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ABSTRACT

ANALYTICAL SOLUTIONS OF OPENINGS FORMED BY INTERSECTION
OF A CYLINDRICAL SHELL AND AN OBLIQUE NOZZLE

UNDER INTERNAL PRESSURE

by
Hengming Cai

Since several decades ago, many authors have published their research results

about local stress distributions of shells and shell-nozzles both analytically and numerically.

However, there has not been a published paper which deals with analytical solutions of

cylindrical shell and oblique nozzle, even though in the case of openings formed by

intersection of a cylindrical shell and an oblique nozzle.

A comprehensive analytical study of local stress factors at the area of openings

formed by intersection of a cylindrical shell and an oblique nozzle under internal pressure

is presented in this dissertation.

By means of traditional approach in theory of elasticity, geometric equations,

physical equations and equilibrium equations are derived and then simplified under the

conditions of thin shell and internal pressure. The concepts of normalized forces and

moments in the mid-surface are established to make all governing partial differential

equations mathematically solvable.

This dissertation mathematically determines the exact geometric description of

intersection formed by a cylindrical shell and an oblique nozzle. This result is not only the

boundary conditions of the present study, but also a basis for analytical solutions of

intersection formed by a cylindrical shell and an elliptical nozzle in the future.



Introducing the displacement function, this study combines the geometric

equations, physical equations, equilibrium equations and boundary conditions to obtain the

analytical solutions.

Finally, this dissertation calculates the results of five cases, which correspond to

the intersection angles of 90°, 75°, 60°, 45° and 30° respectively. The results are

presented in the forms of stress concentration factors (SCF) and described in the fourteen

figures.

The typical calculations indicate:

1. When the intersection angle is 900, the stress results are in good agreement with

the existing literature [10].

2. At the neighborhood of point A, both of circumferential stresses and

longitudinal stresses increase as the intersection angle decreases from 90° to 30°, and

the closer to the 30°, the faster the increase becomes. Therefore, among all angles from

90° to 30°, the intersection angle 90° has the least local stresses.

3. At the neighborhood of point C, when the intersection angle varies from 90° to

30°, circumferential stresses remain virtually constant, however, longitudinal stresses are

compressive and they remain constant on the outside surface, but, increase on the inside

surface.

4. After consideration of all influential factors, it is suggested that the intersection

angles from 90° to 60° should be the best choices. The intersection angles from 60° to

45° can be selected if the internal pressure is not too high. The intersection angles less than

45° should be avoided as practical as possible.
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CHAPTER 1

INTRODUCTION

Before the 1970s, plenty of efforts were made to obtain analytical solutions for this topic.

Since numerical solutions have been achieved along with development of high speed

computers during the past two decades, efforts to analytical solutions are still behind. But,

as known to all, any numerical method must be based on mathematics and mechanics,

therefore, theoretical analyses are always of importance. On the other hand, because of the

user preparation time required, direct finite element procedures have not yet come into

general design utilization, and the analytical studies still remain of great interest. The effort

of this research attempts to make the theoretical study coincide with the recent

developments' in this area.

Normally, an analytical study has to consist of four basic sections as follows:

1. The derivation of a series of equations and their general solutions,

2. Determination of corresponding boundary conditions,

3. Substitution of the boundary conditions into the general solutions to obtain the

theoretical solutions of stress analysis,

4. Comparison of the theoretical solutions with the results of relevant researches to

arrive at the conclusions for the present study.

A comprehensive literature survey indicates that for the same type of problems

about shells and nozzles, many authors made efforts to solve them. Even though they may

obtain some similar results, there are still some differences among the works of those

authors.
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The main differences usually lie in their derivation of equations and boundary conditions.

This study possesses features as follows:

1. The method to derive the equations is systematic and comprehensive (See

Figure 1.1, the Flow Chart of This Study for a glance).

2. Application of fundamental theory of elasticity to solve the problem of openings

formed by intersection of a cylindrical shell and an oblique nozzle.

3. This theoretical analysis is the first research which deals with the geometric

analysis of intersection of a cylindrical shell and an oblique nozzle. The success of this

study may establish the fundamental for the future research of intersection of cylindrical

shells and elliptical nozzles.

The second and the third points are the main contribution to the theory of this

area because, so far, there has not been a complete analytical study on openings formed by

intersection of cylindrical shells and oblique nozzles, although many authors have explored

the openings formed by intersection of cylindrical shells and cylindrical nozzles.
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Figure 1.1 Flow chart of this study



CHAPTER 2

LITERATURE SURVEY

In 1920, A. Love 1 J obtained three equations for the mid-surface displacements of a

shell. These displacement relations are:

8 2 u 1— 8 2u i+p iF 	1 (l-p)/0 o2v 	av i-p(0 2  0 3 W
+ 2 C332 + 2 L i— 12 (1+ ,u) R1 _loop + ,c7 + 24 IZ.1 0VD 2 °

/4 1- 1±	 t \21 e 2 v 	1 i t -,2 -1 02,, 1+ du e 2 u

2	 4 1Z./ ide 1:1+ 12 AU _lap' + 2 exi -1- (33
I ( t\213- p 52w c9 2w\

12R) 2 OV cD2) 0
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\ 2 (

0 W 1— 	 Cu 	 3 U
	V - 	V4w+2	 +w+ 	

-12 ∎ Ri 	 6902 	 2 goo- 	 3 

3- ,u e3v

2 04.'dD i = 0.

This set of equations is relatively more convenient to be employed in practice so

that L. Donnell in 1933 [ 2 and 1938 [ 3 made significant simplifications by omitting a

number of terms and obtained a single eighth order equation for the shallow shell.

In 1958, L. Morley [ 4 ] proposed an equation which retained the accuracy of W.

Flugge's equations and improved Donnell's equation:

4wv 4 (v 2 +1) 2 w+4 , I 4 	 4  _ 0.
e.94.

The significant advantage of L. Morley's equation is that it can be factored into the form

as follows:

521C	 e2
[0 2 (V 2 + 1) + 1 2 ,u 2 	V2 (V 2 +1)— 1 2 ,u2 

a 2 
I w = 0.

JL

It tremendously simplifies the calculation of roots of characteristic polynomials by means

of separating differential operators. But L. Morley's equation is still recognized to be used

in shallow cylindrical shell theory.

In 1971., J. Lekkerkerker [ 7 ] obtained an analytical solution of stress near the

intersection of cylindrical shells with small nozzles, based on Donnell's shallow shell

equation. His work consisted of two parts. The first part showed an insight into existing

possibilities and difficulties while he made a survey of relevant literature. The second part
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contained a comprehensive process of theoretical analysis of the stress problem for a

cylindrical shell with a circular hole which is intended to simulate a cylindrical shell with a

branch pipe or nozzle.

The basic equation J. Lekkerkerker employed is Donnell's shallow shell equation:

2t
V 2 V 2 T+ i 4v2	

0lf
— 0,r

where I' is a complex function defined as follows:

Re = w / r and Im = 	
r E t 2

1 V12(1— p 2 ) r 
and v=2

2

The great advantage of Donnell's equation is that its differential operators are

separable. From factorization, J. Lekkerkerker obtained the following solution of the basic

equation in the form of Bessel functions .4 and Hankel functions I-1,Y ) :

	+ 03	 +
	tp= E 	ik [An 	i)k	 el(n-k* Hn(1)(17944( v)9111)

n=- co k=- co

where An and Ai are complex integration constants to be determined by the boundary

V12 (1 — p 2 )

conditions.
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(
V 2 V 2 — 4 w= 0,
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He verified the uniqueness of displacements and all types of symmetry. Finally the

author obtained a complete set of solutions of stresses, strains and displacements by using

the boundary conditions in the form of Fourier Series. The applicability of these solutions

is restricted to a small diameter ratio, less than 0.25, as the author indicated in this paper.

In 1983, C. Steele and M. Steele [ 8 developed an analytical method for stress

analysis in cylindrical vessel with external load in which Fliigge-Conrad solutions where

Sanders-Simmonds concentrated force solution were utilized for a local analysis to

which asymptotic approximations for the effect of vessel length and continuity around

the vessel circumference were added. To solve the shallow shell equation

they employed the stress function with complex variables

(19
CAT- = — 1

EtC

t 

[12(1- /./2 )1 1/2	 andwhere C = (1)	 is the Airy's stress function.

The stress analysis was incorporated in a computer code, FAST, for which setup and

run times were minimized for a given case of geometry and load. Some evidence indicated

that Steele's method does not lead to the same results as those obtained by previous
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analytical methods. They still kept assumptions that the intersection between vessel and

nozzle was approximated as a plane circle.

In 1986, C. Steele, M. Steele and A. Khathlan [ 9 ]proposed a computational

approach for a large opening in a cylindrical vessel because they realized that their

previous work was restricted to small size of nozzles only, —

D 
0.5. Their new

approach may handle the geometry of vessel and nozzle to the range of diameter ratio of

d
0.5 —

D
 < 1.

In 1991, M. Xue, Y. Deng and K. Hwang [ 10 ] published their results on

analytical solutions of cylindrical shell with large opening. Their contributions are:

1. The modified Morley's equation was employed instead of the shallow shell

equation. The solutions of the modified equation are in the form of the double Fourier

Series including Bessel Functions.

2. The accurate expression of boundary curve of large opening was utilized in the

form of a power series. They proved that the previous curve geometric description was

just the first term of their power series expansion.

3. The boundary conditions for general loading were also expanded in the form of

power series and were truncated after the terms of the third power, which obviously

improved the accuracy of the solution.

Their work, similar to all works of previous authors, is still only for the case of

orthogonal intersection of a cylindrical vessel and a nozzle. Since Morley's equation can

be factored, the simplified form of Morley's equation is obtained as



v2v2 + v2 + 1	4v2
4 2 ) W = 0 .

for symmetric case about

(-1) k Cn Fkil cos(2k vf)

yi =0, a / 2

I co 	 oo

k=0 n=0

9

v2v2 + v2 	 4v2 	 w = 0
46 2

in which w is the complex displacement- stress function.

To solve Morley's equation finally, the difficulty of its separability must be

encountered. They used the modified Morley's equation

Although the only difference from the Morley's equation is adding a small term, 
4 '

NiN7

	

and the ratio between —
4 

and V 2 W	 has the same or less order of t—
Ri 

.

The new equation obtained a separability of differential operators, which is easy to be

transformed as follows

1	 r

	

1r-	 \
V 2 + -

2
+ 2vvi— V 2 + —

2
-2vVi — W = O.

c3 	 e3

Therefore, the solution of this equation can be obtained as follows:

c0 	 00

/(-1)'C'n Fkn sin(2kv)
k=1 n=1

for antisymmetric case about

v=0, aI2



where Fk„ is the Fourier's coefficients expressed with Bessel functions:
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(J
n
(V7i	 ) H Pi) , k=01

Fiat

[ J2k- n (V=7 VP1) J-2k- n (NI:7 VA )1 Hi, (vp1 ), k > 0

for symmetric case ,

Fk. =[J2k-.(1-1)131) — J-2k_.(1.1:71'P1)1 H .( 77A) for antisymmetric case,

where C ii 	are the complex constants and ri = — 1— i v 2( 	

2 	 i

 1/2

. 

The components of generalized forces and moments were expressed as follows:

D	 1-  o2 	1 0	 1 0 2  1 1Mt = -
R 2 Re[ 4712 + il 0 opi + p12 4'2A W.

{

D It 1 (3 	 1 02 	02 \ 1

ill '' = R2Rl■ Pi epi + pl 2 I91,2 ± fi 691 2 ) Wi

	_ 
(1— ,u)D r( 1  02 	1 	 \ 1

A/
"	 R2 Rell. Pi eiolov )01 2 0 vi ) 1 w i
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 OP] P1 25V 2 i w_

w

E t
= 4v 2 R

Fr 	o , 1	 e ` 1
wi+ TA*

IL Pi 2 0111 2 ± pi ep, ,

E T (0 2 W
T = 	 + Ts

	4v 2 R	 fif;01 2

E  T r o ( cv 1
+ TsT — T

	

pop — VIP - 	 21	 R	 Op,	 Ocif jj

Finally, they made calculations and compared their results with those published by

previous authors in numerical or analytical forms.

Literature [ 7 ], [ 8 ], [ 9 and [ 10 have made great progress in this area. But they

all used the complex variable method to solve the relevant equations. The author of this

dissertation attempts to explore a way to avoid using complex variables. Therefore, the

present research is devoted to use the real variables and fundamental theory of elasticity to

solve the stress analysis of a thin shell with an oblique nozzle due to internal pressure.



CHAPTER 3

GENERAL ASSUMPTIONS

To solve the problems analytically, one has to establish equations or relations between all

variables. In deriving these equations, one always wishes to consider all factors as

comprehensive and precise as possible, but, in many cases, if one considers all factors only

from the point of view of precision and comprehensiveness, even if the equations are

found, these equations may be too complicated to be solved at all in practice. A part of the

reason for this is that mathematicians have proven that some equations do not have

analytical solutions at all. In fact, for some equations, even though one could obtain

solutions mathematically, but the solutions may be too superfluous to be used in

engineering. Therefore, according to the characteristics of study objectives and the range

in which the problems are to be solved, certain assumptions must be established to neglect

certain less important factors to make the solutions possible and useful in practice. In this

study, except for special declaration, the following assumptions are employed.

1. Shell body is fully elastic that follows the Hook's law.

2. Shell body is homogeneous and isotropic.

3. The normal strain, e, , perpendicular to the mid-surface is so small that it is

negligible.

4. The shell is so long in axial direction that the influence of supporting constraints

to the stress field can be neglected.

5. The influences of self-weight and temperature are negligible.

12



Let H I = H,	 ,r7, 4")

then
(4.1)

CHAPTER 4

GEOMETRIC EQUATIONS
STRAINS OF POINTS ON MID-SURFACE ARE EXPRESSED WITH

DISPLACEMENTS OF CORRESPONDING POINTS ON MID-SURFACE

4.1 Lame's Coefficients in Curvilinear Coordinate System

From an element of general elastic body in the orthogonal curvilinear coordinates 	 C)

and Cartesians coordinates (x, y, z) shown in Figure 4.1, the length of the arc PP, is

ds , = J(dx) 2 + (dy) 2 + (dz) 2 = l it	 +
(4 '\2

ê4

.423_02 	 (4`\2 	 (a)2

a4 	 Q04,1 	 t94)

ds, = 11 1

Here, H I is known as Lame's coefficient [11] . Similarly the other two Lame's

coefficients are:

	vac.12	 (V.+ (az)2
H 2 = H2 (, 	 4-) 	 \f\eri) 	 \. 5/7)

a \-
( 	 ( 	 \2.

H3 = H3 gl 	 = 	 + -4
	C 14' 	 gC

Correspondingly, the other two lengths of arc are obtained as:
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Figure 4.1 Differential element of a general body
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ds2 = 1-12 dr1	 for the arc pp-)	 (4.2)

ds; = H3	 for the arc pp-) .	 (4.3)

Obviously, Lame's coefficient is a ratio of arc length increment to coordinate increment

when each curvilinear coordinate changes independently.

4.2 Curvatures and Radius of Curvatures in General
Orthogonal Curvilinear Coordinate System
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4.3 Geometric Equations for General Elastic Bodies

Here, 11 1 , u, , u 3 are employed to express the displacements along the three directions of

coordinates	 ,	 , C) respectively, e l , e, e 3 are the corresponding normal strains

respectively and e23 , e 31 , e l , are the corresponding shear strains respectively. Now to



.■



1 (11 3

+
e3 H3 04; 	 H H3 1 w 	 H3H2 077

u 2
(4.13)

H3 0 U 3

H 2 077J1 3i

± H 2 0 ' u 2

H 3 04" 0-1 2
e23 (4.14)

u le31 =
H I 0
H 3 ,64"

H3 	 U3

H 1 c2 04 3
(4.15)
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1 al, 	 U3 G11 2 	Ui
e2 	+ 	

H 2 Or/ H H X2 3
	 + 

H 2 H 1

(4.12)

Equations (4.10) through (4.15) are known as general geometric equations in

orthogonal curvilinear coordinate system.

4.4 Geometric Equations for General Shell Bodies

The main difference of shells from general elastic bodies for us to consider lies in the

concept of mid-surface of the shell wall. When the origin of an orthogonal curvilinear

coordinate system is put in the mid-surface, the basic equations as well as boundary

geometry will be considerably simplified. Now , Figure 4.2 shows a differential element of

a general shell.

In the mid-surface, = 0, set the Lame's coefficients along the directions and rl to

be A and B, that is

Hg, 7, 0) = A	 and	 H, g, 77, 0) = B,	 (4.16)

then for the point M in the mid-surface, the length of the arc is

MM / = A 4. .



Figure 4.2 Differential element of a general shell body
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If P is an arbitrary point in the shell body, the length of the arc PP, = H 1 d and the

following stands:



1e‘ B 	1 1 2
_ 	 +o 1. 4" LB(1 + k24- )J	 B2(1	 k 24- ) 2 (5,77 }dC = 0 that is

21

(4.20)11 3	 w = vv( , 77)-

Also according to the assumption in Chapter 3, we have

e31 =0 and e23 = 0.

Substituting (4.14), (4.15), (4.18) and (4.19) into (4.21) , we obtain

(4 . 21 )

u' 	 I 1 	 Ow
, I + 	 = 0

0C LAO + Ic 1 4- )1 	 A`(1 + k 1 0 2 5

er 	u2 1 	 1 	 (34,7v
= 

041B0 + k 2 4")] + B 2 (1 + k 2 C) 2 Or/ 	
0

Since w is not a variable along with coordinate C , when we integrate the two equations

shown above with respect to C from 0 to C , the following can be obtained

and

_ 	 u 	 1 	 1 -+ 	0 k94- Lmi + k,c)] [A2(1 + k14-)2 ciC = 0	 that is

ir 	II, 	l c
LAO + 1c 1 C) j 0

r 	 1	 1'

L A2k1(1 + k 1 4 )] (4.22)

u2 	1'	 t 	 1 
(4.23)[B(1 + k 2 4")]0 	 1132 k 2 (1 + k 2 ‘)] 0

Set the displacements of all points in the mid-surface along the directions E and Ti to be

u and v respectively, that is

;=-0	 u	 u( , 77)	 and	 (u2)	 = v =	 77)	 (4.24)



Av=	 + k,4") u	 d‘;

U 2
	 (1 + k 2 ‘) v	 B 077

U 3 = W

(4.25)

(4.26)

(4.27)

e12
=

 A(1 + k 1 0 4■3 	 B(1 + k 2 C)

ex,,,
B(1 + k24")	

(1 +k2") v - 	 Or7

22

and solve u, , u, from (4.22) , (4.23) , (4.24), then take u 3 from (4.20) , the state

equations of displacements of shell body are obtained:

where, the displacements of each point in shell body (u, , u., and u 3 ) have been

expressed with the displacements of the corresponding point in mid-surface, u , v and w.

Now, substituting (4.17) , (4.18) , (4.19) , (4.25) , (4.26) and (4.27) into (4.10) ,

(4.11) and (4.12) correspondingly, the geometric equations for the general shell body are

obtained:

	

I 	8 1- 	 4- Av 	 k/

A(1 + k1) 0.4
0 + k i 41 u —

A 40 _ + 
	
I + k 4" w

,
C71

[A(1 + 1(. 1 1 	 F

	

+ 	 1 ( 1 + k 2 C) v - CB cl'eriv _AB(' + k1 00 + k7 4) L

e2
B(1+ k 2 4") c9/71_ (1 ± k2 ‘ ) v — ;3 eAvC1 + 1+k k2 2 ,` w

	1 	e r__

ei[B(1 + k24-)] 	 Av1
AB (1 + k 1 ‘)(1 + k2‘)L( 

+ k i o u - 
A cry

e 1 =

(4.28)

(4.29)



and 4'= 0 ,- - 	 = 1

23

A (1 + ki	 e (1+ k i c), _ y rev
A ej

B (1 + Ic 2 C) et 	 A (1 + k )	 •
(4.30)

Here, the strains of all points in the shell have been expressed with the displacements of

corresponding points in mid-surface.

4.5 Geometric Equations for Cylindrical Shell

Now we are going to derive the main results of this chapter, that is, geometric equations

for circular cylindrical shells. Because huge quantities of cylindrical shells used in

engineering are thin walled shells, that is, the wall thickness is small enough (usually

?_ 10), a concept, so-called mid-surface, is introdued as shown in Figure 4.3.

Here, based on the geometric equations for general shell, the following special

conditions are established to simplify our results:

a. In the case of circular cylindrical shell, k, = 0 , and k, = 1/ R,

b. For all points in the mid-surface in the coordinate system shown in Figure 4.3,

therefore, from (4.16) and the definition of Lame's coefficients mentioned earlier,

A =B  = 1,

	

c. Because of thin walled cylindrical shell, 4 	 —
t 

and t	 R , which means that
2

1 + —
R 

= 1 + k 2 4"	 1	 approaches zero)

Substituting these conditions shown above into (4.28) , (4.29) and (4.30), one obtains

(4.31)
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Figure 4.3 Differential element of a cylindrical shell body
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CHAPTER 5

PHYSICAL EQUATIONS
RELATIONSHIP BETWEEN STRAINS AND INTERNAL FORCES ON THE

MID-SURFACE OF THE SHELL

For a cylindrical thin shells, one may express stresses, strains and displacements of all

points in shell body with generalized forces at the corresponding points on mid-surface.

Therefore, the normal and shear stresses of all point in the shell body are to be simplified

into the stress resultants, moment resultants and transverse force resultants at the

corresponding points on the mid-surface.

In Figure 5.1, (a) and (b), the plane perpendicular to the -axis is called -plane

and the plane perpendicular to the maxis is called n-plane. In the -plane, the normal

stress oi is simplified into two parts on the mid-surface: normal force per unit length N 1

and bending moment per unit length M 1 . The shear stress T12 is simplified into two

parts on the mid-surface: shear force per unit length S 12 and twisting moment per unit

length M 1 , . Also the shear stress T 13 is simplified into a transverse force per unit length

Q, on mid-surface.

Similarly, in the n-plane as shown in Figure 5.1 (a) and (b), the normal stress a; is

simplified into two parts on the mid-surface: normal force per unit length N., and

bending moment per unit length M 1 . The shear stress T 21 is simplified into two parts on

the mid-surface: shear force per unit length S 2 , and twisting moment per unit length

M 21 . Also the shear stress T 23 is simplified into a transverse force per unit length Q,

on the mid-surface.

26



Figure 5.1 (a) Membrane forces resultants
on mid-surface

Figure 5.1 (h) Bending moment resultants
on mid-surface

N,

M11
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Among the these normal force, moment and transverse force resultants as shown in

Figure 5.1, N , , N„ S I , and S 21 are normally called membrane resultants, as shown in

Figure 5.1 (a), and m— 1 , 	 , M12 M21 Q i and Q 2 are usually called bending

resultants, as shown in Figure 5.1 (b). Since now on and in the sequel, they are called

internal force and moment resultants . These internal force and moment resultants are

derived as follows.

f t,2 al RR + od n] 
=	 f	 o-,	 + 

Ri-t/2	 Rd77	 -t/2	 -
N 1

M 1
,12 (TAR Odril d‘

=
LI2 	Rd77

IT/2 Ti2RR + )1:177} 	t/2=-t/2	 Rd77	 4/2

r a ,[(R + C)dri] 	02
=S 12 = J-1./2 	 Rdri	

d4-	
-U2 r12.

(

1 +
Ri

(

r1, 1 +
- R)

1 +
R'

is 1/2

c5
4/2

(5.1)

(5.2)

c/4"	 (5.3)

(5.4)

and

ft/2

-U2

r13[(R 0c1711 
]di x/ 2 T 	 d‘

-t12 	 13 (5.5)

N 2
pi2 0-2 ck 

614-
d4/2

M2 =
a, 4

-ti2 	
d‘. =

M21 	

102 	 tI2d =
-t12

t!2

-t/2 
cr2

t

-t/2 
°2 .4" d4"

-t/2
r 21 d‘



E r

Qi = 1- 	 1(61 + Pe2) + (xi + /x2)2) Clp -

CT2	 1 - 
E 

2[(62 + /461) 	 Cr2

T 1,2 
= 	 = 	

'2.1 	 2(1 + .6'12	 2 z12C).

29

,, c71
S21 	

ft/2 r
-di: • d‘ =-1'2

1/2

41 2
r 21 dC 	 (5.9)

try T,3 d
Q2 	 dc = 	 r23 cl‘ . 	 (5.10)4 -

According to the assumption in Chapter 3 that the influence of normal stress 63 to strains

is negligible, one obtains the relations between stresses and strains from Hook's law :

E
CT	 1	 142 (e1 	 Pe2)

E
CT,_ 

	

	(e, + /le i )
1 — p -

E
12 = T21 = 	

 
e12 •

2(1 + p)

Substituting (4.31), (4.32) and (4.33) into the above three equations gives:

As far the shear stresses r31 , r 13 , r32 and r23 , there are no simple formulas in use for

them and the following is suggested [11]:

t
2

T.31 = 7 13 = 2(1 — /./ 2 )■‘2 4 j
61 2

V W (5.14)
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T 32 = 7'23 = 	 • 	 IC 	 t 2	c 
V 2 W.

2(1 —	 4 j
(5.15)

Substituting Equations (5.11) through (5.15) into Equations (5.1) through (5.10) and

considering that u , v and w are not the functions of the variable C , we obtain the

physical equations for the cylindrical shell body as follows:

t/2 	 E	 r 	 r 	 1-■
-1(61 + Pe2) + 4"(x1 + PX-A 1 + 	 d

412 1_ p 	 Ri

Et	 1- 	t2
- 1 - p 2 	

[
(61 + 41162 + 12R (Xl	 PX2)] (5.16)

M1 =
ti2 	 E r 	 (

2 	 1( 61 + P62) + 4. (Z1 	 PX,)] 1 +4/2 1 p

Et 3 	,1
12(1 — /42)LRk6]	 /-162) + (Xi + 11x2)]	 (5.17)

M12 =
t2 	 E (

\ (612 + 2 CX12 ) 1 +-t12 2(1 + /1 )

Et 3 	( 1
— 12(1 + p)Q.R 612

 + X 12) (5.18)

S 12
t/2

	(61., + 24-X 12
-t/2 2(1 + 1.1

+ 	 dC
RI 

Et	 t 2 	 ■

2(1 + p) 12 	
X r6R `j

t/2 	 17 2
	I	 V2 W 1 +

t 2

4 j 62 	 R

Et 3=	 v2w
12(1 — p - )

(5.19)

(5.20)

N 2
st12 	E 	r

1(62 + P61) 	 C(Z2 	 d‘
"2 1 — p 2 
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33

S 1 2 	12M 1,
I- I 1 = 1 1 - t 3

t
2
—
t 	

—2-, (5.36)

where, on the right hand side of each equation, the first term represents the membrane

stress due to internal forces N1 , N2 and S12 , which are constants across the entire

thickness of the shell, on the other hand, the second term represents the bending stress due

to moments M1 , M2 and M12 , which linearly vary along the thickness of the shell and

reach zero at the mid-surface of the shell.



CHAPTER 6

EQUILIBRIUM DIFFERENTIAL EQUATIONS
RELATIONSHIPS BETWEEN THE INTERNAL FORCES AND LOADING ON

THE MD-SURFACE OF THE SHELL

Figure 6.1 describes the same differential element from a cylindrical shell. The membrane

stresses, such as normal stresses, shear stresses and transverse forces, are shown in

Figure (a), and the bending moments and twisting moments are illustrated in Figure (b). X,

Y and Z represent the loading per unit area of mid-surface along the longitudinal,

circumferential and normal direction respectively, including volume loading and surface

loading.

From Figure 6.1 (a) and according to / 	 = 0, the following is obtained:

a\T 	V	 62 LN1 	
, 

 cg jdri — N l ch i+ LS 2 , + 	 dr ijcg — S,,cg + Xcg dri = 0,

according to / F77 = 0, the following is obtained:

	1 r 	 r
+ 

a z 4)chi — S 12 dryj+ [(N, + 077 	 chi cos R J — N2 C4]

d[ Q 2 + 	 d71)4(Sin 	 Y cgdri = 0 .

and according to E Fc 	0, the following is obtained:

chi
— Q 1 d7ii+ I Qz + 	 - Q 2 41
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(	 ZN, 	r	 d.77
-- N, ±	 -	 I sin—

R 1 
+ Zdd77 = 0.

From Figure 6.1 (b) and according to I 1\4 4 = 0, the following is obtained:

	°'M12 ,4 	 FA g 84
[1\4 12d71 	 M12 	 " ist 	 –	 2

c9

■ 	 clQ, ( 	 77d
--)d77 = 0,Q, +	 d77 cos-
R

according to / M n = 0, the following is obtained:

chi
(2VI 21 d77 d4cos R
0/7

1
M 21 + M

84, 
 di:d77 – M, d77

1j
I
L■ 
+ 

c9 d d774 = 0,

and according to E M c = 0, the following is obtained:

(S i , + 5 ' 2	 Wd774 –(S 2, + 	 21 d77 11077 –(M 2i + N121	 d77) Wsin	 = 0
dOil 	 (271 	 R

Considering sin
'd77 	 chi

	and co—
R	

1 as well as neglecting all terms with
R R

third or higher order, then from all six equations shown above, one obtains the equilibrium

equations for a cylindrical shell as follows:

521 +X = 0
	

(6.1)
077



Figure 6.1	 (a) Static equilibrium of forces on a differential
element of a circular cylindrical shell body



Figure 6.1 (b) Static equilibrium of moments on a differential
element of a circular cylindrical shell body
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+ Y = 0 (6.2)

+Z = 0 (6.3)

= 0 (6.4)

= 0 (6.5)

S12 - S21 - 	 = 0.
R

The Equation (6.6) is not a differential equation and it is always satisfied when the

physical Equations (5.13) , (5.14) and (5.19) are substituted into it, therefore, it is an

identity and it can be eliminated from the basic equations. Furthermore, the term —
Q2 

in

Equation (6.2) represents the influence of the transverse force to the equilibrium in the

circumferential direction and it is suggested to be negligible for simplification [11], so the

reduced form of (6.2) is obtained as follows:

(2512 + IN / +Y = 0a3 	 6977

Therefore, the equilibrium differential equations for the cylindrical shell are reduced

to five equations, which are (6.1), (6.3), (6.4), (6.5) and (6.7).

(6.6)

(6.7)



CHAPTER 7

BOUNDARY GEOMETRY
INTERSECTION GEOMETRY AND GENERALIZED FORCES ON THE

BOUNDARY OF INTERSECTION

7.1 Geometry of Intersection Curve

In the Cartesian coordinate system (x, y, z) shown in Figure 7.1, the equation of a

cylindrical shell with radius R is



Figure 7.1	 Cylindrical shell with oblique nozzle / vertical elliptical nozzle
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In the case shown in Figure 7.1, since O. = 5 = 0 , the transformation matrix is reduced to

cost 0 sinful
[A] = 	 0 	 1 	 0

L— sin), 0 cosh,

therefore, according to (7.3), the relation between two coordinate systems is obtained as
follows:

(x0 	r cosA, 0 sinil (x)	 x cosA + z sing

Yo	 0	 1	 0

— sinA,z() 0 cos)] - x sink + z coshjL 
Substituting (7.4) into (7.2) gives

Y
2 

+ (- x sin2 + z cos2) 2 =

then, (7.5) is the equation of the nozzle in the coordinates (x, y, z). For simplification, the

coordinate system (x o , y 0 , z0 ) will no longer be employed.

To demonstrate the concept of the intersection between the shell and the nozzle, by

substituting z = 0 into (7.5), the intersection between the nozzle and the x-y plane is

obtained as

(7.4)

(7.5)

y 2 + x 2 sin 22, = r 2 	or
(

X
2 	 y 2

= 1	 (7.6)\ 	 r r
r

Obviously, (7.6) is an equation of an ellipse in the x-y plane. The length of semi-major axis

of the ellipse is -
i , 

and the length of its semi-minor axis is r . If X. is equal to ic/2 , that
sink,

is when the nozzle is perpendicular to the shell. This intersection ellipse in the x-y plane is

reduces to a circle. Now that circle or ellipse are planar curves, as a space curve on the

cylindrical surface, the intersection between the perpendicular nozzle and the shell can
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never be a circle or ellipse. Accordingly, as a space curve on the cylindrical surface, the

intersection between the inclined nozzle and the shell , shown in Figure 7.2, can never be

an ellipse either. Now, what kind of curve is the intersection between the inclined nozzle

and the shell ? The answer is that this curve is determined by the two simultaneous

equations consisting of Equations (7.1) and (7.5) as follows:

{

y 2 + z2 . R2

y2 + (— x sink. + z cos.1) 2 = r 2

On the other hand, one may consider that if we take the ellipse expressed by (7.6) as a

generating curve and develop an elliptical nozzle perpendicular to the x-y plane, the

intersection between this elliptical nozzle and the shell can be determined by the two

simultaneous equations consisting of (7.1) and (7.6) as follows:

2y + z` = R2

X2 	y 2

r	 r 2
	 (7.8)

sink/

Because the second equation in (7.8) has only two variables x and y, (7.8) looks simpler

than (7.7). In fact, the distance between the point on the intersection of the inclined nozzle

and the shell and the corresponding point on the intersection of elliptical cylindrical nozzle

and the shell is equal to z / tank (see the triangle determined by three vertexes

A0 A l and A:2 shown in Figure 7.1). If (x + thank ) is substituted into (7.8) to replace x,

then (7.8) becomes the same as (7.7). This means that these two intersections on the shell

surface are the same curves, but they are in different locations along the shell surface.

(7.7)
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Therefore, from now on, one may take the intersection determined by (7.8) as the

intersection between the nozzle and the shell because this brings tremendous simplification

for the problem. Furthermore, to distinguish the oblique nozzle from the straight nozzle

which have the same intersection on the shell surface, the inclined one is called oblique

circular nozzle and the straight one is called straight elliptical nozzle respectively.

Now the cylindrical coordinate system (p, 0, z) is established which has the same

origin and z-axis as the coordinates (x, y, z) as shown in Figure 7.2. In this cylindrical

coordinates, the parametric equations of the intersection (7.8) are as follows:

x = 	 r cos()	 (7.9)
sink,

y = r sine	 (7.10)

z = viR2 y2 VR2 (r sin9) 2 (7.11)

where and in the sequel, for simplification, only the half of the shell above the x-y plane is

considered.

Noting that p = 1,1x 2 + y 2 	and	 —
R 

= fl , then, in the cylindrical coordinates

(p, 0, z) , the equation of the intersection curve (7.8) becomes as follows:

p = 	 (1 – c,os2 2 sin 28r2
si

r
(7.12)

z = R (1 –	 sin29 ) 112 .	 (7.13)

The cylindrical coordinates (p, 0, z) in x-y plane is a polar coordinate system (p, 0).

The other polar coordinate system (p 1 , v) is also established to analyze the boundary
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conditions around the intersection area as shown in Fig. 7.2. The relation between the two

kinds of polar coordinates about all points of the intersection curve can be determined as

follows (see Figure 7.2).
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Also because L 0 1 B = LOA , that is 	 p, cosy/ = p cos0 , one arrives

cosy/ = 	 cos0

then substituting (7.16) into the above gives

cos p cos r9 (7.17)    
(10 	 v1P:

p 2 cos 2 O + 2R 2 – 2R 2 [1 – 	 sin0 IR

112     

and

sin W= (1– cos2 
Ili) 1 2

where

I

)11,2 	 1 1/2

-1 
	2 R2 – 2R 2 Il – 	 sin0

L
(7.18)

2 0 + 2R 2 – 2R 2 1 – ( 2 • 0 2 11/21)`' cos 	 [ 	 R sin j

arccos
p cos°

1/2

p 2 cost 0 + 2R 2 – 2R 2 [1 – /—RP sin 
0 .., 2 11/2

i

On the other hand, from Figure 7.2 and Equations (7.8), one may establish the

relationship between the coordinate system (x, y, z) and the coordinate system C) as

follows:

x =

y = (7. 1 9)42 sin 2 A

z = NJR2 – y 2 = -v- /R 2 – r 2 + 	 sin 2 A
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7.2 Relationship between the Directions
of All Kinds of Coordinate Systems on the Boundary of Intersection Curve

Now, one can consider the generalized forces on the intersection between the shell and the

nozzle. By means of substituting the geometrical equations of Chapter 4 into the physical

equations of Chapter 5, all generalized forces can be expressed in the directions F , /I and

, which will be reported in Chapter 8. But the given boundary forces, generally

speaking, distribute in the three directions as below:

1. In the mid-surface, it is perpendicular to the intersection curve, as indicated by

unit vector i, , as shown in Figure 7.3.

2. In the mid-surface, it is tangent to the intersection curve, as indicated by the unit

vector i t , as shown in Figure 7.3.

3. In the normal direction of mid-surface, it is perpendicular to the intersection

curve, as indicated by unit vector i n , as shown in Figure 73.

The relation among the triads is determined as follows:

x i t = i n	(7.22)

To analyze the boundary conditions, two more sets of unit vectors are also established as

shown in Figure 7.2 and Figure 7.3. Accordingly, we also have

x i e = i z 	(7.23)

x i w = i n .	 (7.24)

In (7.22) and (7.24), the two unit vectors i n are the same.

The relation between the two sets of unit vectors in (7.23) and (7.24) is

determined as follows:
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Figure 7.3 Directions of unit vectors on intersection



costa) = (1 — 
s i n20 1 P1 — 

k.R
 sine

1 — 

1
sin 2 0

R2

—2 }1/2

112

r
	  1 - cos2 A, sin 2 e)

_sinA
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[B] i
z

(7.25)

where the transformation matrix [ B ] has the form as follows [ 11 ]:

r cosecosw + sinesinvcos0	 sinecosig + cose sinig cos0	 sinig sine

[B] =1 — cos() sinv + sine cosy/ cost!)	 sine sin cc/ + cos 0 cos yr cosh — cos y sin(I)

sin 0 sin0	 cos° sin0	 cosh

where all elements in [ B ] have been defined as before.

To simplify the calculation and speed up the computation, (7.15), (7.16), (7.17)

and (7.18) are expanded into power series of trigonometric functions of variable 0 as:

r	 \i/ 	 1
p = —

sinA 
(1 — cos2A sin20)

sin 	
— 	 A sin29 + °(cos42.))

1 — 1 /3 2 sine 9 + 0(0 4 )1
2

P . 	 [ r 	N1/2

R
sink = — sin = —

R 
sin 0 

siti2
k1 — cos2A sin2 6.)

z = R (1 — fi 2 sin2 Or= R

(7.26)

(7.27)

sin
sin A

,

— 1—
2

cos- A sin 2 0 + O(cos4 A) (7.28)   

sin22 sin
2 e + O(/ 4 )= 1 — (7.29)
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= aresi —
R
 - sin = arcsin

_
—
sinit

sin 9(1 — cos' A sin 2 t9) 
1, 1

= sin sin OL1 —	 cos' A sin' 9 + 0(cos' .1)1 	 (7.30)

= [p 2 cos28 + 2 R2 (1 - cosh)} '12   

Y2r2 	 1 ( fi
sin 2 A (l

cos2 A sin 2 9) cos2 0 + 2 R2 — 2 R2 [	
2

1 — — 	 sins+ 

	  1=
sirnA

( — cos22 sin20 cos20 + \1/2  

r=	 1 — 1— cos2 A sin 2 0 cos29 + 0(cos40sin/1_	 2 
	) (7.31)  

COSW 	 cos°

r (	 ■1 -]1	 1
= —

sinA.
1 — —cos2 sin 2 e + ..) r 	—

2
cos2 A sin2e cos20	 cos82 sink.

r	 1	 .
= 1 — —

2
cos2 2 sin 2 9 +

■
+ 1 cos .' 2 sin 2 0cos2 8 +	 cos 8

2

= cos() Li — — 	 cos4
12 cos' A sin49 + 0(A)

	1 	,121i12

sing = (1 — cos20 112 = 1 - cos8 1 — —
2 

cos2 A sin40

= sin() L1 + —cos2 2 sin 2 19 cos2 & + 0(cos4A) j2

(7.32)

(7.33)

Now, substituting (7.28), (7.29), (7.31) and (7.32) into transformation matrix [ B in

(7.25) gives that
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FB 11	 B12 B 13 1
B = I B 21 	B22 B23 ] (7.34)

_B31 	B32 B33

1 	 fl 2where 	 B11 = 1 — + 0(cos4 /1)
2 	 sin A , 

sin4 0



53

=-- - R/32 sin cose 	 + 	 /3 2 sin 2 0 +0(f3 4 )] 	 (7.35)

2 }- 1/2

cow 	 + tan 2 (P) 112 = {1 	 R/.3 2 sine cos° 1 + 1 2 sin` +2

[1 + R2/34 sin g1 	 cos 2 0 + ..1 -1/2

=Li - -- R2 	 sin e 6 cos 2 + 066 42- 	 ) J 	(7.36)

sinp = tamp cos9

\ -1 - 	 1
= - Rfl 2 

sin 	 coshL + — /3 2 sin e 0 + .. . 2  II_1— — R2 134 sin'
2

oce

	= Rig 2 sine cose 	 + I 2 sin g 	+ 0(13 4 ) . 	 (7.37)

	

By substituting (7.33) into (7.25), the triads of unit vectors 	 i p, , 	 and i n can also be

expressed with the trigonometric functions of variable 0 :

1 
 a2

1 pl = 	—	 .L 1 	
2 sin 2 .1 

sin 4 e + (c054 e)] i p

r 	 1
+{-

2
,40 sin' 0 .01_ 1 - -2 B 0 sin 2 9 cos2 0 + (cos4e)ii o

+{
— -15--sin e

 B [i — 
—
2 

zcos2 sin40 + (cos4e) i
sin/1 L

	r	 1  p 2

	=L	 2 sing. sin4 9 
+ 0(cos42) i

P 2
+ (-

1
A

°
 sin 30 cose) i o 

fi	 .+1 -	 811,
L

(7.38)
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1
—
2

sin 3 0 cos 0[
sin2
	  + cos t A cos' + 0(cos 4 A)] i

1  p 2 	1+,1 — 
2 sin2A 

sin2 Ocos 2 0 + 0(cos4 A)] i o

+{— 
sink, 

sin cos0
r
L i - 2

cos 2 sin 2 8 + 0(cos4A) 
1
] 

(cos A) .] io
1 

sin 3 COO fl 2 ‘\

2 	 L	 2 sing,
sin' 8cos2 8

Asin2Aiip+11— 1

,52
	 .4_ 0 	 4

13+ — —
sinyl

sine cos0) i z (7.39)

in —
fl 	 . 2 	 r 	 2

sink,
stn	 - -

2
cos	 sin	 + ...] i p 

fl{F+ —
sin.% 

sin() cos 0L1 — -cost A sin28 +
 2

r 1 fi 2

— 2 sin22 sin
2 0 i z

fi=(----
sin2

sin 2 0)i + (--
sinA, 

sin 8 cos()) i 0  

1 2/4
1 — 	 sin2 0 +

2 sin A
i z 	(7.40)  

Now, from Figure 7.3, one obtains the follows:

i t = (— cosp) i o + (sing') i z

r 	 1= 	 — _2 R2 4/3 s . n 2J.	 cos20 + 00 4 ) i e

+f— R/3 2 sine cos0
r
 1 + 1 2 sin 2 + 0(/3 4 )i
L	 2 
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1.1- 	 1 2 4 • 2 9 COS20 00 4 1i= - [1 - 	 fl sin

Rfl 2 sin 0 cos

1
— —

2 
R 2 /3 4 sin 2

+ —
1

/3 2 sin g 	+
L	 2

8 cos 2 0 + 0(/3 4 )

)i} i

(— R.,8 2 sin 0 cosO) (7.41)   

iv = it 	 =

i

10 - Li - 2 It- fl 4 sin2 0cos2 0+...

fl 
ie	 sine) cos() +...

sink	 sin
0+...

sin A

iz

—Rfi 2 sin 0 cos° +...

1	 1
	 ,52

— 	
2 sin2A, 

sin2 0 +..    

Q3 	( R i4 2

= - 1 + 
2 sin2A

sin20 +0(8 4) i p + —	 0cos0 i e

+

=

(
+	 sin2 0

\ sin A, iz (7.42)

Now, all the expressions to determine the relations of the directions between all

generalized forces along the intersection of the shell and the nozzle are obtained as

follows:

COS(1 v pi) = COS(1 „ j w ) = 	 • 
Pi

	3 	
•

= — 1 +	 /6	 sin 2 9 +.. • ,
R/3 .

	sink	
cos° +.

.., sink
+...

2 sin

( 1 )6 3 	1
• — 

2
2

sin3A 	
0+... ,	 —2 4 sin 30 cos 0+..., —	 sin 	 0+...

sinA, )

1	 fl 2 „
= - 1 + (7.43)0	 + 00 4 )

	

n-	 cos-0
2	 sin2A, s

in 2
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cos(i,,	 = — cos(i, , i )

— 1 + 	 sin2 +..., — 	 sin 3 0 cos0 +..., 	 sin20 +...2 sin 	 sin.A.

fl 2	 3

fl •	
2 sin2/1, sin Ocos0+..., 1 — 1 ja 2 sin2 0c,os20 +..., — 

sin.. sin 0 cos° +...2 sin2 A,

+ Rfl 3 sin A.
sin' Ocos0 + O6 	 (7.44)2 sin2,

1  IV 	Rfl 	fi



CHAPTER 8

DERIVATION OF ANALYTICAL SOLUTIONS

8.1 Derivation of the Basic Differential Equations

By means of substituting the geometrical equations (4.31) , (4.32) and (4.33) of Chapter

4 into the physical equations (5.26) through (5.31) of Chapter 5 , the following is

obtained:

Then, substituting (8.1) and (8.6) into (6.4) and (6.5) of the equilibrium differential

equations of Chapter 6, one obtains

57
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and substituting the expressions (8.1) through (8.8) into the (6.1) , (6.7) and (6.3) of the



02
F (8.17)p 02

e2 e2
+ + I F	 (8.18)--2-

o 52
U

511`

o T
L

v= -	 (2

Subtracting (8.15) from (8.14) , the following is obtained:

59

o	 e2	 021	 0 o2
[(2 + p)-- 	02 	 6.1772 	 + 	 \eri2 	 p 	   = 0.	 (8.16)  

From the information provided by (8.16), one can imagine that if there exists a function

F = F	 7-1) which makes that

and noting that the total differential operators of the function F in (8.17) is the same as the

total differential operators of the displacement v in (8.16). And the total differential

operators of the function F in (8.18) is exactly the total differential operators of the

displacement u in (8.16) with a minus sign, it is obvious that the equation (8.16) will be

fully satisfied.

Our purpose is to make the possible function F satisfy (8.12) and (8.13). Because

Equation (8.16) came from the combination of (8.12) and (8.13), as long as the function F

satisfies either (8.12) or (8.13), the function F will satisfy both of (8.12) and (8.13). Now

substitute (8.17) and (8.18) into (8.12):

„92
	1 — p e2 r ( O2 	 52 	 1

2	 ori2iL0g„9772	 p 	 t F,1+

+ 1.1 a 2  { e e2 a2-	
+ P

C11 
± 	 + 11) 8V _I 	 R

F = 0
2 	2 

that is
e 	

P o 0 4

04
0

+ 2
61 ,
	 2 ± -74 )F

 6-117 	 6-71

p
R

0
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thus
r 	 ( 	 e4 	 1

w = LR 	 \oc, + 2 t 2 ori 2 	 .0774)Fig.

Since only one of the expressions of displacement w , instead of all possible expressions of

w, is needed , the arbitrary function from integration has been ignored. then one obtains

w = R V 4 F	 (8.19)

4
2 	 e4 where the double Laplacian operator V 4 = V 2V = -oe + 2 t% 21:9172 + e19174

Now it is clear that (8.19) is the requirement for the function F to satisfy both (8.12) and

(8.13).

To make function F a displacement function, it is required that function F must satisfy

not only (8.12) and (8.13), but also (8.14) simultaneously; otherwise, F still can not be a

qualified displacement function. To see the necessary conditions for the function F to

become a displacement function, substitute (8.17) , (8.18) and (8.19) into (8.11) obtains

the following:

e ( 02 	 02 1 	 1 e 	 e 	 0' }
R O L (2 Orj2 	

ey 2 Fi 	 e37 - 79-7 [ 	 + (2 + p)TJ F

1	 t2 	 1 - it/ 2
V 4 F) 	 V4(R V 4F) = 	

R 	 12 	 Et

therefore it is obtained that

'OF +
	Et  el 	 Z

-

	

DR - a 4 	RD
(8.20)



= – Et pe el/S I2
	

S21
84F

M 1 = – RD

M2 – RD

M 12 =

02 .\

+ 	 6977 2

p
e )

8 2
P ) RD

g
	 V4F

eti

V 4 F

V 4 F

61

Et'
where V 8 = V 4 V4 	and D =  	 is known as flexural rigidity of thin

12(1 – ,u 2 )

shell.

Now, it has been determined that the function F can be employed as a displacement

function as long as (8.17), (8.18), (8.19) and (8.20) are satisfied simultaneously. Before

the form of function F is selected, one may express all internal force and moment

resultants with the possible displacement function F. By means of substituting (8.17),

(8.18) and (8.19) into (8.1) through (8.8), the following is obtained:

84 F
N = Et a9 249 . 0)7 2

84F
N-2 = Et 4

Q, _RD —V6F

Q 2 	- RD 
o 

V 6F .
I

(8.21)

(8.22)

(8.23)

(8.24)

(8.25)

(8.26)

(8.27)

(8.28)



nil.

R

(8.29)

(8.30)

(8.31)

(8.32)

(1 +2,u)n 4 2r 4
frig)

8.2 Displacement Function and General Solutions of Basic Equations

If one attempt to use Fourier's series as the form of the displacement function F, that is

ing

	

F = F(, = fo() +	 fn () cos —77
n = 1 	 R

the expressions (8.21) through (8.28) become as follows:

2
-Et L 	

	

n it 	 nn
=

	

	 fn g) cos
Rn . R 2

(rig
N, = Et [0 ( )+ L f;(2,4) () cok R

n = 1

S 1 , = S 21 = Et in-Lr-R	 sinl
n = —

M1 = - RD{ fro , . 4. i ... 	 (2 + Lon 2 g 2 f, _

") 	 [ tn g) —	
4 2 	 n4) g)

n = 1 	
R

— R6 fn g) ] c°&-R-17/

iin 6 7.1.6	 1	 ( n7i. 1

M = RD{ p f (6) , _, + ,za, F _ (6) x 	(1 + 2,L)n2z2 f(4)(0 4. (2 + A )n
4 7/.4

2

	(' ) () i[iu fri G)-	 R2	 R4

n 6 7/-6 	1

	

- R6 	  fn ( )]

.c—,  7 c r 	 2n2Z 2 	 n it 4 	 1	 (....„.., '.\

M 12 = M21 = 0 — pADL II Lf, ,̀5)()- 	 r g) 4- '"4	 fn ( ) Isiri-77
, r 1 R	 R2 n	 R4 	 j	 R i

g)

Q = - RDi 	{f.7v) + ± r f ( .7) (L_I 	f

	

 [-n ■ ) - - -	 R2
3n 2 7r 2 f(5)

	 11
(5)

 ig) + R4	 f :

3n 4 71.4

- R6 f'r, ( D icos jR-ri
	n 6 a. 6	 1 	 inn. )}

rut
R

(8.33)

(8.34)

(8.35)

(8.36)

62
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nn- 	
", 4 4	 n673n - n-- 	3z-	 1-6 	n(nn-

Q2 = RD	 .)- 	 fn ()  	 f(4)	 ISi 	 77 .(8.37)R fL	 R2	 R4	 R6 n	 Ri

Substituting (8.29) into the governing equation (8.20) gives

Et 0 4 \	 z
4 Lf0	 ± fn()C°y"—R

X08 + 
DR 2 	RD

when Z = p = constant in the case of internal pressure, the above becomes

Et	 d 4 11f0(\ n 2 7r 2_zt d66 + , n 4
g

4 Et \ d 4

DR 2 g 4 ]	 \`') R2
6

R4 + DR2

n 6 ;z-6
 d2 2 + 

n' el
— 4 	 I f

n
 ()Icos

R 6 g	 R i

( n ii.
=-7-- 77

' ,
= p-

1[1. RD
(8.38)

where the constant -2- can be expanded into the same form of Fourier series as the
RD

form on the left side of the equation. Assume this Fourier cosine series has the form as

follows:

p

RD

J o

2
nir

+	 Jcos	 7
n = 1 n 	R

— R 7 R

2	 2p

	

°	 Ro	 d71 = RD

	

then	 J

	

and	
f 	 (n7r7 \-1

	

nd	
2

cos R 	d7 = 0	 n = 1, 2, 3, ...

Therefore, from (8.38), two equations are obtained as follows:

LF- d

d88

 + D

E

R

t

2 dC1; 

l
4j 

f
°
() = 

RD

	ri d 2 	n-7T '\4	Et 	 d4  1
1 fn() = 0

	

d-
	 R2	 DR2

n = 1, 2, 3, ...

(8.39)

(8.40)
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(8.39) is a non-homogeneous eighth-order ordinary differential equation and its general

solution consists of the summation of a particular solution and a linear combination of

solutions of its homogeneous equation. The particular solution of equation (8.39) can be

visually found as follows

pR Af-
° 24Et

(8.41)

and the solution of its homogeneous equation can be determined by its characteristic

equation:

Sgo + 4 G4 S40 = 0

where G =
/ Et \1/4

and this characteristic equation has two pairs of conjugate   

complex roots and four repeated real roots as follows:

S 12 = G(1 ± i) , S 34 = — G (1 ± i) and	 s5, 6, 7, 8 = 0.

Therefore, the complete solution of equation (8.39) is obtained as follows:

() — 2
p
4
R
Et + 1( 01 cosh(G) sin(G) + k 02 cosh(G4) cos(G4)

+ k o3 sinh(G) sin(G) + k o4 sinh(G) cos(G)

+k 06 + k 06 + 1c 04 2 + k o,e	 (8.42)

where 1( 0 , , i = 1, 2, ... , 8 are arbitrary constants to be determined by boundary

conditions. But, noting (8.30) through (8.37), one can find that 1( 05 , k o6 , k 07 and k os

will never appear in any member of those internal force and moment resultants, so they

can be reasonably set as follows:

1( 05 = k 06 = k 07 = k o8 = 0.
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And the solution of the homogeneous equation (8.40) can be determined by means of

its characteristic equation as follows

Etn2z. 
2

	 *\ 4 + 	 -, S4 = 0
) DR'

n = 1, 2, 3, ...

The four pairs of conjugate complex roots of this characteristic equation are as follows

a. ± b. i , – a. ± b. i , 	 c. ±	 i	 and – ±	 i .

Therefore, the solution of equation (8.40) is obtained as follows:

fn (j) = ea [k.,cos(b.j)+k.2 sin(b.j)1+ e-an [k.3cos(b„j)+k.4 sin(b r,j)]

+	 [k.5cos(d.j) + k.6 sin(d.j)] +	 [k.7cos(d.j) + k a8 sin(d n )]

n = 1, 2, 3, ...	 (8.43)

where a n , b. , c n and d, n=1, 2, 3, ... are as follows

a– 
211(M+ „16N 4 +M 4 +4N 2 )	 = 

,rf
—

4
(M+ VV16N 4 +M4 – 4N 2 )

4
(8.44)

c – „16N4 +M 4 +4N 2  , d =	 416N4 +M 4 – 4N 2 )
4	 n 	 4

and	 M =
Et \ "4

13,1t 2 )
nor

and	 N = R n = 1, 2, 3, ...

where k., ,	 i = 1, 2, ..., 8 are arbitrary constants to be determined by the boundary

conditions. Noting that

an > 0 and c. < 0	 n = 1, 2, 3, ...

we realize that the value of fn () and its derivatives will approach infinite as n increases.

Since the force and moment resultants can not be infinite as t increases, the following is

reasonable and necessary:



LL



+ k o, {— 4G 5 [sinh(W) cos(G) cosh(G) sin(G g}

+ k o3 {— 4G 5 [cosh(G) sin(G) + sinh(G) c,os(G5)]}

+ k,4 1--- 4G 5 [cosh(G) cos(G) 	 sinh(G) sin(G)]},

f,;6) (J) = k o , [— 8G 6 sinh(W) cos(Ga + k o, [8G 6 sinh(G) sin(Gg

+ k 03 [— 8G 6 cosh(G) cos(G)] + k 04 [8G 6 cosh(G) sin(G)],

rd'( ) = k 0 1 {— 8G 7 [cosh(G) cos(G) — sinh(W) sin(G)]}

+ k o, {8G 7 [cosh(GJ) sin(G) + sinh(G) con(Ga)

+ k o3 {— 8G 7 [sinh(W) cos(G4) cosh(G) sin(G al

+ k o4 {8G 7 [sinh(W) sin(G) + cosh(G) cos(Gg}.

For n = 1, 2, 3, ... , the derivatives of the function f n () are calculated as follows:

fn(i) () = ean4 [A, cos(b nJ) + A i2 sin(13„fl] + C an4 [A i3 cos(1).) + A i4 sin(1),A

+ ecn4 [B 11 cos(d n ) + B 12 sin(d n )1 + e'n'[B,3 cos(d„) + B i4 sin(d n4

i = 1, 2, 3, ..., 7

67

where

All = an kn , +bn kn, ,

A 13 	— a n k n3 + b n k n4 ,

B I , = cn k r,5 + d n k n6 ,

B 13 = 	 c n ko +d n k ns ,

A 21 = (a 2n — b n2 ) 	 + 2a n b n k n2 ,

A 23 = 	 — b ) k n3 — 2a n b,, k

Al2 = — b n k n , + a n kn,

A 14 = — b n k ro — a nk n4

B,„ = —d n k t,5 +c n k n6 ,

B 14 = — c n k r,8

A 22 = —2a n b n k n, + (en — 	 kn, ,

A 24 = 2a n b„ k n3 + (a 2„ — 	 k n4
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B 21 = (c 1 — d 2T, ) 1(.5 + 2c n d. k n6 ,	 B22 = 	 2cn ci n k n5 + (c 2.	 d.) k n6

B 23 = (c 2n d 2.) k, — 2c n d,, k ,	 B24 = 2c.d n 	+ (c2n — en ) k ng

A 31 	(a.3 3anbn2 ) k n1 + (3a;,b. — b n ) kn2 ,

A 32 = 	 (3a 2n b. — b 3 ) k n , + (a n3 — 3a.b 2n ) k n2

A 33 = 	 (a: 3anb n2 ) k n3 + (3a2n b n b 3n ) k n4 ,

A 34 = 	 (3a 2n b n — b 3 ) 1(.3 — (a:, — 3a n b n2 ) k n4

B 31 = (C 3n — 3c.d 2n ) k + (3c 2n cl n — d 3n ) k n6 ,

B 32 	— (3cd n — d n3 ) k ns + (c 3. — 3cn d 2n ) kn6 ,

B 33 = 	 (en — • 3cn d n2 ) ko + (3c 2n d n — d.3 ) k ng ,

B 34 = 	 (3Cn2dn — d 3n ) k, ( — 3cn d n2 ) k ng ,

A 41 = (a4n — 6a n2 b 2n + b 4n ) k n, + (4a:b. —4 a n b 3n ) k n2

A 42 	— (4a 3n b n 4a n b 3n ) k n, + (en — 6a 2n b 2. + b 4n ) k a2

A 43 = (a:- 6a 2. b 2. + b 4n ) k — (4a:b n — 4anb3n) k n4

A 44 = (4a 3n b n — 4a n b 3n ) k + (a: —6 a 2n b 2. + b 4n ) k n4 ,

B 41 	(Cn4 6C2nd2n	 d 4.)	 + (4c 3nd.	 4c n d 3n ) k no ,

B42 = 	 (4C:dn 	 4c.dn3) k +	 — 6c2nd 2. + d:) k n5 ,

B 43 = (C4n 6C2nd2n 	 d 4n ) ke — (4c 3nd n — 4c n d 3n ) k ng ,

EL, = (4cn3 d n — 4c.d 3n ) k„ + (c4n 	6end 2,, +	 kng ,

A 51 = (a sn — 10a 3.1) 2. + 5a n b: )k ., + (5a:b. —1 0a 2nb n3 +	 kn2 ,

A52 	— (5a 4n b n — 10a 2„b 3n + b 5n )	 + (a sn 	10a 3n b2n + 5a n b 4n ) k n2

A 53 = 	 10an3b2n + 5a„b 4n ) k a, + (5a4n b n 	10a 2.b 3. + b n )
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A 54 = 	 (5a 4.b. - 10a 2.b: + W.) k.3 - (a .s. - 10a:b 2. + 5a .b 4. )

B 51 = (c -5.	 10c 3.d 2. + 5c. d 4. ) k.5 + (5c 4.d. - 10c 2. d 3. + d.5 ) k.6 ,

B52 = 	 (5c:d. - 10c 2.d! +d 5.) k,a5 + 	 - 10c 3.d 2. + Se n d': ) k.6

B53 = 	 (C5n 10e.e. + 5c.d 4n ) k., + (5c4.d. - 10c 2.d.3 + d 5.) k,

B54 	- (5c:d . - 10c 2.e. + d 5.) 	 - 	 - 10e. d 2. + 5c.e. ) kris ,

A 61 = (a:- 	 15a 4.b 2. + 15a 2.b 4. - b 6.) 	 + (6a s.b. - 20a 3.b 3. + 6a.b 5.) k.2 ,

A 62 = -(6a 5.b. - 20a 3.b 3. + 6a. b:)k ., + (a: -15a 4.b 2. + 15a 2.b 4. - 	 ) kn2

A 63 = (a 6. - 15a 4.b 2. + 15a 2.b 4. - b 6.) k n3 - (6a 5.b. - 20e.b 3. + 6a. b 50 	 ,

A 64 = (6a s.b. - 20a 3.b 3. + 6a.bn k.3 + 	 -15a 4.b 2. + 15a 2.b: - 	 ) 	 ,

B 61 = (c 6n - 1 5C4n d 2n 	15c 2. d 4. - d 6.) k.5 + (6e.d. - 20c 3. d 3. + 6c.d 5.) k.6 ,

B 62 = 	 (6en d r, - 20e. d 3. + 6c.d s.) k., + (c 6. -15c 4. d 2. +15c4.d 2. - 	 ) k.6

B 63 = (C ii6 - 1 5C:C1 2n 	15c 2.e. - en ) ko - (6c -ns d. 	 20c 3.d 3. + 6c. d5.) k. 8 ,

B 64 = (6e.d. 20c.d 3. + 6c.d.) k, + (c: -15c.d 2. +15c.d 2. - d 6. ) 	 ,

A 71 = (a: - 210) 2. + 35a.3 b 4. 7a.V.) k., + (7a 6.b. - 350) 3. + 21.8.2.b.5 - 1).7 ) k.2 ,

A 72 - (7a 6.b. - 35a 4.1), 3. + 21a 2.b 5. - b 7.) k. 1 + (a 7. - 21a 5.b 2. +35e.b: - 7a.b 6.) k n2 ,

A 73 - (a: - 2 1 a sr,b 2n +35a 3.b: 7a.b 6.) 1(.3 + (7a:b. -35a 4.b i,3 +21a2.b s. - b.7 ) k m

A 74 = - (7a 6.b. -35a 4.b 3. +21a 2.b s. - b 7.) k.3 - (a: -- 21a 5.13 2. +35a:1 W. - 7a.b6.) k n4 ,

B 71 = (c: 21e.d 2. + 35c.3 d 4. - 7c.d 6.) Ic.5 + (7c 6.d. - 35c 4.d 3. + 21c 2.d 5. - C.) k. 6 ,

B 72 = - (7e.d. -35c 4.d 3. +21e.d 5. d 7.) 	 + (c7. - 21e.d 2. +35c:d 4. -7a.b 6.) k.6

B 73 = - (C D7 - 21en d 2i, +35c 3n d 4. - 7c.d 6.) ko + (7c 6.d. -35c4.d 3. +21e.e. - d 7.) k.8 ,

B 74 = - (7C 6n ci n - 35c:c1.3 +21c 2n d s. - d 7.) 	 - (c.7 -21c 5.d 2. + 35c 3.e. 7a.V.) kn8



8.3 Application of the Boundary Conditions

All possible components of loading N, , S„ Q n , M, , and M t as well as the internal

force and moment resultants are shown in Figure 8.1. By taking equilibrium, the relations

between the loading and internal force and moment resultants can be obtained as follows:

From E F,, = 0 , the following is obtained:

N, ds cos(v, pi ) — S t ds cos(t , pl ) =

( N i dri + S 71 d) cost' + (N 2g + S 12dr1) sinv.	 (8.46)

From / = 0 , the following is obtained:

N, ds cos(v, ter) + S t ds cos(t , tff) =

—	 + S 2 ,g) sinv + (N2 g + S, 2 1:177) cosv	 (8.47)

From IF. 0 , the following is obtained:

Q r, ds = Q, dr/ +Q, d .	 (8.48)

From / M Th = 0 , the following is obtained:

ds cos(v, p1 ) + M t ds cos(t , p1 ) =

(M i d/7 — M 2,4) sinv (M 2g M i2 d17)costy .	 (8.49)

From /	 = 0 , the following is obtained:

M, ds cos(v, rg) — M t ds cos(t ,) =

(	 — 1‘4 2 ,g) cosy/ + (M 2 g — M i2dR) sinv	 (8.50)

where ds = li(g) 2 + (d77) 2 =

When the loading is the internal pressure p only,

70



Figure 8.1 Distribution of forces and moments on the intersection of the shell and nozzle
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8.50), one

(8.51)

(8.52)

(8.53)

N,, = S t =	 = M, = 0,	 then from (8.46), (8.47), (8.48), (8.49) and

obtains:

d17 
N 2

S"

S – – N —6721 — 	 1 d:

d77
Qi	 + Q2 = Q riL\

di7
M21 = M 1

dr/
M2 = M12 	 • 

1 + 

(8.54)

(8.55)

Furthermore, noting that S 12 = S 21 	and M 1:2 = M 21 , then from (8.51), (8.52),

(8.54) and (8.55) when	
d rr

0 or	 0, the following two equations are obtained::

(8.56)

(8.57)

In the same manner, one obtains from (8.53): 

(	 \-,	 (d77)-1dr/
1 +	 – Q2

`d J 
= Q. (8.58)  
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To determine the coefficients in (8.42) and (8.43), one can consider some special

points on the intersection curve of the shell and nozzle. For instance, from Figure 7.2 , at

the point E = 0 , variable ri arrives at its non-zero extreme value, which means
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and (8.71), describe the function fc,() and eight equations, (8.61), (8.62), (8.63),

(8.64), (8.66), (8.68), (8.70) and (8.72) describe the function fr,() . These twelve

equations are sufficient to solve for the necessary coefficients in solutions (8.42) and

(8.43).



8.4 Analytical Solutions



°PI
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	(1 +2,u)n 2 r 2 	(2 + ,u)n4r4	 n 6 r 6

K 53 = p A n6 — 	
R2 	 A' 4- R4 	 Ant — R6

(1 +2,u)n 2 r 2 	(2 + ,u)n4 r 4
K 54 = — Lp Bn6 	

R2 	
Bn4

	

 R4 	 Bn2

	(1 ±2p)n 2 7r 2 	 (2 4. ion 4 7r 4 n 6 Tr 6

K 55 = Cn6 	
R2	

Cn4 	  —
R4 	 Cn2 	 R6

	(1 +2,u)n27r2	 (2 4_ p)n 4 7r 4
K56= pD no — n4 + 	

R2 	
D 	

R4 	 Dn2

	(1 +2,u)n 2 r 2 	(2 + ,u)n 4r 4 	n 6 n-

6

K 57 = Cn6 — C n4
R 2 	R4	 n2 — R 6

(1 +2,u)n 2r 2 	(2 + ,u)n 4 r 4
K58 	[pDn6	

R2 	
Dn4 	

R4 	
Dn2

K 61 = eanr1A n2 cos(b n rm ) — B n2 sin(b n rm )} ,

K 62 = eanr- [ B n2 cos(b n rm ) + A n2 sin(b n rm )]

K 63 = e anrm [A n2 cos(b n rm ) + B ra sin(b n r.)1 ,

K 64 = e-44.[—B n2 cos(b n rm ) + A n2 sin(b nrm )] ,

K65 = ecnrm [Cn2 cos(d n rm ) — Dn2 sin(d n rm )]

K6o = ecnrm [D n2 cos(d nrm) + Cn2 sin(d n rm )] ,

K67 = e car"' [C n2 cos(d n rm ) + Dn2 sin(d n rm )1 ,

K68 = C-cnrm [— D n2 cos(d n rm ) + C n2 Sin(d n rni )1

K 71 = &fit-, 1[A n6 cos(b n rm )-8 a6 sin(bnrm)] 	 ± P 112 a. 2
R2 

	[ cos(b n rm )— B.4 sin(bnrm)1

(1+ 2 ,u)n 4 r 4 r 1
R

4 	 tAn2 cos(b n rm ) — B n2 sin(b n rm ) 
-

p n66

R6
 cos(b u rn.,
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3n 4 7r 4
	1

r	 671. 6
R4 —C.3 cos(d.r.) D n3 sin(d.r.,	 R6	 [)} — n

	
—C., cos(d.r.	 .,) — D sin(d.r.)]

3n 2 r 2 r
K 88 = e-c^rni {[D., cos(d.r.)— C n7 sin(d n rin )j — R2 113.5 cos(d.r.)— C n5 sin(d.r.)1

3n 4 K 4 r 	n 6 7T 6 r
R4 [13,3 cos(d,rm )— C n3 sin(d.r.„)j — R6 [D. 1 cos(d.r.T.)	 sin(dnr,.)] ,

where all constants are as follows:

A = a2 — b 2A. 1 = an ,	 B., = b. , Ant — n 	 n 	 Ba2 = 2anb n

Any 	(a2. — 3b 2.) ,	 = (3a 2. — b 2.)b n ,

An4 = a:- 6a 2.b 2r, +	 ,	 B.4= 4a.b.(a2.	 b 2.) ,

An5 a. (a4. — 10a 2.b 2. + 5b 4.) ,	 Bns = (5a: — 10a2 .b 2. + b 4.)	 ,

An6 = a 6. — 15a 4.b 2. + 15a.2 b4. — b 6. ,	 Bn6 = 2a.b.(3a4. — 10a2.b 2. + 3b4.)

= an(a 6. — 21a4. b2n	 35an2 b: Th 6n )	 Bn7 = (7a : 35a4n4 n2101 	 21a2nb4n — b 6n ) b n ,

C ni = cn ,	 Dn1 = d o

C n2 = C2n — d n2 , 	 Dn2 	 2c.d. ,

C n3 = C n (C2n — 3d 2n ) , 	 Do = (3C 2n — d o  d o

C = 	 — 6C2n d 2n + d 4. ,	 Dn4 = 4c nd r,(c2n — (1 2,) ,

C n5 = c n (c4n — lOc n2 d 2n + 5d 4n ) 	 Dn5 = (5c:	 10c 2n dn 2 + d 4n ) d n

C n6 = C6n — 15C4n d 2n 	15C2nen — d 6n , 	 Dn6 = 2c.d.(3c4. 10c 2.d 2. + 3d4.)

=	 21c4.d2. + 35c 2.d 4.	 7d 6.) ,	 Dn7 = (7C 6n 	35c 4.0:1 2. + 21c2.4:1 4. — d.6 ) d.

and	 rr. = r / sink,

where an , b n , cn 	and d o have been determined earlier in (8.44) and (8.45).



CHAPTER 9

NUMERICAL CALCULATIONS AND
COMPARISON OF STRESS RESULTS

To verify the analytical solutions of this dissertation, a series of numerical calculations

of samples has been carried out by the method of this dissertation with a Fortran program.

One of the samples is given by the literature [10] which is limited to the case of

the shell with an orthogonal nozzle and its geometric parameters are described as follows:

i3 = r / R = 0.4 ,	 y= R / t = 40	 ,	 p = 100 psi	 and	 X. = 90° ,

and from Table 9.1, one can see the largest stress concentration factor, SCF, on the inside

surface of the shell at point A in circumferential direction is 9.86. This value deviates

about 9% from the literature [10].

All the calculation results of stress concentration factors at points A and C are

shown in the 16 figures, Figure 9.1 through Figure 9.16 , as well as in Table 9.1.

The stress concentration factors can be calculated in the forms as follows:

1. The longitudinal stress concentration factors on the inside surface at the area of

points on the intersection of shell and nozzle :

qm- SCF =	 (9.1)
p R / t

2. The longitudinal stress concentration factors on the mid-surface at the area of

points on the intersection of shell and nozzle:
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cim SCF =
p R / t

3. The longitudinal stress concentration factors on the outside surface at the area

of points on the intersection of shell and nozzle:

am + _b

SCF 	 u
R / t

'

4. The circumferential stress concentration factors on the inside surface at the area

of points on the intersection of shell and nozzle:

_ r,b
SCF = 	

p R/ t

5. The circumferential stress concentration factors on the mid-surface at the area

of points on the intersection of shell and nozzle:

n, 
SCF =	 -

p R / t
(9.5)

6. The circumferential stress concentration factors on the outside surface at the

area of points on the intersection of shell and nozzle:

+
SCF = 	

p R/ t 	
(9.6)
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(9.2)

(9.3)

(9.4)
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where ofn and o" are the longitudinal membrane and bending stresses, and o and

t 721) are the circumferential membrane and bending stresses ; all of which can be afforded

1111C1 SCL,L1U11 ill.WCS 11 0111 .)U LU YU . 111C pui ',vac VL 11105G kdeuuuicuiviin la Ll.) LI y LU LU1U

out the stress distribution at the areas of points on openings formed by the intersection of

a cylindrical shell and an oblique nozzle so as to propose better suggestions for the design

of shells and nozzles.

The intersection angles selected in the computation are 90°, 75°, 60°, 45°

and 30° respectively. For each case, the longitudinal stress concentration factors and

circumferential stress concentration factors on outside surface, mid-surface and inside

surface corresponding to the point A and the point C have been calculated. All sixty

curves calculated by this dissertation are illustrated in twelve figures from Figure 9.3 to

Figure 9.14 where point A and point C are defined as shown in all figures, respectively.



85

These figures and the table indicate:

1. At the point A (see the figures for the location), the values of the circumferential

and longitudinal stresses increase as the intersection angles change from 90° to 30° and

the closer to the 30°, the faster the increase becomes. Therefore, any change of the

intersection angle from 90° must cause the increase of the circumferential and longitudinal

stresses.

2. At the point C (see the figures for the location), the values of the circumferential

and longitudinal stresses decrease as the intersection angles change from 90° to 30° and

the closer to the 30°, the faster the decrease becomes. Therefore, any change of the

intersection angle from 90° must cause the decrease of the circumferential and

longitudinal stresses.

The above phenomena can be explained that as the intersection angle is changing,

the curvatures of intersection curve at the point A and the point C are changed. At point

A, the value of curvatures increases as the intersection angle decreases from 90° to 30°

and at point C, the value of curvatures decreases as the intersection angle decreases from

90° to 30°. Therefore, we can conclude that stress concentration factors increase as the

value of curvatures of intersection curve increases. In other words, the stress

concentration depends on the curvature of the opening curve.

It is also observed that at point C, the stress concentration factors always decrease

with the intersection angle decreases., that is, any change of the intersection angle from

90° can only improve the stress situation.
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On the other hand, the success of this study proves that the geometric analysis of

description of the intersection curve and its results is true. This analysis is very helpful not

only for the research of this dissertation, but also for the future study of stress analysis of

the intersection of a cylindrical shell and elliptical nozzle.
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Figure 9.1 Stress concentration factors (SCF) at the point A on intersection
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Figure 9.3 Circumferential stress concentration factors (SCF) on outside surface
at point A on intersection when [3 = 0.4 and y = 40
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Figure 9.4 Circumferential stress concentration factors (SCI) on mid- surface
at point A on intersection when = 0.4 and y = 40



CURVE V :

CURVE I : 	 A=90°

CURVE II : 	 A=75 °

CURVE III : 	 A=80°

CURVE IV : 	 X=45°

X=30°

2 8 8 10 12 14 16 18 20 22

8R

OR

4R

2R

Figure 9.5 Circumferential stress concentration factors (SCF) on inside surface
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Figure 9.6 Longitudinal stress concentration factors (SCF) on outside surface
at point A on intersection when 0 = 0.4 and y = 40



Figure 9.7 Longitudinal stress concentration factors (SCF) on mid-surface
at point A on intersection when 11 = 0.4 and y = 40
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Figure 9.8 Longitudinal stress concentration factors (SCF) on inside surface
at point A on intersection when II = 0.4 and y = 40
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Figure 9.9 Longitudinal stress concentration factors (SCF) on outside surface
at point C on intersection when fi = 0.4 and Y 40
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Figure 9.10 Longitudinal stress concentration factors (SCF) on inside surface
at point C on intersection when 13 = 0.4 and y = 40



Figure 9.11 Longitudinal stress concentration factors (SCF) on mid-surface
at point C on intersection when (3 = 0.4 and y = 40
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Figure 9.12 Circumferential stress concentration factors (SCF) on outside surface
at point C on intersection when f = 0.4 and y = 40



Figure 9.13 Circumferential stress concentration factors (SCF) on mid-surface
at point C on intersection when (I = 0.4 and y = 40



Figure 9.14 Circumferential stress concentration factors (SCF) on inside surface
at point C on intersection when = 0,4 and 'y = 40
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Table 9.1 The maximum values of stress concentration factors at
different intersection angles at the point A and point C

Notes: (1) The values are from the literature [10].
(2) The percentage of errors in the table are between this study

and the literature [10] at the intersection angle of 90 by using
the latter as a standard.
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Figure 9.15 The maximum values of stress concentration
factors at different intersection angles at point A

on the intersection curve



Figure 9.16 The maximum values of stress concentration factors
at different intersection angles at point C on the intersection curve



CHAPTER 10

CONCLUSIONS

The comprehensive analyses and the extensive calculations of this dissertation indicate that

the achievement of the theoretical derivations of this dissertation has been proven and this

analytical solutions can provide helpful results for analysis and design work of shells and

nozzles under the conditions shown in this dissertation.

The following conclusions can be achieved:

1. When the intersection angle is 90°, the stress results are in good agreement with

the existing literature [10].

2. At the neighborhood of point A, both of circumferential stresses and

longitudinal stresses increase as the intersection angle decreases from 90° to 30°, and

the closer to the 30°, the faster the increase becomes. Therefore, among all angles from

90° to 30°, the intersection angle 90° has the least local stresses.

3. At the neighborhood of point C, when the intersection angle varies from 90° to

30°, circumferential stresses remain virtually constant, however, longitudinal stresses are

compressive and they remain constant on the outside surface, but, increase on the inside

surface.

4. After consideration of all influential factors, it is suggested that the intersection

angles from 90° to 60° should be the best choices. The intersection angles from 60° to

45° can be selected if the internal pressure is not too high. The intersection angles less than

45° should be avoided as practical as possible.
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5. The geometric analysis of the intersection curves provides a theoretical basis for

the future stress analysis of intersection of a cylindrical shell and an elliptical nozzle.
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