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ABSTRACT

MICROSTRIP ZERO-SUM ANTENNA;
CAD AND EXPERIMENTAL STUDY

by
Tuan H. Lam

A microstrip antenna array consisting of two elements combined with a stripline hybrid

(rat-race) ring coupler is used to implement a zero-sum antenna. Numerical optimization

of individual antenna elements in terms of feed location and patch size was achieved using

IE3D ( Zeland Software Inc., Fremont, CA), a fullwave 3-D planar electromagnetic

simulation software. Further, design of a hybrid (rat-race) ring coupler in a stripline

environment was carried out, yielding the sum and difference functions as 0.5 dB and 40

dB, respectively. A combination of a two-element antenna array and a hybrid (rat-race)

ring coupler as a zero sum antenna has been studied numerically revealing that 40 dB

differences can be expected between the sum and difference patterns in the forward

direction at the operating frequency. Experimental results using MC5 material ( Er=3 .26

and thickness t=60 mils) (Glasteel Industrial Laminates, Collierville, TN) have shown that

satisfactory performance can be achieved at the chosen operating frequency f ----2,254 GHz.
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CHAPTER 1

INTRODUCTION

Advances in printed circuits materials have created a significant amount of interest in

research and development of microstrip antennas. Microstrip antennas have found use in

many applications due to their light weight, compact size, rugged, conformal

characteristics and often lower costs in materials and mass production. Here, microstrip

and stripline technologies will be used in a combination of an antenna and coupling

configuration in the implementation of a zero-sum antenna operating at various

frequencies, i.e. f=2.254 GHz. The zero-sum antenna considered in this work has been

used at 1030 MHz and 1090 MHz for monopulse radar applications in avionics.

1.1 Zero -sum Antenna

Due to size restriction in the field application of the zero-sum antennas, the microstrip

technology offers a suitable solution. The zero-sum antenna considered in this work

consists of the following; a dual probe-fed microstrip patch antennas and a stripline

hybrid ring coupler. The schematic structure of the zero-sum antenna is shown in Figure

1.1.

Two microstrip patches are placed at a distance of a half wavelength apart and function as

radiating elements. Because an antenna is a bi-directional device, zero-sum antenna could

operate both as a receiving and a transmitting antenna. The two radiating patches will

also be used to receive the signals from an active source or a scattered signal from a

passive target.

1



Figure 1.1 Functional schematic diagram of a zero-sum microstrip antenna
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1.4 The Hybrid (Rat-Race) Coupler

The hybrid (rat-race) coupler shown in Figure 1.1 is used to excite the radiating elements

discussed previously either in phase or out of phase, depending on how the source is

connected. If ports 1 and 2 are excited with in phase signals, the resulting signal observed

at the E-port is equal to the sum of these signals, whereas at the A- port the resulting

signal is equal to the difference of these signals.

Mathematica Student Version 2.2 [3] was used to verify the sum and difference action of

radiation pattern by plotting various cases as it is shown in Figure 1.3. Figure 1.3(a) is the

radiation pattern of a half-wave dipole located at the origin. Figure 1.3(b) is the

corresponding sum pattern when both dipoles are excited in equal amplitude and phase. It

is obvious from the plot that the radiation pattern is intensified along the y-axis.

Difference radiation pattern due to 180° out of phase feed is shown in Figure 1.2 (c),

indicating the presence of a null pattern along the y-axis.

1.5 Applications

One of the applications of the zero-sum antenna [4] is shown in Figure 1.4. It is applied

to identify the direction of a target. For a single zero-sum antenna, the object can only be

identified in only one single angular coordinate which is either an elevation or an azimuth

. Here, the application will utilize the elevation direction.

Let Vz represents the sum signal and Va be the difference signal. Let V I the voltage

corresponding lobe 1 and V2 the voltage corresponding to lobe 2, respectively. The signal

received from lobe 1 coverage region then will appear at the input port 1 of the hybrid ring

coupler and will be divided into two. One half of the signal will go to the sum port and the
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other half to the difference port. The signal received due to the lobe 2 coverage region

will behave similarly except there will be cancellation due to a 180° phase shift. In terms

of the voltages, the half power point is equal to the applied voltage divided by square root

of two, therefore:

VE =(V1+V2)/ -42

VA =(V1-V2)/\/2

From above equations, we can evaluate the applied voltage at port 1 and port 2 by:

V1=(VE+ VA)/-42

V2—(VE - VA )/A/2

With the knowledge of V 1 and V2, one can identify whether the antenna is aimed at the

target, higher than the target, or lower than the target.

If V 1-V2 > 0, then the antenna is directed too high in the elevation direction,

If V 1 -V2 = 0, then the antenna is on the target,

If V 1 -V2 < 0, then the antenna is directed too low in the elevation direction.

With a digital controller, it can lock into a target by adjusting the antenna until the

relation V 1=V2 is satisfied.

1.6 Description of the Thesis

In Chapter 2, the advantages and disadvantages of several electromagnetic simulation

methods and an introduction to IE3D, a spatial domain method of moments

electromagnetic simulation software which will be used in this work are included.
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In Chapters 3 and 4, an application of electromagnetic simulation software to the design

and analysis of components of zero-sum antenna, which are the microstrip patch antenna

and the stripline hybrid ring coupler are discussed.

In Chapter 5, the integration of both the microstrip path antenna and the stripline hybrid

ring directional coupler to form a zero-sum antenna is studied. Experimental results are

compared with simulation results.

Finally, conclusions are included in Chapter 6 .



CHAPTER 2

INTRODUCTION TO IE3D; A SPATIAL DOMAIN METHOD OF MOMENTS
BASED ELECTROMAGNETIC SIMULATION SOFTWARE

2.1 Comparison Between Several Numerical Analysis Methods

Currently available various commercial electromagnetic simulation software packages are

based on numerical methods such as:

-Method of Moments (MoM) in Spectral Domain,

-Method of Moments in Spatial Domain,

-Finite Element Method (FEM),

-Finite Difference Time Domain Method (FDTD) [5 ], and Transmission Line Matrix

Methods (TLM) [6].

Each method has its own advantages as well as disadvantages depending on the particular

specifics of the given application. The brief description of each method and its relation to

the work done in this thesis are presented below:

1. Method of Moments in Spectral Domain: This method has been developed for

analysis of structures commonly described as closed problems, i.e. filters, resonators,

etc. The antenna problem considered in this work falls into a class commonly

described as an open problem requiring the usage of radiation condition. Due to

limitation of the spectral domain approach, boundary conditions which require usage

of radiation condition are not adequately addressed by this method. Additional

inherent disadvantage is due to uniform sampling required through usage of FFT built

into this method. Closed structures such as hybrid ring couplers will be modeled

inaccurately due to inadequate aspect of the uniform sampling.

1 1



12

2. Finite Element Method: The main disadvantages of this method is that it requires

exhaustive computational effort (number crunching) as well as extensive RAM

requirements. As a result, it takes a long time to compute structures of even moderate

size. However it does not encounter limitation in terms of geometrical shape

constraints. In the future when computer speed and RAM will not be of a concern,

then FEM may become an attractive method for electromagnetic simulation. Recent

efforts in extending FEM into time domain may lead to a new possibility if the above

mentioned difficulties are alleviated.

3. Finite Difference Time Domain ( FDTD ) and Transmission Line Matrix (TIM)

methods : both methods have similar difficulties. They require solution of both

magnetic and electric fields in three dimensional space, therefore, the number of

unknown variables increase significantly. They need uniform griding, extensive

computer power and memory, and therefore it takes a long time to complete the

desired simulation. The most outstanding features of both methods is that they are

simple to be programmed and they produce results in time domain directly. It needs

only one execution in time which can offer a corresponding wideband frequency

response. Additional attractiveness in FDTD is its usage in conjunction with circuit

simulators, since it has the ability to handle lumped components effectively.

4. Method of Moments in Spatial Domain Method: It is an open boundary simulator. It

uses both rectangular and triangular cells, therefore, it has a capability to simulate

arbitrary shapes. The main attractive feature of this approach is that it requires

solution of the current distribution on the conductors only in the 3-D, multi-layered

sections, therefore it takes a lot less time than FEM, FDTD, & TLM. Therefore, it is



13

the most suitable software due to its capabilities and its efficiency to be used in the

current application with available limited computer resources.

2.2 Introduction to IE3D

The emerging electromagnetic simulation tools in microwave/millimeter-waves

engineering are forming backbone for the successful fabrication of complicated high

density circuits built as microwave monolithic integrated circuits (MMIC) chips for

applications in transmitters, receivers, amplifiers, phase detectors, etc.

The three most basic transmission lines employed in the MMIC technology are

microstrip, slotted-line, and co-planar waveguides, which all can be classified as planar

structures. In the past, the dominant transmission guides were either heavy and bulky

rectangular, cylindrical hollow metallic waveguides or coaxial cables. Unlike conventional

classical waveguide structures, exact analytical analysis of open guided quasi-TEM mode

and higher order modes is not available, therefore numerical analysis is the only means in

attempting to solve these complicated issues.

IE3D [6] is based upon a full-wave integral equation, solved by method of moments.

Current distributions on a true 3 -D, multi-layered metallic structures of arbitrary shapes

are determined as an outcome of these simulations. In the IE3D software tool, currents

on true 3-D metalization can be modeled at any arbitrary angle. It automatically

discretizes regular region with rectangular cells and irregular region with triangular cells.

Rectangular cells yield faster solutions whereas triangular cells require longer

computational time. With this automatic mixed meshing rectangular and triangular cells

capability, IE3D provides nearly optimum solutions for arbitrary shape structures.
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IE3D has a total of three modules: MGRID, MODUA, and CURVIEW. MGRID is a

Windows 95 or Windows NT graphical layout editor. MODUA is a post-processor for

calculating S-parameters and impedance. CURVIEW is also a post-processing tool

capable of determining current distributions, current distribution vectors, and 3-D

radiation patterns.

One of the best features of the IE3D is its built-in gradient optimization routine which is

especially valuable in this application in determining the resonant length of the patch, as

well as the location of the feed probe. Because the location of the probe has an effect on

both input impedance and resonant frequency of the antenna, it is very difficult

simultaneously to place the probe where one can match the antenna and also optimize the

antenna size for the desired resonant frequency. With such built-in optimization in IE3D,

the user can optimize simultaneously the optimum feed point location as well as the

desired resonant frequency dimension.

Scalar and vector current distributions are also very important features which help the user

to be able to visualize where current heavily concentrates and in which direction the

current flows in the given geometry. True 3-D radiation pattern, mapped 3-D radiation

patterns, polar and rectangular display of 2-D patterns, gain, directivity, all are evaluated

and are provided as output parameters. All these features are very practical as trouble

shooting tools for the analysis and design of general radiating structures.



CHAPTER 3

MICROSTRIP PATCH ANTENNA

3.1 Introduction

Low profile, light weight, ease in fabrication, rugged, conformal, and in some cases lower

cost than comparable antennas, are among favorable features which help microstrip

antenna to be used in a broad range of applications. Microstrip antennas have been

designed and incorporated in very wide range of systems; from commercial car navigation

systems, biomedical systems, intruder alarms, to sophisticated satellite communication

systems, on board ship radars, etc.

The basic microstrip resonator [8] geometry given in Figure 3.1 consists of a dielectric

sheet of thickness h and relative dielectric constant Cr . The finite conductor with a variety

of shapes is deposited on the top of the dielectric helps the whole structure to radiate.

3.2 Microstrip Resonator Classification

The microstrip radiator can be classified into two categories. The narrow strip resonator

is usually called the microstrip dipole antenna whereas the broader conductor is known as

a microstrip patch antenna. Figure 3.1 illustrates various shapes of microstrip patch

antennas and a dipole microstrip antenna.

15
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3.21 Microstrip Dipole

The small size of the microstrip dipole antenna makes it very attractive for many

applications. Due to the width much smaller compared to the length, there is no

transverse current flow on it, therefore cross polarization level is inherently low.

However this condition also leads to a very narrow bandwidth.

3.22 Microstrip Patch Antenna

Microstrip patch antenna may have varieties of shapes; rectangular, square, circular, ring,

triangular, or elliptical as shown in Figure 3.1. The selection of a particular shape

depends on the parameters one wishes to optimize: e.g. antenna size, sidelobes, cross

polarization, and impedance bandwidth, etc.

Because of the broader width, microstrip patch antenna may excite surface current

flowing across the transverse direction which will in turn create unwanted cross

polarization radiation interference effects. The intensity of this undesired radiation

depends strongly on the feeding methods and location of the feed.

3.3 Analytical Models for Rectangular Patch Antenna

Although the geometry of a rectangular microstrip antenna appears to be simple, it

becomes quite difficult to determine the electromagnetic field effects analytically due to

the presence of complex boundary conditions at the interface between dielectric substrate,

metal, and air. For accurate analysis, full-wave electromagnetic solver is employed. In

this work, as an example, TE3D will be used to analyze and design a single element

microstrip patch antenna at f=2.254 GHz.



Figure 3.1 Various shaped microstrip patch antennas
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Even though, one can obtain very accurate results for patch radiation using simulation

tools, one may not be able to gain directly valuable insight on how it actually radiates.

Simple approximate analytical models help to fill in such gaps. The popular analytical

models are based on an equivalent transmission line model and a cavity model. A

combination of both simplified models and accurate numerical analysis results will offer

the maximum insight on how such a structure radiates.

3.31 Transmission Line Model

Transmission line model [7] is the simplest of all approximate methods. It utilizes

transmission line theory to model the patch in terms of parallel radiating slots as shown in

Figure 3.2. Each radiating slot has a width w and a height h. Because of its simplicity, it

does not provide accurate results, however, it does suggest some physical insights on how

energy radiates into upper half space. But it does not predict the presence of higher order

modes. The more complicated cavity model can predict the existence of higher modes,

however it does not give any clues on equivalent sources which are responsible for the

radiation.

A. Microstrip transmission line

A microstrip line consists of a strip conductor and a ground plane separated by a

dielectric substrate as shown in Figure 3.3. Both electric and magnetic fields are not

confined entirely within the substrate below the conducting patch but partial fringing fields

also exists in air so the propagation of electromagnetic energy in the microstrip line is not

restricted to a pure transverse electromagnetic (TEM) mode but necessitates inclusion of



Figure 3.2 Microstrip antenna and its equivalent transmission line model [8].



   

(a) Microstrip line (b) Electric field and fringing field

(c) Effective dieclectric constant

Figure 3.3 Microstrip line and effective dielectric constant [8].
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a quasi-TEM mode as well. The characteristic impedance of the microstrip line can be

expressed as [9]

Z,=  60
h

120n 

js r , effZ = 	 for —
w 

1
0 L

w ± 1 393 + 0.6671n —w + 1.444) \
h	 h	 /

B. Effective dielectric constant.

With finite line width, the fields at the edge undergo fringing and make the microstrip

appear like wider electrically compared to its actual physical dimension. Effective

dielectric Er,eff is introduced to account for both fringing and the presence of a quasi-

TEM mode. Effective relative dielectric constant is defined as the relative dielectric

constant of the corresponding uniform dielectric material so that the electrical

characteristics of the structure in Figure 3.3(b) is same as in Figure 3.3(c) especially in

terms of the propagation constant.

The effective dielectric constant of a microstrip line is a function of the dielectric constant

Cr, the height h of the dielectric substrate, and the width w of the strip conductor. The

effective relative dielectric constant is given by [10]:

If t/h << 0.005:
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C. Effective length, effective width, and resonant frequency

Because of the fringing field effects on the radiating edge of the microstrip patch antenna,

its effective length will be longer than its physical dimension as shown in Figure 3.4. Its

length is extended by an additional amount of Al on both ends of the radiating edge and

expressed as [11]

AL
	= 0.412
h

E r eff 0 . 3

E r eff  0
.
258

w
- + 0.264
h
w
- + 0.8
h

Since additional length 2A1 added into the total length L, the effective length of this patch

will be Leff = L + 2A1 .

The resonant frequency of the patch antenna is given by

1

where c is the velocity of light in vacuum. Above formula did not take into account the

modified value of the effective length. Therefore, a more accurate version of resonant

frequency for the patch can be expressed as [8]:



I-4-6 	 )044-6 1,-*1

(a) Top view

,11111/111,
Patch

(b) Side view

Figure 3.4 Physical and effective length of rectangular microstrip patch [8].
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1 -4(1f =r, eff q. frcl• 	
2L

fr, eff
q=  rs'

r

where q is defined as the fringing factor or length reduction factor.

From transmission line model, one can estimate the resonant frequency of the rectangular

patch microstrip antenna. When the substrate height increases, extended fringing causes

Al to expand which forces the decrease in the resonant frequency.

3.32 Cavity Models

Cavity model is more complex in nature in comparison to the transmission line model.

Here, the rectangular microstrip patch is modeled as a dielectric loaded cavity where the

normalized field within the dielectric substrate can be calculated accurately by assuming

that region as a cavity bounded by the patch and the bottom ground plane (perfect

conducting electric walls) with perfect conducting magnetic wall in surrounding

perimeter of the patch as shown in Figure 3.5. Cavity model has the ability to predict

higher order modes supported by the structure and the corresponding resonant frequencies

for the cavity are given as [12, 13] :

\ 2	 (nic 2

h1 	 L

pit 12



Figure 3.5 Rectangular microstrip patch geometry for a cavity model [8]
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where m,n,p represent the number of half-cycle field variations along the x,y,z directions

respectively. Figure 3.6 shows the field configurations for the dominant and the first three

higher order modes.

A. Radiation patterns of a rectangular microstrip patch antenna

The approximate far field radiation patterns of a rectangular microstrip antenna operating

in the dominant mode in both E and H planes, respectively are given by [8]:

8 (1) =.1- 	 '	
(k•h)	 ko 
	  •sinO• 0 -cos02 	 2

3.4 Antenna Feeds

Coaxial feed (probe feed), direct microstrip (inset and non-radiating) feed, proximity feed,

and aperture coupled feed could be considered among the most popular feed structures

utilized in microstrip antennas.

Coaxial feed is widely used as a microstrip feed due to its ease in fabrication. The probe

extends from underneath the ground plane, penetrates through the substrate, and is
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Figure 16 Field configurations (modes) for a rectangular microstrip patch [8].
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connected to the patch. It is totally hidden under the big patch therefore theoretically

generates no spurious radiation. Figures 3.7, 3.8, and 3.9 were generated using IE3D

where simulations showed the different vector current distributions due to coaxial feed,

microstrip line direct feed on the non-radiating edge, and the inset feed, whereas Figure

3.10, 3.11, and 3.12 illustrate corresponding 3-D radiation pattern plots and

corresponding radiation parameters, respectively.

Careful observation of Figure 3.7 reveals no presence of a significant transverse current

flow along the non-radiating edges. However, there is a current flow across the

transverse direction as shown in Figure 3.8 due to edge coupled feed. This will cause

undesired cross polarization as seen in radiation parameters of Figure 3.11. Based on such

observation, one can conclude with evidence from Figure 3.10 to Figure 3.12 that coaxial

probe feed and inset feed are more desirable than non-radiating edge feed. If the system

requires planar structure topology than the inset feed is more preferable. In this work,

there is no special requirement on the feeding method, therefore, probe feed can be

considered as a suitable alternative.

3.5 CAD Design and Analysis of a Rectangular Microstrip Patch Antenna

In order to facilitate the design process, with the help of simplified models, initial values

for resonant frequency and the feed location can be estimated. Approximate results

provide good initial values for further optimization.

The calculated dimensions and the feed point location are entered through MGRID which

is a Windows 95 graphical interface circuit layout editor of TE3D package. The first run
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simulated results are analyzed to identify where resonant frequency shift is and also helps

to determine the nature of the impedance of the antenna at the chosen feed location.

A. Resonant frequency of the patch

The resonant frequency is determined through the zero cross over of the imaginary part of

the impedance. The desired requirement necessitates that for maximum radiation, the

antenna impedance should be purely resistive and the radiation resistance should be equal

to the generator's impedance to ensure maximum power transfer. If there is cancellation

of reactive components in terms of either capacitive or inductive reactances, the net

energy storage will not take place and all resistive power left after experiencing possible

losses will radiate.

B. Search for the matched feed location

The proper feed location is determined by observing the impedance of the antenna at the

resonant frequency. Figure 3.13 shows the current density distribution of the patch. One

can easily observe that the current is minimum at the edge and maximum in the middle

of the non-radiating edge, therefore the impedance is minimum at the center and maximum

at the edge. With this information one can immediately predict whether the feed location

should be moved forward or backward, accordingly.

C. Simultaneous optimization for the resonant frequency and the matched feed

When the probe is moved to a new location, the resonant frequency will be affected due

to the interaction of the impedance of the probe with the patch. Adjusting the length of

the patch for changing resonant frequency also changes the impedance of the antenna. The

total length adjustment leads to the changes in a current density distribution at that

location, resulting in modification of the impedance of the antenna.
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Most optimization schemes are based on a linear optimization requiring the user to define

the solution of the problem as close to the optimum as possible, otherwise iterative

solution may be locked into to the local minimum, preventing the proper convergence for

the final solution.

As in the case of the patch antenna analyzed here, the user must be able to tune the

antenna to the closest possible length and identify the proper feed location. Then, these

solutions should be placed into the geometry file for final optimization. The obtained

optimized results were quite impressive, most of the time very good return loss can be

achieved somewhere between -50 to -60 dB for a single patch antenna as seen in Figure

3.14. This result could be hardly obtained without the help of the built-in optimization

routine in IE3D.

Since the cavity model predicts the presence of higher order modes, the resonance

frequencies corresponding to these modes are shown in Figure 3.15. The current

distributions associated with these higher order modes are depicted in Figures 3.16, 3.17

and 3.18. These current distributions follow the multimode current patterns as are

predicted from the equivalent cavity models. The 3-D far-field patterns due to these higher

order modes are included in Figure 3.19, 3.20, and 3.21. These patterns have distinct

characteristics of far-fields which could have been obtained by using Fourier Transform of

the equivalent near fields represented partially in Figure 3.16, 3.17 and 3.18. However,

for practical application, polar radiation patterns are adequate to quantify the performance

characteristics of these antennas. Figure 3.22 exhibits typical E-plane and H-plane

patterns corresponding to the fundamental mode resonating at f 2.254 GHz.



lo-10PM 

t"@NGWl'Mt!I!!W' 
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CHAPTER 4

HYBRID (RAT-RACE) COUPLER

The hybrid coupler used in the zero-sum antenna can either be implemented using the

microstrip or stripline configurations. For packaging purposes, the stripline

implementation is more suitable to avoid any interference effects with its mount.

4.1 Stripline

The commonly used stripline technology is based on a strip conductor which is embedded

into the dielectric slab and is sandwiched between top and bottom ground planes is shown

in Figure 4.1 (a). Its characteristic impedance is given by [10]:

94.15 w Cf -1
Z

0
= 	 K 

8.854E
16r \ 

d

1
where K=	

1 - —
d

8.854•&
Cf= 	 r12K1n(K + 1) - (K - 1)442 - 1)

TC

Unlike the microstrip line, stripline is a pure transverse electromagnetic mode structure.

The realization of a stripline circuitry is less convenient than the counter part microstrip

line because the dielectric substrate must be removed if one desires to include any

additional discrete components and therefore the whole upper cover must also be

completely removed. The tradeoff between these two types of lines are in their

corresponding insertion losses. Due to quasi-TEM mode, microstrip line suffers excessive

loss due to radiation loss in addition to dispersive material and waveguide losses at higher

frequencies [13]. In the current application there is no need to place any lumped

components in the hybrid ring therefore stripline hybrid ring is preferred over microstrip

hybrid ring. However, attention has to be paid in maintaining the proper grounding due to

top and bottom ground planes conductors.
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(b) Rat-race coupler

Figure 4.1 Stripline and stripline rat-race coupler.
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4.9

4.2 Stripline Hybrid Ring Coupler

The stripline ring is a four port device that consists of a 1.5 wavelength perimeter length

of a metal ring embedded at the center of a dielectric slab which is sandwiched between

top and bottom conducting ground planes as shown in Figure 4.1 (b).

Input signals applied to port 1 and port 2 will be divided into two and travel in opposite

directions. These signals will add up at the E-port and cancel out at the s-port if the

lengths between the ports are chosen as in Figure 4.1 (b). By the same token, if an input

signal is applied at the E-port, it will split the power equally to port 1 and port 2. Since

there is no signal flowing into the A-port, it functions as an open circuit. The E-port, port

1, and port 2 all are terminated with 50 ohms. In order for the E-port to split the signal

equally into both port 1 and port 2 and without encountering any reflections from them,

the E-port must see at each junctions having 100 Ohms impedance connected parallel to

it. A quarter-wave transformer with 70.7 Ohms characteristic impedance is needed to

transfer 50 Ohms to 100 Ohms. The distance between port 1 and port 2 to the E-port is

already a quarter wavelength The other requirement must be satisfied is that the

characteristic impedance of the hybrid ring coupler should be 70.7 Ohms.

4.3 CAD Analysis of Stripline Hybrid Ring

Starting from the assumption that the hybrid ring (rat race) coupler has to have the total

perimeter length of 3/2 Xs, the final shape could either be a circular or oval (Figure 4.3)

ensuring to elimination of the presence of possible sharp bends. As an initial choice, the

oval shaped ring was used in the design as shown in Figure 4.3. However, an analysis in

terms of the return losses at each port as shown in Figure 4.7 revealed that even though

return loss at port 1 and port 2 exhibited minima at the desired frequency f = 2.254 GHz,

the remaining ports yielded frequency shifts in their corresponding minima. This could be

attributed to the cross coupling between various sections of the oval shaped coupler. To

reduce these effects, a circular shaped coupler which will result in an increased coupling

distance as shown in Figure 4.2 was analyzed. The results of Figure 4.5 achieved the

desired goal that all ports have exhibited minimum return loss at desired frequency.
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Figure 4.3 Oval shaped hybrid coupler
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The performance characteristics of the couplers are not limited to the return loss only.

Further analysis are carried out to check the ability of the coupler to add and subtract the

two input signals. Figure 4.6 exhibits the frequency response at the E-port and the A-port

due to signals of equal amplitude and phase applied at port 1 and port 2. The A-port

yielded -60 dB, implying very good cancellation, while the sport yielded summation

around 0.5 dB. Similar results with significantly decreased performance were observed

for the oval shaped coupler. The comparison between these two shaped couplers are

shown in Figure 4.7 and 4.8 yielding 20 dB and 0.1 dB difference at the A-port and the E

port, respectively.
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CHAPTER 5

EXPERIMENTAL RESULTS

The zero-sum antenna analyzed in previous chapters has been constructed using MC5

material provided by Glasteel Industrial laminates, Collierville, TN. The technical

specification of this substrate material is attached in Appendix A. The microstrip patch

antennas were etched on a material with Er=z3 .26 and thickness t=60 mils.

5.1 Antenna Elements

The two element array which forms the zero-sum antenna can be achieved using E-plane

or H-plane coupling arrangements as shown in Figure 5.1. For inter-element spacing of

?J2 between the antennas as shown in Figure 5,1, the simulation results using IE3D are

shown in Figure 5.2 reveal that H-plane coupling yields 5 dB better isolation between two

antenna elements than the E-plane coupling. In many applications, the physical

requirements may also dictate that the H-plane arrangement be used because of system

and packaging requirements. From now on, H-plane coupling will be used with &o/2

spacing between the feed points but not between the edges as in Figure 5.1. Figure 5.3

corresponds to isolation between two patch elements placed 4/2 apart in free space

obtained from IE3D simulation.

Corresponding experimental results shown in Figure 5.4 reveals that -16.0 dB isolation at

f=2.254 GHz is almost in perfect agreement with the isolation of -16.5 dB from Figure

5.3.

Individual tuning has been applied on each element to achieve resonance at f- --2.254 GHz.

As seen in Figure 5.5, the return loss in the vicinity of -25 dB was measured for each

antenna element.

5.2 The Hybrid (Rat-Race) Ring Coupler

The stripline hybrid ring coupler was fabricated on a combination of two layers GIL 5

boards resulting in a height of h=120 mils. The experimental performance of a coupler
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(b) H-plane mutual coupling
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Figure 5.1 E and H planes mutual coupling arrangements.
Elements parameters are chosen as in Figure 3.7.
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responses when port 1 and port 2 are excited by a signal of equal amplitude and phase are

shown in Figure 5.6. Experimental results exhibit less than 3 dB insertion loss in E-port

and the measured signal at the difference port turned out to be -21.9 dB. Corresponding

matching characteristics at E-port and A-port yielded VSWR less than 2 at each port,

respectively as seen in Figure 5.7.

5.3 Zero-Sum Antenna

Since, the antenna is a reciprocal device, its characteristics can be classified using it either

in a receiving or transmitting mode. The graphical sketches of the current density and its

vector representation for a zero-sum antenna excited at the E-port are given in Figure 5.8

and Figure 5.9, respectively. Similar sketches for the A-port are given in Figure 5.10 and

5.11, respectively. In each case, the unexcited other port is terminated by a matched load.

The observed results of Figure 5.8 to 5.11 are in agreement with the predicted results by

the cavity model due to the fundamental mode excitation.

In a zero-sum antenna, a good measure of performance is the corresponding return loss at

the E-port and the A-port. The simulation results in Figure 5.12 exhibited that there is

approximately 10 dB higher loss at the E-port compared to the A-port. This can be

attributed to sharper interference patterns at the E-port compared to the A-port.

Interestingly, a very similar pattern has been observed during the experimental

measurements, resulting in almost 10 dB difference, between these two ports. The shift in

the resonance can be attributed due to design errors in the coupler, since antenna

elements have been checked experimentally in terms of their resonance frequencies

Far-field patterns are of utmost importance in the operation of a zero-sum antenna.

Simulated results of the Figure 5.13 showed that a difference of 40 dB exists between the

sum and zero patterns in the forward direction. Experimental results confirmed that

functionality of the zero-sum antenna yielding corresponding difference of better than 20

dB which is adequate for the intended application. It is worthwhile to add that the

resulting beamwidths obtained by measurements are in good agreement with the ones

observed during simulation.



Figure 5.4	 Experimental results of H-plane isolation between two elements spaced A0/2 apart
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Figure 5.6 	 Experimental sum and difference response of a circular ring coupler of Figure 4.1
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Figure 5.15 	 Experimental difTerence pattern of zero-sum antenna at f = 2.254 GHz
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Figure 5.17 	 Fxperimental such pattern of zero-qum antenna at 	 2.254 GI lz



CHAPTER 6

CONCLUSIONS

A zero-sum antenna has been implemented as a combination of two element microstrip

path antenna array and a hybrid (rat-race) ring coupler. Numerical optimization of feed

location and patch size using IE3D electromagnetic simulation has been carried out for f =

2.254 GHz. Simulated results for a hybrid ring coupler demonstrated that sum and

difference operations can be achieved with - 0.5 and - 40 dB levels, respectively, A zero-

sum antenna simulation predicted that 40 dB difference is ideally possible between the sum

and difference patterns in the forward direction. Experimental verification of the zero-sum

antenna using MC5 material (6,---3.26 and 11-60 mils) have shown that comparable

performance can be achieved. The measured results for the sum and difference operation

of a coupler were of the order of -2.5 and -2.2 dB whereas the difference between the

main lobe and a null was of the order of -20 dB.

Further extension of this work could involve the study of the effects due to covering the

zero-sum antenna by a radom. Another interesting application currently under

investigation is the addition of the phase shifter into the zero-sum antenna to achieve beam

scanning and direction finding for wireless indoor communication.
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MC5 SPECIFICATION
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APPENDIX B
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