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ABSTRACT

ANALYSIS OF 320X240 UNCOOLED
MICROBOLOMETER FOCAL PLANE ARRAY

AND DESIGN OF
THERMOELECTRIC COOLER CONTROLLER

by
Takayoshi Fukaya

Uncooled microbolometer focal plane array is one of the promising method used in

uncooled infrared imaging projects. The array's advantages over the conventional cooled

imagers are its ability to operate without cryogenic cooler or dewar and its low cost. For

the past several years, the ULTRA (Uncooled, Low cost, Technology Reinvestment

Alliance) Consortium has been developing uncooled microbolometer imaging system.

This thesis investigates the technology behind the ULTRA camera system. The

theoretical as well as the operation of the uncooled microbolometer focal plane array and

the processing hardware and software is analyzed and explained.

Thermoelectric cooler controller for the microbolometer focal plane array is

designed and described. The thermoelectric cooler, a solid state heat pump, is used to

stabilize the temperature inside the microbolometer array packaging at a constant

temperature to obtain higher microbolometer performance. The controller is designed

and simulated to stabilize minimum of 20mK change in temperature inside the packaging.
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CHAPTER 1

INTRODUCTION

In recent years, the interest toward uncooled infrared imaging has grown significantly due

to its low cost and its ability to operate without cryogenic cooling devices.

Microbolometer is one of the successful method used in uncooled imaging projects.

In this thesis, the theory as well as the operation of the microbolometer camera

system developed by the Uncooled, Low cost, Technology Reinvestment Alliance project

is investigated. The camera system includes focal plane array, processing hardware and

software, and each part of the camera is analyzed and described.

The research work also involved designing of the thermoelectric cooler controller

which regulates the temperature of the microbolomter at a constant temperature. The

temperature stability is an important factor in the focal plane array performance.

This thesis is divided into two parts. The first part describes the theory and the

operation of the microbolometer camera system (chapter two and chapter three). The

second part is the design of thermoelectric cooler controller (chapter four). Chapter one

describes the introduction and background of the microbolometer camera. Chapter two

describes the theory and operation of the microbolometer focal plane array. Chapter

three discusses about the camera hardware and software. Chapter four describes the

controller for the thermoelectric cooler and chapter five is the conclusion.
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1.1 Background

For the past several years, the ULTRA (Uncooled, Low cost, Technology Reinvestment

Alliance) Consortium has been developing uncooled microbolometer imaging system

with its goal to manufacture and sell the system for military and industrial applications.

The alliance of ULTRA Consortium consists of Honeywell Technology Center of

Honeywell Incorporated, the Autonetics Missile Systems Division of Rockwell

International Corporation, Inframetrics Incorporated, and the New Jersey Institute of

Technology. A specific task is assigned to each of the group in the development of the

microbolometer imaging system. ULTRA has been funded by DARPA sponsored

Technology Reinvestment Program grant and by corporate funding.

Honeywell, the primary developer of the VOx microbolometer Uncooled Focal

Plane Array (UFPA), has been transferring the microbolometer technology to Rockwell.

Rockwell, with its over twenty years of IRFPA design, fabrication, and packaging

experiences, has been developing U3000 (microbolometer UFPA), and has developed an

enhanced CMOS 320 x 240 multiplexer readout circuit for the array. Rockwell has

silicon Micro-Machined Device fabrication line, where the processes and equipment used

in the plant are applicable to microbolometer fabrication. A reliable low cost UFPA

readout circuit is provided by Rockwell's Semiconductor Systems division, which is a

world class commercial silicon CMOS IC producer [10]. Inframetrics, with the goal of

incorporating the uncooled technology into its product line, has been working for several

years to develop a camera hardware and software platform for the uncooled focal plane

arrays. NJIT has been developing a Multi-Wavelength Imaging Pryometry system for the

uncooled microbolometer sensor [3].
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Figure 1.1 shows the overall system configuration for the microbolometer camera

system consisting of optics, the focal plane array, a processing hardware, and a computer.

kacIrn purer

Figure 1.1 System configuration for the microbolometer imaging system.

The microbolometer is one of the alternate method for uncooled infrared camera.

With government and internal funding, the microbolometer project has been developing

at Honeywell Sensor and System Development Center in Minneapolis since 1980's. The

project development has been administered by the Army CECOM Center for Night

Vision and Electro-optics under the High-Density Array Development (HIDAD)

Program.

The concept of the microbolometer is to create an array of bolometers with

readout electronics on a single chip to make an imaging device. The bolometer itself is

not a new technology. However, the concept of microbolometer has started to emerge

due to advances in technology, especially in the area of micromachining.
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The conventional infrared cameras use cryogenically cooled photon detecting

focal plane array (FPA) that require cooling down to around or below liquid nitrogen

temperature, which is about 77K. The cooling of the FPA is due to the relatively large.

dark current noise (thermally generated carriers in the semiconductor detector material) at

room temperature and also to achieve high sensitivity. The detectors need a dewar or a

cryogenic cooler to cool the FPA, making the camera more expensive, heavier, and larger

The infrared photon detecting focal plane array require extra processes to fabricate, and it

cannot be produced on a standard silicon process line that is available to produce chips

today, thus making it expensive.

Microbolometers are designed to overcome these disadvantages of the cooled

cameras. Since the microbolometer camera is uncooled, it does not need a dewar or a

cryogenic cooler to cool the FPA. This means that it will reduce the cost, the weight, and

the size of the camera. Another advantage of the microbolometer is that it does not

require extra processes or expensive detector materials to create the focal plane array and

can be manufactured on the standard silicon process line. This means that the FPA's can

be mass produced and thus their cost are reduced drastically, making infrared

microbolometer cameras available to the general public.

As it will be explained later, the bolometer is a radiation power absorbing device

which can theoretically detect any wavelength as oppose to cooled photon detecting

devices, which has limited detecting bandwidth. The photon detecting devices can only

detect a certain window of wavelength according to their energy band gap of the detector

material. Since the microbolometer is a radiation power absorbing device, it has a wide

dynamic range, meaning capable of detecting in all wavelength. The long-wave infrared
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radiation (LWIR) between 811m to 1211m, popularly used for room temperature

radiometric measurements, is the region where the emission of infrared radiation from

room temperature objects is the highest. To detect this region with photon sensing

devices, expensive materials, such as HgCdTe, are used. On the other hand,

microbolometer can be easily modified to observe 8ium to 121.1m infrared wavelength

range by using filters and by adjusting detector material absorption range.

With the reduction of cost, there are several applications that can benefit from it.

For military application, there are applications such as weapon sights for individual

soldiers, crew-served weapon sights, sensors for missile seekers, and driver's aides for

combat support vehicles. For industrial and commercial application, there are such

applications as electric and mechanical troubleshooting, surveillance camera for police

and INS, home and business security system, landing aids and traffic monitor for airports

and aircrafts, and IR goggles for firefighters [4].



CHAPETER 2

UNCOOLED MICROBOLOMETER FOCAL PLANE ARRAY

2.1 Basic Theory

2.2.1 General Analysis

The bolometer has been in existence for a while. It is a radiation absorbing device which

measures the temperature change due to resistance change in a material from the heating

effect of the absorbed radiation. Bolometers are power absorbing devices capable of

detecting radiation of all wavelengths. One of the application of the bolometer is

microwave power measurement where it is usually placed within a microwave waveguide

to measure average power. Other applications include power measurement in the audio

and radio frequency range.

The most simplest form of bolometer is a short piece of wire. When a piece of

wire is radiated with a source, it will heat up due to absorption of radiation. The

absorption will cause temperature of the wire to rise, which cause the resistance of the

wire to change. The change in the resistance is translated into voltage or current which is

proportional to the temperature change.

Figure 2.1 shows a simple model of a bolometer. A mass with thermal

capacitance of C is connected to the supporting structure through narrow path with

thermal conductance of G. In the case of microbolometer, the thermal conductance path

is combined with the electrical conduction path to the readout electronics.

6



Figure 2.1 Simplified bolometer structure.

A mathematical model of bolometer is given in reference [7]. Consider a

bolometer system shown in Figure 2.1. The bolometer material has a heat capacity of C

and the support structure has a thermal conductance of G. The change in energy, Ac, of

the material is proportional to the change in the temperature T. The proportionality

constant is the heat capacity of the material. The equation is given by

As = CAT .	 (2.1)

The rate of heat flow 
d(Ae)

 is proportional to the change in temperature AT with K
dt

being the proportionality constant and is given by Equation 2.2.
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where the proportionality constant K is the thermal conductance G between the detector

material and the surrounding.

From Equation 2.1, the rate of heat flow can also be described as

d (As) c d (AT) 

dt 	 dt •

Assuming the detector material is at higher temperature than the surrounding temperature,

the heat flow is from the material to the surrounding. Since the temperature of the

material is higher than the surrounding, the rate of heat flow 
d(Ae)

 is negative. With
dt

Equations 2.2 and 2.3 equated, the heat transfer equation becomes

d (AT) 
C 	 — GAT .

dt

The change in the detector material temperature with the presence of radiation is

d (AT)
 + G(AT) = 77P ,

dt

P= Po exp(j cot) ;

where P is a modulated source power with frequency co, and ri is the detector IR

absorption. The value of i  depends upon the detector material, the thickness and spacing

of the layers, and the pixel fill-factor (the fraction of detecting area to the total area).

The solution to Equation 2.5 is equal to

77.130 exp( cot)
AT = ZS.To exp(— —

G
t) +

G + j coC

(2.3)

(2.4)

(2.5)

(2.6)



9

The first function of the right hand side of the equation is the transient term and the

second function is the periodic term. At steady state, the transient term disappears and

the periodic term converges to its steady state magnitude. Equation 2.6 reduces to

A metal has a linear dependence of change in resistance upon temperature,

Re = Reo [l + y (T — TO]; 	 (2.9)

where Reo is the resistance of a material at ambient temperature T o, T is the absolute

temperature, and y is about 0.5% per degrees Centigrade for many metals [7]. From

Equation 2.8, the temperature coefficient of a metal is equal to

a — 	 (2.10)1 + y (T — To )

The resistance dependency upon temperature change and the TCR for a semiconductor

are given, respectively, by

R, = Reo exp(f3 / T) , 	 (2.11)

a= —filr; 	 (2.12)

where 13 = e;1 2k 6 i is the intrinsic excitation energy or energy band gap, and k is the

Boltzmann's constant (1.38 x 10' joule/deg K).
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There are three types of material that are suitable for the bolometer: metal,

semiconductor, and superconductor. Metal and semiconductor bolometers are operated at

ambient temperature, but superconducting bolometers need to be cooled down to near

absolute zero. Superconductors (lead, tin, tantalum, niobium nitride, and niobium

stannide) have a critical temperature, where the resistance of the material below the

critical temperature becomes zero, making a sharp change in the resistance near the

critical temperature of superconducting material. When operating near the critical

temperature, any slight change in the temperature can lead to large resistance change.

Superconductors can be used for high sensitivity bolometers.

For metals, the resistance increases with the temperature linearly. In

semiconductor material, the resistance decreases as the temperature increases. Therefore,

with large bias current applied to a bolometer, the bolometer will eventually bum out.

Semiconductor bolometer or thermistor is widely used due to its more pronounced

exponential dependence on resistance upon temperature change than the linear metal

dependence. For the microbolometer application, semiconductor material is most

suitable due to uncooled ambient temperature operation and its resistance characteristics.

Figure 2.2 shows a simple bolometer circuit. The load resistance R L is in series

with the bolometer RB and the bias voltage source V1 . When the circuit is open, the

bolometer is at ambient temperature To without radiation and no current flows through the

circuit. With the circuit closed and no radiation, the current in the circuit will heat up the

bolometer to temperature T 1 . The resistance of the bolometer RB changes to a value
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corresponding to T 1 . With radiation falling upon the bolometer, the temperature changes

by AT to a new value T.

Figure 2.2 A simple bolometer circuit.

For the analysis, it is assumed that all the radiation incident upon the detector is

absorbed uniformly throughout the volume, the material is uniform throughout the

volume, and non-uniform Joulean heating is ignored. In absence of radiation with bias

onrrent in the rirrnit the heat transfer Pnimtinn is oiven hv

and the surrounding at T0 . The term on the right hand side of the equation is the Joulean

heating of the bolometer. With the presence of radiation P, the bolometer changes its

temperature by AT to T. The heat transfer equation becomes
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dAT	 d(i2R )
C 	 + KAT —

dT
B AT + P ;

dt
(2.14)

Substituting Equation 2.15 into 2.14 with the definition of temperature coefficient, the

equation becomes

d(AT)
 + KAT 

V1 2 Rya  (RL — RB
(2.16)

dt	 + RB ) 2 	RB	
+ P

The Joulean heating in the bolometer in the steady state is related to the conduction

losses, which can be expressed as
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then the transient term goes to zero with time and the periodic function is left. However,

if

then the transient term increases exponentially large until eventually the bolometer

overheats and bums up. Assuming that R I, is much greater than RB and thermal

conductance stays about the same with change in temperature (1( ,,K0), the unstable bum

out condition is when

a (7; — To ) > 1. (2.22)

For metals, where a decreases with temperature (Equation 2.10), it does not meet the

condition in Equation 2.22, and self-burnout does not occur. However, in the case of

thermistor material, if the bias current is large enough, it will overheat and burnout. The

self burnout condition is given by

The value of )611;2 is about 0.04 for thermistor materials. If the bolometer is at an

ambient temperature of 300K, then the critical temperature for self-burnout is about

325K [7].

2.2.2 Responsivity

From the definition of temperature coefficient (Equation 2.8), the change in the bolometer

resistance due to change in temperature by AT is
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PBIAS VBIAS 2/RDET

Figure 2.3 Microbolometer thermal equivalent model.

Figure 2.3 shows the thermal equivalent model for the microbolometer. The model

shows the power input from bias and from the radiation. The thermal time constant can

also be derived from this model, which is the same as in Equation 2.27.
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The signal voltage (Eauation 2.26) in terms of the thermal time constant T is emial

bolometer must have a high temperature coefficient and small thermal conductivity G. It

is inversely proportional to G at lower modulation frequencies (cot<<l), the region (co

8-12iim) where the uncooled thermal infrared detectors are used. The small thermal

conductivity G means that the detector must be thermally isolated. In the case of

microbolometer, the microbridge or the air-bridge structure provides the large thermal

isolation. The higher responsivity is obtained in expense of the thermal time constant.

To obtain high responsivity, the response time is slowed down and vice versa. Therefore,

the key to develop a "good" bolometer is to have a detecting material with high

temperature coefficient a and IR absorption efficiency a low thermal capacitance C,

and to make the thermal conductance G small as possible [7]. Figure 2.4 shows the

response curve for one of Rockwell's U3000 microbolometer array. The typical values

for the microbolometer array is listed in Figure 2.5.
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2.5 3

Figure 2.4 UFPA responsivity for 300K irradiance in the 8 to 13,um [5].

Figure 2.5 Typical microbolometer values for U3000 microbolometer array [5].
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2.2.3 Noise

The detection capability of any imaging system is limited by fluctuations of a random

nature, noise. There are three categories that the noise appearing in an infrared system

may arise from: noise in detectors, in readout electronics, and from the radiation

background. In a microbolometer UFPA, there are three primary noise sources to be

considered. The Johnson noise of the bolometer, the 1/f noise characteristic of both

amorphous and poly-crystalline semiconductors, and the fundamental thermodynamic

temperature fluctuation noise of the individual detector elements. Also, there are noise

from the readout electronics and the detector bias supply, but the common-mode noise

rejection features that are incorporated into Rockwell's design of UFPA effectively

suppresses the noises.

The Johnson noise or thermal noise appears in any resistive material. It is caused

by the random motions of the charge carriers. 1/f noise or current noise is a dominant

noise source of semiconductor materials at low frequencies. The background noise is due

to the quasi-random arrival of photons from the surrounding of the detector. The

background noise ultimately limits the performance of any thermal detector, because the

noise from the background still exists even if all of the other noise is suppressed. Due to

statistical nature of the heat interchange with the surrounding, a thermal detector in

contact with its environment by conduction and radiation exhibits random fluctuations in

its temperature, known as temperature fluctuation noise. The temperature fluctuation

noise not only comes from the source background, but also from detector casing,

electronics, and even the detector itself.
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Noise equivalent temperature difference (NETD) is defined as the temperature

difference seen in a large blackbody or between two adjacent large blackbodies by an

infrared thermal imaging system, which will give rise to signal to noise ratio of unity in

the electrical output of the focal plane array and readout electronics [9]. It is essentially

bolometer's sensitivity to temperature change.
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F is the f/# of the optics, VN is the electrical noise within the system bandwidth, T o is the

transmittance of the optics and (AP / AT),I  _12 is the rate of change of the radiated power

per unit area of a blackbody at temperature T s measured within the spectral interval from

2 to k2. The relationship between D* and responsivity R is defined as

(A B)12
2 R

D*	 DV	(2.34)
N

where B is the measurement bandwidth.

Substituting Equation 2.30 to Equation 2.33 and with Equation 2.34, the

expression for the noise equivalent temperature difference in a temperature fluctuation

Figure 2.6 a) and b), respectively, illustrates Equations 2.35 and 2.36, where all

thermal infrared detectors must fall on or above the limits shown. With a given value of

G, a detector cannot have an NETD better than or points lower than the sloping line. The

actual detectors usually lie above the sloping line due to higher noise than that of

temperature fluctuation noise. Within the parameters given, no detector can have NETD

better than (lower than) the background limit shown.



b) Temperature and background fluctuation noise limits.

Figure 2.6 NETD temperature fluctuation and background fluctuation noise limits [81
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To obtain the temperature fluctuation noise limited system, the temperature

fluctuation noise must be greater than any other noise, including Johnson noise and 1/f

power noise. The temperature fluctuation noise limited detector voltage VTF is given by
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conditioning electronics, timing and control logic, and on chip bias generation and

microbolometer overheat protection circuitry.

All of the 240 column detector signal path is connected to the signal conditioning

network located at the end of each column. The signal conditioning network is

comprised of a column differential amplifier, signal integrators, and a sample and hold

network. The signals coming out of the 320 sample and hold networks are shifted out to

the output driver by the output multiplexers. The U3000 is designed with an on-chip bias

generation that generates all the necessary bias voltages to operate the UFPA. If the auto-

bias function is turned off, then the bias voltages are to be provided externally. The

horizontal and vertical shift registers are used to control the FPA scanning. Also, end-of-

line and end-of-frame Build-In Test (BIT) clocks, used by the sensor to verify normal

UFPA operation, are generated by the shift registers. The BIT features are designed to
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provide protection against detector overheating in case of external clock failures and to

furnish the sensor with the UFPA status signals [10].

The focal plane array consists of 320 x 240 microbolometer unit cells, which is

formatted for 50% full TV resolution. A unit cell consists of a micro-bridge and readout

electronics, which includes detector selection switch transistors, as shown in Figure 2.8.

The microbridge structure is fabricated on top of the readout electronics. The first

generation of microbolometers, made by Honeywell, used a bipolar transistor for detector

selection switch in the readout circuits. The second generation microbolometer readout

circuit, the U3000' s made by Rockwell, uses MOSFET for their selection switch.
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Figure 2.10 shows a typical thermal isolation structure of a monolithic VOx

microbolometer cell with detector integrated on to an air-bridge. Using standard silicon

IC thin film process, the microbolometer thermal isolation structure is deposited directly

on top of readout integrated circuit (ROTC) wafers. The two long thin legs that connect

each detector to the ROTC substrate provide extremely high thermal isolation necessary

for the microbolometer responsivity. The two legs also serve as both thermal and

electrical conduction path to the ROTC, which acts as a heat sink for the detector.

Deposited metal plugs located at the end of each leg are used for mechanical and

electrical contact to the readout circuit [10].
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The UFPA is packaged inside a vacuum sealed packaging with a thermoelectric

cooler. The thermoelectric cooler is used regulate the operating temperature inside the

package to compensate for the temperature drift. The array requires moderately high
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vacuum to reduce the heat leakage to air. The heat leakage degrades the detector

sensitivity by reducing the high thermal isolation of the air-bridge structure. In order for
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reflection (AR) coated Ge window which transmits 98% of in-band IR signal. The height

of the package is less than 0.5 inches, and lateral dimensions are 1.5 inches.

2.3 Fabrication

As mentioned before, one of the advantage of the microbolometer its production process

compatibility with the standard silicon IC process. VOx thermal isolation structure arrays

are co-deposited on top of the ROIC wafer using standard silicon IC thin film processing.

Through the removal of the sacrificial layer between the thermal isolation structures and

the ROIC at the end of the fabrication process, high level of thermal isolation is achieved.

The fabrication of the microbolometer involves micromachining techniques. The

simplified microbolometer fabrication step are described below [9].

1. All the necessary readout electronics, including transistors and metal inter-
connections, are imbedded in a monolithic silicon wafer.

2. Sacrificial layer islands are deposited on top of the readout electronic.

3. Deposit supporting bridge material (silicon nitride).

4. Deposit metal connection for the detecting material.

5. Deposit detector (thermal mass) material (vanadium oxide).

6. Deposit supporting bridge material (silicon nitride).

7. Etch away the sacrificial layer islands.
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Figure 2.14 Simplified fabrication steps for the microbridge structure [91

An improved and simplified process for the microbridge structure is being

developed by Rockwell. With the new process, the number of microbolometer array

process steps can be reduced by 30%, and both metalization and dielectric processes are

improved. It eliminates two photomask layers and replaces wet-etch with dry-etch

process. It is expected that UFPA performance will be improved with the 25% reduction

in thermal conductance and a broadening of the spectral response band.

2.4 Timing

The UFPA is design to output a single signal channel that is compatible with both U.S

and European (PAL) TV synchronization standards, where the image can be viewed

without reformatting the output signal. The output video is TV (60 Hz) compatible RS-
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170 synchronization standard signal. The operation of the array is controlled by three

external clock pulses; ICLOCK, LSYNC, and FSYNC.

ICLOCK is the master clock where the readout is synchronized with the clock.

LSYNC is a line sync or horizontal sync control pulse which simultaneously controls the

signal integration time and detector bias period. The integration time is controlled by the

length of LSYNC clock pulse. By increasing the pulse width of the LSYNC, the

integration time decreases. Therefore, at the maximum integration time is when the

LSYNCE pulse is the shortest, which is equal to 1 clock pulse. With the integration time
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control, it is possible for the camera to have a greater dynamic range (see Figure 2.4). It

is strongly recommended that the detector integration time does not exceed 501is to avoid

detector overheat and self-burnout. FSYNC is a frame sync or vertical sync pulse, where

the frame rate is set by the pulse. The U3000 is design to operate at frame rate of at least

60Hz [5][10].

To readout the detector signal output current (or voltage), bias voltage (or current)

is applied to the microbolometer. Since the detector has very small heat capacity and

thermal conductance, the detector heats up rapidly. The bias voltage must be applied to

each detector for a short period (in a form of pulse) to avoid overheating and thermal run-

away. The pulsed biasing causes the detector's electrical signal response to be highly

dynamic. Here, the detector's electronic Noise Equivalent Band Width is about 1/(bias

pulse time duration). In the readout operation, bias voltage is briefly applied to the

detector in each frame, and the detector is permitted to thermally discharge during the

remainder of the frame time with thermal time constant of about 10ms [10]. As of

today's microbolometer technology, the slow response of the microbolometer makes it

unsuitable to be used in systems, such as heat seeking missile sensor that require fast

response.

During the operation, an entire row of 320 detectors is operated in parallel.

LSYNC selects a row and detector bias is applied for the detector signal readout. The

signal integration begins at the falling edge of LSYNC and ends at the beginning of the

horizontal blanking period. Also at the beginning of the horizontal blanking period, the
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amplified and integrated detector signals are sampled. Readout multiplexing of the

sampled detector signals occurs during the next line time [10].



CHAPTER 3

CAMERA HARDWARE

3.1 Design

For the past several years, Inframetrics has been working to incorporate the uncooled

technology into its product line. The initial work began with the development of the

video head electronics to drive the Honeywell bipolar UFPA. Inframetrics developed the

interface board to filter, to sample and hold, and to digitize the bipolar array output. To

produce a still frame imaging breadboard, the video head integrated the uncooled array,

optics, interface board, and a commercially available frame grabber. Already existing

FpaVIEW software, developed by Inframetrics, was expanded to interface the breadboard

for testing the Honeywell bipolar array.

Recently, Inframetrics developed ThermaCAMTm imaging radiometer based on

the Hughes variable integration time PtSi array. The ThermaCAM Tm project goal is to

develop a platform for both cooled and uncooled detectors. ThermaCAM T" was designed

to provide a standard electronics and software platform for a variety of array formats and

detector technologies, specifically the uncooled focal plane arrays. The camera hardware

can be divided into two main functional blocks; the FPA interface module and the video

processing module.

The FPA interface module provides all the biases, timing pulses, and output signal

conditioning, electronically reconfigurable for a particular array being integrated with the

sensor, necessary to operate the array. The module digitizes the array output and converts

the array readout frame rate with the standard video output frame rate of the video

32



33

processing module by a scan converter. To optimize the sensor's performance, array bias

and clock levels are individually programmed. The specific timing requirement and the

size of the array can be adjusted by programming the timing generator and input buffers.

Focal Plane Array 	 Ampiirlers

Figure 3.1 UFPA interface board block diagram.

The majority of the sensor functions are performed by the video processing

module. The tasks include image processing functions of "equalization", or non-

uniformity correction, and scaling the dynamic range of the detector to the temperature

span of interest. The user interface for measurement modes, temperature spans and

ranges, setup menus, colorization, zoom and cursor control is provided by the video

processing board also. Mass storage functions on a PCMCIA card as well as a common

file format are available for storing and retrieving digitized images into the sensor. For

communications protocol, a standard remote control interface to the sensor is maintained.
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The module includes colorized output in NTSC or PAL, black and white radiometrically

calibrated analog video, and 12 bit digital video output.

The ThermaCAM im software is applicable to both cooled and uncooled arrays.

The process of the software includes "equalization," a standard method of determining

correction coefficients in the computer and downloading coefficients back to the camera,

to acquire proper frame data for the process. The software functions include file

management, live image display, image capture, histograms, NETD, image pixel

statistics, gain and offset coefficients, calibration curves, image brightness and contrast,

colorization, and several other specialized features.

Inframetrics developed the imaging test fixture for the Honeywell bipolar array by

integrating the interface board with ThermaCAM Thi electronics. The test fixture allowed

preliminary array and radiometric characterization, while the Rockwell arrays and the

associated imaging board were being developed. Information gained from the array and

radiometirc characterization was used to improve the system for the Rockwell array [5].,

A new interface board was developed for the microbolometer arrays to compensate for

signal levels and noise characteristics different from that of photon detectors.

Figure 3.2 shows the camera test fixture for the Rockwell microbolometer array.

It consists of the new interface board and the ThermaCAMTM platform electronics.

Figure 3.3 shows the test fixture functional block diagram. The UFPA array is connected

to the interface board with sample and hold, and 16-bit AID converter. The digitized

video is sent to the video processor module for signal processing and also to the computer

where the offset correction coefficient calculation is performed. The coefficients are sent

back to the interface board for offset correction through DIA.
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Figure 3.3 UFPA camera platform.



CHAPTER 4

THERMOELECTRIC COOLER CONTROLLER

4.1 Thermoelectric Cooler

A thermoelectric module is a device that can be used as a heat pump or as an electrical

power generator. It is called an electrical power generator when it is used to generate

electricity, and it is called a thermoelectric cooler (TEC) when it is operated as a heat

pump. For the purpose of microbolometer temperature stabilization, the module is only

needed to operate as a heat pump (thermoelectric cooler).

The thermoelectric module is analogous to that of a standard thermocouple used

to measure temperature. Thermocouples are made from two junctions formed by two

dissimilar metals, such as copper and constantin. When measuring temperature, one side

of the junction is kept at some reference temperature and the other side is attached to the

target temperature. The voltage difference created by the junction is related to the

temperature difference. The operation is analogous to the thermoelectric module being

used as a power generator. On the other hand, applying electrical energy to the junction

of thermocouple will cause one junction to become cold and the other to become hot.

This is analogous to the thermoelectric cooler operation.

Thermoelectric cooler is based on the concept of the Peltier effect, which was

discovered in 1834. The Peltier effect is the change in temperature due to current passing

though a junction of two different types of conductor. The thermoelectric cooler uses p-

type and n-type semiconductor material (bismuth telluride), connected in series placed

between two ceramic plates to optimize electrical insulation and thermal conduction with

36
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high mechanical strength as shown in Figure 4.1. It is a solid state heat pump that has no

,...aco.o O c 	 rrrn'tTPrnf; !Mini 011/11111 cxretp.m

There are three fundamental components to the conventional refrigeration system:

the evaporator, the compressor, and the condenser. The evaporator or cold section is used

to allow the pressurized refrigerant (freon) to boil, to expand, and to evaporate. The

change in the state of the refrigerant from liquid to gas causes energy (heat) to be

absorbed. The refrigerant is recompressed from gas to liquid by the compressor. The

heat absorbed by the evaporation stage and the heat produced during compression is

expelled into the environment through a heat sink.



Figure 4.2 A single thermoelectric element being bias by a DC source [111

The thermoelectric cooler essentially works in a similar fashion. Instead of

refrigerant, electrons are used in case of the TEC (see Figure 4.2). At the cold side of

TEC, energy (heat) is absorbed as electrons passes from a lower energy level of p-type

material to a higher energy level of n-type material. At the hot side, the situation is

reversed. Heat is emitted to the environment as electrons move from n-type high energy

level to p-type low energy level. As shown in Figure 4.3, p-type and n-type

semiconductor couples are placed electrically in series and thermally in parallel to make

the device more effective.



Unlike the photon sensors, the microbolometer is a thermal sensor, and any

change in the environment that the microbolometer is in can affect the temperature

measurement. Therefore, the temperature inside the microbolometer packaging must be

kept at a constant temperature. To accomplish this task, the thermoelectric cooler is used

to stabilize the temperature inside the FPA packaging. The operation of thermoelectric

cooler is controlled by the amount and the direction of current. Positive current (putting

current into TEC) will heat up one side of the thermoelectric cooler and cools the other

side of TEC, where the heat is removed from the cold side to the hot side. Negative

current (pulling current out of TEC) will reverse the direction of the heat flow. The rate

of heat being pumped from the cold side to the hot side is proportional to the amount of

current passing through the thermoelectric cooler and the number of couples [11]. In the
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case of microbolometer array, it will be most likely to be activated as a cooler due to heat

buildup inside the array packaging during the process of imaging.

Figure 4.4 Inside of a UFPA packaging [81

As shown in Figure 4.4, a thermoelectric cooler is placed underneath the

microbolometer UFPA within the packaging. It will pump the heat from the inside of the

package to the outside through back side conduction, which is attached to a heat sink.
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4.2 The Controller Design

The controller is design to stabilize the temperature inside the vacuum array packaging to

be at a constant temperature. A constant voltage is applied to the controller as a reference

voltage that will determine the desired temperature inside the UFPA packaging. Figure

4.5 shows the block diagram of the controller loop. The output of the controller is

connected to the pulse width modulator (PMW) of the switching power supply. The

thermoelectric cooler is driven by the switching power supply to reduce the input power

of the circuit.

Figure 4.5 A block diagram of the thermoelectric controller loop.

The output power of the switching power supply is control by the pulse width

modulator. The PWM produces pulses with frequency of around 20 KHz. The input to

the PWM is from -5V to +5V , and the width of the pulses are determined by the input

voltage. If the input voltage increases, the pulse width decreases and vice versa. The
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switching circuit is a MOS step-down converter, which recycles the current produced by

on-pulse during the off cycle of the pulses and converts the pulses to DC voltage to power

the thermoelectric cooler.

As shown in Figure 2.13 and 4.4, there are two temperature sensors inside the

packaging for the feedback to the thermoelectric cooler controller. The sensors are two

npn transistors, where the base to emitter junction is used as a diode with temperature

sensitivity of about -2.18 mV/°C. The diodes are connected in series to increase the

output voltage of the diodes, where the sensitivity increases to -4.36 mV/°C. The

controller circuit is to be able to stabilize minimum change in temperature of about

20mK. The temperature change translates to change in voltage of -4.36 mV/°C x 20mK

=

The operation of the control loop is as follows. If the temperature inside the

packaging increases, the diode sensors' voltage drop. The voltage drop is compensated

by the control amplifiers. The output of the controller circuit produces a negative pulse

causing the PWM to increase the pulse width allowing the power supply to draw more

current out of the TEC, which enables the TEC to pump more heat out from the array

packaging. If the temperature decreases, the same procedure follows. Now, the output of

the controller is a positive pulse, which decreases the pulse width of the PWM. The

decrease in the pulse width causes the power supply to draw less current out, thus the

TEC warms up.

The first step in designing the controller was to determine the transfer function of

the TEC/diode pair (refer to as "TEC pump" in the thesis). An experiment was
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performed at Inframetrics to determine the step response of the TEC pump. The

temperature sensing diodes were connected as shown in Figure 4.6. The two diodes were

connected in series and biased with 102K0 resistor from +5 volts with current of about

40p.A. The output of the diodes were connected to an oscilloscope to measure the step

response of the TEC pump due to heating and cooling of the thermoelectric pump.

Figure 4.6 The setup for determining the diode response.

The thermoelectric cooler was connected to a power supply, and the step input

was simulated by turning on the power supply. The oscilloscope was set to trigger on the

rising edge of the input pulse to record the response data. Figure 4.7 shows the resulting

response curves of the TEC pump, where the vertical scale represents the output voltage

of the temperature sensors (diodes) and the horizontal scale represents time. In Figure

4.7 a), the TEC was cooled without a heat sink.
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Left: Vertical scale is 200mv/block for the upper curve, 2v/block for the lower curve,
and 10s/block time scale.

Right: Vertical scale is 100mv/block for the upper curve, 2v/block for the lower curve,
and 50s/block time scale.
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c) Heating of the TEC without heat sink.

Left: Vertical scale is 200mv/block for the upper curve, 2v/block for the lower curve,
and 10s/block time scale.

Right: Vertical scale is 200mv/block for the upper curve, 1v/block for the lower curve,
and 100s/block time scale.

Figure 4.7 Step response of the TEC pump due to heating and cooling, where
the vertical scale represents the output of the diodes and the horizontal scale
represents time.

As seen on the 100s/block time scale curve, the absence of the heat sink resulted in

temperature increase inside the UFPA packaging (diode voltage drops) due to heat build

up inside the packaging. In 4.7 b), the presence of the heat sink stabilized the

temperature. In Figure 4.7 c), the effect of heating can be observed.

As observed from the step response curves, the TEC pump has a time constant of

about 20 seconds. An equivalent electrical circuit model was derived from the curves

(Figure 4.8). The model is in the simplest form, and there are other more complex

models. As shown in Figure 4.9, the model has a time constant of 20 seconds. The value
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of the resistors and the capacitor is chosen to match the input and output impedance of the

TEC pump.

Figure 4.9 Step response of the equivalent TEC pump model.

Using the equivalent model, the transfer function, Hm(s), of the TEC pump model

was derived.
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— 
[(Ri R2 C1 )s + (R1 + R2)

	4.1
(Rig)s +1	

( )

Pole of the function is solved by setting the denominator equal to zero,

1
—0.04545.

R1 Ci

Similarly, zero of the transfer is determined as

R1 + R2 - —0.049785,
Ri R2 CI

and the pole and zero of the equation are plotted in Figure 4.12 c).

Based on the transfer function the TEC pump model, the thermoelectric controller

circuit (Figure 4.10) was designed. The controller is a lag compensator with a differential

gain. The controller circuit configuration was chosen due to its flexibility of positioning

poles and zeros of the controller, easily adjustable for the complex TEC pump models,

without losing gain control.

(4.2)

(4.3)

Figure 4.10 The thermoelectric cooler controller circuit schematic.
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The controller configuration was first used as a linear power supply TEC controller at

Inframetrics. With the use of the root locus plots and the circuit response simulation,

modification was made to the resistor and the capacitor values of the controller circuit to

optimize it for the TEC pump model and the switching power supply circuit.

The first three op-amps represent the controller, and the dependent voltage source

in the circuit is placed after the controller to drive, in the place of switching power

supply, the TEC pump model circuit. The pulse source is placed in the feedback path to

simulate the TEC temperature fluctuation, and the pulse is fed to the negative terminal of

the differential amplifier. The reference voltage is fed to the positive terminal.

Root locus of the circuit was plotted to predict stability and response of the circuit

using Matlab. The following equations are the open loop transfer function of the each

amplifier stage of the controller. H 1 (s), H2(s), and H3(s) refer to the differential amplifier

stage, the second amplifier stage, and the third amplifier stage transfer functions,

rrxcru.•ti ,tirxl-tx T1i rUfft.rartfial amplifier ninly Ilae a TIC train
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(4.8)

(4.9)

The third amplifier stage has the following characteristics:

H3 (s) — R10	 1 
R9 [((RI0 C2 )S + 1

DC gain: -20

Pole: — 	
1

= —1000
R1 0C2

The pole was place far to the right of the imaginary axis for fast response time.

Multiplying all the DC gains, the circuit has an overall gain of 70 x -30 x -20 = 42000.

The value of the gain was necessary for the small voltage (8011V) compensation and to

ensure the cancellation of the poles and zeros. The poles and zeros are plotted in Figure

4.12 a) and b).

Figure 4.12 a) shows the overall view of the pole-zero locations on the s-plane.

The cancellation of the amplifier pole and zero with the circuit gain of 42000 can be seen

in Figure 4.12 b). Figure 4.12 c) is the view of the root locus plot of the TEC pump

model. With the gain of the circuit, the pole and zero canceled each other out.
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c) T showing the response time of about 30ms.

Figure 4.11 Response of the controller circuit due to -80,uV disturbance.
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CHAPTER 5

CONCLUSION

In this thesis, the ULTRA project uncooled microbolometer camera system was analyzed.

The Rockwell U3000 microbolometer UFPA and Inframetrics' camera hardware and

software were described and the theory of microbolometer was mathematically

illustrated. In addition, the performance parameters (responsivity, NETD, and noise) of

the focal plane array and the operation of the U3000 chip was described. The

Inframetrics' camera hardware and software features and process was also described.

For the second part of the thesis, the thermoelectric cooler controller was designed

and simulated. The model of the TEC pump was created from the experiment.

According to the model, the controller circuit was designed by the lag compensator

technique. The design included simulation in Matlab and Micro-Cap V. Matlab was

used to determine the root locus plot of the control loop, and Micro-Cap V was used to

simulate the circuit response to -801.1V step input, where the voltage simulated the 20mK

temperature change induced on the TEC pump. The circuit responded with about 30ms

response time to the 801.1V step input.

As follow up to this research, the controller should be simulated with the complex

version of TEC pump model, and the circuit should be built and tested with the actual

array packaging.
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