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ABSTRACT

COMPUTATIONAL DETERMINATION OF LAMINAR FLOW
LOSS COEFFICIENTS IN A 90° CHANNEL BEND

by
Leonard Paul Parkin

Loss coefficients for laminar two dimensional incompressible channel (or duct) flow in a

90' bend are investigated using FEM software, MAP. This problem consists of a two

dimensional duct with a 90 0 bend of constant radius flowing with water, at 70°F and

atmostheric conditions. The bend radius to duct width ratios examined were 1.5 and 1.0.

Both bend radius to duct width ratios were analyzed for Reynolds Number ranging from

50 to 1800. The pressure and velocity distributions were found and used to determine the

pressure loss due to the bend. The results show the pressure loss effect due to the bend as

a dimensionless coefficient plotted versus Reynolds Number.

it was found that the loss coefficient increases with decreasing Reynolds Number

and increases with decreasing bend radius. The loss coefficient values ranged from 0.188

to 1.367 for a bend radius to duct width ratio of 1.5 and varied from 0.498 to 3.929 for a

bend radius to duct width ratio of 1.0. These results can be compared with plots of

existing pressure loss coefficients for like duct geometry. The results show a similar trend

with existing empirical data.
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CHAPTER 1

INTRODUCTION

1.1 Applications

Advances in computer technology and computational modeling have made it possible to

derive accurate solutions within the realm of fluid mechanics. The computational approach

allows timely investigation of various model configurations under different physical

conditions. This quick analysis reduces time costs in the design phases. With reduced

design time, manufacturing processes for industry can become highly adept, and thus more

competitive. With the evolution of the microcomputer, complex numerical analysis have

become commonplace and a new paradigm in product evaluation has developed. Any

industry not assimilating this technical approach will lack a competitive edge and struggle

in this new fast paced environment.

Within research, the computational analysis approach has offered distinct

advantages for laboratory experimental techniques. This approach has the dual advantage

of eliminating disturbances that arise from measurement devices, as well as forming

detailed information on all physical variables throughout the flow domain. Typically,

computational and experimental techniques go hand in hand: A computational analysis is

generally used for fine tuning the scope of laboratory techniques and confirming numerical

solutions to complex problems. Historically, the engineering design approach has

consisted of constructing a physical model, conducting laboratory experiments, and then

interpreting the data for a verifiable relationship. With computational analysis, different

models can be investigated then a good approximation can be decided upon for a physical
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model. Acting as a gauge, researchers can also determine if their experimental results fit

the theoretical trends, and if not, easily search for reasons for discrepancies.

For this project, the pressure loss will be determined in a two-dimensional channel

bend for Reynolds numbers ranging from 50 to 1800. Within industry, study of pressure

loss through tubes, pipes, and other closed conduits plays an important role for the design

of many engineering applications. Although the main focus of this project is a numerical

investigation, it is important to mention the practical applications of the present project.

Some examples include

Heating, ventilating, and air conditioning (HVAC). Determining the proper duct

work to transport volumes of air throughout dwellings involves accounting for various

duct sizes, bends, entrances, and exits. With better understanding of the pressure losses

resulting from these components, a more efficient system can be configured to satisfy the

needs of the building. An optimum pump rating can than be determined for any system and

allow for savings in operating costs.

Food and Beverage Industries. The manufacturing of food stuffs requires precision

assembly line processes for maximum safety and efficiency. More importantly, care is

required to avoid contamination of various products. Pressure development within

hydraulic lines, supply lines and other critical medium needs to be understood to avoid

equipment failure which may result in contamination. Problem areas near bends and other

weak connections may be properly identified and eliminated from causing harm.

Power Industries (Nuclear, Coal, Gas, etc.): Power producing systems require

transportation of water in various states through sometimes complex piping systems.
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Pump requirements can be determined by realizing pressure loss components within the

system. Concurrently, high pressure areas can be identified which may result in a

sometimes fatal result. Flows of this type typically involve supersonic speeds within the

pipes. This flow is almost impossible to solve analytically, and this is where the advantage

of numerical analysis bears useful results.

1.2 Basic Concepts of Computational Finite-Element Analysis

The finite-element method (FEM) is well suited for work with a digital computer. The

FIDAP fluid dynamics analysis package is a general purpose computer program that uses

the finite-element method to simulate many classes of fluid flow models. FIDAP contains

several program modules designed to model, solve, and post-process fluid flow problems.

Analyses are limited in size only by practical considerations of computer time and the

capacity of secondary storage devices. The FEM solution technique has a relatively short

history in computational fluid mechanics. Known for its popularity in structural analyses,

FEM is becoming a convincingly powerful tool in fluid mechanics as well.

For the problem presented in this writing the equations of continuity and

momentum are solved with the finite-element package FIDAP. The model to be

considered is a two-dimensional channel containing a 90° bend of constant radius. The

flow is low in viscosity, steady in state and ranges in Reynolds number from 50 to about

1800, thus remaining in the laminar flow region. Typically, an analytical solution of this

problem would provide numerical values at all points of the region of interest, while the

numerical method gives values only at the nodal points contained in the FEM region.
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However, an analytical solution of such a problem would require a large amount of time,

and a solution is not always guaranteed. The FEM approach divides the flow domain into

smaller, finite regions called elements. The partial differential equations of fluid mechanics

that govern the fluid flow are approximated by the integral form of ordinary differential

equations as algebraic equations in each element. These system of equations are then

solved by proven numerical techniques to determine the velocities, pressures, and other

desired quantities throughout the region. The conditions of these quantities at the

boundary of the domain are known initially, and are used to find the state of the domain a

small, finite distance away from the boundary.

1.3 Scope of Work

This project intends to use FIDAP to solve a viscous, laminar, steady-state, two-

dimensional flow problem. The geometry of the model is described as follows:

• A 90° channel bend with constant radius

• A bend radius to duct width ratio of 1.5

• An inlet length of 5 duct widths

• An outlet length of at least 60 duct widths

FIDAP is an excellent computer driven numerical solver and will be utilized to compare

previously established empirical data. Figure 1.3.1 shows a curve relating Reynolds

Number to pressure loss due to various duct geometries. This experiment will concentrate
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on comparing data to the curve for a 90° Ell. The flows considered will be of low

Reynolds numbers ranging from 50 to 1800, and any realm dealing with turbulence will

not be considered. The pressure distribution will be found for several different Reynolds

Numbers. Once a pressure distribution profile is determined, a mean pressure loss will be

calculated for each Reynolds number running through the bend. Using the Darcy relation

for pressure differentials, a series of loss coefficients will then be calculated. The Reynolds

number is the ratio of inertial forces to viscous forces, and in this case the velocity will be

varied while the viscosity will remain constant. Each loss coefficient will be found for its

corresponding Reynolds number, and then graphed to form a curve. This curve will be

compared for congruence to experimental curves that have already been established.
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CHAPTER 2

LITERATURE SURVEY

The uses of duct flow systems in engineering are diverse. Distribution systems in heating,

ventilating, and air conditioning; food and beverage industry; and the nuclear, coal, and

gas industries are prevalent examples. Other applications include the chemical industry,

hydraulic systems, civil engineering, and most types of vehicles. Internal flow systems

performing a number of different functions have an important contribution in serving the

overall performance of the design. The greatest enhanced attribute gained, with increased

knowledge of pressure loss behavior, in industry is economical benefits. Available

information on pressure loss in duct components is largely based on experimental work.

Pressure loss of fluids traveling through curved ducts and pipes is greater than that

of flow through comparable straight sections. Determining these losses is complicated and

less reliable than predictions for straight sections, due to a number of factors. These

include, but are not limited to: entrance effects, dealing with non-uniformity, exit effects

due to downstream components, amplification or dampening of inlet distortion due to the

pipe bend, and inadequate empirical data on curved pressure losses [2]. The flow in a

curved duct will be laminar or turbulent depending upon the value of the Reynolds

number. The critical value, at which the transition from laminar to turbulent flow occurs, is

influenced by the curvature of the bend. The importance of understanding transition lies in

the increased effects on pressure distribution, which usually become random and

unpredictable as the flow tends towards turbulence. This critical value is higher for bends

than for straight ducts and increases as the radius of the bend to duct diameter ratio

6
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decreases. For straight ducts the Reynolds number transition range lies between 1200 and

2500 with a limit of 2300 being approached by many experimenters [2]. For laminar flow

through pipe bends, the excess pressure drop is the total pressure drop minus that for a

straight duct. The magnitude of the excess pressure drop depends on the Reynolds number

together with the diameter of the pipe and the curvature of the bend.

In experiments performed by White [12], certain features of the pressure loss were

observed with a 90° duct bend. The variations in static pressure due to the presence of the

bend begin to occur upstream of the bend at a value between 1 to 2 of the ratio of the

upstream entrance to the duct height. Also occurring with this ratio value were distinct

pressure distribution situations; an adverse pressure gradient develops on the outer surface

of the bend and a favorable gradient forms on the inner surface. As the ratio of upstream

entrance to duct height increases beyond 2, the pressure distribution on the outer wall

becomes favorable, and the pressure gradients formed on the inner wall become adverse.

Providing the downstream tangent is sufficiently long, the variation in static pressure at a

cross-section was found to persist into the downstream tangent. The pressure distribution

in the upstream tangent and over the upstream portion of the bend was determined

independent of the inlet conditions for all bends tested [12].

Smith determined [5] for small values of downstream length to duct height (< 2),

the outlet conditions had a very strong influence on the static pressure developed within

the downstream portion of the bend, but for larger values of this ratio the pressure

distribution within the bends were found to be independent of downstream length to duct

height Considering those tangents in the range 0 < < X pih, where X,/h



h

Ld

Figure 2.1.1
Bend Model Map of Downstream Pressure Differences

Ld is the outlet length, h is the duct height, and XT) is the distance into the downstream

tangent to which pressure differences at a cross-section extend, it can be shown that in this

range the pressure distribution within the bend is dependent on Ld/h, (see figure 2.2.1) in

addition, the loss coefficients in this range of values of Ld/h are very sensitive to variations

in Ld/h. The pressure gradients and the changes in pressure gradient due to changes of

downstream conditions were largest in the sharper bends; the magnitude of these effects

diminishes as R/h increases (where R is the bend radius), so that the influence of L d/h on

the pressure distribution becomes small at about RJh 3.45. There is a direct

correspondence between the severity of these adverse pressure gradients and the related

loss coefficients [5].

8
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Other empirical observations have been noted for elbow or pipe bend loss.

Experiments by Benedict [1] found, at a Reynolds number of about 2200, that about 50

pipe diameters of length downstream of an elbow are required before the elbow loss is

fully realized in a piping system. Also, it is difficult to measure the pressures accurately

near the vicinity of the elbow. Therefore, it is usually practiced to sample pressures at a

number of points around the pipe and along the inlet and exit pipes of the elbow under

study, and to establish from these the normal slope of the viscous pipe loss, and ultimately

the elbow loss alone. With a computational model, the pressure distribution can be

realized at many points without physical means, leaving the pressure distribution

undisturbed. It should also be realized that when fittings or other piping loss elements are

placed close to each other, such elements influence those downstream in an undetermined

manner. Thus, predictions of pressure loss for elements placed in series cannot be too

reliable, and that only tests conducted under nearly identical setups can yield meaningful

results in such cases. A computational model can be created to simulate each loss element

in a forthright and diligent manner to study pressure contours and reduce time on such

physical models.

Hawthorne [7] discovered that results between theoretical and experimental

analysis varied considerably. To correlate theoretical and experimental duct flows,

approximations have been formed account for the non-linearity found in physical

experimentation. Hawthorne cited several aspects in which flow approximation fails. First,

the theory does not predict the distortion of the Bernoulli surfaces (constant lines of

energy where Bernoulli's theory is valid), that is found in practice. It is, however, possible
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to make a second-order calculation that predicts the distortion fairly satisfactorily in

simple bends but not so successfully near the end-wall regions of cascades. Second, owing

to the distortion of the Bernoulli surfaces by the secondary flow the conclusion that the

secondary vorticity and velocities grow somewhat linearly with bend angle is limited to

bend angles not exceeding approximately 'Id/R radians, where d is the diameter or width

of the duct and R is the bend radius. In fact for bends of prolonged curvature the

secondary flow develops in an oscillatory fashion. The results of Hawthore's studies

indicates that flow in bent pipes is extremely complicated and that the assumption made in

handbooks that the bend losses are a simple function of bend angle or radius is likely to be

inaccurate [7].

Previous empirical studies have developed loss coefficients for pipe bends with

varying Reynolds number. For round pipes with 90° bends, loss coefficient relationships

were recorded [6]. Flow analysis have been performed on elbow bends with a radius to

height ratio (Rib) of 0.5, and also for R/b,:::::0 (representing an miter bend).

Figure 2.1.2
Mitered Bend versus Constant Radius Bend
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The loss coefficients were higher for mitered bends than for smoother ones (R/b a: 0.5) at

the same Reynolds number (ranging from 300 to 2000). For the smoother bends (R/b .—

0.5) the loss coefficients ranged from about 2 for a Reynolds number of approximately

2000 to an increasing value of approximately 2.7 for a lower Reynolds number of 300.

Similarly, the R/b 0 bend had a loss coefficient of about 2.5 at a Reynolds number of

2000, and a loss value of about 3.7 at the 300 mark for Reynolds. The study was carried

out further for lower Reynolds number involving the mitered bend (R/b .L2 .- 0) and the loss

coefficients were found to decrease from the Reynolds point of 300 and approach a loss

value minimum of 1.05 at a Reynolds number of 100. From the Reynolds number of 100

to a Reynolds number of approximately 0, the loss coefficient were found to increase

slightly and peak at about 1.2. This relationship can easily be seen in Figure 1.3.1.



CHAPTER 3

BACKGROUND AND ANALYSIS

3.1 Uses and Capabilities

FIDAP is capable of analyzing a wide range of different problems. This range includes the
following [4]:

Incompressible and compressible fluids.

Laminar and Turbulent flows.

Single-phase and two-phase flows.

Newtonian, non-Newtonian and visco-elastic fluids.

Flows in fully saturated porous media.

Flows with mass transport.

Steady-state and transient flows.

Forced convection problems.

Buoyancy-driven free convection problems.

Mixed convection problems.

Advection-diffusion problems (energy equation and/or species transport equations
only).

Flows driven by body forces (gravitational, centrifugal, coriolis, electromagnetic).

Periodic, separating and recalculating flows.

Swirling flows.

Flows in rotating or translating frames of reference.

Flows with a free or moving surface, including moving contact points and lines.

Surface tension driven thermal flows. Flows driven by thermal surface tension
gradients.

12
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Solidification and melting, with latent heat release and mass transfer across phase-
change boundaries. A decay model of the turbulent viscosity through the mushy
zone is provided.

Mass transport due to homogenous and heterogeneous chemical reactions. Surface
reactions and thermodiffusion effects are also included.

Diffuse gray and non-gray surface-to-surface radiation, including view factor
calculations. Radiation interaction with participating medium.

Heat transfer in solid regions bounding the flow can be modeled; i.e., conjugate
heat transfer problems.

Some typical areas of application of FIDAP are summarized below.

Electronics Industry - flow and thermal fields in cabinets and chassis or arrays of
components and circuit boards, conjugate heat transfer problems, air flow in disk
drives, clean room analysis.

Automotive Industry - flow distributions along external curved surfaces, lift and
drag calculations, flow in ducts and manifolds, coolant flow around radiator
blocks, radiator design, flow through pumps and valves, flow through filters,
climate control in passenger compartments, catalytic converters, shock absorbers.

Metal forming Industry - continuous casting, extrusion, convection in tundishes,
solidification in castings, phase change.

HVAC Industry - heat exchangers, regenerators, room ventilation flows, analysis
of heating and air-conditioning systems, spray cooling.

Plastics Industry - analysis of injection molding runner systems; extrusion, sheet,
coathanger, spiral, profile dies; blow molding dies.

Food and Beverage Industry - flow and temperature distributions in containers,
ovens, food processing equipment.

Materials Processing Industries - semiconductor crystal growth, flows of molten
glass, furnace design, microgravity processing in space.
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Chemical Industries - flow, heat and mass transfer in chemical reactors, exothermic
and endothermic reactions, chemical mixing, separation processes, drying,
evaporation and condensation.

Biomedical Industries - blood flow in natural and artificial organs, flows in
biomedical devices, tubes with and without constrictions, extrusion processes in
product manufacture, modeling of cleansing processes, sprays and atomizers.

Environmental Studies - flow distributions around buildings, atmospheric thermal
plumes, solar ponds.

Aerospace/Defense Industries - flow around submerged bodies, defense
electronics, variable gravity effects, cabin ventilation, flows in fuel lines and tanks.

Nuclear Industry - flow and thermal distributions of coolants.

Thin Film Technology - coating flows of polymeric fluids, slot coaters, roll coaters,
chemical vapor deposition, optical fiber coating.

Printing Industry - modeling of ink jets.

Crystal Growth - single crystal production from a melt.

Lubrication - film flows.

Machinery/Appliances - flow around impellers and propellers and in water
turbines.

Instrumentation and Control - flow and thermal fields around sensing devices,
vortex shedding, flows and pressure distributions in valves and control devices,
choked flows in nozzles and valves.
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3.2 FIDAP Structure

The FIDAP structure is a single integrated environment for the simulation of fluid flow

analysis. The program consists of modules designed to perform all aspects of the model

generation, problem setup, post-processing and solution phases of a flow problem. There

are three general areas within the FIDAP program structure: pre-processing or problem

description, processing or basic number crunching, and post-processing or analysis of

results. FIDAP contains seven program modules which are used in the fluid flow analyses

process: FIPREP, FIMESH, FI-GEN, FI-BC, FICONV, FISOLV, and FIPOST. Figure

3.2.1 on the following page displays a flow chart which depicts how FIDAP performs

analysis.

3.2.1 Pre-Processing

The program FIDAP contains five modules which may be used for data generation in the

pre-processing stage. FIPREP is used for simulation control as well as fluid property

entry. The modules FI-GEN and FEMESH are used for mesh generation.. Primarily, FI-BC

is used for boundary and initial condition applications. And finally, FICONV is used for

file manipulation and conversion tasks. It should be noted that FICONV may be used in

place of FI-GEN or FIMESH for creating FIDAP compatible mesh data by converting file

information created in some other finite element programs. Such file conversions may be

from PATRAN Neutral files, I-DEAS Universal files, or the FIDAP version 6.0 Neutral

files. The FICONV can translate node and element information as well as boundary and

initial conditions data from these external sources.
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The primary step in computational analysis is proper modeling of the system into the

graphical environment. In FIDAP, a model may be created within the program or it may

be imported from a previously existing file. Some problems may need to be modified or

converted before proper generation of the model can take place through the graphical user

interface. The FICONV command is the FIDAP command used to invoke the FICONV

conversion utility module. The FICONV module is used for file conversion. This utility

integrates one or more input files. The FICONV module also performs adjustments on

existing model files. Often, when a series of simulations are performed with FIDAP in

which a parameter is being changed for each subsequent simulation, (e.g., the density,

effectively increasing the Reynolds number), a point is reached where the solution process

no longer converges and a mesh refinement is required. However, as the nodal points of

the new, refined mesh no longer coincide with those of the old mesh, the last converged

solution can no longer be used as an initial guess to the next simulation with a higher

parameter value. In this situation, FICONV interpolates the solution from the last solution

mesh onto a mesh of different density and creates a new restart results database that

incorporates the old solution onto the new mesh.

The MAP module also allows internal graphical generation of the fluid model.

The FI-GEN command is used to invoke the FI-GEN mesh generator. The FI-GEN

module accepts geometrical graphical input to create a visual display of the desired model

and is designed to show all points, curves, and surfaces that are desired by the user.

However, only nodes lying on the mesh edges are displayed. After the model is graphically
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displayed, it may be plotted, printed, or edited. The FIMESH program module is then

used to map the model in integer or logical space. Logical space can have up to three

dimensions in the FIDAP environment, represented by the indices I, J, and K. The

maximum value for each logical index must be specified by the user. In two dimensions a

logical space may be thought of in terms of a piece of ordinary, equally spaced graph

paper on which the vertices formed by the lines are the possible locations of keypoints.

The logical space representation of the flow domain is a topological map of your finite

element mesh and is used to establish two things: mesh density and definition of nodes

which will receive boundary conditions. It is important that a logical model be properly

defined, or FIDAP will fail to recognize the accompanying geometrical coordinates.

The second step in pre-processing involves specifying initial and boundary

conditions for the model. Initial conditions specify the starting state of the fluid for a

transient simulation or a first guess for the non-linear solution iterations. Convergence of a

solution strongly depends on the initial guess. In order to have a well defined problem,

boundary conditions are required on all boundaries of the computational domain.

Boundary conditions may consist of specified nodal values or specified fluxes across

elemental sides for each active degree of freedom. It should be noted that only one type of

these boundary conditions may be specified at any given boundary. For FIDAP, the default

boundary condition at any unspecified boundary is zero flux for that degree of freedom.

The module FIPREP is used for the specification of initial and boundary conditions for any

FIDAP problem. In FIDAP, initial and boundary conditions can be applied in a number of

different ways. At the lowest level, the required condition can be applied directly to the
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node. Because this approach requires knowledge of the node numbers, as well as constant

updating of the node numbers for any mesh modification, it is considered the least

desirable. The FIDAP program allows for the creation of entities or element groups, and

then conditions may be applied to the collection of element groups. There are three

distinct advantages to referencing entities for the specification of initial and boundary

conditions. First, it allows the identification of an entire region of the boundary to which

to apply the condition. Second, the label used for identification is independent of any

group or node number which allows mesh modifications to be made without affecting the

previous definition. Lastly, boundary conditions maybe applied in a more favorable type of

intuitive manner to physically identifiable portions of the computational domain. The FI-

BC interactive module is used to define the boundary and initial conditions. This interface

allows for activation of various commands which specify conditions. The FI-BC module is

designed to significantly reduce the amount of time required to specify the initial and

boundary conditions necessary for a FIDAP analysis. In essence FI-BC is an interactive

graphical interface to the commands available in FIPREP.

3.2.2 Processing

The processing part of FIDAP requires no user interaction and is performed by the

FISOLV program module. This module performs the cumbersome algebraic matrix

manipulations. The FIDAP program notifies the user weather a solution was converged

upon at the end of this stage. If a solution was converged upon, the user can begin

displaying the results with FEPOST. If convergence is not reached, the user is advised to
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change parameters within the solution method (by relaxing or upwinding settings), and

then rerunning the solution. Convergence for the fully coupled solvers, which include

Successive Substitution, Newton-Raphson Method, Modified-Newton and Quasi-Newton

Methods is based on two criteria being satisfied simultaneously. The first criterion is a

measure of the change in the solution from one iteration to the next. The second is a

measure of how well the current solution satisfies the system of equations being solved.

3.2.3 Post-Processing

Lastly, FIDAP displays results of basic solution data via the FIPOST module. This module

is a graphical post-processor that plots solution data as well as additional derived

quantities. The FIPOST program module is used to post process the correctly defined

fluid model. The FIPOST module requires two files for successful operation: a model

database file and a corresponding results database file that was created by the FISOLV

execution.



CHAPTER 4

METHOD OF SOLUTION

4.1 Governing Equations

The beginning of any fluid motion analysis originates with the use of the Navier-Stokes

equations. These equations are valid for both laminar and turbulent flows. The solution of

problems in incompressible fluid dynamics for which temperature changes are insignificant

can be obtained by considering the equations of continuity and momentum alone. The

Navier-Stokes equations are non-linear partial differential equations, and analytical

solutions of these equations can be obtained for laminar flows. However, when turbulence

is involved an analytical solution is usually impossible.

The Equation of Continuity: The equation of continuity expresses the principle of

conservation of matter. For the rectangular Cartesian coordinate system, with coordinates

x, y, z, measured relative to a stationary frame of reference, and corresponding velocity

components u, v, w the continuity equation is

ap/at + a(pu)/ax + a(pv)/ay + a(pw)/az = 0 	 (4.1.1)

p density of fluid

t time

This is the general form of the equation of continuity, applicable to the non-steady flow of

compressible fluid. Using the operator

21
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D/Dt alat+ ua/ax + va/ay + wa/az	 (4.1.2)

where D/Dt is known as the material time, Eulerian, or substantive derivative, the

continuity equation can be rewritten, through the expansion of the above equation, in the

following form

1/p Dp/Dt + au/ax + av/ay + aw/az = 0	 (4. 1 .3 )

In steady motion the density at a fixed point is independent of time and the continuity

equation for a compressible fluid is then

a(pu)/ax + a(pv)/ay + a(pw)/az = 0	 (4.1.4)

In incompressible flow the density, p, is constant and the continuity equation in both

steady and unsteady flow is

au/ax + av/ay + aw/az = 0	 (4.1.5)

The Momentum Equations: The momentum equations are derived by applying Newton's

second law, which states that the rate of change of momentum of a body is equal to the
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sum of the applied forces, to an elementary volume of fluid. The applied forces acting on

the fluid element are of two basic types:

(a) Forces acting throughout the entire element (e.g. gravitational forces);

(b) Forces acting on the surface of the element (e.g. static pressure and friction)

The first type are known collectively as body forces and the second group are called

surface forces. On applying Newton's second law to a fluid element, centered at x, y, z,

with parallel edges, the coordinate axes there results in

pDu/Dt = pX + acy,,,x/ax + atxy/ay + at„z/az, (4.1.6a)

pDv/Dt = pY + a-c,./ax + acryy/ay + acr z/az, (4.1.6b)

pDw/Dt = pZ + at ix/ax + acszy/ay + auzz/az, (4.1.6c)

where the left-hand side of each equation is the rate of change of momentum, the first

term on the right-hand side is the component body force, and the remaining terms,

representing the components of the stress tensor, are the contributions of the surface

forces. It should be noted that the first subscript denotes the axis to which the face of the

element is perpendicular; the second suffix indicates the direction to which the stress is

parallel. The shear stress terms satisfy the relations
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'Exy	 tyx

Tx2 = Tzx	 (4.1.7)

-cyz = zy

With the following assumptions: (i) that there is a linear relationship between the stress

components and rates of deformation, and (ii) that the fluid is isotropic, that its properties

are the same in all directions, the stress tensor components can take on a new form related

to the static pressure, dynamic viscosity, and bulk viscosity. With these assumptions, for

compressible viscous fluid flow, the three components of the momentum equation in

rectangular Cartesian coordinates is

pDu/Dt = pX - ap/ax + a/axh_t(2au/ax - 2/3(au/ax + av/ ay + aw/az))] +

a/ay{gau/ay + av/ax)] + a/az[ii(aw/ax + au/az)]	 (4. 1 . 8a)

pDv/Dt = pY ap/ay + a/ax[p.(2av/ay - 2/3(au/ax + av/ ay + aw/az))] +

a/az[p.(av/az + aw/az)] + a/ax[µ(au/ay + av/ax)]	 (41 8b)

pDw/Dt = pZ - ap/az + a/azDA(2aw/az 2/3(au/ax + av/ ay + aw/az))] +

a/ax[i.t(aw/ax + au/az)] + a/ay[p(av/az + aw/ay)] 	 (4. 1 . 8c)
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These three equations, together with the continuity equation, are known collectively as the

Navier-Stokes equations. For incompressible flow under conditions of small temperature

variations the viscosity as well as the density may be assumed constant. The momentum

equations take the simplified form

pDu/Dt = pX - ap/Dx + 11(a21ilax2 (321day2 a2u/az2),	 (4.1.9a)

pDv/Dt = pY - ap/Dy p (a2v/ax2 a2v/ay2 a2viaz2),	 (4.1.9b)

pDw/Dt = pZ - ap/Dz + p.(82w/ax2 + a2w/ay2 + a2w/az2), (4.1.9c)

The analytical determination of the field flow in any general configuration rests on the

solution of the above equations subject to the appropriate boundary and initial conditions.

For the flow of a viscous fluid the condition of no-slip must be satisfied; that is, at a solid

surface both the normal and tangential components of velocity must be zero [11].

4.2 FEM Approach

The above equations are solved through a finite element method via the computer package

FIDAP. The domain that the equations govern is subdivided into elements. These elements

are assembled through interconnection at a finite number of points on each element. This

assembly provides a model of the continuum region of intersect [13] .
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Using a Eulerian description of the fluid motion for the field equations, the

elements are taken to be fixed in space. Each element contains within itself functions

which interpolate the dependent variables and p based on values which are determined at

the nodal points. These functions are of compatible order to the dependent functions. The

velocity, pressure and temperature fields within each element are approximated by,

ui (x,t) =	 (t)	 (4.2.1)

p (x,t) ky'r P(t)	 (4.2.2)

where II ; and P are column vectors of element nodal point unknowns and cp and w are

column vectors of the interpolation functions. Substituting these interpolation functions

into the field equations as well as boundary condition yields a set of equations of the form:

Momentum: fl (P, i i, Ui, P) = R 1 	(4.2.3)

Continuity:	 12 (q), Ui) = R2 	 (4.2.4)

where Ri is the residual resulting from the use of those approximation equations. The

Galerkin method of weighted residuals seeks to reduce the error (residual) R i to zero. This

is achieved by making:

§f2E (f1 • (P) 	 = §QE (R1	 ) d = 0	 (4.2.5)
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*OE (f2 ' kif) dn = §c2E (R2* w) di"), = 0	 (4.2.6)

where tIE is the element domain. The application of the Galerkin procedure to the field

equations results in a system of algebraic equations of the form:

[K]	 = [F]	 (4.2.7)

where [K] is the stiffness matrix, [(I)] is the column vector of unknowns and [F] is the

source term which includes the effects of body forces and boundary conditions.

A nine nodal quadrilateral element has been used for computations. In terms of the

normalized or natural coordinates of the element (i.e., r and s), the velocity

approximations are found using biquadratic interpolation functions, given by:

1- 1/4rs(1-r)(1-s)
-1/4 rs ( l+r ) ( 1-s )
1/4 rs ( l+r ) ( 1+s )

-1/4 rs ( 1-r ) ( l+s )
-1/2 s ( 1-s )( 142 )
1/2r( 1+r) ( 1-s2 )
1/2 s ( l+s ) ( 142 )

-1/2 r ( 1-r ) ( 1-s2 )
(1-1-2 )(1-s2 ) J

(4.2.8)

The pressure approximations used with the element bilinear. The pressure values for the

bilinear approximations are located at the four points of a 2X2 Gaussian integration. Its

interpolation functions are given by,



F1/4(g-r)(g-s)/g21
1/4(g-r)(g-s)/g2 I

y=	 11/4(g-r)(g-s)/g2

L1/4(g-r)(g-s)/g2 ]
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(4.2,9)

g 23l	 (4.2. 10)

It is necessary to provide appropriate boundary conditions for u and v on the boundary of

the computational domain. At the channel wall U and V are taken to be zero (see figure

4.2.1). The inlet velocity is prescribed as parabolic and traveling strictly in the x-direction.

On the top and bottom wall, rigid, no-slip conditions are applied, hence velocities are

prescribed zero. For the outlet profile boundary, the fully-developed parabolic velocity

profile is applied in the x-axial direction.

WALL U=V=0

VELOCITY PROFILE
Urniax 	 1.5

Figure 4.2.1
Boundary Conditions and Velocity Profile
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For the numerical solution, a segregated implicit algorithm is used on the set of discretized

equations resulting from the application of the Galerkin finite element method onto the

field equations. The discretized implicit equations associated with each primary flow

variable are assembled into smaller sub-matrices. Mixed velocity-pressure formulation is

applied. An approximation is used initially and then the pressure is obtained from the

solution of the Poisson type pressure matrix using the latest available values of the field

variables. A criteria is established which terminates the iteration process for equation

solution. This relative error of the solution vector u, at the i th iteration converges on the

following criteria:

Au,1/1 u, <6„	 (4.2.11)

Atli= ui	 (4.2.12)

where 6„ denotes a given tolerance, and I denotes an appropriate norm. The second

convergence criterion is based on the residual vector to check the tendency of errors as u,

tends to u. It is

1R(u, ) 1/1R0l <	 (4.2.13)

where R. is a reference vector, usually taken to be R(u o ). These two criteria provide an

effective overall convergence criterion for solutions. Based on these equation, boundary
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conditions, and the principles for solution, some flow computation programs have been

built upon the MAP package. [14]

4.3 Determination of Loss Coefficient

In calculating pressure loss through a bend, two components may be considered with

which to determine the loss value. One component is the pressure drop existing in the

absence of the bend and the other is the pressure drop due to the bend. The pressure drop

that would have existed in the absence of the bend is defined as the pressure loss in a

straight duct of equivalent length. The pressure loss or excess pressure loss due to the

bend itself is determined by subtracting the pressure loss in a straight duct of equivalent

length from the total pressure loss of the duct section. The pressure loss due to the bend

can then be used to calculate a loss coefficient, K. The quantity K is a dimensionless

coefficient which may be used to account for partial pressure losses in any duct flow. This

quantity may be determined from a basic relationship, the Darcy Equation:

Ap = 0.5 K pV 2 	(4.3.1)

Ap pressure drop {N/m2 }

K ==.-- coefficient relating to pressure drop {dimensionless}

p fluid density {kWm3 }

V fluid velocity {m/s}
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The most common pipe loss component is that due to friction within the pipe. This loss is

characterized by the friction factor, f. The variables involved are the pipe length, L, the

pipe diameter, D, fluid viscosity, 1.1, density, p and flow velocity, V. When losses in a duct

are being considered, other than a circular pipe, a hydraulic diameter is used instead of the

circular diameter, D. The hydraulic or equivalent diameter, Dh, is

Ph = 4 A. Ap	 (4.3.2)

cross-sectional area {m2 }

Ap wetted perimeter {m}

By using the friction factor, duct length, and hydraulic diameter, the following

dimensionless loss coefficient may be found due to friction:

Kf = f (L/Dh)	 (4.3.3)

Kp1=- coefficient of pressure loss due to friction {dimensionless}

L length of duct in consideration {m}

D diameter of duct or pipe in consideration {m}

f friction factor
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Figure 4.3.1
Flow Through a Rectangular Channel

We can derive the friction factor by beginning with a rectangular channel in three

dimensions. Figure 4.3.1 represents a rectangular channel with width, w, and depth, d.

Assume the width is much greater than the depth, so that the flow is two-dimensional.

Take the velocity, V, in the x-direction, as a function of y only, while taking the pressure

as a function of x but not of y. The momentum equation for a control volume located

within the channel will yield:

(dV/dy) = y (dp/dx)	 (4.3.4)

If we integrate the above, with V = 0 at y = ± d/2, to obtain

V = 0.5 t.t. (dp/dx) (y2 - d2/4)	 (4.3.5)

32
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We can determine the mean velocity, Vmean 7 by taking it's definition

Vmean = 1/d S V dy	 (4.3.6)

After integration, this yields a mean velocity equal to:

Vmean = (dp/dx) (d2/1211)	 (4.3.7)

For the cross section of figure 4.3.1, the hydraulic diameter is given by

Ph = 4dw I (2d + 2w)	 (4.3.8)

For d	 w, the hydraulic diameter reduces to

Ph = 2d	 (4.3.9)

By taking the friction factor definition, in terms of pressure gradient, mean velocity, and

hydraulic diameter:

f = - (dp/dx)Dh/ (0.5p V2	mean)	 (4.3.10)



= 96/Reph (4.3.11)
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By solving equation 4.3.7 for (dp/dx) in terms of V.ean Then substituting that expression

along with equation 4.3.9, we obtain the friction factor in terms of Reynolds Number:

Where Rem, = p Vmean Dean — h

In our model, the loss coefficient due to friction will be calculated using this relation for f.

This loss coefficient will be used in the Darcy relation to determine the straight bend

pressure loss. This will be deducted from the total pressure loss in the bend.

APbend = APtotal APstraight	 (4.3.12)

The quantity, Ap t.al , will be determined by FIDAP. The pressure loss due to the straight

bend equivalent will be defined as follows:

APstraight = 0.5 Kf p V2 mean	 (4.3.13)

It should be noted that the total straight length of the pipe is determined by adding the

entrance length and the exit length required for the flow to regain a fully developed state.

The excess pressure is used to determine a pressure loss coefficient for the bend, Kb:
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Kb = 2 Apbend / p V2 mean	 (4.3 .14)

Where Kb is the loss coefficient due solely to the bend. Using these governing equations

we may proceed into the analysis of the two-dimensional channel bend using the FIDAP

package.



CHAPTER 5

METHODOLOGY, RESULTS, AND DISCUSSION

5.1 Method of Analysis within FIDAP

For repetitive modeling situations, such as in this analysis, a file which modeled the 90°

bend was created to analyze different flow velocities (a listing of this file can be found in

the appendix). The problem examined water at ambient conditions (atmospheric pressure

and 70°F) flowing through a two-dimensional channel with a 90° bend of constant radius.

The density, viscosity, and maximum velocity were specified in the input file.

Density = 0.998 g / cm 3

Viscosity = 1.002 x 10 -2 g / cm-s

Duct Width = 1 cm

Duct Bend Radius = 1.5 cm

The input velocity was represented by the following parabolic equation:

V = 4 V.a. (y - y2)	 (5.1.1)

Where V and Vmax are in cm/s and y is measured from the bottom wall in cm for 0 y 1.

The file was read in each time by FIDAP and then solved. FIDAP was used to analyze

eighteen different Reynolds Numbers for each particular 90° bend model. Pressure and

36
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velocity nodal values were determined throughout the channel. Reynolds numbers from 50

to 1800 were analyzed by FIDAP.

After model analysis by FIDAP, a convergence of solution report would state if

the unknown quantities were valid according to the parameters set. If the solution had

converged within the number of specified iterations, then the results were considered valid

and used in the determination of the bend loss coefficient. As the Reynolds number

increased and conditions headed towards turbulence, a solution became harder to

converge upon. When convergence did not occur, solution parameters had to be tweaked.

Methods of tweaking included the following: change of solution method, increased

relative error allowance, and increased number of solution iterations (file restarts).

The channel model was defined by elements which consisted of nodal points.

FIDAP output files provided specific values for velocity and pressure at all nodal points.

These values were used to determine the pressure loss due to the channel bend. A sample

calculation is provided in detail in the appendix for an input velocity maximum of 1.503

cm/s. The velocity and pressure distributions for this particular input velocity are

contained in the appendix (Figures 5.1.2 through 5.1.33). Figure 5.1.1 graphically shows

the location of the lines within the bend from where the velocity and pressure distributions

were taken. The actual values taken from FIDAP output files are listed in the appendix as

well (Table 5.1.2). The x-direction and y-direction values were used to determine the

velocity profile within the bend.



Figure 5.1.1
Graphical Lines for Pressure and Velocity Values
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5.2 Results

Initially, All eighteen Reynolds Numbers were analyzed for the 90° channel bend with an

inner bend radius to duct width ratio equal to 1.5. All numbers found to complete each

calculation, as is performed in the sample calculation, are compiled and listed in the

appendix (Tables 5.2.1.a and 5.2.2.a). The pressure loss coefficient, Kb, for the bend was

found for each Reynolds Number and graphed on Figure 5.2.1. Table 5.2.1 summarizes

the pressure values determined, as well as each pressure loss coefficient determined.
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A second analysis was performed to determine the effect of decreasing the bend

radius to duct width ratio on pressure loss. The FIDAP model was changed so that the

bend radius was 2 cm and the duct width was 2 cm. This gave a bend radius to duct width

ratio of 1.0. The same Reynolds Numbers were run on FIDAP and the velocity and

pressure profiles were determined. Table 5.2.2 lists values of pressure and the pressure

loss coefficients determined. Figure 5.2.2 is a plot of the Pressure loss coefficients, Kb,

versus Reynolds Number.
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Table 5.2.2
Solution Results For 90° Channel Bend with a Bend Radius to Duct Width Ratio of



Figure 5.2.1
Pressure Loss Coefficient versus Reynolds Number for a Bend Radius to Duct Width Ratio of 1.5



['CC T INILJI-LJO INIUIVIIDCIN

Figure 5.2.2
Pressure Loss Coefficient versus Reynolds Number for a Bend Radius to Duct Width Ratio of 1.0
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5.3 Discussion

5.3.1 Computer Solution

The validity of these results is based on the assumption that the equations of continuity

and momentum are applicable to this problem. The FIDAP package solved these equations

through finite element analysis. By keeping the Reynolds Number low, turbulent modeling

is avoided. Laminar flow is predictable and linear, and higher order terms in solutions are

negligible. Therefore, this problem is simple to analyze and will lend itself to valid results.

There are distinctions between empirical analysis and the generated computer

solution. Empirical study focuses on various positions within the model. In the case of this

particular model, the pressure change would have been sampled from some point in the

entrance of the bend and then along the downstream of the bend exit. The computer

analysis determined values for numerous points within the model. Values for velocity and

pressure could be determined for hundreds of points within the model. This would have

been very difficult for an empirical study to accomplish.

5.3.2 Pressure Loss Coefficient Trends

Some important observations involving pressure and velocity can be seen within the

model. Certain trends can be discussed with respect to changes in duct geometry. As R/D

increases, pressure loss due to the bend decreases. Accordingly, if we held the duct

diameter, D, constant and let the bend radius, R, approach infinity, the duct would

approach a straight length. Therefore, the bend would be eliminated from the model and

so would any pressure changes due to its presence. This would leave friction losses in a
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straight duct as the sole cause for total pressure losses. By allowing the radius, R, to

become infinite the duct length becomes infinitely long and therefore the pressure loss for

the straight duct would become infinite. Figure 5.3.1 & 5.3.2 show the loss coefficient, Kb,

decreasing as the ratio of R/D increases. From Tables 5.2.1 and 5.2.2, an example for a

Reynolds Number of 50 shows a Kb value of 3.929 for an R/D of 1.0 as compared to a Kb

value of 1.367 for an R/D of 1.5.

By further examining figure 5.3.1 we may compare the loss coefficients between

both ducts as Reynolds Number increases. Table 5.3.1 depicts the percentage increase in

pressure loss coefficient value between a bend radius to duct width ratio of 1.0 to a ratio

of 1.5. The largest percentage increase value is at a Reynolds Number of 50. Then the

percentage increase gap is lowered as Reynolds number increases and steadies out at a

mean value of 148.42%. Most changes in loss percentages fall between values of 130%

and 170%.
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By examining Figure 5.3.1 it can be observed that as Reynolds Number increases, effect

on the pressure loss coefficient due to the bend decreases. Also, when Reynolds Number

is below 1000, the effect of the bend is more dramatic on the pressure loss coefficient. For

an RID of 1.5 the value of Kb at a Reynolds Number of 50 is 1.367 while at a Reynolds

Number of 1000 the value of Kb is only 0.254 (shown in Table 5.3.1). From Figure 5.3.1 it

is seen that the absolute value of the slope of the downward curve in the Reynolds

Number region of 50 to 1000 (about 3.469 x 10 -3) is larger than the absolute value of the

slope of the Reynolds number region extending beyond 1000 (about 1.688 x 10 4). This

would indicate that as Reynolds Number increases the loss coefficient value would
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become constant. Figure 5.3.1 graphically demonstrates this point and shows further

similarities between loss coefficient curves for varying R(1) ratios.

Figure 1.3.1 depicts an empirically determined curve for a 90° Ell (circular elbow,

R/D=1.5) for K values for a Reynolds Number range of 300 to 2000. The value of K is 2.6

for a Reynolds Number of 300, and is 1.8 for a Reynolds Number of 1800. The curve

behaves similarly to those of Figure 5.3.1. For a Reynolds Number of 300 Figure 5.2.1

gives a Kb of 0.455, and for a Reynolds Number of 1800 Figure 5.2.1 gives a Kb of 0.188.

The magnitude of K from Figure 1.3.1 is greater than that of Figure 5.2.1 due to increased

pressure losses in the three dimensional bend. The three dimensional bend has more

surface area per unit length for fluid contact than the two-dimensional bend, and therefore

the friction loss in the bend is greater.

5.3.3 Pressure and Velocity Distribution Trends within the Duct

Variations in the velocity and pressure distributions are observed as the water flows

through the duct. As the fluid begins in the entrance of the duct, the velocity profile is a

symmetrical, parabolic function. The parabolic profile of the velocity skews as it nears the

bend. The skewing of the velocity profile becomes more pronounced as the fluid travels

through the bend. The velocity profile eventually returns to the symmetrical, parabolic

function, seen in the entrance region, at some point in the exit region. When the velocity

profile is skewed, it's value increases towards the top wall and decreases near the bottom

wall. Figure 5.3.3 defines the top and bottom walls of the model. Table 5.3.3 and Figure

5.3.4 relate velocity profiles to physical locations within the bend. From Table 5.1.2 the
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centerline (by a notation of 0.5) nodal velocity values can be found for several profiles

within the duct. As the fluid enters the bend the centerline value is 1.503 curls. The

velocity centerline values changes respectively: 1.498 cm/s, 1,420 cm/s, 1.445 cm/s, 1.479

cm/s, 1.522 cm/s, and 1.503 curls as the fluid travels through and exits the bend. The

largest velocity nodal value observed within the bend is 1.571 cm/s and develops early in

the entrance of the fluid into the bend.

TOP WALL

Figure 5.3.3.a
Top and Bottom Wall Definition for Channel Bend Model

The pressure distribution varies as the fluid flows through the bend. Figure 5.3.4 and

Table 5.3.2 relate pressure distributions along perpendicular lines to the top and bottom

wall defined in the channel. These pressure distributions are used to determine pressure

gradient values that are perpendicular to flow (along lines traveling normal from the top

wall to the bottom wall). The pressure gradient across lines within the entrance region is
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approximately zero. As the fluid approaches and enters the bend, the magnitude of the

pressure gradient increases. During the fluid's travel through the bend the pressure

dramatically increases on the bottom wall region. At some point after exiting the bend, the

pressure gradient reverses itself, and pressure becomes higher on the top wall region.

After some distance into the exit of the duct, the fluid pressure gradient once again

becomes zero across lines perpendicular to the top and bottom wall of the bend.

Values for pressure nodal values are found in Table 5.1.2, and the pressure

gradients (perpendicular to flow) can be calculated for the specified profile lines. As the

fluid enters the bend, the pressure gradient value is -0.2156 g/cm-s 2 (from top to bottom

wall). Further gradient values are -0.9043 g/cm-s 2, -0.8476 g/cm-s 2, -0.7663 g/cm-s2, -

0,6078 g/cm-s2 , and 0.0012 g/cm-s2 as the fluid continues through and exits the bend

(Figures 5.1.20 to 5.1.25). Within the bend and along the bottom wall pressure values

initially decrease (7.4592 g/cm-s 2, 6.8682 g/cm-s2, 6.8406 g/cm-s2, from Table 5.1.2) and

then begins to increase ( 6.8579 g/cm-s 2, 6.9044 g/cm-s2) for two nodes until it finally

drops again (6.6343 g/cm-s2) and continues to fall all the along the exit length. Along the

top wall the pressure values increase as the fluid enters the bend (7.6748 g/cm-s 2, 7.7725

g/cm-s2) then drops as it continues through and exits the bend (7.6882 g/cm-s2 , 7,6242

g/cm-s2, 7.5122 g/cm-s 2, 6.6331 g/cm-s2). As the Reynolds Number increases the

magnitude of the pressure gradient values within the bend also increase.

Pressure gradients and velocity profiles demonstrate a converse relationship as

they change throughout the bend of the channel. The velocity profiles are symmetrical

when the pressure gradient values are zero. The most skewed velocity profile (Figure
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5.1.5) is found at the greatest magnitude pressure gradient value within the bend (-.9043

g/cm-s2, Figure 5.1.21). As the velocity profile returns to symmetry (Figures 5.1.6 to

5.1.8) the corresponding pressure gradient values return to zero (Figures 5.1.21 to

5.1.23). This converse relationship is also seen when the velocity profile skews slightly

towards the bottom wall (Figure 5.1.9) after exiting the bend and the pressure gradient

value becomes positive (.0012 g/cm-s 2 , Figure 5.1.24).
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Figure 5.3.3.b
Pressure and Velocity Profiles Across Perpendicular Lines Between the Top and

Bottom Walls of the Channel Bend
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5.4 Conclusions

Pressure loss coefficients were determined for laminar two dimensional incompressible

channel flow in a 90° bend using the tEM software package, FIDAP. Curves for loss

coefficients were determined for ducts with a bend radius to duct width ratio of 1.5 and

1.0. Similarities between Figures 5.3.1 and Figure 5.3.2 validate the method and results

generated by the use of FIDAP.

The pressure loss coefficient decreased with increasing Reynolds Number, Initial

pressure loss coefficient values (Reynolds Number of 50) were high as compared to final

pressure loss values (Reynolds Number of 1800) within the channel. For an R/D ratio of

1.5, at a Reynolds Number of 50, the pressure loss coefficient, K, was 1.367. When

Reynolds Number was 1800 the value had decreased to 0.188. For an RID ratio of 1.0, at

a Reynolds Number of 50, K was 3.929, while dropping down to 0.498 for a Reynolds

Number of 1800. Both dropping by a factor of about 7.5. The pressure loss coefficient

dropped more significantly for Reynolds Number ranging from 50 to 1000 than in the

range of 1000 to 1800. After 1000 the decrease in loss coefficient became smaller and

indicated the possibility of reaching a constant. As the ratio of RID decreased from 1.5 to

1.0 the value of the pressure loss coefficient for each Reynolds Number was increased by

an approximate ratio of 2.5.

Within the channel bend itself the pressure demonstrated an inverse relationship

with fluid velocity. As the fluid moved through the duct entrance, with the velocity

remaining symmetrical and parabolic, the pressure gradient across perpendicular lines

running from the top wall to the bottom wall was zero. Upon the fluid entering the bend,

the pressure decreased along the top wall and increased along the bottom wall.
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Simultaneously, the velocity increased towards the top wall and decreased along the

bottom wall. As the fluid continued through the bend, the magnitude of the pressure

gradient increased as pressure increased against the bottom wall, while the maximum

velocity value moved toward the top wall. Near the exit of the bend the pressure increased

on the top wall and decreased on the bottom wall, and the velocity maximum moved past

the channel centerline toward the bottom wall. Shortly after that point, the velocity

became symmetrical about the channel centerline and the pressure gradient returned to

zero.



APPENDIX A

FIDAP MODEL FILES

FIDAP Program for modeling of a two-dimensional, 90° channel bend with constant
radius. duct radius to duct height ratio of 1.5.

FIMESH (2-D, IMAX-9, JMAX=5)
EXPI(DELTAS)
/1 2 3 4 5 6 7 8 9
/1 0 10 0 22 0 37 0 137
1 090 12 0 15 0 100
EXPJ(DELTAS)
/1 2 3 4 5
/1 0 9 0 17
1 0 8 0 8
/ HORIZONTAL AND VERTICAL MESH RATIO SPACING
$h=1
$v=1
I DIMENSIONAL DEFINITION OF DUCT, CO-ORDINATE LAYOUT
POINT(SYSTEM=1)
/PT#IJKXYZ
/ r
1 1 1 1 0.0 1.0 0
/ it	 r
2 3 1 1 5.0 1.0 0.0
/ il.r	 ol
4 9 1 1 6.0 -60.0 0.0
/ il.r.h	 ol
5 9 5 1 7.0	 -60.0 0.0
/ it	 r.h
7 3 5 1 5.0 2.0 0.0
/ r.h
8 1 5 1 0.0 2.0 0,0

r.h/2
1013 1 0.0 1.5 0.0
/ il.r.h/2 ol
13 9 3 1 6.5	 -60.0 0.0
/ it	 r.h/2
11 3 3 1 5.0	 1.5 0.0
/CENTER OF ARC(S)

9 0 0 0 5.0 0.0 0.0
COORDINATE(SYSTEM-2,ROTATION,CYLINDRICAL)

56
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9
POINT(SYSTEM=2)
/	 r
3 7 1 1 1.0 0.0

r.h
6 7 5 1 2.0 0.0

r.h/2
12 7 3 1 1.5 0.0
/	 r
1451 1 1.045

r.h
15 5 5 1 2.0 45

r.h/2
1653 1 1.545
/DEFINITION OF LINES FOR DUCT WALLS, ENTRANCE, EXIT, AND SPECIFIC
/SECTIONS
LINE,
12
87
3 12 $h
12 6 $v
4 13 $h
13 5 $v
2 11 $h
11 7 $v
56
43
14 16 $h
16 15 $v
1 10 $h
10 8 $v
2 11 $h
11 7 $v
ARC
2 14 9 $h
14 3 9 $v
11 16 9 $h
16 12 9 $v
7 15 9 $h
15 6 9 $v
/MESH FORMATION INFORMATION
SURFACE
15
ELEMENTS(QUADRILATERAL,NODES=9,ENTITY="FLUID")
15
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ELEMENTS(BOUNDARY,EDGE,FACE,ENTITY="WALL")
41
85
ELEMENTS(BOUNDARY,EDGE,FACE,ENTITY--"OUTLET")
45
ELEMENTS(BOUNDARY,EDGE,FACE,ENTITY="INLET")
18
/ENTRANCE NOTATION OF INITIAL CONDITIONS
BCNODE(UX,CONSTANT)
85
41
BCNODE(UY,CONSTANT)
85
41
18
/VELOCITY INPUT
BCNODE(UX,PARABOLIC=0)
1 8 3.006
END
FEPREP
DATAPRINT(CONTROL)
EXECUTION(NEWJOB)
PRINTOUT(NONE)
PROBLEM(2D,INCOMPRESSIBLE,STEADY,NONLINEAR,NEWTONIAN,MOMEN

TUM,ENERGY,FIXED,SINGLEPHASE)
RENUMBER(PROFILE)
ENTITY(FLUID,NAME="FLUID")
ENTITY(PLOT,NAME="WALL")
ENTITY(PLOT,NAME="OUTLET")
ENTITY(PLOT,NAME="INLET")
DENSITY(CONSTANT=0. 998)
VISCOSITY(CONSTANT=.01002)
END
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FIDAP Program for modeling of a two-dimensional, 90° channel bend with constant
radius. Duct radius to duct height ratio to 1.0.

FIMESH (2-D, IMAX=9, JMAX=5)
EXPI(DELTAS)
/1 2 3 4 5 6 7 8 9
/1 0 10 0 22 0 37 0 137
1 0 9 0 12 0 15 0 100
EXPJ(DELTAS)
/1 2 3 4 5
/1 0 9 0 17
1 0 8 0 8
$h=1
$v=1
POINT(SYSTEM=1)
/PT#IJKXYZ
/ r
1 1 1	 1 0.0 1.0 0
/ it	 r
2 3 1 1 5.0 1.0 0.0
/ il.r	 ol
4 9 1	 1 6.0 -100.0 0.0
/ il.r.h	 ol
5 9 5 1 8.0 -100.0 0.0
/ it	 r.h
73 5 1 5.0 3.0 0.0
/ r.h
8 1 5 1 0.0 3.0 0.0

r.h/2
1013 1
/
13 9 3 1
/
11 3 3 1

0.0 2.5 0.0
il.r.h12 ol
7.5	 -100.0
il	 r.h/2
5.0 2.5 0.0

0.0

/CENTER OF ARC(S)

9 0 0 0 5.0 0.0 0.0
COORDINATE(SYSTEM-2,ROTATION,CYLINDRICAL)
9
POINT(SYSTEM-2)

3 7 1 1 1.0 0.0



r.h
6 7
/

5 1 3.0 0.0
r.h/2

12
/

7 3 1 2.0 0.0

14 5 1
r

1 1.0 45
/ r.h
15 5 5 1 3.0 45
/ r.h/2
16 5 3 1 2.0 45
LINE
1 2
8 7
3 12 $h
12 6 $v
4 13 $h
13 5 $v
2 11 $h
11 7 $v
56
43
14 16 $h
16 15 $v
1 10 $h
10 8 $v
211 $h
11 7 $v
ARC
2 14 9 $h
14 3 9 $v
11 16 9 $h
16 12 9 $v
7 15 9 $h
15 6 9 $v
SURFACE
15
ELEMENTS(QUADRELATERAL,NODES=9,ENTITY--"FLUID")
15
ELEMENTS(BOUNDARY,EDGE,FACE,ENTITY="WALL")
41
85
ELEMENTS(BOUNDARY,EDGE,FACE,ENTITY="OUTLET")
45
ELEMENTS(BOUNDARY,EDGE,FACE,ENTITY---"INLET")
18

60
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BCNODE(UX,CONSTANT)
85
41
BCNODE(UY,CONSTANT)
85
41
18
BCNODE(UX,PARABOLIC=0)
1 8 3.006
END
FIPREP
DATAPRINT(CONTROL)
EXECUTION(NEWJOB)
PRINTOUT(NONE)
PROBLEM(2D, INC OMPRE S SIBLE, STEADY,NONLINEAR,NEWTONIAN,MOMEN

TUM,ENERGY,FIXED, SINGLEPHASE)
RENUMBER(PROFILE)
ENTITY(FLUID,NAIVIE="FLUID")
ENTITY(PLOT,NAME="WALL")
ENTITY(PLOT,NAME="OUTLET")
ENTITY(PLOT,NAME="INLET")
DENSITY(CONSTANT=0.998)
VISCOSITY(CONSTANT=0.01002)
END



APPENDIX B

SAMPLE CALCULATION OF PRESSURE LOSS COEFFICIENT

PROBLEM DEFINITION:

Water @70°F flowing through a two-dimensional duct containing the following
properties:

p = 0.998 g/cm3

= 1.002 x 10 -2 g/cm-s
Vmax = 1.503 cm/s

The duct geometry for this particular problem has an inlet length of 5 cm, a 90° bend with
a radius of 1.5 cm, and an exit length of 55.8 cm. The duct width or duct diameter is 1 cm.
This calculation will determine a loss coefficient due to the pressure loss created by the
bend within the duct.

The velocity equation is V(y) = 4Vmax ( y - 3r2 ).

Begin by determining the mean velocity within the duct.

Vmean 1/D V dy

Integrate V(y) between the limits of the duct entrance:

Vmean 1/D j4V„,, ( y - y2 ) dy from y=0 to y=D

Vmean 4Vmax /D [ y2/2 - y3 /3	 ro to

Vmean = 2/3 Vmax

Determine the Reynolds Number using the following equation:

Re = (p V D /mean — h, • 1-1,

Where Ph = 2D

Substituting values stated in problem

Re 200

Using the definition of the friction factor, f, for a two-dimensional channel

f = 96 Re
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Substituting values stated in problem

f = 0.48

Determine the equivalent straight duct length for flow to return to fully developed flow
after exiting the bend.

SLFDF = Entrance length + Exit length

Entrance length = 5 cm

Exit length = 55.8 cm

SLFDF = 5 + 55.8 = 60.8 cm

The value for (L/Dh) can then be determined to find the coefficient of friction loss within
the duct.

K1 = f (L/Dh)

K1 = 14.592

Pressure loss due to friction in the duct

APSL = 0.5 K1 p (Vmean)2

Substituting values

L\PSL = 7.3105628 g/cm-s2

Determine the pressure loss due to the bend

APTOTAL APSL + APBEND

rearranging above equation

APBEND = L\PTOTAL APSL

The total pressure loss is taken from the FIDAP solution. It is the determined by
subtracting the pressure value found at the exit point of the bend from the pressure value
found at the duct entrance. The average values for the entrance and exit lines are found in
Table 5.2.1.a. The specific nodal values are located in Table 5.2.1.

APTcyrAL 8.1599224 - 0.50486836 = 7.655054 g/cm-s2



Therefore

APBEND = 7.655054-7.3105628 = 0.344491 g/cm-s 2

The loss coefficient for the bend is then determined by

KB = 2 APBEND I p (Vmean)2

Substituting values

KB = 0.687
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FIDAP GRAPHICAL AND NODAL OUTPUT
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Figure 5.1.9
Velocity Distribution for Line 45 2237
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Figure 5.1.10
Velocity Distribution for Line 55 2247
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Figure 5.1.11
Velocity Distribution for Line 65 2257
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Figure 5.1.12
Velocity Distribution for Line 70 2262
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Figure 5,113
Velocity Distribution for Line 75 2267
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Figure 5.1.14
Velocity Distribution for Line 95 2287
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Figure 5.1.15
Velocity Distribution for Line 110 2302
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Figure 5.1.16
Velocity Distribution for Line 120 2312
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Figure 5.1.17
Velocity Distribution for Line 130 2322
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NI-Component Velocity Distribution for Line 95 2237
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Table 5.1.2
Nodal Values for Pressure and Velocity from FIDAP

1PRESSURE 	 I 1 i
LINE 1 0 	 0.0625 	 0.1251 	 0.18751 0.251 0.31251 0.375 	 0.43751 0.5
1 2193 9.2607 	 9.26071 	 9.2613 9,26161 9.26101 9.26011 9.2591 	 9.25831 9.2568
5 2197 I 8.7206 	 8.72041 	 8.7204 8.72071 8.7200 i 8.72011 8.7195 	 8.71931 8.7193
10 2202 1 7.5440 7.5482 	 7.5553 7.61341 7.67291 7.77361 7.8337 I 	7.97851 8.0690
20 2212 1 5.2855 5.42731 	 5.5833 6.01321 6.43711 6.80821 7.2927 	 7.63871 7.9155
25 2217 5.3335 5.4291 	 5.5285 5.89721 6.27841 6.69171 7.06521 	 7.50661 7.7783
30 2222 5.5466 5.6012 5.6482 5.91011 6.19121 6.52501 6.8919 7.16711 7.5646
35 2227 1 5.8191 5.8461 5.8598 5.99471 6.14791 6.36361 6.5864 6.9081 7.1556
45 2237 1 6.5217 6.5205 6.5195 6.51741 6.51521 6.5078) 6.5029 6.4938 6.4869
55 2247 1 5.8767 	 5.8766 5.8764 5.87631 5.87611 5.87561 5.8754 5.8748 5.8744
65 2257 1 5.1810 	 5.1810 5.1809 5.18091 5.18081 5.18071 5.1806 5.1803 5.1802
70 2262 1 4.8257 4.8257 4.8257 4.82571 4.8257 ; 4.82571 4.8257 4.8257 4.8257
75 2267 1 4.4682 4.4682 4.4682 4.46821 4.46821 4.46821 4.4682 4.4682 4.4682
95 2287 1 3.0293 3.0293 3.0293 3.02931 3.02931 3.02931 3.0293 3.0293 3.0293
110 2302 1 1.9476 1.9476 1.9476 1.9476 1.94761 1.94761 1.9476 1.9476 1.9476
120 2312 1 1.2263 1.2263 1.2263 1.22631 1.22631 1.2263 1.2263 1.2263 1.2263
130 2322 1 0.5050 0.5050 0.5050 0.50501 0.50501 0.5050 0.5050 0.5050 0.5050



Table 5.1.2
(Continued)

Nodal Values for Pressure and Velocity from FIDAP

0.5625'	 0.625 	 0.6875 ' 	 0.751 	 0.81251 	 0.8751 	 0,9375 	 1
9.2561 9.2556 	 9.2555 	 9.2563 	 9.25671 	 9.25691 	 9.25681 	 9.2568
8.7193 8.7200 	 8.7204 	 8.7215 	 8.72201 	 8.72251 	 8.72291 	 8.7228
8.0872 8.1957 	 8.2682 	 8.3768 8.39491 	 8.41291 	 8.41291 	 8.4129
8.1924 8.4000 8.5039 8.6423 8.71121 	 8.7462 8.74621	 8.7462
8.0499 8.1858 8.2876 8.4235 	 8.45741 	 8.4914 8.4914 	 8.4914
7.7480 8.0844 8.1761 8.4146 8.4452 	 8.4819 8.4971 	 8.5124
7.4526 7.7249 7.7992 8.0442 8.11841 	 8.1679 8.1803 	 8.1952
6.4799 6.4716 6.4656 6.4594 6.4566 	 6.4538 6.4535 	 6.4521
5.8739 5.8733 5.8730 5.8728 5.8727 5.8726 5.8725 	 5.8724

5.1801 5.1799 5.1799 5.1799 5.1799 5.1799 5.1799 	 5.1799
4.8257 4.8257 4.8257 4.8257 4.8257 r	 4.8257 4.8257 	 4.8257

4.4682 4.4682 4.4682 4.4682 4.4682 4.4682 4.4682 4.4682

3.0293 3.0293 3.0293 3.0293 	 3.0293 3.0293 3.0293 3.0293

1.9476 1.9476 1.9476 1.9476 1.9476 1.9476 1.9476 1.9476

1.2263 1.2263 1.2263 1.2263 1.2263 1.2263 1.2263 	 1.2263
0.5050 0.5050 0.5050 0.5050 	 0.5050 	 0.5050 0.5050 	 0.5050



Table 5.1.2
(Continued)

Nodal Values for Pressure and Velocity from FIDAP

X-DIRECTION VELOCITY
LINE 	 0 0.0625 0.125 	 0.1875 0.251 0.3125 0.375 0.4375 	 0.5
1 2193 	 0.00000 0.70453 1.31512 	 1.83178 2.254501 2.58328 2.81812 2.95903 	 3.00600
5 2197 	 j 	 0.00000 0.69960 1.31261 1.83351 2.256081 2.58901 2.82109 2.96203 3.00619
10 2202 0.00000 1.07434 1.77690 2.30899 2.640871 2.88139 3.00888 3.03676 2.97969-
20 2212 0.00000 1.22020 2.05239 2.43154 2.590181 2.62915 2.58674 2.46855 2.28755
25 2217 0.00000 0.71612 1.36009 1.77667 1.973521 2.04128 2.02460 1.95455 1.82604
30 2222 0.00000 0.33115 0.74294 1.08326 1.305551 1.38865 1.41856 1.37557 1.31205
35 2227 0.00000 0.08762 0.25833 0.48645 0.604691 0.78047 0.75199 0.82591 0.72578
45 2237 0.00000 0.00403 0.01509 0.02734 0.037661 0.04405 0.04991 0.05053 0.05092
55 2247 0.00000 0.00046 0.00175 0.00356 0.005701 0.00755 0.00895 0.00948 0.00926
65 2257 0.00000 0.00016 0.00063 0.00130 0.002091 0.00283 0.00339 0.00363 0.00355
70 2262 0.00000 0.00010 0.00024 0.00081 0.001311 0.00178 0.00214 0.00231 0.00225
75 2267 0.00000 0.00006 0.00025 0.00051 0.000821 0.00111 0.00134 0.00145 0.00143
95 2287 0.00000 0.00001 0.00003 0.00007 0.000111 0.00015 0.00019 0.00020 0.00020
110 2302 0.00000 0.00000 0.00001 0.00001 0.000021 0.00003 0.00003 0.00004 	 0.00004
120 2312 0.00000 0.00000 0.00000 0.00000 0.000011 0.00001 0.00001 0.00001 0.00001
130 2322 	 1 0.00000 0.00000 0.000001 	 0.00000 0.000001 0.00000 0.000001 	 0.00000 0.00000



Table 5.1.2
(Continued)

Nodal Values for Pressure and Velocity from FIDAP

1 
0.5625 0.625 0.6875 0.75	 0.8125 0.875	 0.93751	 1

2.95903 2.81812 2.58328 2.25450 1.83178 1.31512 0.704531	 0.00000
2.96203 2.82109 2.58901 2.25608 1.83351 1.31261 0.69960 0.00000
2.81521 2.57964 2.23961 1.83733 1.36624 0.87163 0.40055 0.00000
2.04568 1.75673 1.43210 1.09782 0.77422 0.48235 0.22509 0.00000
1.65498 1.44385 1.20536 0.95519 0.70651 0.46704 0.23540 0.00000
1.19725 1.06712 0;90591 0.73843 0.56362 0.38777 0.20317 0.00000
0.73225 0.60326 0.55821 0.42108 0.34267 0.21183 0.11118 0.00000
0.05039 0.04541 0.04095 0.03158 0.01948 0.01047 0.00189 0.00000
0.00811 0.00675 0.00481 0.003091	 0.00159 0.00059 0.00011 0.00000
0.00314 0.00252 0.00180 0.001141	 0.00060 0.00024 0.00005 0.00000
0.00200 0.00161 0.00116 0.00070 0.00040 0.00016 0.00004 0.00000
0.00127 0.00103 0.00075 0.00050 0.00030 0.00011 0.00002 0.00000
0.00018 0.00015 0.00011 0.00010 0.00001 0.00002 0.00000 0.00000
0.00001 0.00001 0.00000 0.00001 0.00000 0.00001 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000



Table 5.1.2
(Continued)

Nodal Values for Pressure and Velocity from FIDAP

i 	 IY-DIRECTION VELOCITY 	 1
LINE 	 01 	 0.0625; 	 0.1251 	 0.1875 	 0.251 	 0.31251 	 0.375 	 0.43751 	 0.5

1 2193 	 0.000001 	 0.00000 1 	0.000001	 0.00000 0.00000 0.00000 	 0.00000 	 0.000001 	 0.00000

5 2197 0.00000 0.002851 	 0.006411 	 0.00019 0.01547 0.00412 0.01558: 	 0.006171 	 0.01142

10 2202 0.00000 0.023181	 0.082001 	 0.17078 0.18491 0.27049 0.24902! 	 0.306951 	 0.26304

20 2212 0.00000 0.887391	 1.447261 	 1.70638 1.81461 1.85478 1.821361 	 1.746141 	 1.61385

25 2217 0.00000 0.91276; 	 1.663101 	 2.13591 2.37209 2.43900 2.43884; 	 2.345821 	 2.20664
30 2222 0.00000 0.737261 	 1.54737 2.18898 2.58894 2.77120 2.815181 	 2.774621 	 2.64621

35 2227 0.00000 0.431891 	 1.08559 	 1.84255 2.42272 2.79501 2.992451 	 3.030511 	 2.98997

45 2237 0.00000 0.540471 	 1.02970 	 1.48982 1.93163 2.33962 2.685751 	 2.936991 	 3.08163
55 2247 0.00000 0.662101 	 1.23821 1.73307

1.79395
2.15175
2.22143

2.49636
2.54837

	

2.764201 	 2.948071 	3.03867 

	

2.795541 	 2.953361 	 3.0179865 2257 0.00000 0.688651 	 1.28605

70 2262 0.00000 0.694801 	 1.29724 1.80839 2.22950 2.56136 2.803701 	 2.955051 	 3.01303

75 2267 0.00000 0.698611 	 1.30420 	 1.81744 2.22391 2.56965 2.809011 	 2.956291 	 3.01004

95 2287 0.00000 0.70377 	 1.31372 	 1.82991 2.25245 2.58140 2,816771 	 2.95844 3.00625

110 2302 0.00000 0,704341 	 1.31477 	 1.83131 2.25397 2.58276 2.817691 	 2.95873 3.00585

120 2312 0.00000 0.704421 	 1.31492 1.83151 2.25418 2.58295 2.817811 	 2.95876 3.00578

-130 2322 0.00000 0.704441 	 1.31496 1.83156 2.25423 2.58299 2.817841 	 2.95876 3.00575



Table 5.1.2
(Continued)

Nodal Values for Pressure and Velocity from FIDAP

1	 1
0.5625 0.6251	 0.6875 0.75 0.8125 i	 0.875 0.9375 	 1 

0.00000 0.000001	 0.00000 0.00000 0.000001	 0.00000 0.00000	 0.00000
0.00000 0.000001	 0.00582 0.00000 0.002301	 0.00215 0.00000,	 0.00000
0.28416 0.228971	 0.21068 0.15171 0.10445 0.05356 0.01422	 0.00000
1.44527 1.237691	 1.00869 0.77337 0.54794 0.34611 0.16565	 0.00000
1.99877 0.31089	 0.00000
2.45640 2.20232 1.90719 1.58236 1.24609 0.89410 0.49425	 0.00000
2.84900 2.64930 2.37565 2.06383 1.71439 1.30977 0.78343	 0.00000
3.11755 3.04633 2.86196 2.54724 2.08480 1.48050 0.77446	 0.00000
3.02706 2.90704 2.67589 2.33546 1.89153 1.35102 0.71959 0.00000
2.98538 2.85277 2.61929 2.28607 1.85541 1.32976 0.71098 0.00000
2.97510 2.83950 2.60566 2.27425 1.84668 1.32445 0.70869 0.00000
2.96870 2.83115 2.59701 2.26670 1.84104 1.32096 0.70716 0.00000
2.96000 2.81820 2.58482 2.25588 1.83283 1.31578 0.70482 0.00000
2.95902_ 2.81801 2.58340 2.25461 1.83185 1.31516 0.70454 0.00000
2.95887 2.81781 2.58319 2.25443 1.83172 1.31507 0.70449 0.00000
2.95876 2.817841	 2.58299 2.25423 1.83156 1.31496 0.70444 0.00000



Table 5.1.2
(Continued)

Nodal Values for Pressure and Velocity from MAP

VELOCITY
LINE 	 0 0.0625 0.125	 0.18751	 0.251	 0.31251	 0.375 0.4375;	 0.5
1 2193	 0.00000 0.70453 1.31512 1.831781	 2.254501	 2.58328 2.81812 2.959031	 3.00600
5 2197	 0.00000 0.69960 1.31263 1.833511	 2.256131	 2.58901 2.82113 2.962041	 3.00621
10 2202	 0.00000 1.07459 1.77879 2.31530 2.64734 2.89406	 3,01917 3.05223 2.99128
20 2212	 1	 0.00000 1.50876 2.51135 2.97054 3,162571	 3.21755 3.16363 3.02370 2.79954
25 2217	 0.00000 1.16015 2.14843 2.77825 3.085711	 3.180491	 3.16969 3.05338 2.86421
30 2222	 0.00000 0.80821 1.71648 2.44235 2.899491	 3.09966 3.15239 3.09689 2.95363
35 2227	 0.00000 0.44069 1.11590 1.90568 2.49704 i	 2.90193 3.08549 3.14104 3.07680
45 2237	 0.00000 0.54049 1.02981 1.49007 1.932001	 2.34003 2.68621 2.93742 3.08205
55 2247	 I	 0.00000 0.66210 1.23821 1.73307 2.151761	 2.49637 2.76421 2.94809 3.03868
65 2257	 I	 0.00000 0.68865 1.28605 1.79395 2.22143 1	 2.54837 2.79554 2.95336 3.01798
70 2262	 1	 0.00000 0.69480 1.29724 1.80839 2.229501	 2.56136 2.80370 2.95505 3.01303
75 2267 	 0.00000 0.69861 1.30420 1.81744 2.22391	 2.56965 2.80901 2.95629 3.01004
95 2287	 1	 0.00000 0.70377 1.31372 1.82991 2.25245	 2.58140 2.81677 2.95844 3.00625
110 2302	 I	 0.00000 0.70434 1.31477 1.83131 2.25397 2.58276 2.81769 2.95873 3.00585
120 2312	 1	 0.00000 0.70442 1.31492 1.83151 2.25418 2.58295 2.81781 2.95876 3.00578
130 2322 1	 0.00000 0.70444 1.31496 1.83156 2.25423 2.58299 2.81784 2.95876 3.00575



Table 5.1.2
(Continued)

Nodal Values for Pressure and Velocity from FIDAP

0.5625 0.6251	 0.6875 0.75 0.81251	 0.8751	 0.93751	 1
2.95903 2.81812 2.58328 2.25450 1.831781	 1.31512	 0.704531	 0.00000
2.96203 2.82109 2.58902 2.25608

1.84358

	

1.833511	 1.31261	 0.699601	 0.00000

	

1.370231	 0.87328	 0.400801	 0.000002.82951 2.58978 2.24950
2.50472 2.14895 1.75168 1.34287 0.948501	 0.59368	 0.279471	 0.00000
2.59500 2.27163 1.90092 1.51317 1.13003	 0.75631	 0.38996	 0.00000
2.73264 2.44723 2.11141 1.74618 1.367631 	 0.97457 0.534381 	 0.00000
2.94160 2.71711 2.44035 2.10635 1.74830 1.32679 0.79128 0.00000
3.11796 3.04667 2.86225 2.54744 2.08489 1.48054 0.77446 0.00000
3.02707 2.90705 2.67589 2.33546 1.89153 1.35102 0.71959	 0.00000
2.98538 2.85277 2.61929 2.28607 1.85541 1.32976 0.71098	 0.00000
2.97510 2.83950 2.60566 2.27425 1.84668 1.32445 0.708691	 0.00000
2.96870 2.83115 2.59701 2.26670 1.84104 1.32096 0.707161	 0.00000
2.96000 2.81820 2.58482 2.25588 1.83283 1.31578 0.704821	 0.00000
2.95902 2.81801 2.58340 2.25461 1.83185 1.31516 0.70454 0.00000
2.95887 2.81781 2.58319 2.25443 1.83172 1.31507 0.70449 0.00000
2.95876 2.81784 2.58299 2.25423 1.83156 1.31496 0.70444 0.00000



Table 5.2.1.a
Complete Calculation Values for Loss Coefficient Determination for a 90° Channel

Bend with a Bend Radius to Duct Width Ratio of 1.5

REYNOLDS
NUMBER VELOCITY FRICTION KF DELTA P INLET OUTLET DELTA P DELTA P KB

50 MEAN FACTOR ST. LENGTH PRESSURE PRESSURE TOTAL BEND	 1R/D=1.5
100

7

LINE 130 2322 •
150 0.12630 1.87175 0.04287	 1.36733

.	 200 0.501 0.96 29.17 3.65776 4.05561 0.25260 3.80301 0.14525	 1.15817
250 0.752 0.64 19.44 5.48664 6.09842 0.37874 5.71968 0.23304 0.82585
300 1.002 0.48 14.59 7.31065 8.15992 0.50487 7.65505 0.34440 0.68743
400 1.253 0.38 11.67 9.13953 10.15403 0.63033 9.52370 0.38417 0.49063
500 1.503 0.32 9.73 10.96841 12.22630 0.75579 11.47052 0.50211 0.44523
600 2.004 0.24 7.30 14.62130 16.45275 1.00974 15.44302 0.82171 0.41004
700 2.505 0.19 5.841	 18.27906 20.64790 1.26325 19.38465 1.10559 0.35299
800 3.006 0.16 4.86 21.93195 24.93582 1.51590 23.41992 1.48796 0.33000
900 3.507 0.14 4.17 25.58971 29.30706 1.76855 27.53851 1.94880 0.31748

1000 4.008 0.12 3.65'	 29.24260 33.63664 2.02120 31.61544 2.37284 0.29601
1100 4.509 0.11 3.24	 32.90036 37.96220 2.27385 35.68835 2.78799 0.27477
1200 5.010 0.10 2.92	 36.55325 42.25800 2.52650 39.73150 3.17825	 0.25375
1400 5.5111	 0.09 2.65 	 40.21101 46.62380 2.77915 43.84465 3.633641 	 0.23973
1600 6.012 0.08 2.43 	 43.86390 50.87496 3.03180 47.84316 3.97926 0.22063
1800 7.014 0.07 2.08 	 51.17455 59.81412 3.53710 56.27702 5.10247 0.20785

8.016 0.06 1.82 	 58.48520 	 68.66328 4.04240 64.62088 6.13568 0.19136
9.019 0.05 	 1.62 	 65.80072 	 77.982441 	 4.54770 73.43474 7.63402 	 0.18809



Table 5.2.1.b
Complete Calculation Values for Loss Coefficient Determination for a 90° Channel

Bend with a Bend Radius to Duct Width Ratio of 1.0
REYNOLDS 1 I
NUMBER VELOCITY FRICTION KF DELTA P INLET OUTLET 	 (DELTA P DELTA P KB

MEAN FACTOR ST. LENG PRESSURE PRESSURE TOTAL BEND R/D=1.0
50 LINE 1 2193 LINE 130 2322-

100 _ 0.125 1.92 47.01 0.36848 0.42560 0.02632 0.39928 0.03080 3.92892
150 0.251 0.96 23.50 0.73697 0.87119 0.05263 0.81856 0.08159 2.60234
200 0.376 0.64 w 15.67 1.10545 1.30679 0.07895 1.22784 0.12239 1.73489
250 0.501 0.48 11.75 1.47393 1.86159 0.21053 1.65106 0.17712 1.41229
300 0.627 0.38 9.40 1.84241 2.35854 0.26306 2.09548 0.25307 1,29142
400 0.751 0.32 7.84 2.20894 2.81352 0.31558 2.49794 0.28900 1.02597
500 1.002 0.24 5.88 2.94590 3.85706 0.42091 3.43614 0.49024 0.97853
600 	 1.253 0.19 4.70 3.68287 4.89965 0.52624 4.37341 0.69054 0.88190
700 	 1.503 0.16 0.63157 5.35579 0.93596 0.82994
800 1.754 0.14 0.73676 6.29978 1.14298 0.74452
9001 	 2.004 0.12 2.94 5.89181 8.16534 0.84195 7.32339 1.43158 0.71437

10001 	 2.255 0.11 2.61 6.62877 9.32654 8.37926 1.75048 0.69007
11001 	 2.505 0.10 2.35 7.36574 10.49381 9.44119 2.07545 0.66265
12001 	 2.756 0.09 2.14 8.10270 11.70243 1.15780 10.54462 2.44192 0.64428
1400 	 3.006 0.08 1,96 8.83771 12.85988 1.26300 11.596891 	 2.75918 0.61193
16001 	 3,507 0.07 1.68 10.31164 15.26927 1.47366 13.79561 3.48397 0.56757
18001 	 4,008 	 0.06 1.47 11.78361 17.71626 1.68404 16.03222 4.24861 0.53002

1 	 4.509 	 0.05 1.311 	 13.25755 20.20657 1.89470 18.311871 	 5.05432 0.49813
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