Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen



The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.



ABSTRACT

ANALYTICAL SOLUTIONS OF OPENINGS FORMED BY INTERSECTION
OF A CYLINDRICAL SHELL AND AN OBLIQUE NOZZLE
UNDER INTERNAL PRESSURE

by
Hengming Cai

Since several decades ago, many authors have published their research results
about local stress distributions of shells and shell-nozzles both analytically and numerically.
However, there has not been a published paper which deals with analytical solutions of
cylindrical shell and oblique nozzle, even though in the case of openings formed by
intersection of a cylindrical shell and an oblique nozzle.

A comprehensive analytical study of local stress factors at the area of openings
formed by intersection of a cylindrical shell and an oblique nozzle under internal pressure
is presented in this dissertation.

By means of traditional approach in theory of elasticity, geometric equations,
physical equations and equilibrium equations are derived and then simplified under the
conditions of thin shell and internal pressure. The concepts of normalized forces and
moments in the mid-surface are established to make all governing partial differential
equations mathematically solvable.

This dissertation mathematically determines the exact geometric description of
intersection formed by a cylindrical shell and an oblique nozzle. This result is not only the
boundary conditions of the present study, but also a basis for analytical solutions of

intersection formed by a cylindrical shell and an elliptical nozzle in the future.



Introducing the displacement function, this study combines the geometric
equations, physical equations, equilibrium equations and boundary conditions to obtain the
analytical solutions.

Finally, this dissertation calculates the results of five cases, which correspond to
the intersection angles of 90°, 75°, 60°, 45° and 30° respectively. The results are
presented in the forms of stress concentration factors (SCF) and described in the fourteen
figures.

The typical calculations indicate:

1. When the intersection angle is 90°, the stress results are in good agreement with
the existing literature [10].

2. At the neighborhood of point A, both of circumferential stresses and
longitudinal stresses increase as the intersection angle decreases from 90° to 30° and
the closer to the 30°, the faster the increase becomes. Therefore, among all angles from
90° to 30° the intersection angle 90° has the least local stresses.

3. At the neighborhood of point C, when the intersection angle varies from 90° to
30°, circumferential stresses remain virtually constant, however, longitudinal stresses are
compressive and they remain constant on the outside surface, but, increase on the inside
surface.

4. After consideration of all influential factors, it is suggested that the int¢rsection
angles from 90° to 60° should be the best choices. The intersection angles from 60° to
45° can be selected if the internal pressure is not too high. The intersection angles less than

45° should be avoided as practical as possible.
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CHAPTER 1

INTRODUCTION

Before the 1970s, plenty of efforts were made to 'obtain analytical solutions for this topic.
Since numerical solutions have been achieved along with development of high speed
computers during the past two decades, efforts to analytical solutions are still behind. But,
as known to all, any numerical method must be based on mathematics and mechanics,
therefore, theoretical analyses are always of importance. On the other hand, because of the
user preparation time required, direct finite element procedures have not yet come into
general design utilization, and the analytical studies still remain of great interest. The effort
of this research attempts to make the theoretical study coincide with the recent
developments' in this area.

Normally, an analytical study has to consist of four basic sections as follows:

1. The derivation of a series of equations and their general solutions,

2. Determination of corresponding boundary conditions,

3. Substitution of the boundary conditions into the general solutions to obtain the
theoretical solutions of stress analysis,

4. Comparison of the theoretical solutions with the results of relevant researches to
arrive at the conclusions for the present study.

A comprehensive literature survey indicates that for the same type of problems
about shells and nozzles, many authors made efforts to solve them. Even though they may
obtain some similar results, there are still some differences among the works of those

authors.



The main differences usually lie in their derivation of equations and boundary conditions.
This study possesses features as follows:
1. The method to derive the equations is systematic and comprehensive (See

Figure 1.1, the Flow Chart of This Study for a glance).

2. Application of fundamental theory of elasticity to solve the problem of openings
formed by intersection of a cylindrical shell and an oblique nozzle.

3. This theoretical analysis is the first research which deals with the geometric
analysis of intersection of a cylindrical shell and an oblique nozzle. The success of this
study may establish the fundamental for the future research of intersection of cylindrical
shells and elliptical nozzles.

The second and the third points are the main contribution to the theory of this
area because, so far, there has not been a complete analytical study on openings formed by
intersection of cylindrical shells and oblique nozzles, although many authors have explored

the openings formed by intersection of cylindrical shells and cylindrical nozzles.
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Figure 1.1 Flow chart of this study



CHAPTER 2
LITERATURE SURVEY

In 1920, A. Love [ 1 ] obtained three equations for the mid-surface displacements of a

shell. These displacement relations are:
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This set of equations has become the basis of a huge quantity of analytical researches.
However, it is very difficult to solve them directly. Many authors have made significant
modifications to these equations to obtain certain types of applicable solutions.

W. Fliigge[ 6 ], in 1932, obtained another set of similar equations:
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This set of equations is relatively more convenient to be employed in practice so
that L. Donnell in 1933 [ 2 ] and 1938 [ 3 ] made significant simplifications by omitting a
number of terms and obtained a single eighth order equation for the shallow shell.

In 1958, L. Morley [ 4 ] proposed an equation which retained the accuracy of W.

Fliagge’s equations and improved Donnell’s equation:

4

.
VIV 1) w4t 5; = 0.

The significant advantage of L. Morley’s equation is that it can be factored into the form

as follows:
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It tremendously simplifies the calculation of roots of characteristic polynomials by means
of separating differential operators. But L. Morley’s equation is still recognized to be used
in shallow cylindrical shell theory.

In 1971, J. Lekkerkerker [ 7 ] obtained an analytical solution of stress near the
intersection of cylindrical shells with small nozzles, based on Donnell’s shallow shell
equation. His work consisted of two parts. The first part showed an insight into existing

possibilities and difficulties while he made a survey of relevant literature. The second part



contained a comprehensive process of theoretical analysis of the stress problem for a
cylindrical shell with a circular hole which is intended to simulate a cylindrical shell with a
branch pipe or nozzle.

The basic equation J. Lekkerkerker employed is Donnell’s shallow shell equation:

R? &2*%
ViViY 4+ i4v2—"_— =

o7 =0

where ¥ is a complex function defined as follows:
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The great advantage of Donnell’s equation is that its differential operators are
separable. From factorization, J. Lekkerkerker obtained the following solution of the basic

equation in the form of Bessel functions .J, and Hankel functions H(" :
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where Zn and B, are complex integration constants to be determined by the boundary

conditions.



He verified the uniqueness of displacements and all types of symmetry. Finally the
author obtained a complete set of solutions of stresses, strains and displacements by using
the boundary conditions in the form of Fourier Series. The applicability of these solutions
is restricted to a small diameter ratio, less than 0.25, as the author indicated in this paper.

In 1983, C. Steele and M. Steele [ 8 ] developed an analytical method for stress
analysis in cylindrical vesse]l with external load in which Fliigge-Conrad solutions where
Sanders-Simmonds concentrated force solution were utilized for a local analysis to
which asymptotic approximations for the effect of vessel length and continuity around

the vessel circumference were added. To solve the shallow shell equation

6»;2
(vzv2 - 4%2) w=0,

they employed the stress function with complex variables

where and @  isthe Airy's stress function.

C= 241 w2
[12(1- 4*)]

The stress analysis was incorporated in a computer code, FAST, for which setup and
run times were minimized for a given case of geometry and load. Some evidence indicated

that Steele’s method does not lead to the same results as those obtained by previous



analytical methods. They still kept assumptions that the intersection between vessel and
nozzle was approximated as a plane circle.
In 1986, C. Steele, M. Steele and A. Khathlan [ 9 Jproposed a computational

- approach for a large opening in a cylindrical vessel because they realized that their
. ) ) d .
previous work was restricted to small size of nozzles only, -—53 05. Their new
approach may handle the geometry of vessel and nozzle to the range of diameter ratio of
05< _fi_ <1
5 5 <L

In 1991, M. Xue, Y. Deng and K. Hwang [ 10 ] published their results on
analytical solutions of cylindrical shell with large opening. Their contributions are:

1. The modified Morley’s equation was employed instead of the shallow shell
equation. The solutions of the modified equation are in the form of the double Fourier
Series including Bessel Functions.

2. The accurate expression of boundary curve of large opening was utilized in the
form of a power series. They proved that the previous curve geometric description was
just the first term of their power series expansion.

3. The boundary conditions for general loading were also expanded in the form of
power series and were truncated after the terms of the third power, which obviously
improved the accuracy of the solution.

Their work, similar to all works of previous authors, is still only for the case of
orthogonal intersection of a cylindrical vessel and a nozzle. Since Morley’s equation can

be factored, the simplified form of Morley’s equation is obtained as



e Z
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in which w is the complex displacement- stress function.
To solve Morley’s equation finally, the difficulty of its separability must be

encountered. They used the modified Morley’s equation

2 vy Lo O e
VV+V+4—14V P W=0.

: w
Although the only difference from the Morley’s equation is adding a small term, L

w t
and the ratio between —4— and V*W has the same or less order of (_Ii-) .

The new equation obtained a separability of differential operators, which is easy to be

transformed as follows
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Therefore, the solution of this equation can be obtained as follows:

( .
for symmetric case about

s

>

k=

(-D*C,F, cos(2kyr)

(=3

=1
[l}

o

for antisymmetric case about

Ms
Ms

(-D*C F,, sin(2ky)

L
n
=
i
—_

|
[ v=0,7/2
l
l

v=0, /2



10

where F,  is the Fourier's coefficients expressed with Bessel functions:

S (-1 vp) H, (rp)) k=0

F, =1 r for symmetric case |,

Vol V=7 v = oo (V=7 v B, (vp), k>0

F, = [Jz,(_n (\./——_ivpl Y= Iy (N=ivp, )] H_(np) for antisymmetric case,

172
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The components of generalized forces and moments were expressed as follows:
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Finally, they made calculations and compared their results with those published by

previous authors in numerical or analytical forms.

Literature [ 7], [ 8 ],[ 9 ] and [ 10 ] have made great progress in this area. But they
all used the complex variable method to solve the relevant equations. The author of this
dissertation attempts to explore a way to avoid using complex variables. Therefore, the
present research is devoted to use the real variables and fundamental theory of elasticity to

solve the stress analysis of a thin shell with an oblique nozzle due to internal pressure.



CHAPTER 3

GENERAL ASSUMPTIONS

To solve the problems analytically, one has to establish equations or relations between all
variables. In deriving these equations, one always wishes to consider all factors as
comprehensive and precise as possible, but, in many cases, if one considers all factors only
from the point of view of precision and comprehensiveness, even if the equations are
found, these equations may be too complicated to be solved at all in practice. A part of the
reason for this is that mathematicians have proven that some equations do not have
analytical solutions at all. In fact, for some equations, even though one could obtain
solutions mathematically, but the solutions may be too superfluous to be used in
engineering. Therefore, according to the characteristics of study objectives and the range
in which the problems are to be solved, certain assumptions must be established to neglect
certain less important factors to make the solutions possible and useful in practice. In this
study, except for special declaration, the following assumptions are employed.
1. Shell body is fully elastic that follows the Hook’s law.
2. Shell body is homogeneous and isotropic.
3. The normal strain, e, , perpendicular to the mid-surface is so small that it is
negligible.
4. The shell is so long in axial direction that the influence of supporting constraints
to the stress field can be neglected.

5. The influences of self-weight and temperature are negligible.

12



CHAPTER 4

GEOMETRIC EQUATIONS
STRAINS OF POINTS ON MID-SURFACE ARE EXPRESSED WITH
DISPLACEMENTS OF CORRESPONDING POINTS ON MID-SURFACE

4.1 Lame’s Coefficients in Curvilinear Coordinate System
From an element of general elastic body in the orthogonal curvilinear coordinates (€, 1, C)

and Cartesians coordinates (X, y, z) shown in Figure 4.1, the length of the arc PP, 1s

é{ 2 2 & 2
ds, = J@ + @) + @ - \/E,,Edéj +(Zar] + [Zar)
_ (&) (3 (2]
- J(ag) ¥ (5’5) i (ag) as.

&Y S, [aY
Let H] = Hl (gana ;) = [‘2’3) + [%) - [_C’)E\)

then ds, = H d¢
(4.1)

Here, H, is known as Lame’s coefficient [11]. Similarly the other two Lame’s

coefficients are:

H( ~ é{_Z ﬂ:’ —@_2

25577:4)“ 57] +5’7 +6‘;I]
&(2 2 &2

H, (¢, 1, () = \/(5—4) *[%) +(Z?Zj

Correspondingly, the other two lengths of arc are obtained as:

HZ

I

H3

13
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ds; = H, dn for the arc pp» (4.2)
ds;=H;dC for the arc ppa . (4.3)
Obviously, Lame’s coefficient is a ratio of arc length increment to coordinate increment
when each curvilinear coordinate changes independently.
4.2 Curvatures and Radius of Curvatures in General
Orthogonal Curvilinear Coordinate System
As indicated in Figure 4.1, the angle between PP, and PQ, is

PQ, - PP (’“ i AN

d = = = — du
s PP, H, d. H, &

then the curvature and radius of curvature of PP, in £ plane are as follows

de,; 1 H 1
k. = 13 1 d R. = — 4.4
"T Hde | HH, & an E (4.4)

Accordingly, the other curvatures and radii of curvature can be obtained as follows

1 A 1
k, = —+ and R, = — (4.5)
HH, &y ky,
1 A, 1
ky, = : d R, = — (4.6
T HH, & " T (@)
1 A, 1
k, = — d R, = — 4.7
2 H.H, & - * ky @7
1 A, | 1 ,
ky, = ———= d R, = — (48
" HH, & a A “8
1
k,, = LA, and R,, = : (4.9)

- H.H, &y N ks
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4.3 Geometric Equations for General Elastic Bodies
Here, u, , u,, u, are employed to express the displacements along the three directions of
coordinates (§ , m , C) respectively, e, , e, , e, are the corresponding normal strains
respectively and e,, , e,, , e, are the corresponding shear strains respectively. Now to
express the strain components with displacements, consider the normal strain e, of PP,
as an instance.

Due to u, , the normal strain component of PP, is

a,
ok’

1
Hl

Due to u, , the normal strain component of PP, is

e = (R12+ uz)d¢|2 - R12d¢12 _ W
] Rpdog, R, "’

Due to u, , the normal strain component of PP, is

Ry, + u)dp, - R dop, - Y
R,:do;; R’

e =

Therefore, by means of (4.4) and (4.5), the total normal strain component of PP, s

obtained as follows

®
E
kS

e, =¢' +e'" te' = — + (4.10)
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The shear strain e, , in fact, is an angular increment because PP, and PP, rotate to
each other, and it consists of four parts as follows. The first part is the angle by which

PP, rotatesto PP, in &-m plane dueto u,

mzj

+ —= -

| [uz & ds, u, a, &,
el" = = = .

1
2 ds, & H, &

The second part is the angle by which PP, rotates away from PP,in £-n plane due to u,
poo O
. R12 ’

The third part is the angle by which PP, rotatesto PP, ine-nsurface dueto u,

a,
WEE B TE g 1 &
—3 2 — ] = ‘l e
b ds, &, H, on°

The last part is the angle by which PP, rotates away from PP, dueto u, is

Then the total shear strain of right angle P,PP, is

S 1 4 u, 4 . 1 ay u, AH,
€y T €, T €y T €, T €, H, & HH, o7 H, o7 H,H, J
_ EI_}__(?_(_UL] N _Ii_é’_(_”l_) (4.11)
H, é£\H, H, én\H,

where R, and R, have been substituted by (4.5) and (4.7). Similarly, the rest of
components of normal strains and shear strains can be expressed with displacements as

follows:
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_ 1 a, LW A, Lo H,

= 4.12
“ "W, T HH & HH & (412)
_ a4 w A v A
e, = 2 2+ (4.13)
Hs 5‘: H3H1 &b H3H2 0"77
. 53_2_[33_} . ii(i} (4.14)
. H2 5'7 H3 H3 02' Hz .
H, ﬁ(ulj H, 5(u3)
e Wi e W P WL I B 4.
“ " wx\m) " w @1

Equations (4.10) through (4.15) are known as general geometric equations in

orthogonal curvilinear coordinate system.

4.4 Geometric Equations for General Shell Bodies

The main difference of shells from general elastic bodies for us to consider lies in the
concept of mid-surface of the shell wall. When the origin of an orthogonal curvilinear
coordinate system is put in the mid-surface, the basic equations as well as boundary
geometry will be considerably simplified. Now , Figure 4.2 shows a differential element of
a general shell.

In the mid-surface, L =0, set the Lame’s coefficients along the directions £ and 1 to
be A and B, thatis
H/(, 7,0 =A and H,(, nn, 0) = B, - (4.16)
then for the point M in the mid-surface, the length of the arc is

MM, = AdE .



Figure 4.2 Differential element of a general shell body

61
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If P is an arbitrary point in the shell body, the length of the arc PP, = H, d& and the

following stands:

PP, H df H,

MM, Adé A

From Figure 4.2, it is obvious that PP, R+ ¢
rom rigur .<, 11 1S ODVIOUS tha = )
gure %% " MM, R,

therefore the following relation is obtained

H
T] =1+ Ri = 1+ k,¢ then H, = A(l + k,{). 4.17)
1

Similarly, the other relation is also obtained

H‘\
= =1 + ._:[_.
B R,

=1+k, & then H, = B(I +k,¢). (4.18)

Moreover, according to the assumption in Chapter 3 that coordinate £ is a straight line

and its dimension is of length, the following is always correct:

H, =1 (4.19)
Now one can derive the geometric equations for a general shell body. According to
(4.13), (4.14), (4.15) and the assumption in Chapter 3, e, is negligible, the following is

obtained:

A

e,=0 that 1s, 7923- =0

which implies that the displacements in the normal direction of mid-surface does not
change along with the coordinate (. Therefore, u, is a function of variables £ and n

only and it can be set as



u; =w=w(<&,n). (4.20)
Also according to the assumption in Chapter 3, we have
e, =0 and e, = 0. “4.21)

Substituting (4.14), (4.15), (4.18) and (4.19) into (4.21), we obtain

o [ u, 1 1 N and

Zlan+rkolt oo

é’,r u, ] + 1 _a:K_N_ — 5
LB +k,$)] B +K()on

Since w is not a variable along with coordinate £, when we integrate the two equations

shown above with respect to { from 0 to {, the following can be obtained

¢ 51: u, 1T 1 @v}} .
J; {aqLA(l no) T Aa ey a %0 thatis

[ u, I 1 1 aw _
A ko), AmaiRD), &

0 422)

)Ig)

g C?I_ u, } 1 _ it
5" {5’§LB(I + k,¢) * Bi(l + k,¢ ) }dg’— 0 at 1s

[ u, 1¢ T 1 1
Bo ol [Fhno ko)

Q

n

c@=o 423
o : (4.23)

Set the displacements of all points in the mid-surface along the directions £ and n to be

u and v respectively, thatis

(u)) =0 W= u¢,n) and (u,) (=0 - VT v(&, m) (4.24)
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and solve u,,u, from (4.22), (4.23), (4.24), then take u, from (4.20), the state

equations of displacements of shell body are obtained:

u =1 +kdu - —g— % (4.25)
S

m= 0+ kv - £ -?,7—” (4.26)

u, = w (4.27)

where, the displacements of each point in shell body (u,,u, and u; ) have been
expressed with the displacements of the corresponding point in mid-surface, u, v and w.
Now, substituting (4.17) , (4.18) , (4.19), (4.25), (4.26) and (4.27) into (4.10),

(4.11) and (4.12) correspondingly, the geometric equations for the general shell body are

obtained:

— l—1+k -4—@}+-——————k“
“T A0+ K0 agL( 16)u - AGE] 1+k¢

o
) %—[A(lwhk,()] '(1+k§)v——¢-—@—l}
AB(1 + k&)1 + k. O)L 2 B anl-

(4.28)
= ] |-1+k i_[?&_vw k:
“ T Bur Ol TRV T BT Tr Y
—[B(l + k)]
g
YT S AR A b (4.29)
R .
_Ba+k() & " WV B &

T 40+ K¢ & B+ k)



23

1 +k LA
Aa+kg o U7V L

TBAY K a AQ+KD)

(4.30)

Here, the strains of all points in the shell have been expressed with the displacements of

corresponding points in mid-surface.

4.5 Geometric Equations for Cylindrical Shell

Now we are going to derive the main results of this chapter, that is, geometric equations
for circular cylindrical shells. Because huge quantities of cylindrical shells used in
engineering are thin walled shells, that is, the wall thickness is small enough (usually
y = 10), a concept, so-called mid-surface, is introdued as shown in Figure 4.3.

Here, based on the geometric equations for general shell, the following special
conditions are established to simplify our results:

a. In the case of circular cylindrical shell, k, = 0, and k, = 1/R,

b. For all points in the mid-surface in the coordinate system shown in Figure 4.3,

LI S S R

& o o &

therefore, from (4.16) and the definition of Lame’s coefficients mentioned earlier,

1+ = =1+k,{ =1 (—I—i— approaches zero)

Substituting these conditions shown above into (4.28) , (4.29) and (4.30), one obtains

e, =& +tx ¢ (4.31)
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Figure 4.3 Differential element of a cylindrical shell body
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(4.32)
e, =&, +2x,¢ (4.33)
where

-4 d = v 434

81 - ﬁg an xl - 552 ( - )

. d - o 435
2 on R an X 5’7: (4.35)

P . oW (4.36)
12 (9,] (76 IIZ Jg&'] N N

These are the geometric equations for a cylindrical shell by which the strains of all points

in mid-surface have been expressed with the displacements of corresponding points in
mid-surface.



CHAPTER 5§

PHYSICAL EQUATIONS
RELATIONSHIP BETWEEN STRAINS AND INTERNAL FORCES ON THE
MID-SURFACE OF THE SHELL

For a cylindrical thin shells, one may express stresses, strains and displacements of all
points in shell body with generalized forces at the corresponding points on mid-surface.
Therefore, the normal and shear stresses of all point in the shell body are to be simplified
into the stress resultants, moment resultants and transverse force resultants at the

corresponding points on the mid-surface.

In Figure 5.1, (a) and (b), the plane perpendicular to the &-axis is called -plane
and the plane perpendicular to the n-axis is called n-plane. In the E-plane, the normal
stress o, is simplified into two parts on the mid-surface: normal force per unit length N,
and bending moment per unit length M,. The shear stress 7,, 1is simplified into two
parts on the mid-surface: shear force per unit length S,, and twisting moment per unit
length M, . Also the shear stress 7, is simplified into a transverse force per unit length
Q, on mid-surface.

Similarly, in the n-plane as shown in Figure 5.1 (a) and (b), the normal stress o, is
simplified into two parts on the mid-surface: normal force per unit length N, and
bending moment per unit length M,. The shear stress 7,, is simplified into two parts on
the mid-surface: shear force per unit length S, and twisting moment per unit length
M., . Also the shear stress 7,, is simplified into a transverse force per unit length Q.

on the mid-surface.

26



Figure 5.1 (a) Membrane forces resultants
on mid-surface

Figure 5.1 (b) Bending moment resultants
on mid-surface

LT
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Among the these normal force, moment and transverse force resultants as shown in

Figure 5.1, N, , N, . S,, and S, are normally called membrane resultants, as shown in

Figure 5.1 (a), and M,, M,, M;;, M;;, Q, and Q, are usually called bending

resultants, as shown in Figure 5.1 (b). Since now on and in the sequel, they are called

internal force and moment resultants . These internal force and moment resultants are

derived as follows.

[ o,[(R +¢)d7]

12 é’)
N, = 72 Rd7y dg = I-l/z O (1 * _I-{- d¢

M, = [ AR g [ o (14 &) ca

M., = J'z : 7,[(R + £)dn]

_ _ [ £j
=1 R =1 [1 + =] cdg

S, = J"L; lel(RR;ng)dﬂ] d¢ = J ‘!'/22 - [l " l_i_] d¢

7[R +$)dn
-2 Rdn ] dg = j T3 (] + %) d¢

(.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)
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w2 T, d 12

Sy = J‘/« Tude g = I L Tn dS (5.9)
12 dé-’ -2 “
2 T, df t/2 .

Q, = fl 21;’ d¢ = I T, d¢ . (5.10)

According to the assumption in Chapter 3 that the influence of normal stress o, to strains

is negligible, one obtains the relations between stresses and strains from Hook’s law :

o = l_yz(el‘{"/‘ez)
E (e, + 1)
2 = 2 e7
o, 1 - 2 HE
B B E
Tis 2 21 + ) € -

Substituting (4.31), (4.32) and (4.33) into the above three equations gives:

E
g = 1- 4° [(51 +ope,) + (x touxs) C;] (5.11)
E
o, = 1 - 'uz[(g: +oue) t (1. o) C] (5.12)
T, = Ty = m(ﬁm +27..0). (5.13)

As far the shear stresses 7,,, 7,,, 7;, and 7,, , there are no simple formulas in use for

them and the following is suggested [11]:

__ __E [, i)i )
Ty = Ty = 20 = ﬂ,)(g " &;V w (5.14)
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——-—-————E (:2 tzj a v? (5.15)
Ty = Ty = . : S
2 a0 -uwH T 4w Y
Substituting Equations (5.11) through (5.15) into Equations (5.1) through (5.10) and
considering that u , v and w are not the functions of the variable { , we obtain the

physical equations for the cylindrical shell body as follows:

vz E
N, = -[m 1- u? [(51 toug) +(x + /12'2)](1 + %jdg

Bt | 2
= —— (e + +
= /12‘_(51 HE;) 12R

]
(x, + /%’z)J (5.16)

M, =2 1_Epz [Ce) + &) + ¢z, + %)](1 ’ % cde

= 'i'z—(_i—Et;—_)LR(g] + ope) +(x, t uzo)J (5.17)
M, = [ T 24,712)(1 + —}i—) cde

o %{% £, + zn) (5.18)
5. = 1" EETEI_;E(% + 241,2)(1 + % d¢

e 519

112 E I_ 2 t? s
o= 12 e - SE v e

3
LB g,
121 - p°) &

(5.20)

N, = I e+ me) ¢ g - ]



Et
. ﬂz(gz + pe)
2 E
M, = L;z 1- 4 [(53+ ue) + E(x, * ,u).'l)] gdg
B
M. = qu _ Et®
T ,u)(gu +20x) ¢dg = 1201 + p) X2
S.. = Im ._____E___(g +24' )d{” .____E;t_.._g
n T e (1 gy e T SRS T )

Et?

1/2 E ‘— 2 tz 1% 5 _l )
Q - I_mmﬂg - T{)ZV VST Ra - a &
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(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

t
In the cases of thin walled cylindrical shells, because < > and t <<R, replacing 1

4

+ R ith 1 in (5.1), (5.2) and (5.3) before integration, (5.1), (5.2) and (5.3) become

(5.26) , (5.27) and (5.28) as shown below, instead of (5.16) , (5.17) and (5.18).

Therefore , finally, one arrives the simplified form of physical equations as follows:

Et
N, = 1 — y?_(gl + ug,)
N, = 1 >(6, + pg,)
- H
Et’

M, = E(l—_—#‘;)‘(z’l + 1)

(5.26)
(527)

(5.28)
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__ B¢ (5.29)
M2= 12(1 _ #2)(2'2 + Jul'l) .
M. =M. = B p (5.30)
12 21 12(1 —+ ,U) 12 ‘
Et
- g -  Et 531
S, _Szl 20 + u) €1, ( )
Et? V7,
- Sy 532
QT cnao oy &Y (32
_ BE 2 e, (5.33)
QT T |

Equations (5.26) through (5.33) are the main results of this chapter, which are
called the physical equations for a cylindrical shell where the internal force and moment
resultants have been expressed with strains of corresponding points on the mid-surface.

Now, we transform Equations (5.26) through (5.31) from the current forms of
expressing internal forces and moment resultants with strains into the forms of expressing
strains with internal force and moment resultants. Then, substitute the new forms of these

equations into Equations (5.11) , (5.12) and (5.13), the following significant results are

obtained :
N, 12 M, t t
= — + -—— < ¢ < -
N, 12M t t
= —* + 2 — < ¢ < =
o= S, S <¢s (5.35)
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(5.36)

|~

where, on the right hand side of each equation, the first term represents the membrane
stress due to internal forces N; , N, and S;; , which are constants across the entire
thickness of the shell, on the other hand, the second term represents the bending stress due
to moments M; , M, and M, , which linearly vary along the thickness of the shell and

reach zero at the mid-surface of the shell.



CHAPTER 6

EQUILIBRIUM DIFFERENTIAL EQUATIONS
RELATIONSHIPS BETWEEN THE INTERNAL FORCES AND LOADING ON
THE MID-SURFACE OF THE SHELL

Figure 6.1 describes the same differential element from a cylindrical shell. The membrane
stresses, such as normal stresses, shear stresses and transverse forces, are shown in
Figure (a), and the bending moments and twisting moments are illustrated in Figure (b). X,
Y and Z represent the loading per unit area of mid-surface along the longitudinal,
circumferential and normal direction respectively, including volume loading and surface

loading.

From Figure 6.1 (a) and according to Z F, = 0, the following is obtained:

[(N + %\Ig_dg n- Nldﬂii + {(SZI + %dﬂ)df - Smd‘::]l + Xdédn =0,

according to Z F, = 0, the following is obtained:

I

(o S s - el v
+[(Q2 + %dn)df(sin%ﬂ +YdEdn=0.

and according to . F, = 0, the following is obtained:

(o 2 ] o - Ll -0

34
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—(Nz + C;; dn)dﬁ(sin%j + ZdEdn = 0.

From Figure 6.1 (b) and according to Z M, = 0, the following is obtained:

{Mndn —(Mu + 0’1:;22 d.f]dq} + {Mzdg —(Mz + &0:; dnjd‘f}

(Qz +%dnjd§[cos%) dn = 0,

according to Z M, = 0, the following is obtained:

KMZI + d\;”” dn)d;{cosf;—ﬂ) -M,, dg} + [(Ml + 0’2‘21 dg)dn - M, dn}

—(Ql + 25 dE fands = 0,

and accordingto >, M ¢ = 0, the following is obtained:

(s +ésud)dd (s +
12 55 5 775- 21

d d d
Considering sin(—é—’-) = —Rﬂ- and co{—REj = 1 as well as neglecting all terms with

38, M, . Eﬂ_) _
o dn)dg;’dn— (M21+ o dn)d§(sm 'Y 0.

third or higher order, then from all six equations shown above, one obtains the equilibrium

equations for a cylindrical shell as follows:

—L 4+ =2 +X=0 (6.1)



(S2r+(8S,,/8n)dn) dé
(Sm"'(aslg/af)df)d

(Q:+(8Q/8¢)d¢)dn

) ,\ (Qg+(0e/Bm) )
v
/]\ /R
X
y

Figure 6.1  (a) Static equilibrium of forces on a differential
element of a circular cylindrical shell body
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(M;+(dM,/8¢)d¢)dn

(M, ;+(8M, 5/ 8€)d€)dm

y

Figure 6.1 (b) Static equilibrium of moments on a difterential
clement of a circular cylindrical shell bady

LE
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P +—5q-+ R2+Y=o (6.2)
%+22-%+z=0 6.3)
?;1 +§;—;L_Q,=o (6.4)
d;/?z . i:d; _Q =0 (6.5)
Sy = 8, — 2 =0, (6.6)

The Equation (6.6) is not a differential equation and it is always satisfied when the

physical Equations (5.13) , (5.14) and (5.19) are substituted into it, therefore, it is an

identity and it can be eliminated from the basic equations. Furthermore, the term % in

Equation (6.2) represents the influence of the transverse force to the equilibrium in the
circumferential direction and it is suggested to be negligible for simplification [11], so the

reduced form of (6.2) is obtained as follows:
20 iy =0 | (6.7)

Therefore, the equilibrium differential equations for the cylindrical shell are reduced

to five equations, which are (6.1), (6.3), (6.4), (6.5) and (6.7).



CHAPTER 7

BOUNDARY GEOMETRY
INTERSECTION GEOMETRY AND GENERALIZED FORCES ON THE
BOUNDARY OF INTERSECTION

7.1 Geometry of Intersection Curve
In the Cartesian coordinate system (x, y, z) shown in Figure 7.1, the equation of a

cylindrical shell with radius R is

y? + 22 = R? (7.1
In the Cartesian coordinate system (X, , Y, , Z,) shown in Figure 7.1, the equation of a

cylindrical nozzle with radius r is

44 =7 72)
If one considers that the coordinate system (X, y, z) is developed by means of rotations of

the coordinate system (x, , y, , z,) about the axes x, y, and z, with angles 5 , A and Q

respectively, the relationship between the two coordinate systems can be expressed as

follows:

(AN

{YOJ = [A] LYJ (1.3)
z, z ;

where the transformation matrix [ A ] has the form as follows [12]:

[cosQ cosd  cosQ sind sind — sinQ cosS  cosQ sinl cosd + sinQ sind 1
[A] = |sinQ cosA  sinQ sind sind + cosQ cosd  sinQ sind cosd — cosQ sind |.
{ — sind COSA sind cosA cosd J

39



Figure 7.1

Z,

Cylindrical shell with oblique nozzle / vertical elliptical nozzle
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In the case shown in Figure 7.1, since Q=6 = 0, the transformation matrix is reduced to

l—cos/’u 0 sin/ﬂ

[A]JLO 1 oJ'

—-sind 0 cosd

therefore, according to (7.3), the relation between two coordinate systems is obtained as
follows:

( xo\l [ cosi 0 sin),_} |( x) [ xcosA + zsind \l

PRt 4 ) IO "
z, -sind 0 cosd\z — x sind + zcosd
Substituting (7.4) into (7.2) gives
y? + (- xsind + zcosd)® =1’ (7.5)
then, (7.5) is the equation of the nozzle in the coordinates (x, y, z). For simplification, the
coordinate system (X, , v, , Z,) Will no longer be employed.

To demonstrate the concept of the intersection between the shell and the nozzle, by
substituting z = 0 into (7.5), the intersection between the nozzle and the x-y plane is

obtained as

y? + x*sin’A = r? or T T = 1 (7.6)
(sinl)

Obviously, (7.6) is an equation of an ellipse in the x-y plane. The length of semi-major axis
of the ellipse is —5—/{ _ and the length of its semi-minor axis is r . If A is equal to 7/2, that
sin

is when the nozzle is perpendicular to the shell. This intersection ellipse in the x-y plane is
reduces to a circle. Now that circle or ellipse are planar curves, as a space curve on the

cylindrical surface, the intersection between the perpendicular nozzle and the shell can
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never be a circle or ellipse. Accordingly, as a space curve on the cylindrical surface, the
intersection between the inclined nozzle and the shell , shown in Figure 7.2, can never be
an ellipse either. Now, what kind of curve is the intersection between the inclined nozzle
and the shell ? The answer is that this curve is determined by the two simultaneous

equations consisting of Equations (7.1) and (7.5) as follows:

yz + 722 = R?
(7.7)

y? + (- xsind + zcosA)? = r?
On the other hand, one may consider that if we take the ellipse expressed by (7.6) as a
generating curve and develop an elliptical nozzle perpendicular to the x-y plane, the
intersection between this elliptical nozzle and the shell can be determined by the two
simultaneous equations consisting of (7.1) and (7.6) as follows:

y:’ +ZZ =R2

+ = =1 (7.8)

)
\sinAd

Because the second equation in (7.8) has only two variables x and y, (7.8) looks simpler

than (7.7). In fact, the distance between the point on the intersection of the inclined nozzle
and the shell and the corresponding point on the intersection of elliptical cylindrical nozzle
and the shell is equal to z / tanA (see the triangle determined by three vertexes
A, A and A, shownin Figure 7.1). If (x + z/tanA ) is substituted into (7.8) to replace x,
then (7.8) becomes the same as (7.7). This means that these two intersections on the shell

surface are the same curves, but they are in different locations along the shell surface.



Mid-surface

Figure 7.2  Intersection of shell
and oblique nozzle
on mid-surface
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Therefore, from now on, one may take the intersection determined by (7.8) as the
intersection between the nozzle and the shell because this brings tremendous simplification
for the problem. Furthermore, to distinguish the oblique nozzle from the straight nozzle
which have the same intersection on the shell surface, the inclined one is called oblique
circular nozzle and the straight one is called straight elliptical nozzle respectively.

Now the cylindrical coordinate system (p, 6, z) is established which has the same
origin and z-axis as the coordinates (X, y, z) as shown in Figure 7.2. In this cylindrical

coordinates, the parametric equations of the intersection (7.8) are as follows:

r
x =20 cosd (7.9)
y = rsinf (7.10)
z= JR? -y = JR? = (rsing)? (7.11)

where and in the sequel, for simplification, only the half of the shell above the x-y plane is

considered.
~ . r . o .
Noting that p = {x* +y° and R - £, then, in the cylindrical coordinates

(p, 9, z) , the equation of the intersection curve (7.8) becomes as follows:

T ) )
pP= T (1 — cos A sm‘é?)u2 (7.12)
sind _

z=R(1 - B? sin*9)"? . (7.13)
The cylindrical coordinates (p, 6, z) in x-y plane is a polar coordinate system (p, 6).

The other polar coordinate system (p,, ) is also established to analyze the boundary
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conditions around the intersection area as shown in Fig. 7.2. The relation between the two
kinds of polar coordinates about all points of the intersection curve can be determined as

follows (see Figure 7.2).

Because R sin® = p sin6 , the following is obtained:
P
sin® = Y sinf (7.14)

s [' z_ll/z
cos® = (1 - sin’®) ~ = Ll - (ﬁ sinG) -I : (7.15)

The straight line segment BC in the isosceles triangle ABC is also a chord
corresponding to the arc BC which is on the shell surface. The length of the straight line

segment BC is

q) ]_ @ 1/2
Lye =2Rsin> = 2R(——?——j = JVZR(1- cos®)? |

substituting (7.15) into the above expression gives

Ly =J—2_R{1 - [1 - ({ sinejzr}m.

2']1/2
Then, o =(Ly )" + (Lgc)’ = (pcosd)’ + 2R {1 - [1 - (ﬁ siné?] J

r ( ]2 112
p .

o A2 anel 2 _ 217 _ | E

picos’é+ 2R* - 2R Ll RsmB J ,

r R 172
this yields p, = {p2 cos’d + 2R* - 2R* {1 - [j;-’- sinéj . (7.16)



Also because Log = Los, thatis p, cosy = p cosd ,

cosy = £ cosf
o)

then substituting (7.16) into the above gives

p cos@

*cos’8 + 2R? 2R2r1 (p '9)2]”2 §
p° cos - L - g sin J

cosy =

and

2"1/2

2R® - 2R? [1 - (§ siné’) J
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one arrives

(7.17)

W 172

_ (7.18)

siny =(1-cos? y)"~ =

where

p cosb

[pz cos’d + 2R* - 2R’ {1 - (§ sine)zy2

W = arccos

\

l, 2 AR
p* cos’d + 2R* - 2R? Ll (— smBj

|
|

On the other hand, from Figure 7.2 and Equations (7.8), one may establish the

relationship between the coordinate system (x, y, z) and the coordinate system (§, 1, &) as

follows:
) ‘= ¢

1 y = 1[1'2—- 52 sinzl
2= JR-y = JR? - 12+ &% sin’d

(7.19)
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® = arcsin(1)= arcs'm{ r - ]fj sinzl] = arcsin\/ﬂ2 - &2 [‘Sﬁy (7.20)

R R

n=R® =Rarcsin\/ﬁ2 - éz(Si;A)& : (7.21)



7.2 Relationship between the Directions
of All Kinds of Coordinate Systems on the Boundary of Intersection Curve

Now, one can consider the generalized forces on the intersection between the shell and the
nozzle. By means of substituting the geometrical equations of Chapter 4 into the physical
equations of Chapter 5, all generalized forces can be expressed in the directions &, n and
¢ , which will be reported in Chapter 8. But the given boundary forces, generally
speaking, distribute in the three directions as below:

1. In the mid-surface, it is perpendicular to the intersection curve, as indicated by
unit vector i, as shown in Figure 7.3.

2. In the mid-surface, it .is tangent to the intersection curve, as indicated by the unit
vector i, , as shown in Figure 7.3.

3. In the normal direction of mid-surface, it is perpendicular to the intersection
curve, as indicated by unit vector i, , as shown in Figure 7.3.
The relation among the triads is determined as follows:
1, x 1, = 1, (7.22)
To analyze the boundary conditions, two more sets of unit vectors are also established as
shown in Figure 7.2 and Figure 7.3. Accordingly, we also have
X i, =, (7.23)
iox i, =i, . (724
In (7.22) and (7.24), the two unit vectors i, are the same.

The relation between the two sets of unit vectors in (7.23) and (7.24) is

determined as follows:

48



,w 0 tan(p:dZ/d’l?

Figure 7.3  Directions of unit vectors on intersection
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(‘ A 4
U (8 Ll J (7.25)

where the transformation matrix [ B ] has the form as follows [ 11 }:

[ cos@cosy + sinfsinycos® —sinfcosy + cosfsiny cos® — siny/sind)_
[B] ={- cos@siny + sinfcosycos® sin@siny +cosfcosycosd - cosy sind
L sin@ sin® cosf sin® cos®

where all elements in [ B ] have been defined as before.
To simplify the calculation and speed up the computation, (7.15), (7.16), (7.17)

and (7.18) are expanded into power series of trigonometric functions of variable 6 as:

T 2 12 r [ 1 29 00209 4 4 ]
= e—— — = —_—— A .2

Jo, S (l cos”A sin 9) Snd 1 > cos® Asin“@ + O(cos’A) (7.26)
12 1 . 9

z=R(1 - B*sin’6)’ =R[l - S psin’6 < O(ﬂ“)} (7.27)

sin®d = {-sma =g s 9[ n/’L(l — cos’A sin 9)1/2}
smH[ - --cos Asin’@ + O(cos“ﬂ)} (7.28)

sml

5| 112
cos® = (1 — sin*®) *= [l - (iesinGJ :i

)12
{l - ——-—sm 9[——— (1 - cos’Asin 6)} }

1 B
2 sin®A

=] - sin’6 + O(8*) (7.29)
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o= arc:sin(£ sin 0) = arcsir{—g— sin@(1 — cos®A sind) "2-{
R sini~ ]

- ﬁ . l_ 1 2 A 2 6 —' ~
-——nzsmetl ~ ycos” Asin 6 + O(cos A)j (7.30)

g =[p* cos’8 + 2R*( - cos®)] "

-

2 " ‘) 172
_ I _ 2 =2 2 + 9 RZ " R2 _ _l_ (ﬁ . ) +
{sinzl(l cos’A sin’8) cos’d + 2 2 [l 5 \g sinf J

r

=—(1 - cos*4sin*6 cos’d + ..)"
sind

r 1 2 1.2 2 4 :l
=—1 - — +
" {1 5 cos’A sin“@ cos’d + O(cos’d) (7.31)

cosy = £ cosé
2

r 1 5 ) r [ 1 L, ., F "
— _ = ] + I I y) 2
n /’L(l > cos® A sin’@ I_sin 1 5 cos” Asin“# cos @ J cosé

1 ) 1 . . ‘
=(l - Ecosz/lsin19+ Il + Ecos‘ﬂsm@cos@*— ) cosf

1
= cosB 'I:l - —2-cc>s2 Asin*@ +0O(cos*A) } (7.32)

’ )12
simy = (1 - coszy/)]'2={l - [cosg (1 - lc;os ? Asin6 )} J}

= sinel[:l + %cosz/l sin’@ cos’@ + O(cos“ﬂ)} . (7.33)

Now, substituting (7.28), (7.29), (7.31) and (7.32) into transformation matrix [ B ] in

(7.25) gives that
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'{‘Bll B12 Bl3’
B=[B21 B, stJ (7.34)
B3] B32 B33
where B 1 LI 2 ‘6 + O A
n= 2 Sin? llsm (cos*A)
1, 1, o |
B, :—2~AO sin” @ cosé| 1 — -2—1‘30 sin“é cos’@ + Ofcos ,1)_1
sin’A cos’A — f? B? cos’A
here the constant = - d B,= 3 > =~
W constants sin? an ® " sin®A cos’A - B°
B,= - —'B—sinze[l - lcosz}tsin“ﬁ + O(cos“ﬁ)-|
" sind 2 _‘
B =—-1-sin36cos B’ + cos’2 cos’@ + O(cos“/")}
a2 BLsinzl ; ’
B,=1- ! '6,2 sin’ cos’d + O(cos*A)
= 2 sin’Z
B,= - —E—siné? cose[l - -l-coszﬂsinzé? + O(cos“/l)]
B sind 2

1 2
B, = -S-ignzsinza[l - -2-coszlsin“9 + O(cos“B)}

1
B,, = sﬁﬂ sin@ cos&l_l > 08 * Asin’@ + O(cos® }L)J

1 2 4
=1 L f 29 + oL
B 1 sin O(sm

33 2 sin‘A

).

From Fig. 7.3, one also obtains

dz 0 . 2 a\I2
tancp—5=-d—§[kl — pB7sin 9) ]

-1/2

=_-RB’sinf cosd (1 — B?sin’ 0)
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— 2 .3 I 2+ 2 4']
=-Rf*sind 0050[1 + Eﬂ sin @ +0(8 )J (7.35)

i r 2 Y- 12
cosp = (1 + tan® ) - ={1 + LRﬂzsinH cosf (l + %,stin29 + )}
=[l + R?B*sin* G cos?0 + .] "
r 1 2 04 1.2 2 -[
=|_1 - —2-R B *sin® 0 cos’d + O(ﬁ“)J (7.36)

sing = tang cosQ

={—R,82sin9 cosd (l + %,stinze +)} [l— %R’ﬂ“sinzeooszef.}

= - Rp?siné cosd {1 + —;—ﬂzsinze + 0(,64)] . (7.37)

By substituting (7.33) into (7.25), the triads of unit vectors i, , i, and i, can also be

/Y

expressed with the trigonometric functions of variable 6 :

ﬂ2

- L
2 sin*A

1/-71 =

| .

. .
sin® @ + (cos G)J i,

1 .
E 4, sin3ﬁcos8{1 - EB" sin’@ cos’8 + (cos“&)_i}lg

;
-

+

1 . .
;fl—isinzﬁ{l - Ecoszﬂsm"O + (00540)_'}12

2

I 1 B 4 4 :l (1 ) )
=l1- = i ) [i,+| A, sin’6 cos
l.l S S sn @ + O(cos"A) | 1, o A sin’d cost |,

B ...l
+!L— -S—i-nzsm BJ 1, (7.38)
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[ [ p 1
i,= {-— Esin3 6)c056?|_5£2 ri cos’A cos’@ + O(cos“A)J}i

P

ﬂz

1
2 sin®A

i
+11 - sin? @cos’8 + O(cos* ))J

+

I
L
1
{ smt9 cosGLI ~ 5cos ? Asin’@ + O(cos* /’)_I}

1. 52 ) 1B 1
{— 2sm 60059 .y -HLI—— 2 sin? lsm ? Bcos’@ +0(cos* A)J

+{ -—sm& cosej (7.39)

. ﬁ .2 r 1 2 2 -l} .
=\—— —_ — +
1, {Sl Asm 6 Ll cos” Asin“@ -I 1,

ﬁ P r 1 ) .2 -l}
4L - +
{Si /151119 cos6| 1 cos” A sin“8 J 1,

b sin’ @ + 0(/34)} i,

1
2 sin’A
1.+

(B . ) (_ﬂ;__ )
sinlsm ‘0 Sin ﬂsme cosf

r
+Ll -

+[1 - % .‘62 sin’ @ + O(,B“)] i (7.40)

sin“A
Now, from Figure 7.3, one obtains the follows:
i,=(-cosp) i, + (sing) i,

-[1 - %Rﬁ&*sinzecoszﬁ + 0(ﬂ4)} ig

+{-— RA?sin@ cosB{l + —;—ﬂ2sin29 + O(ﬁd)}}i:
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= - {1 - %Rzﬂ"sinzﬁcosw + O(:B4)} i

+ {— Rﬂzsiansé{l + %ﬂzsirf& + 0(/34)}} i,

1
= —[1 - 7 R'B*sin* 6 cos’6 + 0(/3‘*)] i,#(~RA?sind cosh) i, (7.41)
i, ig : i,

i, =1, x1, = 0 -—[1 Y ‘,B4sm“9cos‘9+..._J —Rf “sin@ cosb +...
—~—sin’® 6+ sin@ cosé + 1 - 18 sin® 6 +
sind sin 4 2 sin®*d "

—ir1+lﬁ3'29+0“]'+( Rﬂz'se 6)'
_L_ 5 sinzlsm (B i, +|- Sind sin” fcosd | i,
B, )
+ —
(sin lsm 0, (7.42)

Now, all the expressions to determine the relations of the directions between all
generalized forces along the intersection of the shell and the nozzle are obtained as

follows:

1 B, RA* ., B_. . j
-l _ 2 + - .., — +...
( 1+ > sinzzlsm e+.., sind sin"@ cosf +..., sinlsm e

1 ﬁB s 4 1 .3 ﬁ <2 )
® (] - . 3, 5N 7] ey AQ sin"@cos@ R i sin“ @

sin” @ cos’@ + O(S*) (7.43)



(2]

in‘A

sin’ Bcos@+..., 1 —

B*+ RB’sinA .

1
2
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[
: B
——sin’@ cosf +..., ——sin@ +. .
sind sinAd
ﬁz s 2 2 ﬂ .
5. 8In" fcos’ @ +..., — ———sind cosd +...
sin“A sind

2 sin’A

sin

*Gcosh + O(f*)

(7.44)



CHAPTER 8

DERIVATION OF ANALYTICAL SOLUTIONS

8.1 Derivation of the Basic Differential Equations

By means of substituting the geometrical equations (4.31) , (4.32) and (4.33) of Chapter

4 into the physical equations (5.26) through (5.31) of Chapter 5 , the following is

obtained:

Et (& w G'h—l
N T 1_,,4(;,,— ! i)““aﬂ
os B (B )
- o220+ w\op &
A*w A*w
Mi - ‘D(é’f: +4u§r".j
M. = - D(ﬁzw N ﬁzwj
2 &]z :uﬁgz
M,=M, = -1 - )Déiz‘
12 = My H 260

(8.1)

(8.2)

(8.3)

(8.4)

(8.5)

(8.6)

Then, substituting (8.1) and (8.6) into (6.4) and (6.5) of the equilibrium differential

equations of Chapter 6, one obtains

2 .
Q, = —D}EVW
J .,
Q.= -D—V'w
; on

57

(8.7)

(8.8)
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and substituting the expressions (8.1) through (8.8) into the (6.1) , (6.7) and (6.3) of the

equilibrium equations in Chapter 6., one obtains the basic differential equations as follows:

5? 1-pu & 1+u & A 1 - u?
(2+ £ 2ju+ LY BN _ZZE (8.9)
% 2 oy 2 o R & Et
1+u &° o7 1-pu &° 1 & 1 - u°
£ u+( e B T Ty (8.10)
2 & \on 2 & R Iy Et
u & 1 & w t? ., 1 - u®
— — + — — —_— =
R& Ra & T2V B Z @.11)

where the relations between displacements on mid-surface and loading have been
established.

Now, let us start with the case of normal loading acting on the circular cylindrical
shell where the loading, such as internal pressure, is always perpendicular to the mid-
surface, which is the most popular loading to pressure vessels. In this case, X =Y = 0,

then, Equations (8.9) and (8.10) are reduced to

é’ 1 - 7?2 +u &
[ - 4 ”5q)u+l L OV BN _, (8.12)
G 2 oy’ 2 @Pn R &
1+u &° Ik 1-pu &7 1 &w
£ +[ _ s =2 _H g (8.13)
2 &on on 2 gE? R &n
Partially differentiated with respect to 1 , (8.12) becomes
3 _ 3 1 + k} 2
Ea_— ”ﬁsj ey (8.14)
2 2 2 d&on R &

Partially differentiated with respect to £ and multiplied by p, (8.13) becomes

1+ '3 ~3 _ .3 6';2
plrp) S (0 1- ﬁjv+§- LA (8.15)

2 aen  Maamr T T2 & SEon
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Subtracting (8.15) from (8.14) , the following is obtained:

f_F2+ é é* | a(az _q’*__) .
|.( 1) an’ ",uégz V= (8.16)

T Ut
on & Tt x
From the information provided by (8.16), one can imagine that if there exists a function

F=F (£, n) which makes that

u= _c"‘_[é’z - 52)1’ (8.17
ol & o
v=-— —5;; L(?. + u) T + 5772_‘F (8.18)

and noting that the total differential operators of the function F in (8.17) is the same as the
total differential operators of the displacement v in (8.16). And the total differential
operators of the function F in (8.18) is exactly the total differential operators of the
displacement u in (8.16) with a minus sign, it is obvious that the equation (8.16) will be
fully satisfied.

Our purpose is to make the possible function F satisfy (8.12) and (8.13). Because
Equation (8.16) came from the combination of (8.12) and (8.13), as long as the function F
satisfies either (8.12) or (8.13), the function F will satisfy both of (8.12) and (8.13). Now

substitute (8.17) and (8.18) into (8.12):

2 1-u & F_a_[az 53)
(o’fz t T3 é‘nzhﬁé ar Ha )t

6t ot (94] u w
i — + + F+ —— =0
that is ( 2 R &F
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thus I{Rg—(ﬁi + 2555;72 + jn:jl’:idf.

Since only one of the expressions of displacement w , instead of all possible expressions of

w, is needed , the arbitrary function from integration has been ignored. then one obtains

w = RV*F (8.19)

A i &t
4 + 2 2 n + 4 .
% dg'on”  On

Now it is clear that (8.19) is the requirement for the function F to satisfy both (8.12) and

where the double Laplacian operator V* = V*V?* =

(8.13),

To make function F a displacement function, it is required that function F must satisfy
not only (8.12) and (8.13), but also (8.14) simultaneously; otherwise, F still can not be a
qualified displacement function. To see the necessary conditions for the function F to

become a displacement function, substitute (8.17) , (8.18) and (8.19) into (8.11) obtains

the following:
5 [ 5 Nl 18] al& & |
f—-ﬂ—[ az)FJJr————L P Q|
R & | Mo R on| onlon 24
12 _ 'uz
+ —V V°F
(R V*F) - (R V*F) 5 Z
therefore it is obtained that
4
v+ o 2F _Z (8.20)

DR® &* RD
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Et’
where V¥ = V'V* and D = FLY I a 5 is known as flexural rigidity of thin
- 4

shell.

Now, it has been determined that the function F can be employed as a displacement
function as long as (8.17), (8.18), (8.19) and (8.20) are satisfied simultaneously. Before
the form of function F is selected, one may express all internal force and moment
resultants with the possible displacement function F. By méans of substituting (8.17),

(8.18) and (8.19) into (8.1) through (8.8), the following is obtained:

N, = B—2E (8.21)
1 5525172 -
N, = EtaAF 8.22
2 5;4 ( : —)
A°F
S.=S, = - Et— 8.23
12 21 53577 ( )
o? &?
M, = - RD(%2 + p&UZJV4F (8.24)
3 52}
M, = -RD|— + — | v* .
2
M-, = b = = 4 .
= My, (1 - #)RD 2o V*F (8.26)
3 _, :
Q = - RD— V°F (8.27)
()
a 6
Q, = -RD — V°F (8.28)



8.2 Displacement Function and General Solutions of Basic Equations

If one attempt to use Fourier’s series as the form of the displacement function F, that is

F= R, 1) = £,)+ 2 £.) cof 1 (829)

the expressions (8.21) through (8.28) become as follows:

N, = ——Eté r;{” £(8) co{%n) (8.30)

N, = Etrf<“)(g)+i f<4>(§)cos(le )] 831

2 Lo Lot R n _l (8.31)

S, =8, = Et E% £, (&) Si“(%n) (8.32)
M, =—RD{féé>(:>+m2{ff> (- G o gys LIZERT

- L) e —-R’in)} (8.33)

M, =—RD{ufé“<¢)+ PP U LA RO LA

n®rx’ . | {ﬂ j
- R £ |eog T (8:34)

= nz| 2ntr nirt

2 .
M12=M21=(1-ﬂ)RD§RLf,fs’(«f)— Rz )+ ¢s fn(é’)_lsiﬂ(%n)- (835)

2.2
- 3n“x 3an‘r?

[
Q1=—RD{fé”(§)+ZLf§”(§)— o 2@+ RO

n=1

6
nérs

N
- R R Jco{%n)} (836)

62
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3n’rz? n*r néx

RDZRLf“”(z;) @)+ - = £,(@) sm(———n) (837)

Substituting (8.29) into the governing equation (8.20) gives

. E o[ = nr |z
(V * IR ?]Lfo(‘fﬁ;fn(é)w{i—ﬂh = XD’

when Z = p = constant in the case of internal pressure, the above becomes

[¢* Bt g¢*] o ¢ n'x? df [n4ﬂ‘4 Et]d4
[-dgii +DR2 d§4Jf0(§)+r§ l__d§8—4 RZ d§6+ 6 R4 +DR2 d§4

néz® 4> 'zt nz ) P
- + =L e
R TR an(ﬁ)}“’ R RD (8.38)

where the constant E% can be expanded into the same form of Fourier series as the

form on the left side of the equation. Assume this Fourier cosine series has the form as

follows:

p Jo < nn)

——= 2 4 S -R<np<R

o= 2 T 2 LT n
2 (R p 2p

then JO:E"-Oﬁdnan—D_

and J.= % ,f: [%cos(ngnﬂ dn=20 n=123, ..

" g Et d* | _p £ 30
@ TR d§4_lf°(§) " RD ®.39)
o 2 2\ 4 -‘
d nrz Et d
_ = = 8.40
_(dgz RZ) " DR dé“Jf“(g) ° nmh2 3 440
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(8.39) is a non-homogeneous eighth-order ordinary differential equation and its general
solution consists of the summation of a particular solution and a linear combination of
solutions of its homogeneous equation. The particular solution of equation (8.39) can be

visually found as follows

_ PR

fo = 24Et

E* (8.41)
and the solution of its homogeneous equation can be determined by its characteristic
equation:

Se+4G*S;=0

Et
4DR?

1/4
where G = ( ) and this characteristic equation has two pairs of conjugate

complex roots and four repeated real roots as follows:

S,..=G(l i), S,=-G(l*i) and S,,,,=0.

Therefore, the complete solution of equation (8.39) is obtained as follows:

f,(&)= %54 + k,, cosh(G¢&) sin(GE) + k, cosh(G&) cos(GS)

+ k,8inh(G¢) sin(GE) + kg, sinh(GE) cos(GE)

ks + k& + k&2 + k&P (8.42)
where k,., i=1,2,..,8 are arbitrary constants to be determined by boundary
conditions. But, noting (8.30) through (8.37), one can find that k., k.., k,, and k
will never appear in any member of those internal force and moment resultants, so they
can be reasonably set as follows:

kys = ko = ko = kg =0.
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And the solution of the homogeneous equation (8.40) can be determined by means of

its characteristic equation as follows

2_2\*4
Et
(sﬁ—n’fj+ _§'=0 n=1273, ..

The four pairs of conjugate complex roots of this characteristic equation are as follows

n n

atbi, —-a*bi, c*di ad -c td,i.

Therefore, the solution of equation (8.40) is obtained as follows:
£,(6) = e [k,codb,&)+k,,sin(b,&)]+ e [kcosb,&) +k,, sin(b,&)]

+ e [k scos(d, &) + kg sin(d,&)]+ e [k, c08(d, &) + k4 sin(d, )]
n=123, .. (8.43)

wherea_, b , ¢ and d,, n=1,2,3, .. areasfollows

n°

2
a, =—€—(M+JJ16N“ +M* +4N? ) , b, =§(M+\/\/16N4 +M* - 4N2)
(8.44)
c, =l§—( ~ JVI6N® + M* +4N2) d ——( VWI6N* + M* — 4N )
Et 1/4
and M =( ,) and N = iz n=1273, ..
DR~ R
where k ., i=1,2, .., 8 are arbitrary constants to be determined by the boundary
conditions. Noting that
a, >0 and ¢, < O n=1,23, ..

we realize that the value of f (£) and its derivatives will approach infinite as n increases.

Since the force and moment resultants can not be infinite as £ increases, the following is

reasonable and necessary:
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k k

nl nl n?7

i

k,.=0, for & > 0

ng

il

k

It

(8.45)

k;=k.=k k

i
I
i

I
o

for £ < 0.

ns né

To compute the internal force and moment resultants in (8.30) through (8.37), we
need to calculate all derivatives of the functions f (£) and f, (&) first. Now, according to

(8.42) and (8.43), all derivatives possibly needed are calculated as follows :
8) =28 + k,y {G[sinh(GE) sin(GE) + cosh(GE) cosGe ]
+k,, {G [sinh(GE) cos(GE) - cosh(GE) sin(GE )|}
+ kg, {G[cosh(GE) sin(GE) + sinh(GE) cos(GE)]}
+ kg, {G [cosh(GE) cos(GE) — sinh(GE) sin(GE)]} ,
f, (&) = %52 + ko, [2G? sinh(GE) cos(GE)] + ko, [~ 2G? sinh(GE) sin(G¢)]
+ ky; [2G2 cosh(GE) cos(GE)] + k4, [~ 2G? cosh(GE) sin(G¢)),
fy (&)= p—ERt—i + kg, {2G° [cosh(GE) cos(GE) - sinh(GE) sin(GE)]]
+ kg, {- 2G* [cosh(GE) sin(GE) + sinh(GE) cos(GE)]}
+ ko, {2G° [sinh(G¢) cos(GE) — cosh(GE) sin(GE)}
+ ko {— 2G* [sinh(GE) sin(GE) + cosh(GE) cos(GE)]} ,
£8(&) = PE% + kg, [~ 4G* cosh(GE) sin(GE)] + kqy [~ 4G* cosh(GE) cos(G¢))
+ Ky, [~ 4G* sinh(GE) sin(GE)] + ko, [~ 4G* sinh(GE) cos(GE)),

£7(£) =k, {- 4G® [sinh(GZ) sin(GE) + cosh(G¢) cos(GE )]}
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+ Ky, [~ 4G® [sinh(GE) cos(GE) — cosh(GE) sin(GE))}
+ ks |- 4G® [cosh(GE) sin(GE) + sinh(GE) cos(GE))]
+ k. {- 4G [cosh(GE) cos(GE) — sinh(GE) sin(GE)]),
£9(£) = k,, [~ 8G® sinh(G¢) cos(GE))] + k,, [8G® sinh(G¢) sin(GE))
+ kg, [~ 8G® cosh(GE) cos(GE))] + ko, [8G® cosh(GE) sin(G¢)],
f7(¢) =k {- 8G7 [cosh(GE) cos(GE) - sinh(GE) sin(GE)]}
+ky, {8G” [cosh(GE) sin(GE) + sinh(GE) con(GE)]}
+ Ky, {— 8G7 [sinh(G&) cos(GE) - cosh(GE) sin(GE))}
+ Ky, {8G7 [sinh(GE) sin(GE) + cosh(GE) cos(GE))}.
For n=1,2,3, ... , the derivatives of the function f, (£) are calculated as follows:
£9(&) = e¢[A, cos(b,&) + A, sin(b,&)] + e™¢[A, cos(b,&) + A, sin(b, &)

+¢%[B, cos(d,£) + B, sin(d,&)] + e¥[B,, cos(d, &) + By, sin(d, &),

i=1,2,3,..,7
where
A, =ak, +bk, , A,= -bk, +ak,
A,= —-ak,+b k,, , A,= -bk,-ak,,
B, = c ki +d k. , B,= —-d k+c k.,
B,= —-ck,+d k, . B.,= —-dk,,-ck.
A,=@-b)Hk,+2ab k,, A,= -2ab k + (@-b2)k,,

Ay= (@ -bk,-2ab k,, Ay =2abk;+ (@ -b)k,,

n-n nl3



Bz] = (ci - df\) kns + 2cndn kné 3 B22 = “2cndn an + (Ci - dfl) k

né

B23 = (Ci - di) kn? - 2cndn knﬂ . B24 = zcndn kn7 + (cfx _ d2n) k

ng 3

A= (ai - 3anb2) k, + (3ar21bn - bi) k.,

n

A

2= — Ga;b, - bk, + (a;- 33,b)) kyy

>
I

= —(a)- 3a,b?)k_, + (3a’b_ - b )k_,,

n

-2
b3
i

— (3aibn - bi) kn3 - (ai - 3anbi) kﬂ4 ’
B, = (¢} - 3c,d’) k + (3c3d, - d2) k,,

B,= - (3cXd, - d})k,, + (¢ - 3c,d®) kq,
B, = -(c} - 3¢,d2) k,, + (3c2d, — d2) k,q

B,= - (3cid, - d* )k, - (¢ - 3c,d*) k

ng 2

Keg
|

= (al - 6alb2 + b¥)k_ + (4a’b_- 42 b))k,

n

A,= - (4alb, - 4a b))k  + (@} - 6a’b2+ bk,
Au= (a;- 6alb. + b))k, - (4a}b, ~ 42 b)) k.,
A, = (4alb, - 4a b))k _,+ (@ - 6aZb2+ b))k ,,
B, = (ci-6c2d?2 + d¥) k. + (4c3d, - 4c d1)k,,
B,= — (4cid, - 4c d>)k+ (c! — 6c2d>+ di)k,
B, = (c!- 6c2d2 + d¥) k- (4cld_ - 4c d)) k,,,
B, = (4c3d_ - dc.d®) k. + (¢} - 6c2d2 + d) k,, ,

A, = (2l - 102’b2 + 5a_b! )k, + (5atb, - 10alb] + b))k, ,

>
1

—(5a’b_ - 10a’b? + b))k, + (al - 10a’b? + 5a b )k, ,

A = —(@1- 10a’b? + 5a,bf )k, + (Salb, - 1022b] + b))k, ,
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Ag = —(5a;b, - 10a2b) + b)) k- (al - 10alb? + 5a,b2 )k, ,
B, = (¢} - 10cid? + 5c.df )k, + (5cid, — 10c2d® + d*)k,, ,

B, = ~(5c;d, — 10c2d] + d}) k, + (¢} - 10c3d? + 5¢.d* )k,
B, = —(c} - 10c3d? + 5¢.d? )k, + (5cid, - 10c2d? + d3)k ,,
B,, = —(5c;d, — 10c2d> + d)k, - (c] - 10cid? + 5c.d? )Yk ,,

A = (a; - 15a5b2 + 15a2b% -b%) k,, + (6alb, — 20a’b3 + 6a_b’)k_, ,

A, = —(6a}b, - 20ajb] + 6a,bl) k., + (af —15ab? + 1522b% —~ b¢ )k, ,

Ag = (al- 15a%b? + 15a%b? —b) k, — (6a’b, — 20a°b’ + 6a.b’)k.,,
A = (6a°b, - 20a%b> + 6a,b%) k, + (a° —15a%b2 + 15ab* — b )k, ,
B,, = (ci - 15ctd? + 15¢2d! —dS) k,, + (6c3d, — 20c3d? + 6¢,d>) kq ,

B, = —(6cid, — 20c3d? + 6¢,d]) ko + (¢ —15ctd? +15¢c*d? —d® )k

n6

oy
!

= (¢t - 15¢id? + 15¢1d? —-d¢) k,, - (6c3d, — 20cd® + 6¢.d3) k.,
B, = (6cid, - 20c3d? + 6¢,d]) k,, + (¢S —15c*d? +15¢id2 —d® )k

ng 2

A, = (a,— 2lalbl + 35a]b] - 7a,b;) k, + (7alb, - 35ajb) + 21alb] - b))k, ,

A, =-(7a%b, -35a*b? +21a’b> - b)) k_ + (a —21a’b? +35a’b? - 7a bS) k.,
A, =-(al -21a’b2 +352°b* —7a_b¢) k_, + (7a’b_ -35a’bl +21a%b] - b))k, ,
A, =-(7a%b_-35a%b® +21a?b’ - b)) k.~ (a] —21a b2 +352%b% - 7a b ) k.,

B, = (c] - 21c2d? + 35¢2d? - Tc dS) k,,+ (Tcid, — 35cid] + 21c2d] — d]) k,,,
B, =~ (7ctd_-35c%d? +21c2d’ - d)) k, + (c] —21cid? +35c2d? —7a, b0 ) k
B, =-(c! -21c’d? +35¢3d? - 7c,d®) k, + (Tcid, —35cid? +21c2d} -d]) k.

B,, =— (7c%d_-35c*d? +21c2d’ - d]) k,, - (c] —21c]d? +35c3di -7a,b%) k,, .



8.3 Application of the Boundary Conditions

All possible components of loading N, S, Q,, M,, and M, as well as the internal

force and moment resultants are shown in Figure 8.1. By taking equilibrium, the relations

between the loading and internal force and moment resultants can be obtained as follows:

From Z F, = 0, the following is obtained:
N, ds cos(v, p) — S,ds cos(t, p) =

(N, dn + S, d&) cosy + (N,d& + S,,dn) siny.
From Z F, = 0, the following is obtained:

N, ds cos(v, ) + S, ds cos(t, ¥) =

- (Ndn + §,d&) siny + (N,d& + S,dn) cosy .

From Z F = 0, the following is obtained:
Q,ds = Q,dn +Q, d& .
From D M, = 0, the following is obtained:

M, ds cos(v, p) + M, ds cos(t, p) =

(M,dn - M, d&) siny — (M,d& - M,,dn) cosy .

From Z M, = 0, the following is obtained:
M, ds cos(v, ) — M, ds cos(t, ¥) =

(M,d77 = M,,d&) cosy + (M,d8 — M,d7) siny

where ds = /(d&)*+ (dn)’ = 1/1 + (g—g—] dé.

When the loading is the internal pressure p only,

70

(8.46)

(8.47)

(8.48)

(8.49)

(8.50)



-0

Figure 8.1

Distribution of forces and moments on the intersection of the shell and nozzle
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N,= 8, =M, =M, =0, then from (8.46), (8.47), (8.4R), (8.49) and (8.50), one
obtains:
dn
N,= - 8§, EE (8.51)
dn
Sy= - N, d_é’ (8.52)
( 7
dn dn
Q, .d—f— +Q, :QDL 1+ (’EE] J (8.53)
d
M, = M, E—Z— (8.54)
5
dn .
M,=M,, Eg . (8.55)

Furthermore, noting that S, = S, and M, = M, , then from (8.51), (8.52),

d . : i
(8.54) and (8.55) when & = 0 or Sl # 0, the following two equations are obtained::

do
= —djlj-z 8.56
N, =N, (dﬁ (8.56)
= _(l?lj—z 8.57
Ml - MZ (dg . ( )

In the same manner, one obtains from (8.53):

ool (@) o)
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To determine the coefficients in (8.42) and (8.43), one can consider some special
points on the intersection curve of the shell and nozzle. For instance, from Figure 7.2, at
the point £=0, variable m arrives at its non-zero extreme value, which means

(‘3';")&0: 0 . (8.59)
Noting Q,=-pR at £=0[ 10 ] and substituting (8.59) into (8.51) through (8.55)

and considering (8.31), (8.32), (8.34), (8.35) and (8.37), we obtain that

£90)= 0 (8.60)
£490)= 0 n=1213, .. (8.61)
£ (0)=0 n=1,2,3, .. (8.62)
3 3 4__4 . 6.6
w0 - L0 + 50 - 220
- 4pR
JTI;_ n = 2k-1
n“r°D
= =1,23, .. (8.63)
LO n = 2k
where the Fourier’s expansion of Q_ = — PR is utilized as follows:
RD inn(f@ o “ ‘nt nz® 1. (nx
o BEros Foo- oo

f !
and b, = %I:L-pksi %nﬁdn =1 " k=1,2,3, ..



. o n*rt
frtsj (0)— R;’, fn (O) + 4 fn(o) =
£ (0)= 0
‘ 1+ 2un*zr?
,Uf,fé) (O)— ( 'L__{)n r f:‘)(O) + _(__.___ﬁ_)g_.__
nér®
- R6 fn (0) = O

r
F Fi 7.2, h t ( 0)
rom Figure at the point (£ ,m)= Sl

- e
[dé R T =0

&=1/sni

n=123, ..

£ (0)

n=1,273, ..

74

(8.64)

(8.65)

(8.66)

dn
— — o , which means that

dg

n=1,223, ..

(8.67)

Noting Q. = 0 at &=r/sinA[10] and substituting (8.67) into (8.56) and (8.57) and

considering (8.30) and (8.33), one arrives:

" r
)
SInA
(6) 0
fo (sml)

n=1,223, ...

f(G')( r ]_ @+ ﬂ)nszzf@)( ) a+ 2#)n47r4f ( r
" \sind R® ® \sind R*

n67r6f(r )_0
THTRE o sina

substituting (8.67) into (8.58) and considering (8.36), one can obtain:

™ __r__)=
i (sin/l 0

n=1,23, ..

4__4
o r]_3n7r W(r)+3n7r f( )
. (sinﬁ R’ £ sind R* " \sind

sind

(8.68)

(8.69)

(8.70)

(8.71)
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nz® [ r
- Re f, —S'E;{ =0 n=12 3, . (8.72)

Now there are twelve equations, among which four equations, (8.60), (8.65), (8.69)
and (8.71), describe the function f,(£) and eight equations, (8.61), (8.62), (8.63),
(8.64), (8.66), (8.68), (8.70) and (8.72) describe the function f (£). These twelve

equations are sufficient to solve for the necessary coefficients in solutions (8.42) and

(8.43).



8.4 Analytical Solutions

Now, by substituting (8.42) into (8.60), (8.65), (8.69) and (8.71) to determine the

coefficients in (8.42), the following is obtained:

) _{_§_s_ QFSC(CS+SC)—SS(CC—SS)T} pR

RE
cct sc L Cs(cC-58)-SC(SS+CC) || 3G°Et ®.73)
_ _mR
ko = 4G°Et (8.74)
k,, = 0 (8.75)
SC(CS+SC)— SS(CC—-SS) pR
_SC( ) ( ) P (8.76)

® "~ CS(CC-SS)-SC(SS+CC) 4G*Et

T T

r ) ) h( j S( r )
h = —— — - s ) [
where CS cosh(G sin/?) smkG Sni)’ CC= cosh G Snd Cos G "y
SC = sinh(G I ) co{G rj SS = sinh(G ‘rn)sir(G ,rﬂ) .
sini sini sini sini
E 1/4
and G =( ! \ .

4DR*/

To determine the coefficients in (8.43), substituting (8.43) into (8.61), (8.62),

(8.63), (8.64), (8.66), (8.68), ( 8.70) and (8.72) gives:

}—Kn K, K; K, K; K; K, K]S_ [k, ( 0 )
: K, K, K, K, K, Ky K, Ky K. 0
i K, K; K, Ky Ky Ky Ky, Ky ks — 4pR/(n’z* D)
| Ky Ko Ki Ki K Ky K, Ky ko, _ 0
Ksi Ki. Ky Ki Ky Ky Ky Ky ks 0
E Ko Ko Kg Ko Ko K K Kg K 0
i K7] K7:' K7? K74 K7i K75 K77 K73 kn7 O
1Ky Ky Ky Ky Ky Ky Ky Kgel L k) 0 /
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n=2k-1, k=1,23, .. (8.77)

where, the elements of this matrix are as follows:

K,= AL, K,=B.,. K;=A,, K.,=-B,,
Ks=Cu» Ks=D.> K,=C,, Kg= -D,,
K, = A, K,,=B,;, Ky,= -A,, K, =B,,
Ky=Cgs, Ky=Dg, Ky,=-C,, Ky=Dg,
3n’r? 3n‘m? nért 3n’z? 3n*r?
K, =A,- R? A+ R* A,- R® ° K, =B, R2 B. R* B,
3n’x? 3n*n? nbz® 3nn? 3ntz?
K33 = Anﬁ - R2 An4 R4 Anz R6 b K34 ) Bné R2 BM R4 Blﬂ ’
Kss =C,— 3n2?2 4t 3n474 2 n67€>6 » Ky =Dy 3’-'12?2 D. 3n474[4 D,
hal R- n R nl R n R- n R nz

3n’z? 3n‘z? nért 3n’x? 3n‘z?
K;,=C,— C.+ Co——i . Kyu= Dy-——=7D.+ D, |,

R? R? R® R? R*
2n’x? n*r? 2n’r? n*r?
K4l = An‘- R2 An3 R4 Anl ’ K42 = ns R2 Bn3 R4 Bnl )

/4
Kig= - [AnS— _Rz'—Anf*' R* Anlj’ Kgo=B,- RZ B+ R® B,

K, = C, - 2:;;;2 C.,+ n;’i4 C... K, =D, 2“;’2 D, n;’f D,
Kq= - (cnj— A “—1{-’—0J Ku=Dy- 22p,+ Lp,,
K= n - CIE QAN T

K, = uB, — r2pp’z® o @izt

R‘J n4 R4 n2
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142 22 + 4_a 6_6
B .
I B (1+2u)n*s? @+ pnirt |

- L# né RZ 4 + —T—.Bzﬁ_ >
(1+2u)n*r? Q+ wnr? n°r’
n6 RZ C.+ T—Cn?. T TR¢ °
(1+2 p)n*z? @+ p)nr?
n6 R2 nd + _—-—ﬁz——_— n2
(1+2p)n’n? Q+ pnr* n®r®
ﬂan_ R2 n4 __—-R-chnz— R5 )
r (1+2 2.2 4__4 _|
Hm'n @+up'z
- LanG— TR Dt —T—DMJ,

e“"""[A112 cos(b_r,) — B, sin(b,r_ ] ,
e[ B, cos(b,r,) + A sin(b,r,)] ,
e *=[A, cos(b,r,) + B, sin(b,r,.)] ,
e [-B, cos(b,r,) + A, sin(b,r,))] »
e‘"’"‘[an cos(d.r.) - D_, sin(dnrm)] ,
e’ [Dnz cos(d,r,) + C,, sin(dnrm)] ,
e °""“[an cos(dr.) + D, sin(dnrm)] ,

e-cnrm[— D_,cos(d,r,) + C, sin(dnrm)] ,
2 + 2.2 ‘
ot {[An6 cos(b,r )—B,sin(b r_ )] - g____'l.fk_z)g_ﬂ_[AM cos(b_ r_)—B_, sin(b 1 )]

unrt

 (1+2mn*x’

R4

{Anl cos(b,r )—- B, sin(b,r, )] - cos(b,r,, )}
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) 2+ 2,.2
K12 - eun!m {[Bné Cos(bnrm) + An6 S]n(bnrm )] - L—-{IR-)THL[BM Cos(bnrm)+ An4 Sin(bnrm)]
1+2 )7t n°r’
+ -(——R#z—[Bn: cos(b,r, )+ 4, sin(bnrm)] - u Rﬂ; sin(b,r,, }

] _@rwn’n

2
Ky, = e {[Acos(b,r,,) + B, sin(b,r,,) 27| cos(b,r,) + By, sin(b,r,)]

n®r

142 w)n7? s
+ ( /J) R6 cos(bnrm } 3

w A cos(b,r,) + By sin(b,r,)] - 4

2 + 2.2
K,, = e {[-B s cos(b,r, ) + A, sin(b, )] - L—‘If{—z)“—f——[-BM cos(b,r, )+ A, sin(b,r, )]

1+2 g)n*n? r’
+£___.;_3_5..7£_[_Bn2 cos(b 1 )+A_ sin(bnrm)]— U HRZ sin(b,r,, } ,

- EranE

2
K, =e’ {[Cné cos(d,r_ )—D_ sin(d,r [C,14 cos(d,r.)~-D_, sin(dnrm)]

R
1 2 4 4 6 6
+ £—+—1’:\1—4)-9——7-[——[an cos(d r. )-D,, sin(dnrm)] _£ nR:r cos(d,r, } ,
2 + 2.2 )
K, =e=={[D_ cos(d,r, )+ C,qsin(d,r, )] - (———f{y—[nm cos(d, r,)+C,, sin(d,r, )]

1+2u)nz* n°r’
+( hi gzn z [Dn;,_ cos(d,r)+C, sin(dnrm)] ~ HTRE sin(d ) ( ,
2 + 2.2 )
K, =€ {[Cnﬁ cos(d,r )+D ¢sin(d, 1, )] -—L—-%%ut—[cm cos(d r_)+D_,sin(d r_ )]
1 2 4 4 ) nﬁn_ 6
+ (——t—gp—f—[cﬂ cos(d,r,)+D,, sm(dnrm)] ~ HTRE cos(d,r.)( »
2+ un’n’ :
K,=e "™ {[—Dn6 cos(d r,)+Csin(d, 1 )] - S—-i—z)g-——[—DM cos(d,r, )+C_, sm(dnrm)]
nﬁﬂ_ﬁ

(A+2u)n'n*
TTRY

[—D112 cos(d,r,)+C,, sin(dnrm)] - sin(d, r, } :

R6
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N _ 3n’x?
K, =e"= {[An7 cos(b_r_)-B_,sin(b,r, )] “TRE [Ans cos(b,r,)~B sin(bnrm)]

3n*zr?

R4

6
6

) nér
[A.; cos(b,r,) ~ B,y sin(b, r,,)| = 5~ [As cos(b,r, )~ B, sin(b, 5, )],

‘ 3n’zx?
ng - eanrm {{Bzﬂ cos(bnrm) -+ An7 Sln(bnrm)] - —_R—?——[an cos(bnrm) +An5 Sin(bnrm)]

3n*r* ) n‘rz*®
+ T[Bﬂ COS(bDrm) + An3 SIH(bnrm )] - ?—[Bnl cos(bnrm)+Anl Sin(bnrm)] s
. 3n’x?
Ky =€ {[_ A, cos(b,r )-B_ sin(b r_ )] TR [—-Ans cos(b,r.)~B ;sin(b r_ )]
3n‘r* . nr®
+ nR4 [_An3 cos(bnrm) - Bn3 Sln(bnrm )] - RG [_Ani cos(bnrm) - Bnl Sin(bnrm)]} )

3n2 2
K, =e™'™= {[Bﬂ7 cos(b,r, )—A_,sin(b r_ )] - *E?—[an cos(b,r )~ A sin(bnrm)]

3 4 4 ) 6 __6
+ ———~an [B,, cos(b,r,) - A, sin(b,r,,)] - ———“Rf [B,, cos(b,r,)- A, sin(bnrm)]} ,

3n2r? .
K, =e={[C,, cos(d,r, )~ D,,sin(d,r,)] - ’;{—f[cﬁ cos(d,r,)- D, sin(d,r, )]
3 4 4 n67T6 )
+ an [an, cos(d,r )- D, sin(d r, ] - -—-R—(:,——[Cnl cos(d,r,)-D, sm(dnrm)] ,

: . 3n’r? .
Ky = e {[D, cos(d,r,)+C,, sin(d,r,)| - T[Dns cos(d_r_)+C gsin(d,r, )|

3n‘z?

-+-R4

6.6
[DDB cos(d,r_)+C,sin(d r, )] - %[Dm cos(d, r )+C, sin(d,,rm)]},

3nir?
R2

Kg, =e ™ {[-—Cn7 cos(d,r_)-D_,sin(d 1 )] - [--C,,5 cos(d,r,)—D_sin(d,r, )]
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3ntr? nr

= [-C s cos(d,r,)~D,,sin(d,r,, ] - =

6
+ [.—Cnl cos(dnrm) - Dnl Sin(dnrm )]},

, 3n*x?
Ky =™ {[Dn7 cos(d,r )—-C_,sin(d r_ )] - T[Dﬁ cos(d, r, )—-C_, sin(dnrm)]

3n'n* , n°r® s
+ _I—{T_[D“ cos(d,r,,)—C,;sin(d, 1, ] - -—P-:s—-[Dm cos(d,r,,)—C,, sin(d,r,, ] ,

where all constants are as follows:

A =a,, B,=b,, A,=2a-1b?, B,=2ab_,
A= a,(a}-3b]), B, = (3a}- b})b,,

A, = ai— 6a’b? + bl B, = 4a,b (a2~ b?),

A= afat- 102’2 + 5b), B, = (5a%- 10a’b? + b%) b, ,
A= a’— 15a%b? + 15a%b% - b¢ | B, = 2a,b,(3a% - 10a’b? + 3b%),

A, = a(al- 21a%? + 35a2b - 7b¢), B,, = (7a’- 35a%b? + 21a’b® - b¢) b

n?

Cu=c,, D, =d,

C,=ci-d2, D,=24d_,

C.i= ¢, (- 3d2), D, = (3¢} - d}) d,,

C.= ci— 6c3d2 + d*, D,, = 4c,d (c2- d?),

C.s = c,(ct— 10c2d? + 5d%), D, = (5c: - 10c2d? +d*)d,,
C,= ¢ — 15¢‘d> + 15¢2d* - d°, D, = 2c,d,(3¢! - 10c2d? + 3d*) .

C,,= c(cf— 21ctd? + 35c2d - 7d%), D, = (7c® - 35cid? + 21c2d? - d¢)d

n?

and r, = r/sind.

where a, , b, ¢ and d_, have been determined earlier in (8.44) and (8.45).

n



CHAPTER 9

NUMERICAL CALCULATIONS AND
COMPARISON OF STRESS RESULTS

To verify the analytical solutions of this dissertation, a series of numerical calculations
of samples has been carried out by the method of this dissertation with a Fortran program.
One of the samples is given by the literature [10] which is limited to the case of
the shell with an orthogonal nozzle and its geometric parameters are described as follows:
B=r/R=04, vy=R/t=40 , p=100psi and A=90",
and from Table 9.1, one can see the largest stress concentration factor, SCF, on the inside
surface of the shell at point A in circumferential direction is 9.86. This value deviates
about 9% from the literature [10].
All the calculation results of stress concentration factors at points A and C are
shown in the 16 figures, Figure 9.1 through Figure 9.16 , as well as in Table 9.1.

The stress concentration factors can be calculated in the forms as follows:

1. The longitudinal stress concentration factors on the inside surface at the area of

points on the intersection of shell and nozzle :

SCF = %ﬁ ©.1)

2. The longitudinal stress concentration factors on the mid-surface at the area of

points on the intersection of shell and nozzle:
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©.2)

3. The longitudinal stress concentration factors on the outside surface at the area

of points on the intersection of shell and nozzle:

o,lm + O_]b

SCF = pR/t

(9.3)

4. The circumferential stress concentration factors on the inside surface at the area

of points on the intersection of shell and nozzle:

SCF = u
pR/ t

(9.4)
5. The circumferential stress concentration factors on the mid-surface at the area

of points on the intersection of shell and nozzle:

oy
SCF = TR (9.5)

6. The circumferential stress concentration factors on the outside surface at the

area of points on the intersection of shell and nozzle:

(9.6)
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where ¢” and o are the longitudinal membrane and bending stresses, and o™ and

o, are the circumferential membrane and bending stresses, all of which can be afforded

by Equations (5.34) and (5.35) in Chapter 5 of this dissertation as follows:

N
o = — ©7
b 6Ml
o = & 98)
N,
o = = (9.9)
. 6M,
or = —— (9.10)

This dissertation carries out the numerical calculations in an extensive range of
intersection angles from 30° to 90° . The purpose of these calculations is to try to find
out the stress distribution at the areas of points on openings formed by the intersection of
a cylindrical shell and an oblique nozzle so as to propose better suggestions for the design
of shells and nozzles.

The intersection angles selected in the computation are 90°, 75°, 60° 45°
and 30° respectively. For each case, the longitudinal stress concentration factors and
circumferential stress concentration factors on outside surface, mid-surface and inside
surface corresponding to the point A and the point C have been calculated. All sixty
curves calculated by this dissertation are illustrated in twelve figures from Figure 9.3 to

Figure 9.14 where point A and point C are defined as shown in all figures, respectively.
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These figures and the table indicate:

1. At the point A (see the figures for the location), the values of the circumferential
and longitudinal stresses increase as the intersection angles change from 90° to 30° and
the closer to the 30°, the faster the increase becomes. Therefore, any change of the
intersection angle from 90° must cause the increase of the circumferential and longitudinal
stresses.

2. At the point C (see the figures for the location), the values of the circumferential
and longitudinal stresses decrease as the intersection angles change from 90° to 30° and
the closer to the 30°, the faster the decrease becomes. Therefore, any change of the |
intersection angle from 90° must cause the decrease of the circumferential and
longitudinal stresses.

The above phenomena can be explained that as the intersection angle is changing,
the curvatures of intersection curve at the pbint A and the point C are changed. At point
A, the value of curvatures increases as the intersection angle decreases from 90° to 30°
and at point C, the value of curvatures decreases as the intersection angle decreases from
90° to 30°. Therefore, we can conclude that stress concentration factors increase as the
value of curvatures of intersection curve increases. In other words, the stress
concentration depends on the curvature of the opening curve.

It is also observed that at point C, the stress concentration factors always decrease
with the intersection angle decreases., that is, any change of the intersection angle from

90° can only improve the stress situation.
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On the other hand, the success of this study proves that the geometric analysis of
description of the intersection curve and its results is true. This analysis is very helpful not
only for the research of this dissertation, but also for the future study of stress analysis of

the intersection of a cylindrical shell and elliptical nozzle.
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Figure 9.11 Longitudinal stress concentration factors (SCFI) on mid-surface
at point C on intersection when 3 = 0.4 and y= 40
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Figure 9.12 Circumferential stress concentration factors (SCF) on outside surface
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Table 9.1 The maximum values of stress concentration factors at
different intersection angles at the point A and point C
on the intersection curve

The Maximum Values of Stress Concentration Factors
Interse— At the Point A At the Point C
ction Circumferential SCF Longitudinal SCF Circumferential SCF Longitudinal SCF
angles Inside Outside Inside Outside Inside Outside Inside Outside
9.03W a.50 4.22W —-2.410 1.65wm 1.45W —5.78W 1.30®
90° 9.86 8.856 4.95 —2.85 1.85 1.25 —7.268 1.23
g% @ 47" 17% @ 18% " 8% ™ -14%" 265%™ —57®
75° 11.29 9.47 5.85 -3.15 1.55 1.20 -3.90 0.35
eo0° 13.29 10.92 8.05 —3.35 1.45 1.15 -2.35 0.15
45° 18.42 14.54 7.10 -3.55 1.35 1.05 -1.25 -0.26
30° 21.01 19.35 8.45 ~3.85 1.25 0.85 -0.35 -0.35

Notes: (1) The values are from the literature [10].
(2) The percentage of errors in the table are between this study

and the literature [10] at the intersection angle of 90

by using
the latter as a standard.
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CHAPTER 10

CONCLUSIONS

The comprehensive analyses and the extensive calculations of this dissertation indicate that
the achievement of the theoretical derivations of this dissertation has been proven and this
analytical solutions can provide helpful results for analysis and design work of shells and
nozzles under the conditions shown in this dissertation.

The following conclusions can be achieved:

1. When the intersection angle is 90°, the stress results are in good agreement with
the existing literature [10].

2. At the neighborhood of point A, both of circumferential stresses and
longitudinal stresses increase as the intersection angle decreases from 90° to 30° and
the closer to the 30° the faster the increase becomes. Therefore, among all angles from
90° to 30° the intersection angle 90° has the least local stresses.

3. At the neighborhood of point C, when the intersection angle varies from 90° to
30°, circumferential stresses remain virtually constant, however, longitudinal stresses are
compressive and they remain constant on the outside surface, but, increase on the inside
surface.

4. After consideration of all influential factors, it is suggested that the intersection
angles from 90° to 60° should be the best choices. The intersection angles from 60° to
45° can be selected if the internal pressure is not too high. The intersection angles less than

45° should be avoided as practical as possible.
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5. The geometric analysis of the intersection curves provides a theoretical basis for

the future stress analysis of intersection of a cylindrical shell and an elliptical nozzle.
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