel
nmol nmol/sec nmol nmol/sec

aerated whole blood -18.5 -18.8 2.2 5.9

non-aerated whole blood -76.3 -85.3 0 0




6.8.6 Teasing Apart the Initial Response’s Two Components, the Initial Rise and the
Initial Drop

In some initial responses, there is both an initial drop and initial rise. What is the
connection, if any, between the two phenomena?

Generally, when both an ID and IR are part of the initial response, both
components of the initial response are smaller than if the initial response is either an initial
drop or an initial rise. The initial rise generally takes place at higher concentrations of
phenol and the dose-response curve of initial response as a function of phenol
concentration 1s not linear (even in the regions without an initial rise). These factors make
teasing apart the initial drop from the initial rise a tricky proposition.

Might the initial rise and initial drop always occur together and are only observed
as separate entities if they’re separated by time? In short, are they masking each other? It
is also possible thgt phenol inhibits the mechanism which causes the initial drop and this is
why the initial drop 1s smaller when both initial drop and initial rise are observed together.

To delve into this question, blood is added to a reactor that contains one milliliter
of saline. The resulting initial response is measured. Then, as soon as the initial response
1s over, one milliliter of saline saturated with phenol is added to the reactor and the initial
response is recorded. The small initial drop after the phenol addition is likely a
temperature effect of adding 1 ml of liquid (about half of what the reactor can hold). The
results, shown in Table 6.7, indicate that there is some masking, or inhibition, of the initial
rise by the initial drop and vice versa. It is possible that the initial drop and initial rise are

controlled by the same mechanism.
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Table 6.7 Separation of Initial Rise from Initial Drop; 20 1l Whole Blood in Each Run.
The 1nutial rise is much greater when phenol is added separately. This indicates that the

initial drop likely masks (or inhibits) the initial rise and vice versa.

Runs done 11/27/96 38C

ppm phenol ID 0, ID maxvel IR O, IR max vel
nmol nmol/sec nmol nmol/sec

0 -76.3 -83.3 0 0

31600 -29.9 42,3 18.0 9.4

blood into 1 ml saline

0 -107.2 -74.8 0 0

..... Then add 1 ml 60,000
ppm phenol
31600 -2.7 -9.2 74.5 45.6

1 ml saline + 1 ml phenol
(no blood)

31600 -24.7 -33.7 0 0
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6.9 Potential Mechanisms for the Observed Initial Response:
Following are several possible causes for the observed increase and subsequent decrease in
DO. The catalysis back to O, of free radicals generated by the immune system may be a
source for the increase in DO observed in the MOPs. It is possible that the initial drop and
initial rise are controlled by the same mechanism. The ID and IR have an effect on each
other as seen in Table 6.7. Also, the initial rise per ml of packed cells falls on the same
best fit line as the initial drop (Fig 4.4 and Fig 6.4). It is unclear from these data whether
this relationship is mechanistic or simply because they are temporally related and thus

influence each other.

6.9.1 DO Decreases

Besides the most familiar mechanism for oxygen consumption in a biological system
(namely cellular respiration), there are several other potential mechanisms for oxygen
consumption in a blood system. The generation of oxygen free radicals from O, by the
immune system may be responsible for the observed decrease in DO. Enzymes producing
superoxide, a charged free radical, or nitric oxide (NO) will consume O,, as will enzymes
attacking xenobiotics and pollutant chemicals, such as the cytochrome P-450 and FMO-

oxidase systems. A potential mechanism for oxygen consumption is the respiratory burst.
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6.9.2 DO Increases: Potential Sources of Oxygen for Initial Responses that Include
an Initial Rise

The oxygen source for the IR includes, but is not limited to, the possible oxygen sources
for the MOP. However, hemoglobin is also a potential oxygen source for the IR (yet

hemoglobin s not a potential oxygen source for the MOP.)

6.10 Conclusions and Recommendations
As examination of toxicological effects of pollutants is likely to continue and become more
refined, tAhe demand for tests such as these fast-assay runs can only increase. These fast-
assay runs are technically simple and inexpensive and rapid. They could provide
information about subpopulations sensitive to a particular drug or pollutant, as well as

give an indication of tolerant subpopulations.



CHAPTER 7
MOP ACTIVITY

What would compel researchers to tie up their instruments for what eventually reached
thousands of reactor hours? Besides the comfort provided by the knowledge that the
reactor is busily collecting data while the researchers are sleeping or eating, these long

term runs.have provided the most intriguing, tantalizing, frustrating results.

7.1 Prediction of MOP Activity
Can the reliability of the aeration studies in their relationship to stress be used towards
strengthening the evidence about MOPs? The trends observed in aeration encourage us to
attempt to predict, by monitoring the oxygen consumption within the first hour of an
experiment, the likelihood of MOP activity several hours later in the run. The ability to
predict MOPs would lend tremendous credibility to our assertions regarding MOPs.

The first step is to get a preliminary determination whether this line of inquiry
would be fruitful. This is done by compiling pairs of runs done under the same conditions
(temperature, osmotic stress, amount of phenol and blood in the reactor, and aeration by
syringe or not). The runs are then plotted against each other in the now familiar double
reciprocal plot. These plots are shown in Figure 7.1 and Figures 7.2. The latter is in
Appendix 7. Table 7.1 shows the Ky values for the runs compared in this initial

investigation.
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Table 7.1 Kg Values for runs with and without MOP activity (Figs 7.1-7.3). In one of the
two groups of runs, the runs which had MOP activity have a lower K value than the runs

which didn’t have MOP activity.

Amount  Amount Temp Saline
of blood  of phenol or
(ppm) water
(ml) | (0
0.01 100 42 saline
0.05 100 42 saline

K; for run
with MOP
activity

(1/hr)

3.52

N

[

K; for run
w/o MOP
activity
(1/hr)
5.34

13.63, 6.07

(two runs)

Figure 7.1 is a double reciprocal plot of two pairs of runs. Each pair of runs is done under

the same conditions and yet one run exhibits MOP activity and the other does not. The

runs which have MOP activity are shown with heavy lines and the runs which do not have

MOP activity are shown with thin lines.

In Figure 7.1, the runs which later had MOP activity have markedly different rates

of DO consumption than the runs which did not have MOP activity. This finding implies

that perhaps we can predict within an hour of blood addition whether there will be MOP

activity in a run.

Possibly the difference in rates between runs that produce a MOP and runs that do

not implies that some mechanism has been set into motion -- a mechanism which evidences

itself in one or more MOPs within several hours. Oxygen is released, and this release may

to be coordinated amongst the cells because the oxygen is released in discrete and unique

patterns.
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Because runs done under identical conditions do not always produce the same
amount (or lack thereof) of MOP activity, the propensity to generate MOP activity may be
a function of the intrinsic state of a sample. Additional stress may or may not generate
molecular oxygen. This is demonstrated by Figure 7.1 in which one run in each pair gave
a MOP while tﬁe other run did not. Kinetics of the initial oxygen consumption suggested
that a higher rate of decline tends to predict future MOP activity. This finding, made
within an hour or two, may be of potential utility in developing a test to determine the

sensitivity. of blood to stress.

7.1.1 Experimental Procedure for Comparison of MOP vs. no MOP Studies
After comparing existing data on runs with and without MOP activity, a series of
experiments which compared a split sample of blood under identical conditions seemed the
best way to examine runs which differ only in the presence of MOP activity. Two reactors
which shared the same temperature bath are used. The reactors contained the same
osmotic and phenol conditions and blood samples are split and injected into the reactor
within 1 minute of each other. These experiments are 24 hours long in duration. This
experiment is repeated each day for five days.

At the completion of the pair of runs which ended on 6/14/96 (about 24 hours),
each reactor is reaerated and phenol is added in three aliquots of 0.1 ml of 20,000 ppm

phenol. The interval between each addition is about 10 minutes.



7.1.2 Conventions for Figures in this Chapter
The runs which have MOP activity are shown with heavy lines and the runs which do not
have MOP activity are shown with thin lines.

Dashed lines show the best fit of data taken phenol addition and solid lines show
the best fit of data after phenol addition. Heavy lines show data for runs which had MOP

activity while thin lines show data which didn’t have MOP activity.

7.1.3 Quantitative Analysis for Comparison of MOP vs. No MOP Studies

These runs are analyzed in the same modified Lineweaver-Burk method as the aeration
studies described in section 5.2. The kinetics of oxygen consumption before and after
phenol is added are analyzed separately. In the pair of runs (6/14/96) in which three
additional aliquots of phenol are added, the rates of oxygen consumption are analyzed
after each addition.

Figures 7.3-7.8 contain the information for the experiments shown in Table 7.1.

7.1.4 Results and Discussion of MOP vs. No MOP Studies

Each experiment is repeated five times. All runs are aerated after the blood is added. As
seen in Table 7.2, on 6/10, 6/14 and 7/14/1996, one reactor’s contents shows MOP
activity and one did not. These are the types of comparisons we are seeking. These runs
are shown in Figures 7.4 and 7.6. The results of the other pairs are plotted and appear
Figures 7.3, 7.5 and 7.8 in Appendix 7. The Ky value for each run in shown in Table 7.3 in

Appendix 7.
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Table 7.2 MOP activity in split sample runs done under the same conditions. All runs are
done in saline with 1000 ppm phenol in the reactor. On 6/10 and 6/14, one reactor’s
contents showed MOP activity and one did not. These are the types of comparisons we
are seeking for the possible prediction of MOP activity within the first hour of the run.

Date runs Temperature volume typeof  HCT of MOP activity in the

ended °C of blood blood blood used reactors
(1996) used sample
(ml)

6/10 43 0.75 whole 33.5R 1W  one reactor had MOP
blood activity, one did not

6/13 43.5 0.75 leukocyte NA neither reactor had
enriched MOP activity

6/14 43.5 0.2 leukocyte 20R 3W one reactor had MOP
enriched activity, one did not

6/15 43.5 0.2 whole 38R 0.5W  both reactors had
blood MOP activity

7/14 37.5 0.4 leukocyte NA one reactor had MOP
enriched activity, one did not

7.1.5 Influence of Phenol on MOP Generation
To explore the influence of phenol on MOP generation, the kinetics of oxygen
consumption before and after phenol addition is added is analyzed separately. This allows
investigation of the effect on oxygen consumption of phenol addition. In addition, this
will help determine which could better predict the likelihood of MOP generation, the
kinetics of oxygen consumption in blood before, or after, phenol addition. This will help
determine to what extent MOP generation is influenced by phenol stress.

Further exploration of phenol’s influence on runs which had MOP activity as
opposed to runs which didn’t have MOP activity is found in the runs which ended on

6/14/96. At the end of that pair of runs (about 24 hours), each reactor is reaerated and
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phenol is added in three aliquots of 0.1 ml of 20,000 ppm phenol. The interval between
each addition is about 10 minutes and the rates of oxygen consumption are analyzed after
each addition. The results are shown in Figure 7.7.

Note in Figure 7.7 that before phenol is added, the DO consumption rate in each
reactor is the éame‘ After phenol addition, the DO consumption rate in the reactor
increases in the reactor which has MOP activity (although the MOPs have long since
finished). In contrast, the DO consumption rate decreases in the reactor which does not
have MOP activity. After the second phenol addition, the DO consumption rate in both
reactors decreases. This is an experiment done only once but is very interesting because
increased DO consumption is consistent with oxidative activity in biological systems.
Also, the decrease in DO consumption at the second and third injection of phenol is

consistent with either substrate inhibition or toxic effects on biological systems.

7.2 Viability Test for Leukocytes Before and After Split Sample Runs
Viability tests were on several 24 hour runs using the neutral red trypan blue dye exclusion
method described in Ch. 3. The presence of both viable and nonviable leukocytes both
before and after 24 hours in the reactor indicates that the stress of being in the reactor for

24 hours did not destroy all of the leukocytes.

7.3 Conclusions Regarding MOP Prediction
This study which generated only two pairs of runs which could be compared took a week
to complete. The amount of time that would be required to reach statistical significance of

results was deemed prohibitive to continuing this avenue of exploration in this dissertation.
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However, the immense benefit of the ability to predict MOPs make following this line

worthwhile.

7.3.1 Potential Sources of Oxygen for MOPs

Potential sourées of molecular oxygen generation include the decomposition of hydrogen
peroxide by catalase or peroxidases to generate water and O, and the enzymic or chemical
dismutation of superoxide to hydrogen peroxide and O, with the consumption of 2H*
(Mathews and van Holde 1990).

The oxygen release reported in this paper may take place after the respiratory burst
or some other, perhaps unknown mechanism. In the respiratory burst, leukocytes uptake
oxygen and catalyze the oxygen into reactive oxygen species (ROS). ROS are used to
destroy bacterial invaders and toxicants. The catalysis of ROS back to molecular oxygen
following the respiratory burst is necessary to protect the body from the adverse effects of
the ROS.

MOPs are not proposed as synonymous with the respiratory burst. Rather, the
catalyzation of ROS to O, following the respiratory burst is merely listed as a potential
source of O, observed in the MOP.

It should be noted that for the catalysis of ROS produced during the respiratory
burst to be the oxygen source for MOPs which begin at zero DO, the existence of an
oxygen reservoir of some sort is still necessary. If the respiratory burst is involved, it is
unclear whether the reservoir is composed of ROS or molecular oxygen. However, the

latter is more likely because the former would be highly reactive.



There are two conventional sources of oxygen introduced into the reactor: the
amount of oxygen present in the blood when it is added to the reactor, and the amount of
oxygen present in the reactor at the beginning of the run. The latter varies from 370 to
460 nanomoles (nmol), depending on the temperature of the 1.9 ml air saturated reactor.
The former is calculated separately for each run, depending on the hematocrit and volume
of blood of each run.

The stopper has a narrow injection pathway 4.5 ¢cm long and 2 mm in diameter.
Once stoppered, there is no gas exchange with the environment. The blood may uptake
oxygen from the liquid inside the reactor. Oxygen can be bound by hemoglobin (Hb).
However, as DO in the Hb containing medium decreases, Hb gives off oxygen. At zero

DO in the medium, Hb contains zero oxygen (Mathews and van Holde 1990).

7.4 Quantitative Examination of MOPs
This section contains quantitative examination of MOPs unlike that presented in Chapter

4, Section 4.2.5.

7.4.1 Amount of Oxygen in Each MOP Compared with the Packed Cell Volume
Table 7.4 summarizes the average MOP size for 95 MOPs. The amount of oxygen in each
MOP is examined in three different ways: comparison with (1) the amount of packed
leukocytes, (2) the amount of packed erythrocytes, and (3) the amount of total packed
cells in each sample.

A single run may yield more than one MOP. The number of MOPs observed is

greater for the total amount of packed cells because there are 11 peaks recorded here that
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use whole blood in which the hematocrit wasn’t measured so the relative amounts of
erythrocytes and leukocytes can not be determined.

Linear regression of the ug O, in peak/ul packed cells shows a positive correlation
with both leukocytes and with the total number of cells. If erythrocytes are the causal
agent for the MOP, one would expect there to be a positive correlation between the
number of erythrocytes and the size of the MOP. However, the linear regression for the
MOP size compared to the number of erythrocytes shows a negative slope.

As the number of leukocytes or total cells increases, the size of the MOP increases.
This observation implies that leukocytes are responsible for the MOPs and that
erythrocytes are not. As the number of red cells increases, the size of the MOP decreases.
Runs which gave more than one MOP are represented by more than one data point
because each MOP is examined individually. As indicated by the minimum and maximum
y values, there is considerable variation in the size of MOPs. Because this data covers
such a large data set, the overall trend is credible.

Some of the MOPs examined in Table 7.4 occurred in runs with whole blood in the
reactor. Centrifugation and fractionation of other blood samples resulted in leukocyte rich
samples which are never devoid of erythrocytes. The runs with more leukocytes contain a
smaller fraction of erythrocytes than do the whole blood runs. This strengthens our

assertion that leukocytes, not erythrocytes, are responsible for the MOPs.
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Table 7.4 Comparison of 1ig O, in Each MOP with the Amount and Type of Packed Cell
Volume in the Run. The amount of oxygen in each MOP is examined in three different
ways: comparison with (1) the amount of packed leukocytes, (2) the amount of packed
erythrocytes, and (3) the amount of total packed cells in each sample. Linear regression of
the g O, in peak/ul packed cells shows a positive correlation with both leukocytes and
with the total number of cells. If erythrocytes are the causal agent for the MOP, one
would expect there to be a positive correlation between the number of erythrocytes and
the size of the MOP. However, the linear regression for the MOP size compared to the
number of erythrocytes shows a negative slope. This observation implies that leukocytes
are responsible for the MOPs and that erythrocytes are not. Runs which gave more than

one MOP are represented by more than one data point because each MOP is examined
individually.

Type packed packed 7 total volume of
of cell leukocytes erythrocytes blood injected
slope of linear regression 259 -2.6 1.3

(ng Oy /ml packed cells)

number of peaks 86 86 95
y min (pg O2) 0.110 0.110 0.110
vy max (ug O) 16.7 16.7 18.3

x min (ul) 0.1 1.7 10
x max {(ul) 98 555 1500

7.4.2 Oxygraphs of MOPs
Some examples of oxygraph chart recorder data are presented in Figures 7.9-7.12 which

appear in Appendix 7
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7.5 pH and MOP Studies
The studies presented in Table 7.5 address several issues. First, the blood is fractionated
by gravity settling in saline. This method of blood fractionation, without any
centrifugation, and with minimum handling allows blood fractionation with minimum
handling stress which, as seen in Section 6.8.1, may affect the oxygen release from blood.

The second issue addressed in this study is the relationship between the initial
response and the ability of blood to generate MOPs. The blood fractions obtained through
fractionation are examined in a short run. The blood is added to saline and then phenol is
added. The increase in DO which follows phenol addition is used to select the most active
fraction. The fraction which produces the greatest DO increase per milliliter of packed
cells is deemed the most active fraction. This most active fraction is used in a 24 hour run
during which both pH and DO are monitored.

If the initial response and the ability to generate MOPs are related, then the runs
which have a higher activity in the short runs should have the greatest MOP activity. As
seen in Table 7.5, this does not appear to be the case.

The third area examined in these experiments is the relationship between pH and
MOP activity. The maximum pH increase over the course of the run is monitored. The

pH increase does not appear to be a good indication of MOP activity.
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Table 7.5 pH and MOP runs. All runs are in a saline filled, open top reactor at 38°C. If
the initial response and the ability to generate MOPs are related, then the runs which have
a higher activity in the short runs should have the greatest MOP activity. This does not
appear to be the case. The maximum pH increase over the course of the run is monitored.
The pH increase does not appear to be a good indication of MOP activity.

amount
of
packed
cells
(ml)
032

0.028

0.023

0.11
0.06

0.025
0.042

[phenol]

(ppm)

7050

7050

7050

13300

7050
7050

activity of
fraction
(1gO,/ml packed

cells)

742

710

681

250
40

541
553

amount of O, in
peaks

(g0, /ml packed
cells)

1.1,28, 1.1

(5.0 total)
251, 18.9, 6.3,
1005.4
(1055.7 total)
23.0, 153, 15.3,
153, 1713.6
(1782.5 total)

5.9
63,79
(14.2 total)
1548.4
754, 2262, 603.3

(904.9 total)

amount of
O, in
peaks

(1g0s)
0.4,0.9,
0.4
(1.7 total)
0.7, 0.5,
0.2,28.2
(29.6 total)
0.5, 0.4,
0.4, 0.4,
394
(41.1 total)
0.6
04,05
(0.9 total)
38.7
3.2,95,
253
(38.0 total)

pH
increas

e

0.023

0.030

0.033

0.00
0.06

0.02
0.01
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The observation of different activities per volume of packed cells raises the
following question: Are there different cell types in these fractions? The examination of
one fractionation, shown in Table 7.6, indicates that this fractionation by addition to
saline and subsequent gravity settling does not drastically concentrate different types of
leukocytes. These cell counts fall within the normal ranges for bovine blood (Schailm ef
al., 1975, 122). The types of cells examined in this procedure are: neutrophils, bands

(immature neutrophils), lymphocytes, monocytes, eosinophils.

Table 7.6 Differential White Blood Cell Count of Fractionated Samples. This table
indicates that fractionation by addition to saline and subsequent gravity settling does not
drastically concentrate different types of leukocytes in the various fractions.

Sample Whole Blood Sample Taken Bottom fraction
used in this at =0 after 1 hour
study
Packed Cell Volume 37 3.75 7.25
a.k.a HCT
Total solids in supernatant 7.2 <2.5 <2.5
(g/dl) (off scale) (off scale)
Total Leukocytes 6600 1200 1300
(#cells/mm”)
% Neutrophils 37 28 36
% Bands 2 0 0
% Lymphocytes 54 70 62
% Monocytes 2 0 0
% Eosinophils 5 2 4




CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions
1. Blood added to a saline or water filled reactor produces an initial response. This
initial response 1s a change in the DO in the reactor. The initial response has two
components: an initial decrease in DO in the reactor (initial drop) and an initial increase in

DO in the reactor (initial rise) Both the initial drop and the initial rise can be quantified.

2. The initial response of blood is affected in a dose-response manner by both the

amount of blood injected and the concentration of phenol present in the reactor.
3. The initial response is affected by temperature. The initial drop portion of the
initial response increases with temperature over a range of 25-45 °C. The initial rise

portion of the initial response Is inhibited at lower temperatures.

4. Examination of the initial response with both phenol and 1-butanol indicate that

the initial response may prove a reliable index of toxiciry.

S. Handling stress increases the initial response.



96

6. The initial response can take place in blood whose plasma has been removed.

7. The initial response is affected both by the DO in the reactor before blood is added

and by the age of the blood sample.

8. Kk is a reliable indicator of the osmotic pressure, temperature, and amount of

blood. Ky is not a reliable predictor of MOP incidence.

9. pH change is not a reliable indicator of MOP activity

8.2 Recommendations

Future work should include:

1. Identification of the cells in each fraction which give different activity, and

2. Examination of the effect on the initial response of selected toxicants
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Table 2.1 Oxygen solubility in water exposed to water-saturated air at atmospheric
pressure (adapted from Greenberg ef al.).

Temperature (°C) mgO,/L nmol Os/ml
20 5.092 284.13
25 8.263 258.22
30 : 7.559 236.22
32 7.305 228.28
35 6.950 217.19
37 6.727 210.22
40 6.412 200.38
42 6213 194.16
45 5.927 185.22
50 . 5.477 171.16

Sample calculation: 1mol O; = 32,000mg O,
At 30°C, oxygen solubility  =7.559 mg/L
= (7.559 mg/L)/(32,000 mg/mol)
= (0.000236 mol/L) * (10"9 nmol/mol)*(1 L/1000 mL)

= 236nmol/mL
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APPENDIX 7

FIGURES FOR CHAPTER 7



Table 7.3 Ky Values for pairs of runs each done on the same day under the same
conditions (Figs 7.3-7.6, 7.8). All runs contain 1,050 ppm phenol in saline at 43 °C. The
fwO most interesting pairs are the pair on 6/10 and the pair on 6/14 because they allow
comparison of Kr before and after phenol addition for two identical runs, one which gave
a peak and one which did not. The Ky before phenol addition is smaller for the reactor
which later gave a MOP in each run. However, the Ky after phenol addition is greater for
the reactor which later gave a MOP in one pair but less in the other.

before phenol addition after phenol addition
Date  Amount K, for run K for run Kg for run Kk for run
of blood  with MOP w/o MOP with MOP w/o MOP
activity activity activity activity
(1996)  (ml) (1/hr) (1/hr) (1/hr) (1/hr)
6/10 0.5 0 0.12 -0.02 0.10
6/13 0.75 -0.03 0
-0.03 -0.05
(two runs) (two runs)
6/14 0.2 0.55 0.91 1.22 0.87
6/15 0.2 -14.53 -34.50
-36.04 6.63
(two runs) (two runs)
7/14* 0.4 115.00 86.17

* This run was done in 20,000 ppm phenol at 37.5 °C. The phenol was in the reactor

before the blood was added.
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