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ABSTRACT

EFFICIENT PARALLEL PROCESSING WITH OPTICAL
INTERCONNECTIONS

by
Lili Hai

With the advances in VLSI technology, it is now possible to build chips which

can each contain thousands of processors. The efficiency of such chips in executing

parallel algorithms heavily depends on the interconnection topology of the processors.

It is not possible to build a fully interconnected network of processors with constant

fan-in/fan-out using electrical interconnections. Free space optics is a remedy to this

limitation. Qualities exclusive to the optical medium are its ability to be directed

for propagation in free space and the property that optical channels can cross in

space without any interference. In this thesis, we present an electro-optical intercon-

nected architecture named Optical Reconfigurable Mesh (ORM). It is based on an

existing optical model of computation. There are two layers in the architecture.

The processing layer is a reconfigurable mesh and the deflecting layer contains

optical devices to deflect light beams. ORM provides three types of communication

mechanisms. The first is for arbitrary planar connections among sets of locally

connected processors using the reconfiguration mesh. The second is for arbitrary

connections among N of the processors using the electrical buses on the processing

layer and N2 fixed passive deflecting units on the deflection layer. The third is

for arbitrary connections among any of the N2 processors using the N2 mechan-

ically reconfigurable deflectors in the deflection layer. The third type of commu-

nication mechanisms is significantly slower than the other two. Therefore, it is

desirable to avoid reconfiguring this type of communication during the execution of

the algorithms. Instead, the optical reconfiguration can be done before the execution

of each algorithm begins. Determining a right configuration that would be suitable



for the entire configuration of a task execution is studied in this thesis. The basic

data movements for each of the mechanisms are studied. Finally, to show the power

of ORM, we use all three types of communication mechanisms in the first 0(logN)

time algorithm for finding the convex hulls of all figures in an N x N binary image

presented in this thesis.
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CHAPTER 1

INTRODUCTION

Speedups due to technological advances in solid state electronic design are reaching

theoretical limits. To get around these limits, researchers have considered concurrent

processing of data as a promising alternative for achieving speedups proportional to

the level of concurrency. Since the late 1970's, many multiprocessor architectures

have been proposed to obtain such speedups. However, the desired speedups have

not been realized because of a limited understanding of issues in designing efficient

parallel algorithms and in designing interconnection networks and their interactions.

During the last decade, many parallel algorithms have been designed based on a

theoretical shared memory model, the Parallel Random Access Machine (PRAM)

[661, in which a unit-delay interconnection network is assumed. Unfortunately, a

realization of this machine does not exist.

Traditionally electronic interconnects have dominated the interconnection

methods in parallel computers. In practice, electronic interconnection networks

introduce a delay factor in the implementation of parallel algorithms. The main

issues in the design of such interconnection networks have been routing delay,

communication bandwidth, hardware cost and ease of control. However, a new

technique for interconnecting processing elements in massively parallel computers

is emerging: optical interconnection. Over the last ten years, various optical inter-

connection systems have been developed. The advantages of optical technology

are realized and studied. This promising technique is playing a more and more

important role in parallel computations. An introduction to the above issues is

discussed in this chapter.
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1.1 VLSI Interconnection Topologies

Research in the design of interconnection networks can be divided into two topological

classes: static and dynamic [19]. In a static network, links between any two processors

are passive and direct connections cannot be reconfigured between processors. In a

dynamic network, links can be reconfigured by setting the switching elements in the

network. Among many static topologies, those having smaller diameters are most

attractive. The diameter of a network is the maximum distance between any pair

of processors. The distance between a pair of processors is the smallest number of

nodes that have to be traversed in order to get from one processor to the other. The

diameter of an architecture represents a lower bound on worst case communication

delay between any two processors. A fully connected network has unit diameter.

However, when an N-processor system is implemented in electronic technology such

as VLSI, its diameter becomes P(log N) due to pin-out limitations of processors if

N is large. Also, the VLSI layout area becomes too large to be practically imple-

mented. A balance has to be found among various network parameters, such as the

node degree, the switching complexity, and the network latency. Therefore, an appro-

priate alternative is to consider area efficient architectures which have some degree of

communication delay. The typical example is the hypercube topology in which there

are log N interconnections from each node to others such that the diameter is log N.

Pyramid and Mesh of Trees are other examples of such architectures [50, 34, 44].

Dynamic networks are categorized in three topological classes: single-stage,

multistage, and crossbar [19]. The switches in an N x N crossbar can be set in

O(log N) time so that every input port can be connected to a free output port. An

N input crossbar requires 1(N2 ) VLSI area, using the usual two dimensional VLSI

model [59]. Several N input N output multistage networks are known which require

0(N log N) switching elements, significantly fewer than a crossbar network [56].
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Multistage networks can be divided into two major classes: rearrangeable and

non-rearrangeable [5]. Non-rearrangeable networks can realize only a proper subset of

all permutations. A Butterfly network is a widely used non-rearrangeable network.

The well known Omega network is a non-rearrangeable multistage network. It

has O(N log N) switching elements and requires 1 (N 2 / log 2 N) VLSI area [34].

Rearrangeable networks support any arbitrary permutation using appropriate

switch settings. However, finding a switch setting to realize a permutation on a

rearrangeable network can be time consuming; for example it can take as much

as O(log 4 N) time using a cube connected computer or a perfect shuffle computer

with N processors [46]. Their layout area in the two-dimensional VLSI model is not

significantly superior compared to the area requirement of the N input crossbar.

Therefore, realizing multistage interconnection networks in O(N log N) area does

not seem possible unless one assumes that wires do not occupy any area.

From the theoretical computational point of view, for a given problem, there

is a lower bound on the VLSI circuit area A on which the problem is run, and its

computational time T. The lower bound in the VLSI model, called "AT 2 bound", is

represented by the formula AT' = SNP), where I is the information content of the

problem [59). Through this lower bound, we can see that if the time T is fixed, the

required VLSI area grows with the problem size. We will see in section 1.3 that this

problem is overcome by using optical interconnection.

In this thesis, we study parallel architectures that use free space optics as a

means of interprocessor communications. Replacing electrical interconnects with

optical beams has a significant impact on the performance of VLSI architectures

[12, 26]. This fact arises from the following two important properties of free space

optics. First, free space optical beams can cross each other without any interference.

Second, the connections need not be fixed and can be redirected [6].
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1.2 Ideal Parallel Computational Model

From the point of view of the parallel algorithm people, the design issue of an

algorithm depends more on the number of usable processors, the data accessing mode

and the routing method in the system than on the circuit layout design. The compu-

tational model affects the algorithms design directly. The ideal model or the best

algorithm design environment is that no mater what kind of computational archi-

tecture is used, the detail of the routing method does not reflect into the algorithm.

One of the widely used models of parallel computation is the Parallel Random

Access Machine (PRAM). The basic assumption in this model is that in unit time

each of N processors can simultaneously access any one memory location [66]. Unfor-

tunately, it is unlikely that a PRAM model will ever faithfully represent any "real"

parallel machine. A real parallel computer will most likely consist of a large number

of simple processors, each connected to a small number of other processors. Each

processor in this network has its own local memory, and processors communicate by

sending messages over links to neighboring processors. To reconcile the convenience

of a PRAM with the limitations of a real computer, it is simulated on a real network.

One of the first randomized simulations is given in [61], where it is shown

that there exists an N-processor realistic computer that can simulate an idealistic

N processor PRAM with only a factor of O(log N) loss of run time efficiency. In

[51], this was improved by obtaining similar bounds but requiring only bounded

queue size. The deterministic simulation takes the longer time. The deterministic

simulation of EREW (exclusive read exclusive write) or CROW (concurrent read

concurrent write) PRAM on an N-processor butterfly needs O(logMlogNloglogN)

steps, where M is the number of memory cells and M > N2 . A similar performance

can be obtained from an N-node hypercube [35].

Since the end of the 1980's, there has been an emerging interest in the

design of models of parallel computation which more closely simulate a realistic
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machine. In [24], a more restricted PRAM model called Distributed Random Access

Machine (DRAM) is introduced, which reflects an assumption of limited commu-

nication bandwidth in the underlying network. All memory in DRAM is local

to the processors, and is accessed by routing messages through a communication

network. A stronger model called local memory PRAM was introduced in [2]. Like

the DRAM, the memory is distributed. However, there is no restriction on the

underlying communication network and hence it is assumed to have a unit time

delay. Such a communication medium is feasible with fixed connection architectures

of unbounded degree, or those with reconfigurable optical interconnects.

1.3 Optical Interconnection Networks

A considerable amount of research has been done on exploring the features of optics.

The theoretical and experimental results support a point that the optical intercon-

nection could be an ideal substitution of the electronic interconnection in parallel

computers or networks. The significance of this on computer science may be deeper

than expected.

1.3.1 Why Optics in VLSI

Several characteristics of present hardware techniques limit the density of electrical

interconnects. One limitation is that the edge of the chip is reserved for I/O functions.

Another is that electrical interconnects are confined to pseudo-planar structures

(e.g., printed wiring boards, backplanes). The phenomenon of crosstalk is a funda-

mental limitation on spacing between individual interconnects. This density issue is

aggravated with increases in speed in individual devices. As speeds increase, sensi-

tivity to crosstalk through the electrical interconnect also increases and the required

distance between devices decreases to ensure that the signal propagation time is less

than the clock period. Obviously, as density increases, the spacing between lines
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decreases and it is necessary to reduce the cross-sectional area of the conductors in

order to place more interconnections in a given volume.

It has been demonstrated that optical techniques provide a much higher density

for a given bandwidth than electronic techniques. Using free space or wavelength

propagation, it is possible to take advantage of the high density bandwidth product

available in the optical domain. In addition, using integration of opto-electronic

devices, it is possible to communicate with the interior of the chip rather than

confining I/O to the chip boundary.

The system implemented by electronic computers and optical interconnection

among the computers is called opto-electronic system. In section 1.1, the VLSI

model and computational time of the electronic computer was discussed. In a three

dimensional electro-optical model called VLSIO [3], which is the generalization of the

VLSI model into three dimensional opto-electronic systems, a similar lower bound can

be expressed as VT3/ 2 C2(./3/ 2 ) where V is the circuit volume. This overcomes the

problem caused by the two-dimension electronic wire interconnection limitation. This

advantage is not gained by the optical versions of existing electronic architectures

implemented by replacing wires on a VLSI chip with optical waveguides [21, 27]. The

reason is that by using waveguides, the communication bandwidth can be increased

but the interconnection topology is still the same as before which is two-dimensional

while the optical free space technique uses the third dimension to transfer data.

An even better lower bound for the optical free space interconnection system is

given in [18]. It is based on the fact that the distance of the free space between two

planes of such kind of system is a constant. In some systems, each plane contains

processors and the processors on one plane can communicate with the processors

on another plane [45] through free space. Another typical optical free space inter-

connection is that one plane contains processors and another plane consists of light

deflection devices. The data is sent from the processor plane and is received by the
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processors on the same plane. The lights go to the deflection layer, and are redirected

back to the processor plane through free space. For an optimal lower bound of optical

free space interconnection system, please refer to [18].

1.3.2 Previous Work

There are two approaches to define the optical interconnection medium: guided-

wave interconnect and free space coupling. Although many efficient models using

wavelength division multiplexing (WDM) have been developed in recent years [57,

13, 62], they are outside the focus of this thesis. The work based on using free space

interconnection methods are examined more closely in this section.

Some qualities of the optical medium are its abilities to be directed for propa-

gation in free space and to have two optical channels cross in space with out inter-

action. These properties allow optical interconnects to utilize all three dimensions

of space. Such a capability will allow optical interconnection to improve upon many

of the functions presently implemented on a limited scale with electronics, such as

routing data between processing elements based on data dependent decisions, as well

as multiplexing and demultiplexing information. Another widely used advantage of

optical free space is that the node-to-node interconnection can be changed freely and

quickly. In the other words, the interconnection topology of an optical free space

system can be reconfigured during the computation even though the reconfiguring

takes time.

One of the first attempts in using free space optics as a means of data-

communications is [23]. In their hybrid GaAs/Si approach to data communication, a

GaAs chip with optical sources was connected in a hybrid fashion (with conventional

wire bond techniques) to a Si chip such that light was generated only along the

edges of the Si chip. The sources were of the edge-emitting or surface emitting type.

The optical signals were routed to the appropriate locations on the Si chip using
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conventional and/or holographic optical elements. The Si chip contained detectors

to receive the optical data streams generated by the sources. Since the detector-

amplifier combinations were fabricated in Si, every computational component on the

Si chip was capable of receiving data.

To explore this promising concept, it was extended to support efficient inter-

connection networks for massively parallel computing.

One idea is to make optical crossbar networks by using optical matrix- vector

multiplication [22, 41, 47]. In the late 80's, Sawchuck et al. [55] described several

possible bulk optical systems for implementing optical crossbar networks. Unlike

electrical crossbar, these crossbars provided unit time interconnectivity and had

a slow switching rate. A typical N-node optical crossbar system is shown in the

figure 1.1 [53]. An N x N switch array consists of N x N optical switchs, or some

kind of optical devices. This matrix is called spatial light modulator (SLM) and

modulates the cross-section of a light beam. The N x N array corresponds to the

permutation matrix that represents the interconnection among N processors. Once

the switches are set, the messages can be transmitted at optical transmission rates,

which can be several Gigahertz. But the switch array is not energy efficient and the

switch setting is slow.

To avoid the above problems, the holographic technique is used. A hologram

can be written dynamically and the recorded information can be retrieved later. So, it

is used to remember the address pattern. The holograms can be dynamicly recorded

[68, 11], or can be fixed [15, 65, 40, 52] in the system. The time for recording a

hologram is also long. Using fixed holograms to implement dynamic routing schemes

is an important research topic on optical free space interconnection computers.

Many application of optical systems using the free space technique are

emerging. A model for a data flow based processor is given in [8]. The concept is

to set the interconnection dynamically among processors of the optoelectric network
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to match the dynamically abstracted data flow graph. The interconnection network

is an optical implementation of a rearrangeably non-blocking Clos network, which is

a three-stage permutation network. Several possible ways to realize the system are

given. One way is to use the optical crossbar developed in [7]. Ferroelectric liquid

crystal (FLC) devices are used, in which beam-blocking mask patterns are written

similar to the way that an image is produced on a liquid crystal display screen. By

the feature of the data flow system, the reconfiguration is needed. For a static data

flow graph which does not need to change frequently, this approach is realistic.

A similar optical reconfigurable parallel architecture [25] supports advanced

multiple functions. It provides a set of instructions to allow users to configure both

the topology and the behavior of the architecture. The topology means the inter-

connection pattern (mesh, cube, etc.) and the behaviour means the style of the data

processing (pipeline, dataflow, etc). This system adopts the SLM-based crossbar

switch matrix which we introduced before. The SLM is situated between two banks of

I/Os from the processors: outputs on one side, inputs on the other. The outputs are

placed vertically and the inputs horizontally, thus each output illuminates a row of the

SLM and each input reads from the column. The data transfer is through the optical

free space. Since the switching time on the SLM frame in such a system dominates the

system performance, the fast electronically controlled matrix-addressed ferroelectric

liquid crystal (FLC) SLM is chosen.

The earlier work based on the similar idea is [62]. But the architecture is not

an optical free space one; the model named Multiple Channel Architecture (MCA)

can support large numbers of users with vastly different computing requirements

through a fact that the large amount of independent, selectable channels (or virtual

buses) can be provided by a single optical fiber. Depending on different computation

requirement, different channels can be chosen by a computer to connect to some new

neighbors, so that new interconnection topology can be built.
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In recent years, there have been many experimental works done in opto-

electronic computer systems supported by universities, governments and interna-

tional organizations. These efforts are supported by theoretical research and they

pace the commercialization of the opto-electric computers. One is ESPRIT II

OLIVERS [49]. This is a three year collaborative project under the European

Strategic Program for Research in Information Technology (ESPRIT). OLIVES

means Optical Interconnections for VLSI and Electronic Systems. Four demon-

strators of optical interconnections at the module, backplane, multichip module

and chip levels were constructed. Various optical techniques were used in different

demonstrators led by theoretical investigations. Among them, the optical free space

technique is used to implement the mastercard for backplane interconnections. Its

slab is provided with holograms which perform beam directing splitting and possibly

focusing functions.

Another project of an optoelectronic 3-D system is [45]. The free space optically

interconnected system with internal feedback loop based on the concept of [29]

was presented. Two optoelectronic arrays (also know as smart-pixel arrays) each

containing 8 x 8 one-bit processors optically connected face-to-face through free space

using a bidirectional holographic element. Optical sources are vertical-cavity surface-

emitting lasers (VCSELs) which is an important research topic in the project. The

goal of this experimental work is to find the parameters of the optical scheme such

as the hologram and detector dimensions, their spacing and the Fourier objective

diameter.

Free space optical interconnections are classified according to the degree of

space variance [38], which determines the network's complexity and regularity. A

totally space-variant network allows a completely arbitrary interconnection between

components, whereas a totally space-invariant network has a definite, regular

structure so that all the nodes in a system have the same connection patterns.
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Most optical free space interconnection architectures mentioned above are

space-variant. For the features of space-invariant system claimed in [39] and the

interconnection simplicity, many space-invariant networks are researched [32, 39].

The typical method is to simulate an existing electric multistage network by assigning

each node the regular connection to other nodes through optical components such as

lenses, mirrors and holograms. Another optical space-invariant system is [37]. As in

OLIVERS, it combines free space and waveguide technologies into one system even

though each uses them in different system levels.

1.3.3 Overview of the Thesis

In this thesis, there are six chapters. In Chapter 2, we introduce an optical model

of computations, OMC, and several implementations for the model. In Chapter 3,

we present an electro-optical parallel architecture called the Optical Reconfigurable

Mesh (ORM). It is an implementation of an existing optical model of computation

(OMC) [15]. The ORM has two layers, the deflection layer and the processing layer.

The processing layer is an N x N reconfigurable mesh. The deflection layer is situated

directly above the processing layer to provide unit-time free space optical intercon-

nections for the processors. Three types of unit-time communication mechanisms

supported by the architecture are introduced in the thesis. The first is for arbitrary

planar connections among sets of locally connected processors using the reconfig-

urable mesh. The second is for arbitrary connections among N of the processors

using the electrical buses on the processing layer and N2 fixed passive deflecting

units on the deflection layer. The third is for arbitrary connections among any of the

N2 processors using the N 2 mechanically reconfigurable deflectors in the deflection

layer. A set of basic data movement algorithms for those mechanisms are presented.

To show the power of ORM, we use all three types of communication mechanisms

in the first O(logN) time algorithm for finding the convex hulls of all figures in an
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N x N 0/1 image presented in Chapter 4. The optical reconfiguration in the third

type of communication mechanisms is significantly slower than the other two. It

is desirable to avoid using this type of communication during the execution of the

algorithms. Instead, we do the optical reconfiguration before the execution of each

algorithm begins. Determining a right configuration that would be suitable for the

entire configuration of a task execution is studied in Chapter 5. The conclusion and

future works are discussed in Chapter 6. An appendix in this thesis includes some

preliminary that used in the methodology studied in Chapter 5.



CHAPTER 2

AN OPTICAL MODEL OF COMPUTATION

In this chapter, the optical computational model OMC [15] is introduced and the

implementations are reviewed.

2.1 OMC

The OMC model (Optical Model of Computation) was first introduced by Eshaghian

[15] in 1988. Its inherent EREW PRAM capability makes it very powerful to be used

for various existing application parallel algorithms.

2.1.1 Definition

The OMC model is shown in Figure 2.1. Formally, this model is defined as follows:

An optical model of computation represents a network of N processors each

associated with a memory module and a deflecting unit capable of establishing

direct optical connection to another processor. The interprocessor communication is

performed satisfying the following rules similar to [2]:

1. At any time a processor can send at most one message. Its destination is

another processor.

2. The message will succeed in reaching the processor if it is the only message with

that processor as its destination, within that step.

3. All messages succeed or fail (and thus are discarded) in unit time.

To insure that every processor knows when its message succeeds we assume that

the OMC is run in two phases. In the first phase, read/write messages are sent and

in the second, values are returned to successful readers and acknowledgements are

14
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Figure 2.1 The OMC model

returned to successful writers. It assumes that the operation mode is synchronous,

and all processors are connected to a central control unit. The above definition is

supplemented with the following set of assumptions for accurate analysis.

1. Processors are embedded in the Euclidean plane. This is referred
to as the processing layer.

2. Each of the processing/memory elements occupies unit area.

3. Deflectors are embedded in the Euclidean plane. This is referred to
as the deflecting layer.

4. Each deflecting unit occupies one unit area.

5. The deflecting layer is collinear to the processing layer.

6. I/O is performed at I/O pads. Each I/O pad occupies unit area.

7. The total volume is the sum of the volume occupied by the
processing layer, the deflecting layer and the space for optical beams.

8. The intercommunication is done through free space optical beams.
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9. Time is measured in terms of number of units of clock cycles.

10. An optical beam carries a constant amount of information in one
unit of time, independent of the distance to he covered.

11. A deflector is capable of redirecting an incident beam in one unit of
time.

12. A processor can perform a simple arithmetic/logic operation in one
unit of time.

13. The time T for computation is the time between the arrival of the
first input and the departure of the last output.

Compared with an electronic VLSI computation model, the following result

can be stated:

Proposition 1 Any computation performed by a three dimensional VLSI organi-

zation having N processors with degree d, in time T, and volume V can be performed

on OMC in volume v, and time t, where dT/N < t < T , and Nd < v.

Its lower bound can be simply obtained by multiplying T by d/N which is the

maximum speed up factor that can be obtained due to its unit time interconnection

medium. The lower bound on v is obtained by the minimum area requirement for

having d deflectors for each of the processing elements. In the next sections three

different parallel architectures are presented as possible efficient upper bounds for v.

2.1.2 Implementations

In this section, a class of optical interconnection networks as a realization of the

OMC introduced in [15] are reviewed. Each of the designs uses a different optical

device technology for redirection of the optical beams to establish a new topology at

any clock cycle, and represents an upper bound on the volume requirement of OMC.
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2.1.2.1 Optical Mesh Using Mirrors: In this design, there are N processors on

the processing layer of area N. Similarly, the deflecting layer has area. N and holds N

mirrors, each with its own arithmetic unit.. These layers are aligned so that each of

the mirrors is located directly above its associated processor (see Figure 2.2). Each

processor has two lasers. One of these is directed up towards the arithmetic unit

of the mirror and the other is directed towards the mirror's surface. A connection

phase would consist of two cycles. In the first cycle, each processor sends the address

of its desired destination processor to the arithmetic unit of its associated mirror

using its dedicated laser. The arithmetic unit of the mirror computes a rotation

degree such that both the origin and destination processors have equal angle with

the line perpendicular to the surface of the mirror in the plane formed by the mirror,

the source processor, and the destination processor. Once the angle is computed,

the mirror is rotated to point to the desired destination. In the second cycle, a

connection is established by the laser beam carrying the data from the source to

the mirror and from the mirror being reflected towards the destination. Since the

connection is done through a mechanical movement of the mirror, with the current

technology this leads to an order of milli-second reconfiguration time. Therefore this

architecture is suitable for applications where the interconnection topology does not

have to be changed frequently. In [33], the design of various topologies has been

studied to minimize the time complexity of several problems for a fixed period of

computation.

The space requirement of this architecture is 0(N) under the following

assumption. Each mirror is attached to a simple electromechanical device which

takes one unit of space and can rotate to any position in one unit of time. The

assumptions are as valid as those in VLSI such that the constant propagation

delay assumption regardless of the wire length. Other assumptions can also be

made based on the following arguments. Many mirrors have a reconfiguration delay
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proportional to their rotation angle, 0(N). More complex mirrors on the other

hand, can rotate faster for a larger angle (unit time rotation delay ) but their size

can grow proportional to the number of angles they can realize ( 0(N) ).

Figure 2.2 An optical mesh using mirrors

2.1.2.2 Reconfiguration Using Acousto -Optic Devices: In this organization,

N processors are arranged to form a one-dimensional processing layer and the corre-

sponding acousto-optic devices are similarly located on a one-dimensional deflecting

layer (see Figure 2.3).

The size of each of the acousto-optic devices is proportional to the size of

the processing array, leading to an 0(N2 ) area deflection layer. Similar to the

design using the mirrors, every processor has two lasers, and each connection

phase consists of two cycles. In the first cycle, each processor sends the address of

its desired destination processor to the arithmetic unit of its associated acousto-

optic unit using its dedicated laser beam. The acousto-optic cell's arithmetic unit



Figure 2.3 Reconfiguration using acousto-optic devices

computes the frequency of the wave to be applied to the crystal for redirection of the

incoming optical beam to the destination processor. The acousto-optic device then

redirects the incident beam from the source to the destination processor. One of the

advantages of this architecture over the previous design is its order of micro-seconds

reconfiguration time, which is dominated by the speed of sound waves. The other

advantage is its broadcasting capability, which is due to the possibility of generating

multiple waves through a crystal at a given time.

2.1.2.3 Electro -Optical Crossbar: This design uses a hybrid reconfiguration

technique for interconnecting processors. There are N processors, each located in a

distinct row and column of the N x N processing layer. For each processor, there is

a hologram module having N units, such that the i th unit has a grating plate with a

frequency leading to a deflection angle corresponding to the processor located at the

grid point (i, i). In addition, each unit has a simple controller and a laser beam. To

establish or reconfigure to a new connection pattern, each processor broadcasts the

address of the desired destination processor to the controller of each of N units of its

hologram module using an electrical bus (see Figure 2.4). The controller activates a

laser (for conversion of the electrical input to optical signal), if its ID matches the
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broadcast address of the destination processor. The connection is made when the

laser beams are passed through the predefined gratings. Therefore, since the grating

angles are predefined, the reconfiguration time of this design is bounded by the laser

switching time which is in the order of nanoseconds using Gallium Arsenide (GaAs)

technology [30].

Figure 2.4 Reconfiguration using an electro-optical crossbar

This architecture is faster than the previous designs and, further, it compares

well with the clock cycle of current supercomputers. One of the advantages of this

simple design is its implementability in VLSI, using GaAs technology. Due to the

above advantages, it gives the flexible usage of the N2 — N vacant areas on the

processing layer, the extension on this architecture leads to a new implementation

of OMC.
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2.2 Applications

In this section, using OMC, we present several parallel algorithms for fine grain

image computation. We categorize the results in the following order. We present

a set of processor efficient optimal O(logN) algorithms and a set of constant time

algorithms for finding geometric properties of digitized images. Finally, we focus on

special purpose designs tailored to meet both the computation and communication

needs of problems such as those involving irregular sparse matrices.

2.2.1 Optimal Geometric Algorithms

In this section, we present O(log N) algorithms for problems such as labeling figures

and finding the nearest neighbor figure to each figure in an N x N image. The

input to our algorithms is a digitized picture with PE(i,j) storing the pixel (i, j),

0 < i , j, < N — 1 in the plane, where the black pixels are 1-valued, and white pixels

are 0-valued.

Connectivity among pixels can be defined in terms of their adjacency. Two

black pixels (ih.ii) and (i2, .i2) are 8-neighbors if max{Iii , Iji — j2 1) < 1, and

4-neighbors if Ii i — i21 j2I < 1. Two black pixels and (ik,jk) are

said to be connected by a 8-path(4-path) if there exists a sequence of black pixels

(ip , jp ), 2 < p < k, such that each pair of pixels (i p_ i , jp_ i ) and (ip , jp ) are 8-

neighbors(4-neighbors). A maximal connected region of black pixels is called a

connected component.

2.2.1.1 Labeling Digitized Images: An early step in image processing is

identifying figures in the image. Figures correspond to connected l's in the image.

An N x N digitized picture may contain more than one connected region of black

pixels. The problem is to identify which figure (label) each "1" belongs to.
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Lemma 1 Given an N x N 0/1 image, all figures can be labeled in O(log N) time

using an (N x N)-optical mesh.

Proof: The basic idea of the algorithm is to identify the outer and inner boundaries

of each figure and then to uniquely label all of the connected figures surrounded

by each of these boundaries [1]. To assure circular boundaries, the input image is

magnified by a factor of two along each dimension. Each pixel then locally determines

whether or not it is a boundary pixel by checking if at least one of its four adjacent

pixels along the x and y axis, hold a "0". The pixels along each boundary are linked

to form a circular list.

From now on, only the boundary PEs take part in the computation to identify

the least numbered PE in their list. Each PE during iteration i 1, sets its pointer

to the pointer of the PE it was pointing to at the end of iteration i. This technique is

called pointer jumping and is commonly used in parallel algorithms now. Since this

has the effect of doubling the distance "jumped" during each iteration, in O(log N)

time all the PEs in each list know the least numbered PE in their list. The final

step is the propagation of the unique IDs of each of the outer boundaries to its inner

region. Broadcasting of IDs is done in parallel along each row of the image. It is easy

to see that since the figures do not cross there is always a unique ID broadcasted to

each of the inner PEs. 0

In the following, we use fewer processors to lead to the optimal solution.

Theorem 1 Given a N x N 0/1 image, all figures can be labeled in O(log N) time

using an (N/ log 1 / 2 N x NI N)-optical mesh.

Proof: In the first step, we assign a log h /2 N x log 1 / 2 N block of image to each

processor, and we sequentially label the figures within these regions. This is accom-

plished using a serial graph traversal technique.

In the second step, these blocks are merged together until the block size

becomes log N x log N (see Figure 2.5). During each iteration, four blocks of size



Figure 2.5 Merging of blocks and processor assignment

k x k are merged to obtain a block of size 2k x 2k. This is performed by assigning the

available PEs to block boundary pixels, and then applying the algorithm of lemma I

to merge each pair of blocks. Since there are not enough processors available to

hold all the block boundary points, they are processed by groups of log N at a time.

Hence, the total time to simulate each of log log N iterations is 0(1og 11 2 N). This

leads to a total of 0(log 112 N log log N) time complexity for the second reduction

step. Using Lemma 1, the remaining pixels are labeled.

2.2.2 Distance Problems

Another interesting problem is to identify and to compute the distance to the nearest

figure to each figure in a digitized image. In the following, we use the 1 1 metric.

However, it can be modified to operate for any ik metric.
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Proof: This algorithm consists of two steps. In the first step, each black pixel

finds its nearest neighboring black pixel which belongs to a different figure. In the

second step, each figure finds its nearest neighboring figure by finding the minimum

among all those values obtained for the PEs at the boundaries. This can be done in

O(log N) time, using the techniques of [50], once the input has been reduced to match

the number of processors. Reduction is possible by assigning 0(log 1 l 2 N x log 112 N)

pixels to a single processor.

0

2.2.3 Constant Time Geometric Algorithms

One of the most attractive properties of optics is superposition [28]. This property

suggests that the resultant disturbance at any point in a medium is the algebraic

sum of the separate constituent waves. Hence, it enables many optical signals to pass

through the same point in space at the same time without causing mutual interference

or crosstalk. Using this property, in [31] it is shown how a single memory element

can be read by many processors at the same time. In this section, we employ this

characteristic to allow concurrent writes if all the requesting processors want to write

a "1". This leads to constant running time of the following geometric algorithms,

under the assumption that broadcasting can be done in unit time:

Lemma 2 Given an (10 2 x N112 ) image, using an (N x N) optical mesh, in 0(1)

time,

1. For a single figure, its convex hull and a smallest enclosing box can be

determined.

2. For each figure, the nearest neighboring figure can be identified.
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2.2.4 A Special Purpose Design for Parallel Implementation of Iterative
Methods for Higher Level Vision Processing

Solutions to many problems in image understanding can be posed in terms of iterative

improvement to an initial configuration. For example, discrete relaxation-based

approaches to scene labeling can be viewed as an iterative improvement process.

In such problems, the underlying graph is usually sparse. But this sparsity is not

regular. Efficient parallel implementations of such relaxation methods are possible

with OMC.

Any iterative matrix structure can be realized by OMC using devices such as

holograms (or those described in Chapter 1). Although the reconfiguration time

for the holograms can be in the order of seconds, it only has to be set once during

the processing phase. The structure of the coefficient matrix is used to define the

holographic connections. This interconnection pattern remains the same throughout

the computation. An optimal O(logm) time can be achieved by this design where

m is the number of nonzero elements in the matrix. This method is attractive when

many computations are to be performed in which the structure of the coefficiet matrix

is fixed, such as iterative methods.

2.2.5 Conclusion

The Optical Model of Computation, OMC, was introduced in this chapter. The

optical parallel architecture ORM presented in the next chapter is based on this

model.



CHAPTER 3

OPTICAL RECONFIGURABLE MESH

In this chapter, we will present a new electro-optical parallel architecture which is an

implementation of the OIVIC model. This architecture is called the Optical Reconfig-

urable Mesh (ORM). The ORM has two layers, the deflection layer and the processing

layer. The processing layer is an N x N reconfigurable mesh. The deflection layer

situated directly above the processing layer, provides unit-time free space optical

interconnections for the processors. The three types of unit-time communication

mechanisms supported by the architecture are introduced. A set of basic data

movement algorithms for those mechanisms is discussed.

3.1 Introduction

The ORM has two layers, the deflection layer and the processing layer. Each

processor has a corresponding deflection unit situated above it. A reconfigurable

mesh is used to build the processing layer so each processor can communicate with

other processors either through an optical interconnection or electrical buses. Recon-

figurable bus systems have been studied extensively in the past few years. Many

different models of reconfigurable systems have been designed since the end of the

1980's [43, 4, 48, 58, 60, 36, 63]. Typically, a reconfigurable-bus architecture consists

of a multi-dimensional array of processing elements (PEs). Those PEs are connected

to buses through a fixed number of I/O ports. Each PE can locally control the I/O

port connection to the bus in each machine communication cycle. The bus recon-

figuration can then be made by a different connection style. A reconfigurable mesh

is a two dimensional reconfigurable bus system. The most general and powerful

reconfigurable mesh model is PARBS [63].

Since we want to concentrate on the optical interconnection in the architecture,

we will not describe the reconfigurable mesh and its applications in detail. What

26
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we discuss here are its major advantages and disadvantages, how it is served in

our optical computation model and how the combination of the traditional recon-

figurable mesh and optical interconnections makes an even more powerful archi-

tecture. The reconfigurable mesh has a simple and uniform VLSI layout. For those

applications in which most computations need to be done through communication

with local neighbors by each processor (directly or indirectly connected through

the bus segments), it is a very powerful computation architecture. However, for

global communications, for example, when large amounts of data need to be trans-

ferred among different electrical bus segments, the reconfigurable mesh becomes very

inefficient. On the other hand, a free space optical architecture is very good for the

global data communications due to the free connections among processors. If fixed

deflecting units (e.g. fixed holograms) are used in a free space interconnection,

we usually need N x N deflecting units to implement the random permutation for

only 0(N) processors. If reconfigurable deflecting units are used, we may have N

deflecting units for N processors. However, this use of the VLSI area is paid off

by the time used for reconfiguration of optical deflecting units. Since the compu-

tation pattern could be changed very often in an application algorithm, this can be

very time consuming for a pure optical reconfigurable interconnection system. Here,

"pure" means all interconnections among processors are optical.

ORM provides three types of communication mechanisms. The first is for

arbitrary planar connections among sets of locally connected processors using the

reconfigurable mesh. The second is for arbitrary connections among N of the

processors using the electrical buses on the processing layer and N2 fixed passive

deflecting units on the deflection layer. The third is for arbitrary connections

among any of the N 2 processors using the N 2 mechanically reconfigurable deflectors

in the deflection layer. The reconfiguration time of the first two communication

mechanisms is on the order of nanoseconds, while for the third it is on the order
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of milliseconds. One method to avoid the third type of reconfiguration during the

execution is to set it up to an efficient topology before the execution starts. A good

topology would be one which matches the data flow requirement of the problem

being solved. Butrym, Craft, Guise, Murdocca and Sauer [8] and Guan, Barros [25]

studied this problem recently.

The rest of the chapter is organized as follows. In Section 3.2, we introduce the

ORM architecture in detail. In Section 3.3, the read/write and data movement

operations on three communication mechanisms of ORM are described. The

conclusion is given in Section 3.4.

3.2 The ORM Architecture

A 4 x 4 optical reconfigurable mesh (ORM) is shown in Figure 3.1. There are two

layers in ORM: the deflection layer and the processing layer. The deflection layer

consists of N 2 deflecting units and the processing layer has N 2 processing units. The

processors on the processing layer are interconnected as a reconfigurable mesh and

can also intercommunicate optically using the deflection layer. The reconfigurable

mesh model used here is similar to PARBS [63]. The reconfigurable mesh of size

N2 consists of an N x N array of processors connected to a grid-shaped reconfig-

urable broadcast bus, where each processor has a locally controllable bus switch.

The switchs allow the broadcast bus to be divided into subbuses, providing smaller

reconfigurable meshes or reconfigurable bus segments. Figure 3.2 shows the detailed

structure of a processing unit in the processing layer and Figure 3.3 shows the

detailed structure of a deflecting unit in the deflection layer. In the following we

describe each of those components.
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Figure 3.1 The ORM architecture

3.2.1 The Processing Unit

There are N x N processing units on the processing layer. There are three optical

transmitters and one receiver residing in each processing unit. One of the trans-

mitters, TR(1), is directed towards the control unit of the deflection unit. The second

one, TR(2), is directed towards the reconfigurable mirror (RM) of the deflection

unit and the third one, TR(3), is directed towards the fixed mirror (FM) of the

deflection unit. Each processing unit has a constant number of log N bit memory

cells and simple computation capabilities. It is connected to other processing units

in the mesh by the electrical reconfigurable buses. Each processing unit controls the

internal reconfigurable switches and is responsible for sending and receiving data to

and from other processing units. We index the processing unit in the ith row and

the jth column of the mesh on the processing layer as P(i, j) in which, 1 < i,j < N.
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Figure 3.3 The detailed structure of a deflector

3.2.2 The Deflection Unit

The deflecting layer contains N x N deflecting units. Each deflecting unit consists

of two mirrors and an arithmetic control unit. One of the mirrors, called FM (fixed

mirror), is fixed which transfers data from the processor under it to a fixed address

whenever it is used. Another mirror, called RM (reconfigurable mirror), is reconfig-

urable. The control unit receives an address from the processor under it, translates

the address and controls the direction of the RM. Since the angle of the FM is fixed,

the processor can send data directly from one of dedicated transmitters to the desti-
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nation without any need to go through the control unit. We define each deflecting

unit located directly above P(i, j) (a mirror and the related control unit) as M(i, j).

3.3 Data Movement in ORM

The data can be routed in three different styles in this architecture. In the first

method, routing is done only through electric buses. This is called electrical routing.

The second one is called optical routing which uses free space optics. The third type

uses electrical and optical free space connections to allow a complete connections

among N processors, and is called electro-optical routing. Each of the movements is

described below.

3.3.1 Electrical Routing

The electric routing in ORM is similar to that of the PARBS system [63}. The electric

routing in ORM is any routing from one node to another or a broadcast which uses

electric buses in the reconfigurable mesh only. An example for reconfiguration is

shown in Figure 3.1. This type of communication is suitable for providing arbitrary

connections in the processing layer. For example, see the processing layer of Figure

3.1. There are three groups of processors. Each group has one common bus it can

use for intercommunications.

• P(1,1) and P(1, 2) are connected to each other.

• P(2,1), P(3,1), P(4, 1), P(4,2), P(3,2) and P(2,2) are connected as a circle.

• P(1, 3), P(2, 3), P(3, 3), P(4, 3), P(4, 4), P(3, 4), P(2, 4) and P(1, 4) are connected

as a circle.

3.3.2 Optical Routing

The optical routing in ORM is the routing through optical free space interconnections

only. The data transfer would not use any electric bus in the system. All N2
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processors can intercommunicate in unit time delay, as long as there is only one read

or write from or to each location. In the following, we describe how such an optical

connections is established between two processors through the RM (Reconfigurable

Mirror).

A connection phase consists of two cycles. In the first cycle, each processor

sends the address of its desired destination processor to the arithmetic control unit

of its associated mirror using its dedicated laser TR(1). The arithmetic control unit

of the mirror computes a rotation degree such that both the origin and destination

processors have equal angle with the line perpendicular to the surface of the mirror in

the plane formed by the mirror, the source processor and the destination processor.

Once the angle is computed, the mirror is rotated to point to the desired destination.

In the second cycle, the connection is established by the laser beam TR(2) carrying

the data from the source to the mirror and from the mirror being reflected towards

the destination. An example of an optical routing from processor P(2,2) to processor

P(4,3) is shown in figure 3.1.

The read operation has two phases. In the first phase, the read requirement

and the reader's address are sent to the processor which stores the desired data.

In the second phase, the data is sent back to the reader depending on the reader's

address. Both phases use the two-cycle write routing method.

3.3.3 Electro-Optical Routing

This communication mechanic establishes an efficient full connectivity among only

N processors of N2 processors of ORM situated diagonally in the processing layer

as show in Figure 3.4. (i.e. for processors P(j, j) where 1 < j < N). The routing

technique uses electric buses on the processing layer and the fixed mirrors on the

deflection layer. This type of connection is implemented in the following way as

shown in Figure 3.4. Each processor P(j, j) is associated with the jth row of the
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Figure 3.4 The optical interconnections for electro-optical routing of ORM

deflection unit, where the row contains N fixed mirrors. The ith fixed mirror in

that row for 1 < i < N is directed to the processing unit P(i, i). The Figure 3.4

shows this communication mechanism. The ith fixed mirror in the first row which

is directed to the processing unit P(i,i), 1 < i < 4, is displayed in the figure. The

other rows have the same type of optical interconnections which are not shown in

the figure for the sake of clarity. There are two types of routing possible; Exclusive

Read Exclusive Write (EREW) and Concurrent Read Concurrent Write (CRCW).

We explain both methodologies below (The other two techniques described earlier,

electrical and optical routings, are EREW).

3.3.3.1 EREW: Any processor P(i, i) sends data to P(k, k) in the following way.

1. P(i, i) sends the data to P(i, k) through the electrical row bus;
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2. P(i, k) sends data to P(k, k) through transmitter TR(3) and its deflector

M (i, k).

3.3.3.2 CRCW

Definition 1 The CRCW access model for N diagonal processors on. ORM is defined

as follows:

o In one write step, each P(i,i) can send one write request to another PE in the

diagonal. If there is more than one write request to P(i,i), P(i,i) will receive

only one of them.

• In one read step, each P(i,i) can send one read request to P(k,k), k	 i. The

reader (multiple readers are allowed) can get the requested data back in the

same step.

Now, we prove the following theorem.

Theorem 3 The concurrent write and the concurrent read of N PEs can be done on

ORM in OM time.

Proof: The proof is done by giving the following constant time algorithm. We

assume that the read or write operation signal (operation command) is known by all

PEs. The following steps are executed in constant time.

Write Operation

There are three steps in this operation. In step 1, the destination address for a write

request is broadcast to the row i by each P (i , i). The processor (in row i, for each i)

with a j index matching the destination address is an active processor in the step.

This processor will be responsible to send data to the destination and its optical light

beam is activated. In step 2, a unique data is chosen among multiple write requests

to write to a processor. In this step, the losers will become inactive. In step 3, the
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unique writing data is sent to each destination. The implementation details of each

step are as follows.

1. Initially, the ORM performs the row bus connection. Each P(i, i) sends a write

request destination address j to the row i. The address can be received by all

PEs through the row buses of the mesh. Each PE compares the address with

its own column index. The P(i, j) will mark itself as an active PE if the address

j is matched to its column index. The others in row i do nothing.

2. All PEs of ORM performs the column bus connection except that each active

PE disconnects its north port from the south port. Each active PE sends a

signal to the south and check the north port. If an active PE does not receive

any signal from its north, means that it is a northmost active PE in the column,

it activates the light beam. All the other active PEs will not be active any more.

The data in P(i, i) for which the P(i, j) is active will be the chosen one writing

data to P(j, j).

3. Each P(i, i) sends the writing data to the row again. The data will be received

by active P(i, j) and sent to P(j,j) through the activated laser beam. Since

there is only one sender left in each column after step 2, each P(j, j) will receive

at most one data from the free space in the step.

Read Operation

The concurrent read operation contains two phases. In the first phase, the readers

send read requests to the destination P(j, j). During this step, the electrical and

optical route for a P(j, j) to send the data back to multiple readers has been estab-

lished. In the second phase, the data is sent to the readers by P(j, j). Two variables

R and C are used in each PE to implement the operation.

The implementation is as follows:
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1. The ORM does the row buses connection. Each P(i, 1) sends the destination

processor address j and the read request (requested memory cell address) to

the row i. When j is matched to the column index of a PE, P(i, j) saves the

read request and sets the variable R = 1.

2. The ORM does the column buses connection. Each P(i, i) sends the address

of the destination processor j, to the column i. Each PE compares j with its

row index. If they match, the PE sets the variable C	 1.

3. The ORM keeps the column buses connection. The PE whose R 1 is an

active PE in this step. Find the northmost active PE in each column. This PE

activates the light beam and sends the read request to P(j, j) using transmitter

TR(3). This can be done because the read request has been saved in this PE in

step 1 and the active P(i,j) has its M(i, j) connect the optical path to P(j, j).

4. The ORM does the row buses connection. Each PE with C = 1 is an active

PE now. It activates the light beam using transmitter TR(3). The requested

data is retrieved by each P(j,j) and broadcast to row j. Then the data is sent

to the requester P(i, i) through the bus and the light beam of P(j, i) using

transmitter TR(3) as shown in the subfigure 3 in Figure 3.5.

0

Examples

In this subsection, we give examples of concurrent write and concurrent read

operations in electro-optical routing communication mechanism. The following is

an example of a concurrent writing on an 8 x 8 ORM. Assume that the requests for

writing values to a variable stored in P(2,2) are made by P(1,1) and P(6,6) in the

same step. The value received by P(2,2) is the value sent by P(1,1) since P(1,2) is

the northmost active PE in column 2. In Figure 3.5, we use an N=8 ORM system

to explain the read operation. Assume that we view the architecture from the top.
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We can see PEs in the bottom layer transparently through the deflection layer.

Except for senders and receivers, other PEs are not indicated. In this example, we

assume that P(2,2) and P(8,8) need to read data from P(5,5). P(2,5) is chosen as

the representative to send the required data address to P(5,5) in step 3. In step 4,

P(5,5) sends data back. Since the light beams in P(5,2) and P(5,8) are activated,

when the data is sent to the bus of row 5, it is redirected by M(5,2) and M(5,8) to

M(2,2) and P(8,8).

3.4 Conclusion

We introduced a powerful parallel architecture ORM, a network of N x N processors

on a VLSI chip interconnected through free space optical beams as well as through
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electrical reconfigurable buses. The architecture supports three types of communi-

cation mechanisms. The basic data movements of those three communication types

on ORM were discussed in the chapter. ORM combines the advantages of electrical

reconfigurable bus interconnections and optical free space interconnections. The

reconfigurable mesh has a simple and uniform VLSI layout and is very efficient for

applications with regular data movement style. On the other hand, the optical

mediums can be directed for propagation in free space and have two optical channels

cross in space without interaction. So, data can be sent without any routing delay

through optical free space interconnections when the destinations are known. It is

efficient for applications with irregular data movement style. However, the third type

of communication mechanism is significantly slower than the other two. In Chapter

5, we will present a methodology CONST. This methodology sets the optical recon-

figurations before the execution of each algorithm begins to avoid using the third

type of communication during the execution of the algorithm.



CHAPTER 4

A FAST PARALLEL IMAGE CONVEXITY ALGORITHM

In this chapter, we propose an application on ORM. It is the first O(logN) time

algorithm for finding the convex hulls of all figures in an N x N 0/1 image. This

algorithm is faster than any existing one by a factor of O(logN).

4.1 Introduction

We present an O(logN) step algorithm to solve the challenging problem of finding

the convex hull of multiple figures in an N x N image in the chapter. The best known

solution for this problem using any of the existing reconfigurable mesh models [42]

and [16] is O(log2 N). Furthermore, this problem has a time complexity of O(log 2 N)

using the optical mesh (an implementation of OMC [15] with mirrors). The convexity

problem is an important computational task in image processing. The problem is to

find the extreme points forming the convex hull for each figure on the image. The

input for the problem is an N x N digitized image distributed one pixel per processor

on a reconfigurable mesh of size N x N so that processor Pi,.; stores pixel (i,j). The

pixels are either black or white where black represented by 1 is an image pixel and

white represented by 0 is a background pixel. An assumption used in our algorithm

is that any figure which has less than two rows or two columns of image pixels is not

processed in this algorithm, since the extreme points of those figures can be easily

recognized in constant time.

In this chapter, we propose the first O(logN) time algorithm for finding the

convex hulls of all figures in an N x N 0/1 image. This algorithm is faster than any

existing ones by a factor O(logN). This illustrates that the proposed architecture

is more powerful than any of the reconfigurable models or any of the earlier imple-

mentations of OMC on this application. The rest of the chapter is organized as

39
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follows. In the next section, the convexity algorithm is described. The conclusion of

the chapter is in Section 4.3.

4.2 0(logN) Convexity Algorithm

In this section, an efficient parallel algorithm for solving the convexity problem on

ORM is presented.

An assumption is that any figure which has less than two rows or two columns

of image pixels is not processed in this algorithm, since the extreme points of those

figures can be easily recognized in constant time. All figures considered here have

more than two rows and two columns.

The algorithm consists of two phases. In phase 1, the outer boundaries are

found in O(logN) time and then the boundary segment of each figure in G is cut

into four sub boundary segments. Each subsegment represents a region of the figure.

The concept of the region largely restricts the number of nodes which participate in

the comparisons and makes the extreme point recognitions simple and easy. In phase

2, divide and conquer methodology is used to recognize the valleys in each of the

regions. To obtain the extreme points for all four regions, it is repeated four times,

once for each region. Each of the log N iterations takes 0(1) time. In each iteration,

points in the valleys are dropped and the remaining ones are the input points for

the next iteration. The set of points at the end of the last iteration are the extreme

points. The method for finding the valleys includes the calculation of the angle each

point makes with its neighbor and the highest reference point (rightmost, topmost,

leftmost, or bottommost) in its region. In the following, the theorem and the proof

for the algorithm is presented.
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4.2.1 The Algorithm

Theorem 4 Given an N x N image G, the convex hulls of all figures in. G can be

found in O(logN) time using an. N x N ORM.

Proof: We prove the theorem by giving the following O(logN) algorithm. The

algorithm consists of two phases. Phase 1 recognizes four regions in each figure.

Phase 2 drops all nonextreme points in one of the four regions. Therefore, the phase

2 runs four times in the whole algorithm for dropping nonextreme points in all four

regions of each figure. We define the indexing system for the image and the ORM.

The first row on the top has i index i = 1 and the first column on the left has j index

j = 1. The node PE(i, j) means the node in the ith row and the jth column of the

ORM. We assume that each node P E(i, j) represents a pixel p(i, j). We also assume

that each boundary node can recognize if it is an outer boundary node or an inter

boundary node. The outer boundaries can be found and pointer directions can be set

clockwise in O(logN) time using the technique explained in [15]. It dose not affect

the performance of our algorithm. The rest of the algorithm continues with using

outer boundary points only. For the convenience, we use "boundary node" instead

of "outer boundary node" in the rest of paper. The pseudo-code of the algorithm

is shown in Figure 4.1. The major function REGION2 (i) for dropping nonextreme

points in region 2 in iteration i is shown in Figure 4.2.

PHASE 1:

First, we define that the topmost point of a figure as the one with the smallest i index

on the figure's boundary. If there is more than one boundary node with the same

smallest i index, both the leftmost and the rightmost ones are called the topmost

points of the figure. Similarly, we can define the downmost, the leftmost and the

rightmost points.



Figure 4.1 Convexity Algorithm

Second, we define four regions of a figure. For convenience, we assume that

there is only one topmost point on each figure's boundary. A similar assumptions can

be made for the downmost, the leftmost and the rightmost points. We will discuss

how to treat the case with more than one topmost /downmost/leftmost/rightmost

point in one side after we define each of the regions as follows.

• Region 1 is the boundary segment between the rightmost point and the topmost

point.



Figure 4.2 Function REGION2(i)
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• Region 2 is the boundary segment between the topmost point and the leftmost

point.

• Region 3 is the boundary segment between the leftmost point and the downmost

point.

• Region 4 is the boundary segment between the downmost point and the

rightmost point.

See Figure 4.3 for the region divisions.

topmost point

region3
region 4

downmost point

Figure 4.3 The region divisions

If there are two topmost points and two rightmost points in one figure, the

region 1 would be the segment between the rightmost point which has the smaller i

index and the topmost point which has the larger j index. Other regions are defined

in a similar way. See Figure 4.4.

The algorithm in this phase is as follows. Each figure finds the topmost,

downmost, leftmost and rightmost points on the figure's boundary. Finding the

minimum and maximum of N elements connected with a bus can be done in O(log

N) time by checking log N bits one at a time, similar to the bit polling technique

explained in [17]. Now, each figure's boundary is cut into four boundary segments.

Each node recognizes the region it belongs to and marks itself. This can be done in

constant time by each leftmost, rightmost, upmost and downmost node disconnects
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Region 1 segment

0

Figure 4.4 The region 1 in the figure with multi-most points

itself from the neighbor in the clockwise direction along the figure boundary and

broadcasts different signal "L", "R", "U" and "D" to the boundary segment along

the counter-clockwise direction. This makes four boundary segments each of which

is a region in a figure. Each boundary node has a variable REGION. Assume that

the signal "L", sent by leftmost point, is received by a boundary node, this node

sets 3 in the variable REGION to indicate that it is a boundary node on region 3.

If there are two topmost points in a figure, then all boundary nodes between these

two nodes are eliminated. The boundary nodes between two leftmost, two rightmost

and two downmost points are eliminated in a similar way.

PHASE 2:

A divide and conquer methodology is used to recognize the valleys in each boundary

region. All those points in the valleys are dropped and the remaining points after

phase 2 are the extreme points. The valleys are determined by computing the

angle each extreme point from a previous iteration makes with its neighbor and

the highest reference point (topmost, bottommost, rightmost, leftmost) in its region,

for each figure. The algorithm needs to be applied four times, once for each of the

regions. For convenience, we choose the region 2 segment of each figure as a sample

to do the proof. Notice that any extreme point in region 2 can not be any other

type of boundary node except those with {SE, N, WI internal switch connections

when figuring boundary segment connections. This will eliminate those unnecessary
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comparisons. The algorithm steps are similar for all other regions except that they

would be in their corresponding directions. For an n x n ORM (Optical Recon-

figurable Mesh), where n = 2m(rn 1,2,...,logN), we have m iterations. In each

iteration, the algorithm is applied on the submesh with the size 2' x 2m. Also,

we assume that all boundary nodes are in the extreme point set called E set at

the beginning of the algorithm. The induction method will be used to prove the

correctness of the algorithm in phase 2.

In the base, each combined submesh contains only one node (one pixel). All

figure nodes are viewed as an extreme point. We assume that after the iteration m

- 1, the extreme points in each submesh of size 2m 1 x 2m - 1 have been found. We

want to prove that after the iteration m, the extreme points in each submesh of size

2m x 2' can be found. Now, we look in detail at a subimage with size 2' x 2m in

iteration

The submesh containing the subimage with size 2' x 2' is called ORM,. By

assumptions, the extreme points in each subimage with size 2m-1 have been found.

This can be viewed as shown in Figure 4.5, where a new submesh is constructed

by four quadrants (Q1, Q2, Q3 and Q4), such that the extreme points in each of

the quadrants have been found in the previous iteration. The objective is to find

the extreme points in the current submesh combining the four quadrants. In the

combining, the vertical mesh boundary in the middle of the new submesh is named

a v line and the horizontal one a h line. We assume that each processor which

contains an extreme point is marked as an E node. Each E node in ORM,_ i is a

candidate for an extreme point in ORM,. We call them C nodes before they are

confirmed as E nodes in the submesh ORM„. All C nodes in an ORM, are indexed

as C(I), C(2), ... clockwise along the segment. The algorithm steps for dropping

nonextreme points in ORM„ consists of two super steps:
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• Find the extreme points in the upper and lower halfs of ORM, separately.

All ordered extreme points of a figure within a region should have a decreasingly

ordered set of angles with respect to the highest point in that region and for

that figure. Super step 1 determines and eliminates those non-extreme points

(valleys) which violate this rule.

• Find the extreme points in the whole ORMm .

Merge the segments in the upper half and lower half of the mesh for each figure.

There are three substeps included in each super step. The two super steps

are similar. We concentrate on describing the substeps in the first super step. The

significant differences between the two super steps will also be discussed. The details

of some steps are in Section 4.2. We define the following notations for describing the

phase 2 of the algorithm more clearly and easily:

1. C(i) is a C node on a figure's boundary. The C node has been defined

previously. C(i + 1) is a C node which is an immediate right neighbor of

C(i) along the boundary in the clockwise direction.
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2. T(i) is the tangent made by C(i) and C(i 1).

3. P(j) is the cross point of T(i) and the line 	 The index for P is not

the same as T . It is self indexed from the left to right along the line y=i„ii

depending on the appearances of the cross points.

4. D(i) is the degree of the angle between T (i) and the line y=iceit•

The following are the algorithm steps in phase 2:

1. (Super step 1) Find the extreme points in the upper half and lower half of

the mesh.

(All ordered extreme points of a figure within a region should have a

decreasingly ordered set of angles with respect to the highest point in that

region and for that figure. Super step 1 determines and eliminates those

non-extreme points (valleys) which violate this rule.)

(a) Find the C node which has the smallest i index among all C nodes in the

segment(s) of a figure F in each half mesh. This i index is called i ceil

meaning ceiling point of a figure in ORM,,. We define the line y=i ceii to

be a ceiling line. A unique row for each figure in the current mesh to store

data in later steps is also found in this step. See the details of the method

for finding the unique row and ceiling line of each figure in a submesh in

Section 4.2. This nontrivial method is called CONNECT. Those two data

of each figure F are sent back to all figure boundary segments of F in the

submesh.

(b) Each C(i) node in a C segment which received i„ii in the last step gets the

index of its C(i + 1) node neighbor along the clockwise direction. Then a

tangent T(i) is calculated in the node by the indexes of C(i) and C(i + 1).



Figure 4.6 P nodes: the cross points of tangents and line y

If the P(i) is out of the submesh boundary, the C(i + 1) is a nonextreme

point and it is dropped in this step.

(c) Each C(i) sends the tangent T(i) (including indexes of two points) to a

unique row y1 i--=-store by the order of the P(j). Then the node that receives

and stores the tangent is called a P node and the sender of T(i) is called

SenderT ( i). This step is done with optical routing using the reconfigurable

mirrors. Each P node gets another tangent from the right p node neighbor

P(j ± 1). Now, each P(j) holds two tangents. We call the one originally

received by P(j) is T(j) and the one from its right neighbor is T(j + 1).

Further, we call the C node which sends T(j) is SenderT(i) and the one

which sends T(j + 1) is SenderT0+1). Then each P(j) compares two

degrees D(j) and D(j + 1) made by the angles of T(j) to the y line and

+ 1) to the y line. If the degrees or the sender's positions violates

the the following order rule, the nonextreme points on C segments in the

upper half or lower half of the submesh can be found.

The order rule for the extreme points in region 2 is as follows. The two

conditions have to be satisfied at the same time:



Sender(T(k))

50

• The degrees of two tangents T(k) and T(k + 1) to the line y = iceit,

D(k) and D(k + 1), should satisfy the following condition if the

sequence of D on y are indexed as D(1), D(2), ... from left to right

depending on the P node sequence:

D(k) > D(k + 1)

• The indexes of SenderT(k) and SenderT(k+i) should satisfy:

iSenderT(k) 	SenderT(k+i) and

.J SenderT(k) C JSenderT(k+i)

See the example of the rule violation in Figure 4.7.

D(k)	 •
D(k+1)

- 	 //l 

T(k)

/ T(k+1)

Sender(T(k+1))(7

Violation: D(k) < D(k+1)

Figure 4.7 The example of the rule violation: D(k) < D(k + 1)

However, from the next example shown in Figure 4.8, we can see that the

condition of D(k) > D(k + 1) is not enough to recognize the nonextreme

points.

In Figure 4.8, the degrees D(k) and D(k + 1) satisfy D(k) > D(k + 1),

but iSenderT(k) < i Sender T(k+i) and lSenderT(k) > isender,(k+i) . So, the C node

SenderT(k) is a nonextreme point in ORM,i . After this step, if a sequence
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- D(k+1)_
P(k) i i	 P(k+1), ,-■ _ _ - - -,- _L-- 	 y=i(ceil).,- - --

T(k)/

/-----

,
Sender(T(k)) , , ' T(k+1)

,

(Sender(T(k+1))

Figure 4.8 The example of the rule violation: D(k) > D(k + 1)

S of C nodes are nonextreme points in ORM, and if a node LN is the

leftmost node in 5', the LN must have been recognized after this step.

(d) The index of LN in Q2 is sent back to all segments of the figure in Q2.

Any C node which is on the right side of the LN is a nonextreme point

and are dropped.

Similarly, the index of the rightmost node, called RN, in sequence S and is

in Q1 is sent back to all segments of the figure in Ql. Any C node which is

on the left side of the RN is a nonextreme point and dropped. See Figure

4.9. After this step, all nonextreme points in the point sequence are

dropped. This step can be done in constant time because all nonextreme

points in a segment are C nodes which are recognized in the ORM,,n _ i

and are in a C node sequence.

2. (Super step 2) Find all extreme points in the current mesh.

(Merge the segments in the upper half and lower half of the mesh for each

figure.)

(a) Similar to 1.a except use a different direction for the B nodes in the

segments which connect to the north bound or south bound of the

submesh, or cross the h line. The new i,i / found in this step will be

D(k). 	 _



Figure 4.9 Drop the nonextreme points depending on LN and RN nodes

broadcast to a unique row. An extra operation which should be taken

by the node is that after finding the smallest i index (this is done along

related rows) for a figure, the i index should be compared to the i„ii

found in step l.a. This is easy because i„ii of step 1 for a figure is stored

in a unique column. When a node receives the iceilS in both steps l.a and

2.a, it compares two iceiis, chooses the smaller one to be i„ii in this step

and sends the iced back to the B nodes of this step and B survivals in

the last step. The principle idea for setting up the communication route

among different pieces of segments in one figure in the submesh is the

same as the way used in step 1.(a).

(b) Similar to 1.(b).

(c) Similar to 1.(c).

(d) Similar to 1.(d).

Each step above uses constant time. So the performance for the phase 2 is

0(logN). The total performance of the algorithm is 0(logN)+0(logN) = O(logN).

0
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The important features of the convexity algorithm are the region concept and

the tangent disorder concept that can be used to locate the first point in a sequence

of nonextreme points on a C segment. The concept of regions makes it possible to

set up the rules to do the comparisons in steps 1.(c) and 2.(c). In each of the logN

iterations of the algorithm, setting the electro-optical interconnections (using the

reconfigurable mirrors as well as the reconfigurable buses on the mesh) based on the

order of the cross points made by a sequence of tangent lines and a single ceiling line,

y i„ii , makes it possible to drop the nonextreme points (valleies) in constant time.

Even though most steps in the algorithm are implemented by the reconfigurable

mesh, the steps in each of the logN iteration can not be run in constant time on a

purely electrical reconfigurable mesh.

4.2.2 CONNECT: The Method to Find i„ii

The goal of step 1.a in phase 2 is to find the smallest i index i„ ii among all C nodes of

each figure F in ORM,,. Note that there may be many separate pieces of boundary

segments of one figure in one ORM,, as shown in Figure 4.10.
v line

h line

Figure 4.10 Two pieces of figure 1 and two pieces of figure 2 in one submesh
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We assume that after each iteration, the node which contains i„ ii is marked.

In each upper or lower half of ORMm , there are at most two old i„ ifs existing; one

in Q1 (Q3) and one in Q2 (Q4). If the segments with two old icei/S are connected

in the new mesh ORM,, it is easy to do the comparison and find the new i„ ii for

the figure in this mesh. However, if the two segments are still separated by the mesh

boundary, we need to find the route to connect those two segments and then do the

comparison. On the other hand, the route to connect those C segments which do

not contain the old 2„ i/ also needs to be found. The new i„ii in ORM, has to be

broadcast to those segments through the route and used in the future steps of the

algorithm. So, the problem we need to solve to reach the goal of the step is how to

find a route to connect all C segments of a figure F in ORM,. Once the route is

found, the two old i„ iis can be sent to a common place unique to figure F to do the

comparison. The new iced will be sent to all related segments along the route.

The method used here is named CONNECT. In the algorithm of phase 2, the

CONNECT method is both used in step 1.(a) and 2.(a). In 1.(a), all C segments

connecting the west and east submesh boundary or crossing the v line are processed.

After this step, the ceiling line of each figure among those C segments in the upper

part of the mesh (Q1 and Q2) is found. Then the nonextreme points are recognized

and dropped. It is similar to the case for the lower part of the mesh (Q3 and Q4).

The application areas are different but the processing is the same. The work is done

at the same time. In 2.(a), the C segments for each figure in the upper and lower

parts of the mesh are combined. The C segments which connect to the north or

the south mesh boundary, or cross the h line, are processed in this step. After this

step, all nonextreme points of each figure in the current submesh are dropped. The

processing of this step is similar to that of step 1.(a).

Before presenting the detailed description of the CONNECT method, we need

a little preparation. We know that it is easy for a figure boundary node to recognize
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if it is connected to a submesh boundary or crosses the v line or is in the plane

area. Further, by testing the neighbor, the node which is both in the figure and the

submesh boundary knows if it is in the upper side of a segment. See Figure 4.10

So, we assume that each this kind of nodes has recognized itself and is called a B

(boundary) node in the following steps. In the example of Figure 4.10, the second

piece of figure 1 has only one B node because the B node recognition starts from

east submesh boundary, then the west, then the v line.

1. Set row connections in the mesh. Each B node sends its figure label number

L(F) (label number for figure F) to the row. (substeps: (1) send from the west

mesh boundary. (2) send from the east mesh boundary. If the B node in the

east boundary has received a data in (1), it means that there is another B node

in the west mesh boundary which is in the same row, say row k. In this case,

the B node which is in the west mesh boundary has to send its L(F) to row

k + 1. (3) send from v line if there is no west or east boundary B node on the

same segment. If the row has received data in either (1) or (2), the data will

be sent to the next available row in the south direction.)

2. Set column connections. The nodes on the h line disconnect the south/north

ports. Each diagonal node d(i, i) which received a L(F) in the last step sends

L(F) to column i. If there is another segment of figure F that sends the label

L(F) from row j, the node d(j, i) on column i will receive the same label L(F)

twice. The other node on column i will not. See Figure 4.11.

3. Find the northmost node which receives L(F) twice along the column i. This

is the unique row for the figure F to store data in 1.(b).

Except for L(F), the old i„iis are sent along the route in step 1 and 2 by the

related B nodes. So, the two old i„iis of F can also be compared along column



twice; once from step 1 and once from step 2. Column j2 does
the same.

Figure 4.11 Find the route for each figure

i in this step. In the case of Figure 4.11, row i1 will be the unique row used by

all C segments of figure 1 in step (c) in the basic algorithm.

4. Send i„i1 back to each B node. This is done by sending the data along the

route in 1 and 2 by the reverse direction.

The uniqueness of the row yl=i sic,„ for each figure is obvious. Since each B

node uniquely occupies a row to send its figure label, and no more than one figure

uses the same column to recognize the northmost B node among all B nodes of that

figure, so each figure will find a unique row in the mesh.

4.3 Conclusion

A nontrivial 0(logN) parallel algorithm for the multi-image convexity problem on

ORM was presented in this chapter. The work presented showed the advantages

offered by the combination of optical and electric interconnections as compared to

the traditional electrical reconfigurable systems or the pure optical interconnection

systems. The algorithm obtained is the fastest known parallel convexity algorithm.



CHAPTER 5

APPLICATION SPECIFIC DESIGN OF THE OPTICAL
COMMUNICATION TOPOLOGY IN ORM

We have mentioned in Chapter 2 that the third type of communication mechanism

in ORM is slower than the other two because it requires mechanical movements per

reconfiguration. It is important to find the optical interconnection topology and set

it up before the execution of a given task begins. We present a methodology named

CONST to construct an efficient topology for the optical interconnections in ORM

for each given task.

5.1 Introduction

Many studies have been done for designing various efficient parallel architectures to

solve application problems. Most electrically interconnected parallel architectures

designed are only suitable for certain types of problems. Normally, these problems

are those whose associated data flow graphs match the topology of the architecture.

Parallel architectures with optical interconnections have been recently studied by a

number of scientists [8, 25] as a way for designing reconfigurable topologies that would

fit any desired problem to be solved. However, reconfiguring optical interconnections

is not an easy task, they have a low switching rate in case active optical switching

elements are used, or require a large number of resources if passive elements are

used [NPPOI 95, 96]. Designing an efficient parallel architecture with electrical and

optical interconnections for any given problem is the topic of this chapter.

Now, by using ORM, we present a methodology named CONST to construct

an efficient topology for the optical interconnections in ORM for each given task. We

have mentioned that the third type of communication in ORM which uses reconfig-

urable optical interconnections is slow as compared to the other two. However, there

are two advantages of this communication mechanism. It can be reconfigured as a
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desired topology and it can route data in unit time on the topology once the optical

interconnections are set up. The strategy is to set up an efficient optical intercon-

nection before the execution of a task. Determining a configuration that would be

suitable for the entire configuration of a task execution is studied in this chapter.

For analyzing the properties of a given task graph, a model named Cluster-M

is used in the methodology. Cluster-M is a programming tool that facilitates the

design and mapping of portable parallel programs [9]. Cluster-M has three main

components: the specification module, the representation module and the mapping

module. In the specification module, machine-independent algorithms are specified

and coded using the program composition notation (PCN) [20] programming

language [14]. Cluster-M specifications are represented in the form of a multilayer

clustered task graph called a Spec graph. Cluster-M represents a multilayer parti-

tioning of a system graph called a Rep graph. At every partitioning layer of the

Rep graph, there are a number of clusters called Rep clusters. Each Rep cluster

represents a set of processors with a certain degree of connectivity. Given a task

(system) graph, a Spec (Rep) graph can be generated using one of the Cluster-M

clustering algorithms. In the mapping module, a given Spec graph is mapped onto

a given Rep graph. For a detailed description of Cluster-M, see the appendix in this

thesis.

Using Cluster-M, we present a methodology named CONST which can

determine how the optical topology in the ORM is to be set for a given problem.

The goal of the construction is that for a given ORM with N processors and a given

task graph with M nodes, we want to come up with a communication topology for

the optical interconnections in ORM to execute the task efficiently. These optical

interconnections are set before the execution begins and are not changed during the

task execution.
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The rest of the chapter is organized as follows. In Section 5.2, we give the

preliminaries. The CONST methodology is presented in Section 5.3. Section 5.4 is

for concluding remarks.

5.2 Preliminaries

For constructing a proper ORM machine for a given task, we need some assumptions

on the computation model and tools. Those assumptions do not affect the features

and performances of the original models. We also introduce the terminologies and

definitions used in the methodology.

The following are the assumptions.

• An update is needed for the basic ORM to support the methodology: each

PE has four free space optical transmitters to the other nodes and one optical

receiver. The functions for each of them will be introduced later.

• For a given task graph, the Spec graph obtained by using the cluster-M model

is the input of our methodology. Originally, there are five parameters in each

cluster C after clustering:

1. The size of the cluster C which is the number of subciusters of C that can

be computed in parallel.

2. The maximum sequential computation amounts (time) in C.

3. The total amount of communication from layer 1 of the Spec graph to the

layer L in which C resides.

4. The average communication amount at layer L in C.

5. The computational type of C: SIMD or MIMD.

In addition to the above five parameters in each cluster, we add one parameter

L on each cluster Ci. L is a list. Each entry in the list is a cluster number
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and a communication time. If any cluster C, has a communication edge to

Ci, there is an entry in L of Ci for j and the time taken to transfer the data

from Ci to C. This can be done in the clustering easily without hurting the

performance. Here, we assume that the clustering algorithm has done this work

before executing CONST.

• The size of the ORM is independent of the number of tasks.

The following are terminologies and definitions used in the description:

1. BFS result graph in the algorithm

Breadth-first search (BFS) is applied to the Spec graph in the methodology to

determine the relationships of clusters in the graph. In the BFS result graph G,

each node is a cluster and each edge (Ci, C .i) in G represents the communication

from cluster C1 to cluster This edge may be used more than once if there

is more than one task in Ci requiring to communicate to the tasks in C, in

different time. There are three types of edges in the graph. A forward edge is

the edge from a parent cluster to a child cluster. A side edge is the edge from a

cluster to a sibling cluster (they are in the same level). A back edge is the edge

from a child to a parent or an ancient. Any cluster which has no forward edge

as an incoming edge is defined as a starting node in the graph. There may be

more than one starting node in G.

The level in G is defined as follows. All starting nodes are in level 1 of G.

Any child with its parent in level i is in level i+1. If a child has more than

one parent, its level number follows the parent with the lowest level number

among these parents. This will be recognized automatically in the breadth-first

search.

In each level of the cluster graph, except the first level, the nodes are categorized

into two types:
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• Type 1: The node has only one parent

• Type 2: The node has more than one parent

2. Children set

A set of type 1 nodes. All members of the set have the same parent Cp and Cp

is the only parent it has.

3. Children pool

A set of type 2 nodes. For each children pool, there is a unique parent set.

This means that no parent node has two children in different children pools.

Figure 5.1 shows examples of a children set and a children pool.

tcigure 5.1 A children set and a children pool

4. Time conflict and time conflict free

If two parents of level i communicate to their children in the same time period,

it is a time conflict. We call a child cluster C involved in a time conflict

communication a time conflict cluster. Otherwise, C is a time conflict free

cluster.
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5.3 The CONST Methodology

To come up with a suitable topology for executing a given task we first need to

analyze the properties of the problem. Using the Cluster-M clustering algorithm, we

can trace the communication requirement of a given problem at different steps of the

execution. Clusters are created as the communications in the task graph are traced

and analyzed. In this algorithm, there are two phases. In phase 1, we decluster a

given Spec graph until the best cluster layer can be found for a given number of

processors. In phase 2, the breadth first search methodology is performed on the

Spec graph. The optical interconnection topology is then determined depending on

the BFS result graph G.

5.3.1 Phase 1: (Declustering)

For a given Spec graph and a given number of N processors, we do a mapping of

the Spec graph to an N-node fully connected Rep graph. The mapping algorithm in

[10] is used in which a test is done within the declustering for each cluster C. In the

algorithm, the sequential computation time of C is compared to the computation and

communication time after the declustering of C . This test will tell if the declustering

of C should be done or not. After this phase, we can find the clustering results of

the task graph which is the best one for the given number of processors.

5.3.2 Phase 2: (Assigning)

The object processed in this phase is the cluster graph obtained from phase 1. The

breadth-first search is applied on the cluster graph. The search starts from the node

which contains the starting node of the whole task. After that, the forward edges,

side edges and back edges are recognized. The advantages of the ORM are: the

destinations of the optical interconnections can be chosen freely (but fixed during

the task running) and the mesh system can be segmented during the task running.
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CONST takes those advantages by using the following principle to assign processors

to clusters. Once the assingment is done, the optical interconnections can be set up.

The assigning method is that the clusters are sequentially located in the

processors level by level. All clusters in the second level follow the clusters of the

first level and so on. We index the mesh as a linear sequence system. The first PE in

the sequence is the one in the first row and the first column. It is indexed as P(1).

The sequence is forwarded to the right and then wrapped snake-like. The clusters

are assigned to the processors one by one from P(1) to P (n 2 ).

By the definition, each level of the graph has at least one children set and/or

children pool. We want to solve two problems in our methodology:

• What is the order of the clusters in a children pool or a children set?

• What is the order of children pools and children sets in each level?

We need to find good solutions for them so that the system routing delay can be

minimized when the task runs. After we solve those problems, it will be clearer to

see how the clusters are to be located in the system and to decide how to make

the optical connections from one node to the others. The following are steps in the

methodology:

1. Assignment of Children Set

Conceptually, we know that each parent has at most one children set in its next

level. There may be more than one children pool in each level. If each parent

has a direct interconnection to its children, there would be no routing delay

during the task execution. However, this kind of communication is impossible

from electrical connections if the number of children of one cluster is 0(N).

On the other hand, a routing delay would be introduced if the communications

need go through intermediate nodes. A reconfigurable free space optical inter-

connection is ideal to do the global communication. The problem is that there
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are still not enough optical interconnections from one node to many others in

our system, and we do not want the optical connections to be changed often.

So the idea is that we assign the clusters of a children set S onto a set of

processors in which processors can communicate to each other through electric

buses easily and efficiently. In other words, we want keep a good locality for

the clusters in a children set. In CONST, the nodes in a set are assigned into a

sequence of PEs connected by the row buses. Then we let each parent C p have

an optical interconnection to one of the nodes in its children set. This node is

r figure a.h i ne opLicai connection to -me neaaer oz cnnaren set

We can choose the cluster which has the smallest processor index in S as the

header of that children set. Assume that the parent of S is Cp.  Then one

of the optical interconnections from Cp will be to the header of S. When Cp

wants to send data to a child Ce , it sends data to the header first by optical

interconnection. Then the system does the children set segmenting and the

data can be sent to Cc on the segment. Basically, the order of clusters in a

children set is not critical. However, considering the amount of communication,

we want the one with the largest communication amount to be the header, the

one with the second largest communication amount to be the right neighbor of
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the header, and so on. The sorting by the communication time could be done

in the clustering.

Summary: The order of clusters in a children set are ordered decreasingly by

the communication amount in the set. Each set has a leader which is stored

in the smallest indexed PE in the set. There is a fixed optical interconnection

from each parent to the header of its children set.

2. Assignment of Children Pool

The principle is the same as the one for a children set, the clusters in a pool

will be allocated in a group of PEs which are sequentially connected by the

electric bus. However, the strategy to decide the order of the clusters in a pool

is more complicated than the one for a children set because it needs to avoid

the transmission conflict caused by more than one parent sending data to the

children in the same pool.

cl-inurc an ravarnn1P of 	 rnnflirt•



66

Assume that C1, C2, ..., Cm are the children of the cluster C p . They must be

in the same children pool by the pool definition. Further, we assume that a

group F of clusters Ci , i < rn, among those rn child clusters of Cp are time

conflict clusters. We will assign the clusters in F onto sequentially connected

processors in the mesh. The first cluster in the sequence is the header of F. In a

children pool we can have several groups of time conflict clusters. Each group

has a header and its own parent. This assignment of conflict groups minimizes

the situation in Figure 5.3. If a cluster Ci has a time conflict in two different

time period by different parents, it is put into the group with the parent which

has the larger amount of communication to C i . All time conflict free clusters

in the pool are allocated following the last group of time conflict clusters in the

pool. There is no routing delay for conflict free clusters anyway.

Summary: The order of the clusters in a children pool is as follows:

(a) The grouped time conflict clusters are ordered by different parents.

(b) If a cluster has more than one time conflict by different parents, it should

be in the group with the parent which has the largest communication

amount.

(c) All time conflict free clusters follow the last time conflict group in the

pool.

The order of children sets and children pools in a level is not important, since

each parent has one optical connection to its children set and one for children

group in the pool.

3. Back Edges and Side Edges

After the processor assignment, the clusters in each level are on a reconfig-

urable bus segment on which the processors can be easily connected. For the



67

case of communication to the ancestors through back edges, we need to store

the assignment information (the processor address of the destination) for each

outgoing edge in the cluster no matter the type of the edge. The consideration

about the back edges is as follows.

(a) If each node in level i has not more than one back edge, one of the optical

interconnections will be dedicated to this edge.

(b) If more than one back edge from one node is required, but the destinations

are in the same level, the optical interconnection is built to one of the

parents (or ancestors). The rest of the communications can be done by

sending data through the optical connection to the destination node level,

and then the mesh bus to the destination. This is easy because the nodes

in the same level are in a sequentially connected bus segment and one

communication occurs at one time for a cluster.

(c) If the number of back edges in a level i is larger than the number of nodes

in the level and back to many different levels, we may need to assign the

optical interconnection in each node to connect to one of the above level.

The result is that the total back connections can cover all levels on the

level above level i.

The destination of a side edge from a cluster C i is a cluster C3 which is in the

same level as Ci . When separating the time conflict group in a level, the time

conflicts caused by any side edge should be also considered with the forwarding

edges. Since the destination of a side edge is in the same level as the sender,

the routing can be at least restricted into a segment for a level.

4. Setting Optical Interconnections

Now, we can set the optical interconnections in ORM. Each processor P can

have maximally three optical interconnections to other processors except the
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fixed one. Or we can say that each cluster C can have maximally three optical

communication paths to other clusters:

• to the header of its children set

• to the header of its time conflict group in the children pool

• to a parent or an ancestor

• to a brother cluster

5.4 Conclusion

In this chapter, we presented a methodology CONST which is used to reconfigure

a suitable optical interconnection in ORM for efficient execution of a given task.

Cluster-M was used to analyze the properties of a given task graph, then based

on that the CONST methodology produced a suitable pattern for reconfiguring

the optical interconnections. These interconnections are not changed during the

execution. However, they provide sufficient connectivity among all the processors for

the entire duration of the execution.



CHAPTER 6

CONCLUSION AND FUTURE WORKS

In this thesis, we discussed the limitations of electrical interconnections and

studied an emerging technique, optical interconnections, which is a remedy of

those limitations. In Chapter 2, the existing optical model of computation (OMC)

and three implementations were introduced. The efficient algorithms for application

problems on the model were also discussed. We presented an efficient opto-electrical

parallel architecture named ORM (Optical Reconfigurable Mesh) which is an imple-

mentation of OMC in chapter 3. In this architecture, processors can communicate

through both optical reconfigurable interconnections and electrical reconfigurable

buses. The two layers of the architecture and the data movements in the three

communication mechanisms in ORM were described. The three communication

mechanisms are 1. Electrical interconnections through the electrical reconfigurable

mesh in ORM, 2. Electrical-optical interconnections through electrical buses and

fixed passive optical interconnections and 3. Reconfigurable optical interconnections.

For illustrating the power of ORM, two efficient parallel algorithms on ORM

were presented in Chapter 4 and Chapter 5. In Chapter 4, the first 0(logN) time

algorithm for finding the convex hulls of all figures in an N x N 0/1 image on ORM

was proposed. The algorithm consists of two phases. In phase 1, the boundary

segment of each figure in the image is cut into four subboundary segments. Each

subsegment represents a region of the figure. The concept of the region largely

restricts the number of nodes which participate in the comparisons and makes the

extreme point recognitions simple and easy. In phase 2, the divide and conquer

methodology is used to recognize the valleys in each combined mesh boundary region.

Chapter 5 gave a methodology named CONST to construct an efficient topology for

the optical interconnections in ORM for each given task. For analyzing the properties

of each given task, the Cluster-M clustering algorithm was used. There are also two
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phases in the algorithm. In phase 1, we decluster a Spec graph which was obtained

by the Cluster-M clustering algorithm until the best cluster layer can be found for a

given number of processors. In phase 2, the breadth first search (BFS) methodology

is performed on the Spec graph. The optical interconnection topology is then decided

depending on the BFS result graph G.

What follows is future works for further exploring the advantages of ORM or

properties of the Optical Model of Computation (OMC).

1. Geometric Problems

More geometric problems can be focused on. The problems include histogram

computation, finding the nearest neighbor figure, component labeling, finding

maximum and minimum of a set of inputs, etc. Similar research for graph

problems and other image processing problems can also be done.

2. CRCW PRAM Simulation

Currently, CRCW can be implemented in N processors on ORM. Each PE has

only constant memory cells, or 0(N) cells with the restriction on the accessing

range of the memory module for multiple read requests. If the number of

memory cells in one module of PE/memory pair is large than N, and any

memory accessing in different modules is allowed in one step, then this commu-

nication step needs 0(N) time in the worst case. So, how to simulate CRCW

PRAM of large memory size or on more PEs on ORM is another research topic

proposed to be studied.

3. Using Wavelength Division

In ORM, many processing element interconnections are electric buses. We know

that a single optical fiber can support a large number of independent, selectable

channels to link the processing elements in a system. And from Chapter 1,
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many optical versions of existing computing models are implemented by using

wavelength division through optical fiber to substitute for the electrical buses.

The questions are as follows:

(a) Can we find some advantages for using wavelength division to connect the

mesh?

(b) How do we do the connections?

(c) What are the performance issues after using the wavelength division?

(d) How can we efficiently use optical free space and wavelength division in

one system?

4. Systolic ORM

A systolic reconfigurable mesh (SRM) [16] is a variant of the reconfigurable

mesh. The SRM combines aspects of systolic arrays with that of a general

reconfigurable mesh model. The implementation of an optical systolic recon-

figurable mesh is another interesting research topic that we propose to study

in the future.



APPENDIX A

CLUSTER-M PRELIMINARIES

In an earlier publication [9] a set of clustering and mapping algorithms was presented

for the preliminary version of the Cluster-M mapping module. Those algorithms can

handle only "uniform" arbitrary task and system graphs. The algorithms presented

in this paper are nontrivial extensions of the Cluster-M uniform algorithms for

mapping "nonuniform" arbitrary task graphs onto "nonuniform" arbitrary system

graphs. In the following, we first give an overview of the Cluster-M tool and then

present basic concepts used both in uniform and nonuniform Cluster-M clustering

and mapping algorithms. A set of parameters used in the nonuniform clustering and

mapping algorithms is presented in the Section Clustering Parameters.

Cluster-M

Cluster-M is a programming tool that facilitates the design and mapping of portable

parallel programs [9]. Cluster-M has three main components: the specification

module, the representation module and the mapping module. In the specification

module, machine-independent algorithms are specified and coded using the Program

Composition Notation (PCN [20]) programming language. Cluster-M specifications

are represented in the form of a multilayer clustered task graph called the Spec graph.

Each clustering layer in the Spec graph represents a set of concurrent computations

called Spec clusters. A Cluster-M Representation represents a multilayer partitioning

of a system graph called the Rep graph. At every partitioning layer of the Rep graph,

there are a number of clusters called Rep clusters. Each Rep cluster represents a set

of processors with a certain degree of connectivity. Given a task (system) graph, a

Spec (Rep) graph can be generated using one of the Cluster-M clustering algorithms.

The clustering is done only once for a given task (system) graph independent of

any system (task) graphs. It is a machine-independent (application-independent)
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clustering; therefore it is not necessary for it to be repeated for different mappings.

For this reason, the time complexities of the clustering algorithms are not included in

the time complexity of the Cluster-M mapping algorithm. In the mapping module,

a given Spec graph is mapped onto a given Rep graph. This process is shown in

Figure A.1. In an earlier publication [9] two Cluster-M clustering algorithms and a

mapping algorithm were presented for uniform graphs.

Mapping of a Spec graph onto a Rep graph

Figure A.1 Cluster-M mapping process.

Basic Concepts

There are a number of reasons and benefits in clustering task and system graphs in

the Cluster-M fashion. Basically Cluster-M clustering causes both task and system

graphs to be partitioned so that the complexity of the mapping problem is simplified

and good mapping results can be obtained. In clustering an undirected graph,

completely connected nodes are grouped together forming a set of clusters [9, 14].

Clusters are then grouped together again if they are completely connected. This is

continued until no more clustering is possible. When an undirected graph is a task

graph, then doing this clustering essentially identifies and groups communication-

intensive sets of task nodes into a number of clusters called Spec clusters. Similarly

for a system graph, doing the clustering identifies well-connected sets of processors

into a number of clusters called Rep clusters. In the mapping process, each of

the communication intensive sets of task nodes (Spec clusters) is to be mapped
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onto a communication-efficient subsystem (Rep cluster) of suitable size. Note that

mapping of undirected task graphs onto undirected system graphs is referred to as

the allocation problem. An earlier publication [9] showed that Cluster-M clustering

and mapping algorithms can lead to good allocation results. It compared its results

with Bokhari's 0(N 3 ) algorithm and showed that its algorithm has a lower time

complexity of 0(1V1 N), where M and N are the number of nodes in the task and

system graphs, respectively.

Clustering directed graphs (i.e., directed task graphs) produces two types of

graph partitioning: horizontal and vertical. Horizontal partitioning is obtained

because, as part of clustering, we divide a directed graph into a layered graph such

that each layer consists of a number of computation nodes that can be executed in

parallel and a number of communication edges incoming to these nodes. This is

shown in Figure A.2(a). The layers are to be executed one at a time. Therefore,

the mapping is done one layer at a time. This significantly reduces the complexity

of the mapping problem since the entire task graph need not to be matched against

r figure 11..h norizontai ana vertical partitioning or a tasK grapn.

Vertical graph partitioning is obtained because, as part of the clustering, the

nodes from consecutive layers are merged or embedded. All the nodes in a layer are

merged to form a cluster if they have a common parent node in the layer above or
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a common child node in the layer below. Doing this traces the flow of data. This

information will be used later as part of the mapping so that the tasks are placed

onto the processors in a way that total communication overhead is minimized. For

example, to avoid unnecessary communication overhead, the task nodes along a path

may be embedded into one another so that they are assigned to the same processor.

The effect of this type of partitioning is shown in Figure A.2(b).

Both horizontal and vertical graph partitionings are accomplished by performing

the clustering in a bottom-up fashion. The Cluster-M mapping will then be

performed in a top-down fashion by mapping the Spec clusters one layer at a

time onto the Rep clusters. The next two sections show how these clustering and

mapping ideas work for nonuniformly weighted graphs. The nonuniform algorithms

shown in this chapter are nontrivial extensions of the Cluster-M uniform algorithms

presented in an earlier publication [9].

Clustering Parameters

In the following, we present a set of parameters needed for nonuniform version of

Cluster-M clustering and mapping. The first set is for representing a portable parallel

program and the other for specifying the organization of the underlying hetero-

geneous architecture or suite.

Machine-Independent Program Parameters:

A given parallel program consists of a sequence of steps such that in each step

a number of computations can be done concurrently. Each step is called a layer.

These concurrent computations for a given step (layer) can each be presented by a

cluster called a Spec cluster. The mth Spec cluster at layer u is denoted by S inu and

associated with the following parameters.
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()FS,' The size of S which is the maximum number of nodes in this cluster that can

be computed in parallel.

6 S mu The maximum sequential computation amounts (i.e., the maximum number of

clock cycles required to execute all the instructions sequentially using a baseline

computer) in S .

IliSmu The total amount of communication from layer 1 to layer u of Smu .

T- Smu The average communication amount at the layer u in S .

pS niu The computational type of Smu . Its value is set to 0 for single instruction

stream, multiple data stream (SIMD) type and 1 for multiple instruction

stream, multiple data stream (MIMD) type.

Program-Independent Machine Parameters:

Any heterogeneous architecture can similarly be represented in a multilayered format

such that each layer presents a set of processing units which are completely connected.

Each processing unit is represented by a cluster called a Rep cluster. The nth Rep

cluster at layer v is denoted by Run and associated with the following parameters.

o Rvn The number of processors contained in /77,1'.

klivri The average computation speed of the processors in R.

Illen The total data transmission rate including the transmission rate over the links

(communication bandwidth) and over the nodes (switching latency) from layer

1 to v in 14.

Rvn The average data transmission rate at layer v of

'All the examples of the problems and systems studied in this paper are assumed to
be of MIMD-type. However, in heterogeneous computing, it is possible to have a mix of
SIMD and MIMD nodes both in the task and the system.
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pR The computational type of the Rep cluster. Its value is set to 0 for SIMD type

and 1 for MIMD type.

NON-UNIFORM CLUSTERING

This section first presents a clustering algorithm to be used for directed task graphs

independent of any system graphs and then presents another one for undirected

system graphs independent of any task graphs. Both algorithms are done only once

for any given task or system graph and are not repeated as part of the mapping

process.

Clustering Directed Task Graphs

A task can be represented by a directed graph G t (Vt, Et ), where 14 {t 1, IM } is

a set of task modules to be executed and Et is a set of edges representing the partial

orders and communication directions between task modules. A directed edge (ti, t3 )

represents a data communication from module t i to tj and t i must be completed

before ti can begin, where 1 < i , j < M. Each edge (t i ,tj ) is associated with

the amount of data required to be transmitted from module ti to module t,j , where

Di3 > 1. Each task module t i is associated with its amount of computation A i , that

is, the number of instructions contained in t i . Note that A i > 1 and Di, > 1 if there

exists an edge (t i , tj ), for 1 < i , j < M. If a directed edge (ti, tj) exists, ti is called

a parent node (module) of tj and tj a child node (module) of ti. If a node has more

than one child, it is called a fork-node. If a node has more than one parent, it is

called a join-node. A task graph is divided into a number of layers, so that all nodes

in a layer can be executed concurrently.

A clustering algorithm called clustering nonuniform directed graphs (CNDG) is

shown in detail in Figure A.3. This nonuniform algorithm is designed as an extension

to the uniform clustering algorithm presented in an earlier publication [9]. The
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Figure A.3 Clustering Nonuniform Directed Graphs (CNDG) algorithm

nonuniform algorithm has been designed in such a way that it is a generalization of

the uniform algorithm. For clustering nonuniform directed graphs, a quintuple of

parameters (cr Smu 6smu llsmu 71.s, psmu ) from the Cluster-M model described in the

last section is associated with the mth Spec cluster at layer u denoted by S mu . The

clustering is done layer by layer. At layer 1, a node with computation amount Ai is

a cluster by itself with parameters (1, Ai, 0, 0, 0) for SIMD type or (1, Ai, 0, 0, 1) for

MIMD type. Then for other layers, the nodes are clustered as follows. If a node is a

join-node, we first embed it onto one of its parent nodes that has the largest weighted

edge connecting to this join-node. If multiple parent nodes have edges with the same

largest weight, we randomly select one of them. When a node with a computation
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amount A is to be embedded onto Sm.", then these parameters are updated to o-S'

6S,,,u + Ai, IISmu , 7rSmu , and An' . We then merge all its parent nodes into a new

cluster denoted by Sr". This is shown in Figure A.4, where a join-node at layer

(u 1) with computation amount A has n parent nodes ST, kc_L,• • • ,S,,"4 at layer u.

The communication amount between the join-node and one of its parent nodes Sr is

denoted by D i , where 1 < i < n. Also, D 1 maxi<i<n Di. The new cluster Sl . " is

generated by embedding the join-node to ST and merging it with all the other parent

nodes. The first four parameters of S,'+' can be computed as follows.

It a node is a fork-node, we will embed one of its child nodes to this tork-node. The

child node is selected so that it has the largest weighted edge connecting to the fork-

node. If multiple child nodes have edges with the same largest weight, we randomly

select one of them. We then merge the rest of the child nodes with the fork-node into

a new cluster. As shown in Figure A.5, a fork-node SI at layer u has n child nodes at

layer (Li + 1). These child nodes have computation amounts A 1 , A2, • • • , An , and the

communication amounts between the fork-node and each of them are D1, D2, • • • , Dfl,

respectively. Similar to the case of the join-node, D 1 maxi<i‹. Di. Then the node

with the computation amount A l is embedded into the fork-node before we merge

the fork-node with all the other child nodes to generate the new cluster ST .". The

first four parameters of S iu+ 1 are then computed as follows.



For both fork and join nodes, the fifth parameter, p5,,u , is determined as follows.

As an MIMD cluster is merged with an SIMD or MIMD cluster, the computation

type of the new generated cluster is MIMD. When two SIMD clusters are merged

then the computation type of the new cluster is decided by their computational form

(addition, subtraction, multiplication, etc.). If the two SIMD clusters have exactly

the same computation form then the computational type of the new cluster is SIMD,

otherwise, it is MIMD. We denote the computation form of Smu by CF(Smu ). Then

the computational type of a new cluster Smu generated from embedding or merging

n clusters, SI', • • Snu, can be formulated as follows.

{pS 14,. = 0 if (AY = 0, for all i) and (CF(Sn CF(SD =•• • = CF(Snu))
1 otherwise

(A.9)

Note that since our task graphs are independent of any system graphs (unlike

[64, 54, 67]), they do not contain the information about computation time and

communication delay. Therefore, we can only embed one node into another as part of

clustering for reducing communication overhead. The embedding of multiple nodes

onto one node is done as part of the mapping, as explained in the next section.

The time complexity of the CNDG algorithm is bounded by the number of edges

in the task graph, which is 0( lEt D. For the worst case, we have an upper bound for

this algorithm, that is, 0(M2 ), where M is the number of nodes. However, note that

most graphs are not completely connected, therefore, in practice, the time complexity

of this algorithm will be 0(M) if the number of edges is proportional to the number

of nodes. To illustrate this algorithm, consider the task graph of seven modules and

its Spec graph, as shown in Figure A.6. Each module is labeled with its computation

amount and each edge is labeled with the amount of data communication. The
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Q

Figure A.6 A task graph and steps for obtaining the Spec graph
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Spec graph is constructed by embedding/merging the clusters layer by layer and is

a multi-layer clustered graph as shown.

Clustering Undirected System Graphs

A parallel system that can be modeled as an undirected system graph G r (1, 7 , Er ).

In Gp , Vp {p i , ..., pN } is the set of processors forming the underlying architecture,

while Ep is the set of edges representing the interconnection topology of the parallel

system. We assume that the connections between adjacent processors are bidirec-

tional. Therefore, an edge (pi , pi ) represents that there is a direct connection between

processor p, and pi. The computational speed of processor p i is denoted by B i ,

and the communication bandwidth between two processors p i and pi is denoted by

C. The transmission rate is a function of the communication bandwidth between

pi and pj and the node latencies at pi and pj. Both the computational speeds of

different processors and the transmission rates of different communication links may

be nonuniform. This makes the Cluster-M approach more general than approaches

such as PYRROS, Hypertool, and PARSA, which assume fully connected uniform

systems.

Similar to Spec clusters, the nth Rep cluster at layer v, Rv„, is associated with

the quintuple (a Run , 5Rn, HRn, irRn, p Rv7,) defined as part of the Cluster-M model in

the last section. To construct a Rep graph from an undirected system graph, initially,

every node with computation speed of Bi forms a cluster by itself with parameters

(1, B2, 0, 0, 1), assuming that these nodes are all MIMD type. Then clusters that

are completely connected are merged to form a new cluster, and the parameters of

the new cluster are calculated, as explained below. This process is repeated until no

further merging is possible. Three clusters .1rx , Ry, and Rvz are completely connected

if Rsv contains a node 73,, 14 contains a node py , and R ,tt contains a node pz , so that

nodes px ,py , and p, form a clique. This definition can be extended for N completly



The fifth parameter, pRun+1 , is computed per (A.9).

The algorithm for clustering undirected graphs is shown in Figure A.7. Instead

of using an optimal algorithm for finding cliques, we use a heuristic so that, for every

cluster, we examine the set of edges connected to it in the following manner. The

edges are sorted in descending order based on the value of C. The edges are then

examined one at a time from this list. If more than one of the edges have the same

weight, then an arbitrary one is selected. A simple example is shown in Figure A.8.

We now analyze the running time of this implementation. For each layer, we

first sort all the edges between clusters. This sort takes 0((E p l log 141) time, where

lEp i is the number of edges in the system graph. Then, we keep merging clusters

into the next layers. Suppose at a certain layer, there are in clusters c 1 , • • • , cm . The

time for finding cliques among these clusters is at most 771 x m < N2 , where N is the



Figure A.7 Clustering Nonuniform Undirected Graphs (CNUG) algorithm.
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(3,5/3,3,1,1)

(2,2,2,2,1)
(1,1,0,0,1)(1,2,0,0,1) (1,2,0,0,1)

0	 0

Rep graph
(3,5/3,3,1,1)

Figure A.8 A nonuniform system graph and its Rep graph.

number of processors in the system graph. The most number of layers there can be

is N — 1. Therefore the total time complexity of this algorithm is 0(N (Ep log 1.41+

N2 )). Consider the worst case, where the system graph is completely connected (i.e.,

= 0(N 2 )), then the time complexity of this algorithm will be 0(N3 log N). Note

that most system graphs are not completed connected. Therefore, in practice the

time complexity of this algorithm will be 0(N3 ) if the number of edges is proportional

to the number of nodes.
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