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ABSTRACT

DISTRIBUTION OF VELOCITIES AND VELOCITY GRADIENTS
IN MIXING AND FLOCCULATION VESSELS:

COMPARISON BETWEEN LDV DATA AND CFD PREDICTIONS

by
Changgen Luo

Flocculation is an operation of significant industrial relevance commonly encountered in

many processes, including water and wastewater treatment. The physicochemical

phenomena of this process is strongly affected by the magnitude of the velocity gradients

generated, typically through agitation, in rapid mix devices and flocculation vessels.

In this work the fluid dynamic characteristics of mechanically agitated systems,

namely three different types of stirred tanks, which can be used as flocculation vessels,

were studied. Both the mean and fluctuating velocities in all three directions were

measured by using a Laser-Doppler Velocimeter (LDV). The velocity distribution,

fluctuating velocities, power consumption and local velocity gradient were numerically

predicted with FLUENT, a computational fluid dynamic (CFD) software, using k-s

model, algebraic stress model (ASM), or Reynolds Stress Model (RSM) to simulate

turbulence effect. The experimentally obtained mean velocities and turbulent kinetic

energies on the top and bottom horizontal surfaces of the region swept by the impeller

were used as boundary conditions in the simulations.

Significant agreement between the experimental data and the numerical

predictions of the three dimensional velocities and turbulent kinetic energies was

obtained in all cases.



A novel approach to numerically calculate the local velocity gradient (G) in

turbulent flocculation tanks was developed. The distribution of local G values in three

mixing systems was mapped through two new methods: the complete definition of local

velocity gradient method and the local energy dissipation method. Results show that

both methods can provide similar information about the local G value distribution. The

trajectory of a solid particle with physical properties similar to those to a floc particle

moving in three different mixing systems was numerically determined. The G value

experienced by the particle as a function of time was also determined. A new parameter,

the velocity gradient-time integral along a particle trajectory, was proposed and

calculated. It is expected that the approach developed in this study will provide the

foundations for a more accurate characterization of the fluid dynamics of flocculation

systems.
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CHAPTER 1

INTRODUCTION

Mechanically agitated mixing vessels are widely used in a variety of industrial

applications, such as precipitation, flocculation, polymerization, fermentation, as well as

crystallization and heterogeneous catalysis. As a result, a significant literature exists on

the subject, and design principles have been determined for many situations of industrial

significance. In recent years the flow distribution in agitated vessels has been studied

primarily using two complementary techniques, Laser-Doppler Velocimetry (LDV) and

Computational Fluid Dynamics (CFD) simulations. Computational fluid dynamics (CED)

is a tool that is becoming increasing popular to study complex fluid flows such as those

typically found in mixing vessels. The main advantage of this approach is in its potential

for reducing the extent and number of experiments required to describe such types of

flow. These two tools have enabled investigators to experimentally and non-intrusively

determine the velocity distribution in mixing vessels, and make quantitative predictions

about the same velocities (Armenante and Chou, 1996; Bakker, 1992; Costes et al.,

1991; De Groot, 1991; Dong, 1994; Hirata et al., 1991; Jaworski et al., 1991; Kresta and

Wood, 1991; Mahouast et al., 1989; Weetman, 1991; Ranade et al., 1989, 1992)

Some industrial processes, such as flocculation, are strongly affected by the

magnitude of the velocity gradients generated, typically through agitation. However,

only rough estimates of such velocity gradients (based on the average power dissipation

in the flocculation vessel) are currently available. Very little information is available

from the literature on the distribution of velocity gradients throughout the flocculation

vessel (especially the fluctuating velocity gradients produced by turbulence effects).
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Furthermore, although the product of the average velocity gradient by the retention time

of the flocculating water has often been used as a the main parameter in the design of

flocculators even less information is available on the time the individual floc particles

spend in different zones of the vessel while being exposed to velocity gradients of

different intensities. This indicates that the need exists for a better quantification of both

the velocity gradient distribution and the velocity gradient-time integral for the floc

particles being formed during flocculation.

Therefore, this work has been focused on the determination of the spatial

distribution of local velocity gradients (through the determination of local power

dissipation rates) along with the determination of tridimensional velocity distribution in

mixing vessel with identical configurations to an existing flocculation pilot plant run at

the Questor Centre at Queen's University, Belfast, Northern Ireland, U.K., using both an

non-intrusive experimental approach (via Laser-Doppler Velocimetry) and a rigorous

computational approach (via Computational Fluid Dynamics). This work is one part of

the collaborative research project entitled "Fundamental Studies and Chemical and

Engineering Innovations in Flocculative Water Cleaning" between HSMRC at New

Jersey Institute of Technology, Newark, NJ and Questor Centre at Queen's University,

Belfast, Northern Ireland, U.K.

Turbulent fluid dynamic effects play a significant role in the flocculation process.

The reason for this can be traced back to the effect that the transport of the chemical

species and floc aggregates throughout the vessel have on the final results of the process.

Since such transfer phenomena are very significantly affected by parameters such as

shear rate and bulk flow it is evident that the fluid dynamic characteristics of flocculators
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are of paramount importance for both an understanding of the process and its actual

practical results. This is a very well recognized aspect of flocculation known to any

practitioner in the field. In fact, the most common flocculation test, the jar test, is an

attempt to capture the essence of both the fluid dynamic characteristics and the particle

destabilization and floc aggregation aspects of the process. Unfortunately, this approach

is very crude and results it produces are difficult to extrapolate.

The main difficulty at the basis of a precise definition of the fluid dynamic

characteristics of flocculators is that flocculation is dominated by turbulence, a

phenomenon still poorly understood. In recent years the study of turbulent phenomena

has been greatly been enhanced by experimental tools such as Laser-Doppler

Velocimetry. In addition, fluid dynamic problems have been successfully tackled by

numerically solving the equations commonly used to described turbulent phenomena.

This work is aimed at utilizing these tools to quantitatively describe the fluid dynamics of

flocculators.

In this study the velocities in four mixing and flocculation systems (System A: an

unbaified, flat-bottom, cylindrical vessel provided with a lid, completely filled with

water, and agitated by a six-blade, 45° pitched-blade turbine; System B: a baffled

rectangular tank agitated by a 2-blade paddle-type impeller; System Cl and C2: baffled,

flat-bottomed cylindrical vessels agitated by six-blade, 45° pitched-blade turbines of

different sizes) were experimentally determined with a laser-Doppler velocimetry (LDV)

apparatus. The velocities at a number of locations in the impeller region (defined as the

outer surface of the volume swept by the impeller) were then used as boundary

conditions in CFD simulations. The velocity distribution, fluctuating velocities, power
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consumption and local velocity gradient were numerically predicted with FLUENT, a

computational fluid dynamic (CFD) software, using k-s model, algebraic stress model

(ASM), or Reynolds Stress Model (RSM) to simulate turbulence effect. Comparisons

were made between the experimental LDV data obtained for all three systems and the

results of the numerical predictions, in order to determine the best approach to CFD

simulation of complex flows in mixing and flocculation vessels.

In addition, a novel approach to numerically calculate the local velocity gradient

(G) in turbulent flocculation tanks was developed. The distribution of local G values in

two mixing systems was mapped through two new methods: the complete definition of

local velocity gradient method and the local energy dissipation method. Results show

that both methods can provide similar information about the local G value distribution.

The trajectory of a solid particle with physical properties similar to those to a floc

particle moving in three different mixing systems was numerically determined. The G

value experienced by the particle as a function of time was also determined.

In order to better characterize the effect of fluid dynamics on the flocculation

process, a new parameter, the velocity gradient-time integral, was proposed in this work.

A rigorous program to quantify this new parameter from the information obtained by

CFD simulation has been developed in this work by using Visual Basic language

incorporated with Microsoft Excel 5.0. Finally, a comparison was made between the G

average value obtained through the conventional method and the new method in this

work.



CHAPTER 2

OBJECTIVES

The primary objective of this work was the determination of the spatial distribution of

local velocity gradients (through the rigorous methods proposed in this work, i.e., the

complete definition of local velocity gradient method and the local energy dissipation

rate method) and the determination of tridimensional velocity distribution in four

mixing/flocculation systems. The trajectory of a virtual particle with physical properties

similar to those of a floc particle moving in three different systems was also numerically

determined. Both an non-intrusive experimental approach (via Laser-Doppler

Velocimetry) and a rigorous computational approach (via Computational Fluid

Dynamics) were used to achieve these objectives.

A new variable, the velocity gradient-time integral along a particle trajectory,

taking into account the local velocity gradient and the time a moving floc particle is

exposed to it, was then defined and calculated for three different systems to better model

the flocculation process. It is expected that the results of this approach will eventually

be incorporated in some of the many models available in the literature for floc

aggregation and breakage. So far these models have typically relied on averages of the

velocity gradient derived from simplified turbulence theories rather than their actual

values.

5



CHAPTER 3

THEORETICAL BACKGROUND

3.1 Flocculation Process

Flocculation process is an operation of significant industrial relevance commonly

encountered in water and wastewater treatment plants. Coagulation and flocculation

refer, respectively, to the process of destabilization of colloidal particles upon the

addition of some chemicals to the water containing them, and to the process through

which these destabilized particles collide and aggregate to form larger floc particles that

can be separated via sedimentation or other physical methods. The two terms are often

used interchangeably - a practice that will also be followed in this work, unless leading to

possible misunderstanding. Flocculation is a process extremely difficult to quantify

because of the complexities of the phenomena at its origin, and also because these

phenomena affect each other in ways that are difficult to resolve into separate effects.

When a coagulant is added to a solution containing colloidal particles a number

of aspects must be considered to fully explain the overall results. Chemical hydrolysis,

particle agglomeration and breakup, and turbulent fluid dynamic effects all play a

significant role in the overall process (Amirtharajah and Mills, 1982). These

characteristics of flocculation processes will now be briefly reviewed.

3.1.1 Chemical Hydrolysis

Most of the chemicals commonly used as coagulants react with water forming hydrolysis

products. In many cases the number and nature of these products are such that complex

equilibria among such species is possible. Furthermore, the composition of the resulting

6
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solution is a strong function of pH and temperature. For example, the addition of ferric

chloride to water results in its hydrolysis to Fe(OH) 3 which then results in the formation

of species such as Fe(OH)4, Fe(OH)2+, Fe(OH)2+, Fe3+ and others. Equilibrium diagram

for all the species involved have been produced and are quite complex. An additional

complication results from the fact that the kinetics of the formation of the various

products during coagulation must be taken into account, and that only some of these

species are effective as coagulants.

3.1.2 Destabilization and Aggregation of Colloidal Particles

After its initial formation the coagulation products are typically adsorbed on the surface

of the colloid particles, destabilizing them. This is usually a fast reaction. However, in

order for the destabilized particles to aggregate they must come in contact with each

other and be maintained in such close proximity for a sufficient period of time for the

floc to be formed. Successive floc growth occurs when floc particles come in contact

with other particles, producing flocculation. This is typically a slower process. The two

aspects of the process have resulted in the common practice of carrying out flocculation

first under rapid mix conditions (where interactions among destabilized particles are

promoted) and then under slow mix conditions (where floc breakup is minimized and

sedimentation is promoted).
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3.1.3 Fluid Dynamics Effects

The two previous aspects of the coagulation/flocculation process can be significantly

affected by the fluid dynamic conditions inside the flocculation vessel. The reason for

this can be traced back to the effect that the transport of the chemical species and floc

aggregates throughout the vessel have on the final results of the process. Since such

transfer phenomena are very significantly affected by parameters such as shear rate and

bulk flow it is evident that the fluid dynamic characteristics of flocculators are of

paramount importance for both an understanding of the process and its actual practical

results. This is a very well recognized aspect of flocculation known to any practitioner in

the field. The common alternation of "rapid mix" and "slow mix" regimes during

flocculation is a recognition that agitation is indeed a key parameter. In fact, the most

common flocculation test, the jar test, is an attempt to capture the essence of both the

fluid dynamic characteristics and the particle destabilization and floc aggregation aspects

of the process. Unfortunately, this approach is very crude and results it produces are

difficult to extrapolate.

The main difficulty at the basis of a precise definition of the fluid dynamic

characteristics of flocculators is that flocculation is dominated by turbulence, a

phenomenon still poorly understood. In recent years the study of turbulent phenomena

has been greatly enhanced by experimental tools such as laser-Doppler Velocimetry

(LDV). In addition, fluid dynamic problems have been successfully tackled by

numerically solving the equations commonly used to describe turbulent phenomena.

This work is aimed at utilizing these tools to quantitatively describe the fluid dynamics of
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flocculators so that it can be eventually incorporated in more comprehensive chemical-

physical flocculation models.

3.2 Effect of Velocity Gradients on Flocculation

Flocculation process is strongly affected by the magnitude of the velocity gradients

generated, typically, through agitation. In flocculation the velocity gradient is important

not only because it can produce contact between particles, but also because it can

produce floc breakup if it has too high a value.

3.2.1 Conventional Method to Estimate the Velocity Gradient

Because of the complexity of the flocculation process a number of simplified models as

well as rules of thumb are available from the literature (Bhargava and Ojha, 1993;

Delichatsios and Probstein, 1975; Dharmappa et al., 1993; Glasgow and Kim, 1986;

Glasgow and Liu, 1991; Mhaisalkar et al., 1991; Wiesner, 1992). In the vast majority of

these models the effect of agitation and turbulence on flocculation is typically expressed

using a single key parameter, namely the root mean square velocity gradient in the

vessel, G, first introduced by Camp and Stein (1943):

G = (3.1)

where u, v, w are the velocities components in x, y, z coordinates. Camp and Stein

(1943) called this G as the absolute velocity gradient at a point. They considered that

the angular distortion of an elemental volume of water due to tangential surface forces or
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shears. Therefore, they related this absolute velocity gradient with the work done per

unit volume per unit time in the following way.

P2
= jiG

where P = power dissipation, V = vessel volume, = liquid viscosity.

Rearranging Eq. 3.2, they had

(3.2)

where e= dissipation rate, v= kinematic viscosity.

Theoretically, if the power dissipated or the work done at any point within

agitated vessel is known, then the absolute velocity gradient can be calculated by using

the above equation. However, realistically, the dissipated power varies from position to

position within the agitated vessel. Therefore, the velocity gradient in this expression is a

function of both time and position within the vessel. Since the velocity gradients are

quite difficult to calculate, an approximation typically made to estimate G is to replace it

with its average value throughout the vessel Gay, :

P ave
G = (3.4)

where the average power consumption, Pave, can easily be obtained from the power

requirement to agitate the vessel:

Pave = Np p .N3 D5 	(3.5)
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with Np = power number for a given impeller, p = density of liquid, N = rotational speed

of impeller, D = impeller diameter.

Gave obtained through equation 3.4 is referred to in this work as the G average

value obtained through the conventional method.

Gave or another mean value for G is typically included in most flocculation

models. For example, O'Melia (1972) assumed that the rate of change in the total

concentration of particles during flocculation is:

do _ 2rid 3 n 2
= 	

dt	 3

where n = particle concentration, ri = collision efficiency, d = particle diameter. Upon

integration this equation becomes:

in— =
n	 411Q G taveno 	7C

where no = initial particle concentration, SZ = volume fraction of colloidal particles, and t

= time. A similar approach was also followed by Miyanami et al. (1982) who obtained

an expression in which ln(n/n o) was proportional to Goy,1.11. Other recommendations for

optimum flocculation include a number of different relationships in which the term Gave a

tfi can be found (Camp, 1955; McConnachie, 1989).

It is evident that the use of Gave instead of G greatly simplifies the calculation of

the frequency collision and hence the determination of the optimal flocculation

conditions. Unfortunately, in stirred tanks used in flocculation the distribution of

velocity gradients is by no means uniform. In fact, it has been shown already that the

(3.6)

(3.7)
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local power consumption at location of high turbulence intensity (e.g., in the vicinity of

the impeller) can be many times higher than that in the rest of the tank (Wu and

Patterson, 1989; Kresta and Wood, 1991; Tatterson, 1991; Geisler et al, 1996)).

Furthermore, different mixing devices can produce identical average power dissipation

values (and hence identical Gave values) but very different distributions of e and G

throughout the vessel. As stated by Zhou and Kresta (1996): "Different types of

impellers create different circulation patterns and different distributions of turbulence

energy dissipation for the same tank geometry. The same average power input per unit

mass (sometimes called the average energy dissipation) can result in widely different

distributions of turbulence energy dissipation when different impellers are used with the

same tank geometry". Ducoste et al (1997) also pointed that: "There is growing

evidence that a more complex relationship exists between particle agglomeration/breakup

and the fluid mechanics generated in a flocculation basin that can not be fully described

by just using the G value for the whole tank. In order to fully understand the relationship

between agglomeration/breakup and fluid mechanics, it is necessary to first characterize

the complex fluid mechanics." °

Furthermore, the time a floc particle exposed to a given velocity gradient during

the flocculation processing is also very important. A particle may spend more time in

zones with one G value than other zones with different G value. This will make big

difference for certain flocculation process. A closer examination reveals that what can be

of ever greater significance for these two phenomena is a parameter that takes into

account not only the local velocity gradient but also the time a particle or floc is exposed
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to it. The simplest conceivable function that includes both parameters is the product

Gave t„t in which ire, is the retention time. In fact, this group appears in the flocculation

equation by O'Melia given above. However, it is evident that even in the simple O'Melia

model the cumulative change in flocculation at a generic time will depend on the integral

of G as a function of time. Since during the same time interval the particle or floc has

followed a certain trajectory within the vessel the integral of G vs. t must be calculated

knowing what the trajectory is and the velocity that the particle has at each point.

Therefore, the term Gave tret obtained through the conventional method is only a crude

estimation of the actual velocity gradient-time integral.

3.2.2 Rigorous Methods to Calculate the Velocity Gradient

Although the conventional method to estimate the velocity gradient, proposed by Camp

and Stein (1943), has been widely used by environmental engineers for decades, it is a

very rough method. Apparently, it has two major weaknesses, at least. First, the so-

called absolute velocity gradient is defined in such a way that only the tangential shear

stresses were considered, while the normal stress terms were not included. This leads to

an incomplete estimation of this parameter. Second, an average velocity gradient is

calculated for the entire agitated vessel. This leads to a very inaccurate estimation of this

parameter, since the velocity gradient varies greatly from position to position within the

vessel. A simple value cannot represent the characteristics of this process. Besides,

different agitated systems could have the same Gave but produce quite different mixing or

flocculating results.
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Because of these weaknesses, many researchers have found that Gave is not

suitable to describe the turbulent flocculation process. Argaman and Kaufman (1970)

experimentally observed that the maximum floc size in flocculation process was inversely

proportional to G. Cleasby (1984) even proposed that power input per unit mass to the

two thirds power, 1, is a more appropriate flocculation parameter than G obtained by

the conventional method for common water and wastewater flocculation practice. All

attempts available in the literature are based on the use of an average parameter for the

entire vessel, which can be inadequate to characterize the turbulent flocculation process.

No information was found in the literature about the estimation of local velocity gradient

in mixing or flocculation processes.

This work aimed to solve this problem. With the assistance of new technologies

in both experimental and simulation fields (LDV and CFD, respectively), we were able to

calculate the real value of this parameter (local velocity gradient) at each position within

the mixing or flocculation vessel, through more fundamental and rigorous methods

shown below.

A differential mechanical energy balance for a fluid element can be written as

(Bird et al. 1960):

O
2 pv 2 	- (V • pV 2 	- (V • p v) (V •[rc • v Da

(3.8)
+ p(v • g) p(—V • v) (—T:V v)

where the term on the left hand side is the rate of increase in kinetic energy per unit

volume, and the terms on the right hand side are the net rate of input of kinetic energy by

virtue of bulk flow, the rate of work done by pressure of surroundings on volume
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element, the rate of work done by viscous force on volume element, the rate of work

done by gravity force on volume element, the rate of reversible conversion to internal

energy, and the rate of irreversible conversion to internal energy, respectively.

The term (-t: Vv) in the above equation accounts for the degradation of

mechanical energy to thermal energy. It represents the energy dissipation rate, E. Hence:

For Newtonian fluids the term (-t: Vv) can be rewritten as:

(-t: Vv) = iu

where

(3.10)

aix Oily) 2 (ado 5u+ 

Le3) 76-c) L-01 +-47

aix .4_ za ) 2

a a)
2 ratc+cio+Ouz 

2

6) a

and ux, uy, u, are the velocity components in the x, y, z direction, respectively.

By defining G (velocity gradient at a point) as follows:

(3.12)

(3.11)
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Then we have the relationship between the G and e as:

E- 
P

=(—T:Vv)=pG 2 	(3.13)
V

For an incompressible fluid the last term in the expression for G is zero (because

of continuity) and G becomes:

ay) 
2 (az  2

••■•■•

G= {2

2 	 .\ 2
aix ay) +ray + 	 +(aix +az
oy c 	 oz 6) ) 	 a a

If the spatial distribution of ux, uy, uz is known, then the distribution of G in the

fluid can be calculated by computing the derivatives on the right hand side of this

equation. This method is referred to as the complete definition of local velocity

gradient method in this work.

A comparison between the rigorous equation for G (Eq. 3.14) and that (Eq. 3.1)

of Camp and Stein (1943) shows that these investigators forgot to include the normal

shear terms in their equation for G.

Similarly, in cylindrical coordinates, the rigorous expression for G becomes:

	 2 + late 	 azy + raiz + alr)
2

Li' r) re%)	 a r oO	 c	 a (3.15)
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where ur, u Q u, are the velocity components in the radial, tangential and axial direction,

respectively.

For an incompressible fluid the last term in the above expression is zero (because

of continuity) and G becomes:

2 	 2 	 2

G — 
12 ( +(10+1&) +(2)

r 	 r

2 	 2

( 12!r) 71 clid Or) ( 6:9+ -1r aig )
11

(3.16)

Although the above equations (Eq. 3.14 and Eq. 3.16) are valid in any flow

regime (including the turbulent regime) some modifications of practical importance need

be introduced if G must be calculated for turbulent flow.

In general, the shear stress can be expressed as:

If Boussinesq's eddy viscosity (p) concept is introduced to account for turbulent

effects it is:
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Comparing the above equations (Eq. 3.17 and Eq. 3.19), we have
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This equation relates the instant velocity gradient (including the mean and fluctuating

velocity gradient components) to the mean velocity gradient, which could be obtained

through simulation.

Substituting the above equation into equations of G definition (Eq. 3.14 and Eq.

3.16), we get (in cartesian coordinates)

G =( 1-1-1 -ff)
r GR,c)2 + I 	 + i
a) 	 )

and in cylindrical coordinates the expression for G becomes

; tXr)

a. a

FLUENT can provide the data of j.i at any position within the vessel after the

simulation is complete. It also predicts the mean velocities for all three components at

any position within the vessel. Therefore the mean velocity gradient in all three directions
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for any position within the vessel can be calculated. Thus we were able to calculate the

local velocity gradient at any position within the agitated vessel.

Another method to determine the local G value is through the usage of local

energy dissipation rate, which could also be obtained numerically. The idea is following:

Recalling Eq. 3.13, i.e.

rearranging it,it, we have:

(3.23)

If the local value of 6 throughout the vessel is available, the local G value could

be calculated with the above equation. This alternative method is referred to as the local

energy dissipation method in this work.

The above equation looks the same in the form as Eq. 3.3 proposed by Camp and

Stein (1960). But it differs in that the G in Eq. 3.24 is the complete definition of local

velocity gradient as shown in Eq. 3.14 or Eq. 3.16, while the G in Eq. 3.3 is the

incomplete definition of velocity gradient as shown in Eq. 3.1, which did not include the

effect of normal stress terms. Furthermore, no information available in the literature

about the obtaining the local velocity gradient in mixing or flocculation vessels.

Researchers and engineers in this area almost always referred to the Eq. 3,3 at the

beginning, but then turned into the average velocity gradient throughout the entire vessel

as shown in Eq. 3.4, which leads to very rough estimation of this key parameter in the

P \ 2
= -v = VV) =
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mixing and flocculation processes. In this work, for the first time, the local velocity

gradients for several mixing/flocculation processes were numerically obtained through

the calculation of the local power dissipation rate.

Comparing the two methods mentioned above, one can clearly see that they came

from the same fundamental equation and should provide identical G values. The

significance of the approach used here to calculate the local velocity gradient is as

following. Firstly, it provides the correct equation to calculate the local G value

(somewhat imprecisely obtained by Camp and Stein in 1943). Secondly, it provides an

alternative method to obtain this local G value, i.e., for the situation provided that the

local mean velocities and local turbulent viscosities were known, the first method could

be used, and for the situation provided that the local energy dissipation rates were

known, the second method could be applied. It broadens the ability and possibility for

researchers and engineers to obtain this key parameter in mixing and flocculation

process.

3.3 New Parameter for Flocculation Process

Although Gave t has often been used as a main parameter in the design of flocculators

even less information is available on the time the individual floc particles spend in

different zones of the vessel while being exposed to velocity gradients of different

intensities. In order to better study the real effect of the actual velocity gradient profiles

and the time interval of a moving particle spent in each zone with certain velocity

gradient value, we proposed a new parameter called velocity gradient-time integral
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along the particle trajectory. This new parameter is the combination of these two factors

(i.e., local velocity gradient, G, and the time a moving particle spent in that cell, t) with

their actual values. To obtain this new parameter for certain flocculation process, firstly,

we need to find the distribution of velocity gradient throughout the entire flocculation

vessel; secondly, we need to track the trajectory of a normal floc particle moving in this

vessel; then finally, we can obtain this new parameter for mixing or flocculation process

through numerically integrating the local velocity gradient value by the time a moving

floc particle spent in that zone of the vessel.

To quantify the velocity gradient-time integral on flocculation it would be

advantageous to be able to measure these quantities directly from experiments and

calculate them from first-principle equations. Until relatively recently this would have

been an extremely difficult task. However, in recent years two tools have become

available to achieve both objectives: Laser-Doppler Velocimetry (LDV) and

Computational Fluid Dynamics (CFD). In this work both tools have been applied to

study the most important fluid dynamic characteristics of mixing and flocculation vessels.



CHAPTER 4

EXPERIMENTAL APPARATUS AND METHOD

The experimental system comprised a mixing vessel, an agitator assembly, an LDV

system, and a data acquisition system. A schematic diagram of the experimental

apparatus is shown in Figure 4-1.

4.1 Mixing and Flocculation Systems

Four mixing and flocculation systems (System A, System B and System Cl and C2,

shown in Fig. 4-2, Fig. 4-3 and Fig. 4-4, respectively) were studied. The study of

System A was a cooperative project between the Department of Chemical Engineering,

Chemistry, and Environmental Science, New Jersey Institute of Technology, Newark,

NJ, USA and the Czech Technical University, Prague, Czech Republic, while the

investigation of System B was a collaborative research project between HSMRC at New

Jersey Institute of Technology, Newark, NJ, USA and Questor Centre at Queen's

University, Belfast, Northern Ireland, U.K.

The agitated vessel in System A was an unbaffled, cylindrical, flat-bottomed,

Plexiglas vessel with a diameter of 0.293 m, provided with a flat lid cover, and

completely filled with water as the process fluid (vessel height = liquid height = 0.293

m). This arrangement suppressed the formation of the central free vortex that can be

typically observed in unbafiled stirred vessels. The vessel was placed in a square

Plexiglas tank filled with water in order to minimize refractive effects at the curved

surface of the mixing vessel. The agitation system consisted of a downward-pumping,

six-blade, 45 ° pitched-blade turbine (Fig. 4-5a) with a diameter of 0.098 m (i.e., equal

22
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to one-third of the vessel diameter), and a projected vertical blade width of 0.013 m

(corresponding to an actual blade width of 0.019 m). The impeller was mounted 0.073

m off the tank bottom, as measured from the bottom of the impeller. An electric motor

connected to an external controller was used to rotate the impeller at a constant agitation

speed of either 7.5 rotations/s (450 rpm) or 11.67 rotations/s (700 rpm), corresponding

to impeller Reynolds Numbers of 7.1 x10 4 and 11.1 x104 , respectively.

The agitated vessel in System B (presented in Figure 4-3) was a rectangular

mixing tank with the identical configurations to an existing flocculation pilot plant run at

the Questor Centre at Queen's University, Belfast, Northern Ireland, U.K. The flat-

bottomed tank with a square base of 300 mm length and a height of 480 mm was filled

with water to a height of 450 mm. Four baffles with width of 10 mm were placed in the

center of each face of the tank and covered the whole length of the tank. The agitation

system consisted of a radial-pumping, two-blade, paddle type impeller (Fig. 4-5b) with a

diameter of 66 mm and a height of 35 mm. The impeller was mounted 130 mm off the

tank bottom, as measured from the bottom of the impeller. The impeller rotational speed

of 350 rpm (the same rotational speed used in the pilot plant at Queen's University,

corresponding to impeller Reynolds Numbers of 2.5 x104 ) was studied.

System Cl and C2 (shown in Figure 4-4) had the same configuration of System

A except that the vessel had four baffles and did not have a top flat lid cover. The baffle

thickness was 6.25 mm, and the baffle width-to-tank diameter ratio was 0.1. The four

baffles were equally placed along the inner cylindrical surface (i.e. the angle between any

two adjacent baffles was 90 degree) and extended from the top to the bottom of the
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vessel. Because of the existence of baffles no top flat lid cover is necessary to prevent

vortex normally occurred in unbaffled mixing vessels. The vessel was filled with water

up to a height of 0.293 m and was placed in a square tank, also filled with water, to

minimize the effect of diffraction on LDV measurements. The agitation system consisted

of one downward-pumping, six-blade, 45° pitched-blade turbines mounted on a centrally

located shaft (12.5 mm OD). Two different impeller size were used. One impeller

(System CI) has a diameter 101.6 mm and a vertically projected blade width of 13.7 mm.

Another impeller (System C2) has a diameter 76.2 mm and a vertically projected blade

width of 10.2 mm. The impeller was mounted 0.073 m from the tank bottom for both

System Cl and C2, so that the ratio of the off-bottom clearance of the impeller to the

liquid height was equal to 0.25. The impeller was rotated by the same motor applied in

System B at a speed of 159 rpm and 256 rpm, respectively, corresponding to impeller

Reynolds Numbers of 2.7x10 4 and 2.4x104 for System Cl and C2, respectively. The

three-directional traversing apparatus applied in System B was also used here.

4.2 LDV Systems

The LDV apparatus shown in Figure 4-1 was used to experimentally obtain the velocity

and turbulence intensity profiles inside the vessel. Two similar LDV systems have been

used. One is a 1.5-watt laser (Coherent, Inc.), which has been used for the experimental

measurements in System A by our co-investigators at Czech Technical University,

Prague, Czech Republic. Another one is a 2-watt laser (Lexel, Inc.), which has been

used for the experimental measurements in System B, Cl and C2. Figure 4-1 shows the
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general diagram for both LDV systems. The multicolor beam produced by the laser in

any of the above two LDV systems passed through the prisms, mirrors, polarization

rotator, and beam divider from which only two colored beam (green and blue) emerged.

Each of these two beams was split into two parallel beams. The resulting four beams

were focused by the beam expander and the final large transmitting lens on a single point

480 mm away from the final lens, i.e., at a distance equal to the focal distance of the final

transmitting lens. The focusing point where the beams converge was actually a small

control volume (84 pin in diameter) formed by the intersection of the four beams. This

point must lie in the fluid contained in the tank under exam to take a velocity

measurement.

The water in the mixing vessel was seeded with metal-coated plastic spheres

(product of TSI Inc.) capable of scattering light as they traveled through the control

volume. These particles, with a density of 1.02 g/cm 3 and mean diameter of 5 pm,

follow the trajectories of the fluid elements very closely. When a particle crossed the

control volume it scattered the light of the incoming beams. This scattered light

produced a light interference pattern that is proportional to the particle velocity. The

back-scattering receiving optics collected the scattered light, and the resulting signal was

sent to a data acquisition system capable of converting it to two values of the velocity

component in two perpendicular directions. The data acquisition system (TSI 1990 A

processor) connected to a computer produced on-line measurements of average and

fluctuating velocities.
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4.3 Experimental Determination of Velocity Distribution

The tridimensional average and fluctuating velocities in the mixing vessel were

experimentally obtained at 19 radial distances between the impeller shaft and the vessel

wall, and at five different axial levels (Z was equal to 0.053, 0.071, 0.088, 0.160, and

0.233 m, respectively for System A, System Cl; Z was equal to 0.080, 0.128, 0.167,

0.235 and 0.315 m, respectively for System B) using a x-y-z traversing apparatus. The

tridimensional average and fluctuating velocities at only 7 radial positions in the impeller

region at two axial levels (Z was equal to 0.071 and 0.088 m, below and above the

impeller, respectively) were experimentally measured for System C2. To obtain all three

velocity components, two separate measurements were taken for the same (r,Z) point:

one in which the laser axis was oriented perpendicularly to the radius along which the

measurement was made (yielding the radial and axial velocity components), and another

one in which it was parallel (yielding the tangential and axial velocity components),

illustrated by Figure 4-5 (Armenante et aL, 1994).

4.4 Power Number

The torque, 2-, in System A was experimentally measured with a turntable (Fort et al.,

1986), and was used to determine the total power dissipated by the impeller, P, and the

power number, NP, from the equation (Rutherford, 1996) :

27r N
N

P
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CHAPTER 5

NUMERICAL SIMULATION

A commercial CFD software package (FLUENT, Version 2.5 and 4.32; Creare.x, 1990)

was used to predict the velocity and turbulent kinetic energy profiles inside the vessels,

as well as power dissipation rate and particle trajectories under steady state conditions.

Three turbulent models (the k-s model, algebraic stress model (ASM) and Reynolds

stress model (RSM)) were used to account for turbulence effects. Simulations were

carried out for all three systems (System A with two agitation speeds 450 and 700 rpm

using k-s model and ASM model; System B with agitation speed of 350 rpm using RSM

model; System Cl and C2 with agitation speed of 159 rpm and 256 rpm, respectively,

using RSM model).

5.1 Computational Fluid Dynamic Models

CFD programs such as FLUENT numerically solve the general equations representing

the conservation of mass and momentum. In Cartesian coordinates and at steady state

continuity equation can be written as:

V • u = 0	 (5.1)

and the Momentum conservation equation :

V•(puu). p.V 2 u— V + p g	 (5.2)

In equation 5.2, the term on left hand side accounts for the convective momentum

transport, while the terms on the right hand side represent, respectively, viscous

transport, pressure forces, and body forces, such as gravity.

28
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In turbulent flow, the velocity at any point can be taken to be the sum of the

mean (time-average) and fluctuating components, i.e.:

u=u+u'	 (5.3)

Using this equation the continuity equation can be rewritten as:

V • IT = 0	 (5.4)

Substitution of equation 5.3 and 5.4 into equation 5.2 yields the ensemble-average

momentum equations, which can be used for the prediction of the velocities in turbulent

flow:

V • (p 	 = ,u V 2 — V p- + p g — V	 u' u')	 (5.5)

The last term in this equation represents the Reynolds stresses containing the product of

the fluctuating velocity components.

Since the Reynolds stresses can not be predicted from first principles they are

typically calculated by making some assumptions about their relationship with other

variables. A number of different of models are available for this purpose. Software

packages using some of these models are also available. One of the most widely used

software package is FLUENT. FLUENT includes three turbulence models which can be

used to account for turbulence effects in the simulation. These three models are the k-e

model, the algebraic stress model (ASM) and the Reynolds Stress Model (RSM).

5.1.1 k-eModel

The k- 6. turbulence model is an eddy-viscosity model in which the Reynolds stresses are

assumed to be proportional to the mean velocity gradients, with the constant of
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proportionality being the turbulent viscosity,	 . This assumption, known as the

Boussinesq hypothesis, provides the following expression for the Reynolds stresses

(Hine, 1975; Creare.x, Inc., 1991):

dui dui

ax; 	
\

= —2 5,.k + 
ax;

where cs., is the Kronecker delta and k is the turbulent kinetic energy defined as:

k = —1 (u' •u') (5.7)
, 2 	

u
, 2 	 , 2

= -
1
	u + 	 + u2-- 
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The values of the specific turbulence kinetic energy, k, and the turbulence energy

dissipation rate, e, were obtained from their balance equations:

u • Vk = V[( 11 '
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(5.8)

where Gk is the generation of k and is given by:

The effective or "turbulent" viscosity, 	 , is calculated at each point in the flow through

the equation (Rodi, 1984, Creare.x, Inc., 1991):

k 2
t = PCp -	 (5.11)

The values of the constants Ch C2, C, o andcre are taken to be equal to 1.44, 1.92,

0.09, 1.0, and 1.3, respectively (Rodi, 1984).
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5.1.2 Algebraic Stress Model (ASM)

In complex flows, pt may be strongly directional. When this is the case, the isotropic k-

e model may be inadequate. For such flows, we can use Algebraic Stress Model (ASM)

or Reynolds Stress Model (RSM). The ASM solves algebraic approximations of the

differential transport equations for the Reynolds stresses as (Rodi, 1984; Fluent. Inc.,

1995):

where (Creare.x, 1991; Launder and Spalding, 1972):

=

and

Qr 
	 Oui 	 du,= -u:u; 	  u;ti; 	

(5.13)

(5.14)

The values of the constants C3, CD are taken to be 0.55, 0.45 respectively (Rodi, 1984).

5.1.3 Reynolds Stress Model (RSM)

RSM involves solving the individual stresses ul ul in differential transport equations.

The following equations are used (Launder, et al., 1975; Launder, 1989; Fluent. Inc.,

1995):

au.u. 	 a v t au i uj
U k	 Pii + 	 - e + R

k 	 ax k 	axk
(5.15)
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where the term on the left hand side is the convective momentum transport. The first

term on the right hand side is the diffusive transport, is the stress production rate, (Dii

correlates the pressure/strain, eij is the viscous dissipation and Ri; is the rotational term,

v t is the turbulent kinematic viscosity.

5.2 Boundary Conditions

The boundary conditions imposed on the systems are as follows. The boundary

conditions at the horizontal top for System A and the vessel wall, baffles, horizontal

bottom for all systems were those derived assuming no-slip condition. This implied that

the shear stress near the solid surfaces is specified using wall functions and that

equilibrium between the generation and dissipation of turbulence energy is assumed

(Launder and Spalding, 1974; Ranade et al., 1989). The boundary conditions at the top

(free surface) for System B, Cl and C2 are of the zero-gradient, zero-flux type, which is

equivalent to a frictionless impenetrable wall. The common symmetry boundary

conditions are assumed at the symmetry axis for all systems (Ranade et al., 1989).

The boundary conditions in the impeller region are imposed at two surfaces of the

cylinder having the same size of the volume swept by the impeller. The boundary time-

averaged velocities in all three directions are directly obtained from LDV data. The

turbulent kinetic energies at the same locations are determined from the experimental

fluctuating velocities using equation 5.7, whereas e is calculated from:

k 1.5
6 = a  	 (5.16)
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where w is the projected blade width (along the vertical axis), and a was taken to be

equal to 1.4 (Wu and Patterson, 1989; Armenante et al., 1994). The values of the

average velocities, k and e so obtained were directly used in the simulations as impeller

boundary conditions.

For the System A, the average and fluctuating velocities were experimentally

determined via LDV at 9 radial locations 2 mm below and 2 mm above the impeller

surface (corresponding to Z values equal to 0.071 and 0.088 In, respectively) by our co-

investigators Ivan Fort (Faculty of Mechanical Engineering, Czech Technical University,

Prague, Czech Republic) and Jaroslav Medek (Faculty of Mechanical Engineering,

Technical University, Brno, Czech Republic). For System B, the average and

fluctuating velocities were experimentally determined via LDV at 7 radial locations 2

mm below and 2 mm above the impeller surface (corresponding to Z values equal to

0.128 and 0.167 m, respectively) in the Mixing Lab at New jersey Institute of

Technology. For System Cl and C2, 9 points and 7 points, respectively, were

experimentally measured at the same two levels as in System A.

5.3 Grid Generation

FLUENT provides a x-window interface for grid generation. According to the research

purpose and results requirements, different grid and domain for certain type of mixing

systems could be used. For the System A, a repeating 60 ° domain was selected, and a

non-uniform grid composed of 30 radial nodes, 40 axial nodes, and 17 tangential nodes

was imposed on this domain. The grid was chosen to be finer (smaller volume of
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computational cell) in the region near the impeller. For System B, the entire mixing

vessel (360° domain) was chosen, because of the asymmetry characteristic of the flow in

the vessel. Cartesian coordinates were used for System B. A non-uniform grid with

about 49,000 computational cells was generated for the simulation. For System Cl and

C2, a repeating 90° domain was selected because of the cyclic characteristic of flow in

the vessel and the presence of four baffles. A non-uniform grid with finer grid (smaller

volume of computational cell) near the impeller region was generated. About 40,000

computational cells were applied for this domain during the CFD simulation.

5.4 Power Consumption and Pumping Capacity

The overall power consumption (P) was calculated for System A by numerically

integrating the local power consumption (obtained as the product of the numerically

determined local e value and the fluid mass of each cell) over the entire vessel, as:

P = e dm 	 ecell mcen 	(5.17)
m	 cell i

The pumping capacity, Q c, was obtained by numerical integration of the numerically

obtained velocities in the impeller region (Armenante and Chou, 1996), as follows:

The dimensionless flow number, Fl, is defined as the pumping capacity through the

impeller zone, Qc, normalized by ND3 and then be calculated from:

Fl 	 Qc

ND 3
(5.19)
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5.5 Local G Value Calculation

After the CFD simulation is complete, FLUENT can produce the mean velocity

components at all three directions, the effective viscosity and the energy dissipation rate

in any location throughout the agitated vessel. Using these data we were able to

calculate the local G value distribution within the vessel with the rigorous methods

described in chapter 3 (the complete definition of local velocity gradient method and the

local energy dissipation rate method).

The general procedure to calculate the local G value is as follows. For the

complete definition of local velocity gradient method, we downloaded the data output

file from FLUENT containing the local mean velocity components in all three directions,

i.e. the ur (tangential), ur (radial) and ua (axial) velocities for cylindrical coordinates or

the ux ,uy, u, velocities for cartesian coordinates, as well as the effective viscosity at any

position within the vessel. The above data were imported into MS Excel spreadsheets.

A macro program (Appendix B) was written using Visual Basic language in order to

compute all the differential terms in Eq. 3.21 (for cartesian coordinates) or Eq. 3.22 (for

cylindrical coordinates). The derivatives were calculated as the ratios of the differences

of the velocities between two adjacent cells to the distances between the same cells. By

summing the squared derivative terms according to Eq. 3.21 or Eq. 3.22, and

multiplying by the coefficient in these equations (the ratio of effective viscosity to the

dynamic viscosity), the local G value at any position was numerically obtained.

For the calculation of the local energy dissipation rate method, we downloaded

the data output file from FLUENT with the information of local energy dissipation rate
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at any position within the vessel. Then the above data file was imported into MS Excel

spreadsheets, where the local G value at any position within the vessel was calculated by

a macro program (Appendix C) based on the Eq. 3.24. Therefore the local G value

distribution was numerically determined.

5.6 Particle Trajectory

FLUENT can determine the trajectory of a dispersed phase particle by integrating the

force balance on the particle in a Lagrangian reference frame. This force balance

equates the particle inertia with the forces acting on the particle, and can be written (for

the x-direction in Cartesian coordinates) as:

du p FD gx(p p p)/ p
dt

(5.20)

where gr(A, p)/p is the body force; FD is the drag force per unit particle mass and:

Here, u is the fluid phase velocity, up is the particle velocity, p is the molecular viscosity

of the fluid, p is the fluid density, pp is the density of the particle, and Dp is the particle

diameter. Re stands for the relative Reynolds number, which is defined as:

Re = PD P 141 	(5.22)

The drag coefficient, CD , is a function of the relative Reynolds number of the following

general form:

CD = a1 + a2/ Re + a3 / Re2 	(5.23)
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where the a's are constants that apply over several ranges of Re given by Morsi and

Alexander (1972).

In equation 5.20, the term Fx represents some additional forces that can be

important under special circumstance. The first of these is the "virtual mass" force, the

force required to accelerate the fluid surrounding the particle. This force can be written

as:

F _ _lp d(u __\
— 2 p p dt 	 " )

and is important when p > p p .

(5.24)

Another additional force may arise due to the pressure gradient in the fluid:

These forces are optional when using FLUENT.

The trajectory equation can be numerically integrated by FLUENT to produce

the velocity of the particle at each point along the trajectory, where the trajectory itself

is obtained through the following equation:

d x
u 	 = 	 (5.26)Pi 	d t

i.e.

x =j. u Pi d t 	 (5.27)
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Therefore, the position of a moving particle at any time can be tracked by

simulation method. During the simulation, the density and diameter of the moving

particle were chosen to be 1.0 g/cm3 and 100 pm, repectively.

5.7 Local G Value Distribution Along a Particle Trajectory

After certain number of iterations (depending on the total number of computational cells

and boundary conditions), FLUENT output the converged results including the local

mean velocities in three directional components, turbulent kinetic energy, turbulent

viscosity and energy dissipation rate at each cell within the entire vessel. By

downloading the output file composed of mean velocities of three components and local

turbulent dissipation rate from FLUENT, importing it into Excel spreadsheet and using

Eq. 3.16 or 3.17 for the complete definition of local velocity gradient method (by

computing the derivative between two adjacent positions for each term on the right hand

side of above equation) or Eq. 3.20 for local energy dissipation rate method, the

distribution of local velocity gradient (G value) was obtained throughout the entire

vessel. Two macro programs, listed in Appendix B and C, were developed to calculate

the local velocity gradient through both methods. These macros were written by using

Visual Basic language in Microsoft Excel 5.0. When particle trajectory simulation was

complete, FLUENT produced the trajectory of a dispersed particle with the output of its

location (its corresponding x, y, z or radial, tangential, axial values, in cartesian or

cylindrical coordinates, respectively), its velocity components in three directions at that

position and its corresponding time. The output file from FLUENT was downloaded and
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then imported into Excel spreadsheet together with the above obtained local G value

distribution data. The macro program (attached in Appendix C) can also calculate the

corresponding G value at different times (corresponding to different particle positions).

Thus the G value distribution along the particle trajectory could be obtained.

5.8 Velocity Gradient-Time Integral

Knowing the particle trajectory, the velocity of particle at each point and the G value

distribution along the particle trajectory, it was then possible to calculate the new

parameter - the velocity gradient-time integral along the particle trajectory - from the

following equation:

(5.28)

where the variable s is the linear coordinate along the trajectory and up(s) is the particle

velocity along the trajectory. A macro program was written to calculate the time

interval the moving particle spent at different G value zone and the value for the new

parameter velocity gradient-time integral (Appendix C).



CHAPTER 6

RESULTS AND DISCUSSION

6.1 System A

For the unbaffled cylindrical mixing system with both agitation speeds of 450 rpm and

700 rpm, LDV was used to measure both the average and fluctuating velocities in all

three directions at 5 different axial levels by our co-investigators at the Czech Technical

University, Prague, Czech Republic. Then these experimentally obtained data (via LDV)

near the impeller region were used as the boundary conditions when the CFD program

FLUENT was used to numerically simulate the flow pattern in this mixing vessel. Two

turbulence models (k-e and ASM) were used in the simulation to account for the

turbulence effect. The results of both LDV measurements and CFD predictions are

presented in the following sections.

6.1.1 LDV Measurements in the Impeller Region

It has been a common procedure to present the standardized local values of mean and

fluctuating velocities by relating their original values to the impeller tip speed (7cD.N).

The velocities in these figures, as well as in all other velocities profiles in this work, are

presented in a dimensionless form by dividing the actual value by the impeller tip

velocity. The turbulent kinetic energy is also presented in a dimensionless form by

dividing the actual value by the square of impeller tip velocity.

Figures 6-la and 6-lb show the velocities in the impeller region obtained via

LDV. The tangential velocity profiles show a maximum near the tip of the impeller.

This pattern is consistent with that reported for a system similar to that under study

40
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(Armenante et al., 1994) as well as for an unbaffled tank without a lid using a flat-blade

paddle (Nagata, 1975), or an eight-blade, flat-blade turbine (Doug et al., 1994a and

1994b). The axial velocities above and below the impeller are all negative, as one would

expect for a downward pumping impeller. However, the velocities above the impeller

are quite low and uniform, whereas those below the impeller show a strong downward

pumping action near the outer edge of the impeller. The radial velocities point slightly

inward above the impeller but strongly outward on the lower side of the impeller.

The turbulent kinetic energy profiles for the impeller region are given in Figure 6-

1c. k is greatest on the lower side of the impeller near the tip, where the radial velocity is

also the greatest. An overall lower distribution of k can be observed on the upper side of

the impeller where the average velocities are more uniform.

The values for the velocity components (radial, tangential and axial) and for k

shown in the above figures were used as boundary conditions for the numerical

simulation resulting in the velocity profiles inside the vessel.

A repeating 60° domain was selected for the CFD simulation, and a non-uniform

grid composed of 30 radial nodes, 40 axial nodes, and 17 tangential nodes was imposed

on this domain. The grid was chosen to be finer in the region near the impeller to obtain

better simulation results. Figure 6-2 and 6-3 show the grid in 2D and 3D view,

respectively.
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6.1.2 Comparison between LDV Measurements and CFD Predictions

A comparison between the experimental tangential velocities and the results of the CFD

simulations is given in Figure 6-4. The results of the simulation based on the ASM

model were, in general, superior to those based on the k-c model. The agreement

between the experimental data and the ASM simulation velocities was very good in the

planes next to, or lower than, the impeller. Good agreement can be observed also for the

velocities on the other two planes above the impeller, but only for radial distances

greater than the impeller radius. For r < D/2 the agreement in these regions was

qualitatively but not quantitatively acceptable.

Figure 6-5 shows that a very good agreement between the numerical and

experimental results was also obtained for the axial velocity. Near the vessel bottom the

simulation typically overpredicted the experimentally determined velocities. However, it

should be remarked that the reproducibility of the LDV velocity results in the region

below the impeller was not as good as in the rest of the vessel, most likely because of the

lower values of the velocities and the instabilities of the secondary flow pattern (radially

inward and axially upward) typically observed just below pitched blade turbines.

The corresponding velocity data in the radial direction are given in Figure 6-6.

While the experimental velocities above the impeller are predicted satisfactorily those

below the impeller are only qualitatively described by the results of the simulations.

Discrepancies exist especially near the center of the vessel, although the curves produced

by the simulations show a trend similar to that of the experimental data.
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The ultimate test of the appropriateness of the turbulence models used in the

simulation is in the agreement between the experimental and predicted turbulent kinetic

energy data. This comparison, shown in Figure 6-7, indicates that ASM is clearly

superior to the k-e model. The experimental k values above the impeller are closely

matched by the results of the ASM simulation, whereas those based on the k-e model are

significantly off the mark. Significant qualitative agreement exists also for the results

below the impeller, but only when the results of the ASM simulation are compared to the

experimental data. The inability of results from the simulation with the k-4 model to

match the experimental data can be attributed to the local isotropic assumption made in

the derivation of this model.

The overall circulation pattern generated by the simulation is captured in Figures

6-8a (in three dimensions) and 6-8b (in a two-dimensional plane through the shaft). The

flow pattern in the r-Z plane is dominated by the main flow generated by the impeller,

initially strongly directed outward in the radial direction, and to a lesser extent,

downward. This flow rapidly becomes horizontal (for r > T/4) although the impeller

used here is not of the radial type.

Two main recirculation flows, one above and the other below the impeller, can be

clearly identified in Figure 6-8b. In general, the magnitudes of the velocity vectors in the

r-Z plane outside the impeller stream are small in comparison to those outside this zone,

generating large regions in which axial and radial recirculation is limited (such as the

upper region for r > T/4). In the region just above the impeller the flow in the r-Z plane

is mainly directed straight downward, feeding the impeller. In the cylindrical region
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immediately adjacent to the shaft the numerically predicted velocity vectors are very

small. This is likely to be an artifact of the computer simulation produced by the absence

of boundary condition data in the impeller region for r < 0.075•T. The region just below

the impeller is nearly completely cut off from the main lower circulation flow. Figure 6-

8b shows that the velocity vectors are quite small in both the radial and axial directions.

It is interesting to compare the flow simulation produced here with that reported

for the same type of turbine in a baffled system (Armenante and Chou, 1996, their Figure

8). In the baffled system the main flow generated by the impeller had a very strong

downward component, resulting in this flow impinging on the bottom of the vessel and

then moving upward near the tank wall. In that system the pitched-blade turbine

performed as an effective axial impeller (except for the region just below the impeller in

which flow reversal can be noticed). A single large recirculation flow in the axial

direction was present, which can be expected to provide good top-to-bottom mixing. By

contrast in the unbaffled system examined here top-to-bottom recirculation appears to be

modest, and the pitched-blade impeller loses most of the axial impeller characteristics

that it typically exhibits in baffled systems.

A comparison among Figures 6-4, 6-5, and 6-6 reveals that the tangential

velocities in the unbaffled tank are several times greater in magnitude than the

corresponding axial and radial velocities. This is not the case for the baffled case for

which the velocity vectors have comparable magnitude independently of the direction

(Armenante and Chou, 1996). Figure 6-4 also shows that the magnitude of the
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tangential velocities is nearly independent of the axial position, indicating the presence of

a very strong swirling flow not observed in the baffled system.

In Table 6-1 the power numbers and the flow number for the system are

reported. For the 450 rpm case, the power number prediction based on ASM (0.304)

could only account for 65.7% of the experimentally obtained power number, whereas

that based on the k-s model (0.482) was very close to the experimental value. The flow

number could only be obtained numerically since the velocities at the vertical side of the

volume swept by the impeller were not measured. The value so obtained (0.391)

compares favorably with the value (0.31) experimentally obtained by Nagata and

coworkers (as reported by Gray, 1966) for the case of an 8-blade flat-blade turbine

having the same blade-to-diameter ratio as that of the impeller used in this work.

6.1.3 Comparison between Different Agitation Speeds

Experimental results and simulations for the velocity distributions were obtained for the

case in which the agitation speed was increased to 700 rpm. The results are reported in

Figures 6-9 (boundary conditions in the impeller region), 6-10, 6-11, 6-12 (dimensionless

velocity components in three directions), and 6-13 (dimensionless turbulent kinetic

energy). The striking feature of all these figures is that they are all nearly

superimposable to the corresponding figures obtained at 450 rpm, indicating that the

impeller speed plays a minor role in the direction and magnitude of the dimensionless

velocities and turbulent kinetic energies at any point (including the region near the

impeller). Similar conclusions were reached by Dong et al. (1994a) for an



Table 6-1. Power numbers and flow numbers for System A

Agitation
Speed
(rpm)

Experimentally
Determined Power

Number

Numerically Determined
Power Number

(Turbulence Model: ASM)

Numerically Determined
Power Number

(Turbulence Model: k-e)

Numerically Determined
Flow Number (Turbulence

Model: ASM)

450 0.463 0.304 0.482 0.386

700 0.463 0.321 0.447 0.391
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open unbaffled system provided with a flat-blade impeller. These results indicate that the

potential exists for simple scale-up rules for the velocity distribution and the turbulence

intensity in unbaified tanks. As for the power number and the flow number Table 6-1

shows that both non-dimensional numbers had values very similar to those obtained at

450 rpm.

Although no experiments were conducted here at different scales it is conceivable

that non-dimensional velocity and k value profiles nearly identical to those found here

would be obtained in a geometrically similar system of a different scale (since the

presence of a lid would eliminate any vortex and the scale up problems associated with

it). Identical dimensionless conditions in the impeller region are equivalent to identical

boundary conditions, and hence identical simulation results. Given the good agreement

between the experimental data and the simulation results obtained here with ASM it

follows that the flow in the full-scale vessel is likely to be correctly simulated by the

figures reported in this work.

6.2 System B

For the baffled rectangular mixing/flocculation system with agitation speed of 350 rpm,

tridimensional average and fluctuating velocities at 5 different axial levels were

experimentally measured via LDV in the Mixing Laboratory at the Department of

Chemical Engineering, Chemistry, and Environmental Science, New Jersey Institute of

Technology. Then these experimentally obtained data near the impeller region were used

as the boundary conditions when the CFD program FLUENT was used to produce a
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numerical estimate of the velocity distribution, turbulence kinetic energy, the energy

dissipation rate, local velocity gradient distribution and particle trajectory in this

mixing/flocculation vessel. One turbulence models (RSM) was used in the simulation.

During the CFD simulation process, Cartesian coordinates were used, where the

velocities in the three directions were expressed as x, y, z direction velocities. In order

to give more intuitive expression of these data (relating them to the tip velocity of the

impeller) and make them consistent with the previous results for System A, these data (in

Cartesian coordinates) were then transformed into cylindrical coordinate data, where the

three directional velocities were expressed as axial, radial and tangential velocities

respectively, as shown in the following sections.

6.2.1 LDV Measurements in the Impeller Region

The velocities in the tangential, axial, and radial directions were experimentally

determined via LDV for the top and bottom layers (at the vertical plane along the shaft

center and the baffle) of the cylindrical region swept by the impeller. These

experimentally determined velocities are reported in Figures 6-14a and 6-14b. Each

point in these figures represents the average of three measurements. The results of these

figures indicate that the flow in the impeller region had a strong radial component across

the entire top and bottom surface of the impeller region, and that this velocity had a

numerical value approximately in the range 0.16-0.38 of the impeller tip speed ('rDN).

The radial velocity increased as the distance between the measuring point and the central

line of the shaft became larger, and reached its highest value of about 0.38 of the
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impeller tip speed at radial position of about (2 r/D) = 1.25 at both levels of above and

below the impeller.

The axial velocities above the impeller were all negative, indicating downward

moving flow near the center above the impeller. The axial velocities below the impeller

were all positive, indicating an upward moving flow near the center below the impeller.

The absolute value of axial velocity increased as the measuring point moved closer to the

centerline of the shaft. This is true for both axial levels above and below the impeller.

The tangential velocities just above the impeller were found to be very close to

those just below the impeller. The tangential velocities at both axial levels were positive

indicating a outward pumping of the fluid, as one could expected for a paddle type

impeller. The values of tangential velocities were very low near the centerline of the

shaft, but increased quickly as the measuring points approached the impeller tip.

The fluctuating velocities in all three directions were experimentally determined for

the same surfaces in the impeller region and were used to calculate the local turbulence

kinetic energy, k. The intensity of the turbulent kinetic energy in the same impeller

region is shown in Figure 6-14c. A peak of turbulent kinetic energy was found at about

(2 r/D) = 1.15 for both axial levels. A similar peak were found by other investigators

(Ranade and Joshi, 1989; Kresta and Wood, 1993) for other mixing systems. The value

of the turbulent kinetic energy at the axial level above the impeller was slightly higher

than that of its corresponding position at the axial level below the impeller.

The values for the velocity components (radial, tangential and axial) and for k

shown in the above figures were used as boundary conditions when FLUENT was used
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to predict the velocity and velocity gradient distribution as well as the trajectory of a

particle moving in this vessel.

When generating the grid, the entire mixing vessel (360° domain) was chosen,

because of the asymmetry characteristic of the flow in the vessel. A non-uniform grid

with 49,000 computational cells was generated for the simulation, shown in Figure 6-

15(2D view) and Figure 6-16 (3D view).

6.2.2 Comparison between LDV Measurements and CFD Predictions

The results of the numerical simulation, as well as the values of the three experimentally

determined velocity components in the bulk of the fluid obtained at five vertical levels

(at the vertical plane along the shaft and the baffle) are presented in Figures 6-17, 6-18,

and 6-19. Figure 6-17 shows a comparison between the experimental data for the

tangential velocities at different positions inside the vessel and the corresponding values

obtained from the numerical simulation by using FLUENT RSM model. One can see

that the agreement is quite good for all the cases examined here (i.e., all the different Z/H

values). A peak of the tangential velocity was found near the impeller tip for both axial

levels above and below impeller, with the value of 0.28 impeller tip velocity. The

tangential velocities were found to be higher near the impeller and its adjacent region

than the other regions within the vessel. The much lower values of the tangential

velocities at the bottom level (Z=80 mm) and top level (Z=315 mm) indicate that almost

no swirl flow exists at both the top and bottom of the vessel.
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A comparison between experimental and simulation results is also provided for

the axial velocity component for the same Z/H values (Figure 6-18). Significant

agreement was obtained for all levels. This figure shows that below the impeller near the

vessel wall, the axial velocity is directed downwards and near the vessel center, the axial

velocity is directed upwards, indicating a main recirculation exist below the impeller. It

also shows that above the impeller near the vessel wall, the axial velocity is directed

upwards and near the shaft center, the axial velocity is directed downwards, indicating

another main recirculation exist above the impeller.

A very good agreement between the experimentally determined radial velocities

and the values obtained through FLUENT simulation at the same 5 Z/H levels is shown

in Figure 6-19. Positive peak values were observed for the axial levels just above and

below the impeller. The highest radial velocity with the value of about 0.4 impeller tip

velocity was found at about (2 r/7) = 0.28 on both levels of above and below the

impeller. The negative values of radial velocity at the other three axial levels indicating

an inwards moving flow both near the bottom and top of the vessel.

Figure 6-20 presents a comparison between the experimental dimensionless

turbulent kinetic energies and the corresponding values produced using FLUENT. It is

seen that the predictions fit the experimental measurements quite well. The values of

turbulent kinetic energies near the impellers are much higher than those at the rest of the

vessel. A peak was found near the impeller tip.

Figure 6-21 shows a bidimensional cross-sectional view of the velocity profiles

on a plane passing through the impeller shaft obtained via simulation. A tridimensional
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view of the same velocities is also depicted in Figure 6-22. Two large recirculation

patterns both above and below the impeller were found. Fluid were first ejected by the

impeller and moved outward. Before they reached the wall, part of them changed their

direction to upward and moved up the vessel till certain height, then moved inward to

the center of the vessel and finally fell down to the impeller region and be ejected again

by the impeller for another cycle; part of the ejected fluid changed their direction to

downward and moved down near the wall, then moved inward to the center of the vessel

before hitting the bottom of the vessel and finally moved upward reaching the impeller

again and thus formed another recirculation flow below the impeller. A similar flow

pattern produced by a paddle type impeller was reported by Bertrand (1994).

Top views of the flow pattern in this system were captured in Figure 6-23, 6-24

and 6-25 for different axial levels of Z/H equal to 0.18, 0.37 and 0.70, respectively. At

Z/H equal to 0.18, a small swirling zone at the center of the vessel was observed with

fluid moving upward towards the impeller. The flow pattern at Z/H equal to 0.70 shows

a similar swirling zone at the center of the vessel, with the difference of downward

movement of the liquid. Figure 6-24 shows that fluids were almost uniformly ejected

outward by the impeller. A repeated flow pattern at each 90° domain of the vessel can

be easily seen.

6.2.3 Velocity Gradient Distribution

Figure 6-26 shows the velocity gradient distribution in the r-Z plane at the center of the

rectangular vessel. The values of the local velocity gradients shown in this figure were
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obtained through the method of complete definition of local velocity gradient. The labels

of the contour curves in this figure are the G values in the form of logioG. It is clear that

significant variations in the local velocity gradient exist in the vessel. The velocity

gradient values near the vessel wall were very low, only around 10 s-1 . They increase as

the interested position moves close to the impeller. The closer the position to the

impeller, the higher the G value. The highest values were found just near the impeller. It

is obvious that the velocity gradient distribution within a agitated vessel is far from

uniform.

Figure 6-27 maps the local velocity gradient distribution, obtained through the

local energy dissipation rate, in the r-Z plane at the center of the rectangular vessel in the

same agitated vessel as in Figure 6-26. Comparing Figure 6-26 and Figure 6-27, one

will find that the values obtained by these two different methods at corresponding

position within the vessel were of the same magnitude. The relatively small value

differences existed here were brought from the numerical calculation process, as one

could expect. In general, they provide the same information about the distribution of

local velocity gradient in the turbulent mixing/flocculation process. This convinced us of

the validity of the second method (by local energy dissipation rate), derived from a

modified Camp and Stein (1943) approach to G determination.

Similarly to what it was found in this work, Geisler and Forschner (1996) found

that "Maximum values of 8 are always in the discharge region of the impeller" when they

studied the local turbulent shear stress for different mixing tanks. Stanley and Smith

(1995) also found that "the local dissipation rate in the impeller zone is 4-6 times higher
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than the vessel average dissipation rate" when the turbulent flow was studied in a

standard jar test. All these information convinced us that using the average G value,

obtained by the conventional method throughout the entire vessel, as a key parameter for

flocculation process modeling is inadequate.

6.2.4 Particle Trajectory

The trajectory of a virtual particle with physical properties similar to that of a floc

particle moving in a typical flocculation process was numerical predicted by using

FLUENT This particle was assumed to be initially put in a position 75 mm away from

the shaft center along the diagonal line on the top surface of the rectangular tank, where

the coagulant is usually added to the solution being treated in flocculation process.

Figure 6-28 and 6-29 show the particle trajectory at time equal to 2000 and 10000

seconds, respectively. The particle tended to visit some zones of the vessel more often

than other zones. It never visited certain kind of zone such as the upper corners of the

vessel. It is clear that the time intervals spent by the particle at different positions of the

flocculation vessel were quite different by looking at the particle trajectory intensities in

these figures. Such a non-uniform movement of the particle within the vessel was also

found by Bakker et al (1996) when the effects of flow pattern on the solids distribution

in a stirred tank was investigated.

In order to better understand and model the flocculation process, it would be

advantageous to find the time a moving particle spend in different zone of the vessel with

different intensity of velocity gradient. Therefore, we proposed a new parameter, the
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velocity gradient-time integral, which accounts for both the local velocity gradient

distribution and the time a particle spend in each of those zones with certain G value.

6.2.5 Velocity Gradient-Time Integral along the Particle Trajectory

By knowing the local velocity gradient distribution within the entire mixing/flocculation

vessel and the trajectory of a particle moving in this vessel, we were able to calculate the

proposed new parameter, the velocity gradient-time integral along the particle trajectory.

Using the macro program attached in appendix C, the local G value at each point

the particle went through during the flocculation process was obtained. The result is

shown in Figure 6-30, where the x coordinate represents the time a moving particle spent

in the vessel and the y coordinate represents the local G value the moving particle

experienced. It is clear that the G value experienced by the particle as it moves through

the vessel is extremely non-uniform. Very high peaks were calculated (when the particle

moved through the impeller region), followed by long periods during which the G values

were extremely low. The dotted line shown in Figure 6-30 is the average G value

obtained through the conventional method for the entire flocculation vessel. Obviously,

the use of average G value throughout the entire vessel by the conventional method is a

very crude estimation of the actual flocculation characteristics.

Besides the distribution of the local velocity gradient in flocculation vessel it is of

great interest to pay attention to the maximum values of the local velocity gradient the

particle experienced. In this flocculation system the maximum value of the local velocity

gradient the particle experienced is about 920 s' 1 , as shown in Figure 6-30. If the
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maximum value of the local velocity gradient that the particle experienced is higher than

the value at which a floc breakup occurs, then certain adjustment need taken to reduce

this maximum local G value. Otherwise it will lead to the floc breakup and, as a

consequence, to a reduction of the process efficiency, although the time the particle

spent in these zones with maximum local G value is much less than the time the particle

spent in other zones. Stanley and Smith (1995) also pointed out that: "As the circulation

time in a small vessel, such as a jar test apparatus, is in the order of seconds and normal

flocculation time is in the order of 5-30 minutes, many of the floc characteristics

(especially floc size) are probably governed by hydrodynamic conditions found in the

impeller zone. With the circulation time being much smaller than the flocculation time,

the flocs will pass through the impeller zone numerous time during the time the

flocculation test is run. Because floc size is dependent on the forces applied to it, this

area of increased turbulence will tend to govern the equilibrium floc size."

In order to better characterize the local G value the moving particle experienced,

the G value distribution was analyzed. Using the macro program attached in appendix C,

the time the particle spent in those zones with the same local G value throughout the

entire vessel was obtained. Figure 6-31 shows the G value distribution curve along the

particle trajectory. The x coordinate represents the local G value and its corresponding y

coordinate value represents the time the moving particle spent in those cells with the

same local G value. A peak value of time equals to 320 seconds was found at G value

about 30 s-1 . This value dropped quickly after the peak value. The time the moving

particle spent in zones with G value larger than 200 s 4 is very small. The higher the G
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value, the shorter the time the moving particle spent in those zones. It is quite evident

that the local residence time or, vice versa, the residence probability of a particle is much

smaller in zones of high velocity gradient (near the impeller region) than in zones far

away from the impeller blades, because the local fluid velocities differ greatly between

the direct discharge area and zones far away from the impeller blades.

The cumulative G value distribution along the particle trajectory was also

obtained and is presented in Figure 6-32. At the beginning, the cumulative time spent by

the moving particle increase dramatically as G value increase. It slowed down when the

G value reached about 60 s4 and almost kept a stable value after G value is larger than

200 s-1 . This again indicates that the time the particle spent in those zones with high G

value was much less than the other zones with low G value.

Knowing the distribution of local G value the particle experienced along its

trajectory, the new parameter proposed in this work was calculated. Multiplying the

local G value by the time the moving particle spent in a cell and integrating this value as

a function of time produces the numerical value of this new parameter. Figure 6-33

shows the numerical integration of this new parameter vs. the time the particle spent in

the entire vessel. As the time added up, the value of this integration increased steeply at

the first 100 seconds and then slowly. The moving average of the G value along the

particle trajectory is presented in Figure 6-34 as a function of time. This average G

value was obtained by dividing the previously obtained velocity gradient-time integral by

the time spent by the particle up to that point. This average G value fluctuated at the

beginning of the process when the total time was less than 400 seconds and then reached
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an almost constant value of 29	 indicating the possibility that this new parameter could

give a stable representation of flocculation process after certain length of running time.

A comparison between the average and maximum G value calculated with the

conventional method and obtained with the rigorous method (complete definition of local

velocity gradient method) proposed in this work is presented in Table 6-2. The average

G value along the particle trajectory obtained through this work was found to be much

lower than the one obtained by conventional method for the entire vessel.

6.3 System Cl

For the baffled cylindrical mixing/flocculation System Cl, tridimensional average and

fluctuating velocities at 5 different axial levels were experimentally measured via LDV in

the Mixing Laboratory at the Department of Chemical Engineering, Chemistry, and

Environmental Science, New Jersey Institute of Technology. A 101.6 mm pitched-blade

turbine rotating at 159 rpm was studied. The experimentally obtained data near the

impeller region were used as the boundary conditions when the CFD program FLUENT

was launched to produce numerical estimates of the velocity distribution, turbulence

kinetic energy, energy dissipation rate, local velocity gradient distribution and particle

trajectory in this mixing/flocculation vessel. One turbulence model (RSM) was used in

the simulation. The results of both LDV measurements and CFD predictions are

presented below.



Table 6-2. Comparison of G average value between two methods for different systems

Mixing / Flocculation
System

Average G Value
For the entire tank

(Conventional
Method)

Average G Value
Along the particle

trajectory
(This Work)

Maximum G Value
experienced by a
moving particle
(This Work)

System B 131.1 29.5 920

System Cl 131.1 24.9 640

System C2 131.1 43.8 1390

* G values were expressed in 5-1
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During the CFD simulation process, cylindrical coordinates were used, and the

velocities in the three directions (r, 0, z) were expressed as radial, tangential and axial

velocities.

6.3.1 LDV Measurements in the Impeller Region

LDV was used to experimentally measure the velocity components in all three directions

(i.e., tangential, axial, and radial velocities) for the top and bottom layers of the

cylindrical region swept by the impeller. These experimentally determined velocities are

reported in Figures 6-35a and 6-35b. Each point in these figures represents the average

of three measurements. As usual, these figures are presented in dimensionless form.

The tangential velocity profiles show a maximum near the tip of the impeller.

This pattern is consistent with that reported in System A of this work.

The axial velocities, with negative values for both axial levels 2 mm above and

below impeller surfaces (indicating downward flow) were found to be much higher than

the velocities in the other two components as one could expect for a downward pumping

impeller.

The radial velocities were low at the axial level above the impeller, but at the

axial level below the impeller they had almost the same magnitude to that of the

corresponding tangential velocities.

The turbulent kinetic energy profiles for the impeller region are presented in

Figure 6-35c. The turbulent kinetic energy was found to be high near the impeller tip

both above and below the impeller, with the highest value on, the lower level of the
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impeller near the tip where the radial velocity was also the greatest. These profiles are

different from those observed in the unbaffled system (System A).

The values for the velocity components (radial, tangential and axial) and for k

shown in the above figures were used as boundary conditions for the numerical

simulation using FLUENT.

A repeating 90° domain was selected for the CFD simulation, and a non-uniform

grid composed of 30 radial nodes, 48 axial nodes, and 26 tangential nodes was imposed

on this domain. The grid was chosen to be finer in the region near the impeller to obtain

better simulation results. Figure 6-36 and 6-37 show the grid in 2D and 3D view,

respectively.

6.3.2 Comparison between LDV Measurements and CFD Predictions

Figures 6-38, 6-39, and 6-40 show the results of the numerical simulation, as well as the

values of the three experimentally determined velocity components in the bulk of the

fluid at five axial levels.

Figure 6-38 presents a comparison between the experimental data for the

tangential velocities at different positions inside the vessel and the corresponding values

obtained from the numerical simulation by using FLUENT RSM model. Excellent

agreement between the LDV data and the CFD predictions was obtained. A peak for the

tangential velocity u t/u t4, = 0.29 was found below the impeller near the impeller tip (at 2

r/T = 0.32). A similar pattern was found for System A in the results presented by

Ranade and Joshi (1989). A peak for the tangential velocity u/utp = 0.23 was found



62

above the impeller between the shaft and the impeller tip (at 2 r/T = 0.25). The velocity

peak at axial level Z = 53 mm was shifted to the right of the impeller tip (at 2 r/T =

0.3 8), where the tangential velocity value was equal to 0.18 of the impeller tip velocity.

The tangential velocities in the top region of the vessel were found to be much lower,

indicating much less movement of the fluid in that region.

Figure 6-39 shows a comparison between the LDV axial velocity measurements

and the CFD predictions. Good agreement was observed. A very strong downward

movement at the center of the vessel and a small upward movement near the vessel wall

were observed. The maximum axial velocity was found in the impeller discharge stream,

giving a value equal to about 0.46 utip at (2 r/T) = 0.34. This maximum value and the

profiles in the discharge stream are in good agreement with the results reported by Fort

(1986), and by Ranade and Joshi (1989). The maximum value of axial velocity in the

upward stream near the vessel wall was found to be 0.18 utip. Very low values were

found at the top level (Z = 233 mm), indicating very little movement of the fluid in this

region.

Figure 6-40 compares the radial velocities at 5 different axial levels obtained

through the LDV measurements and the CFD predictions. Again, very good agreement

could be observed. An intensive radial circulation was observed only in the discharge

stream (Z = 71 mm) and at level Z = 53 mm. The maximum value of the radial velocity

was found to be 0.24 Iltip at 2 r/T = 0.34 and Z = 71 mm. The negative radial velocities

at Z = 160 mm indicate inward flow at that axial level. Almost zero velocities were

found at the top axial level (Z = 233 mm).
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Figure 6-41 shows a comparison between the experimentally obtained turbulent

kinetic energies at 5 different axial levels and their corresponding values predicted by

simulation. Significant agreement was obtained. The turbulent kinetic energies at the

impeller discharge area were found to be much higher than those at the rest of the vessel.

This is consistent with the results observed in System A in this work. The maximum

value was found to be about 0.15 u2 ,4, below the impeller at 2 r/T = 0.34. A peak for k

was also found at axial levels equal to Z =53 mm and Z =88 mm.

The general flow pattern in this agitated vessel, as obtained by simulation is

depicted in Figure 6-42 and Figure 6-43 in 2D and 3D view, respectively. It is clear that

the main flow generated by the impeller had a very strong downward component,

resulting in this flow impinging on the bottom of the vessel and then moving upward near

the tank wall. This illustrates that the pitched-blade turbine effectively functions as an

axial impeller. A single large recirculation flow in the axial direction was observed,

which can be expected to provide good top-to-bottom mixing. This is consistent with the

previous results obtained by this researching group (Armenante and Chou, 1996).

Below the impeller hub, a reversal flow with low intensity, expanding conically towards

the vessel bottom was observed. This reserval flow was also reported by Fort (1986).

6.3.3 Velocity Gradient Distribution

The velocity gradient distribution in the r-Z plane at the center of the rectangular vessel

is shown in Figure 6-44. This contour plot was drawn by using Standford Graphics

version 3.0b. The values of local velocity gradients shown in this figure were obtained
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through the method of complete definition of local velocity gradient (by using the macro

program attached in appendix B). The reason we only chose one rigorous method here

to calculate the local velocity gradient is that both rigorous methods, i.e. the complete

definition of local velocity gradient method and the local energy dissipation rate method,

have been tested and found to be valid for turbulent flocculation process and could

provide similar information about the local G value distribution, a result for System B.

The labels of the contour curves in this figure are the G values in the form of logioG.

The local velocity gradient varies from position to position within the vessel, as found in

System B. The values of the local velocity gradients near the impeller region were found

to be much higher than those in the area near the vessel wall.

6.3.4 Particle Trajectory

The trajectory of a virtual floc particle moving within the agitated vessel was tracked

through FLUENT. The results are depicted in Figure 6-45 and Figure 6-46 at time equal

to 2,000 seconds and 10,000 seconds, respectively. It can be clearly observed that the

floc particle tended to move only in the conical area, from the position at 9/10 of the

vessel height and near the shaft surface as the cone pinnacle to the vessel bottom as the

cone base. It never reached the places beyond this conical area, similar to the case found

in System B. However, the ratio of the volume the floc particle never reached to the

entire vessel volume is even larger than that in System B.
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6.3.5 Velocity Gradient-Time Integral along the Particle Trajectory

Using the same macro program attached in appendix C, the local G value at each point

the floc particle experienced along its movement trajectory during the flocculation

process was numerically obtained. The results are shown in Figure 6-47, where the x

coordinate represents the time a moving particle spent in the vessel and the y coordinate

represents the local G value the moving particle experienced. As in System B it was

found that the local G value experienced by the particle as it moved through the vessel is

extremely non-uniform. Very high peaks were observed (when the particle moved

through the impeller region), followed by long periods during which the G values were

very low. The dotted line shown in the above figure is the average G value obtained

with the conventional method for the entire flocculation vessel. Clearly this average G

value throughout the entire vessel by the conventional method can not characterize the

real effect of the local G value on the floc particle.

The maximum value of the local velocity gradient the particle experienced in this

system is about 640 s -1 as shown in Figure 6-47. This value is much lower than the one

experienced by the particle in System B, indicating that for certain flocculation process

with a maximum local G value of 640 s -1 , which will lead to floc breakup, the System B

is not suitable while the System Cl may be suitable to use.

The G value distribution along the particle trajectory was also analyzed. Using

the macro program attached in appendix C, the time the particle spent in those zones

with the same local G value throughout the entire vessel was obtained. The results were

presented in Figure 6-48. The x coordinate in this figure represents the local G value,
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and the y coordinate represents the time the moving particle spent in those cells having

the same local G value. A peak was found at G value about 20 s-1(tpd, 365 s). The time

the moving particle spent in those zones with G value larger than 200 s -1 was very small,

as also found in System B. The higher the G value, the less the time the moving particle

spent in those zones. One can clearly see that the local residence time or vice versa, the

residence probability of a particle is much smaller in zones of high velocity gradient (near

the impeller discharge region) than in zones far away from the impeller blades.

Figure 6-49 shows the cumulative G value distribution along the particle

trajectory.

With a knowledge of the local G value the particle experienced along its

trajectory and the time the particle spent in those zones within the vessel, the new

parameter, velocity gradient-time integral, proposed in this work was then numerically

obtained. Multiplying the local G value by the time the moving particle spent in a cell

and integrating this value as a function of time produces the numerical value of this new

parameter. Figure 6-50 presents the numerical integration of this new parameter vs. The

time the particle spent in the entire vessel. During the first 150 seconds, this new

parameter increased quickly and then it slowed down till reached the value of 20,000 at I

= 800 s.

Figure 6-51 shows the moving average of the G value along the particle

trajectory as a function of time. This average G value was obtained by dividing the

previously obtained velocity gradient-time integral by the time spent by the particle up to

this point. This average G value steeply increased from 10 s -1 at the beginning to 45 s-1
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at time 60 seconds. It then fluctuated for a while until it reached a peak value of about

50 s -1 at time 140 seconds, and then started to drop. For t > 300 seconds, this average G

value changed very slightly. A almost stable value of 25 s -1 was found when time went up

to 800 seconds.

A comparison between the average and maximum G values calculated with the

conventional method and that obtained with the rigorous method (complete definition of

local velocity gradient) proposed in this work is presented in Table 6-2. The average G

value along the particle trajectory obtained through this work was found to be much

lower than the one obtained by conventional method for the entire vessel, as found for

System B.

6.4 System C2

System C2 had a configuration identical to System Cl with the only exception of

different size of the same type of impeller (76.2 mm instead of 101.6 mm). Since very

significant agreement between the LDV measurements and CFD predictions for the

velocity components and the turbulent kinetic energy had been obtained in both System

B and System Cl, we felt quite confident about the predictions of the results obtained

with the CFD simulation. Therefore for System C2, only the tridimensional average and

fluctuating velocities in the impeller region were experimentally measured via LDV. The

impeller agitation speed was 256 rpm in this case. As before, the experimentally

obtained data in the impeller region were used as the boundary conditions when the CFD

program FLUENT was used to produce a numerical estimate of the velocity distribution,
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turbulence kinetic energy, energy dissipation rate, local velocity gradient distribution and

particle trajectory in this miming/flocculation vessel. One turbulence model (RSM) was

used in the simulation. The results of both LDV measurements and CFD predictions are

presented below.

During the CFD simulation process, cylindrical coordinates were used, and the

velocities in the three directions (r, 8, z ) were expressed as radial, tangential and axial

velocities.

The computational grid was the same used in System Cl (Figure 6-36 and Figure

6-37) except for the radial size of the region swept by the impeller. In System C2, there

were 7 radial cells above and below the impeller surfaces that were defined as input

boundary area, while in System Cl, there were 9 radial cells above and below the

impeller surfaces that were defined as input boundary area.

6.4.1 LDV Measurements in the Impeller Region

LDV was used to experimentally measure the velocities components in all three

directions (i.e., tangential, axial, and radial velocities) for the top and bottom layers of

the cylindrical region swept by the impeller. Figure 6-52a and 6-52b show these

experimentally determined mean velocities. Each point in these figures represents the

average of three measurements.

The tangential velocity profiles show a maximum value near the tip of the

impeller. This pattern is consistent with that reported for System A and Cl in this work.

A very strong downward flow at the center of the vessel was clearly observed as
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indicated by the negative values of the axial velocities for both axial levels. The axial

velocities were found to be dominating over the other two velocity components as in

System Cl. The radial velocities below the impeller were found to be close to the

tangential components and have a maximum value near the tip of the impeller, whereas

the radial velocities above the impeller had very small values and fluctuated around zero.

Figure 6-52c presents the turbulent kinetic energy profiles in the impeller region.

A peak of the turbulent kinetic energy was found near the impeller tip, showing the high

intensity of turbulence near the impeller region. The same observation was made for

System A and System Cl.

The experimental values for the mean velocity components (radial, tangential and

axial) and for k shown in the above figures were used as boundary conditions during the

CFD simulation.

6.4.2 Numerical Predicted Velocity Distribution

The velocity distribution in System C2 predicted via CFD is shown in Figure 6-53 and

Figure 6-54 (2D and 3D views, respectively). A flow pattern very similar to that

reported for System Cl was observed. The main flow generated by the impeller had a

very strong downward component, indicating a very effective axial impeller. A single

large recirculation flow in the axial direction was observed. Similar results were found

for System C1 and in the work previously conducted by this research group (Armenante

and Chou, 1996). Below the impeller hub, a low intensity reversal flow, expanding

conically towards the vessel bottom was observed, as in System C1. However, the size
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of this cone differed from that for System Cl because of the different impeller sizes used

in these two cases.

6.4.3 Velocity Gradient Distribution

The local velocity gradient distribution in System C1 is shown in Figure 6-55. The

values of the local velocity gradients shown in this figure were obtained through the

method of complete definition of local velocity gradient, with the same reason to choose

just one rigorous method for System Cl. Again, the labels of the contour curves in this

figure are the G values in the form of log ioG. The local velocity gradient varies from

position to position within the vessel, similarly to System B and System Cl. The values

of the local velocity gradients near the wall were very low around 10 s -1 . This value

increased as the position moved closer to the impeller. Values in the impeller region

(around 1000 s-1) were much higher than those in the rest of the vessel.

6.4.4 Particle Trajectory

FLUENT was also used to determine the trajectory of a virtual floc particle moving

within the agitated vessel. The results are depicted in Figure 6-56 and Figure 6-57 at

time equal to 2,000 seconds and 10,000 seconds, respectively. These two figures look

very similar to Figure 6-45 and Figure 6-46 obtained for System C1. The main

difference is in the height of the conical area the particle often visited. The volume of the

conical area the particle often visited is even less than that in System Cl . About half of

the vessel volume never was visited by the moving particle.
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6.4.5 Velocity Gradient-Time Integral along the Particle Trajectory

The local G value experienced by the floc particle as it moved in the vessel was

numerically obtained using the same macro program attached in appendix C. The results

are shown in Figure 6-58, where the x coordinate represents the time a moving particle

spent in the vessel and the y coordinate represents the local G value the moving particle

experienced. The local G value experienced by the particle as it moved through the

vessel is extremely non-uniform, similarly to System B and Cl. The particle spent most

of the time in the cells with low G values, while the time it spent in the cells with high G

values was extremely short.

The maximum value of the local velocity gradient the particle experienced in this

system is about 1390 s -1 as shown in the above figure. This value is much higher than

the one experienced by the particle in System Cl and higher than the one in System B,

indicating that System C2 would be more likely to produce floc breakup than System B

or System Cl.

Figure 6-59 presents the G value distribution along the particle trajectory for

System C2 (see macro program attached in appendix C). A peak value of time about 330

seconds was found at G value about 40 The time the moving particle spent in those

zones with G value larger than 200 s-1 was very small, as in System B and System Cl.

The higher the G value, the less the time the moving particle spent in those zones.

The cumulative G value distribution along the particle trajectory is shown in

Figure 6-60. The cumulative time spent by the moving particle increased abruptly before

G reached 100 s4 and then remained constant for G values larger than 100 s-I.
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The velocity gradient-time integral was also numerically obtained. Multiplying

the local G value by the time the moving particle spent in a cell and integrating this value

as a function of time produces the numerical value of this new parameter. Figure 6-61

shows the numerical integration of this new parameter vs. the time the particle spent in

the entire vessel.

Figure 6-62 shows the moving average of the G value along the particle

trajectory as a function of time. This average G value was obtained by dividing the

previously obtained numerical velocity gradient-time integral by the time spent by the

particle up to this point. This average G value increased quickly with t, reached a peak G

value of 75 s' i at time about 130 seconds, then decreased gradually, and finally reached a

almost stable G value of 44 s-1 when time was larger than 550 seconds, a same trend

(with different final G values) observed in both System B and Cl.

A comparison between the average and maximum G value calculated with the

conventional method and obtained with the rigorous method (complete definition of local

velocity gradient method) proposed in this work is shown in Table 6-2. The average G

value along the particle trajectory obtained through this work was found to be much

lower than the one obtained by conventional method for the entire vessel, as found for

System B and System Cl. From Table 6-2, one can see that the conventional method to

obtained average G value throughout the entire vessel produced the same average G

value for three quite different mixing/flocculation systems, which have quite different

local G value distribution and floc particle trajectory, and hence potentially significantly

different effects on flocculation performance. Although we cannot, at the present time,
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produce a trend about the new parameter and the average G value along the particle

trajectory, nor to correlate them to the flocculation process, much more information and

better understanding to this process was obtained through this work.

6.5 Future Work

This dissertation work is the first of many steps leading to the general goal of elucidating

the fundamental aspects of flocculation, as well as producing design specifications for

equipment that can be used commercially to improve the water purification and

wastewater treatment processes through flocculation and efficient floc removal. The

major emphasis of this work was to develop a new method to calculate the actual local

velocity gradient, to propose a new parameter, the velocity gradient-time integral, which

can better characterize the flocculation process than those used currently in the

flocculation process modeling, and to develop a rigorous approach to quantify this new

parameter for certain flocculation processes.

To accomplish the general goal stated above, much work needs to be carried out

in the future such as:

• Investigate other flocculator configurations and compare the results in terms of

local velocity gradient distribution, particle trajectory and velocity gradient-time

integral;

• Transfer the above information to co-investigators at Queen's university so that

experimental data for these flocculator configurations can be obtained;
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• Correlate the velocity gradient-time integral with the results of actual flocculation

processes;

• Provide design specifications for equipment that can be used commercially to

improve the flocculation process.



CHAPTER 7

CONCLUSIONS

In this work two advanced technologies, LDV and CFD, have been used to investigate

the turbulence effects in a number of mixing/flocculation systems. The Laser-Doppler

Velocimetry (LDV) was used to experimentally measure the mean and fluctuating

velocities in all three directions in mechanically agitated vessels. A computational fluid

dynamic (CFD) software, FLUENT, was used to numerically predict the velocity

distribution, fluctuating velocities, power consumption, local energy dissipation rate and

particle trajectory, using different turbulent model such as k-s model, algebraic stress

model (ASM) and Reynolds Stress Model (RSM). The experimentally obtained mean

velocities and turbulent kinetic energies on the top and bottom horizontal surfaces of the

region swept by the impeller were used as boundary conditions in the simulations.

A novel approach to numerically calculate the local velocity gradient in turbulent

flocculation was developed. The distributions of local velocity gradients in three

systems were mapped in the entire mixing/flocculation vessels using the numerically

obtained local mean velocity and local turbulent viscosity, as well as by using the

numerically obtained local energy dissipation rate. The distribution of velocity gradient

along a particle trajectory provided quantitative information on the time an individual

floc particle spends in different zones of the tank while being exposed to velocity

gradients of different intensities. A new parameter, the velocity gradient-time integral

along the particle trajectory, was proposed to better characterize the shear experienced

by a floc particle during a flocculation process instead of the conventional average
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velocity gradient obtained by measuring the average power consumption throughout the

entire vessel.

The main results for an unbaffled cylindrical tank with no headspace and

provided with a pitched blade turbine (System A) can be summarized as follows:

• Throughout the tank the velocities in the tangential direction were experimentally

found to be significantly higher than the other two velocity components.

• In the r-Z plane a strong radially oriented flow was observed to emerge from the

impeller, producing two main recirculation flows, one above and the other below

the impeller. When used in an unbaffled tank pitched-blade turbines appear to

lose most of the axial flow-generating characteristics observed in baffled vessels.

• The numerical predictions were typically found to be in substantial agreement

with the experimental data. However, predictions based on ASM were always

superior to those based on the k-e model.

• The turbulent kinetic energy was found to be much higher in the impeller region

and, to a limited extent, in the region below the impeller, than anywhere else in

the vessel.

• The dimensionless velocity and turbulent kinetic energy profiles were nearly

identically at two different agitation speeds, indicating that such profiles are

independent of agitation intensity. In addition, the power numbers and the flow

numbers were also very similar at the same two agitation speeds.
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The main observations for a baffled square tank provided with a paddle impeller

(System B) and for baffled cylindrical tanks provided with a pitched blade turbine

(System Cl and C2) are as follows:

• Two main recirculation flows, one above and the other below the impeller were

observed in System B. One single large recirculation flow in the axial direction

and a small reversal flow in the conical area below the impeller hub were

observed in both System Cl and System C2,

• The turbulent kinetic energies were found to be much higher in the impeller

region than anywhere else in the vessel for all three systems.

• Significant agreement between the experimental data and the numerical

predictions was obtained for the velocity profiles and turbulent kinetic energies

for all three cases.

• The two new methods to calculate local velocity gradient proposed in this work,

i.e., the complete definition of local velocity gradient method and the local energy

dissipation rate method, were tested to be both valid for turbulent

mixing/flocculation applications and exchangeable, provided that accurate local

values are available.

• The local velocity gradient distribution was mapped throughout the entire

agitated vessel. The local velocity gradients near the impeller region were found

to be much higher than those in the rest of the tank for all three systems.

• The trajectory of a virtual particle with physical properties similar to that of a floc

particle moving in each one of above three systems was obtained by simulation.
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The particle tended to visit some zones more often than the others, and it never

moved through certain places such as the top corner of the agitated vessel.

• The local G values experienced by the particle as it moved through the vessel

were extremely non-uniform. Very high peaks (when the particle moved through

the impeller region), followed by long periods during which the G values were

extremely low, were observed in all three systems, except that the maximum G

value and its corresponding time the particle visited, as well as the low value

were different for each system.

• A newly defined parameter, the velocity gradient-time integral along the particle

trajectory, was numerically obtained for all three systems. This information will

be eventually incorporated into new flocculation models to be developed in the

future.

• The average G values along the particle trajectory obtained for three systems

studied here were found to be different, while the average G values obtained by

conventional method throughout the entire vessel for these three systems were

the same.

• A rigorous approach to obtain the above information was successfully developed

and used in all these systems.

The above results confirm the validity of the general simulation approach used in this

work and provide some new information, both qualitative and quantitative, of

importance for fluid dynamic modeling of mixing and flocculation vessels.



APPENDIX A

FIGURES FOR SYSTEM CONFIGURATIONS AND RESULTS

This appendix includes the figures showing the impeller and vessel configurations,

boundary conditions in the impeller region and the comparison between the LDV

experimental data and CFD simulation results for System A, System B, System Cl and

System C2, as well as the particle trajectory, local velocity gradient distribution and

velocity gradient-time integral along the particle trajectory for System B, System Cl and

System C2.
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Figure 4-2 Configuration of unbaffled cylindrical tank (Systim A)
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Figure 4-3 Configuration of baffled rectangular tank (System B)



Figure 4-4 Configuration of baffled cylindrical tank (System Cl and C2)



Figure 4-5 Outline of impellers: (a) 6-blade pitched bladed impeller, (b) 2-blade paddle type impeller
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Figure 4-6 Measurement methods used in determining three velocity components
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Figure 6-1 Experimentally determined (via LDV) dimensionless velocities and
turbulent kinetic energies in the impeller region (System A, N = 450 rpm)
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Figure 6-2 Grid used in the CFD simulation for System A (2D view)
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Figure 6-3 Grid used in the CFD simulation for System A (3D view)
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Figure 6-4 Comparison between experimental tangential velocity measurements
(via LDV) and numerical predictions (via CFD) (System A, N = 450 rpm)
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Figure 6-5 Comparison between experimental axial velocity measurements and
numerical predictions (System A, N = 450 rpm)
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Figure 6-6 Comparison between experimental radial velocity measurements and
numerical predictions (System A, N = 450 rpm)
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Figure 6-9 Experimentally determined (via LDV) dimensionless velocities and
turbulent kinetic energies in the impeller region (System A, N = 700 rpm)



Figure 6-10 Comparison between experimental tangential velocity measurements
(via LDV) and numerical predictions (via CFD) (System A, N = 700 rpm)
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Figure 6-12 Comparison between experimental radial velocity measurements and
numerical predictions (System A, N = 700 rpm)
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Figure 6-14 Experimentally determined (via LDV) dimensionless velocities and
turbulent kinetic energies in the impeller region (System B, N = 350 rpm)



Figure 6-15 Grid used in the CFD simulation for System B (2D view)
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Figure 646 Grid used in the CFD simulation for System B (3D view)



Figure 6-17 Comparison between LDV measurements and CFO predictions:
tangential velocity (System B, N = 350 rpm)
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Figure 6-18 Comparison between LDV measurements and CFD predictions: axial
velocity (System B, N = 350 rpm)
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Figure 6-20 Comparison between LDV measurements and CFD predictions:
turbulent kinetic energy (System B, N = 350 rpm)
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Figure 6-22 CFD prediction of velocity distribution in System B (3D view)
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Figure 6-23 CFD prediction of velocity distribution in System B (top view: Z/H =
0.18)
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Figure 6-24 CFD prediction of velocity distribution in System B (top view: Z✓H =
0.37)
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Figure 6-25 CFD prediction of velocity distribution in System B (top view: Z/H =
0.70)
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Figure 6-27 CFD prediction of velocity gradient distribution in System B (by local
energy dissipation method, curve labels give the value of logioG)



Figure 6-28 CFD prediction of particle trajectory in System B (t = 2,000 s)



Figure 6-29 CFI) prediction of particle trajectory in System B (t = 10,000 s)
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Figure 6-30 G value along the particle trajectory in System B



350

250

150

100

	 •	

0 	 100 	 200 	 300 	 400 	 500 	 600 	 700 	 800 	 900 	 1000

G (1A)

Figure 6-31 G value distribution curve along the particle trajectory in System B



Figure 6-32 Cumulative G value distribution curve along the particle trajectory in System B
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Figure 6-33 Numerical integration of * G) vs. time (along the particle trajectory) in System B
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Figure 6-34 Average G value vs. time (along the particle trajectory) in SystemB



Figure 6-35 Experimentally determined (via LDV) dimensionless velocities and
turbulent kinetic energies in the impeller region (System Cl, N= 159 rpm)



Figure 6-36 Grid used in the CFD simulation for System Cl and C2 (2D view)
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Figure 6-37 Grid used in the CFD simulation for System Cl and C2 (3D view)



Figure 6-38 Comparison between LDV measurements and utti) precuctions:
tangential velocity (System C1 , N = 159 rpm)
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Figure 6-39 Comparison between LDV measurements and CFD predictions: axial
velocity (System Cl, N = 159 rpm)



Figure 6-40 Comparison between LDV measurements and CFI) predictions: radial
velocity (System Cl, N = 159 rpm)



Figure 6-41 Comparison between LDV measurements and CFD predictions:
turbulent kinetic energy (System Cl, N = 159 rpm)



Figure 6-42 CFD prediction of velocity distribution in System Cl (2D view)
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Figure 6-45 CFD prediction of particle trajectory in System Cl (1= 2,000 s)
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Figure 6-46 CFD prediction of particle trajectory in System Cl (t = 10,000 s)
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Figure 6-48 G value distribution curve along the particle trajectory in system Cl
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Figure 6-49 Cumulative G value distribution curve along the particle trajectory in System Cl
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Figure 6-50 Numerical integration of (t * G) vs. time (along the particle trajectory) in System Cl
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Figure 6-51 Average G value vs. time (along the particle trajectory) in System Cl



0.2

0.15

0.1

0.05

0
1.210 	 0.2 	 0.4 	 0.6 	 0.8

2 rip

0.3

-0.3

-0.5

-0.3

-0.5

• 	 0.3

0.1

-0.1

136

Figure 6-52 Experimentally determined (via LDV) dimensionless velocities and
turbulent kinetic energies in the impeller region (System C2, N= 256 rpm)



Figure 6-53 CFD prediction of velocity distribution in System C2 (2D view)
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Figure 6-54 CFD prediction of velocity distribution in System CZ (3D view)



labels give the value of logloG , where G is in s-1)
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Figure 6-56 CFD prediction of particle trajectory in System C2 (t = 2,000 s)
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Figure 6-57 CFD prediction of particle trajectory in System C2 (t = 10,000 s)
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Figure 6-58 G value along the particle trajectory in System C2
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Figure 6-59 G value distribution curve along the particle trajectory in System C2
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Figure 6-60 Cumulative G value distribution curve along the particle trajectory in System C2
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Figure 6-61 Numerical Integration of (t * G) vs. Time (along the Particle Trajectory) in System C2
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APPENDIX B

PROGRAM CODE FOR THE LOCAL G VALUE CALCULATION

This appendix includes the program code used to perform the calculation of the local

velocity gradient distribution via the complete definition of local velocity gradient

method proposed in this work.
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LOCAL VELOCITY GRADIENT CALCULATION PROGRAM

' Macro2 Macro

Macro recorded in 04/27/1997 by Changgen Luo

' This Macro is created to calculated the local velocity gradient

This is a mcaro programmed in MS Excel 5.0, working together with
' data sheets imported from FLUENT V4.4,
I Following imported data sheets are included in this Excel Workbook:

xp: x position (cartesian coordinates)in each cell center,
yp: y position (cartesian coordinates)in each cell center,
zp: z position (cartesian coordinates)in each cell center,
uv: U velocity in each cell
vv: V velocity in each cell
wv: W velocity in each cell
zp: axial position (cylindrical coordinates)in each cell center,
tp: tangential position (cylindrical coordinates)in each cell center,
rp: radial position (cylindrical coordinates)in each cell center,
zv: velocity in axial dircetion in each cell
rv: velocity in radial direction in each cell
tv: velocity in tangential in each cell
eff:effective viscosity in each cell

The results of local velocity gradient will be put in worksheet
"Gvalue" in the same workbook

Sub Macro()
Dim t, counter, Rownum, Colnum, GRownum, GColnum As Integer
Dim i, j, k, Maxi, Maxj, Maxk, Cood As Integer
Dim xl, x0, yl, yO, zl, zO, uvl, uvO, vvl, wO, wvl, wv0 As Single
Dim dx, dy, dz, dux, duy, duz As Single
Dim Gxx, Gyy, Gzz, Gxy, Gyx, Gyz, Gzy, Gxz, Gzx As Single
Dim Gl, G2, G As Single
Dim zvl, zv0, rvl, rvO, tvl, tv0 As Single
Dim duz, dur, dut, dutr As Single
Dim Gtt, Gzz, Grr, Grt, Gtr, Gtz, Gzt, Grz, Gzr As Single

VISCOSITY = 0.001

Cood = Val(InputBox("Please enter 1 if it is cartesian coordinate, or 0 if cylindrical",
"Which Coordinate System", 1))

Maxi = Val(InputBox("Please enter the number of i", "i Value Entry", 5))
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Maxj = Val(InputBox("Please enter the number of j", "j Value Entry", 5))
Maxk = Val(InputBox("Please enter the number of k", "k Value Entry", 5))

If Cood = 1 Then

'This part is for the local velocity gradient calculation
' in cartesian coordiate.

For k = 1 To Maxk
For j = 1 To Maxj

For i = 1 To Maxi

If ((i Mod 10) = 0) Then
Rownum = (((k - 1) * 156 + 8) + (35 - j) + (((i \ 10) - 1) * 38))
Colnum = 11
Else
Rownum = (((k - 1) * 156 + 8) + (35 - j) + ((i \ 10) * 38))
Colnum = ((i Mod 10) + 1)
'Where 156 is the number of rows for each k value block in "zx" sheet

8 is the number of rows before the first x position value
(35 - j) indicates that x position values were listed

in reverse sequence
(i mod 10) gives the reminder of this division
(i \ 10) gives the integer of this division
((i \ 10) * 38) indicates for every 10 I values we have 38 rows
the position values were listed in column 2 to 11

End If
GRownum = Rownum
GColnum = Colnum
x0 = Worksheet("'xp").Cells(Rownum, Colnum).Value
y0 = Worksheet(""yp").Cells(Rownum, Colnum).Value
z0 = Worksheet("zp").Cells(Rownum, Colnum).Value
uv0 = Worksheet("uv").Cells(Rownum, Colnum).Value
w0 = Worksheet("w").Cells(Rownum, Colnum).Value
wv0 = Worksheet("wv").Cells(Rownum, Colnum).Value
effv = Worksheet('"eff").Cells(Rownum, Colnum).Value

k = k + 1
If ((i Mod 10) = 0) Then
Rownum = (((k - 1) * 156 + 8) + (35 - j) + (((i \ 10) - 1) * 38))
Colnum = 11
Else
Rownum = (((k - 1) * 156 + 8) + (35 - j) + ((i \ 10) * 38))
Colnum = ((i Mod 10) + 1)
End If
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xl = Worksheet("xp").Cells(Rownum, Colnum).Value
uv1 = Worksheet("uv").Cells(Rownum, Colnum).Value

k = k 1
i=i+1
If ((i Mod 10) = 0) Then
Rownum = (((k - 1) * 156 + 8) + (35 - j) + (((i 1 10) - 1) * 38))
Colnum = 11
Else
Rownum = (((k - 1) * 156 + 8) + (35 - j) + ((i \ 10) * 38))
Colnum = ((i Mod 10) + 1)
End If
y1 = Worksheet("yp").Cells(Rownum, Colnum).Value
vvl = Worksheet("vv").Cells(Rownum, Colnum).Value

i = - 1
j = j + 1
If ((i Mod 10) = 0) Then
Rownum = (((k 1) * 156 + 8) + (35 - j) + (((i \ 10) - 1) * 38))
Colnum = 11
Else
Rownum = (((k - 1) * 156 + 8) + (35 - j) + ((i \ 10) * 38))
Colnum = ((i Mod 10) + 1)
End If
zl = Worksheet("zp").Cells(Rownum, Colnum).Value
wvl = Worksheet("wv").Cells(Rownum, Colnum).Value

dx = Abs(xl - x0)
dy = Abs(y1 yO)
dz = Abs(zl - z0)
dux = Abs(uvl - uvO)
duy = Abs(vvl vv0)
duz = Abs(wvl - wv0)

Gxx = dux / dx
Gyy = duy / dy
Gzz = duz / dz
Gxy = duz / dy
Gyx = duy / dx
Gx2 = dux / dz
Gzx = duz / dx
Gyz = duy / dz
Gzy = duz / dz

G1 = 2 * ((Gxx * Gxx) + (Gyy * Gyy) + (Gzz * Gzz))
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G2 = (Gxy + Gyx) A 2 + (Cryz + Gzy) A 2 + (Gxz + Gzx) A 2

G = (dry / VISCOSITY) * (G1 + G2)

'put this G value in worksheet Gvalue
Worksheets("Gvalue").Cell(GRownum, GColnum).Value = G

Next i
Next j

Next k

Else
'This part is for the local velocity gradient calculation
'in cylindrical coordiate.

For k = 1 To Maxk
For j = 1 To Maxj

For i = 1 To Maxi

If ((i Mod 10) = 0) Then
Rownum = (((k - 1) * 156 + 8) + (35 - j) + (((i \ 10) - 1) * 38))
Colnum = 11
Else
Rownum = (((k - 1) * 156 + 8) + (35 - j) + ((i 1 10) * 38))
Colnum = ((i Mod 10) + 1)
'Where 156 is the number of rows for each k value block in "zx" sheet

8 is the number of rows before the first x position value
(35 j) indicates that x position values were listed

in reverse sequence
(i mod 10) gives the reminder of this division
(i \ 10) gives the integer of this division
((i \ 10) * 38) indicates for every 10I values we have 38 rows
the position values were listed in column 2 to 11

End If
GRownum = Rownum
GColnum = Colnum
z0 = Worksheet("zp").Cells(Rownum, Colnum).Value
'this is the value in axial direction
r0 = Worksheet("rp").Cells(Rownum, Colnum).Value
'this is the value in radial direction
tO = Worksheet("tp").Cells(Rownum, Colnum).Value
'this is the value in tangential direction
zv0 = Worksheet("zv").Cells(Rownum, Colnum).Value
'this is the veloctiy in axial dirction
rv0 = Worksheet("rv").Cells(Rownum, Colnum).Value
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'this is the veloctiy in radial dirction
tv0 = Worksheet("tv").Cells(Rownum, Colnum).Value
'this is the veloctiy in tangential dirction
effv = Worksheet("eff').Cells(Rownum, Colnum).Value

k = k + 1
If ((i Mod 10) = 0) Then
Rownum = (((k - 1) * 156 + 8) + (35 j) + (((i \ 10) - 1) * 38))
Colnum = 11
Else
Rownum = (((k - 1) * 156 + 8) + (35 j) + ((i 10) * 38))
Colnum = ((i Mod 10) + 1)
End If
zl = Worksheet("zp").Cells(Rownum, Colnum).Value
zvl = Worksheet("zv").Cells(Rownum, Colnum).Value

k = k 1
i = i + 1
If ((i Mod 10) = 0) Then
Rownum = (((k - 1) * 156 + 8) + (35 - j) + (((i \ 10) - 1) * 38))
Colnum = 11
Else
Rownum = (((k - 1) * 156 + 8) + (35 j) + ((i \ 10) * 38))
Colnum = ((i Mod 10) + 1)
End If
rl = Worksheet("rp").Cells(Rownum, Colnum).Value
rvl = Worksheet("rv").Cells(Rownum, Colnum).Value

i =i- 1
j = j + 1
If ((i Mod 10) = 0) Then
Rownum = (((k - 1) * 156 + 8) + (35 - j) + (((i \ 10) - 1) * 38))
Colnum = 11
Else
Rownum = (((k - 1) * 156 + 8) + (35 - j) + ((i \ 10) * 38))
Colnum = ((i Mod 10) + 1)
End If
tl = Worksheet("tp").Cells(Rownum, Colnum).Value
tv1 = Worksheet("tv").Cells(Rownum, Colnum).Value

dz = Abs(zl - z0)
dr = Abs(r1 - r0)
dt = Abs(tl - tO) 'refer to theta

duz = Abs(zvl - zvO)
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dur = Abs(rvl rv0)
dut = Abs(tvl - tv0) 'refer to theta
dutr = Abs((tvl I r1) - (tv0 / r0))

Grr = dur / dr
Gtt = dut / dt
Gzz = duz / dz
Grt = dur / dt
Gtr = dut / dr
Gtz = dut / dz
Gzt = duz / dt
Crzr = duz / dr
Grz = dur / dz

G1 =2 * ((Grr * Grr) + ((Gtt / r0) + Grr) A 2 + (Gzz * Gzz))
G2 =	 * (dutr / dr) + (Grt / r0)) A 2 + (Gtz + (Gzt / r0)) A 2 + (Gzx + Grz) A 2

G = (effv / VISCOSITY) * (G1 + G2)
'put this G value in worksheet Gvalue
Worksheets(" Gvalue"). 	 GColnum).Value = G

Next i
Next j

Next k

End If

MsgBox ("Good Job !")

End Sub
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APPENDIX C

PROGRAM CODE FOR NEW PARAMETER CALCULATION

This appendix includes the program code used to perform the calculation of the local

velocity gradient distribution, velocity gradient distribution along the particle trajectory,

velocity gradient-time integral from FLUENT output data.
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PROGRAM CODE FOR CALCULATION OF (DELT T * G) AND G VALUE
DISTRIBUTION ALONG THE PARTICLE TRAJECTORY

Macro 1 Macro
Macro recorded in 11/24/1996 and revised in 04/26/97 by Changgen Luo

'This is a mcaro programmed in MS Excel 5.0, working together with two data sheets,
i.e., tg and Epsilon_value.

This Macro is created to calculated the integration of t*G for a particle moving
in a mixing tank, as well as the G value distribution data.

'In sheet "tg",
column 1 (A), the time ending at each step of the particle movement;
column 2(B),3(C),4(D), corresponding x, y, z positions in the tank at each step;
column 5(E),6(F),7(G), corresponding cell locations expressed as I, J, K;
column 8(H), the time difference between each two steps;
column 9(I), the Epsilon value corresponding to the cell(I,J,K), getting from

sheet "Epsilon_value";
column 10(J), the CALCULATED G value;
column 11(K), the production of (G * delta t) was shown;
column 12(L), subtotal, summarize the above (G * delta t) values;
Values of time and I, J, K are imported from FLUENT output data file;
column 14(N), the G value
column 15(0), the time a particle spent in that G value

' In sheet "Epsilon_value",
we import the Epsilon value for the whole tank from FLUENT output data;
for each K = 1 — 40 we have I * J = 35 * 35 G values, listed in a 35 * 35 matrix,

i.e. 35 rows, and 35 columns;
we give some space so that each K = n level's first G value will be listed on

row(40*n + 1), col(1);
i.e. if K = 8, the G value of (1,1,8) is shown on cell(321,A), as ((40*8+1) 1);

'For the case that we already have calculated the local G value, we put the
sheet "G_value" instead of "Epsilon_value". The sheet "G_value" has the same
date configuration arrangement in sheet "Epsilon_value"

Sub Macro 10
Dim i, j, k, t, counter, temp, tempt, Steps, Gore As Integer
Dim Epsilon, g, deltt, subtotal As Single
Dim x, y, z, theta, ra As Integer
Dim t10, t20, t40, t60, t80, t100, t200, t300, t400, t500, t600 As Single
Dim t700, t800, t900, t1000, t1100, t1200, t1300, t1400, t1500, telse As Single
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counter = 2
tempt = 0
t10=0
t20 = 0
t40 = 0
t60 = 0
t80 = 0
t100 = 0
t200 = 0
t300 = 0
t400 = 0
t500 = 0
t600 = 0
t700 = 0
t800 = 0
t900 = 0
t1000 = 0
t1100 = 0
11200 = 0
11300 = 0
t1400 = 0
t1500 = 0
subtotal = 0

Gore = Val(InputBox("Please enter 1 if imported G value, or 0 if imported Epsilon
Value", "Which Original Data You have?", 1))

If Gore = 1 Then

'This part is for rectangular vessel
Steps = Val(InputBox("Please enter the number of steps", "Calculation Steps Entry", 5))
'Steps refers to the calculation steps in the particle trajectory simulation

While counter <= Steps

'convert the x position to cell I value
Cells(counter, 2).Select
x = Selection. Value
Select Case x
Case 0 To 0.013

i = 2
Case 0.01301 To 0.026

i = 3
Case 0.02601 To 0.038

i = 4
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i = 27
Case 0.21701 To 0.227

i = 28
Case 0.22701 To 0.238

i = 29
Case 0.23801 To 0.25

i = 30
Case 0.25001 To 0.262

i = 31
Case 0.26201 To 0.274

i = 32
Case 0.27401 To 0.287

i = 33
Case 0.28701 To 0.3

i = 34
Case Else

MsgBox ("please check the x position") 'check if x value is in the correct range
Debug.Print counter; x; y; z 'Display the position in the Debug Window

End Select

'convert the y position to cell J value
Cells(counter, 3). Select
y = Selection. Value
Select Case y
Case 0 To 0.013

j = 2
Case 0.01301 To 0.026

3
Case 0.02601 To 0.038

j = 4
Case 0.03801 To 0.05

5
Case 0.05001 To 0.062

j = 6
Case 0.06201 To 0.073

7
Case 0.07301 To 0.083

8
Case 0.08301 To 0.092

9
Case 0.09201 To 0.1

j = 10
Case 0.10001 To 0.108

j = 11
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Case 0.10801 To 0.115
= 12

Case 0.11501 To 0.121
j = 13

Case 0.12101 To 0.127
j= 14

Case 0.12701 To 0.134
j = 15

Case 0.13401 To 0.141
j = 16

Case 0.14101 To 0.147
j = 17

Case 0.14701 To 0.153
j = 18

Case 0.15301 To 0.16
j = 19

Case 0.16001 To 0.166
j = 20

Case 0.16601 To 0.172
j = 21

Case 0.17201 To 0.179
j = 22

Case 0.17901 To 0.185
j = 23

Case 0.18501 To 0.192
j = 24

Case 0.19201 To 0.2
j = 25

Case 0.20001 To 0.208
j =26

Case 0.20801 To 0.217
j = 27

Case 0.21701 To 0.227
j =28

Case 0.22701 To 0.238
j = 29

Case 0.23801 To 0.25
j = 30

Case 0.25001 To 0.262
j = 31

Case 0.26201 To 0.274
j = 32

Case 0.27401 To 0.287
j = 33

Case 0.28701 To 0.3

159



j = 34
Case Else

MsgBox ("please check the y position") 'check if y value is in the correct range
Debug.Print counter; x; y; z 'Display the position in the Debug Window

End Select

'convert the z position to cell K value
Cells(counter, 4). Select
z = Selection.Value
Select Case z
Case 0 To 0.016

k = 2
Case 0.01601 To 0.035

k = 3
Case 0.03501 To 0.046

k = 4
Case 0.04601 To 0.06

k = 5
Case 0.06001 To 0.073

k = 6
Case 0.07301 To 0.084

k = 7
Case 0.08401 To 0.094

k = 8
Case 0.09401 To 0.103

k = 9
Case 0.10301 To 0.11

k= 10
Case 0.11001 To 0.116

k= 11
Case 0.11601 To 0.123

k= 12
Case 0.12301 To 0.129

k= 13
Case 0.12901 To 0.135

k= 14
Case 0.13501 To 0.142

k= 15
Case 0.14201 To 0.148

k= 16
Case 0.14801 To 0.155

k= 17
Case 0.15501 To 0.161

k= 18
Case 0.16101 To 0.167
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'calculate the G value, put in column 10
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Cells(counter, 10).Value = 1000 * ((Epsilon) A 0.5)
'Cells(counter, 10).Value = Epsilon * 2 'This line just for testing
Cells(counter, 10). Select
g = Selection.Value

Else
1 1-11111111111111111114-111111111111111111111

'This part is for cylindrical vessel

Steps = Val(InputBox("Please enter the number of steps", "Calculation Steps Entry", 5))
'Steps refers to the calculation steps in the particle trajectory simulation

While counter <= Steps

'convert the tangential position to cell I value
Cells(counter, 2). Select
theta = Selection.Value
Select Case theta
Case 0 To 0.121

i = 2
Case 0.12101 To 0.181

i = 3
Case 0.18101 To 0.242

i = 4
Case 0.24201 To 0.302

i = 5
Case 0.30201 To 0.362

i = 6
Case 0.36201 To 0.423

i = 7
Case 0.42301 To 0.483

i = 8
Case 0.48301 To 0.543

i = 9
Case 0.54301 To 0.604

i= 10
Case 0.60401 To 0.664

i = 11
Case 0.66401 To 0.725

= 12
Case 0.72501 To 0.785

i= 13
Case 0.78501 To 0.845

i= 14
Case 0.84501 To 0.906



i= 15
Case 0.90601 To 0.966

i = 16
Case 0.96601 To 0.103

i = 17
Case 0.10301 To 0.109

i= 18
Case 0.10901 To 0.115

i = 19
Case 0.11501 To 0.121

i = 20
Case 0.12101 To 0.127

i = 21
Case 0.12701 To 0.133

i = 22
Case 0.13301 To 0.139

i = 23
Case 0.13901 To 0.145

i = 24
Case 0.14501 To 0.151

i = 25
Case 0.15101 To 0.157

i = 26
Case Else

MsgBox ("please check the x position") 'check if tangential value is in the correct
range

Debug.Print counter; x; y; z 'Display the position in the Debug Window
End Select

'convert the radial position to cell J value
Cells(counter, 3). Select
ra = Selection. Value
Select Case ra
Case 0 To 0.0069

j = 2
Case 0.0069 To 0.0125

3
Case 0.012501 To 0.0186

j = 4
Case 0.018601 To 0.0245

5
Case 0.024501 To 0.0302

j = 6
Case 0.030201 To 0.0357
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Case 0.14201 To 0.147
j = 30

Case Else
MsgBox ("please check the y position") 'check if radial value is in the correct range
Debug.Print counter; x; y; z 'Display the position in the Debug Window

End Select

'convert the z position to cell K value
Cells(counter, 4).Select
z = Selection.Value
Select Case z
Case 0 To 0.0066

k = 2
Case 0.006601 To 0.0132

k = 3
Case 0.013201 To 0.0196

k = 4
Case 0.019601 To 0.0261

k = 5
Case 0.026101 To 0.0323

k = 6
Case 0.032301 To 0.0383

k = 7
Case 0.038301 To 0.0443

k = 8
Case 0.044301 To 0.0499

k = 9
Case 0.049901 To 0.0553

k = 10
Case 0.055301 To 0.0605

k= 11
Case 0.060501 To 0.0653

k = 12
Case 0.065301 To 0.07

k = 13
Case 0.070001 To 0.074

k = 14
Case 0.07401 To 0.078

k= 15
Case 0.07801 To 0.082

k = 16
Case 0.08201 To 0.086

k= 17
Case 0.08601 To 0.09

k= 18



Case 0.09001 To 0.094
k= 19

Case 0.09401 To 0.0988
k = 20

Case 0.098801 To 0.1035
k = 21

Case 0.103501 To 0.1084
k = 22

Case 0.108401 To 0.1134
k = 23

Case 0.113401 To 0.1186
k = 24

Case 0.118601 To 0.124
k = 25

Case 0.12401 To 0.129
k = 26

Case 0.12901 To 0.135
k = 27

Case 0.13501 To 0.142
k = 28

Case 0.14201 To 0.148
k = 29

Case 0.14801 To 0.154
k= 30

Case 0.15401 To 0.161
k = 31

Case 0.16101 To 0.167
k = 32

Case 0.16701 To 0.174
k = 33

Case 0.17401 To 0.181
k = 34

Case 0.18101 To 0.188
k = 35

Case 0.18801 To 0.196
k = 36

Case 0.19601 To 0.203
k = 37

Case 0.20301 To 0.211
k= 38

Case 0.21101 To 0.219
k= 39

Case 0.21901 To 0.227
k = 40

Case 0.22701 To 0.235

167



k = 41
Case 0.23501 To 0.243

k = 42
Case 0.24301 To 0.251

k = 43
Case 0.25101 To 0.259

k = 44
Case 0.25901 To 0.268

k = 45
Case 0.26801 To 0.276

k = 46
Case 0.27601 To 0.285

k = 47
Case 0.28501 To 0.293

k = 48
Case Else

MsgBox ("please check the z position") 'check if z value is in the correct range
Debug.Print counter; x; y; z 'Display the position in the Debug Window

End Select

'put I value in column 5
Cells(counter, 5).Value = i

'put J value in column 6
Cells(counter, 6).Value = j

'put K value in column 7
Cells(counter, 7).Value = k

'copy the G value of cell(i,j,k) from sheet "G value"
Worksheets("Gvalue").Select
If ((i Mod 10) = 0) Then
Cells((((k - 1) * 156 + 8) + (35 - j) + (((i \ 10) - 1) * 38)), 11).Select
Else
Cells((((k - 1) * 156 + 8) + (35 j) + ((i \ 10) * 38)), ((i Mod 10) + 1)).Select
'Where 156 is the number of rows for each k value block in "Epsilon value" sheet

8 is the number of rows before the first G value
(35 - j) refers to G values were listed on reverse sequence
(i mod 10) gives the reminder of this division
(i \ 10) gives the integer of this division
((i \ 10) * 38) indicates for each 10 I values we have 38 rows

End If
temp = Selection.Value
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Case 700 To 800
t800 = t800 + deltt

Case 800 To 900
t900 = t900 + deltt

Case 900 To 1000
t1000 = t1000 + deltt

Case 1000 To 1100
t 1100 = t 1100 + deltt

Case 1100 To 1200
t1200 = t1200 + deltt

Case 1200 To 1300
t1300 = t1300 + deltt

Case 1300 To 1400
t1400 = t1400 + deltt

Case 1400 To 1500
t1500 = t1500 + deltt

Case Else
telse = telse + deltt
'MsgBox ("G value out of range") 'check if G value is in the correct range
Debug.Print counter; x; y; z, g 'Display the position in the Debug Window

End Select

counter = counter + 1

'Output the distribution results
'put them in column 14 (G value), 15(time spent in the G value)
Cells(2, 14).Value = 10
Cells(2, 15).Value = t10

Cells(3, 14).Value = 20
Cells(3, 15).Value = t20

Cells(4, 14).Value = 40
Cells(4, 15).Value = t40

Cells(5, 14).Value = 60
Cells(5, 15).Value = t60

Cells(6, 14).Value = 80
Cells(6, 15).Value = t80

Cells(7, 14).Value = 100
Cells(7, 15).Value = t100

Cells(8, 14).Value = 200
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Cells(23, 15).Value = t

Wend
MsgBox ("Good Job !")
'End of program

End Sub
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