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ABSTRACTANALYSIS AND COMPARISON OF RESISTIVE, FERROELECTRICAND PYROELECTRIC UNCOOLED BOLOMETERS FORELECTRONIC IMAGING SYSTEMSby Mo-Huang Li

The performance parameters (responsivity (R„ ), detectivity (D*), total noise and response

Lye) of resistive, pyroelectric and ferroelectric bolometer detectors are dependent on a

large number of key variables including chopping frequency, the input impedance and

voltage noise of the readout circuitry, the structure dependent parameters (particularly

thermal conductance and thermal conductance and thermael capacitance), and material properties such as dielectric

constant, pyroelectric coefficient, loss tangent and thin film thickness. The

interrelationship between the key variables and their influence on performance is often

complex and not easily discerned for the the three major types of thermal detectors: resistive,

pyroelectric and ferroelectric bolometers,

In this thesis research, the dependence of Ri,  D* and total noise on these key

parameters were analyzed and written as equations from which computer calculations

could easily be made. The analyzed results were used to compare the performance of the

three types of sensors for present-day structure and material characteristics and also for

material characteristics and structures that might be developed in the future.
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CHAPTER 1

INTRODUCTION

1.1 Objectives and Organization of the Thesis

The objectives of this thesis were

a) To review and compare the different uncooled infrared technologies, their strengths

and weaknesses.

b) To present the technologies in a concise tutorial manner for further development.

c) To understand and explain the demands that each material and device approach puts

on the electronic circuitry that must interface the detected signals with the electronic

and systems that will use the information.

d) To understand the potential performance of the technologies in the future. The

performance of detectors are analyzed based on the theoretical equations, derived in

the previous chapters and ultimate performance based on reasonable but speculative

expectation of improvements in ferroelectric and pyroelectric materials. This thesis is

aimed at offering an incentive for searching for materials and/or fabrication

technologies.

The thesis is organized as follows.

Chapter 2 introduces the fundamentals of infrared systems-thermal radiation

theory, noise sources and the several figures of merit used for characterization of the

performance of uncooled infrared detectors.

Chapter 3 reviews the recent developments of resistive bolometer focal plane

arrays. The basic equations for describing the responsivity are derived. The required

1
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material properties and thermally isolated structures for high performance are described.

The resistive bolometer focal plane arrays developed by Honeywell and DSTO (Defense

Science and Technology Organization of Australia) are reviewed.

Chapter 4 reviews the developments of pyroelectric and ferroelectric focal plane

arrays. The equations for describing the responsivity are derived. The various pyroelectric

and ferroelectric materials developed for infrared detectors are also reported. The

pyroelectric and ferroelectric FPAs developed by Texas Instruments, United Kingdom and

University of Minnesota are reviewed.

Chapter 5 reviews the development of thermoelectric array. The equations for

describing the responsivity are derived. The developed materials for thermoelectric

infrared detectors are reported. The thermopile arrays developed by University of

Michigan, Honeywell and Japan Defense Agency are reviewed.

Chapter 6 analyzes the performance of the detectors based on the theoretical

equations, derived in the previous chapters. The three different types of infrared detectors

are compared and the potential performance of the uncooled infrared technologies in the

future are discussed.

1.2 Comparison of Potential Applications for Photon and Thermal Detectors

Two fundamental types of infrared detectors available today are photon detectors and

thermal detectors. In photon detectors, the radiation is absorbed by the material, resulting

in a direct modification of its electrical properties. Because the photon detectors are based

on bandgap carrier generation, their responsivities are strongly dependent on wavelength.

To suppress thermal excitation of free carriers due to the ambient temperature, photon
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detectors are often cooled to temperatures well below 300K. In thermal detectors, the

radiation is absorbed by the material, generating phonons and causing heating of the

lattice. This change in the lattice temperature is then converted into a change in the

electrical properties of the structure. In contrast to photon detectors, the responsivity of

thermal detectors is independent of wavelength. Thermal detectors do not require cooling

to exhibit adequate sensitivity. The trade-off, however, is that their photoresponse is

relatively slow compared with that of most photon detectors, which have a response of

microsecond or less at their operating temperature. The response time of thermal detectors

is the inverse of the rate at which they lose heat to their surroundings. Thus, the response

time of thermal detectors is the ratio of their heat capacity to the thermal conductance of

their total heat loss mechanism. Typical response times of sensitive thermal detectors are

milliseconds or more. The responsivities of present-day thermal detectors

(D* 109 cm.Hz1/2 I W) are considerably lower than photon detectors

(D* 1012 cm. Hz112 I W for HgCdTe, 8-14um at temperature 77K) and the response times

of thermal detectors are considerably slower than photon detectors; however, in

applications where high sensivities and high speed are not of primary important, thermal

detectors have a number of advantages including broad spectral response, low cost, ease

of operating and insensitivity to ambient temperature. A comparison of IR imagers made

of photon and thermal IR sensors is given in Table 1.1[1]. Present-day IR imagers use

cryogenic coolers, complex IR optics, and expensive IR sensors materials. Typical cost of

around $100,000 restrict their application to military. The thermal (uncooled) IR imagers

without cryogenic cooling, complex IR optics and made with a micromachining process

make the uncooled focal plane array inexpensive to produce. The successful development
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of uncooled 1R. imaging system means that IR imagers no longer need to be restricted by

cost to high-value military applications. Low-cost IR imaging systems will also become

available for commercial applications.

The chronological development of various FPA technologies is compared in Fig.

1.1. The basic parameters associated with today's solid-state FPAs are shown in Table

1.2. From Fig. 1.1 and Table 1.2, it can be seen that uncooled infrared focal plane arrays

are potential technologies for long wavelength infrared applications. Because long-

wavelength HgCdTe and IrSi FPAs must operate at very low temperature to minimize

dark current, and extreme purity of materials and accuracy of process control are needed

for acceptable levels of FPA yield and uniformity, the manufacturing cost for these

technologies is much greater than for thermal detectors.

Some reported applications using uncooled infrared array are driver's aid [4,5],

air conditioners [6,7], contactless temperature measure [8-10], surveillance [11-14] and

military [15-17].
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1.3 Basic Operational Principles of Uncooled (Thermal) Infrared Arrays

The uncooled infrared array technology approaches include: the resistive bolometer

(temperature coefficient of resistance), the pyroelectric and ferroelectric detectors

(temperature coefficient of dielectric constant) and the thermocouple (Seeback effect).

Resistive bolometers are temperature sensitive resistors, made from either a metal,

semiconductor or superconductor, where they operate at the normal-to-superconducting

transition edge.

Pyroelectric detectors exhibit a polarization which depends on the time rate of

change of the detector temperature. Thus, they can be used as temperature dependent

capacitors. Ferroelectric detectors are similar to pyroelectric detectors, but an electric field

applied across their capacitor structures to enhance the output signal. Because pyroelectric

detectors and ferroelectric detectors response to the time rate of change of their

temperature, they require the incident radiation to be temporally modulated or "chopped".

Thermoelectric detectors are junctions of dissimilar materials which exhibit the

Seeback effect. They are radiation-sensitive thermocouples. When several junctions are

connected in series to enhance the signal voltage, the device is termed a "thermopile".

Thermoelectric detectors do not require an electrical bias.



CHAPTER 2

INTRODUCTION TO FUNDATIONALS

2.1 Thermal Radiation

A blackbody thermal object generates thermal electromagnetic radiation according to

Planck's law[18]:

2g-hc2
P(2 , 1) — (ehel ikBr	 (Watts I cm' .um),	 —1) (2.1)

where

P(A, : Planck's law for radiant exitance from a blackbody emitter,

AI emitted wavelength in micrometers (um) ,

T : absolute temperature of the blackbody in Kelvins (Deg K),

h : Planck's constant,

c : speed of light,

k 8 : Boltzmann's constant.

Fig. 2.1 shows the spectral radiant emission verse wavelength for several

temperatures. The total emission in all wavelengths can be obtained by integrating Eq. 2.1

over all wavelengths.

2Tr5k4 T4
P(T) =	 = 	 B = 6T4

0 	1 5h3c2

where o- =Stefan-Boltzmann's constant (5.67 *10 -12 Watts / cm' .K4 ) .

Eq. 2.2, the Stefan-Boltzmann law, indicates that at room temperature(—'300K), a

1cm 2 blackbody emits about 50mW over all wavelengths. However, nearly all the

radiation wavelengths are in the infrared range (0.7um to lmm); therefore, the thermal

(2.2)

7
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emission of room-temperature objects can only be imaged by using infrared detection

equipment.

Wien's displacement law gives a relation between temperature and the wavelength

peak of the Planck function. This relation is obtained by setting the wavelength derivative

of Eq. 2.1 to zero,

T) 0 (2.3)

and solving for the value of AT which maximizes P(2,1)

= 2898 (um.K)
	

(2.4)

Therefore, at room temperature (-300K), the wavelength peak of the Planck function is

about 9.66um.





1 0

— m 	 —112

V = V2rms
_n=1

2.2.1 Equivalent Noise Bandwidth [201

Noise bandwidth is not the same as the commonly used -3dB bandwidth. There is one

definition of bandwidth for signals and another for noise. The bandwidth of an amplifier is

classically defined as the frequency span between half-power points, the points on the

frequency axis where the signal transmission has been reduced by 3dB from the central or

midrange reference value. The noise bandwidth, Af , is the frequency span of a

rectangularly shaped power gain curve equal in area to the area of the actual power gain

versus frequency curve. Noise bandwidth is the area under the power curve, the integral of

power gain versus frequency, divided by the peak amplitude of the curve. This can be

stated in equation form as

Af =
s: 

G(f)df
1	 o

(2.6)

where G (f ) is the power gain as a function of frequency and G, is the peak power gain.

Since the power gain is proportional to the voltage gain squared, the equivalent noise

bandwidth can also be written as

Af 	 rJ 0 Av(f )1 2 df (2.7)

1 2
where Avo is the peak magnitude of the voltage gain and 12 ,11,(f)1 is the square of the

magnitude of the voltage gain over frequency.

(2.5)
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Consider an example of a first-order low-pass filter whose signal transmission

varies with frequency according to

1 
Av (f)—	 if

	1 + f2
	 (2.8)

where f2 is the conventional -3dB cutoff frequency and the low-frequency and midband

voltage gain has been normalized to unity. The noise bandwidth, Af , calculated using Eq.

2.7 would be

Af = 1.571/2 	(2.9)

The noise bandwidth is 57% larger than the conventional -3dB bandwidth for the first-

order low-pass filter.

The term spectral density is used to describe the noise content in a 1 Hz unit of

bandwidth. It has units of Volts2 per hertz and generally varies with frequency. If the

spectral density of a noise source is not a frequency function, then it is called white-noise.

The thermal (Johnson) noise is an example; its spectral density is

4k B TRd Af
4kB TRd (V 2 / Hz)

Spectral density is a narrow band noise and generally varies with frequency. In

order to obtain the total wide band noise, the spectral density function must be integrated

over the frequency band of interest. Because the total noise is dependent on the measured

system, the noise voltage and noise current are often expressed by their root spectral

density with the units of V / Hz" and AI Hz112

Af (2.10)
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2.2.2 Type of Noise

The various types of noise associated with IR thermal detectors are

I. Johnson noise or thermal noise:

This noise is caused by the random thermal motion of the charge carriers in a

conductor. In every conductor or resistor at a temperature above absolute zero, the

electrons are in random motion, and their motion is dependent on temperature. Since

each electron carries a charge of 1.602 *10-19 C , there are many little current surges as

electrons randomly move about in the material. Although the average current in the

conductor resulting from these movements is zero, instantaneously there is a current

fluctuation that gives rise to a voltage across the terminals of the detectors. The

Johnson noise voltage Vi is

Vj = (4kB 7RdAf) 112 (V )	 (2.11)

where

VJ : rms value of Johnson noise voltage,

kB : Boltzmann's constant,

T : absolute temperature of the detector,

Rd : electrical resistance of the detector,

Af : the equivalent noise bandwidth of a measuring system.

2. 1/f power law noise:

The cause for this noise is still not well known, but is often attributed to trapping of

charge at surface states. The empirical expression for the noise voltage is
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b
f = const. 

I

 f
fl

Rd
 (v Hzv2 )	 (2.12)

where

be a coefficient whose value is about one( b —1),

13 : a coefficient whose value is about one-half{fl-1/2),

I : the current through the pixel,

Rd : electrical resistance,

f : frequency.

1/f power law noise is difficult to understand theoretically because the parameters b and

13 are very much dependent upon material preparation and processing including

contacts and surfaces.

3. Temperature fluctuation noise and background fluctuation noise:

A thermal detector in contact with its environment by conduction and radiation exhibits

random fluctuations in temperature, known as temperature noise, because of the

statistical nature of the heat interchange with its surroundings. The temperature fluctuation

noise is the temperature fluctuation within the pixel(detector element) caused by

conductive exchange between the pixel and background or substrate; the background

fluctuation noise is the temperature noise within the pixel caused by radiative exchange

between the pixel and background or substrate. The mean square power fluctuations,

W(t) 2 , is given by (see Appendix A for details)

W(t) 2 = 4k BIC,T2 Af	 (2.13)
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4. Fixed pattern noise:

The responsivity variations of detectors at a staring array produce fixed pattern noise.

Because of the variations of the material properties and preamplifier circuits at pixels, each

detector/preamplifier combination will have a different gain and level offset. These

variations produce fixed pattern noise (FPN). If large deviations in responsivity exist, the

image may be unrecognizable. As a result, a electronic gain/level normalization or

nonuniformity correction (NUC) is required.

2.3 Figures of Merit[24]

Several figures of merit are employed to characterize the performance of infrared focal

plane arrays: responsivity; D * (pronounced "dee-star"); response time; noise equivalent

power; noise equivalent temperature difference (NEW) and modulation transfer function

(MTF). They are as follows:

Responsivity:

The pixel output signal per Watt of incident radiant power falling on the pixel, expressed

as volts/Watt. Table 2.1 defines all the parameters in the following equations.

VN D *
Rv(T,f) —	 s —(130,,„ei 	(Apixel Af )112 (V / Watt) (2.14)

If V N is expressed in spectral density in units of V /	 , then

	V s 	D*
R,(T , f  	

N
) —	 — 	  (V" I Watt)

	

OA	 A112pixel	 pixel

(2.14.a)
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Specific detectivity D * :

The pixel output signal-to-noise ratio per Watt of incident radiant power falling on the

pixel, measure in a 1Hz bandwidth. The units are CM. HZ 112 I Watt .

(A pixeAf ) 112 (ApixelAf) 112 R,(T , f)
	  (cm. Hz 112 I Watt) (2.15)D * (T , f) = 	

NEP	 VN

If V, is expressed in spectral density units of V / Hz112 , then

(A pixeN) 1/2 AliZeiRT/(T f)
(T,f) =	 — 

p
 v 	(cm. Hz 112 I Watt)	 (2.15.a)

NEP 

The responsivities of uncooled infrared detectors are independent of wavelength. In

contrast to photon infrared detectors, their responsivities are strongly dependent on

wavelength. Therefore, their responsivities and specific detectivities are expressed in

R,(.1,) and D* (2) .

Response time Tth :

The time required for the pixel signal to decrease to 37% of its value after radiation is

removed from the pixel. The unit is seconds.

Cth/
Kth

Noise Equivalent Power:

Incident radiation power required to produce a unity ratio of rms signal to rms noise in the

detector output. The unit is Watts.

	VN 	N	NEP = cDApfrei( vs	
V 

Rv (T,f)
(2.17)

(2.16)



NETD —
	 4F2VA,

A 	, f )(AP I AT)a,i-A.2
(2.18)
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Noise Equivalent Temperature Difference:

The change in temperature of a large blackbody in a scene being viewed by a thermal

imaging system which would cause a change in the signal-to-noise ratio of unity in the

output of a pixel upon which part of the blackbody is imaged[25]. The unit is degrees K.

where the temperature contrast (AP / AT)2 ,_,12 is given as[21]

22

(AP I AT),11-A,2= f(dP(A, T) I anra (A)2-0 (A)S(11)dA	 (2.19)

P(2, T): Planck's function,

r.„(A): transmittance of the atmosphere,

ro(A) : transmittance of the imaging system's optics,

s(A): spectral response of the sensor, including filters.

Assuming the blackbody temperature is 300K, and I a (A) , zo (A) and s(2) are equal to 1,

then

For /1=-8um to 14 um ; dP I AT = 2.624 *10 Watts I cm 2 K

For A —8 um to 12 um ; AP I AT = 1.972 * 10 -4 Watts I cm 2 .K

For 2 =3 um to 5 um ; AP / AT = 2.105 *10 -5 Watts I cm 2 K

Modulation transfer function (MTF)1.19, 26] :

An optical transfer function (OTF) is used to theoretically evaluate and optimize the

spatial resolution of an imaging system. The optical transfer function (OTF) of an imaging

system is similar to the frequency response of an electrical circuit (system). The MTF,

modulation transfer function, is the magnitude response of an optical transfer function.
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Modulation is the variation of a sinusoidal signal about its average value (Fig. 2.3).

It can be considered as the AC amplitude divided by the DC level. The modulation is:

.

Modulation =
V 	 V

max nun 
AC

Vmax + V	 DC
(2.20)

Vinax and Vim, are the maximum and minimum signal level respectively. The modulation

transfer function is the output modulation produced by the system divided by the input

modulation at that frequency:

MTF —
Output Modulation

(2.21)
Input Modulation

The concept is presented in Fig. 2.4. Three input and output signals are plotted in Figs.

2.4.a and 2.4.b and the MTF is shown in Fig. 2.4.c. As a ratio, the MTF is a relative

B rvtAx

tr)
(1)
C

BKAIN

Fig. 2.3 Definition of Target Modulation. d is the extent of one cycle. For optical
systems, d is measured in angular space and the spatial frequency is fx = 1/ d . For
electronic circuitry , d is measured in time and the electrical frequency is
(From [19])	

fsz = 1/ d
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: irradiance (Watts.crn'),
V,: rms signal voltage within system bandwidth,
Af : equivalent noise bandwidth (Hz) ,
Kth: thermal conductance (Watt / K),
C th : Heat capacity (Joule / K),
F : f/no. of optics,
To : transmittance of imaging system's optics,
R, (T , f) : responsivity to radiation from blackbody at temperature T ,

(AP I An /11-2.2: temperature contrast.
L.,	

The D * and NETD for a temperature fluctuation noise limited thermal detector

are (see Appendix B for details)

D* (T,f) —

and,

I 	pixel
-1/2

(2.22)
4kB T2Ka,

2STF2 (kBAfKth) li (2.23)NETD =
Opixdro (AP / AMA-2.2

The D * and NETD for a background-noise limited thermal detector are

D* (T ,f) = [7718k B o-(1-1) +

and,

T.63,)112

1/2

(2.24)

4F2
NETD =

8k- B o-Af (Tr; +
(2.25)

"ro(AP Ann-A2 rk1pixel

This is the theoretical minimum NETD when the background radiation noise is the

dominant noise.



CHAPTER 3

REVIEW OF THE THEORY AND PERFORMANCE OF RESISTIVE
BOLOMETER UNCOOLED FOCAL PLANE ARRAYS

3.1 Heat Balance Equations[18, 29-301

The resistive bolometer effect is a change in the electrical resistance of the responsive

element due to temperature changes produced by absorbed incident infrared radiation. Fig.

3.1 shows a dc voltage bias bolometer detector circuit that uses this effect.

Fig. 3.1 A de voltage bias bolometer detector circuit.

Consider the heat-equilibrium equation, which determines the temperature of the

element.

dT
C —

dt
 + Kth (T – Y) = 77W(I) + R d (3.1)

where

Ca,: thermal capacitance of the bolometer element,

K th : total thermal conductance from the element to substrate,

To : substrate temperature (assumed to be at room temperature),

20
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T : bolometer temperature,

W(t) : incident infrared radiant power,

Rd : the resistance of the detector at temperature T,

i : the bias current in bolometer at temperature T ,

absorbtivity of detector.

Note that both i and Rd depend upon T If W(t) = 0, the time-independent

temperature T. of the bolometer is found from Eq. 3.1

Km (T.— To ) = I 	 (3.2)

where T. is the value of T as W(t) = 0, R. is the value of Rd at temperature T. and lb

is the value of i at temperature T.. Presume the temperature coefficient of resistance

(TCR), a, which is defined as

1 dRd
a

Rd dT
(3.3)

is constant over the range of fluctuations of T . Hence a(T — T.) is small and a first order

approximation is sufficiently accurate. Therefore

i2 Rd = i2 *AT; AT= T —
arT=Tni

(3.4)

d 	 V2-Rd 

dT ` (RL + Rd )2

— Rd)  v2 dRd 
(RL Rd )3° dT

— R„,)  v2 dRd 
(R, + R„,)3 	 dT

and,

d(1 2 Rd
d

at°T=-7m at°T=7;„

at°T=T„,

(3.5)



where Vo is the bias voltage and RL is the series load resistance.

Therefore, Eq. 3.4 becomes

2
/ 2 Rd 	

R.	 (RL, —R.) 2— 
V°

(R, + R.)2 
+ 

(RL + Rn,)3 
V aR„,(T — T.)

	V°
2 R.	 (RL — IC)]

1+ a(T — T.)

	

(RL + R„,) 	 (RL + R.)2

The heat-equilibrium equation thus becomes

dT 	 V02 R	 RL R	 V2 R
Cth dt 	 (RL

+ K th (T — To ) a(T 	
„,

T.)	 2	 m 77W (t) + °	 (3.7)
(RL + R„,) RL + R.	 (RL + R.) 2

Rearranging this equation yields

Cth	 dt 	
+ (T	d(T — 
	— Tm) Kth 

a VoRn,
+ R.) 2 RL

2

2Vo rn, -- To )

	

yw(t)+ 	 R,32 — Kth(
	

(3.8)

where the second two terms on the right side of the equation are large (the heating power

due to the dc current and the cooling power by conduction through the leads) and

substantially cancel, and the variables ( T — T. and W(t) ) are small.

The radiant power input is chopped to improve the signal-to-noise ratio; that is the

input radiant power is a square wave. The differential Eq. 3.8 can be solved by Fourier

series expansion of T T. and W(t) followed by equating the coefficients. That is, W(t)

is written in the form

	

1 2	 2
W(t) = Wo —

2 
+ sin(cot) + 

—321- 
sin(3cot)+...	 (3.9)

22

(3.6)

and T in the form
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T(t) = Tm + T, sin(cot w) + To, sin(3wt - v3 )+...+Tn sin(nw	 ......(3.10)

where w is the angular chopping frequency of the incident radiant power. The zero order

coefficients for Eq. 3.8 yield

21	 V0 R.
0 = 77W0 +	 - (T - To )K h

2 (RL +

The first order coefficients yield

liWo 71-
ri2 v2

th 	 -""efie

Tw —

(3.11)

(3.12)

with    

Keff =
Vo2 R„,	 RL - 14„,

K 41. a 	
-	 (RL + R„,)`	 + _

(3.13)   

and

= arctan nth
Keff

Note that neglecting 77W0 in the zero order equation and inserting the result in Eq. 3.13

yields an expression which can be defined as an effective thermal conductance Keff

Keff Kth a(Tm - To ) 	RL + Re,
(3.14)   

Also, for chopping angular frequencies greater than Keff /Cth the amplitude of the

fluctuations of T will decrease approximately inversely with w . The second order

coefficients (and all other even-order coefficients) vanish, and for higher odd-order

coefficients T,„, falls off like 1 / n 2 because

(3.15)
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and the derivative contributes another 1 / n . Thus T can be approximated by

+ T sin(cot —	 . This approximation, of course, is the exact solution for an input 

- 1 2
—
2

+ sin(a) W(t) = W (3.16)   

which are just the first two terms of the Fourier expansion of the square wave.

The output signal Vs due to an incident W(t) is computed by inserting the

resulting T , and thus Rd , into the expression for Vs , the ac voltage across RE, in Fig. 3.1.

Vs =Vo 
RL 	RE, 

(3.17)      
Rd + RL R„, + 

Consider a first order approximation,

RL RL

Rd + RL — Rd + RL

R,
+ dT R d RL )at°Rd =R„, atcRd-,R„,

*(T —   

	

RL 	 RLRma
Tai sin(cot —

	R,n + 	 (R,„+ R,L )2
(3.18) 

Therefore, the first order approximation of Vs is

VS = —Ib Rm a
R

L Ta, sin(cot —
 Rin 

(3.19)

where 4 is the do bias current when Rd = .

The output voltage of a detector array should be multiplied by a fill factor (FA ),

because the incident power W(t) is only absorbed in an effective area ( ) of a pixel

with bolometer material. Therefore,

VS = —Ib Rm 	
R

L 	 Ta,sinfrotA R + Rni

The voltage responsivity is

(3.19.a)



1 	 4 77
	Rv - 2 * [K22 	 th+ (0 2c2 r2

aR.F4 (3.21)
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Rv -
vs 

W(t)
RL  *  IbqaRmFA 

RL + Rm [K2ff CO2 ct21111/ 2 (3.20)   

When RL = R., the responsivity Rr, has a maximum value of

and
Keff Kth

\
Replacing 4 in Eq. 3.20 with [(T. — To)K02]

I/ 2
 .R,;,112 , the responsivity

becomes

aF
Rv _ RL 
	 , *

RL 	 2 -11/2  (KthR.(T„, To)) 112+ Rm Keff. 	 2[1+ 47r2 f th i

If 47r 2f 2 rt2ii « 1, the low frequency responsivity becomes

RV = 77e2FA

112

RL	1 *  (KthR.(T. — To ))

+ 	 \. 	 K:ff 	 j

If 471-.2 f 2 z » 1 , the high frequency responsivity would be

Rv riceFA RL 	 * (KthR. — TO)) 112

Rm t W 2 Cit2h

z-th = Cth/ Keff (3.22)

(3.23)

(3.24)

Fig. 3.2 shows another kind of bias circuit, with a constant dc current source.

 b

Vs Output

IR Radition Rd

Fig. 3.2 Constant dc current bias circuit
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Using the same approximation as previously used to solve Eq. 3.1, the effective

thermal conductance, output voltage, and voltage responsivity would be

Keff = [Kth 	R.)] =	 a(T. — 1)] 	 (3.25)

Vs = IbRinceFA Te, sin(c)t — 	 (3.26)

and
/ aRniF

R — 	 b 	 AV 	 r kr2 	 412e2 11/2
LA )-eff ' 	 h-1

(3.27)

The three main areas of bolometer focal plane array research are the thermal

isolation structure, the readout integrated circuit, and the bolometer material. They are

described in turn as follows.

3.2 The Thermal Isolation Structure for a Bolometer Focal Plane Arrays

The operating principle of a bolometer detector is that the incident infrared radiant power

is absorbed by the detector element and converted to heat. This heat causes the

temperature of the detector to change. The resistance of the bolometer material, which is a

function of temperature, changes according to the detector temperature. From Eq. 3.20,

the voltage responsivity is directly proportional to the effective thermal conductance Kell. .

Minimizing Kell through a good thermal isolation structure of the bolometer will generate

high responsivity.

A schematic representation of a microbridge thermal structure to provide high

thermal resistance is shown in Fig. 3.3.
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‘11.11111111111111111111111111.111111Thermally Isolated
Support and Electrical
Readout

lnfrarnd (Heat)
Radiation
From Scene

Mechanical Suppott Structure
13901241-04

Fig. 3.3 Schematic diagram of a microbridge thermal structure.

The microbridge detector elements are supported on legs above the plane of the

microcircuit (in the substrate). The legs are designed to provide the required high thermal

resistance between the suspended plate and its surroundings, allowing the plate to

response to incident IR radiation by being heated or cooled, and carry electrical

conductors from the detector to microcircuit. The thermal response time of these

structures can be adjusted by geometry and materials employed to provide an optimum

value for TV-frame-rate imaging (33ms per frame). The thermal isolation structure should

balance the conflicting requirements of minimizing thermal conductance and still providing

sufficient mechanical strength and high fill factor. The detector also has to be designed

with high absorption efficiency in the 8 to l2um wavelength range.

Two examples of such structures are discussed. They are being developed by

Honeywell Corp. and Defense Science and Technology Organization of Australia

(DSTO).

Bolometer
Array
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Fig. 3.4.a describes the microbolometer cell and the FPA designed by Honeywell.

Optical and scanning electron microscope photographs of a microbolometer detector on

CMOS integrated circuit substrates are shown in Fig. 3.4.b. The microbridge material is

silicon nitride and a VOx thin film with a resistivity of 0.1 ohm-cm and a TCR of 2%[32]

is deposited on the top. The total thickness of the silicon nitride and VOx thin film is

typically 0.5um. The spacing between the microbridge and the substrate was selected to

maximize the pixel absorption in the 8 to 12um wavelength range and is typically 2.5um.

The underlying silicon contains monolithic readout electronics and an IR reflector

designed to increase the ER. absorption of the bolometer to about 80% of maximum

efficiency while minimizing thermal capacitance. The relatively broad resonator response is

designed for the 8 to 12um wavelength range.

Fig. 3.5.a shows a prototype sandwich-gap type microbridge structure designed

earlier by DSTO. An electron micrograph of a DSTO's bolometer element is shown in Fig.

3.5.b. A corner of the detector magnified so as to illustrate the thin supports is shown in

Fig. 3.5.c.



Fig. 3.4 (a) The Honeywell's microbolometer cell and FPA. (b) scanning electron
microscope photographs of a microblometer detector on CMOS integrated circuit
substrates. (From [36])
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comprising a metal layer having a sheet resistance of 377 C2 per square[42] onto which

radiation is incident, separated from a highly reflecting metal film by a quarter wave

spacing of Amax / 4n , where 2max is the wavelength of maximum absorption and n is the



///////////////p//////.6,/,/w/tbwrz,741/4vivizww,w/mw:wow/hwv44,/,,, ,,r,w.,.//

",//' 	 / 	 ;;;"" ✓"",,,;4"/"2" 	 X;17,
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refractive index of the spacer layer (Fig. 3.6[44]). This type of structure can yield 90%

absorption integrated over the 8-l3um waveband. However, the additional thin film

components result in a significant increase in thermal capacitance, and hence slows the

speed of response.

Metal film, sheet resistance
377 Q per square

\a*
Dielectric spacer layer
thickness k Mn4,60.06035,

R met/ow stafwe 	 renector. sheet retistave 10 Q per square

Fig. 3.6 Infrared absorption structure for thin film detectors. (From [44])

The thermal conductance Kai in Eq. 3.20 can be expressed as

Kth = Kr+ Kp+ Kg	 (3.29)

where Kr is the conductance due to radiation exchange, given by

Kr = 4AeffqaT;
	

(3.30)

Eq. 3.30 is applicable to radiation from a single surface, as for the case of optical cavity

designs. Aeff is the effective detector area of the detector, To is the ambient background

temperature ( ), and o- is the Stefan-Boltzmann constant (5.67* 10-12 Watts 1 ein2 .K4 ).

Kp is the conductance due to thermal loss via the solid structure which connects

the detector to substrate. To first approximation
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Kith 
Kp L (3.31)

where K is the thermal conductivity of the thermal loss path, Aih is the average cross

section area of the thermal loss path , and L is the length of the thermal loss path.

Kg is the conductance due to gaseous conductance loss. The analysis of gas-filled

detector packages is complex. However, the gaseous conductance can not be neglected

when a detector is not working in vacuum, especially when the Kp is very small. An

example is shown in Fig. 3.7. In order to have the best possible performance, a bolometer

array- qhnillci hP nark-no-F.(1 in vaoinrrn

packaged in (a) Vacuum, (b) Xe, and (c) Air ( N2 ). (From [49])
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3.3 The Readout Integrated Circuit (ROIC)

The primary noise sources for a typical bolometer focal plane array are:

1. The fundamental or limiting thermal noise seen as temperature fluctuations in the

detector.

2. The noise term associated with the bolometer material; that is the Johnson noise and

excess noise.

3. The noise terms due to the silicon readout circuit. This is a matter of preamplifier and

multiplexer design. An important feature is that this design will also determine the

device noise bandwidth..

4. The fixed pattern noise (FPN) due to the pixel-to-pixel detector resistance variation.

The noise due to the inaccurate timing of the pulse bias and the signal capturing when

the pulse bias method is used.

These noise sources are discussed in turn as follows.

Consider the dc voltage bias bolometer detector circuit of Fig. 3.1, the noise

equivalent circuit of Fig. 3.1 is shown in Fig. 3.8.

■

: Amplifier

Fig. 3.8 Noise equivalent circuit of Fig. 3.1.



where

Cc : coupling capacitor,

RLI : load resistance for amplifier input,

Rm : detector resistance,

RL : load resistance for bias circuit,

Vs : signal voltage,

/„L : Johnson noise current of RL ,

Johnson noise current of R„,,

Ie„: excess noise current of R,,,,

In : Johnson noise current of RL, ,

In : equivalent noise current of amplifier,

En : equivalent noise voltage of amplifier,

VT : temperature fluctuation noise,

Rp R„,1 IRL .

The equivalent output noise voltage Eso would be

2
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Es20 = En2 +(.1 2 +.11,2 1 ) (R + 	 )1IRLI
P 	1 jCOCc    

2

+ (k'n-L + 1,i2m +Iec2 )* 	*
2 (Rp + 	 ) I /RL ,

locc          
2

+ vT *
1

R + 	P JaCc

(Rp + icocc1 ) / /Rn (3.32)2
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Transferring the equivalent output noise voltage Eso to the input, we get the equivalent

input noise voltage Es, as Fig. 3.9.

Fig. 3.9 The equivalent circuit of Fig. 3.8.

E 2 —Si
E;,2

2

2

(Rp + 3 ^ )I IRL l
2 Rp +

COCc

1
+(I;+ L2„„, 	 )*RP + vT 	+11,1)* R (3.33)+

P
	 jccC

For RL, » Rp and Rp » y 	 Eq. 3.33 becomes,
C

Es2i =En 	 L2nrn 	 r2x 	I2 * R2p	vT2 (3.34)

1. Temperature fluctuation noise

The rms value of the temperature fluctuation power spectrum , derived at appendix A, is

A	 = (4 kBT2K th ) 1/ 2

One-half this fluctuation is due to the fluctuating emission of radiation, and the other half

is due to the fluctuating absorption. Therefore
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A W T = ( 2 k B K th (11 02 	 T in2 ))1r2 	 (3.35)

The temperature noise voltage is calculated by treating A.WT in the same way as an

incoming signal. Hence, the temperature fluctuation noise is

V
(2k2K,,, ( To2 + 7,;2, ))" 

* (3.36)Rv 	(V I H.z 112 )
■	 77

2

2. Johnson noise

From Eq. 3.34, the Johnson noise voltage of resistance R. and RL is

= (1 2 +12nm )" 2 	R

112

4k *	 RL	*	 R TA) (V / Hz 1/2 ) (3.37)
B 	

,	 (T

where

° m +(RL, 	 RnY

InL —

(
4kB To

1/2

(A 1 Ilz 1.12 ) (3.38)
RL

Inm —
( 4k B.17. 112A I Hz 1/2 ) (3.39)

)

The excess noise of R., Vex , can contain various components such as 1/f noise Vvf and

random telegraph switching (RTS) noise VRTs The 1/f noise and RTS noise component of

the excess noise are given by the expressions[51]

I
bR

Vllf = consi 	 (Nf )112

— 1/2                



4k BR„,(RL T„, + R„,T0 )}

a R2 L

D* =FA b
A a2R2Rpixel	 tn L 1

)1/2

s\ 1/2

1/2

( v2
'eff IL" 'th

(R LT. + RmJ;)

A "2 Vpixel 0

\ 1/2
(Keff 	 t2 + CO 2 C 2h

= F A rl
RL

R,„
1/2

a Ap,xeiRL

(
4k (K2 + 2Cr il) 

R
L j(RL T„, + R,,T0 )

eff Rn,

F A riVo 	(3.43)Rm1/2  

37

where Vvf and VRTs are the respective noise voltage, b is approximately unity and N is

the number of charge carrier. RTS noise is composed of a number (n) of switching

processes where each switching process is due to a defect center and is characterized by

an average switch-on/switch-off time Ti and a measured voltage step change Avi for each.

The excess noise is the dominant noise source in the a-Si microbolometer FPA developed

by DSTO.

If the performance of the detector is limited by Johnson noise, the detectivity D * is

\ 1/2
(Apfr„Af)

* — NEP
A"'RTpixel .7

Vj
(3.42)

where Apixel
 is the pixel area of the detector, V, is the Johnson noise voltage, and R, is

the voltage responsivity. Assuming the conductance is a constant over the operating

temperature range, using Eqs. 3.20 and 3.37 to solve Eq. 3.42 for the detectivity gives

The first term in Eq. 3.43 is defined as the figure of merit of the bolometric material under

fixed voltage bias conditions when Johnson noise in the resistor is the dominant noise.
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It is apparently that the development of new materials with high TCR and low resistance

would improve bolometer performance.

3. Preamplifier noise[20]

A noise model for amplifier is shown in Fig. 3.10. Amplifier noise is represented

completely by a zero impedance voltage generator En in series with the input port, an

infinite impedance current generator In in parallel with the input, and by a complex

correlation coefficient C (not shown). Each of these terms typically are frequency

dependent.

Amplifier NN,,. Noise-free
noise 	 amplifier with

voltage gain A,

Fig. 3.10 A noise model of amplifiers. (From reference 20.)

The two noise sources of a MOSFET amplifier are current noise In and voltage

noise E. They are given by [20]

/„ = (2q/Gss ) 1/2 (A I Hz" 2 ) 	 (3.45)

and
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(
 8kB T	 KF IDA:'

1/2
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. f)

(3.46)

where q is the electronic charge, I Gss is the gate leakage current of a MOSFET, g,„ is

the transconductance of a MOSFET, C ox is the gate oxide capacitance, Leff is the

effective channel length, KF is the flicker noise coefficient, AF is a constant, /D2 is the

quiescent drain current, and f is the frequency of operation.

The BJT amplifier noise sources In and En are represented by [20]

(
i2qfL r,
	f\2v12

2qIB +	 (A / Hz 112 )	 (3.47)+ 
■
-
fr)

and
( 2

	

21 112

En = 4kB Trx +2q1cre
2 
+ 

2 
eLPB' 

rx' 
+ 2qicrx2 	

.)

(V I 1-1z 1/2 ) (3.48)

where q is the electronic charge, I B is the base current, lc is the collector current, IL is

a representation of the noise corner frequency, having values from 3.7 KHz to 7 MHz, fT

represents the frequency at which the common-emitter short-circuit current gain equals

unity, rx is the base spreading resistance, re is the Shockley emitter resistance, kB is the

Boltzmann's constant, rx is the 1/f base spreading resistance (r; e / 2), and f is the

frequency of operation. I n and E„ are strongly dependent on collector current.

Noise current and voltage for typical low-noise transistor technologies in the

common source (or common emitter) configuration are plotted in Fig. 3.11.
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If the detector resistance is about BM, FETs are more desirable for the input

stage because of their very low noise current In (-10 fA / H.z 112 ) . A typical JFET has an

En slightly larger than that of a bipolar transistor, but its 1 ..„ is significantly lower. If the

detector resistance is about 10./a2, as the bolometer resistance of Honeywell's FPA,

bipolar transistors are more suitable input stage. In Honeywell's FPA, every pixel has a

bipolar transistor under the suspended microbridge as shown in Fig. 3.4.

Two examples for calculated bolometer performances are now given based on the

following reasonable assumptions.

Assuming

Kth = 2.4 *10' (W 1 °K) (Thermal conductance),

Cth = 2.5 *10 -9 (JPK) (Thermal capacitance),

= 0.8 (Absorbtivity of detector),

TCR = 2% (Temperature of coefficient),

Apixo = 50* 50(um2 ) (Pixel area),

= 0.5 (Fill factor),

V, = 5(V) (Bias voltage),

= 300( °K) (Substrate temperature).

and,

= 5.67 *10 -12 (W / cm 2 K4 ) (Stefan-Boltzmann constant),

1c3 = 1.38 *10 -2 ' (W. S I °K) (Boltzmann' s constant).
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For example 1: Rni =RL =111/K2

The detector temperature ( Tm ), the temperature fluctuation noise voltage (VT ) and the

Johnson noise voltage (V1 ) calculated using Eqs. 3.2, 3.36 and 3.37 would be

1 
( u

T.= 4+ 	 * 	 °Kth ■,RL, R„,)
= 302.6( °K)

*Rn,

(3.49)

1/2
( 2kBICh(To2 	* pp

2
17 

2.554 * 10_ 8
(1+ c02 2)1/2	 (V / Hiv2 ) 	 (3.50)	

1/2
RLR,„ 4k * 	 * (ToR„,+ TA)(RL + AO

= 9.12*10-1 (V/H.z 112 ) (3.51)

17.1=

Since the detector resistance Rin is imn, from Fig. 3.12, an FET would be a

suitable device for the preamplifier for this example. A low noise WET 2N3 821 could be

chosen. Its equivalent noise current ) is about 3 fA / Hz 1/2 for frequencies below

10KHz and its equivalent noise voltage (En ) would be about 6nV / Hz" . The amplifier

noise voltage (VA ) would be

VA =V2R2p +E 2 112

= 6nV / Hz" (3.52)

The power consumption per pixel is 6.25uW . Assuming there are 256*256 pixels in a

focal plane array, then the minimum power consumption is 0.4096 Watts. The numerical

calculations of noise voltages and normalized detectivity are shown in Fig. 3.13.
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Example 2: : R.=RL =10.1a)

The detector temperature (T.) would be Tm = 560.41( °K) and the power consumption

would be unreasonably high as 163.84 watts for 256*256 pixels, if dc bias was used.

Therefore, it would be advantages to use pulse biasing. For example, if the

detector is biased by a voltage pulse with a pulse width 5us, the thermal time constant

Cth
7-th Kit, 1,04ms, would be much longer than the pulse width. Therefore, the detector

temperature Trn would not rise significantly and can be shown using the linearly

approximation below

T. -=

=

1 /( Vo
2

* R.* 5us

(3,53)

*To+ v
thli

301.25( °K)

RI, + R. Tth

The Johnson noise voltage (V.1 ) for pulse bias would be

—112 

17,1 7=
Rm

+ Tink)	* 	 * (ToRni

	

4k
B 	2(RL, + An )

= 9.12 *10-9 	(V / 1-/z 1/2 ) (3.54)

The pulse bias Johnson noise voltage is also plotted in Fig. 3.13. According to Eqs. 3.50

to 3.52, the thermal noise is the dominant noise for R m = R, . The thermal noise

can be reduced by using lower resistivity material, but the detector temperature and power

consumption will increase as in example 2. Therefore, a pulse bias method is necessary for

a microbolometer focal plane array.
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10

Johnson Noise (R m=1 Mohm

• ■I• 1 .11, NORM

•

Johnson Noise (R m=1 Mohm)
• Temperature Fluctuation Noise

Total Noise
• Detectivity
▪ Johnson Noise (R m=l0kohm)
— Amplifier Noise

0.1
10° 103

0.1
1 0410 1 	102

Frequency (Hz)

Fig. 3.13 Numerical calculations of noise voltage and normalized detectivity. The Johnson
noise voltage for R„, -- 1Mohm and total noise voltage are superimposed in this figure.

The use of pulse bias allows a large number of detectors to be addressed at low

average power consumption. Furthermore, since the pulse duration can be significantly

smaller than the thermal time constant, the detector temperature does not reach the de bias

level, and a high voltage can be used with consequent increase in responsivity. However,

the use of high voltage pulses causes a rapid temperature increase added to the

temperature generated by incident power. If the time from the start of pulse bias to the

actual sampling of detector temperature is not stable, a noise contribution will appear.

100
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Accurate timing is therefore needed. However, another aspect becomes important in a

columnwise parallel signal conditioning and A/D conversion architecture if the detector

data are repeatedly sampled during a pulse bias period. In such a concept the sampled data

change during the pulse bias time, since the detector is heated from near ambient

temperature at the start of the pulse bias internal to a several degrees higher temperature

at the end of the interval. This means that the input range of signal conditioning circuits

must be large enough to handle not only the data and FPN signals, but also the ramp bias

signal. Thereby, the demands on the dynamic range of the signal conditioning circuits

increase and the temperature resolution specifications may be more difficult to meet. To

avoid extra signal conditioning design challenges and poorer performance, compensation

of the detector temperature rise must be made[48].

The expression for noise equivalent temperature noise NETD [25] is

4F24f 1/2

NETD —
Apixel r0 D* (AP I An .41—A2

(3.55)

where F is the f/no of optics, A p„„/ is the pixel area, D* is detectivity, To is the

transmittance of imaging system's optics, (AP / AT) A ,_ 22 is the temperature constant

(-1.972 *10' Watts I ciii2K for 2= 8 to 12um), and Af is the noise bandwidth.

The noise bandwidth in NETD depends on the signal conditioning architecture.

Three basic and alternative signal conditioning approaches can be recognized. The first is

the serial ADC, involving X-Y multiplexing of sensor data to a single on-chip ADC. The

second option is pixelwise A/D conversion with an ADC dedicated to every detector. The

third approach is columnwise A/D conversion with a degree of signal conditioning

parallelism lying between the first two concepts[46].
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1. Pixelwise A/D conversion[461

The pixelwise A/D conversion approach has an ADC next to every detector. The

advantages are that no signal degradation occurs when digital data are read out of the

detector array, and that the infrared radiation incident on the detector can be sensed and

electrically integrated during the whole frame period. The digital readout and the relatively

low bandwidth requirement of the ADC, set by the frame rate, indicate that this kind of

structure can give the highest signal-to-noise ratio (SNR). On the other hand, this high

performance is outweighed in practice by very stringent demands on size and power

consumption for the ADC and signal conditioning circuits.

2. Serial A/D conversion[46]

For the serial ADC architecture the conditions are the opposite to the pixelwise A/D

conversion. All available power and area can now be used for the single ADC, but the

bandwidth is several thousand times higher, since only a short sampling time per detector

element is available. For a 256*256 array and a frame rate of 50 frames/s, 3.3MHz

conversion rate is required. The high bandwidth of this method implies that the spectral

noise density of the detector element and signal conditioning circuits must be low if an

acceptable SNR is to be achieved. Besides the problem of constructing a low-noise high-

speed preamplifier and ADC, the detector resistance must be kept low to avoid excessive

thermal (Johnson) noise. This will in turn lead to a rapid heating of the detector by the

short current or voltage bias pulse required during selection. The rapid temperature

increase adds to the signal temperature that is to be detected. If the time from the pulse

bias start to sampling of detector temperature is not stable, the captured signal will differ
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from sampling to sampling due to the temperature increase. For an acceptable low

contribution of such noise, the timing accuracy of the pulse bias and the signal capturing,

from selection to selection, must be less than of the order of 1ps. The large bandwidth in

combination with long interconnections makes this method also sensitive to noise that is

coupled to the selection network and ground references.

3. Colunmwise A/D conversion[46]

The readout of the columnwise parallel sensor is a row-to-row principle, where a whole

row is selected at a given time. The data of the selected row are columnwise and

independently amplified and A/D converted during the time for the row selection. Before a

new A/D conversion starts, the digitized data is columnwise read out in parallel into a row

of digital registers, so that the previous data can be read out at the same time as the next

row is selected during the next conversion. The power available per signal conditioning

and ADC branch is the total power available divided by the number of sensor columns.

This results in a reasonable power consumption limit on the ADCs. The conversion rate is

the frame rate times the number of sensor rows. Compared to the serial concept there are

a one level reduction of the analog multiplexing and a bandwidth reduction proportional to

the number of sensor columns. This makes the concept considerably less sensitive to noise

at the analog signal path. Also, the demand for timing accuracy of the pulse biasing is

reduced by the number of sensor columns, since the heating of the detector is not so rapid.
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3.4 The Bolometer Material

A key parameter characterizing the material for the bolometric detectors is their thermal

coefficient of resistance (TCR). It is defined as

TCR= 
1 dRd

(3.56)
Rd dr

where Rd is the material resistance and T is the temperature. According to Eq. 3.43, the

array TCR needs to be as large as possible for a given pixel resistance for optimal

performance.

There are mainly two different kinds of material presently used in bolometer FPAs.

They are amorphous vanadium oxide thin film (VO' ) [32,38,39,52] and amorphous or

microcrystalline phases of Si, Ge, and SiGe thin film [43,50,51].

Amorphous vanadium oxide was developed by Honeywell for their

microbolometer FPA. It is deposited by an ion beam sputtering process where tight

control of film oxygen content is maintained. The VO„ thin film material (in its

semiconducting phase) with a resistivity of 0.10hm-cm has a TCR of 2%[32]. By

changing the film oxygen stoichiometry, the resistivity and TCR can be changed[32,

38,39]. Fig. 3.13 shows a plot of film TCR vs. Film resistivity for 500 and 1000 Angstrom

thick films developed by Honeywell. The temperature dependence of resistivity of a

semiconductor material, such as V0 x, in the semiconducting phase, can be expressed as

Rd (T) = -Ro exP(E/kT)

	
(3.57)

where EA is the activation energy, kB is the Boltzmann constant, and Ro is the resistance

at T --> 00 . Combining Eqs. 3.56 and 3.57, one obtains
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TCR — 	 Akbr (3.58)

Therefore, the individual films of different resistances of Fig. 3.14 can be

described by different activation energies over a 1000 temperature range around room

temperature. The activation energy, which can be derived from the slope of In Rd vs 1/T

ling is Armin fnr /Ina 1 2 C nlirrie /ermard. TT() glrri rianno;+044 (yr, Vi 	 rr 2 1 ;
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Vanadium dioxide (V02 ) is a metal oxide material. It shows a temperature

induced crystallographic transformation that is accompanied by a reversible semiconductor

(low-temperature phase) to metal (high-temperature phase) phase transition with a

significant change in electrical and optical properties. It's transition temperature is about

68°C . The semiconductor phase of V02 is highly transparent in the 3 to I2um region of

the spectrum. In the metallic phase, V02 is highly absorbing and reflecting. A plot of
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• A high value for the temperature coefficient of resistance a and therefore a higher

value for the responsivity RV .

• The ability to form a thermally isolated optical cavity from these materials and

therefore enhance the emissivity /absorbance of the infrared detecting bolometer.

• Their relatively mature materials growth technologies that are compatible with

deposition on a substrate containing the VLSI signal processing functions.

• The ability to select a wide range of bolometer resistance through either the addition

of hydrogen or the controlled doping of the material.

The first material studied by DSTO was amorphous silicon. Amorphous silicon

possesses a number of properties that make it an attractive material. It has a high

temperature coefficient of resistance, 1.8 < —a < 5.5% °K-1 [51], depending on the

material growth techniques. Control of a-Si growth is also used to set its resistivity, which

increases with increasing The low processing temperature (< 673 K) of a-Si:H

enables it to be deposited directly onto VLSI substrates without damage to the underlying

circuits. However, the a-Si:H material prepared by DSTO unfortunately exhibits very high

values of 1/f noise. Fig. 3.17 shows the measured noise spectra of PECVD deposited and

a sputter deposited a-Si:H bolometer produced by DSTO.

The origin of the higher level of noise within PECVD a-SI:H material, as

compared with sputtered a-SI:H of similar resistivity, is reportedly the higher hydrogen

content within PECVD a-Si:H. In addition, the troublesome RTS noise is commonly

found in PECVD material[51].
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As a result of the generally higher noise levels within PECVD a-Si:H, work at

DSTO was directed towards optimizing the performance of IR detectors based on sputter

deposited a-Si:H and a-Si. The detectivity D* for sputter deposited a-Si:H bolometers

decreases as the hydrogen content is increased with the highest detectivity obtained for

unhydrogenated material. The degradation in performance with hydrogen is due to several

factors. These include the overall increase in material resistivity, and therefore an increase

in both Johnson noise and noise, non-uniformities within the material, such as current

filaments through the amorphous microstructure, and instabilities effect within the Si-H

microstructure.

1.0E-5

1.0E4

10E-7

1.0E4

a.
1.oc-9

71,
1.0E40

1.0E-11

Fig. 3.17 Noise spectra of a-Si:H produced by (a) PECVD and (b) sputter deposition, plus
the base Johnson noise. Developed by DSTO. (From [51J)

According to Eq. 3.44, the material figure of merit Fboi is given by

a
Fbol	 pp,112

L 'm
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The lower the resistance R„ „ the lower the Johnson noise. Therefore, future bolometer

materials will probably selected from materials with low resistivity and yet high E

Amorphous and microcrystalline phase of Ge, and SiGe thin film are studied DSTO. A

result is shown in Table 3.1.

Table 3.1 Properties and detectivity measured for semiconductor film bolometers
operating in a vacuum. The current is varied to maximize for detectivity.

Detector Material Detector Size
(urn)

a
%/CI

Resistance
(Kn.)

D* (cmHz 112 W- 1 )

gm Hz
D * (cmHz 112 W-1 )

(480 Hz
PECVD a-Si:H 40*40 -4.5 1550 1.7 *107 1.15 * 10 7

Sputtered a-Si:H 40*40 -2.1 1740 1.6*108 1.08 *10 8

Sputtered a-Si 70*70 -1.8 22 3.2'1'108 2.2*108
Sputtered a-Ge 70*70 -1.8 1.4 4.7 *10 8 3.2*108

3.5 Monolithic Resistive Bolometer Arrays Developed by Honeywell[28,31 -39]

The thermal isolation structure developed by Honeywell is shown in Fig. 3.4 of section

3.2. In the Honeywell structure, the optical resonator is optimized for high IR absorption

by using an air gap between the suspended microbridge and substrate. The spacing

between the microbridge and the substrate would be about 2.5um. In contrast, the optical

resonator developed by DSTO uses an a-Si:H layer sandwiched between two metal layers.

The thermal sensing material of the Honeywell bolometer is a vanadium oxide thin

film whose TCR varies by ± 0.1% over an array[34]. The resistivity of the thin film over

the same area varies by ± 1% . An important characteristic is that its 1/f noise contributes

negligibly to the total noise at the operating current of 250uA[28].
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The Honeywell's uncooled microbolometer FPA does not require a chopper which

has the following significant advantages[17]:

• the mechanical chopper part is eliminated, increasing reliability and maintainability,

• the NETD is improved by a factor of 2,

• size, weight, and power consumption are reduced.

The sensor NETD is improved by a factor of 2 because: 1) the thermal radiation

signal is not blocked on every other frame basis (see Fig. 3.18) giving a improvement

in responsivity; and 2) the sensor internal frame rate is also reduced by a factor of 2, to 30
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capturing, averaging, and storing a reference frame in a frame memory. Once the average

reference frame has been stored, the camera is then allowed to stare continuously at the

scene without a chopper, and image frames are offset-corrected by subtraction from the

stored reference frame.

The block diagram of a Honeywell uncooled IR imager is shown in Fig. 3.19. Bias

supplies for the microbolometers are directed through decoding circuits under control of

the array-scanning logic. The multiplexer on the array chip allows random addressing of

each pixel in the array. The rows in the array are arranged into 16 row groups, with 15

rows in each group. The columns are organized into 24 column groups of 14 columns

each for readout. Each column in a column group connects to one channel of output, and

the camera reads out 14 channels at once. The array addresses one row and one column
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The summary of Honeywell's microbolometer arrays is [15]

• Unique thermal-isolation structure results in highest possible sensitivity for uncooled

bolometric sensors

• Room temperature, 8-12 urn operation

• Monolithic silicon process line

• Extremely rugged

• Chopperless operation

• No measurable crosstalk

• 240*336 pixel arrays, 2-mil pixel demonstrated

• Measured NETD 0.04K (f/1.0)

Table 3.2 A summary of the parameters of Honeywell's microbolometer arrays

Parameter

Mass (silicon nitride)
Thermal Mass
Thermal Conductance to
Substrate
Thermal Response Time
Operating Temperature
Vacuum
Fill-Factor
Shock Tolerance
Absorption(8-14 um band)
pixel Size
bias Voltage
Resistance
TCR
Responsivity
Noise
Sensitivity(NETD)
Array Dimensions
Dead Pixels
Uniformity

Typical

1*10 -9 gm
1*10 -9 J/C
1*10 -7 W/C

10 ms
Room Temperature
<100 mTorr
50%
>20,000 G
80%
2*2 mil
1.5 V
5 kO,
2%/C
70,000 V/W
10uV rms
0.1C
240*336 Pixels
<25 per Array
2% per Pixel

Anticipated	 Latest
Improvement	 Report[36] 

2*10-9 J/C
< 1 * o -7 W/C
	

1.7*10 -7 W/C

12ms

75-85%
	

48%

80%
1*1 to 3*3 mil	 46.25*46.25 urn2

15 kn
2.5% to 3%/C
250,000 V/W
5 uV rms
0.015C	 0.04K
Larger	 245*327
0 per Array
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3.6 Monolithic Resistive Bolometer Arrays Developed by Defense Science and
Technology Organization [30, 40-50]

Very interesting uncooled thermal imager technology is now under development at the

Defense Science and Technology Organization (DSTO) of Australia. The reports on this

work have provided the author with a good background on the fundamentals of bolometer

FPA. The origin of research conducted during the 1970s aimed at optimizing the

performance of thin film bolometer detectors[43]. The first product of this research was a

metal film bolometer (MFB) detector[40] with a typical D* of 1*10 8 cm. Hz" . W- ' and a

time constant of 0.2 ms. DSTO is currently engaged in the preparation of experimental

arrays for lightweight thermal imaging and integrating thin-film monolithic detector arrays

with sub-micron CMOS signal conditioning and readout microelectronics[46-48]. The

analog-to-digital conversion and some signal processing functions will be incorporated on

the array chip or within the same package, and the remaining electronics will be in the

form of application specific integrated circuits (ASICs) mounted with the array on a single

circuit card.

The thermal isolation structure developed by DSTO is described in section 3.2 and

shown in Fig. 3.5. The best total thermal conductance in vacuum reported for focal plane

array is 4.8*10 -7 Watts I K [50] .

The thermal sensing material of DSTO's bolometer is described in material

section. Particular attention is given to materials and material growth techniques that

maximize the responsivity and minimize the electronic excess noise[51].

DSTO is now developing the analog-to-digital conversion and signal processing

circuits for their FPA[46-50]. They are also studying new materials to reduce the 1/f noise
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and Johnson noise[50]. Expected performance and characteristics of a 256*256 sensor

array are shown in Table 3.3[46].

Table 3.3 Expected performance and characteristics of a 256*256 sensor array

On-Chip ADC Resolution 16 bit
Spatial Resolution 256*256
NETD 0.2K
Frame Rate 50 frames/s
Detector Size 40*40 uni2

Readout electronics Chip Area 10.2*2.3 mm 2

Power Consumption 0.17 W
Power supply voltage 5 V
VLSI Process 0.8 urn Digital CMOS



CHAPTER 4

REVIEW OF THE THEORY AND PERFORMANCE OF PYROELECTRIC AND
FERROELECTRIC UNCOOLED FOCAL PLANE ARRAYS

4.1 Pyroelectric Response

The pyroelectric effect is described by the

= p,AT
	

(4.1)

where Pi , a vector, is the polarization change due to a change in temperature AT times

the pyroelectric coefficient p, . For infinitesimal changes in temperature, Eq. 4.1 can be

written in the differential form

(4.2)

The effect of a temperature change on a pyroelectric material is to cause a displacement

current ip to flow in an external circuit (see Fig. 4.1), such that

dT
i p

APml.P • di
(4.3)

where App, is the electrode area of the material, p' is the component of the pyroelectric

coefficient normal to the electrodes and dVdt is the rate of change of temperature with

time.

dT
The pyroelectric element can be represented by a current source, A pii1 .p . 

di

driving a parallel element-load impedance as shown in Fig. 4.2. Let Cd and Rd be the

capacitance and resistance of the pyroelectric element, and CI and RI, be the load

capacitance and resistance e.g. of the preamplifier). Thus, the parallel element-load

59
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capacitance CE and resistance RE are, CE Cd CL , R 1 = GE =	 R1 where GE is

the electrical conductance. The admittance of the circuit is Y = GE + iCOCE

External
circuit

Electroded
surfaces

Fig. 4.1 Schematic diagram of a pyroelectric element subject to a small temperature
change.

Fig. 4.2 Equivalent circuit of a pyroelectric element.

The temperature difference T between the detector element and its surroundings

when illuminated by a flux of radiation with power W(t) modulated at frequency co such

that W(t) = Woe' can be described by

qW(t)— 
CthdT

+ KthT
dt

(4.4)
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where i is the fraction of incident power absorbed by the detector, Ca, is the detector

thermal capacitance, and Kth is the total thermal conductance to surroundings.

Eq. 4.4 has the solution

— 	
77W (t) 

(Kth + lcoCth)
(4.5)

Thus, from Eq. 4.3, the pyroelectric current ip is

ip 	Apixelp
( 	 jricop A p,„F(t) 

dt 	 (K,„ + jcoCth)
(4.6)

The current responsivity	 is defined as the pyroelectric current per unit incident power,

therefore

77cop"Apixel

(Kt217 co 2c2h )1/ 2 (4.7)

At low frequencies Wi-th « 1), the current responsivity R, is proportional to co , being

Ri 
—

77A pixerg co 
Kt„

For frequencies much higher than 1;7 1 , R, is nearly constant, being

71)1 pixeiP 	 rip
R. — 	 —

Crh	 c' d

where c' is the volume specific heat and d is the thickness.

The pyroelectric voltage (Vp ) of the detector shown in Fig. 4.2 is simply derived

from the pyroelectric current and the electrical admittance (Y) presented to i p . Therefore,

v  = - 	
P7C°Prilpi,x1W(t)

P Y (Kt„ + jo)C th)(G E + 	 E
(4.10)

ip(t) 
W(t)

(4.8)

(4.9)
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RV(X) —

th G E ( z th TE)
(4.12)

and the voltage responsivity Ri, is
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R,
vp

W(t ) 

ricop'Agxe• 1 (4.11) 
thG E (1 + co 2 r 2h )1/2 (1 co 2 iTE2 )1/2     

Crhwhere rth = ich and TE = Gs are the thermal and electrical time constants respectively.

The form of the voltage responsivity is shown in Fig. 4.3 for TB> zth RV is a maximum

at co --1/2 	 •with= 0"E Tth)

At low frequency (an -th «1), RV is proportional to frequency. For high frequency

corth >> 1; coTE » 1), R, is given by

R, — 
c'd(Cd+CL)co
	 (4.13)

If the element capacitance, C d , is large compared with CL , then Eq. 4.13 reduces to

— 

c'ercoApitei co
	 (4.14)

where co is the permittivity of free space and er is the relative permittivity of the

pyroelectric material. For such a detector, the response is proportional to a figure of merit

F
v
 — 

c'erc,

If CL » C d , then Eq. 4.13 reduces to

'R — RP 
c'cicoCL

(4.15)

(4.16)
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The voltage response is proportional to

= 12:-	 (4.17)

which is a different material figure of merit.

As —

(TE T
T)  

112 	 TE
4

log o

Fig. 4.3 Frequency variation of voltage responsivity.

For a focal plane array, the pixel area (Apixd ) in the above equations should be

replaced by effective area ( ifer ), which is the pixel area with pyroelectric material.

Any real device implementation includes circuit elements that introduce parasitic

capacitance. This results in a responsivity attenuation factor of

C.Cd 

Cd +Cp (4. 1 8)

where Cd is the detector capacitance and Cp is the parasitic capacitance. This effect is

especially important when the parasitic capacitance is high, such as for arrays addressed by

only a switch at each pixel site. The parasitic capacitance can be reduced by using a

preamplifier or buffer at each pixel to decouple the detector capacitance from the large
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address line parasitic capacitance. When the pixel area reduces, the effect becomes more

serious.

The three main research areas of pyroelectric focal plane arrays are the hybrid or

monolithic thermal structure, the design of the silicon readout integrated circuit, and the

ferroelectric material. They are discussed in the following sections.

4.2 Hybrid and Monolithic Thermal Structures

Fig. 4.4 shows a 2-dimensional hybrid detector array together with the other components

required for an imaging sensor. The focused radiation from the IR lens is first chopped and

then falls on the hybrid device in the center of the diagram. The ferroelectric detector

wafer at the left of the hybrid has an array of metallic electrodes deposited on its lower

surface to define the detector elements. In the hybrid processing, the electrodes are

bonded, by using solder bumps, to corresponding pads on the silicon multiplexer chip

shown at the right of the hybrid. The chopped radiation produces alternate warming and

cooling of the array and this results in alternate positive and negative signals.

Fig. 4.5 shows the structure of a single element and its neighbors. Element pitch is

about 50um. The ferroelectric material is the wafer from the hot pressed ceramic block,

polished to proper thickness. Radiation is incident from the top, and is absorbed in an

impedance matched thin film structure, with a thin resistive (3770 per square ) metallic

film, a 1/4 polymer layer and a 10 — an per square metallic film as a back reflector which

also provides the common electrical contact. Average absorption in the 8 to 14um band of

over 90% can be achieved.
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The geometry of the ferroelectric element illustrates the thermal design feature of

isolation within the structure. Three measures are used: firstly the solder bond is kept to

as small an area as possible, and secondly the bond is made to a thin interconnection track

on a thick insulating polymide layer on the silicon IC. Thirdly, to isolate the individual
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detector element from its neighbors, grooves or slots are milled into the ceramic wafer in a

process knows as reticulation. Without this physical separation, heat would spread

laterally between the elements reducing the image resolution.

The present successful ferroelectric arrays use a hybrid construction, but fully

integrated technologies where the detector material is directly deposited on the silicon IC

are also being researched. Potential advantages of integrated designs are [561

• no detector wafer processing required,

• no solder bonding process required,

• no reticulation required,

• wafer scale processing for fully completed devices,

• increased performance from lower thermal conductance in micro-structures on the IC.

The first four offer reduced complexity in processing, i.e. higher yield, and lower cost,

while the last has potential for marked improvements in sensitivity.

The two main aspects for integrated array research are directly deposited thin films

of the detector material and thermally insulating micro-structures built on the silicon IC.

The material performance will be discussed in the material section. The microbridge

structure scheme is the same as the structure for microbolometer detector. The

pyroelectric materials are deposited on the SiO2 / 193 N4 microbridge which is supported

over an air gap over the silicon substrate by legs which carry the electrical contacts to the

top and bottom electrodes of the element.
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4.3 Low Noise Readout Design and Circuitry

The primary noise sources for a typical pyroelectric focal plane array are listed below[57]

1. The fundamental or limiting thermal noise seen as temperature fluctuations in the

detector.

2. The noise terms associated with the ferroelectric material, that is the dielectric loss and

the spurious piezoelectric or microphony noise.

3. The noise terms due to the silicon readout circuit. The magnitude of these terms

depend on the preamplifier and multiplexer designs. An important feature is that these

designs will also determine the device noise bandwidth.

4. The spatial or fixed pattern noise: this depends on the ferroelectric material through

the variation of the responsivity over the whole detector array, and also depends on

the readout circuit through variation of voltage offsets and gain. The spatial noise

variation can be very critical in large array performance, since it is often larger than the

signal itself. To completely compensate for noise variation excessive demands would

require the digital processing following the array. Therefore, most of the offset noise is

removed using a chopper and an image difference process (IDP) which will be

discussed in this section.

A pyroelectric detector circuit is shown in Fig. 4.6.

Amplifier

Fig 4.6 A pyroelectric detector circuit.



The noise equivalent circuit of Fig. 4.6 is shown in Fig. 4.7.

Amplifier

Fig. 4.7 The noise equivalent circuit of Fig. 4.6.

where

i p : pyroelectric current,

I nT : temperature fluctuation current,

Rd : resistance of a pyroelectric element,

Ind : Johnson noise current of Rd ,

Cd : capacitance of a pyroelectric element,

RL : load resistance,

I„L : Johnson noise current of RL ,

: equivalent noise voltage of amplifier,

: equivalent noise current of amplifier.

Fig. 4.8 shows the equivalent noise voltage of Fig. 4.7.
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Fig. 4.8 Equivalent noise voltage of Fig. 4.7.
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where

V3 : signal voltage,

VT temperature fluctuation noise voltage,

Void Johnson noise voltage of Rd ,

: Johnson noise voltage of RL ,

Z = (RL I IRd I IC'd I ICL ).

The equivalent input noise voltage Es; is

ES; = (VT + v j2 
dVIZ

v + En  + / 2 2 )1/2
	

(4.19)

1. Temperature .fluctuation  noise

The rms value of the temperature fluctuation spectrum, derived in appendix A, is

A WT = (41 B T2 Kth)1/2 (w Hz 1/2 ) 	 (4.20)

The temperature noise voltage is calculated by treating AWT in the same way as an

incoming signal. Hence,

VT =L1(4k B r Kth )" (V I Hz 1 '2 )
	

(4.21)

2.Johnson noise

The complex permittivity ec of a dielectric material is [58]

= Or J
= 6„, _ J8 "

	

(4.22)
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where c' is the dc permittivity of the dielectric material and a is its ac conductivity. The

ratio measures the magnitude of the conduction current relative to that of the

displacement current. It is called a loss tangent, tan g, because it is a measure of the

ohmic loss in the medium.

Hence,

tan g =
cn 	 cy

(4.23)=
8 	C°80 6r 	 d

(4kB T\ 112

VJd Rd 	,/
* IZ

(4k B TCtJI, d tan 8) 112

(V / Hz"2 (4.24)

(G; +(0212)

and,

(4k B. T112
VJL *121

RL

(4k
1/2

3 T)
(V / Hz 112 ) (4.25)1/2p1/2(r:2 02i-,2)

4 "L	 `-1 .6"

If R « R L-1 , that is coCd tan 6 « RL-1 or co «(RL Cd tan 8) -1 = ct) i , then VA is the

dominant Johnson noise, and

= 07J2L. Vj2d )1
1/ 2

VJ
1/2•\

4k TRL (V I HZ 1/2 )+ 0 2 ,r, E2 )
(4.26)

This results in an co -1 dependence of Vj at frequencies CO > TE-1 .

If Rd-1 » RL-1 , that is coCd tan g » RL-1 or co » co l , the Johnson noise generated by the

ac conductance of the detector element will dominate, so that



V, (4kB1)1/2d1/2c/(6r60 tan g)1/2 60 1/2

Ave
D* — —pixel (4.28)
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4kB TRd 

 1/2

V V =J 	 Jd 	 1+ 0 2 rE2

( 4k B T tan (5\ 1/2
for Cd » CL 	(4.27) 

CE co 

Johnson noise frequently dominates in pyroelectric detectors. The consequence of

this is that at frequencies greater than rE-1 and co l , the specific detectivity D * is (from Eqs.

4.14 and 4.27)

Thus, to maximize the D* in this region it is desirable to maximize FD

cr(erco tan 8) 1/2

	 (4.29)

which is regarded as the third figure of merit for pyroelectric materials. For frequencies

below col , or if one of the other noise sources is dominate, then maximizing Fr, in Eq.

4.15 will maximize the detectivity.

3. Amplifier noise

The two noise sources of a MOSFET amplifier are current noise I„ and voltage noise E.

They are given by [20]

= (2q/GSS )112 (A l Hz 112 ) 	 (4.30)

1/2

8k BT K 1'F Dq
3gm gm2 	 i2

" OX eff

and
(

E„ —
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2
1/2

= (V2 ±Z—2-) (V I Hz")
f

(4.31)

where q is the electronic charge, I Gss is the gate leakage current of a MOSFET, gm is

the transconductance of a MOSFET, Cox is the gate oxide capacitance, Leff is the

effective channel length, IC is the flicker noise coefficient, AF is a constant, /Do is the

quiescent drain current, and f is the frequency of operation.

From Eq. 4.19, the amplifier noise voltage V, is

V, =(En2 
In2 0 2)1/2

( 	 2 no, 	 11 / 2

En2 2
E 

(17 /UZ I/2 ) (4.32)

The expressions for the individual noise sources are listed below:

Temperature fluctuation noise : VT = (4k B T2 Kth ) 1/ 2 (V I 11Z 112 )

Dielectric loss noise :
(4kB Tcocd tan 8)1/2

(GB' 
± co 2 c )V.1c1 	 1/2
	  (V I Hz 112

4k- B T tan 8\ I/2

CE co 	
if co » col

Johnson noise of RL :
(4kB T)

1/2

Vjz, — yo (V / liz 1/2 )
RL ‘--TE ± CO UE

4k BTRL,, 
1/2

1 4_ co 2 rE2 	 if CO « CO/

1/2

Amplifier voltage noise :
	

En = 	 + 	 (V I Hz")
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Amplifier current noise:	 1,70_ (2c/	
D2 1 / 2

I GSS I1E 
. 1_E co 2 TE2 (V I Hz")

Using the above derived equations, the frequency dependence of the various noise

sources was calculated using the following reasonable values for a detector using the

pyroelectric material, (BaSr)TiO3 .

Assuming

Kth = 5 * 10 -6 (WI °K) (Thermal conductance),

Cth = 7.5 *10 -8 (J/ °K) (Thermal capacitance),

rl = 0.8 (Absorber efficiency),

Aeff = 35 * 3 5(um 2 ) (Effective area),

T = 300( °K) (Substrate temperature),

d = 25um (Pixel thickness),

/ n = 1.8 *10 -16 (A I Hz") (Amplifier current noise),

V = 3.4*10 -9 (V / Hz"),

Za = 2.4 *10 -7 (V),

kB = 1.3 8 * 10 -23 (W. S/ °K) (Boltzmann's constant)

C p 3pF

(BaSr)TiO3 material properties:

tans= 4 *10 -3 (Loss tan .5),

p = 0.7uC / cm 2 K (Pyroelectric coefficient),

= 8000 (Dielectric constant).



74

The results are given in Fig. 4.9. An important feature is that all the sources

produce noise which decreases with frequency except the g„, noise Va in E„. The 1/f

amplifier noise falls as its name implies, but the dielectric loss noise, the amplifier current

noise and the thermal fluctuation noise all fall because they are shunted by the detector

capacitance. The one noise that is not shunted and is therefore flat is g. noise. A major

advantage of the capacitative ferroelectric detectors is that the detector element acts as its

own filter, and therefore, a low equivalent noise bandwidth can be achieved for these noise

sources.
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Spatial noise levels, because of offset and responsivity variations, are often larger

than the signal itself, leading to excessive demands on the digital processing following the

array. These noise can be removed using a image difference processing (IDP) which is

described as follows.

IDP is used with pyroelectric arrays in which the incident radiation is chopped at

the frame rate, ie one field open to the radiation and the next closed. The square-wave

chopped radiation on a element from a static scene is shown in Fig. 4.10, which also

shows the temperature variation of the element. The field time (rf ) is smaller than the

thermal time constant (2-07 ), and the temperature rises and falls as the element is alternately

exposed and shuttered. The signal from each element is sampled at the end of every open

and closed chopper field. The closed field signals are subtracted from the previous open

field signals. This is shown in Fig. 4.11. The MP output has been stripped of the offset

voltages which vary from element to element and introduce fixed pattern noise.

Fig. 4.10 Chopped radiation and detector element temperature. (From [59])
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Fig. 4.11 Field image difference processing digital filter. (From [59])

The image difference processing also adds a filter to the signal and noise data path.

Let Vr sin 2.7ifi be a general noise component at frequency f for the element number r ,

at its interface with the buffer amplifier. Then the result of passing noise samples at

chopping frequency fs through the filter is

V (noise) = V2 -

= Vr {sin[271nf fc ] — sin[221-(n — 1)f I fs ])

=2V. sin[rtf I fs ]cos[220 — 	 I fs ]	 (4.33)

The filter transfer function is

H(f) = 2 sin(af I fc )	 (4.34)

The benefits of EDP for the performance of chopped pyroelectric imaging sensors are

1. removal of fixed pattern noise,

2. low frequency noise filtering.

4.4 Pyroelectric Materials [54]

The two modes for infrared detection by the ferroelectric material are described in Fig.

4.12. The typical properties of a second order ferroelectric are plotted here against
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Fig. 4.12 Operating modes for ferroelectric materials as infrared detectors. (From [57])
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temperature. It can be seen that the spontaneous polarization Po falls to zero at the

transition temperature (Curie temperature) and the relative permittivity rises to a peak in

the region of the transition. The conventional pyroelectric mode for IR detection at the

left, utilizes the falling spontaneous polarization with increasing temperature. The

radiation induced change in the detector temperature results in a change of polarization

equivalent to the flow of a surface charge. However a second mode is available which

instead utilizes the change of permittivity with temperature in the region of the

ferroelectric phase transition. In this mode, the detector operates with an applied bias that

charges the element. Heat due to the absorption of incident radiation results in an

increment of permittivity and hence a signal voltage. This mode is often described as

dielectric bolometer operation. Since the aim is to operate detectors at temperatures close

to ambient, an immediate point is that whereas for conventional pyroelectric operation, Tc

should be well above ambient, for dielectric operation Tc should be close to or below

ambient. Therefore different materials will be required for the two modes.



dP0 	rE ( es (E))
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The generalized pyroelectric coefficient, p' , is the temperature differential of the

displacement, p ' dp/dT The displacement can be written

so that

D = Po + eo
r
 er (E).dE0 (4.35)

Po is the spontaneous polarization and p' = dP°/dT is the conventional pyroelectric

coefficient in zero applied field below the transition. Above the transition temperature Tc ,

Po is zero and the coefficient is often referred to as the induced pyroelectric coefficient

since it falls to zero in the absence of an applied field.

Ignoring any leakage of charge through the element itself and the input load

capacitance, the signal voltage would be

AV
AQ p' A d AT

—

Cd 	Cd

( d 	 "dP0
r (E)s, 	 dT

rhic,r (E)'
r (E) 	 dT )

dV} AT	 (4.37)    

where AO is the charge generated and AT is the temperature change.

The first term is the conventional pyroelectric voltage with wafer thickness d , and

the second term is the dielectric effect under the applied detector bias, Vb . For the

dielectric term, it would appear that very high signal voltages are possible by simply

increasing the applied voltage. However this is not so; in the non-linear behavior, the

dielectric peak and 616/dT  are both depressed with increasing field.
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A variety of ferroelectrics have been explored for thermal imaging applications.

Some of the most important materials are listed in Table 4.1.

Table 4.1A. Properties and Figure of Merits of
Applications. (From [54])

Normal materials for Imaging

Material Bias
kV I cm

Tc
( °C) J I cm3K uC I cm2K

er tan FT„

cm2 / C

FD

(cm' / J)112

Single crystals
TGS 0 49 2.3 0.028 38 0.01 3620 0.066
DTGS 0 60 2.4 0.055 43 0.02 6020 0.083 *
ATGSAs 0 51 2.5 0.07 32 0.008 9900 0.19
LiTa0 3 0 665 3.2 0.18 43 0.003 1440 0.051

LiNb 03 0 1210 3.0 0.083 28 0.005 1140 0.025

SBN 46/54 0 132 2.1 0.043 380 0.003 610 0.065
PGO:Ba 0 70 2.0 0.032 81 0.001 2200 0.19 *
Ceramics
PLZT 0 150 2.6 0.13 1900 0.015 300 0.032
7/65/35
PLZT 0 105 2.6 0.18 4000 0.03 190 0.006
8/65/35
PZNFTU 0 230 2.7 0.039 290 0.0031 570 0.052
PSZNFTU 0 170 2.7 0.049 400 0.0028 520 0.058
PGO 0 178 2.6 0.002 25 0.003 530 0.009
Polymerics
PVDF 0 nono 2.4 0.0027 12 0.015 1040 0.009 *
Thin Films
PbTiO3

sol-gel

0 490 2.9 0.095 200 0.02 8701 0.056

PLT 90/10
sputtered

0 330 3.2 0.065 200 0.006 1150 0.062

PCT70/30
sputtered

0 270 3.3 0.052 390 0.015 440 0.021

PZT 54/46
sol-gel

0 380 3.1 0.07 950 0.016 260 0.019

*developed by terms of U.K.



pyroelectrics, i.e. poled detectors operating without bias well below the Curie point. In

most cases these values represent typical properties reported. Significant variation can be

expected as a function of differences in processing. Table 4.2 compares materials that have

been studied for application in the phase transition region . Values of F, appear greatly

superior to those for the normal pyroelectric materials in Table 4.1.
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In order to compete with resistive bolometer array, monolithic technology must be

developed for high yield and low cost arrays of very large numbers of elements. Therefore,

the development of thin film materials has attracted a lot of attention in recent years.

Because of the improved thermal isolation possible with the integrated technologies, the

detector material response, and therefore merit figures, required in the deposited films for

the same level of performance will be lower than in the case of ceramic/hybrid technology.
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A number of thin film deposition processes have been studied including sol-gel

processing[60-62}, rf magnetron sputtering[63-66] and metal-organic chemical vapor

deposition (MOCVD)[67]. The deposition to be developed must have adequate control of

film chemistry, morphology and electrical performance, and control deleterious reactions

of the thin films with silicons using buffer layers. Ultimately, a process that is amenable to

volume manufacturing on a consistent basis must be demonstrated.

4.5 Hybrid Ferroelectric Bolometer Arrays Developed
by Texas Instruments[15-16, 54, 68-78]

The principal device features of Ferroelectric Bolometer Arrays developed by Texas

Instruments are[70]:

• Long-wavelength operation determined by an external optical coat

• Reticulation to increase modulation transfer function (MTF)

• Ceramic BST solid solution compositionally adjusted for a near room temperature

ferroelectric phase transition

• 100mm wafer detector processing

• Operation near the phase transition

• Applied electric field to enhance performance

• Bump bonding of detector to ROIC

• Use of a mechanical chopper for field-difference processing.

Texas Instruments uncooled IR technology is based on the induced pyroelectric

effect near the phase transition of the ferroelectric ceramic BST. BST is a dielectric mode

material, therefore, the TI's FPA needs an external bias voltage. The temperature
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Fig. 4.16 Schematic view of detector pixel structure. (From [761)
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Fig. 4.17 Photograph of uncooled focal plane array, showing the BST peeled back from
the ROTC. (From [15])
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The ROIC is a CMOS device fabricated using 1.0um design rules[69]. Fig.

4.18[70] shows schematically the unit cell, which contains a high-pass filter, a gain stage, a

tunable low-pass filter, a buffer, and an address switch. The feedback resistance is between

10 11 0 and 10 12 S1, which, when attenuated by the Miller effect for a open-loop preamp

gain of 200, gives a characteristic frequency of about 10HZ for the high pass filter. The

preamplifier is a simple CMOS inverter. The low-pass filter resistance is a diode whose

effective impedance is controlled by an in-cell current source. An off-chip voltage

determines the current level and hence the resistance, and so the filter is tunable. The high-

pass capacitor is actually the gate of NMOS transistor biased to accumulation. The near

unity-gain output buffer provides the ability to drive the relatively high capacitance load of

the column-address lines and column amplifiers. The array implementation of the unit cells

(Fig. 4.19) is standard. A row-address shift register addresses each row sequentially. The

addressed row is activated by turning on all the unit-cell switches in that row. This

connects the pixel buffer outputs in that row to column-address lines. At the end of the

column-address lines are amplifiers, one for each column, having a gain of 1.8. The

outputs of the amplifiers feed a multiplexer that provides sequential external access to the

outputs. Thus the array output is compatible with standard TV formatting. The array

mounts onto a single-stage thermoelectric cooler for stabilization near the ferroelectric

phase transition. The ceramic device interface process (DIP) array package is completed

by the attachment of an anti-reflection coated germanium window that allows IR

transmission in the 7.5 to 13um spectral band.
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Fig. 4.18 Schematic diagram of the ROIC pixel unit cell. (From [78])
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Fig. 4.19 Readout IC array implementation of the unit cells. (From [78])

Operation of Tits uncooled sensor is best described in conjunction with the system

block diagram in Fig. 4.20[78]. The IR lens, typically f/1.0 with a focal length of about

100 mm, forms an IR image on the focal plane array. The chopper periodically interrupts

the optical beam. The action of the chopper modulations the incident radiation between

the field of view of the pixels and the "scene average." The temperature of each pixel rises

and falls accordingly and generates a signal by virtue of its pyroelectric response. The
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readout IC filters, amplifies, samples and multiplexes the detector signals, one row at a

time, and delivers the output at standard RS170 rates. The samples occur immediately

prior to closing the chopper in the next field. The output of each pixel is ac coupled, and

so, for a static scene, the fields are identical but of opposite polarity. An off-focal-plane

high-pass filter at the multiplexer output removes any distracting artifacts that may result

from temperature or bias drift. After a gain stage of between 2* and 4*, a 6-bit analog

offset correction removes gross offset non-uniformities.

Contrast [A,
Control 	8   

Feld
Subbacbon 

Field
RAM   

V
Coarse Monate

Offset Met Feld
ROM 'r6 Correction Inversion

Fig. 4.20 UFPA system functional block diagram. (From [78])

At this point in the processing chain an external contrast setting determines overall

gain. As the system converts the video field to 8-bit digital data, the corresponding pixel

data stored from the previous field are retrieved, replaced with the present data, and the

previous data are subtracted from the present data. Thus, the net output is the difference

between samples taken with the chopper open and with the chopper closed. On alternate
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fields the system changes the sign of the result to maintain consistent polarity from field to

field. This has the added effect of totally removing offset non-uniformities. Prior to analog

conversion and RS170 formatting, a gain word multiplies the value of each pixel to

compensate for gain non-uniformities, and a digital adder sets overall brightness. The

resulting image is uniform to within about 1.5%. The data are then ready for display and

viewing on either an internal or external monitor.

A summary of parameters of Tr s UFPA is[1 5]:

	Typical	 Planned
Detector Material	 (BaSr)TiO3
Pyroelectric Coefficient	 630nC I cm' 1°C
Dielectric Constant	 10,000
Capacitance	 3 pF
Operating temperature	 22 °C
Bias Voltage	 15V
Effective Temp. Coeff	 12%
Responsivity	 85,000 V/W
Pixel Pitch	 48.5um	 48.5um * 35um
Pixel Thickness	 25um	 Sum
Thermal isolation	 200,000 °C W	 2,000,000 ° C / W
Thermal Time Const.	 15 ms
Optical Fill Factor	 100%
Absorber Efficiency	 95%
Array Size	 245*328	 245*454
ROTC	 lum CMOS	 0.8um CMOS
NETD*	 <0.08°C	 0.03°C
Defects	 <100

* System Level NETD of 0.047K has been demonstrated and devices with NETD less than
0.08K are produced routinely[70].

4.6 Hybrid Pyroelectric Arrays Developed in United Kingdom
[56,59,60,63-64,67,70-94]

The uncooled thermal imager technologies developed in United Kingdom are mainly

developed by "Defense Research Agency (DRA)" (the former Royal Signals and Radar
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Establishment) and "GEC Marconi Materials Technology" (the former Plessarch Research

Caswell Ltd.). The reports about their works have provided the author with a good

background on the fundamental concepts of thermal structure, readout integrated circuit

and material properties.

The hybrid thermal structure developed in UK is described in section 4.2. The

detector wafer and ROIC silicon wafer are prepared separately and then bonded together.

The structure is shown in Fig. 4.5.

Many materials have been studied by DRA and GEC for their pyroelectric array.

They can be seen in Tables 4.1A and 4.2 of section 4.4. The materials marked with * on

the last column are developed by DRA or GEC. In order to compete with bolometer

FPAs, the pyroelectric or ferroelectric FPAs should be made with a monolithic process for

low cost. Therefore, the technologies of deposition of thin films on silicon becomes very

important. From Table 4.2 of section 4.4, it can be seen that DRA and GEC have paid

much attention to the development of PScT thin film technology.

The ROIC designed by standards for the UK is shown in Fig. 4.21. The

pyroelectric detector elements are shown shaded. The schematic shows one line of a two

dimensional array. Each pixel contains the detector element, a MOSFET preamplifier and

a MOSFET switch which couples to the sense line. Also included within the pixel is a

MOSFET switch which allows the detector voltage, at its interface with the buffer

amplifier, to be reset. The resistance R1 at the output of the sense line acts as a source

follower load to the individual preamplifiers as these are connected in turn to the sense

line. Cl is the sense line capacitance. The preamplifier decouples the detector capacitance

from the large stray capacitance on the line. The line filter Rh , Ch is placed before the





The basic manufacturing process steps are shown in Fig. 4.23.

a) 3-urn NMOS/CMOS signal conditioning electronics (including preamplifier) are made.

b) A LPCVD 1.0um-thick silicon nitride encapsulation layer is deposited over the active

circuitry prior to micro sensor fabrication. A 1.0um-thick layer of LPCVD PSG

(phosphosilicate oxide glass) is deposited to form the sacrificial layer.

c) A low-stress silicon nitride is deposited on the PSG sacrificial layer by LPCVD at

800°C to form a thermally isolated microbridge. Sputtered Ti/Pt is used as the lower

electrode. Adhesion difficulties between the silicon nitride and Ti layer sometimes

occur. An approximately 1000'A adhesion layer of undoped polysilicon (not shown)

has been used to eliminate the problem. Sol-gel PbTiO3 of approximately 3500°A-

thickness is then deposited. The upper electrode is next deposited. It is typically Au,

FeNi or Ti/Pt.
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The PhTiO, material is selected for the pyroelectric detector because of

1) its high pyroelectric coefficient of 90 nC I C171 2 . K ,

2) its Curie temperature, which is very high (-490°C) leading to a wide operating

temperature range ,

3) material figure of merit which is very high compared with the other materials in the

PZT-family,

4) low piezoelecric coefficient which reduced the microphonic noise,

5) its silicon-compatible manufacturing process.

Other PZT-type materials are also studied by University of Minnesota. A summary

of measured material parameters is given in Table 4.3[99].

Table 4.3. Material parameters of sol-gel thin films prepared at University of Minnesota.
(From [99])

PZT (54/46) 	 PbTiO, La- PbTiO3 PLZT(9/54/46)
Pyro. Coeff * 	 50-70 	 75-96
(nC I cm 2 .K)

65 20

Piezo. Coeff 	 190-220 	 15-20
d33 (pC I N )

-- 200

Dielectric Const. 	 800-1100 	 80-120 110 110
Dielectric Breakdown 	 0.6-1.0 	 0.5
( MV / cm )

-- --

Electrical Fatigue 	 1010 	 1010
(# cycle ± 10V )

-- —

Resistivity ( CI — cm)	 107 — 10 8 	107 — 10 8 10' 108
Loss Tangent 	 8-20 	 10-30
(tan d) * 10 -3

4 4-6

Eff. Young's Modulus 	 4.0-4.6 	 4.5
E / (1 — n) * 10 11 AT I m 2

-- 3.9

Intrinsic Stress 	 2.6-6.8 	 2.1-5.3
*10 8 N/m2

-- 3.0

*includes primary plus secondary piezoelectric responses









Ry — W") (Kt2h+ co 2 C7h)

_FAIN(aa—ab) 
\ 112

with
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Aeff 
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(5 . 7)

where

W: incident infrared radiant power,

: absorbtivity of detector,

Kai : total thermal conductance from "hot" junctions to "cold" junction (substrate),

Cei : thermal capacitance,

FA : fill factor,

A eff : sensor area with absorber material,

Apfrel : pixel area,

Kh„m : the conductance due to thermal conductance loss via the cantilever beam,

Kgas : the conductance due to the gaseous conductance loss,

K rad : the conductance due to radiation loss,

Ka , Kb : the conductance due to thermal conductance loss via the material a and b.

The dominant Johnson noise voltage is given by

= (4kB 7NRa)" (V /Hz 112 ) 	 (5,8)

where Rd is the resistance of one pair of thermocouple.

The detectivity D* is given by

99

(5.5)
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Since the best performance of radiation sensors is accompanied by high sensitivity

and low noise, Eqs. 5.4-5.9 lead to the requirements of

• high Seeback coefficient as — ,

• low thermal conductance Kei ,

• low resistance Rd ,

• high fill-factor F,.

The design of the thermopile and that of the thermal structure directly influence

each other. Very high thermal isolation of the sensitive area require using long, narrow

beams which in turn requires a long, narrow thermopile with few strips. However, this

design would result in low sensitivity. Increasing the number of strips (N) at a constant

cantilever beam area requires narrow thermocouple strips, which causes a higher electrical

resistance (Rd ). The fill-factor (FA ) is also important. Increasing F4 does not directly

mean an increase in the temperature difference ( ST) because Kth also increases.

Therefore, optimizing the thermopile sensors by choosing an appropriate thermal

structure, material properties and strip structures is necessary. Design example for

cantilever beams[100-102] and membrane[ 101-104] can be found at reference.

Thermopiles have some attractive properties:

• the output signal is without offset and offset drift, because there is no output signal

without input power;

100

(5.9)
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The total Seeback coefficient in non-degenerate n-type silicon can be

approximated by [105]

-
as =	

- 
ln 

N
+ 2.5 + s,

q _ _ n
(5.11)

with q as the elementary charge, kE as the Boltzmann constant, Nc as the conduction-

band density of states and n the electron density (fixed by the doping concentration). The

factor sn is the exponent in the exponential relation between the mean-free-time between

collisions and the energy, which is typically a value between -1 to 2. The phonon-drag

effect is represented by con , and it ranges from 0 for highly-doped silicon to 5 for low-

doped silicon at room temperature. For p-type silicon a similar expression is found, except

that the coefficient is now positive.

The Seeback coefficient can also be approximated as a function of electrical

resistivity

as - 
mk 

B	 In P
q

(5.12)

with pp 5 *10-6 nn/ and m 2.6 as constants[105].

The Seeback coefficients as measured for crystal silicon and polysilicon made at

different manufacturing processes are shown in Figs. 5. 3 and 5.4.
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The diaphragm is made from a 450nm thick silicon dioxide film. Under the

diaphragm, there is a hollow to isolate the diaphragm thermally. The hollow is formed by

etching a lum thick sacrificial polysilicon layer. On each diaphragm, 32 pairs of p-type

boron-doped polysilicon and n-type phosphorous-doped polysilicon thermopiles are

formed. The polysilicon electrode is 70nrn thick and 0.6um wide. Hot junctions are

located at the central part of the diaphragm, while cold junctions are located on the

outside edge of the diaphragm, where heat conductance is very large. The temperature at

the cold junction is always the same as the temperature for the substrate. The hot junctions

and cold junctions are backed by aluminium layers to reduce contact resistance.

The IR responsivity for a 32 pair thermopile of a pixel was measured in low

chopper frequency region to be 1550VW -1 , and the NETD has found to be 0.5K with 0 1 1.0

lens. The cutoff frequency is 130Hz. The responsivity is much larger than the reported

values of the University of Michigan sensor.



CHAPTER 6

THE PERFORMANCE OF BOLOMETER, PYROELECTRIC AND
FERROELECTRIC DETECTORS

6.1 The Performance of Bolometer Detector

As discussed in chapter 3, the voltage responsivity (R,), the temperature fluctuation noise

(VT ) and the Johnson noise (Vi ) of a bolometer detector, as described in Eqs. 3.20, 3.36

and 3.37, are

RL * VoriaR.F,
"7 (RI, + A) 

2

 [K:or CO2C11112

or

with

fly —

Keff

* 	 IbriaR.F A ro
(RL + 	 [Ke2ff + 

CO 
2 ct2h ri 2 5 

(since

- 	 V2 R	 R — R
° 	 L

4 —
R„

(Keff 	 Kth for RL = R.)= K, — a
(RL + R.)2 RL +

2kBKth	 + T2 	 1/ 2
— Hz") (6.2)*R,1\ 	 772

and
-1/2

V,/ = *	
R

LA"	 * (V/ Hz 1/2 ) (6.3)RL )4k	 (T R.+ T(RL + R.) 2 	°

The symbols are defined as below:

Km : Total thermal conductance from the element to substrate

Cal : Thermal capacitance of the bolometer element

(6.1)
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: Absorbtivity of detector

Vo : Bias voltage

Ib : Bias current

Rni : The detector's resistance with no input infrared power

T„,,: Detector's temperature with no input infrared power with possible dissipation due to
electrical bias.

kB : Boltzmann's constant

RL : The series load resistance

Apixel : Pixel area

To : Substrate temperature

FA : Fill factor

a : Temperature coefficient of resistance

If MOSFET preamplifiers are used, the two sources of noise in a MOSFET

amplifier, current noise in and voltage noise E„ must be considered also. They are

represented by

(2qIGssr2 (Al Ilz 112 ) 	 (6.4)

81c3 T	 KF 1 Dq' 	
112

■, 3gni 	 g fC0xL2eff-

= V2-	(V I Hz 12 )

z2 )1/2

1

a 	f	
(6.5)

En —

where q is the electronic charge, I Gss is the gate leakage current of a MOSFET, gm is

the transconductance of a MOSFET, Cox is the gate oxide capacitance, Leff is the
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effective channel length, K F is the flicker noise coefficient, AF is a constant, I DQ is the

quiescent drain current, and f is the frequency of operation.

The 1/f noise and random telegraph switching noise of bolometer materials are not

considered in the following discussion because they are strongly dependent on the

manufacturing process and in theory can be made insignificant. In actual practice, they

would be very important for the present amorphous silicon compounds and polysilicon. As

described in section 3.4, 1/f noise and random telegraphy switching noise are dominant at

present amorphous silicon compounds and polysilicon at low frequencies (f<100Hz).

Therefore, the total noise of a bolometer detector is

Vta, =(/.7 	+	 + .1,„27 R12,)112 (V I Hz 112 )	 (6.6)

where

R	
RL Rm

RL + Rn,

Using the above derived equations, the noise source values and normalized

detectivity D* were calculated using a computer program, Sigmaplot, with the reasonable

values in Table 6.1 selected for detector parameters. In the following discussions, these

values are used if other values are not specified.

Table 6.1 Detector and material properties for a bolometer detector.

Rm =Rz =--1.MKI Kth = 2 *10-7 (W/T)
Vo = 5(V) Cth = 2 *le (,Il °IC)
77 = 0.8 in = 1.8 *10 -16 (A I Ri ll')

To =300( °K) V0 = 3.4 *10 -9 (V / Hz' )

Apixel = 50 *50(um 2 ) ..Z, = 2.4 *10' (V)

FA = 0.5 TCR= 2%
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It can be seen from Eq. 6.7 that the total thermal conductance and capacitance of a

bolometer, Kth and Cth , significantly effect its performance. The time constant, Ch I Kth ,

essentially controls the frequency response of the detector if the total noise is independent

of 03 . Below the corner frequency, co, a Km I Cm , D* can be approximately represented

by

1/2
a 	Apr 

R 112 )■,8kBK";, (I'm + TO) FAVo

In this region, D* improves linearly with decreasing thermal conductance.

However, at high frequencies, co » Kth I Cth , D * can be approximately represented by

D*

-\ 112
a Apr 

, 1:?m112 )8k.,302ct2it(Tni + To )) FA IIVO (6.9)

Note that D* is then proportional to Cthi , independent of Kth .

The dependence of the various noise voltages and D* on the thermal conductance

of a bolometer, Kth , are shown in Figs. 6.2, 6.3 and on co in Fig. 6.4. Fig. 6.2 shows that

as the thermal conductance is decreasing that there is no significant improving in D* for

Km below 2 *10-7 W/K, corresponding to at wc =100Hz. This is because the chopping

frequency 60Hz is less than coc, . However for thermal conductance values greater than

2 *10-7 W/K, D* deteriorates with increasing thermal conductance. As shown in Fig. 6.3,

higher chopping frequency made D* less dependent on Kth ; however, if detectors with

low conductance can be made, D * can be increased by decreasing the chopping frequency.

Figs. 6.2 and 6.4 show that all of the noise sources are independent of thermal

conductance, K„, except temperature fluctuation noise, VT which is generally much

(6.8)
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From the above discussion, the requirements for high performance bolometer

detectors are:

• Good thermal isolation structure with low thermal conductance, Kth

• Low noise BJT or BiMOS preamplifier

• Material with high TCR and low resistivity

6.2 The Performance of Pyroelectric and Ferroelectric Detectors

As discussed in chapter 4, the voltage responsivity (4), the temperature fluctuation noise

(VT ), the Johnson noise of load resistance (VJL )) and dielectric loss noise (VJd ) of both

pyroelectric and ferroelectric detectors, as described in Eqs. 4.11, 4.21, 4.25 and 4.24, are

RV —
Cd	 71(11 A pixel

(Cd +Cp ) KihGE (1+ co2-c,217)1/2 (1 co 2TE2 )112

Cd	 ricopi A j„xelRz.

- (C + Cd 	i;01/2[0, coRLcd tangy + co 2RL2 (c,d cp )2 1 /2
P Kth(1+ C°2

(6.11)

VT = 
\771 

(4kB T2 1Cd, ) 1 '2 (V / Hz" 	 (6.12)

VJL

1/2
( 4kE .TRE2

\,1?1, (1+ co 2 rE2 ),,

(4kBTRL )1/2
(6.13) 9\

((l+ coRSd tan5) 2 + (kco(Cd + CL )) 2 )1/2

Vjd
7 4kB RoCd tani5 112

co2CE )

	 j  

(4k9 Tc0CdR12..)112 (6.14) \
((1 + CORL Cd tan 8) 2 + (kw (Cd +	 )

12
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( AL. 	  \ 1/2

Vj = ViL Vjci ) 1 / 2 	 '11vB YR
02 2r E

+ WRL Cd tan8Y + cD2R,2_,(Cd+Cp)211/2 
(V /I HZ 112 	(6.15)) —

where RE 	= 	
1+ coRSd tan 5 .rth = and z-E, = (Cd + Cp )RE .

The responsivity contains an attenuation factor of Cd / (Cd Cp) to include the

parasitic capacitance, Cp , in circuit elements.

MOSFETs should be used in the preamplifiers design because their high input

impedance can be matched to the high impedance of pyroelectric and ferroelectric

detectors. The equivalent noise sources In and En for MOSFET devices given in Eqs. 6.4

and 6.5 are used to write the equation for the total noise of a pyroelectric or ferroelectric

detector as 

Vtot = (VT2 +V:12 + E2 iI2IzI2\1/2) (V I Hz') (6.16)

where
1

Z = R
E

+ 
jco(Cd+Cp) 

Using the above derived equations, the noise values and D* were calculated using

the best typical published values in Table 6.2 for pyroelectric and ferroelectric detectors.

These values are used in the following discussions if particular values are not mentioned.

\1/2Ok i? 	*	 CORLCd tan (1 12
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Table 6.2. Detector and Material properties for pyroelectric and ferroelectric detectors.

Pyroelectric
Detector I

Ferroelectric
Detector 2

Thermal conductance, Kth , (i/f 17 °K) 5* 10 -7 5 * 10-7

Thermal capacitance, Cth , (J/ °K) 3 6.3*10-9 6.12 *10-9

Absorber efficiency, 77 0.8 0.8
Pixel area, Apji , (wn2 ) 50*50 50 *50

Substrate temperature, T , (°K) 300 300

Pixel thickness, d , (urn) 0.36 0.36
Bias resistance, RL , (S2) 10" 10"
Amplifier current noise, In , (Al Hz 112 ) 1.8 * 10-16 1.8*10-16

V, , (V I Hz") 3.4 *1 0-9 3.4 * 10 -9

Za , (V) 2.4 *10-7 2.4 *10-7

Parasitic capacitance, Cp , (pF) 4 1 1

Detector capacitance, Cd , (pF) 12.3 4302
tan 8 2 *1 0-2 2 * 10-3

Pyroelectric coefficient, p', (nC I crn 2K) 95 300

Dielectric constant, er 200 7000

The material was sol-gel PbTiO3 , selected from D. L. Polla [123].
2 The material was sol-gel PScT, selected from R. Watton[63].
3 Assuming,
• The thickness of SiN is 0.5um with specific heat 1330J/Kg.K and density

222g / cm3 [124].

• The heat capacitance per cm' for PbTiO3 is 2.9] cm3K [123], and is 2.7] / cm3K
for PScT[63].

4 The Cgs 0.173pF for a MOSFET with gate area of 10*10 Atm2 and oxide thickness

of 200° A .

The dependence of the performance parameters R, and D * on frequency, for

three different values of load resistance, RL , are shown in Fig. 6.7 for a pyroelectric

detector (p.d.). For purposes of comparison, similar curves for a ferroelectric detector

(f.d.) are shown in Fig. 6.9. Also shown in both figures are curves for the total noise,

which controls the dependence of D* on responsivity. The insert shows how the detector



122

dielectric capacitance with the effective output resistance of the detector, [coCd tan8] -1 , in

parallel with the preamplifier input impedance, RL , forms a low pass filter which controls

the D* frequency response, along with the noise spectrum.

From Fig. 6.8, it can be seen that increasing the load resistance can increase the

responsivity for frequency below 20Hz; however, the effect tends to saturate at higher

load resistance. From Eq. 6.11, it can be seen that if the last term in the bracketed

expression in the denominator dominates, Rr7 will be independent of RL

Thus, the condition for saturation, coRL (Cd + Cp ) » 1, is normally satisfied until

co is less than coL = [RL (Cd + CO]'. From the curve in Fig. 6.7, this occurs only for

chopping frequencies less than 30Hz.

The total noise, which is the sum of Eqs. 6.12 through 6.15, is seen in Fig. 6.7 to

decrease with frequency and increasing RL , showing a saturation effect with R L at about

101° S2 for the detector values from Table 6.2. Therefore, D* can be maximized by

increasing the chopping frequency up to a value of about 100Hz, at which the frequency

dependence of responsivity, due to the low pass filter, drives D* down.

Comparing the curves for the f.d. in Fig. 6.8 with the p.d. curves, it can be seen

that Rv has a similar corner frequency of about 10Hz, except for the RL = 109 n curve of

the p.d.; However, the RT,. response is independent of RL . The D* curves do, however,

depend on RL values as does the total noise which begins to saturate at a similar RL load

as for the p.d. The dependence of R, on R L is basically due to the much larger detector

capacitance and the lower loss tangent for ferroelectrics. Table 6.2 shows that the

dielectric constant is typically 35 times bigger and the loss tangent ten times smaller. Thus



VJd

— 	 —
4kB T

1/2
	RE

Rd 	(1+6)24 )1/2

VJd
—

[4k
B

T11/2 	RE
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the condition for saturation is easily satisfied for all co and Rr, can not be improved by

increasing the impedance of the preamplifier. However, because the total noise is

dependent on RL , as shown in the Fig. 6.8, the D * can be significantly improved at low

frequencies up to the frequency for maximum D* . For f.d., Rv is nearly inversely

proportional to Cd as shown by the following equation easily obtained from Eq. 6.11.

1Cd	77P 24 pixel 
Rv 2- 7.201/2(Cd Cp)2 Kth(1 	

2 (6.17)

To compare the various noise components and their dependence on RL , Figs. 6.9

and 6.10 were prepared for p.d. and f d. respectively. It can be observed that the dielectric

loss noise, VJd , Johnson noise VA, of the RL and the total noise can be decreased by

increasing the load resistance. This can also be seen from the Eqs. 6.18a and 6.18b below,

where

with

R	RAL	 1	 1 	 RL
E Rd RL 	 1	 1 	 1

+ WC d tan 8 1+-
RL Rd RL

1
co/ = 	

RLCd tang

V 	 R
\1/2

Since 
VJd	

njL — d 
7 VJL > VJd if Rd < RL and VJd > VJL if RL < Rd • For small

, Rd tends to be greater than RL and VA, greater than VJd , as observed in Fig. 6.9 for
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the p.d. For RI, = 10" , the dielectric loss noise dominates for practical chopping

frequencies.

In the case of ferroelectric detectors, the larger values for Cd results in much

lower values for Rd and thus RE , Vjd , and Ka, Thus amplifier noise dominates for

f > 50Hz for an Rr, value of 109 and for much lower f for the larger load resistors.

Thus, selecting high input impedance preamplifier can significantly improve the

performance of Id., while being of less importance for p.d. It should also be noted that the

dielectric loss noise is not a function of RL for Id. because of the relatively large value for

rE due to the large value for Cd . Thus the equation for VJd can be written as in Eq. 6.19,

with the parasitic capacitance Cp added to Cd 

4kBT 
1/2 
	1 1

R — 	
Rd 	CO (Cd C p )	 d CoCd tang VJd (6.19)  

Since for Id., the parasitic capacitance should be relatively small verses Cd VJd can be

written as in Eq. 6.20a and similarly for VA in Eq. 6.20b.

44Ttan1
1/2

tiVJd lCd

( 4kB .T 1/2 1 4kB T
1 1/2

1
VJd RL 1 oa(Cd +Cp ) -' RL coCd

(6.20a)

(6.20b)
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In Figs. 6.11 and 6.12 are shown the dependence of the various noise sources and

the total noise on frequency for a pyroelectric and a ferroelectric detector respectively.

The load resistance chosen for these figures was 10 11 n, a value at which D* does not

improve much with further increasing in load resistance. For the pyroelectric detector, the

dielectric loss noise, D.L.N., dominates over the other noise sources except for

frequencies less than 10Hz, where the Johnson noise of the load resistance becomes larger.

For practical frequencies greater than about 60Hz, the total noise is almost entirely due to

D.L.N. and even for the frequency at which D* is maximum, 20Hz, D.L.N. plays the

major role in determining detector performance. This is no longer the case, if materials

with smaller loss tangent are used as shown in Fig. 6.13 for a tang value one tenth the

value used in Fig. 6.11. For such a pyroelectric material, the thermal fluctuation noise,

T.F.N., is larger than the D.L.N. for frequencies less than 100Hz. The maximum value for

D * is seen to increase by about two times when compared with the D* curve from Fig.

6.11. The full potential of the detector is realized when the total noise is due to T.F.N.

with the other noise sources suppressed. Note that typical value for the amplifier voltage

and current noise sources are not influential in determining the performance of pyroelectric

detectors. This is not the case for ferroelectric detector as shown in Fig. 6.12. Note that

for all frequencies, the total noise is nearly identical to the amplifier voltage noise, A.V.N.,

and that the T.F.N. maximum value of 5 *10-8 (V1Hz 112 ) is much less than for

pyroelectric detectors, 5*10-7 (V II? 2 ) , for the same RI, . Thus, there is the possibility

of improving the D* of ferroelectric detectors by utilizing advances in amplifier

technology while this is not the case for pyroelectric detectors. Such an improvement is











( 	 2 	 1/2

D* — 
4k3, T2Kth)

(

VT =
 R

(41 3. T2 K 02 ) 1/2 (V I Hz 112 )

1

Kth

V CCT \ 1/2

Kth + 	
"Eh

(6.23)
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saturate for Kth less than about 4 * 10-7 (W K) . Understanding the dependence of D* on

Kth can be obtained by examining the equations for D* and the T.F.N., VT , when the

T.F.N. dominates as occurs in Figs. 6.15 and 6.16 when Ka, is greater than

4*10 -7 (W/K).

and

Equation 6.23 explains the rise and fall of the T.F.N. with increasing Kth in Figs.

6.15 and 6.16. Note that only the T.F.N. depends on Kth and thus the shape of the total

noise is the same as for the T.F.N., Thus, total noise can be reduced by decreasing Kth

only to a value of about 4 *1C17 W I K unless Johnson noise, and dielectric loss noise can

be reduced. Fig. 6.17 compares the dependence of D * on Kth for both types of detectors

when chopping frequency is taken as a variable. It can be seen that in the lower Km region

(Ka, < 1 to 2 *10-6 WI K) decreasing the chopping frequencies improves the performance

of both detectors and that the ferroelectric detectors improve more rapidly and surpass the

D* of the pyroelectric detectors at a value less than about 50Hz, the exact value

depending on several factors.
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109 , 1010 , and 10 11 0 were used and the reasonable values of tang = 2 *10 -3 and 1*10 -3

for the p.d. and Ed. were selected respectively. To recall the low pass filter effect of Cd ,

the equivalent circuit is shown in the insert, where R is to include the output resistance of

the detectors in parallel with RL . In the case of the pyroelectric detectors, Johnson noise is

dominant for RL = 10-9n, as shown in Fig. 6.9. Therefore, D * can be expressed

approximately by equation 6.24, which shows that D* is inversely proportional to the

thermal capacitance C th for frequencies greater than the thermal time constant Rth Cth

D*
A"2pixel 	 Cd 	 71°13' Ap tce12 1(k)112 

Vj 	(Cd -N- Cp) Kth (1 + CO 2 T2h ) li 2 (41(B 1)112 (1+ CORL C d tani5) 112

Cd
	ricop,A31(JRL )112
	 , at a chopping frequency 60Hz (6.24)

(Cd + Cp ) Kth (1 + co 2 -eh ) 1/2 (4k-3 7) 1'

The thermal capacitance which rises with film thickness, as shown for both detectors in

Fig. 6.18, thus drives D * of the pyroelectric detector down as the film thickness increases.

The major improvement in D * is obtained by increasing RL . At high RL , the temperature

fluctuation noise is dominant, and D* can be improved only by decreasing Kth . Thus, D *

is less dependent on film thickness at the higher values of RL (1011 0). In contrast to the

pyroelectric detector, the D* of ferroelectric detectors can be noticeable improved by

increasing the film thickness for load resistance larger than about 5*10 9 0 , if the film

thickness is less than 0.5um. This is because the amplifier noise dominated over the other

noise sources which are shunted by C, . Further increases in D* with detector thickness

above 0.5um does not occur because in this region T.F.N. dominates and this noise source

is independent of Cd and thus film thickness.
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It is interesting to study the possible effect that dielectric constant changes would

have on D* for both p.d. and Id.. Fig. 6.19 plots calculated D * values versus dielectric

constant for a chopping frequency of 60Hz and the same RL values of 10 9 , 1010 , and

lea Note that only the pyroelectric detectors improve with increasing dielectric

constant and this is only for the RL values of 10 9 and 1010 , which yield inferior D* . For

the ferroelectric detectors, LI * actually deteriorates slightly with increasing dielectric

constant. This is because in the chopping frequency region where D * is maximum, e.g.

60Hz, the T.F.N. is dominant. As discussed previously to achieve maximum D * , the

detector should be designed so that the total noise is controlled by the thermal fluctuation

noise, which is independent of Cd D* decreases only slightly when Johnson noise is

dominant because the decrease in R, with increasing Cd is balanced by a decrease in the

Johnson noise with increasing Cd . Improvements in D* with increases in the pyroelectric

coefficient (P.C.) might be expected and thus the dependence of the noise voltage values

and D* on values for P.C. were studied using computer calculations plotted in Figs. 6.20

and 6.21 for p.d. and f.d. respectively. It is easily seen that when T.F.N. is not dominant,

D* increases with P.C., actually linearly for both detectors. However, when T.F.N.

becomes more dominant, at higher values of P.C., the improvement D* actually saturates.

This is particularly true for the f.d., which has somewhat larger D * values under the

conditions chosen. Since it has been shown that maximum values for D* should be

achieved in regions where T.F.N. dominates and since T.F.N. becomes more dominant

with increasing P.C., it would seem that a material research effort wined at increasing the
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P.C. would yield detectors with higher D* . The curves in Figs. 6.20 and 6.21 show that

D* continues to increase with increasing P.C. because responsivity depends more strongly

on P.C. than the T.F.N., although increases in P.C. above 90 and 600 (nC I cm 2 .K) for

the p. d. and f.d. respectively do not result in significant increases in D * to be worth the

effort. Referring to the values presented in Table 6.2, it is seen that while present-day

pyroelectric materials have a value of 95 nC I cm2 C , the best reported values for the P.C.

of ferroelectric materials is 300 and thus an improvement in D* of about 4 to 5 is

achievable with improvement in ferroelectric material.

In summary, to realize high D* performance for pyroelectric and ferroelectric

detectors, the following are reasonable goals:

• Good thermal isolation structure with low thermal conductance, K h

• Material with high pyroelectric coefficient, p', low loss tangy' and appropriate

dielectric constant

• Thicker thin film (>0.5um) for ferroelectric detectors
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values that can be made with present-day materials according to results reported in the

reference[122]. The calculated total noise voltage and D * of pyroelectric and ferroelectric

detectors are based on Figs. 6.13 and 6.14, where the material properties have been

optimized so that the temperature fluctuation noise is dominant in both types of detectors.

It was shown that this results in optimum values for D* and with corresponding response

times of about 1.2 seconds for a pyroelectric detector and much greater for a ferroelectric

detector. The D * and total noise voltages of pyroelectric and ferroelectric detectors with

present-day (reported) material properties are also plotted for comparison.

It can be seen from the figure that the bolometer detector has higher D* than that

of pyroelectric and ferroelectric detectors at the chopping frequency 60Hz, and also to

frequency up to about 90Hz. However, the ferroelectric detector has fundamentally

smaller total noise than that of either the bolometer or yroelectric detector because of its

high device capacitance. For a 2-D array, the performance is also dependent on the

bandwidth of the readout circuit, as described in section 3.3. The calculated D* of

bolometer detectors in this thesis may be overestimated because the best reported D * is

about 5 *108 cm.Hz112 / watt [122] at a chopping frequency of 60Hz with pixel area 50*50

111112 . The overestimation could be related to the neglect of the amplifier noise that would

be associated with the pulse bias network required for bolometers.

The best estimate of the D* capability for resistive, pyroelectric and ferroelectric

detectors are about 1.72 *10 9 cm. Hz 112 1 watt , 1.54 *109 cm. Hz 112 1 watt and

1.66*109 cm.Hz 1/2 / watt respectively at a chopping frequency of 60Hz. The figure shows

that D* for the both pyroelectric and ferroelectric detectors could be improved by a factor
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6.4 Future Directions

Improving the pyroelectric coefficient may be an effective direction for materials

research when the Johnson noise of load resistance is dominant, i.e. when the load

resistance is about 10 8 0 . This is because the responsivity is linearly proportional to

the pyroelectric coefficient, and the Johnson noise is independent of pyroelectric

coefficient. The electrical time constant is about 1.2ms for a pyroelectric detector with

RL = 1 AI while the electrical time constant is much greater for a ferroelectric

detector with RL = lo'n. These values are required for 2-D staring arrays which are

the needed for transportation, military and contactless temperature measurement

applications. Therefore, it is important to analyze potential performance when

RL 108 0 or smaller.

• When the pixel area is reduced, the NETD and D* decrease because they are

proportional to pixel area (input infrared power). The modulation transfer function

also improves. This means that means the spatial resolution increases while the array

cost decreases for constant performance. Therefore, it may be interesting and

important to understand the benefits of future material improvements and/or the

requirements on the material properties for resistive, pyroelectric and ferroelectric

detectors.



kB T2

1	AE 2

kB T2

1
LEZ —E2]

(A.3)

APPENDIX A

TEMPERATURE FLUCTUATION NOISE

The main work of this appendix is to transfer the mean-square energy fluctuation in a

system to the equivalent mean-square temperature fluctuation and equivalent mean-square

power fluctuation. For infrared sensors, we concern the input infrared power, not the

input infrared energy. Therefore, the mean-square energy fluctuation should be transferred

to mean-square power fluctuation.

The following derivation for temperature noise is adapted from Refs. 21-23.

Maxwell-Boltzmann indicated that the average energy in a closed system in a thermal

equilibrium at a given temperature T is

IE,p(E,) 1E, e R4BT

E  (A.1)
p(E1) 	 E e

111/1c
B

T

where E, is the energy of the individual state, and p(E,) is the Boltzmann probability

distribution expressed by

p(E2) = AC E' 'Br with E Ae-

B14BT = 1	 (A.2)

Using this definition, the heat capacitance Ca, is  

Ei2 e E14131 
2

1 
dT	 kBT2    

E•
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where E 2 is the mean-square energy, E2 is the square of the mean energy and AE 2 is

the mean-square energy fluctuation. Because dVdr Ch, the mean-square energy

fluctuation or energy variance, AE 2 , can be expressed by

AE 2 = C;,AT2 	(A.4)

where AT2 is the mean-square temperature fluctuation due to the energy fluctuations

described in Eq. A.3. Substituting Eq. A.3 into Eq. A.4 yields

2
AT2 — 

k
ciB
T

(A.5)
Cth

Next consider the spectral content of the fluctuations.

The heat transfer equation is

— ICAT
dt

Where dAE I dT is the rate of heat flow and Kth is the thermal conductivity. The heat

transfer equation can be expressed as

dAE 	 dAT
Cth

Using Eqs. A.6 and A.7, one can derive a differential equation describing the heat transfer

dATc K-thAT
th dt

(A.8)

The solution of this equation is

AT = AT exp(—t -Kth / C,17 )	 (A.9)

If heat flows into the material from an external source, for example a radiating

background, the differential equation becomes

d(AE) 
(A.6)

(A.7)
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	k Br 	 Wo

	C th 	4KthC,„
(A.16)

and
Wo = 4k B K,h T2 	(A.17)

Substituting this value into Eq. A.14, we find the expression for the spectrum of the mean

square temperature fluctuations.

AT(f ) 2 —
4kBK,hT2Af

Kth + (271fCh) 2

(A.18)

The mean square power fluctuations, the quantity W(t) 2 , is determined from Eqs. A.12

and A.17 to be

W(t) 2 = 4 k B.Kth VA/ (A.19)

The thermal capacity Cth does not enter into the expression for the power fluctuations.

This is of fundamental importance since it indicates that the background and temperature

noise limited performance of a thermal detector are independent of detector material and

volume.



APPENDIX B

NETD FOR TEMPERATURE FLUCTUATION NOISE AND BACKGROUND
FLUCTUATION NOISE LIMITED

The noise equivalent temperature difference (NETD) for temperature fluctuation noise

and background fluctuation noise are derived as follows.

The noise equivalent power (NEP) is defined as the signal power needed to

achieve a signal-to-noise ratio of one; therefore, according to Eq. A.19

Also, since

(B.1)

riNEP = W(021/2

= (4kBKthT2 Af)112

where ri is the absorptivity of the detector.

D* (T , f) —
(Api„eiAf )112

(B.2)
NEP

then D * for a temperature fluctuation noise limited thermal detector is

- 	 2 	 -77 A l
1/2

D * (T f) —, (B.3)
4k B T2 Kth

Therefore,

)1/ 28TF2 (kBAiKthf NETD = (B.4)
7724,,,,ei ro (AP 	 AT),11--,12

The derivation of D * for true background (radiation) limited performance from a thermal

detector assumes that the detector satisfies certain conditions. First, the detector is

assumed to be in a vacuum and to have no leads coming from it that could promote

thermal conductance. These first assumptions simply state that the detector must be
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perfectly isolated from the environment. Theoretically, this is a good idea. In reality,

however, it would cause problems in extracting information from the detector. A second

condition is that the detector absorptivity is independent of wavelength. Finally, the

background temperature is assumed to be uniform and fills the entire 2n steradian field of

view of the detector.

According to the Stefan-Boltzmann law, the radiation absorbed by the detector is

W(T) = A p,i 7p7T1,	 (B.5)

where i is the emissivity of the detector surface, and cr is Stefan-Boltzmann's constant,

5.67 *10 - ' 2 watts / cm 2 K4 . TD is the temperature of the detector and TB is the

temperature of the background scene. In this case, TB = TD = T , because the detector is

considered to be at room temperature. As the temperature of the background changes, the

flux incident on the detector will change in a way described by differentiation of Eq. B.5

dW(T) = 4.A.p.iriardT	 (B.6)

Since the change in flux with respect to temperature is the thermal conductance, Kth , then

Kph = 4 61,2„,e1 rpar	 (B. 7)

Substituting the expression for K !h into Eq. A.19 yields

W(t) 2 = 16 Ap„ i kB 770-AfT5 	(B.8)

And,

riNEP = W(t)2
	 1/2

Substituting Eq. B.8 for W(t) 2112 and rearranging, one can see that

NEP =(16AFfrelkB ricrAfr) 1/2 in

(B.9)

(B.10)
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In a less idealized situation where TD is not necessarily equal to TB , the NEP expression

becomes[27]

NEP = Apixei k ao-Af	 +	 1 771v2 	(B.11)

then D * for a background-noise limited thermal detector is

D * = 718k B a(T.L; + 1:)]v2
	

(B.13)

Therefore the noise equivalent temperature difference is given by

NETD =
4F 2

—1/2

8k Ba-z:S/ (TD + T,D 
(B.14)

TOW' AIL-A2

This is the theoretical minimum NETD when the background radiation noise is the

dominant noise.
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