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ABSTRACT

NON-LINREAR EVALUATION OF
CONCRETE-FILLED STEEL TUBULAR COLUMNS

by
Mohammad H. Shams

Concrete-filled steel tubular (CFT) columns have become increasingly popular in

structural applications due to their high strength, high ductility, and large energy

absorption capacity. These structural properties are the result of integral behavior of the

concrete core and the steel tube. This research provides an analysis of the interaction of

the concrete core and the steel tube in CFT columns.

While there have been many experimental studies of CFT columns, there has been

no analytical work modeling the confining effect of the steel tube on the concrete core.

Furthermore, current design procedures tend to underestimate the ultimate strengths of

CFTs since they neglect the confining effect of the steel tube on the concrete core. Since

experimental programs are expensive, time consuming and limited to small ranges of

parameters, it is important to develop an analytical model for CFT members.

In this study emphasis is placed on the non-linear response of CFT columns

subjected to axial and combined loadings. A three-dimensional finite element model is

developed for CFT columns. The concrete core is modeled with 3-D solid elements

which use the Pramono-William concrete model and the steel tube is modeled using shell

elements which allow large deformation and contain a von Mises plasticity model with

kinematic hardening. Gap elements are used to model concrete and steel interface. The

finite element model is calibrated against existing experimental results.



Analyses of columns under axial loading indicate that the stress-strain properties

of the concrete core are highly affected by the geometrical configuration of the columns

as well as material properties of concrete core. CFT columns exhibit high flexural

capacity with a hardening type of behavior due to higher ductility and larger compressive

capacity of concrete core which is provided by confining effect of steel tube. The circular

CFTs show a hardening type of response under axial loading while, a degrading type of

behavior is observed in square columns.

Simple models are developed in order to define the axial and flexural capacity of

CFT columns. The proposed methodology is calibrated against experimental data.
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CHAPTER 1

INTRODUCTION

1.1 General

It is widely recognized that the innovative use of two or more materials in structures

generally leads to more efficient systems for resisting seismic forces. Therefore, the

structural application of hybrid systems and composite elements are becoming popular.

Composite members are structural members, components or connections in which there is

a high degree of interaction between structural steel and concrete. Hybrid systems refer

to structural systems consisting of combination of steel, reinforced concrete and

composite elements. Among the composite structural members, concrete-filled steel

tubular (CFT) columns have attracted special attention. This is partly due to their

excellent earthquake resistant properties such as high strength, high ductility and large

energy absorption capacity. A CFT column is a structural member that uses a

combination of steel tubes and concrete to provide adequate load carrying capacity to

sustain either axial or combined loadings. A CFT column is simply constructed by filling

a hollow rectangular or circular structural steel tube with concrete. Figure 1.1 shows a

schematic cross-sectional view of CFT columns. The interactive and integral behavior of

the concrete and the steel tube makes the CFT column a very cost effective and efficient

member in structural applications.

The enhanced structural properties come from the composite action of constituent

elements. The confinement effect created by steel casing enhances the material properties

of concrete by putting the concrete under a triaxial state of stresses thereby increasing the
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strength and ductility of concrete. Additionally, the inward buckling of the steel tube is

prevented by the concrete, thus increasing the stability and strength of the column as a

system. Among other advantages of CFT columns are the speed of construction, saving

on formwork for the concrete core and possible use of simple standardized connections.

The use of CFT columns in structural frames has increased in the United States,

Japan and China during the past ten years. The composite frames consisting of CFT

columns have been used in the construction of a number of unique high rise buildings

(Giffis, 1992). Among them, the Bank of China Building in Hong Kong is the tallest one.

The 1209 foot tall Bank of China Building is the fifth tallest building and, the tallest

composite frame structure in the world. It is supported on only five mega composite

columns which are connected together by giant CFT diagonals. These diagonals are steel

box members filled with concrete. In the construction of the composite frame only 23 psf

of structural steel were used which is a dramatic reduction compared to an all-steel frame.

This is particularly significant considering that Hong Kong is one of the windiest cities in

the world.

1.2 Research Work on Overall Response of CFT Columns

Since the beginning of the twentieth century many researchers have attempted to

understand the behavior of CFT columns. In 1915, Swain and Holmes studied the elastic

behavior and strength of concrete-pipe columns. Kloppel and Goder (1957) carried out

tests on the collapse load of CFT columns with different slenderness ratios. The elasto-

plastic behavior of CFT columns was investigated and the test results compared with the

predicted loads obtained from a proposed numerical method (Neogi and San, 1969). In
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the proposed method, a uniaxial stress-strain relationship was used for the concrete core

and the increase in the compressive strength of concrete due to confinement was ignored.

To determine the ultimate axial capacity of CFT columns, several design equations have

been developed (Gardner and Jacobson, 1967; Furlong, 1976; Knowles and Park, 1976;

Rangan and Joyce 1992). In the proposed procedures the confinement effect of the steel

tube on the concrete core and the composite action between them were ignored. As a

result, a close agreement between test results and the predicted ultimate capacities was

not achieved. Test results have shown that the increase in strength of CFTs due to

confinement are in the range of 1.2 to 3.5 for square columns and 1.2 to 4.5 for circular

columns (Sugano and Nagashima, 1992).

In 1977, an extensive experimental program was performed on CFT columns

(Tomii et al., 1977). The objective of this study was to investigate the effect of size,

cross-sectional shape and mechanical properties of concrete on the behavior of axially

loaded columns. It was found that the ultimate capacity of CFT columns were

considerably affected by the diameter to wall thickness ratio, cross-sectional shape and

slenderness ratio. The effect of bond strength between the steel tube and the concrete

core on the behavior of CFT columns was studied by a number of researches (Okamoto

and Maeno, 1988; Matumura et al., 1990; Matui et al., 1991). Okamoto suggested that

the bond strength does not influence the flexural capacity of CFT columns. Conversely,

the experimental studies by Matumura and Matui indicated that bending moment capacity

will increase by improving the bond between the steel tube and the concrete core. The

effect of bond strength on the behavior of CFT columns is not completely understood.
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Few experimental studies on the thin-walled CFT columns are available (Ge and

Usami, 1992; Bridge and Webb, 1992). Local buckling of steel tube was observed in

thin-walled columns. The mechanism of local buckling of steel tube is not entirely clear.

During last two decades, a number of experimental studies have been performed

on the seismic response of CFT columns (Nagashima et al., 1989; Sugano and

Nagashima, 1992; Chai, 1992; Boyd et al., 1995). Due to complexity of the problem and

lack of information, no realistic hysteresis model has been proposed yet. The current

state of knowledge is not sufficient to model every aspect of hysteresis response.

Research (Sugano and Nagashima, 1992) has shown that important parameters such as

cross-sectional shape, level of axial force and wall thickness have significant effect on the

primary curves (e.g. load-deflection and moment-curvature curves). However, the level

of sensitivity of primary curves to each parameter is not well defined.

Even though, experimental and analytical studies have been performed on CFT

columns, there still exists problems concerning the response of CFTs under static and

dynamic loadings. These problems are summarized in the following section

1.3 Research Needs

A large number of issues can be mentioned which reflect on the problems associated with

understanding the behavior of CFT columns. To predict the behavior of CFTs, the

response in pre-peak as well as in post-peak regime needs to be clearly understood. The

main problem has to do with the fact that the state of stresses that exist in the CFT

columns are rather complex. The concrete core is under a triaxial state of stress and the
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steel tube is under a biaxial state of stress. The confining pressure which is developed

between the concrete core and the steel tube interface varies at different stages of loading.

The changes in the confining pressure is not well predicted. As a result, the overall

response of CFTs under static and dynamic loadings is not well understood due to lack of

knowledge on the behavior of its constituent components and the interaction between

them. Hence, a number of potential research needs can be noted as:

1. Ultimate strength of CFT columns is not well predicted and the effect of important

parameters such as cross-sectional shape, width-wall thickness ratio (aspect ratio),

confined compressive strength of the concrete core and the bond strength on the load

carrying capacity are not well understood.

2. Stiffness, ductility and strength of CFTs are highly affected by the aspect ratio, cross-

sectional shape and slenderness ratio. However, the level of sensitivity of response to

each parameter is not well defined (e.g. maximum aspect ratio).

3. High strength concrete has drawn attention in structural applications. The use of high

strength concrete to construct the columns in high rise buildings is extremely

advantageous as substantial savings in material quantities can be achieved. However,

the application of high strength concrete to structures, especially in seismic zones is

questioned since the material has poor ductility when unconfined. The ductility can

be increased by confining the high strength concrete with structural steel tubes.

However, the superior properties of high strength concrete may not be fully utilized if

the steel tube is not thick enough to eliminate the possibility of local buckling. The

optimum use of high strength concrete needs to be investigated in more details (thin-

walled columns vs. high strength concrete) since there is uncertainty about whether
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local buckling of the steel tube or crushing of the concrete core occurs first.

Therefore, the mechanism of local buckling needs to be studied in detail.

4. Over the course of last three decades different design codes such as the American

Concrete Institute; Building Code Requirements for Reinforced Concrete (ACI 318-

95), the American Institute of Steel Constructions; Structural Specification Liaison

Committee (AISC-SSLC), Manual of Steel Construction; Load Resistance Factor

Design (LRFD), and Architectural Institute of Japan (AU-1987) have been used to

design the CFT columns. The discrepancies among them and also the large difference

between design codes and experimental results (Sugano and Nagashima, 1992) is

shown in Figure 1.2. As can be seen, the current design codes can not accurately

predict the capacity of CFT columns. In most cases, the load carrying capacity of

CFTs is underestimated, up to 50% of the actual capacity. These discrepancies and

differences indicate that there is a need for a more accurate, yet practical, design

method. Such methodology must consider the important aspects of response such as

confinement of concrete core and should be developed in conjunction with a detailed

analytical study.

5. Parameters such as the level of axial force, cross-sectional shape, and bond strength

have significant effect on primary curves (e.g. axial load-deflection and bending

moment-curvature curves), but the level of sensitive of primary curves to each

parameter is not well known.

6. Degree of strength decay depends on many parameters including confinement of

concrete and shear strength, but there is not sufficient experimental information in
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order to investigate the sensitivity of strength decay to each parameter. Moreover, it

is not clear how strength decay can be delayed and its effects reduced.

7. Few experimental data is available on seismic performance of thin-walled columns.

However, it is believed that the aspect ratio has significant effects on important

features of the response such as pinching and stiffness degradation. Experimental and

analytical studies including a wide range of aspect ratios are required to study the

impact of aspect ratio on the hysteresis response of CFTs.

8. It is important to evaluate the seismic performance of full scale moment resistance

frames, using CFT columns. To achieve this purpose, efficient and accurate global

models should be developed. Therefore, it is essential to establish a realistic

hysteresis model for CFT columns and important features of hysteresis response such

as primary curve (i.e., stiffness, strength, toughness/ductility and hardening), stiffness

degradation and strength decay needs to be evaluated.

9. Experimental and analytical work on the seismic performance of structural systems

with CFT columns are practically nonexistent. Since experimental study is costly and

practically impossible, analytical studies can be used for analysis of these systems.

The intent of the present study on non-linear response of CFT columns is to shed

more light on some of these problems.

1.4 Objectives and Methodology of the Present Study

Even though extensive experimental work has been carried out on the CFT columns, no

analytical work considering the triaxial effect of concrete and the behavior of steel under
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biaxial state of stresses has been undertaken to date. Experimental studies have provided

sufficient information to develop analytical models. Such models can be very useful

tools for detailed analysis and parametric studies to aid engineers in more efficient design

of CFT columns.

The main objective of this study is to develop a reliable finite element model in

order to study the non-linear response of CFT columns under static axial and lateral

loadings. A comprehensive parametric study will be performed using non-linear three-

dimensional finite element analysis which includes a wide range of aspect ratios, concrete

with different compressive strengths, various cross-sectional shapes and slenderness

ratios. The results of this parametric study will be used to predict the ultimate strength,

stiffness and ductility of CFT columns.

In order to study the non-linear response of CFT columns a three-dimensional

finite element model, using the general purpose software "ABAQUS", is developed.

Three-dimensional quadratic solid elements are used to model the concrete core. The

steel tube is modeled by isoparametric shell elements. The interaction between the steel

tube and the concrete core interface is modeled by gap elements. The von Mises elasto-

plastic material model with kinematic hardening is used for the steel tube. The Pramano-

William's concrete material model, implemented in ABAQUS (Xie et al., 1994) as a user

subroutine, is used for the concrete core.

The characteristics and behavior of CFT columns is entirely understood through

the detailed finite element analysis. Moreover, the stress-strain relationship of concrete

core at every stage of loading is studied in detail. As a result, the behavior of concrete

core is accurately predicted. In addition, the possibility and mechanism of local buckling
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is completely investigated. A practical design method is established that accounts for

important parameters effecting the response of CFT columns.

Hence, the main objectives of this study can be summarized as follows:

1. To develop a three-dimensional finite element model for CFT columns to handle the

most common loading patterns and to verify its effectiveness by comparing its

analytical results with previous experimental tests. The finite element model should

be able to simulate the important features of response such as confinement of concrete

core, local buckling of steel tube and interaction between concrete core and steel tube

interface.

2. To obtain much needed "basic" information of practical importance, e.g., load transfer

mechanism, stress-strain properties of the concrete core and confining effect of steel

tube in increasing strength and ductility.

3. To investigate the effect of important parameters such as aspect ratio, cross-sectional

shape and bond strength on the structural properties of CFTs e.g., ultimate strength,

stiffness and ductility columns through a detailed parametric study.

4. To develop simplified analytical models to predict the load carrying capacity and to

define the stress-strain relationship for the concrete core.

5. To propose new practical design guidelines for CFT columns.

1.5 Impact

As recommended by US-Japan Cooperative Earthquake Research Program (US-Japan

Planning Groups, 1992), an extensive analytical study, including modeling of behavior
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and parametric study is required to understand the response of CFT columns to static and

dynamic loadings. The present study is meant to provide tools to predict the structural

characteristics of CFTs such as strength, stiffness and ductility, which will lead to

efficient use of CFT columns in structural systems. In view of the advantages and

opportunities for innovation that CFT columns provide for earthquake resistance systems,

design procedures are developed during this study that certainly advances the state-of-the-

art in design.



CHAPTER 2

BACKGROUND AND MOTIVATION

2.1 Introduction

Major part of this chapter deals with an objective review of the previous research works

on CFT columns. In the following sections the previous research works on CFT

columns, including experimental and analytical studies are discussed. In the next section,

experimental work including the discussion of behavior and response of the CFT columns

under various loading conditions is presented. This includes the effects of bond

improvement, hysteresis response of CFTs and performance of thin-walled columns. An

overview of the analytical studies on CFT columns then follows. Finally, comparison of

different design codes and their shortcomings are presented.

2.2 Experimental work

2.2.1 Characteristics and Behavior of CFT Columns

Use of CFT columns dates back to the early nineteen hundreds when a number of bridges

and buildings were built using CFT columns. To name a few, Almondsbury Motorway

Interchange (England), Charleroi Railways (Belgium), International Labor Organization

at Geneva, and a gymnasium at Martigny-Boury in Switzerland (Bode, 1976). The

hollow steel sections in these structures were filled with concrete to achieve higher

stability (Kloppel and Goder, 1957; Russell, 1953). In addition, CFT columns can be

credited with more advantages such as:

11
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1. Excellent axial and flexural load carrying capacity,

2. High shear resistance,

3. Large ductility and energy absorption capacity,

4. Greater critical load in buckling (i.e., higher stiffness),

5. Possible use of standard and simple connections,

6. Saving of formwork for the concrete core.

The enhanced properties of CFTs can be explained in terms of composite action

between the steel tube and the concrete core. In the early stages of loading the Poisson's

ratio for concrete is lower than that for steel. Thus, the steel tube has no confining effect

on the concrete core. As the longitudinal strain increases, the lateral expansion of the

unconfined concrete gradually becomes greater than that of the steel. A radial pressure

subsequently develops at the steel-concrete interface. At this stage, the concrete core is

stressed triaxially and the steel tube biaxially. Because of the presence of hoop tension

(i.e., biaxial state of stress), the steel tube can not sustain the normal yield stress,

therefore there is a transfer of load from the tube to the core (Neogi and San, 1969). The

load corresponding to this mode of failure can be considerably greater than the sum of the

uncoupled steel and concrete failure loads. The level of increase in the failure load

caused by the confining effect of the steel tube on the concrete core depends on several

factors, namely the thickness of steel tube, slenderness ratio, eccentricity and cross-

sectional shape. In the case of circular CFT columns, the steel tube has more confining

effect than in the square columns. The center and the corners of square sections go under

a higher confining pressure than the sides, but a uniform distribution of lateral pressure is

expected in the circular columns.
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An extensive study has been done to investigate the effects of the cross sectional

shape, aspect ratio and column length on the behavior of CFT columns (Tomii and

Yoshimaro, 1977). Tests were conducted on 286 columns under concentric axial loads.

Six sizes of circular, square and octagonal steel tubing with different wall thicknesses

were used during the, test. It was found that CFT columns can fail in two modes. In the

case of longer columns, general buckling and in shorter columns, crushing of concrete

was observed. The ultimate strength of CFT columns was considerably affected by the

slenderness ratio, the thickness of steel tubing as well as the cross-sectional shape. A

confining effect can be expected for circular columns, while for square columns, there

was no increase in axial strength due to triaxial effects, despite small slenderness ratios

and large wall thickness. The load-deformation behavior of the columns (Figures 2.1a

and 2.1b) was also remarkably affected by the cross-sectional shape, aspect ratio

(diameter to wall thickness ratio) and concrete strength (Tomii and Yoshimaro, 1977).

The load-deformation relation for circular and octagonal columns showed strain

hardening or an elastic-perfectly plastic behavior, while for all square columns, the load-

deformation curve was of a degrading type (Figures 2.1a and 2.1b).

The performance of CFTs under sustained loads is different from ordinary

reinforced concrete columns. In RC columns, concrete experiences contraction as it sets

during its early age. This is followed by a lengthy period of shrinkage and creep under

load. In the case of CFT columns, because of the humid environment inside the steel

tube, the coefficient of contraction is low and shrinkage proceeds very slowly. However,

inside corrosion of the steel tube can be expected. Concrete expands more than its steel
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jacket under large longitudinal strain. Thus, contraction of the concrete hardly affects the

load carrying capacity of CFTs (Bode, 1976).

The only observation of creep in CFT columns was reported by Furlong (Furlong,

1967). He carried out tests on 22 circular and 17 square columns. These columns were

subjected to various levels of constant axial force as moments were increased. In

addition eight circular and five square columns were loaded only axially. The interaction

of the steel tube and the concrete core was studied by measuring the longitudinal and

transverse strain at four faces of the specimens. Figure 2.2 shows a typical longitudinal

load-strain relationship.

A sudden increase in the ratio of transverse and longitudinal strain showed that

the steel tube had provided confining pressure for the concrete core (Furlong, 1967). It

was observed that after the steel tube began to yield, the creep of concrete caused a load

reduction as high as 15%. The lack of information on behavior of CFTs under sustained

loads indicates a need for further research in this area.

2.2.2 Composite Action

A higher buckling capacity is expected in CFT columns due to the composite action and

increased stiffness. It has been suggested that composite action is only achieved with

relatively stocky columns (i.e., slenderness ratio less than 50) (Roeder, 1992). Test

results have shown that the composite action can also be expected in longer columns

(Ghosh, 1977; Kenny and Broce, 1994). The test was conducted on two columns, a

concrete-filled steel tube and a hollow steel tube, each 14.32 m (47 ft) in height, 32 cm
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(12.75 inches) in diameter and with the wall thickness of 6 mm (0.25 in.) (Ghosh, 1977).

Each column was subjected to axial and lateral loadings. The Canadian Standard (S 16-

1969) was used to analyze the columns. Comparison of the behavior of the two columns

showed that concrete contributed significantly toward resisting the axial load and bending

moment. Although the standard (S 16-196) ignored the stiffening effect of concrete for

columns where the slenderness ratio is greater than 85, while the slenderness ratio of

tested columns was 129. The failure mode of the two columns was reported as an Euler-

type of buckling. In general, the buckling mode of hollow cylindrical tubes can be

categorized based on their slenderness ratios (Farshad, 1994).

(1) The buckling mode of short cylinders is predominately a so-called ring-buckling.

Ring-buckling consists of an axisymmetric deformation with longitudinal waves

along the length of cylinder.

(2) The chess-board buckling mode is the result of linear buckling analysis for cylinders

with intermediate length. This mode of buckling is a regular pattern of inward and

outward deformations in both longitudinal and circumferential directions. However,

in experiments (Farshad, 1994) , diamond-shape buckling has been observed; a

pattern of similar nature but not quite the same. The so-called diamond-shape

buckling occurs in the postbuckling stage of loading. At this stage, the loaded

cylinder snaps from one equilibrium shape to another which requires less energy to be

maintained. The second deformed shape has a pattern of diamond type with inward

and outward deformations.

(3) In long cylindrical tubes an Euler-type of buckling can occur. Since, long cylinders

behave as columns, the critical buckling load can be obtained by using the classical
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column theory. However, this mode of failure can be combined by the ovalization of

cross section, so-called Brazier effect (Brazier, 1927), which tends to decrease the

critical buckling load.

Both hollow and concrete-filled tubes were categorized as long columns. The

concrete-filled column was considered as a composite member and theoretical analysis

was carried out using the classical column theory. The test results showed good

agreement with theoretical analysis (Ghosh, 1977). In addition, the observed flexural

stiffness was greater than the sum of the uncoupled concrete and steel stiffnesses,

indicating that the composite action was achieved between the concrete and the steel tube

The enhanced structural behavior of the concrete-filled column can be explained in terms

of composite action between the steel tube and the concrete core. Moreover, the

circumferential deformation and ovalization of cross section were prevented, which

results in higher stiffness and larger critical buckling load.

2.2.3 Bond Effects

It is accepted that CFT columns as composite members allow stress transfer (bond stress)

between the steel tube and concrete core. It is believed that the bond strength has a

significant effect on the behavior of composite members. However, careful examination

of numerous test results indicates that there is still uncertainty about the effect of bond

strength on the overall response of CFTs.

Okamoto investigated the effect of bond strength between the steel tube and

concrete core on the behavior of CFT columns filled with high-strength concrete
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(Okamoto and Maeno, 1988). The objective of this study was to investigate the effects of

the aspect ratio, level of axial force and bond strength on the bending capacity of the

columns. Tests were conducted on nine square columns filled with high strength concrete

(.4 = 98.1 MPa). In order to control the bond strength, a mortar layer with a thickness of

10 mm was placed between the steel tube and the concrete core. Table 2.1 shows the list

of tested specimens.

According to the test results (Figures 2.3a and 2.3b), it was concluded that; (1) the

bond strength does not significantly affect the flexural capacity of CFT columns, (2) the

flexural capacity considerably increases by increasing axial load, (3) steel tube has a

significant effect on improving the compressive strength of concrete and preventing the

brittle failure that is normally associated with unconfined high strength concrete.

The range of variables used in Okamoto's study was limited (Table 2.1).

Moreover, for each test the two main variables (level of axial force and mortar strength)

were changed at the same time. In this situation, a solid conclusion is difficult to be

made.

More recently, the experimental studies carried out by Matumara and Matai.

indicated that the bending moment capacity will increase by improving the bond between

steel tube and concrete core (Yoshioka, 1992). To improve bond strength, steel tubes

with inner ribs were used. The tests were carried out on eight cantilever square columns.

In this research the effects of inner ribs and level of axial force were investigated. Voids

were provided at the top of columns to clarify the effect of the inner ribs. A typical test

setup and the test program are shown in Figures 2.4 and 2.5. Each column was subjected



18

to constant axial load and cyclic lateral load. Columns with inner ribs showed larger

energy dissipation and higher ductility (Figure 2.6).

It seems that when the slippage of the concrete core in the steel tube is prevented

the bond strength does not have significant effect on the flexural capacity of CFTs. In

columns where the slippage is permitted (i.e., Columns with voids at the top), the effect

of bond strength is significant on the overall response of CFT columns. The comparison

between the response of R3C (with ribs, no voids) and F3C (without ribs, no voids)

shows that the performance of the column did not significantly improved by using steel

tube with ribs. This indicates that the stiffness of the column did not considerably

increased by employing steel tube with ribs.

2.2.4 Behavior of CFT Columns with Large Aspect Ratio

Very few experimental studies on concrete-filled thin-walled steel tubes with large aspect

ratio (i.e., width-thickness ratio) are available. In 1992 Usami and Ge studied the

behavior and performance of thin-walled square columns under axial loading (Ge and

Usami, 1992). Six concrete-filled columns and four hollow steel tube columns were

tested. In order to investigate the effect of stiffening of steel tube, two columns were

equipped with stiffeners. Figure 2.7 shows the details of the specimens. For the columns

with stiffeners, yt is the flexural rigidity of stiffeners and y req is the optimal value of the

rigidity obtained from linear buckling theory. The width-thickness ratio parameter R was

defined as R = (b / t)1J12(1— v 2 / (7r 2 k) Cry E , where b = flange or web width; t = plate

thickness; ay = nominal yield stress of the plate; E = Young's modulus; and v =
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Poisson's ratio. k is the buckling coefficient with the value of k 4n2 and n is the

number of subpanels in each plate panel (e.g. n=1 for unstiffened plate and n=2 for

stiffened plate). Tables 2.2 and 2.3 shows the dimensions of specimens.

Typical failure and longitudinal load-strain relationships of stiffened and

unstiffened columns are shown in the Figures 2.8 and 2.9, respectively.

In the hollow steel tubes local buckling occurred at the central part before the

maximum load was reached. At the two opposite sides, buckling took place inward, and

at the other two sides outward. While, in the concrete-filled columns it was observed

that; (1) the local buckling occurred in one of the sides just before the peak load, and the

other sides buckled after that, and (2) the outward buckling took place at all faces. After

removing the steel tube, it was found that the concrete at the buckled portion was

completely crushed, while no damage was observed in the other parts. Thus, it was

concluded that local buckling of steel tubes was induced after crushing of the concrete

core. It is also possible that these two phenomena occurred in reverse order. As it is

identified later under research needs, a detailed analytical evaluation could shed more

light on the mechanism of local buckling.

Bridge and Webb tested two thin-walled circular CFT columns, each with 2.021

mm thickness, 250.02 mm diameter and a height of 750.0 mm (Bridge and Webb, 1992).

Each column was subjected to axial loading. Concrete with compressive strength of 59.5

(MPa) was used to fill the tubes. In addition, two hollow steel tubes were tested to

determine the axial capacity and the influence of local buckling on the strength. In the

case of hollow steel tube columns, local buckling occurred near the mid-height just prior

to the maximum load although the magnitude of the buckling deformation was small.
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Local buckling was observed to form well prior of the maximum load for both concrete-

filled columns. It is not mentioned at which level of axial force local buckling occurred

in the concrete-filled columns. It is possible that local buckling occurred almost at the

same level of axial load in both the hollow and the filled columns. If so, then the use of

high strength concrete in thin-walled columns is questionable.

2.2.5 Hysteresis Response of CFT Columns

Sugano and Nagashima investigated the effect of level of axial force, aspect ratio and the

strength of the constituent materials on the overall response of CFT columns. Tests were

carried out on thirty-eight circular and square columns (Sugano and Nagashima, 1992).

Each column was subjected to constant axial load and cyclic lateral load. Figure 2.10

shows a typical test setup.

Circular columns demonstrated rich hysteresis curves (i.e., large ductility with

stable loops). In the case of thin-walled circular columns, where the aspect ratio (DA)

was larger than 39, the maximum load was determined by the local buckling of the steel

tube. Local buckling was formed in the square columns with the aspect ratio greater than

33. Square columns with a smaller aspect ratio indicated richer hysteresis curves. It was

observed that the circular columns behaved in a ductile manner despite the level of axial

force and aspect ratio. Ductile behavior can be expected only from those square columns

where the aspect ratio is small and when the level of axial force is low (Sugano and

Nagashima, 1992; Morino, et al., 1992; Nagashima et al., 1989). A typical shear force-

drift angle relationship is shown in the Figure 2.11 for both types of cross-section.
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Seismic performance of circular CFT columns was studied by F. Boyd et al.

Tests were carried out on five circular columns (Boyd et al., 1995). Table 2.4 shows the

details of tested columns and the test setup is shown in Figure 2.12. One of the circular

columns was equipped with shear studs to improve the bond between the concrete core

and steel tube.

Each column was subjected to a constant axial force of 178 IN (40 kips). A

lateral cyclic load was applied near the top of the columns. All columns demonstrated

higher flexural stiffness and load capacity than the ACI predicted stiffnesses and

capacities. Figure 2.13 shows the hysteresis response of the columns. Pinching and

strength decay was observed in hysteresis loops after a ductility factor of 2. The column

with shear studs showed a monotonic load capacity (i.e., no strength decay was

observed). It was concluded that the irregularities in the hysteresis response of the

columns (i.e., pinching and humps) were caused by local buckling of steel tubes. The

hysteresis response of the columns was similar to the response of ordinary RC columns

with poor confinement. However, RC columns with proper confinement exhibit stable

hysteresis loops with no strength decay (Saatcioglu, 1991). Thus, the use of CFT

columns with a large aspect ratio is questionable. Moreover, the discrepancies between

tests results (Sugano vs. Boyd) indicates a need for further research in this area.

2.2.6 Steel Jacket Retrofitting

Ductility and strength of existing substandard reinforced concrete columns can be

enhanced by steel jacketing. In this technique the existing column is encased in a steel
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tube and the gap is filled with a cement-based grout, resulting in a system that more or

less is similar to CFT columns (Figure 2.14). Research results have shown that the

confining effect of a steel jacket increases the compressive strength, flexural capacity and

ductility of the columns (Chai, 1992; Priestly et al., 1994). To investigate the

effectiveness of steel jacketing, tests were carried out on two RC-columns, each 61 cm

(24 inches) in diameter and 381 cm (150 inches) in length. One column was retrofitted

with a steel jacket. The steel jacket was fabricated from 4.8 mm (3/16 inch) thick hot

rolled steel with the length of 120 cm (48 inches). A 6.3 mm (1/4 inch) gap was provided

between the steel jacket and the column, which was filled with a cement-based grout.

Each column was subjected to a constant axial load of 1780 kN (400 kips) and cyclic

lateral load. The hysteresis response of both columns are shown in the Figure 2.15.

In the case of the unretrofitted column, bond failure was indicated at the lap-splice

during the early stages of loading. The column sustained up to 97% of the theoretical

flexural capacity followed by a rapid degradation of strength and stiffness. The strength

envelope was observed to degrade after a ductility factor of 1.5. The response of the

retrofitted column under cyclic loading demonstrated stable hysteresis loops up to a

ductility factor of seven, which corresponds to a drift ratio of 5.3% (Chai, 1992).

2.3. Analytical Studies

Over the course of the last five decades different theories and design procedures have

been suggested by many research groups. In 1957 Kloppel and Goder established lower

and upper limits to predict the strength of concentrically loaded CFT columns (Kloppel
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and Goder, 1957). The lower limit was expressed as the buckling load of the transformed

area of the composite section. The upper limit was determined by calculating the

buckling load considering an equivalent stiffness as the sum of steel and concrete

stiffnesses. The proposed upper limit was found to be conservative for short columns.

In 1968 Furlong proposed that the lower limit of the axial capacity of CFT

columns could be established as the force necessary to cause the steel to yield plus the

force which is required to develop the same strain in the concrete (Furlong, 1968). The

plastic moment of steel alone is the lower limit to the pure bending capacity. These

values can be expressed as follow:

Po = AP; + Ade,F., I 0.018E,	 with	 Fy /.0018E, :5. 1	 (2.1)

Ado = (F), / 6)(g- D,3) 	 circular columns	 (2.2a)

Ado =	 / 4)(D - ph 	 square columns	 (2.2b)

where Do and Di are the external and internal dimensions of steel tube, respectively. To

establish the interaction behavior of CFT columns an elliptical equation was suggested

(Furlong, 1968). It can be written as:

(Mu / M0) 2 + (P. I P0) 2 1	 (2.3)

where P0 and M0 are the minimum axial and flexural capacity of the column

respectively. It was found that Eq. (2.3) is conservative and usually underestimates the
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strength of CFT columns. In the case of long columns, an equivalent stiffness was used

to obtain the critical load. This equivalent stiffness was considered to be the algebraic

sum of stiffness for each component as if each material acted separately. Thus:

(AE) cq = 4E, + AsEs 	(2.4a)

= I,E, +Es 	(2.4b)

where (AE) eq and (IE),,, are the equivalent stiffness under axial and flexural load,

respectively. It was assumed that the flexural stiffness is constant. In fact, similar to RC

columns an increase in the axial load increases the flexural stiffness of CFT columns.

However, when the axial load is higher than 50% of the axial capacity (P 0 ), the flexural

stiffness tends to decrease. Thus, to account for this Eq. (2.4b) is modified as follow:

(IE) eq = (4P I P0 )(1— P I P0 )[1,E, + I s Ed 	 0.5P0 P Po 	(2.4c)

thereby, the effective radius of gyration and critical load can be obtained:

reff = \I(IE),q I (AE) eq 	 (2.5)

P„ = (7r I h) 2 (El) eq 	(2.6)

where h is the effective length of the column. Equation (2.6) showed close agreement

with test results.
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A simple straight line interaction formula was used by Knowles and Park to

estimate the moment-axial load relationship for concrete-filled steel tubular columns

(Knowels and Park, 1969).

M. / Mo + P. I Po = (2.7)

in which Pu and Mu are the ultimate axial load and bending moment capacity, P0 is the

ultimate axial load when there is no bending moment and Mo is the ultimate bending

moment when the axial load is zero. Experimental results showed that using Eq. (2.7) is

unsafe for slender columns and conservative for short columns (Knowels and Park,

1969). Later, Park and Knowles developed a design equation to determine the ultimate

axial load of long CFT columns (Knowels and Park, 1970). In the suggested procedure,

the buckling load of a column could be predicted by summing the tangent modulus loads

for the steel tube and concrete core acting as independent columns. There was a close

agreement between the calculated loads and the test results for columns with a

slenderness ratio greater than 44.3. But the ultimate loads for shorter columns were 12%

to 42% greater than predicted loads, indicating that an increase in concrete strength due to

the confinement by the steel tube did occur. In this procedure the composite action

between steel and concrete which increases the flexural stiffness was ignored.

In 1969 a numerical procedure was developed by Neogi and San to study the load-

deformation behavior of concrete filled tubes over the elasto-plastic range (Neogi and

San, 1969). The following assumptions were made; (1) uniaxial stress-strain curves for
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steel and concrete are used with no tensile strength for concrete, (2) stress-strain curves

with unloading and reloading characteristics are used, (3) complete interaction takes place

between steel and concrete, (4) failure due to local buckling or shear does not occur.

Tangent modulus load of composite section had been considered as the critical load for

concentrically loaded columns, and can be determined from the following equations:

pan = 7r, 2 / 12 (Ers y.s.
1 + ETA) 	 (2.8)

Pt. = Aso-, + Acac 	(2.9)

where As and A, are the areas, a s and 45„ are the longitudinal stresses, 1, and Ic moment

of inertia and En and En. are tangent modules of steel tube and concrete core,

respectively. The above equations can be written as:

7t2 i2/ (En's + Emic ) — (Asps Aca c ) = 0	 (2.10)

and

as = f (E)	 (2.11)

ac g(e)	 (2.12)

where E is the longitudinal strain, thus Equation (2.10) can be expressed as:

7t 2 /12 
( .f (E) IS + (E)I c ) — (A f (E) + A, g(E)) = 0 	(2.13)
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An iterative method was used to solve Eq. (2.13). In the case of eccentrically loaded

columns the governing equation has the form of:

Sjd 2 y I dx 2 ) + PY 0 	 (2.14)

since the flexural stiffness Sx is a complicated function of the axial force P and the

deformed shape Y, analytical integration of Eq. (2.14) is practically not possible and

numerical integration is required. To simplify the numerical procedure, the deflected

shape of the column was assumed to be in the form of a trigonometric function, and the

cross section was divided into a finite number of fibers. Thus the internal axial force (Pi )

and moment (Ml ) can be expressed by the equations:

= E cr AS, + I cc, 4, 	 (2.15)

M, = CAA ; + E acid, Ad (2.16)-

where d , is the distance of fiber i from the neutral axis of the cross section. An iterative

method was used to solve the set of equations (2.14 to 2.16). The suggested procedure

showed close agreement with the test results for long columns, where no confining effect

of steel is expected (Figure 2.16). In the case of short columns the difference between the

results was significant. The main deficiency is that a uniaxial stress-strain relation was



28

used for the concrete and the increase in the ultimate strength of concrete due to

confinement was ignored.

San proposed that in circular CFT columns with length-diameter ratio less than

five, the axial strength reaches 1.6 times the sum of axial strength of steel tube and

concrete core (i.e., AsFy + Ac f, ) (Bode, 1976). This increased axial capacity can be

expressed by the following equation:

=.75F y A s + .261,[f; +3.8tFy I (d	 (2.17)

where d and t are diameter and thickness of steel tube, respectively.

In 1967, Gardner and Jacobson proposed that as the steel tube restrains the

concrete core at failure (Gardner and Jacobson, 1967), an internal pressure (ar ) develops

between the steel tube and concrete, creating a tensile hoop stress (a 1 ) in the steel tube.

Due to this confining effect, the compressive strength of the concrete will be augmented

and was found to be:

= + ka r and 	 (2.18a)

CT, = rig r / t 	 (2.18b)

where k is an empirical factor and is determined to be approximately 4 (Gardner and

Jacobson, 1967). The axial capacity can be determined using the following equation:
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P, = A c, f; + Ac kc ,(t I r)+ A s o- si 	(2.19)

To calculate the ultimate load, the magnitude of k , o and a5, must be determined.

However, due to the complex behavior of concrete under triaxial state of stresses, it is

difficult to determine a„ even by experiment. But if the longitudinal strain of concrete at

crushing is determined, the axial compressive stress in the steel tube can also be

determined, and a reasonable estimate of the hoop stress can be made using the maximum

shear theory:

ci =6y (2.20)

Test results have shown that Eq. (2.19) underestimates the strength of CFT

columns, but the maximum difference between the theoretical and experimental results is

less than 20%.

An iterative technique was used by Rangan and Joyce to design slender columns

(Rangan, 1991; Rangan and Joyce, 1992). In this procedure it is assumed that the axial

capacity (P„) of a slender eccentrically loaded steel tubular column filled with concrete is

reached when the maximum moment Mu is equal to the ultimate bending moment M u at

the mid-height of the column, and failure occurs when the extreme compressive fiber in

concrete reaches a limiting value of 0.003. The following formulas can be obtained

considering equilibrium at cross sectional level:
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P,, =-- Cs + C, T 	 (2.21)

M,, = CsZ„ + C,Z, + TZ,, 	 (2.22)

where ZS and Z, are the moment arms of forces measured from the plastic centered.

CI, and C, are the compressive forces in steel and concrete, respectively. T is the tensile

force in the steel tube. The value of P„ is related to M u by:

Mu = Pu (e+ A + A u )	 (2.23)

where e is the eccentricity of the axial load, A cp and A i, are the creep and mid-height

deflections of the column, respectively. A uniaxial stress-strain relation (i.e., Hognastad's

parabola) for concrete was assumed and the capacity of the columns were obtained by

solving Equations 2.21 to 2.23 using an iterative method. The calculated Pu was found to

underestimate the experimental results with the maximum difference of 68%.

2.4 Design Codes

Over the course of the last two decades, three different specific codes for the design of

concrete filled steel tubular columns have been used in the U. S. Even though some of

the design codes have used the same design philosophy and experimental data as their

foundations, large discrepancies exist among them.
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The Building Code Requirements of Reinforced Concrete (ACI 318-95)

traditionally had been the only source for composite column design. According to the

ACI 318-89, a composite column is a concrete column reinforced with a structural steel

shape or tubing in addition to reinforcing bars. In the absence of reinforcing bars the

maximum nominal axial strength can be expressed as:

P0 = 0.85(A s Fy + 0.85A, f;)	 (2.24)

It is assumed that all fibers are subjected to 0.3% strain. The load-moment

interaction relation can be established using the same rules as ordinary reinforced

concrete columns. In order to consider the slenderness effects, an equivalent radius of

gyration and flexural stiffness are used:

r = V((E,Ig 15)+E sIs )I((E,A g 15)+E,A,)

EI =(E c lg 15)1(1+13 d )+

where Pd is the sustained load ratio, and without any sustained load, it should be taken as

zero. To prevent local buckling, thickness of the steel tube should be greater than:

t 	 13E, 	 for square sections of width b 	 (2.27)

t h\lf), / 8E,	 for circular sections of diameter h 	 (2.28)



32

These limiting values are based on achieving yield stress in a hollow steel tube

under monotonic axial loading (Park et al., 1983). Previous research has shown that this

requirement is unnecessarily restrictive for CFT columns (Boyd et al., 1995).

The Structural Specification Liaison Committee (SSLC) procedures are based on

the allowable stress limit under service load conditions using stress allowances equal to

those of the American Institute of Steel Constructions (AISC) specification for steel alone

(Furlong, 1983). A pseudo yield stress and stiffness (Fmy and Em ) are defined to

accommodate the composite action and steel tube. The equations for pseudo yield

strength and stiffness are derived from superposition of the constituent material strengths

and stiffnesses. For concrete filled tubes they can be expressed as:

Fmy F y + 0.85(A, / As ) f; (2.29)

E = E + 0.4(A, / A, )E, (2.30)

where A, and As. are the areas of concrete core and the steel tube, respectively. The

radius of gyration is taken as the radius of gyration for steel alone or for concrete alone,

whichever is larger. The section modulus is equal to elastic modulus of the steel tube in

the absence of any reinforcing bars. Since no iterative calculation are necessary, analysis

of strength by the SSLC procedure is considerably easier than ACT procedure. A

parabolic beam column relationship is employed instead of the linear relationship of the

AISC specifications:
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(f, / 0.6F,„y ) 2 + fb / Fb = 1	 strength alone	 (2.31)

(fa / 0 .6Fmy ) 2 (fb Fb )(Cm 1 ( 1— fa I F;)) = 1	 including stability	 (2.32)

where the C,,,, Fa, fa and fb are the end moment coefficients, allowable axial stress,

allowable bending stress, computed axial stress and computed bending stress,

respectively. The reduced Euler buckling stress (F;) is equal to

(12 / 23)(7r 2 E „, / (Id / r,„) 2 ).

In Manual of Steel Construction, Load and Resistance Factor Design (LRFD-

AISC, 1994) the nominal strength is estimated on the basis of ultimate resistance to the

load, and reduction factors are then applied. Expressions for nominal cross section

strength are very similar to those recommended by the SSLC report and are as follows:

Po = AsF„,y 	(thrust capacity )	 (2.33)

Mn SmFy	 (nominal flexural strength)	 (2.34)

The nominal axial load capacity is reduced according to the slenderness ratio X, . The

nominal buckling stress is defined as:

X, = (k1 I r„,) ir 2 E 	Fmy )1/2 	 (2.35)

F„ = (1.3— 0.572 ,)F,,,y 	when	 X, 1.53	 (236)
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Fcr Fny ) 2 	when	 A,. > 1.53	 (2.37)

and the nominal axial strength is expressed as:

161cFcr	 (2.38)

The resistance factor cp c must be applied to the nominal axial strength and a value of 0.75

should be used for filled tubes. A linear function describes the limiting values for P and

M for (0.3< Pn / Po <1.15) and it can be expressed as:

P I (1.3 ) + M / (S„,Fy ) =1 	 (2.39)

When P, = 0.3P a linear interaction function applies such that when Pn = 0 , the

resistance factor for flexural, Ob = 0.9 applies. The magnitude of the allowable service

load can be determined by dividing values of (pP;, and OM„ by the appropriate load

factors. Load factors for LRFD are to be taken as 1.2 for dead load and 1.6 for live load,

but total strength can not be taken as less than 1.4 of dead load (Furlong, 1968).

In all three design procedures the flexural stiffness is underestimated and the

confining effect of the steel tube on the concrete core is ignored. Table (2.5) shows the

differences between the results obtained using the three different design procedures (as

discussed) to analyze a square CFT column. It must be emphasized that these capacities

are nominal capacities (i.e., reduction factors are not applied). The column has a cross
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section of 250x250 mm and it is 173 cm long with a wall thickness of 8 mm. The steel

tube had a yield strength of 373 MPa and the ultimate strength of the concrete was 38

MPa (Sugano and Nagashima, 1992). The disagreement between the results shown in

Table (2.5) indicates that research is needed to provide more accurate design guidelines.

It should be noted that only this single case is compared because the intention is to

highlight the inaccuracy of current design codes not comparison over a wide range of

loadings. This example was chosen because experimental results (Sugano and

Nagashima, 1992) were available.

2.5 Summary

The earlier analytical works generally have focused on applying the classical theory of

mechanics with employing the uniaxial concrete stress-strain relationship to CFT

columns. However, due to the complex stress-strain properties of the concrete core and

puzzling interaction between the concrete core and the steel tube interface, these

approaches have not been successful. Although, the different design guide lines have

been developed based on the experimental date, the CFT columns have been treated as

ordinary RC or steel columns. Hence, the load carrying capacity of CFTs is

underestimated. Moreover, the large discrepancies among the design specifications

indicates a need for accurate design guide lines. The experimental works have provided

significant information which can be used to develop accurate analytical models.

Through a detailed study using the developed analytical model, the response of CFTs to
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axial and combined loadings can be entirely understood. As a result, a new design

method can be developed which will accurately predict the capacity of CFT columns.



CHAPTER 3

FINITE ELEMENT MODELING

3.1 General

In recent years the finite element technique has become a powerful tool for analyzing

structures. There are two major reasons for application of finite element models to

concrete structures specially CFT columns. First, although experiments have played

significant role in research on CFT columns, they are expensive and time consuming.

Extensive data are needed to understand the behavior of CFT columns. Tests covering

various aspect ratios, different type of loadings and various cross-sectional shapes are

needed for a detailed study on CFT columns. A parametric study using finite element

models is affordable and allows the study of virtually limitless combinations of the

parameters of interest. In addition, tests can not provide as much insight into the

complicated pattern of stress distribution revealed by numerical simulations. Finite

element analysis provides supplementary information to the experiments. Therefore, a

detail analysis of CFTs using finite element analysis is a useful approach as long as the

analytical model is calibrated with experimental results.

In order to analyze the nonlinear response of CFT columns a practical and reliable

finite element model needs to be developed. The use of appropriate finite element

software has significant role in performance of the analytical model. Such a model

should be able to simulate important characteristics of CFTs such as confinement of

concrete core and local buckling of steel tube. General purpose finite element program

"ABAQUS" is used in the present study. This program is capable of modeling non-linear

37
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material behavior, large deformation and contact analysis which are required in finite

element simulation of CFT columns.

3.2 Finite Element Modeling

The concrete core is modeled with twenty-node, three-dimensional reduced integration

quadratic solid elements with hourglass control. The advantages of reduced integration

elements are that the strains and stresses are calculated at the locations that provide

optimal accuracy, the so-called Barlow points (Barlow, 1976). Even though in materially

nonlinear analysis high order integration analysis is more effective at capturing more

accurate behavior of the material (Saadeghvaziri, 1988), the reduced number of

integration points decreases CPU time and storage requirements. The reduced integration

scheme is based on the uniform strain distribution. In this procedure, the number of

integration points is sufficient to exactly integrate the contributions of the strain field that

are one order less than the order of interpolation. This method first publish by Flanegan

and Belytschko (1981), ensures that the reduced integration elements passes the patch

test. The uniform strain method yields the exact average strain over the element volume.

Using an average strain is significant when the constitutive model is non-linear, since the

strains passed into the constitutive routines are a better representation of the actual strain.

Steel tube is modeled with isoparametric shell elements. The formulation of shell

elements allows large displacement analysis, which is used to investigate the possibility

of local buckling. Gap element is used to model the interaction between concrete core

and steel tube interface. Gap contact elements are special purpose contact elements
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which allow for contact between two nodes. Gap contact elements placed between nodes

allow for the nodes to be in contact or separated with respect to particular directions and

separation conditions. For this particular problem gap elements are placed between

adjacent nodes of steel tube and concrete core with a fixed contact direction perpendicular

to surface of the steel tube. In the case of circular columns, the contact direction is in the

radial direction. The initial separation distance is specified as zero, in which case the gap

is initially closed (i.e. the concrete and steel tube are initially in contact with each other).

The opening of the gap element is determined by comparing the relative displacements of

the nodes in the contact direction, n. Thus, the gap opening, h, can be expressed as;

h n•(	 - u l )	 (3.1)

where u 1 and u2 are the total displacements at the first and the second node of the gap

element.

Due to symmetry of geometry and loading conditions, only one half of the square

columns and one quarter of the circular columns were modeled. In Figures 3.1 and 3.2,

the finite element meshes are shown for circular and square columns.

3.3 Material Models

3.3.1 Steel Plasticity Model

The classical plasticity model for steel is standard von Mises model failure surface with

associated plastic rule. The yield surface assumes that the yield of metal is independent
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of the equivalent pressure stress. This assumption is experimentally confirmed for metals

under compressive stress. Associated plastic flow means that, as the material is yielding,

the inelastic deformation rate is in the direction of the normal to the yield surface. The

von Mises yield surface is used for initially isotropic metals. It is defined by giving the

value of uniaxial yield stress as function of uniaxial equivalent plastic strain and

temperature. The work hardening defines the way the yield surface changes with plastic

straining. Three assumptions can be used in order to model the hardening of metals:

perfect plasticity, isotropic hardening, and kinematic hardening. Perfect plasticity means

that the yield surface does not change with plastic strain. In isotropic hardening the yield

surface changes size uniformly in all directions, so the yield stress increases or decreases

in all stress directions as plastic straining occurs. This hardening model is useful for

cases involving gross plastic straining, or in which the straining at each point is

essentially in the same direction in strain space throughout the analysis. In kinematic

hardening the yield surface stays the same size in the stress space. The von Mises elastic-

plastic model with kinematic hardening is used for the steel tube. Figure 3.3 shows a

typical input for steel in ABAQUS and Figure 3.4 represent the von Mises yield surface

in principal stress space

3.3.2 Concrete Material Model

The concrete core in CFT columns has a very complex material behavior: non-linear

stress-strain behavior in a triaxial state of stress with confining pressure changes. Due to

this complexity, selection of a proper constitutive model describing the concrete behavior
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under confining condition is a challenging task for developing an accurate finite element

model. In this section a comparison between different concrete material models is made.

The outlines of fracture energy-based plasticity model (Pramono and William, 1989) are

introduced and the extension of the model to three dimensional state of stress is

discussed. This model is calibrated for concrete with different compressive strength

using experimental data.

Material models developed for finite element analysis of concrete structures can

be categorized in three groups: (1) elasticity-based, (2) plasticity-based , and (3) fracture

energy-based plasticity models. In the following sections, a brief review of these three

groups is presented.

3.3.3 Elasticity-Based Models

Isotropic Linear Elastic Model: Isotropic linear elasticity approximates the behavior of

concrete under tensile-type loading well. Before the peak stress the stress-strain relation

is almost linear in such a loading environment. This model can also represent the

behavior of concrete under small compressive loading, but the model is unacceptable as

the applied compressive loads increases. Non-linear elastic model improves this

drawback significantly.

Cauchy Elastic Model: The simplest way of introducing nonlinearity is to employ

a non-linear function to define the stress-strain relationship of concrete. For unconfined

compressive behavior of concrete many models in the form of Eq. (3.2) have been

proposed (Saenz, 1964; Popovics 1973; Carrenia and Chu 1985; Tasi 1988 among
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others). When extended to multiaxial state of stress, Cauchy model can be expressed as

Eq. (3.3). This equation often takes the form of representing secant stiffnesses ( ),

which are functions of stress state (Eq. 3.4).

Cr = f (E)

• = Fu (E,J )

• = 	 (6P9) Cid 	 (3.4)

This type of model with arbitrarily introduced nonlinear functions may generate

energy under a certain loading-unloading cycle (Chen, 1982). Such behavior is

physically inadmissible since it violates the laws of thermodynamics.

Hyperelastic (Green Elastic) Model: This model is based on the postulate of the

existence of a strain energy function es or a complementary energy density function Q.

The stress-strain relationship is defined by:

(90	 dC2
• =,7 or E ii =	 (3.5)

o 	 dCru

This ensures no energy can be generated through any load cycle, and thermodynamic

laws are always satisfied. Based on assumed polynomial expansions of the function Q in

terms of the three stress invariants, a third order stress-strain relationship has been

developed (Evans and Pister; 1966). The material constants of this class of model do not
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have physical interpretation in general, so that it is not easy to quantify the values of

those constants experimentally. Although it can model many characteristics of concrete

such as nonlinearity, dilatation, and stress-induced anisotropy, this class of formulation is

not popular for modeling the behavior of concrete.

Hyperelastic models provide a one-to-one relationship between the current state of

total stress and that of total strain. Thus, these material models are independent of

deformation path in the sense the stresses are uniquely determined from the current state

of stress or vice versa. Therefore, these models have an inherent limitation in

applications, since loading-path dependence of deformation state of concrete is well

recognized. Hypoelastic models over come this drawback of hyperelastic models.

Hypoelastic Model: in hypoelastic model the material behavior is described in

terms of the increments of stress and strain. Thus, the stress-strain relationship can be

expressed using tangent stiffness which varies with current stress state. Therefore, this

class of model is dependent on deformation history. The general form of a hypoelastic

material can be expressed as follows:

= Diijkl (Cr pq ,E rs) dE (3.6)

where D tiiik is the tangent stiffness. The hypoelastic type of formulation encounters an

inherent difficulty in the construction of the constitutive relationships. In the highly non-

linear range near peak stress, concrete becomes anisotropic, even if the initial behavior is

isotropic. This anisotropy implies that the behavior in the principal direction is different

from each other and the principal axes of stress and strain are not coincident, introducing
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coupling between normal and shear quantities. This phenomenon is the so-called

dilatancy behavior, i.e. volumetric expansion under shear load. This indicates that twenty

one material moduli need to be defined, but it is not a practical approach since

formulation becomes too complicated. Hence, hypoelastic models are appropriate for

moderate nonlinear problems.

To summarize, elasticity-based models are rather simple and reasonably good for

moderate non-linear problems. However, these models are not suitable when the general

behavior of concrete needs to be modeled. In this case, plasticity-based models appear to

be more effective and attractive.

3.3.4 Plasticity-Based Models

There are three basic assumptions used in the development of classical theory of

plasticity: an initial yield surface, a hardening rule, and a flow rule. An initial yield

surface in stress space defines a stress level at which plastic deformation begins. A

hardening rule regulates the evolution of subsequent loading surfaces during the course of

plastic flow. A flow rule defines an incremental plastic stress-strain relationship using a

plastic potential function. The formulation of plasticity theory can be expressed by the

following incremental stress-strain relationship (Chen and Han, 1988).

do' = D,e)1 dEkr	 (3.7)

where
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(3f
D
	dg
ten ki 	 jstdo. mn 	n	 acrsi

D7ki i = D;Ik 	 df	 dg
+ 	h	 De 	

da pq pquv dauv

in which DZ ki and D are elastic and elastic-plastic material tensors, f is a loading

function (surface), g is a potential function and h is a scalar function related to the

hardening rule associated with a particular material. For an associate flow rule, f is equal

to g while fig is assumed for a non-associated flow rule. This implies that symmetry of

D; is violated in the case of non-associated flow rule.

It is well known that plasticity theory was originally developed for metals.

Consequently, its application for concrete requires considerable modification on the

shape of yield surface, hardening rule, and flow rule. Isotropic hardening plasticity

model is the best-known earliest plasticity-based model (Chen and Chen, 1975). In this

model two similar functions are utilized to define the yield surface in tension and tension-

compression region. Due to this similarity, the initial yield surface is open toward the

hydrostatically compressive direction. It is experimentally observed that pure hydrostatic

loading can not cause failure (Chinn and Zimmerman, 1965), which justifies an open-end

failure surface. In this model a linear elastic is employed to define the stress path in pre-

peak region. However, it is unrealistic for material like concrete to exhibit a linear elastic

response along the stress path even under large magnitude of loads. In fact, experimental

results indicate a closed elastic limit (Launay and Gachon, 1971). This observation is one

of the drawbacks of Chen-Chen model.

(3.8)
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In nonuniform hardening plasticity modeling a closed initial yield surface is

employed (Han and Chen, 1985) which encloses all the loading surfaces. During

hardening , the loading surface expands and changes its shape from the initial yield

surface to the final shape that matches with the failure surface. The associated flow rule

is used in the development of the model which overestimates the volumetric strain. In

order to overcome this shortcoming, the non-associated flow rule is utilized to control the

volumetric strain. However, the model does not include strain-softening which is an

important feature of concrete stress-strain relationship. It appears that the plasticity

concept by itself is insufficient for describing the concrete behavior.

3.3.5 Fracture Energy-Based Plasticity Model

Unlike metal, fracture occurs at early stage of deformation in concrete. In order to

capture all aspects of concrete behavior, the concept of fracture mechanics is

implemented into the constitutive models (Maekawa and Okamura, 1983). The

Maekawa-Okamura model assumes that concrete is composed of constituent elements

located in parallel surfaces and the overall response of concrete is the sum of these

elements' stresses. Each element behaves as a strain-hardening material and it does not

sustain stress as it reaches its fracture strength. The model describes the concrete

behavior under two-dimensional loading condition and it has the following features: (1)

in low deformation range the level of element stress is low and stress-strain relationship

is linear; (2) the stress-strain relationship in hardening regime is described as:
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CT, = E 0 E e 	(3.9)

a = K E 0 £ e	(3.10)

Ee = E Ep 	 (3.11)

where a and (Y e are microscopic stress and element stress, £, E e , and L i, are total, elastic

and plastic strain, respectively. E 0 is elastic stiffness and K is a fracture parameter. ICE °

represents the unloading stiffness so the degradation of unloading stiffness is modeled

systematically; (3) at certain stage of loading (i.e. peak load) the increase in the element

stress is canceled out by the reduction of stress due to fracture of elements. The

application of the model is limited since the model is based on two-dimensional loading

conditions.

Bazant and Kim (1979) combined the incremental plasticity and linear fracture

theory to obtain a nonlinear triaxial constitutive relation for concrete. In this model,

plastic deformation is defined by the flow theory of plasticity and the stiffness

degradation is modeled by the fracture theory of Dougill. In this approach, there are

some difficulties in the definition of loading criterion, since it involves two loading

surfaces: one is the yield surface specified in stress space and the other is the fracturing

surface specified in strain space.

Among the proposed fracture-based plasticity models, Pramano-William's model

has the ability to fit the triaxial compression tests more accurately. This feature of the

model is a very important aspect in analysis of CFT columns where confinement plays a

significant role. The model is developed to capture the triaxial behavior of plain
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concrete. The formulation covers the full load-response spectrum in tension as well as in

compression. The constitutive model is based on the non-associated flow theory with

hardening in prepeak regime and fracture energy based softening in the post-peak regime.

The Pramano-William's model forms the basis of model used in this study and is

discussed in the next section.

3.4 Pramono-William's Fracture-Energy Based Plasticity Model

The model assumes that the concrete behaves elastically as long as the stress state lies

within an initial yield surface. When loading progresses beyond the initial yield surface,

plastic flow occurs and the yield surface hardens isotropically up to a failure surface. In

this range the plastic strain rate is governed by a plastic potential different from the yield

surface, thus the hardening rule is non-associated. This gives the model an added

flexibility and allows a better fit of concrete behavior.

As the plastic flow continues beyond the limit necessary to reach the failure

surface, the material behavior becomes isotropic softening. At this stage, the failure

surface degrades to a residual surface, and the flow is now refined to satisfy the energy of

fracture. In the following sections the various concepts describes above are presented.

This presentation is largely based on the work done by Pramono and William (1989), and

Xie et al. (1994).
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3.4.1 Leon's Triaxial Strength Failure Criterion

This strength formulation combines the two-parameter Mohr-Coulomb friction law and

the one-parameter tension cut-off condition of Rankine. The isotropic failure criterion is

expressed in terms of the major and minor principal stresses:

F (d * ) = f(0- 1 , 63 ) 	 ( (3-1; . (73)2

" fc
(3.12)

where e s is the principal stress vector, o and 6 3 are principal stresses with tension

being positive. The effect of intermediate principal stress is omitted similar to Tresca and

Coulomb conditions of maximum shear. The triaxial failure condition is characterized by

the uniaxial compressive strength 	 , the frictional parameter mo and the cohesion co

which has the value of 1.0 at failure. The frictional parameter mo is determined by

substituting a uniaxial tension state in Eq. 3.12 (i.e. a l = f, , 6 3 = 0).

in which f e is the tensile strength. The triaxial failure of Leon is presented in Figure 3.5

in a principal stress sectional view.

The performance of the Leon criterion is illustrated in Figures 3.6, in which

Rd = V2J2 is the deviatoric length and Rh = I, / 	 is the hydrostatic length. /-1 and J2

are the first and the second stress variants, respectively. The Leons' compressive and
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tensile meridians show good agreement with experimental data (Richart, 1928; Mills;

1970, Launay, 1970; and Xie, 1994).

3.4.2 Isotropic Hardening for Pre-Peak Behavior

The Pramono-William model uses the Leon triaxial concrete strength criterion. The main

reason for adopting the Leon model is its simplicity. It combines the basic features of the

Mohr-Coulomb criterion with those of tension cut-off condition within a single

mathematical description.

In order to account for cap action near the hydrostat the Leon model is extended

in such a way that the elastic limit is bounded by a closed surface in the compression that

expands isotropically with increasing plastic deformations until the failure surface is

reached. The position of loading surface is expressed in terms of hardening parameter

0<lc_1 as:

2
[ 	

CY 	 a2

	

Ra i ,6 3 ,k) = (1 - k)-4-+ I 
- a
, 3  + k 2 ino --- — k 2 c0I 	 = 0

fc 2 	fc	
fc. (3.14)

In this case the initial loading surface grows in a self-similar fashion when the hardening

parameter increases monotonically from its initial value k = k0 > 0 to the final value at

peak k = kp = 1. Different loading stages in a meridian plane are shown in Figure 3.7 for

concrete with compressive strength of 9.0 Ksi.
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The constitutive model assumes that the material is initially isotropic and remains

isotropic during the entire deformation history irrespective of the orientation and

magnitude of principal stresses. Therefore, the inherent anisotropy as well as induced

anisotropy are neglected. The strain rate is decomposed into independent elastic and

plastic components (Eq. 3.15) and the elastic response is governed by the linear operator

E (Eq. 3.16).

AE =	 + AEp 	(3.15)

= EAEE 	(3.16)

3.4.3 Non-Linear Hardening Response

The strain hardening theory describes the current state of inelastic deformation process in

terms of a scalar-valued kinematic variable Ep defining the length of plastic strain

trajectory. The effect of confinement on the rate of hardening is introduced in terms of

the ductility measure xp, which defines the accumulated plastic strain at peak. Thus, the

hardening parameter is expressed as a monotonically increasing elliptic function of

plastic strain:

1— k, 	
k = k + 	 V2E x — 

P0 	 P Pc
(3.17a)



AE = Va r -
P 	 P (3 1 7b)
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The equivalent plastic strain increment is defined as a Euclidean norm of the plastic strain

increment:

in which ap is the vector of principal plastic strain increments. The ductility measure xp

introduces the effect of confining pressure on the rate of hardening and it is expressed as

a quadratic polynomial:

xp = A

2(

a l
+ 

Blic 1 

fc+ch
(3.18)

where c i is the major principal stress. Ductility parameters A l„ Bit  and Ch are

dimensionless parameters which are determined from experimental results at three

different confinement levels such as the direct tension test (i.e. no confining pressure),

and a low as well as a high confined compression test.

3.4.4 Non-Associated Flow Rule

The inelastic dilatancy is controlled by the hydrostatic component of the plastic strain

increments. In the case of pressure-sensitive flow the volumetric plastic stress is not

coaxial with plastic strain increment because of the Poisson effect. This phenomenon of

pressure- sensitive loading surface is illustrated in Figure 3.8.
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The flow rule has significant effect on the performance of constitutive model and

its triaxial response. In the case of associated flow rule, it assumes that the loading

surface and the potential function are equal. Therefore, the plastic stress and strain

increments are coaxial, which yields to an over estimation of volumetric changes. In the

Pramono-William model a non-associated flow rule is adopted which defines the plastic

strain rate as:

dQ
= (AA.) M. where rn =	 (3.19)

do-

The plastic multiplier AA. controls the magnitude while the gradient in controls the

direction of the plastic strain increments. The plastic potential function Q for non-

associated flow is based on a modification of the loading surface:

2

Q(a 1 ,45 3 ,k ,m2 ) = (1— k) 6I
2 

a 1+ 	 r,a 3 + k 2 mQ 

1 
— 1c 2 c0 = 0	 (3.20)

fc Je 
	 fc

with the friction parameter m ---> mQ being redefine in terms of the major principal stress

as:

dm2
	  DexpE( j; 	)+F
da l

(3.21)
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The material parameters D, E and F are determined from three sets of experiments at

different confining levels. The gradient of the plastic potential in Eq. 3.20 is evaluated

as:

- 	

dQ a6 1 dQ d6 2 dQ d6 3
- 	

do-* d6 1 a6* 
+ 

d62 de
. + 

d63 *

where

(3.22)

aQ 
asrYi 	 sh {2(1 - k)a i + 1} + k2an12 }

da
dQ 	1	 1

	0 	 where	 (3.23)
do-2	 fc

haQ 	 — s

do- 3

2 0_ _ 0.
Sh = 2 (1— k)--4- + 1 . 3 	(3.24)fc 2

fc

Similar to Coulomb condition, there is no inelastic component in the direction of the

intermediate principal stress. Moreover, only the major principal stress component is

needed in Eq. (3.21) because of the gradient operation for in The explicit form of the

plastic multiplier in Eq. (3.19) is determined by the differential consistency condition

AF,, = 0:

AL
AA — 	 where	 (3.25)

Ep + En



—Tmn —
P 

— 
E

P 
+E n

EE (3.28)
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En = Fitin 	 (3.26)

aF
E
P ak= — Ak 	 (3.27)

In sum, the differential flow rule in Eq. (3.19) defines the evolution of plastic

deformations in terms of the prescribed strain rate as:

3.4.5 Isotropic Softening for Post-Peak Behavior

There exists a critical difference between concrete behaviors before and after peak stress.

Under the tensile type of loading , this fact has been well recognized. For instance, the

experimental results (Gopalaratnam and Shah, 1985) have clearly revealed the localized

deformation after peak stress, presenting a striking contrast to homogenous deformation

before peak stress. Namely, in the post peak regime most deformation is found to be

related to the expansion of the crack while it is unloading. On the other hand, the

softening response in compressive loading is not well understood. The localized

deformation under compression has been recognized and accepted recently (Read and

Hegemier, 1984; Chen, 1985).

The pre-peak behavior of concrete is associated with the extension of bond cracks

(cracks around aggregates) while the extensive development of mortar cracks is observed

in post-peak regime. With the advancement of non-linear fracture mechanics concepts,
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concrete behavior under tensile loading has been studied extensively. The field of

fracture mechanics has been focusing on crack processes for years. However, these

concepts have not been widely accepted because of questions related to diffuse fracture in

matrix-aggregate composite. Moreover, the smeared analysis tools is more reliable, in

which microscopic as well as macroscopic discontinuities in the form of discrete cracks

are distributed and represented by equivalent continuum concepts. In view of need for

models which account for strength degradation in a rational manner, Pramono-William

model uses a smeared description. In this model the fracture energy-based strain

softening flow is formulated in terms of fracture mode and is extended to compressive

splitting and shear faulting. The description of the strength degradation is presented in

the following section.

3.4.6 Degradation of Triaxial Strength

The principal issue of the fracture energy-based strain-softening formulation revolves

around the definition of strain-softening modulus Er The differential consistency

condition AF = 0 yields an explicit form of the tangential modulus. Therefore, the

selection of a rational expression for residual strength envelop (F) in post-peak regime is

essential. In the case of softening behavior in tension and shear, the uniaxial tensile and

compressive strength is reduced to zero at residual level and only frictional resistance can

be mobilized due to granular action. Thus, the Eq. 3.12 degenerates to:
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Fr(ci C3)	

al — a, )
	 = 0 	 (3.29)

J:

•

in which the cohesion factor is zero and m,. is the residual friction factor. The overall

softening mechanism is described by degradation of tensile strength a, as:

cs = —7 and Ms = Mr — (Mr — Mo )C0	(3.30)

such that co = 1 when m = mo and cr = 0 when m = mr . Thus, the intermediate

softening stage is defined by the modification of Eq. 3.12 as follows:

Fs (C1, (73)( 61
0-3  )
	 cs = 0 	(3.31)

In fracture mechanics the degradation of tensile strength is related to the crack-mouth

opening uf rather than the tensile strain. In Pramono-William model an exponential

expression based on experimental results (Hurlbut, 1985) is used to described the

degradation of tensile strength as:

o, = f exi*— 5—L-u 	(3.32)



aQ 
aci
aQ 

acY2
aQ
do- ,

dQ
m 

de3'
0

2(6, — o- 3 )
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in which ur is the rapture displacement. Consequently, the fracture energy released rate

is expressed as:

of

G
f 

= fa / dui' 	 (3.33)
0

Beyond peak, the fracture rule defines direction and magnitude of the inelastic fracture

strain in the equivalent elastic-plastic continuum as:

AEf =	 in where	 (3.34)

In the case of direct tension, since only the strain increment in major stress direction is

used, the incremental crack-mouth opening is expressed in terms of tensile crack spacing

hi (Eq. 3.36). For the cases other than direct tension, an equivalent crack-mouth opening

in terms of equivalent crack spacing his introduced (Eq. 3.37).

Au
f 

= h
' AEI 	 (3.36)

(3.35)



hi 	f

	

=	
- 	+B   +1 (3.38)
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Auf = hcAEf	 (3.37)

The crack spacing is an important concept in the stain softening analysis of concrete. In

Pramono-William model, the equivalent crack spacing is expressed as a function of the

major principal stress:

where the softening parameters A, and /33. are determined from low and high confined

compression test. However, the proposed expression is not successful in modeling

unconfined concrete and concrete with low confining pressure. The fracture energy of

concrete in compression is overestimated and the model is unrealistically stiff. In order

to overcome this problem, a new expression for h, was suggested (Xie et al., 1994). In

this expression, the definition of k is different depending on whether the major principal

stress is compressive or tensile:

h,
h As1

1+
Bs _Tcr

when	 cs, < 0 (3.39)

I2 =1
- 	As) 1-46 	when	 6	 0	 (3.40)

h,
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3.4.7 Extension of the Model to Three Dimensional Loading Case

As shown in the previous sections, the loading surface and the potential function are both

expressed in terms of principal stress components 6 1 and c 3 . In both expressions, the

effect of intermediate principal stress is ignored. In order to extend a two-dimensional

plasticity model to a three-dimensional one, a transformation matrix is required for

mapping the stress tensor into principal stress vector. The differentiation of loading and

potential surfaces against principal stress vector can be multiply by the transformation

matrix in order to obtain the differentiation against the general stress tensor. This

transformation can be expressed as follows:

	dF	 aF dd . * 
	a{6}	 da* d{45} 	

(3.41)

in which a and d * are general stress tensor and principal stress vector, respectively.

dd- *
	Here 	  is transformation matrix which was introduced by Xie et al. 1994. The

principal stress vector and the general stress array {a} are defined as:

= (6x ,Cly ,az ,Txy ,Tyz ,Tzx (3.42)

sin(0 + 27r / 3)}	

1—
3

sine	 + 
	

1

sine-27r/3)	 1

(3.43)



[	O. 1 sin' - 3 f3-ji 3, 	 with (-7T/6<o < n 1 6)
3	 2(J2) 3 , 2 (3.44)

in which 0 is called the angel of similarity and defined as:

61

where /1 , J, , and J3 are the three stress invariants and expressed as:

il = 6x+6y+6Z (3.45a)

T	 _ ___1[„..'2
-2 - 2 + er'2 + ei.:3] ..L.

-x 	 i `-'y "..	 '
,r 2 	 ..L. „..2 	 _L. ,..rzx2
`xy	 '	 ''' .vz	 '	 ' (3.45b)

J3 = axsgyaz — 6 r2 r — ayt ir
2 	 ' 	 2— 0",,T xy + 2Txy 'ryjz, (3.45c)

where a, , ay , and a are stress deviators and defined as:

an = - 3
where n = x, y, and z (3.46)

A stress invariant vector j.<1. 
3
 VJ2 I3 > is defined for simplicity. 	 Since

a and J are uniquely invariable, it can be shown that:
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aO--* 	ad * aul 	aa * 9-,171 2 	 * dJ, 
d{c}ar,a{cr} 4- a \IJ2 afal 	 ai3 d{c}

in which

de * 11 1 i\T

A - \ 3 3' 3/

ad * 	2 sin(20 — 27r / 3)	 2 sin(20)	 2 sin(20 + 2rc / 3)  ) T
—

dV,/,	 -Ni§cos(30)	 -\r§cos(36)	 „r§ co s(38)

cos(6 + 2ir / 3)	 cos(0)	 cos(20 — 27 / 3) 

`12 cos(30) 	 J2 cos(30)	 J2 cos(30)

d 1
1a{a} -(1 1 1" 0"0 0)

d- P2 	1  /
	  \ (:YX 5 a yd{crl	 2v.i2

J3" 2 J2 	 "2
(Cy' az — 	 + ), (cxo": Txz + ), (CxC y -1-xy + )d{	al 
2(2y,T, -C'z'Txy ), 2(2x,Txy 	2(TxyZ - Cy, 	 y' 2,)

a(5- *

xy ,	2TyZ

(3.47)

(3.48a)

(3.48b)

(3.48c)

(3.49a)

(3 .49b)

(3.49c)

Pramono-William model was coded in FORTRAN 77 by Xie et at The model is

implemented as a user subroutine "UMAT" into ABAQUS.

3.5 Calibration and Performance of the Material Model

The Calibration was performed using substantial data from experiments conducted at the

University of Colorado on concrete with different compressive strengths (i.e., 3.0 to 5.5

ksi) (Hurlbut, 1985 and Smith, 1987). Each experiment was performed in a modified
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Hoek cell which accepts a NX-core size specimen of dimension 4.25 in. height by 2.125

in. diameter. Stiff steel platens were used and no friction reducing material was used

between the steel-concrete interface. Thus, the boundary conditions were rigid. A finite

element model is developed in order to simulate the triaxial compression tests which is

described in the following section.

Due to the geometric and loading symmetry, axisymmetric elements are used to

model the concrete specimen as shown in Figure 3.9. In order to simulate the effect of

the rigid loading platen, the deformation along the top of concrete cylinder is suppressed.

The analysis is performed using displacement control.

The calibration of the model is carried out for concrete with different compressive

strengths. A comparison between analytical and experimental results is shown in Figures

3.10a-3.10b. Material parameters, including ductility and strain softening parameters are

presented in Table 3.1. As demonstrated in Figs 3.10a-3.10d, the Pramono-William's

model can accurately predict the triaxial behavior of concrete especially when the

confining pressure is higher than 10% of uniaxial compressive stress. Since the confining

pressure in CFT columns increases rapidly as will be discussed in the next chapter, this

deficiency of the material model can not have significant effect on the accuracy of the

finite element model.

3.6 Large Deformation Analysis

The possibility of local buckling of steel tube is investigated by employing large

deformation analysis. This section illustrates the technique which was used in finite
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element analysis to predict the buckling of steel tube. As mentioned earlier, the shell

element is used to model the steel tube. Since the shell carries the loading primarily as

membrane, its initial response is stiff (i.e. it exhibits only small elastic deformations prior

to buckling). If the membrane state created by the external loading is compressive, there

is a possibility that the membrane equilibrium state will become unstable and the

structure will buckle.

In general, shell buckling stability studies require a two-step analysis. First,

eigenvalue analysis is used to obtain estimates of buckling loads and modes. The second

step is to perform load-displacement analysis, using imperfections suggested by the

eigenvalue analysis. The imperfections are applied in the locations which can provide the

most important buckling modes. This type of analysis can not be used for the

investigation of the local buckling of composite systems such as composite shells and

steel tube in CFT columns in which the component elements are initially in contact with

each other. Therefore, a one-step analysis approach is introduced in the present study. In

this approach, the main assumption is that the expansion of concrete core provides the

necessary imperfections for the buckling of steel tube. This technique is verified by

examination of the buckling of a simply supported thin plate. The analytical solution for

the buckling load for this case as given by Timoshenko and Gere (1961) is:
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where N„ is the critical value of the edge load per unit length of the edge, b is the length

of each edge and D= Et' 112(1— v 2 ) is the elastic bending stiffness of the plate, with

Young modulus E, Poisson's ratio v , and plate thickness t.

For this particular example, a 2x2 inch plate with thickness of 0.01 inches was

analyzed, so that the plate is rather thin (b/t=200). Since the solution is known to be

symmetric, only one quarter of the plate was modeled. A mesh of 2x2 was used. Four

eight-node shell elements were used to model the plate and the concrete block was

modeled with 20-node solid elements.

Two versions of the problem were solved and both results were compared with exact

solution. In the first case, the eigenvalue analysis was performed on the simply supported

plate which was followed by load-displacement analysis with geometric imperfection. In

the second case, the plate is attached to a confined concrete block. The interaction

between the plate and the concrete was modeled with gap elements. The plate and the

concrete block were compressed in one direction. Load-displacement analysis was

performed with no geometric imperfection. Figure 3.11 shows the deformed shape of the

plate for the latter case. In Table 3.2 the critical buckling loads are compared with exact

solution. As can be seen, the one-step buckling analysis can provide accurate results.

However, it should be noted that in two-step analysis the solution is strongly imperfection

sensitive (Figure 3.12). This means that as the initial imperfection increases, a lower

buckling load when compared to exact solution will be obtained. As can be seen in

Figure 3.12, this shortcoming of geometric imperfection analysis has been overcome in a

one-step analysis method which is used in the present study.
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3.7 Verification of Present F.E. Models

Developing a reliable finite element model is essential for accurate and practical

analytical work. Therefore, verification of the developed model is a critical step in any

analytical study. To verify the developed model a number of tests on CFT columns are

simulated and checked against actual experiments.

The present F.E. model is verified by simulating a number of experimental works

performed by different researchers (Tomii et. al., 1977; Okamoto et al, 1988 and Sugano

et al, 1992). These experimental tests were conducted on circular and square CFT

columns under axial and combined loadings. The test program performed by Tomii

examined columns using concrete with a range of uniaxial compressive strengths and

various aspect ratios. For each series of compressive strength and aspect ratio a total of

three test results were reported. The properties of the columns are summarized in Table

3.3. In Figures 3.13-3.22 the comparison of axial load-strain response between the test

and analytical results is presented. The results of finite element analysis and

experimental data are in good agreement.

Okamoto investigated the flexural behavior of square CFT columns and Sugano

tested circular and square columns. In both experimental work, each column was

subjected to axial and lateral loadings. First, a constant axial load was applied and then

the lateral load was increased gradually. The details of the tested columns are

summarized in the Table 3.4. The comparison between the test results and finite element
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results is shown in the Figures 3.23, 3.24 and 3.25. As can be seen, experimental data

verifies the finite element model.

As demonstrated, the present F.E. model can accurately predict the response of

CFTs under axial and combined loadings. After verification of the present finite element

model, a comprehensive detailed analysis is performed on CFT columns. The next two

chapters present the discussion of the results for this study.

3.8 Summary

A three-dimensional finite element model is developed using the general purpose

software "ABAQUS". The concrete core is modeled with 3-D quadratic solid elements

and isoparametric shell elements are used to model the steel tube. The interface between

the steel tube and the concrete core is modeled using gap elements. The von Mises

elasto-plastic material model with kinematic hardening is used for the steel tube. The

finite element model takes advantage of Pramono-William concrete material constitutive

relationship. The Pramono-William model is implemented in ABAQUS as a user

subroutine. The calibration and verification of the concrete material model is performed

using available test data. The method which is used to investigate the possibility of local

buckling of steel tube is introduced and verified. The capability of the developed finite

element model to correctly predict the response of CFT is also discussed.



CHAPTER 4

4.1 General

In this chapter, the results of analytical studies on CFT columns under axial loading is

discussed and important aspects such as load carrying capacity, load transfer mechanism,

confinement of concrete core and local buckling of steel tube are explained. In the next

section a comparison between the test results and analytical work is made. This will be

followed by a discussion of the characteristics and behavior of CFTs under axial loading.

Finally, in the last section, the conclusion and summary will be presented.

4.2 Characteristics and Behavior

As demonstrated in the previous chapter, the finite element model developed in this study

can accurately predict the response of CFTs. In this section the analytical work is

extended in order to study the mechanics of the behavior of CFTs in more detail. The

following characteristics of CFTs are discussed in the proceeding sections.

• Load transfer mechanism

• Confinement of concrete core

• Stress-strain relationship for concrete core and steel tube

• Ultimate concrete core compression strain

• Stress distributions

• Local buckling of steel tube

68
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A total of 63 square and 63 circular columns are analyzed. The above

characteristics are discussed for only one square and one circular columns in order to

make understanding the results easier. Parametric study using various cross-sectional

shapes, different aspect ratios and different material properties is presented in Chapter

Six. In the following sections the detailed F.E. analysis of a 6x6x24 inches square and a

6x24 inches circular CFT column with wall thickness of 0.17 inches are discussed. The

steel tubes have a yield strength of 43.0 (ksi) and the concrete cores have a uniaxial

compressive strength of 2.0 (ksi).

4.2.1 Load Transfer Mechanism

It has been observed (Furlong, 1967) that the ultimate axial capacity of CFT columns is

larger than the sum of uncoupled steel and concrete failure loads. The increase in the

failure load is caused by the confining effect of steel tube on the concrete core. The

structural behavior of CFTs are considerably affected by the difference between the

Poisson's ratios of the steel tube and concrete core. In the initial stage of loading, the

Poisson's ratio for the concrete is lower than that of the steel. Thus, the steel tube has no

confining effect on the concrete core. As longitudinal strain increases, the lateral

expansion of concrete core gradually becomes greater than expansion of steel tube. At

this stage, the concrete core becomes triaxially stressed and steel tube biaxially stressed.

The steel tube under a biaxial state of stress can not sustain the normal yield stress,

causing a transfer of load from tube to the core. The load transfer mechanism at each
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columns, respectively. The load transfer mechanism is similar in square and circular CFT

columns. In the first stage of loading the steel tube sustains most of the load until it

yields (point A). At this point (A) there is a load transfer from the steel tube to the

concrete core. The steel tube exhibits a gradual decrease in load sharing until the

concrete reaches its maximum compressive strength (A to B). After this stage of loading

(point B), there is a redistribution of load from concrete core to the steel tube. At this

point (B) the steel exhibits a hardening behavior with almost the same slope as in the

uniaxial stress-strain hardening relationship (E t).

Even though the load transfer mechanism in circular and square CFTs is similar,

the maximum confined compressive stress of concrete core in circular columns is higher

than square columns. This can be explained in terms of a larger confining effect of

circular steel tubes, which is described in the following sections.

4.2.2 Stress-Strain Relationship for Concrete Core and Steel Tube

Circular and square CFT columns exhibit different pattern of cross-sectional stress

distribution in concrete core. In the case of square columns, the cross-sectional stress

distribution is not uniform. The center and the corners of square sections go under a

higher confining pressure than the sides. Figure 4.2 shows cross-sectional lateral pressure

for square columns. The lateral stresses at the sides and corners are about 35% and 50%

of maximum stress at the center, respectively. The axial stress distribution is presented in

Figure 4.3. As can be seen, the compressive axial stress in the central zone is about 30%

and 40% higher than the stresses at corners and sides, respectively. In the case of circular
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and 40% higher than the stresses at corners and sides, respectively. In the case of circular

columns, the axial and lateral stress distribution at the cross section are radially uniform

(Figure 4.4)

Since the axial stress distribution at the cross section is not uniform due to the

nonuniform distribution of lateral stresses (i.e., the corners go under a higher confining

pressure than the sides), an equivalent axial stress is defined which is obtained by

dividing the total concrete core axial load by the cross-sectional area of concrete core.

The stress-strain relationship of the concrete core and steel tube are presented in Figures

4.5a and 4.5b, respectively. It is well known that confined concrete exhibits higher

compressive strength and larger ductility than unconfined concrete. In Figure 4.5a a

comparison between the uniaxial and confined stress-strain relationship is made for

circular and square CFT columns. In the case of square column, the compressive strength

of concrete core is almost twice the uniaxial compressive strength / fe. = 1.91). In the

circular column the concrete core reaches a compressive capacity of 4.8 (ksi) which is 2.4

times of uniaxial compressive strength. The confined strain at maximum stress in both

cases is about four times larger than the unconfined strain at maximum stress in uniaxial

compression test Eco /(	 / Eo	 an= 3.89 in the square column and ea
. 

= 4.20 in the circular

column). The level of increase in the compressive strength depends on the aspect ratio of

the column and uniaxial compressive strength of the concrete core. However, the degree

of increase in ductility depends only on the aspect ratio. These two phenomena are

discussed in chapter six under results of parametric study.
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In the prepeak portion of stress-strain curve for the concrete core two parts are

distinguished (OA and AB in Figure 4.5a). A decrease in the stiffness of concrete core is

observed at point A in Figure 4.5a which corresponds to point A' of Figure 4.5b when

the steel tube yields. The yield stress of steel tube is lower than the normal yield stress

due to the presence of hoop stresses (i.e., biaxial effect). Beyond this point ( , Figure

4.5b), steel exhibits a strain softening behavior until it reaches point B' , which

corresponds to point B of Figure 4.5a, when the concrete reaches its maximum

compressive capacity. The softening behavior of steel tube is due to the fact that when

decrease in the stiffness of concrete core starts (point A), the lateral expansion of concrete

core increases rapidly resulting in a higher internal pressure between concrete and steel

tube interface. Higher internal pressure causes larger hoop stress which results a

reduction in compressive stress in steel tube. It should be noted that the steel tube has

already yielded. At this point (B') the compressive stress in the steel tube is in the range

of 85% to 95% of normal yield stress. The degree of reduction in the stress depends

mainly on the thickness of the steel tube. In thinner tubes more reduction of stress is

expected. For these particular columns (t=0.17 in.), the stress of steel tube at this stage of

loading is about 93% of F.), . It has been observed that the value of Fy has no effect on the

level of reduction in compressive stress in steel tube. After this point (BO the steel tube

exhibits a hardening behavior with the same slope as in uniaxial stress-strain hardening

relationship. The axial stress contours for the concrete core and the steel tube are

presented in the Figure 4.6. As expected, the axial state of stress remains constant along
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the height of the columns. The axial stress at the top is about 2% higher than the axial

stress at mid-height of the column.

4.2.3 Ultimate Concrete Core Compression Strain

So far no expression for the ultimate strain of concrete core in CFTs is available. A

number of investigators (Baker and Amarakone, 1964; Corley, 1966; Mattock, 1967)

have proposed several empirical equations for the ultimate strain in RC columns, as

follows:

E cz, = 0.0015[1 + 150p, + (0.7 —10p5) 
d
—c ] .... 0.01	 (Baker and Amarakone, 1964) (4.1)

b
Ec. = 0.003 + 0.02— +

Z
( psF,

i

\2
(Corley, 1966) (4.2)'

20

Ecu = 0.003 + 0.02 —
b 

+ 0.2p,
Z

(Mattock, 1967) (4.3)

where p s is the ratio of the volume of transverse steel to the volume of the concrete core,

d is the effective depth, b is the width of the cross section, c is the distance of neutral axis

from the exterior compression fiber, Z is the distance from the critical section to the point

of contraflexure and F), is the yield strength of the transverse steel.

These equations were developed based on the experimental studies on confined

RC columns. In addition, the upper limit for Eq. (4.1) is E 0.01 which is conservative

for concrete core in CFT columns where the confinement is entirely provided by the steel
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tube which results in a ductile behavior. Eqs. ( 4.2 and 4.3) are applicable for low values

of ps (less than 0.02). Hence, these expressions are not applicable for the concrete core in

CFT columns where p5 is relatively large.

More recent work reported by Mander et al. (1984) proposes a rational method for

the prediction of ultimate strain in confined RC columns based on an energy balance

approach. In this method, the additional ductility of confined concrete members is

considered to be due to the energy stored in the transverse reinforcement. The energy

balance method is used in the present study in order to determine the ultimate strain of

concrete core in CFT columns.

Consider the stress-strain relationships for unconfined and confined concrete

shown in Figure 4.7. The area under each curve presents the total strain energy per unit

volume required to cause failure in the concrete. The increase in the strain energy of the

concrete core can only be balanced by the strain energy capacity of the steel tube as it

yields in tension. By equating the ultimate strain energy capacity of the steel tube per

unit volume of the concrete core ( U sh ), to the difference in area between the confined

(U„) and the confined ( Uco ) concrete stress-strain curves, plus additional energy

required to maintain yield in the steel tube in compression in the longitudinal direction

(Use ), the ultimate strain of the concrete core can be calculated. Thus,

U„ = U„+U„—U„ where (4.4)

Ush psA„ fsdes 	(4.5)
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E,,,

U„ = Acc fccde„	 (4.6)
0

E.
U se = P st 	 E 	 (4.7)

0

U co =7- Acc fc.dEc 	(4.8)
0

where ps is the ratio of the area of steel tube in the transverse direction to the area of the

concrete core along one unit length, A cc is the area of the concrete core, fs and E s are

hoop stress and strain in the steel tube, e sf is the fracture strain of the steel tube, p 51 is

the ratio of the cross-sectional area of steel tube to the concrete core, fc, and E cc are the

longitudinal stress and strain in the concrete core, fe and E c are the stress and strain for

unconfined concrete, fs, is longitudinal stress in the steel tube and ESP is the spalling

strain of unconfined concrete. Substituting Eqs 4.5 to 4.8 in Eq. 4.4 gives:

Exf 	 eca 	 &,„ 	 ESP

P s AEC f f sdE s =Acc ffccdecc ±ps,Acc ffsidEs, —Acc ffcdEc 	 (4.9)
0 	 0 	 0 	 0

The left hand term of Eq. (4.9) contains the total area under the stress-strain curve (U

for the steel tube up to the fracture strain E sf .
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Usf = f sd s 	(4.10)
0

Results from tests carried out by Mander et al. (1984) indicate that Usf is independent of

size or yield strength, and can be taken as 15.94 (kips-in./in. 3) within ± 10%, and the

fracture strain is in the range of 0.24 to 0.29. Hence, with the knowledge of stress-strain

relationships for the concrete core and the steel tube, Eq. (4.9) can be solved numerically

and the ultimate strain of the concrete core obtained.

Eq. (4.9) is solved numerically using the stress-strain curves (Figures 4.5 a and

4.5b) for concrete core and steel tube obtained during finite element analysis. The areas

under the stress-strain curves are calculated numerically using Quattro Pro software and

trial and error method is used to determine ultimate confined strain (E,„ ) for concrete

core. Same analysis is performed for CFT columns with different aspect ratios,

unconfined concrete compressive strengths and cross-sectional shapes. The results of this

analysis is presented in Table 4.1. Even though there is no experimental data that can be

compared with analytical results, the obtained confined ultimate strains seem reasonable

for CFT columns. Therefore, energy balance approach gives a good definition for

ultimate strain in concrete core.

As expected in circular CFT columns, the ultimate strain of the concrete core is

higher than in square CFTs. The level of increase in the ultimate strain of the confined

concrete in CFT columns is in the range of 6 to 12 times of the ultimate strain for

unconfined concrete. The degree of increase in the ultimate strain is mainly affected by
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the aspect ratio. As expected, the ultimate strain of concrete core is higher in thick wall

CFT columns with compare to thin wall columns. This is due to the fact that in CFT

columns with small aspect ratios (i.e., thick wall columns) higher amount of energy is

stored in the steel tube. Therefore, a higher strain energy in concrete core is required to

balance the stored energy in steel tube A relationship between aspect ratio and ultimate

strain is determined based on the parametric study which will be discussed in chapter six.

4.2.4 Confinement Pressure

The confinement pressure on the concrete core varies at each stage of loading. Figure 4.8

shows the details of this variation for circular and square CFTs. In the first stage of

loading, the steel tube expands more than the concrete core so no confining pressure is

developed at this stage (OA portion of Figure 4.8). At point A, the lateral expansion of

concrete core reaches the steel tube. Subsequently, the concrete core expands more than

the steel jacket, as a result, confining pressure develops and increases rapidly until the

steel yields. As the steel tube yields, there is a drop in the confining pressure (point B of

Figure 4.8) in the square column. Thereafter, it increases at a slower rate. In the case of

circular column, the confining pressure increases at a slower rate with no drop as steel

yields. The increase in the confining pressure continues until the concrete reaches its

maximum compressive capacity, (point C of Figure 4.8 which corresponds to point B of

Figure 4.5a). The confining stress is almost linear and constant in the post peak. A

higher confining pressure develops in circular columns. The confining pressure in

circular columns is almost 35% higher than square columns.
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4.2.5 Poisson's Ratio-Axial Strain Relationship for Concrete Core

The structural behavior of CFT columns is highly affected by the changes in the

Poisson's ratio of the concrete core. The Poisson's ratio of the concrete core increases

rapidly from 0.2 to 0.55. At this point the concrete core reaches it maximum compressive

strength. Thereafter, the Poisson's ratio remains constant. The changes in the Poisson's

ratio of concrete core is demonstrated in the Figure 4.9. For low strains the value of

Poisson's ratio for concrete is about 0.2 and for the strains larger than the peak-strain the

value can raise to 0.55. The concrete core is not a linear material, therefore its Poisson's

ratio can be more than 0.5. As the peak-strain reaches and the Poisson's ratio approaches

a constant value of 0.55, the confining pressure remains constant.

4.2.6 Load-Deflection Relationship

The load-deflection relationship for CFT columns can be categorized in two groups;

strain hardening type and degrading type. The circular columns show strain hardening

type of behavior. The degrading type of response is observed in square CFTs in which

there is a rapid deterioration of axial capacity after the peak load (point A, Figure 4.10).

The decrease in the axial load continues until the defection reaches two to four times of

peak deflection in thick to thin wall square columns (point B). In circular columns

(Figure 4.1b), after the peak load the load-deflection relationship is linear (i.e., load

increases with a constant rate). The rate of increase depends on the aspect ratio. In the

thick wall columns, the axial load increases with a higher rate.



79

The axial stiffness of CFT columns is defined as the slope of axial load-deflection

curve, and is equal to the sum of axial stiffliesses of the concrete core and steel tube.

Figure 4.11 shows that the axial stiffness of the column can be obtained by adding the

stiffness of its constituent elements. As expected, the stiffness of steel tube stays constant

until it yields (point A , Figure 4.11). Up to this point (A), the stiffness of the CFT

column has a similar shape to the stiffness of concrete core, but with a higher values (i.e.,

stiffness of concrete core plus stiffness of steel tube which is constant). Thereafter, there

is a sudden drop in the stiffness of CFT column (i.e., from point A to B) since the steel

tube yields (point A') and its stiffness becomes negative due to biaxial effect. After this

point (B), the stiffness of CFT column is almost equal to the stiffness of its concrete core

until the concrete core reaches its maximum axial capacity. In the post-peak regime,

hardening and degrading type of behavior are observed in circular and square columns,

respectively.

The axial stiffness of concrete core is higher than the axial stiffness of a plane

concrete column with the same geometry and material properties. The ratio between the

axial stiffnesses of concrete core and plain concrete column is defined as Stiffness Index

(S1). The variation in stiffness index is presented in the Figure 4.12. It can be observed

that at the initial stage of loading, the stiffness index is equal to one. Thereafter, it

increases linearly up to a value of two until the concrete reaches its uniaxial peak strain,

after which the stiffness index increases rapidly.
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4.2.7 Local Buckling of Steel Tube

The initiation of local buckling can be determined by examination of the contact force

between the steel tube and concrete core. Figure 4.13 shows history of this force as the

system is deflected. The variation of internal force is similar to the changes in confining

pressure (Figures 4.8 and 4.13). The only difference is in the area where local buckling

of the steel tube occurs. At this point the confining pressure at the location of local

buckling is linearly released to zero, but the confining pressure still increases in other

regions. The initiation of the local buckling of the steel tube can be observed at the mid-

height of the column at a deflection of 0.2 inch for the particular square column

considered (point D on Figure 4.13). Figure 4.14 shows the deformed shape and stress

distributions of steel tube at the initiation of local buckling, respectively. The aspect ratio

has a significant effect on the local buckling of steel tube. Based on the results obtained

from detailed F.E. analyses, it is found that for square CFT columns with aspect ratio of

more than 78, the local buckling of steel tube forms at the peak load. While, in thicker

columns (i.e., lower aspect ratio) the steel tube buckles after the peak load is reached. In

the case of circular columns, the local buckling of the steel tube occurs at the peak load in

columns with aspect ratio more than 95. In both cases ductile behavior is observed even

after local buckling has occurred, however, the circular columns show a more ductile

behavior.

Based on the results obtained from F.E. analysis, at the first stage of loading, local

buckling of steel tube occurs at the top and bottom of the column. The large amount of

shear stress at the steel and concrete interface near the supports causes the separation of
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the steel tube from the concrete core which results in the local buckling of the steel tube.

At this point the axial stress in the concrete core is much less than its maximum

compressive capacity. In practice the separation of steel tube and concrete core at

supports is prevented by employing internal diaphragms. In most experimental work,

rigid steel plates were used at supports which restrained the separation of steel from

concrete. In short CFT columns with diaphragms, the separation of the steel tube from

the concrete core forms at mid-length of the column. In the case of longer columns, the

separation of steel and concrete first occurs below the location of diaphragms and then

the separation of concrete and steel forms at different locations.

The response of thin steel tubes in CFTs to the applied loading (e.g. compressive

force and internal pressure) is very different from the behavior of hollow tubes under

compressive forces. In general, the prebuckling deformation of shells is not a rotation

free procedure. This means that hollow shells under compressive forces may experience

bending as well as membrane deformation. However, the rotation of the steel tube in

CFTs is prevented due to the bond between the steel and concrete interface and when the

bond is broken, only an outward rotation can occur. In addition, the internal pressure

between the steel and concrete interface eases the outward rotation of steel tube. If the

steel tube is thick enough, the separation of the steel tube from the concrete core may

happen after the peak load. In the thin-walled CFT columns, local buckling of the steel

tube can occur at peak load. The local buckling of steel tube is due to the separation of

steel and concrete. At such a stage, the concrete core maintains its compressive capacity

until the separation completed. Thereafter, cracking and spalling of concrete at the

separated area can occur. Even though, the CFT column can not sustain a higher load
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after local buckling occurs, it still maintains its load carrying capacity. This behavior is

similar to post-buckling of plates.

4.3 Summary

The characteristics and behavior of CFT columns under axial loading are discussed. The

load transfer mechanism between steel tube and concrete core is explained. At the first

stage of loading, the steel tube sustains most of the load until it yields. Thereafter, the

load transfers to the concrete core. As the concrete core reaches its maximum

compressive capacity, the load is redistributed from the concrete core to the steel tube.

The axial and lateral stress distributions in square and circular columns are identified. In

the case of square columns, corners and center exhibit higher compressive stress than the

sides due to nonuniform lateral stress distributions. The cross-sectional stress distribution

is more uniform in circular columns. The stress-strain properties of concrete core is

discussed. The increase in compressive capacity of concrete core due to confining effect

of steel tube is identified. The ultimate strain in the concrete core is defined based on

energy balance approach. The mechanism of local buckling of steel tube is studied. In

CFT columns with thin wall steel tubes, the separation of steel tube and concrete core

results in local buckling of steel tube. It is found that in square and circular columns with

aspect ratio larger than 78 and 95, respectively, the local buckling of steel tube occurs

before the concrete core reaches its maximum compressive capacity.



CHAPTER 5

CHARACTERISTICS AND BEHAVIOR OF CFT COLUMNS UNDER
COMBINED LOADING

5.1 Introduction

In practice, most of CFT columns are subjected to moments as well as axial forces. Even

though a number of experimental studies (Boyd et al., 1995; Sugano et al, 1992; among

others) have been carried out, limited information is available on the behavior of CFTs

when subjected to both axial and lateral loadings. The experimental investigations were

mainly concerned with the study of circular columns under combined loading. Some

experimental work on the square CFT columns has been reported ( Sugano et al, 1992;

Okamoto et al, 1988). When the design is concerned, the CFT columns have been treated

as regular RC columns due to lack of information. However, in CFTs the overall

response and the behavior of each component element are much different from the RC or

steel columns. The results of the finite element analysis on the non-linear response of

CFTs under axial and lateral loadings is presented in this chapter. In the next section,

flexural response of square and circular CFT columns is presented. This is followed by

the discussion of characteristics and behavior of CFTs under combined loading.

5.2 Flexural Behavior of CFT Columns

To better understand the flexural response of CFT columns, detailed finite element

analysis is performed on a number of square and circular columns (i.e., 14 circular and 14

square columns). The results of F.E. analysis of only one square (i.e., a 10x10 inches)

83
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and one circular (i.e., 10 inch diameter) columns with a height of 70 inches and wall-

thickness of 0.16 inches are discussed in order to make understanding the results easier.

The steel tube has a yield strength of 54.0 ksi and the concrete has an unconfined

compressive strength of 2.0 ksi. The important features of flexural response such as

moment-deflection relationship, ultimate flexural capacity, stress distribution and stress-

strain relationship of concrete core and steel tube are discussed.

5.2.1 Moment -Deflection Relationship

The flexural response can be expressed in the form of moment-curvature or moment-

deflection relationship. Figures 5.1 and 5.2 show typical moment-deflection relationships

for the square and circular CFT columns, respectively. As demonstrated in Figures 5.1

and 5.2, ductile behavior can be expected from CFT columns with a strain hardening type

of behavior. In the ordinary RC columns, the flexural behavior in the post-peak regime

depends mainly on the steel content. Lightly reinforced sections result in a practically

linear moment-curvature relationship up to the point of steel yielding. When the steel

yields, a large increase in the curvature occurs at nearly constant bending moment. In

heavily reinforced sections, the moment-curvature relationship becomes nonlinear when

the concrete enters the inelastic part of its stress-strain relationship, and failure can be

quite brittle unless the concrete is confined by closed stirrups.

To investigate the benefits of confinement on the flexural response, a combined

section is introduced. The so called combined section, is a plane concrete section

surrounded by a steel tube in which the confining effect of steel tube is ignored. The
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combined section is analyzed as an ordinary RC column using an unconfined stress-strain

relationship for concrete. The moment-curvature of the combined section shows a

degrading type of behavior with no brittle failure due to the stirrup action of the steel

tube. A comparison between the moment-curvature relationships of a combined section

and a CFT column is presented in the Figure 5.3. The flexural rigidity of is defined by,

dM
El =—

d	
(5.1)

cp

where EI is the flexural rigidity, M is the moment and cp is the curvature.

In the cases of combined sections, the flexural rigidity decreases significantly

after the steel yields in compression (point A' in the Figure 5.3). The crushing of

concrete commences before the steel tube yields in tension. As the crushing of concrete

starts, the flexural rigidity becomes negative (point B' in Figure 5.3). However, in the

case of CFT columns, the flexural rigidity is nearly constant before the steel tube yields

in compression (point A). At this point a decrease in the flexural rigidity is observed until

the steel tube yields in tension (point B) . Thereafter, the flexural rigidity decreases

significantly until the concrete core reaches its maximum compressive capacity (point C).

Then, the moment increases linearly and the flexural rigidity remains constant. Since the

steel tube yields before the concrete core reaches its maximum compressive capacity,

ductile behavior is ensured.
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5.2.2 Ultimate Flexural Capacity

As discussed earlier in chapter three, compressive strength and ductility of the concrete

core in CFTs is higher than the unconfined concrete. The amount of increase in strength

and ductility mainly depends on the aspect ratio and the unconfined compressive strength

of concrete core. The flexural capacity of unconfined RC columns is reached when the

exterior fiber of concrete in compression reaches a strain of 0.003 (ultimate strain), which

is approximately 1.5 times unconfined strain at maximum stress (i.e., 0.002). However,

as mentioned earlier, the ultimate strain of the concrete core can be up to 12 times larger

than the ultimate strain in an unconfined uniaxial test which results in a higher flexural

capacity as well as higher ductility.

The flexural capacity of CFT columns and combined sections are compared with

each other. The flexural capacity of the combined sections are calculated using the fiber

method considering the unconfined stress-strain relationship for concrete. In this method,

the section is divided into a finite number of strips parallel to the neutral axis. The area

and centroid of each fiber can easily be calculated. In the first step of analysis, a neutral

axis is assumed at any arbitrary location. The location of neutral axis then can be

modified by comparing the axial compressive and tensile forces. The trial and error

continues until equilibrium is satisfied.

The results are compared with the flexural capacity of CFT columns obtained

from finite element analysis. Figure 5.4 presents a comparison between the results

obtained from finite element analysis and fiber method. As demonstrated in the Figure

5.4, the increase of CFTs' flexural capacity due to confinement can be in the range of 1.7
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to 2.2 for square columns and 1.8 to 2.6 for circular columns. The circular columns

exhibit more increase in the flexural capacity than square columns since confinement

effect in circular columns is higher than in square CFTs. Moreover, the cross-sectional

stress distribution in the steel is not uniform. Due to the complex pattern of stress

distribution (i.e., biaxial effect), the corners sustain a lower stress than the sides. The

detailed discussion of stress distribution of CFT columns under combined loading is

presented in the next section.

5.2.3 Stress Distribution

The flexural strength of reinforced concrete sections can be determined if the stress

distribution of the cross section is available. In the case of ordinary RC sections (i.e.,

sections with poor confinement), the compressive stress distribution in concrete has the

same general shape as for an unconfined uniaxial compression test. However, the

maximum stress is less than the maximum uniaxial compressive stress (Wang and

Salmon, 1985). Experimental results (Hognestad et al, 1955; Granholm, 1965) have

established the relationship between the uniaxial compression test and the concrete

compressive stress distribution along the section (i.e., the maximum stress is found to be

85% of the maximum uniaxial compressive stress). The stress-strain properties of steel

are well defined. Normally, a bilinear stress-strain curve is assumed and the strain

hardening is neglected. The nominal strength of the section is assumed to be reached

when the strain in the extreme compression fiber is equal to the ultimate strain of

concrete. At this point, the strain in the tension steel could be either larger or smaller
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than the yield strain, depending on the relative proportion of steel to concrete. If the

amount of steel were low enough, the steel would yield prior to crushing of concrete,

resulting in a ductile failure mode. A large quantity of steel would allow the steel to

remain elastic at the time of crushing of the concrete causing a brittle mode of failure.

In the case of CFT columns, the stress distribution on the cross section is not

defined due to lack of information on the flexural behavior of CFTs. Moreover, no

experimental results exist that relate the compressive stress distribution of concrete at the

cross section with the stress-strain properties of the concrete core under pure

compression. Hence, the finite element analysis of CFTs under combined loading is

extended to study the stress distribution of the steel tube and the concrete core to reach

some understanding of the distribution of stresses. Figures 5.5-5.9 show the longitudinal

and cross-sectional stress contours for the square and circular CFT columns. As can be

seen, the longitudinal and cross-sectional stress distributions are not uniform. In the

longitudinal direction, on the extreme compressive side, the rate of decrease in

compressive stress of concrete core is significant in the central area (i.e., mid-height of

the column toward the supports). The steel tube exhibits a more gradual change in the

longitudinal stress distribution. However, the cross-sectional stress distribution has rather

complex pattern.

Figure 5.10 shows the stress distribution for the concrete core and the steel tube

for the square CFT column. It can be seen from Figure 5.10 that the stress distribution in

the concrete core and the steel tube are much different from the stress distributions in an

ordinary reinforced section. The concrete core stress distribution has the same general
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shape as the confined stress-strain relationship of concrete core under compression

(Figure 5.11).

As demonstrated in Figures 5.10 and 5.12, the compressive and tensile stress

distribution in steel tube along the cross section is not uniform. The complex state of

stress at the corners of the steel tube causes the corners to sustain less stress than the mid-

sections. Table 5.1 presents the values of stresses at corners in the extreme compression

and tension fibers of steel tube. As can be seen, the maximum compressive stress and

tensile stress at the corners are about 70% and 80% of the normal yield stress,

respectively. Then, it increases linearly up to yield stress. The maximum average

compressive stress and tensile stress along the cross-sectional width are 92% and 95% of

yield stress. It should be noted that the steel tube has already yielded. Due to biaxial

effect the corners yield at a lower stress than the naunal yield stress.

Figure 5.13 shows the variation of the steel tube's stress distribution along the

depth of the cross section. The non-linear stress-depth relationship of steel tube makes

the determination of the flexural capacity of CFT columns even more difficult. The

location of neutral axis mainly depends on the level of axial force, aspect ratio and

uniaxial compressive strength of concrete core. Hence, it is rather difficult to estimate a

linear relationship instead of the non-linear variation to ease the calculation. However, a

an approximate stress block could be defined. The development of such an approximate

method is discussed in the next chapter.

In the case of circular CFT columns, the stress distribution in the steel tube on the

cross section is more uniform than the square columns. Figure 5.14 shows the stress

distribution under combined loading. As shown in the Figures 5.14 and 5.15, the
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concrete core, in circular CFT sections exhibit almost the same pattern of behavior as

square sections but with a higher compressive stress and more ductility. The stress

distribution in steel tube is much more uniform than the square columns. The steel tube

experiences a maximum stress at the exterior compression fiber which on the average is

10% more than the normal yield stress (point A in Figure 5.16) due to the strain

hardening. The stress in the steel tube remains constant up to point B. Then, it decreases

linearly to zero at the neutral axis. In the tension zone, the stress increases linearly from

zero to the maximum stress and remains constant up to exterior tension fiber. It can be

seen from Figure 5.17 that employing an accurate stress block for the steel tube in the

circular columns is more practical than in the square column.

5.3 Summary

The flexural behavior of CFT columns is studied. It is found that, the CFT columns

exhibit higher flexural capacity than the combined sections due to higher ductility and

larger compressive capacity of concrete core which is provided by confining effect of

steel tube. The moment-curvature relationship for CFT columns shows a hardening type

of behavior. The axial and lateral stress distributions in square and circular columns are

studied. The cross-sectional stress distribution in concrete core and steel tube is not

uniform. In the case of square columns, the corners of steel tube sustain a lower stress

than the sides and the maximum stress at corners is in the range of 70% to 80% of the

normal yield stress. The axial stress distribution in the concrete core at the cross section

has the same general shape as the confined stress-strain relationship under compression.
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However, the central part of concrete core normal to neutral axes exhibits higher capacity

than the areas next to the steel tube.



CHAPTER 6

PARAMETRIC STUDY AND ANALYTICAL MODELS

6.1 Introduction

As discussed in the earlier chapters, the basic parameters such as aspect ratio, uniaxial

compressive strength of concrete, slenderness ratio and cross-sectional shape have

significant impact on the behavior of CFT columns. Experimental investigation on the

effects of all these parameters is practically impossible, since it is expensive and time

consuming. The present finite element model allows a comprehensive parametric study

considering a wide range and combination of the parameters of interest to be investigated.

The parametric study includes a wide range of aspect ratios (10 D I t 100 ), concrete

uniaxial compressive strengths (2000 to 9000 psi), length-width ratios (3 to 25) and steel

normal yield stresses (40 to 60 ksi). The effect of each parameter on the overall response

as well as the behavior of individual component element is presented in this chapter. The

results of this study is used to develop a practical design methodology for CFT columns

under both axial and combined loading. The results of proposed model is compared with

previous experimental data.

6.2 Parameters and Combinations

A wide range and combination of parameters of interest is used in this study. To

investigate the effect of aspect ratio and uniaxial compressive strength of concrete tube on

the stress-strain properties of concrete core, a combination of these two parameters is

92
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used. Assuming a length-width ratio of 4, six different values of unconfined concrete

compressive strengths (i.e., 2, 3, 4, 5, 6 and 9 ksi) are used. For each uniaxial

compressive strength of concrete a total of nine different aspect ratios (i.e., 10, 20, 25, 35,

50, 60, 75, 85 and 100) with two different steel yield strengths are considered. To study

the impact of slenderness ratio on the overall response, twenty four CFT columns with six

different length-width ratios (i.e., 3, 5, 8, 12, 15 and 25) are analyzed. The results of this

study is presented in the following sections.

6.3 Non-Linear Curve Fitting Algorithm

The results of parametric study are used to develop analytical models which can express

the different aspects of response with considering effect of different parameters. To

determine the constant parameters in each analytical model non-linear curve fitting

algorithm is employed. For this purpose, "TableCurve 2D" software is used. The non-

linear curve fitting algorithm is the Levenburg-Marquardt method (Bevington, 1969;

Press, 1992) that uses the Gauss-Jordan procedure for the matrix inverse required in each

iteration. In non-linear curve fitting, the parameters are iteratively adjusted to minimize a

goodness of fit merit function. The analysis is successful when the coefficient of

determination ( r 2 ) remains constant for five consecutive iterations.

6.4 Stress-Strain Properties of Concrete Core

The mechanical properties of concrete core such as maximum compressive strength ( f;,),

strain at maximum stress (E co ), ultimate compressive stress ( ) and ultimate strain ( eci,)
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are highly affected by aspect ratio (D/t), cross-sectional shape and uniaxial compressive

strength of concrete CO. In the following sections, the effect of these parameters on

each mechanical property is discussed in details. It should be noted that an average

stress-strain relationship under the pure axial load is considered since the cross-sectional

stress distribution is not uniform (as discussed in chapter 4).

6.4.1 Maximum Compressive Strength of Concrete Core

The superior property of concrete core in CFTs (i.e., high compressive strength) has been

ignored in the current design specifications due to lack of knowledge on determination of

maximum compressive strength. This section presents the result of parametric study and

introduces a practical and accurate method for determination of the maximum

compressive strength of confined concrete core. Figure 6.1 presents the relationship

between confinement ratio ( .4, / ) and aspect ratio (D/t) for a square and a circular

CFT column with concrete uniaxial compressive strength of 2000 psi and length-width

ratio of 4. In both cases, the concrete core exhibits larger confined compressive strength

(4,) with smaller aspect ratios (i.e., thicker tubes). The confined compressive strength is

seen to vary between 1.77 and 1.11 times the uniaxial compressive strength for aspect

ratios between 10 and 100 for the square column. The rate of increase in confined

compressive strength is significant when the aspect ratio decreases from 100 to 25.

Afterwards, the confined compressive strength increases with a lower rate and it almost

remains constant for aspect ratios of less than 20. The low rate of increase in

confinement ratio in thick wall columns is due to the fact that the stress distribution at the



95

cross section is not uniform (i.e., the corners and center go under more confining pressure

than the sides). This means that the concrete core exhibits a higher compressive strength

at so called effective area, corners and center of the cross section. When the wall

thickness increases (i.e., smaller aspect ratio), there is a reduction in the effective area and

therefore the average of stress at the cross section decreases.

Circular columns exhibit small changes in the rate of increase in confinement ratio

as the aspect ratio decreases. In this case, the confinement ratio is in the range of 1.7 and

2.3. As the wall thickness increases in circular columns, the increase in the confinement

is more significant than the square columns.

To investigate the influence of higher strength concrete on confinement ratio,

similar analysis is performed on circular and square columns using concrete with

different fc: (i.e., 3, 4, 5, 6 and 9 ksi). Figures 6.2 and 6.3 show the effect of different

unconfined concrete compressive strengths on the confinement ratio for square and

circular columns. Interestingly, it is observed that for the same aspect ratio the

confinement ratio for higher strength concrete is less than lower strength concrete. This

is due to the fact that as the compressive strength increases, the stiffness of concrete also

increases resulting in less lateral expansion. Thus, the concrete core experiences less

confining pressure.

Based on the results obtained relating confinement ratio and aspect ratio, and

between confinement ratio and uniaxial compressive strength (Figures 6.2 and 6.3),

empirical equations are developed to determine the maximum confined compressive

strength of concrete core. These equations are expressed as:
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for square columns 	 (6.1)

for circular columns 	 (6.2)

where .D is the diameter or width and t is the wall thickness of the column. A, B, E and F

are empirical parameters. Table 6.1 shows values of A, B, E and F obtained based on the

best fit for each group of aspect ratio and each concrete uniaxial compressive strength. A,

B, E and F can be expressed in terms of f: as:

A=1.335 e - (3f.i si

fB = 1.831 e (3.5:5)

E = 47.492 +30

F=-32.517+
510

f,

(6.3)

(6.4)

(6.5)

(6.6)

where (f) is in ksi. These relationships are obtained based on nonlinear regression

analysis. As a result, with the knowledge of uniaxial compressive strength of concrete
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core and thickness of the steel tube, the maximum confined compressive strength of

concrete core can be accurately calculated, as shown in Figures 6.2 and 6.3. The

maximum compressive stress in concrete core ( ) is determined using the proposed

model (Eqs. 6.1 to 6.6). The strain at peak stress (E co ) can also be determined which is

discussed in the next section.

6.4.2 Confined Concrete Core Strain at Maximum Stress

The confined strain which corresponds to the confined peak stress, so called strain at

maximum confined stress, mainly depends on the aspect ratio. The results obtained from

finite element analysis (Figures 6.4 and 6.5) have shown that for CFT columns with the

same aspect ratio and concrete core with various uniaxial compressive strengths, the

strain at maximum stress is almost the same. This means that the unconfined

compressive strength of concrete has no significant effect on the value of confined strain

at peak stress if the same unconfined strain at maximum stress is assumed. Figures 6.4

and 6.5 present the relationships between the strain at maximum stress and aspect ratio

for square and circular columns, respectively. These relationships can be expressed as:

(

3.51
Eco E0 1+ 

( D 1 ty
60 )

for square columns 	 (6.7)
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Eco = Eo
4.40

1+ 	
(D/t)

100

for circular columns	 (6.8)

where E o0 and E o are confined and unconfined strain at maximum stress, respectively.

(D/t) is the aspect ratio.

The next step after determining the confined peak stress and peak strain of

concrete core, is to define its stress-strain relationship.

6.4.3 Stress-Strain Relationship for Concrete Core

The most puzzling characteristics of CFT columns is the behavior of concrete core at

every stage of loading. Based on the results obtained from finite element analysis and

with the knowledge of confined peak stress and confined strain at peak stress, the stress-

strain relationship of concrete core in CFTs can be expressed as follows:

CC fCC

( a + bx + cx 2 + dx 3 + ex4 +

1+ gx + hx 2 + ix 3 + jx4 + kx5 )
(6.9a)

where

x = 
ece
— 	 (6.9b)
Eco
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in which, c c, and ec, are the stress and strain .4, and 8,„ are the peak stress and strain

at maximum stress of concrete core, respectively. The empirical parameters a, b, c, d, e,

f, g, h, i, j and k are determined based on a nonlinear regression analysis and have the

values of:

a= 0.01810 b = 4.69430 c= -5.53100 d = 4.63689

e = -1.54584 f= 0.16773 g = 2.12912 i = 5.08680

j = -1.86773 k = 0.20046 (6.10)

The accuracy of the proposed model to predict the stress-strain relationship of concrete

core in circular and square columns is remarkable. Figures 6.6-6.9 present a comparison

between the proposed model and finite element results for square and circular CFT

columns. As can be seen, the proposed model can predict the response of concrete core

with high accuracy.

6.4.4 Maximum Compressive Stress in Steel Tube

As discussed in chapter four, the maximum stress that steel tube in CFT columns can

sustain depends mainly on the wall thickness and length-width (L/D) ratio. The effect of

aspect ratio and length-width ratio on the maximum load carrying capacity of steel tubes

in CFTs is studied. This section presents the results of this investigation.

Steel tube under biaxial state of stress exhibits a lower yield stress. In the case of

short columns, the level of decrease in the yield stress depends on the aspect ratio and
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cross-sectional shape and it is independent of normal yield stress of steel tube. It is found

that the maximum stress in circular columns is slightly higher than square columns (i.e.,

2% to 4%). However, for simplicity in the derivation of formula, the results obtained for

square columns are used. Table 6.2 shows the effect of aspect ratio on the yield stress of

steel tube (Fsy ) under biaxial state of stress. The decrease in the steel tube yield stress

( Fsy ) compared to its normal yield stress (Fy ) is more significant in columns with higher

aspect ratio and decreases to 85% of the normal yield stress. Based on the results

obtained from finite element analysis, a reduction factor is proposed to consider the

biaxial effect on the maximum stress in the steel tube. The reduction factor (R 1 ) of steel

tube due to the effect of aspect ratio is defined as:

F
R1 = 	 (6.11)

F

The relationship between the reduction factor and aspect ratio can be expressed as:

D\
R 1 = 1.08 — 0.045 In (6.12)

in which (D / t) is the aspect ratio. Figure 6.10 presents a comparison between the

proposed model and the finite element results.

The second parameter which has significant effect on the maximum load carrying

capacity of CFT columns is length-width ratio (L/D) of the column. To investigate the
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effect of (L/D) on the load carrying capacity, finite element analysis is performed on the

thick-wall (i.e., D/t>20) square and circular CFT columns with length-width ratio of 3 to

25. Table 6.3 shows the details and the results obtained from the finite element analysis

for square and circular columns. As can be seen, the level of decrease in the maximum

stress is more significant in longer columns. However, the degree of reduction is constant

for shorter columns up to a certain (L/D) ratio (i.e., L/D<7 for square columns and

L/D<1 0 for circular columns). Therefore, the square columns with L/D less than or equal

to 7 can be considered as short columns. In the case of circular columns, the limit length-

width ratio is found to be 10. The reduction factor of steel tube due to the effect of

length-width ratio ( R2 ) is defined as:

F.s.„
R,=	 (6.13)

y

Interestingly, it is found that the maximum difference in R2 for circular and square

columns is less than 3% which is observed in shorter columns. To consider the effect of

length-width ratio, the following expression for R2 is proposed:

0.38

L / DY
R2 = 0.59 + 	

.93 	
(6.14)

22.19)
1
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in which (L/D) is the length-width ratio. As shown in Figure 6.11, the proposed model

can accurately predict the effect of length-width ratio on the maximum stress of steel tube

in CFT columns.

6.5 Ultimate Load Carrying Capacity of Axially Loaded CFT Columns

The determination of ultimate load of a column subjected to axial load is essentially a

stability problem in which the effect of inelastic action must be considered. It is

generally accepted that the tangent modulus theory is the best method for determining the

ultimate load of a column fabricated from a single homogeneous material when it is

loaded into the inelastic range. The tangent modulus formula for the ultimate buckling

stress (fu ) of a column is given by:

where E, is the value of tangent modulus at this stress, KL is the effective length and r is

the radius of gyration.

As discussed in Chapter Two, the tangent modulus method is not applicable to

CFT columns in which two different materials have been used for their fabrication. In

addition, as shown in Figure 4.12b in Chapter 4, E, for steel tube has a negative value at

the peak load. Moreover, the stress-strain properties of concrete core and steel tube vary

with changes in the aspect ratio and cross-sectional shape. Therefore, for a CFT column
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constructed from two different materials with different stress-strain relationships, the

ultimate load carrying capacity can not be obtained using the tangent modulus method.

With the knowledge of maximum compressive stresses in the concrete core and

steel tube, the ultimate load carrying capacity of CFT columns can be obtained easily by

adding the maximum capacity of the concrete core and the steel tube. Hence, the

maximum axial capacity of CFT columns ( P cFr ) can be calculated as:

PCFT = AsFsy Acfc, 	 (6.16a)

where,

F =RRF 	 (6.16b)sy	 I 2 y

in which R 1 and R2 are reduction factors indicating the effect of aspect ratio and length-

width ratio, respectively. A s and Fy are the cross sectional area and normal yield stress of

steel tube, respectively. A, and f;,. are cross sectional area and maximum confined

compressive stress of concrete core, respectively. Fo, is the maximum compressive stress

that steel tube can sustain at the peak load. R1 can be determined using Eq. (6.12) and R2

is determined from Eq. (6.14). fc. is calculated using Eqs. (6.1 and 6.2). The proposed

model (Eq. 6.15) is compared with numerous experimental data (Kloppel and Goder,

1957; Chapman and Neogi, 1964; Furlong, 1967; Gardner and Jacobson, 1967-1968;

Knowles and Park, 1970). Tables 6.4 and 6.5 present the result of this comparison. As
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demonstrated in Tables 6.4 and 6.5 the proposed procedure along with analytical model

for	 and Fsy can accurately predict the maximum axial capacity of CFT columns.

6.6 Ductility of CFT Columns under Axial Loading

One of the most significant characteristic of CFT columns, is the high ductility which

makes CFTs good candidates for seismic resistance structural systems. So far, no

information or formula is available which can be used to determine the ductility of CFT

columns. Figure 6.12 presents a typical axial load-strain relationship for CFT columns.

The ductility factor can be defined as:

where, ge is the ductility factor, s is the confined ultimate strain and C c), is the yield

strain of CFT column. As described in Chapter 4, the ultimate strain can be determined

using energy balance approach and the level of increase in the ultimate strain is mainly

affected by the aspect ratio. The ultimate strain for circular and square CFT columns

with different aspect ratios and various unconfined concrete compressive strength is

determined. Table 6.6 presents the relationship between the aspect ratio, confined

ultimate strain and confined strain at maximum stress. As discussed earlier, the confined

ultimate strain depends on aspect ratio and cross-sectional shape. Interestingly, it can be

seen that the ultimate strain is 3 to 4 times of strain at the maximum stress. Therefore,
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the ultimate strain can be obtained using Eqs (6.7 and 6.8) by multiplying them by 3.0,

which is conservative for columns with larger aspect ratio and has good accuracy for

columns with smaller aspect ratio.
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where E, is the unconfined strain at maximum stress of concrete core (e.g. 0.002) and

(D/t) is the aspect ratio. As can be seen, the value of ductility factor depends on the

material properties of steel tube and concrete core as well as geometry of the column. For

example, the ductility factor is in the range of 10 to 25 for a square CFT column with

Fy = 43.0 ksi, E = 30000 ksi and so =0.002.

6.7 Flexural Capacity of CFT Columns

The nominal flexural strength is assumed to be reached when the strain in extreme

compressive fiber is equal to confined ultimate strain (E.). Based on the results obtained

from extensive finite element analysis, a practical and rational method is developed to

predict the flexural capacity of CFT columns. Similar to the method used for RC

columns, equivalent stress blocks are defined for the concrete core and steel tube. The

detailed discussion of the proposed method is presented in the following sections.
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6.7.1 Equivalent Concrete Stress Block

With the knowledge of stress-strain properties of concrete core (Eqs. 6.9 and 6.19), the

flexural capacity of concrete core can be obtained using fiber method. However, a simple

and more practical method is more desirable for day to day use in design. Hence,

equivalent stress blocks are defined for the compressive stress in concrete core and steel

tube and also for tensile force provided by steel tube. Figure 6.15 presents a schematic

view of stress distribution and equivalent stress block at the cross section. As can be

seen, the width of the stress block is equal to maximum confined compressive stress (f:c )

and the depth (ac) is a percentage of distance of neutral axis from the exterior

compressive fiber:

a, 01Xn 	 (6.23)

where a c is the depth of stress block and Xn is the distance of neutral axis from the

compressive exterior fiber which will be obtained by equating the total compressive and

tensile forces provided by the steel tube and the concrete core. p lc is the concrete depth-

neutral axis ratio, a positive number less than one. Table 6.7 gives the values of 113 lc for

concrete core with different unconfined concrete compressive strengths and various

aspect ratios. As can be seen, p ic has a value of 0.80 for all cases. In the case of

reinforced concrete columns, the depth-neutral axis ratio has a value of 0.85 for concrete

with f' 4000 psi, and is reduced continuously by 0.05 for each 1000 psi of strength in

excess of 4000 psi. The reduction in depth-neutral axis ratio for high strength concrete is
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mainly due to the less favorable shape of stress-strain curve of that concrete. However, in

the case of CFT columns, the concrete core exhibits a ductile stress-strain relationship

even for high strength concrete due to the confining effect of steel tube. Therefore, the

value of f3 1 , can be fixed at 0.80 for all cases.

The resultant compressive forces of the actual and equivalent stress blocks have

the same magnitude. The compressive force in concrete core ( C, ) can be expressed as:

Cc = a cbf,', for square columns (6.24)

C. =
'DA
—
2

1
0 – 

2 
Sin(20)) .f;c for circular columns (6.25)

where,

2a
'D` 
J

0 = Cos-I (6.26)

in which, a, is the depth of equivalent stress block. b and D are the cross-sectional

width and diameter, respectively. fc'c is the maximum confined compressive stress in

concrete core.

6.7.2 Compressive and Tensile Stress in Steel Tube

The stress distribution at the compression and tensile fiber of steel tube is not uniform.

Moreover, the pattern of stress distribution in circular and square columns are different

In the case of square columns, the corners sustain a lower stress than the mid-sides (see
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Figure 5.16, Chapter 5). Even though the cross-sectional stress distribution is not

uniform, a practical method to calculate the compressive and tensile forces of steel tube is

to define an equivalent stress block. Figure 6.16 presents a schematic view of stress

distribution and equivalent stress block at the cross section for the steel tube. The steel

equivalent stress block in compression has a width of a , F y and a depth of as = 13 1Xn.

The depth of equivalent stress block in tension (hi ) is equal to hi	and its= Pis (D — X „)

width is equal to a F y .

It is found that a, has a value of 0.92 and 1.0 and a, is equal to 0.95 and 1.0 for

square and circular columns, respectively. The value of p l, (steel depth-neutral axis

ratio) is found to be 0.85 for square columns and 0.80 for circular columns. Xn is the

distance of neutral axis from the exterior compression fiber and it can be determined by

equating the total compressive forces ( C) to steel tensile force (T). In the following

sections the determination of X„ and flexural capacity of square and circular columns are

discussed.

6.7.3 Flexural Strength of Square Columns

The distance of neutral axis from the extreme compressive fiber can be obtained as

follows:

C = T	 (6.27)
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T = a i Fyt(b+20 1,(D - X,1 )-2t) 	 (6.35)
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C = P icbX,,fcc + a cFyt(b+2p 1sx„ 2t)	 (6.36)

By equating Equations (6.35) and (6.36), the location of neutral axis can be found:

X
	2aMsFytD + (a, — a c )Fy tb - 2(a, — a c )Fy t 2

6.37n
ichfcc + 2(a , + a c )1 3 1 ,F yt 	

(	 )

For simplicity and considering the fact that the difference between a, and ac is very

small (i.e., 0.03), we can assume that a = a, = a c = 0.92. It should be noted that b is

equal to D for square sections. Therefore, Eq. (6.37) can be expressed as;

2af3 is F y tD
X „„ 	

P ic Df cc + 4af3,,Fy t
(6.38)

or,

1.564 Fy tD
X

— 	

(6.39)
0.8Dfcc + 3.128Fy t

Therefore, with the knowledge of location of neutral axis, the depth of steel and concrete

stress blocks ( as and ac ) is determined and the flexural capacity of the square section can

be calculated as follows:



,..



113

By solving Eq. (6.44) Xn can be obtained. It is difficult to have a closed form solution to

Eq. (6.44), therefore a simple computer program needs to be developed.

6.8 Concluding Remarks

A parametric study is performed using three-dimensional non-linear finite element

analysis to identify the response of CFT columns under axial and combined loadings.

Based on this study the following conclusion can be reached.

1. It is found that the aspect ratio, unconfined compressive strength of concrete core and

cross-sectional shape have significant effect on the response of CFT columns. The

confinement effect in circular columns is higher than in square columns due to a more

uniform stress distribution. Concrete core with a lower unconfined compressive

strength exhibits higher confinement ratio than higher strength concrete. The amount

of increase in the maximum compressive strength of concrete core mainly depends on

the aspect ratio, unconfined concrete compressive strength and cross-sectional shape.

The strain at maximum stress depends on the aspect ratio and cross-sectional shape.

2. The important stress-strain properties of concrete core such as peak stress and peak

strain is identified. Based on the results obtained relating confinement effect and

aspect ratio, and between confinement ratio and unconfined compressive strength of

concrete, analytical models are proposed to determine the maximum compressive

stress and peak-strain in concrete core for circular and square CFTs.

3. In the experimental programs, the stress-strain relationship of concrete core can not be

determined directly. Based on the proposed analytical model for confined stress-strain
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curve of concrete core, the response of concrete core can entirely be determined. The

accuracy of the proposed model is checked with finite element results. It should be

noted that the finite element model has already been verified with experimental data.

4. The maximum compressive stress in the steel tube depends on the aspect ratio and

length-width ratio. It is found that maximum compressive capacity of concrete core is

independent of the normal yield stress of steel tube. The effect of these two

parameters (i.e., D/t and ) on the maximum compressive capacity of the steel tube

is identified.

5. The ultimate axial capacity of CFT columns is not well predicted. The current design

specifications underestimate the load carrying capacity of CFTs. Therefore,

developing an accurate and practical design procedure is essential. An analytical

model is proposed to determined the ultimate axial capacity of CFT columns. It is

shown that the proposed model can predict the load carrying capacity of CFTs with a

high accuracy and it is easy to use.

6. One of the advantages of CFT columns is their high ductility. It is important that the

ductility factor of CFTs can be determined analytically. The ductility factor for CFT

columns subjected to axial loading is formulated as a function of material properties

of steel tube and concrete core and geometry of the columns.

7. The ultimate flexural capacity of CFT columns is not well defined due to lack of

knowledge on the cross-sectional stress distribution and overall behavior of CFTs

under lateral loading. A difference up to 100% is observed between the experimental

data and different design procedures (Sugano, et al., 1992). Current models are not
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successful in predicting the flexural strength of CFTs, since the confinement effect

and ductility are ignored (as discussed in chapter two). A practical method is

developed to determined the maximum flexural capacity of CFT columns in which

the confining effect of steel tube and large ductility of concrete core are considered.

The proposed model is validated with results obtained from finite element analysis

and it is easy to use.



CHAPTER 7

SUMMARY AND CONCLUSIONS

7.1 Summary

The overall objective of this study is to investigate the non-linear response of CFT

columns subjected to axial and combined loadings. Experimental investigations have

played significant role in research on CFT columns. However, experimental programs

are expensive and time costuming. Moreover, they can not provide as much information

about different aspects of response as revealed by numerical simulation. Therefore, there

is an essential need to develop a reliable finite element model to evaluate the overall

response of CFT columns. The finite element model allows the study of virtually

limitless combinations of the parameters of interest.

A three-dimensional finite element model is developed for CFT columns. The

concrete core is modeled with 3-D solid elements. The steel tube is modeled using shell

elements which allow large deformation analysis. Gap elements are used to model the

interaction between concrete and steel interface. The von Mises plasticity model with

kinematic hardening is used for the steel tube. Concrete core has a complex behavior in

CFT columns. To capture the actual response of concrete core under different loading

conditions, a realistic material model needs to be employed. Among the different

concrete material models, Pramono-William model has the ability to capture the response

of concrete under triaxial state of stress with high accuracy. The material model is

116
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implemented in the finite element software as a user subroutine and calibrated using

substantial published test data.

Verification of the developed finite element model is made by analyzing sixteen

CFT columns tested by different researches (Tomii et. al., 1977; Okamoto et al, 1988 and

Sugano et al, 1992). The finite element analysis has successfully captured the axial load-

deformation and bending moment-deflection response along with important features such

as the development of triaxial state of stress in the concrete core, the decrease in the yield

strength of steel tube due to biaxial effect and local buckling of steel tube.

A parametric study is performed on CFT columns subjected to axial and lateral

loadings. The analysis includes a wide range of aspect ratios, concrete unconfined

compressive strengths, steel normal yield stresses and slenderness ratios. Results of the

parametric studied is used to develop practical design procedures to determine the axial

and flexural capacity of CFT columns.

7.2 Conclusions

Based on the detailed finite element analysis the characteristics and behavior of CFT

columns under axial and combined loading are explained and analytical models are

developed to predict the different features of response. The results obtained can be

summarized as follows:

1. The mechanism of load transfer from steel tube to the concrete core and redistribution

of load from concrete core to steel tube is identified. There are three distinguished

parts in the load transfer mechanism. The first part starts from the beginning of



118

applying load and ends when the steel tube yields. During this stage of loading, the

steel tube sustains most of the load until it yields. In the second part, after the steel

tube yields there is load transfer from steel tube to the concrete core. At this stage,

the steel tube exhibits a softening type of behavior due to the effect of biaxial state of

stress in steel tube until the concrete core reaches its maximum compressive capacity.

Finally, there is a load redistribution from concrete core to the steel tube. In this stage

of loading steel tube shows hardening behavior and concrete core exhibits softening

behavior.

2. The cross-sectional stress distributions of square and circular CFTs under axial

loading are described. It is found that the stress distribution in square sections is not

uniform (i.e., center and corners exhibit a higher compressive capacity than the sides).

Therefore, an equivalent axial stress-strain relationship for concrete core is

introduced. The equivalent confined axial stress is defined as the concrete core axial

force divided by its cross-sectional area. It is found that as the aspect ratio increases

the confinement ratio decreases. The changes in the confinement ratio is different in

circular and square columns. In the case of square columns, the rate of increase in

confinement ratio changes significantly when the aspect ratio decreases from 100 to

25. In circular columns, the change in confinement ratio is more gradual for the same

range of aspect ratio. Interestingly, it is observed that for higher strength concretes

the confinement ratio is smaller if the same aspect ratio is considered (e.g.

= 2.0 ksi (ff.,. I ) = 1.91; f, = 5.0 ksi (f., I fc') = 1.32) and it is

independent of normal yield strength of steel tube. In the case of circular columns,
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the confinement ratio is higher than the square columns. Based on the results

obtained from parametric study, analytical models are proposed to predict the

maximum confined compressive stress of concrete core in circular and square CFT

columns.

3. The results obtained from finite element analysis have shown that for CFT columns

with the same aspect ratio and concrete core with various uniaxial compressive

strengths, the confined strain at maximum stress is almost the same. This means that

the unconfined compressive strength of concrete has no significant effect on the value

of confined strain at peak stress if the same unconfined strain at maximum stress is

assumed. Based on the results obtained relating aspect ratio and unconfined strain at

maximum stress with confined strain at maximum stress, analytical models are

proposed.

4. The ultimate strain of concrete core is determined using energy balance method. It is

found that only aspect ratio and unconfined strain at maximum stress have effect on

the confined ultimate strain. As the aspect ratio decreases or by increasing the

unconfined strain at the maximum stress the concrete core ultimate strain increases.

Based on the results obtained relating confined ultimate strain and aspect ratio, and

between confined ultimate strain and unconfined strain at the maximum stress, an

analytical model is proposed to determine the confined ultimate strain in concrete

core.

5. Based on the results obtained from finite element analysis and with the knowledge of

confined peak stress and confined strain at peak stress, an analytical model is

proposed to predict the stress-strain relationship of concrete core in CFTs. The
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proposed model shows high accuracy for concrete core in circular and square

columns.

6. The possibility of local buckling in steel tube is investigated. The initiation of local

buckling can be identified by examination of the contact forces between steel tube

and concrete core. In the area that local buckling occurs, the contact forces are

released linearly to zero. However, the force increases in the other areas. Separation

of steel tube from concrete core results in local buckling of steel tube. The concrete

core maintains its capacity until the separation is completed. Local buckling of steel

tube depends mainly on the wall thickness of steel tube. It is found that in square

columns with aspect ratios larger than 78, local buckling of steel tube occurs before

the concrete reaches its maximum compressive capacity. In the case of circular

columns, the limiting value for aspect ratio is 95.

7. An analytical model is proposed to determined the ultimate axial capacity of CFT

columns. The effect of important parameters such as confinement of concrete core,

biaxial effect in steel tube and slenderness ratio are considered in the proposed model.

The proposed model is easy to use. The results obtained from the present model are

compared with experimental data. It is shown that the proposed model can predict the

load carrying capacity of CFTs with high accuracy and it is easy to use.

8. The flexural response of CFT columns are different from RC columns since the

concrete core exhibits larger compressive strength and higher ductility. The cross-

sectional stress distribution is not uniform when the CFT columns are subjected to

lateral loading. Development of the three-dimensional finite element model in this
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study enables determination of the stresses which otherwise would have not been

possible using a two-dimensional model or experimental investigations. The complex

pattern of stress distribution at cross section is identified. Based on the cross-

sectional stress distributions, equivalent stress blocks are defined for stresses in

concrete core and steel tube. To characterize the concrete equivalent stress block, it is

assumed that the CFT column reaches its maximum flexural capacity when the

compressive strain in extreme fiber of concrete core is equal to confined ultimate

strain. A practical method is developed to determined the flexural capacity of CFT

columns. The proposed method considers the effect of confinement (i.e., higher

concrete compressive stress and larger ductility) and it is easy to use.

7.3 Recommendations for Further Research

The following items could be considered for further research:

1. Strong consideration should be given to the investigation of seismic response of CFT

columns. A realistic hysteresis model for CFTs could be developed using the present

finite element model and with the help of experimental data. Effect of different

parameters such as level of axial force, aspect ratio, cross-sectional and strength of

concrete core on the seismic response of CFTs needs to be investigated.

2. Simple analytical model is needed to study the seismic performance of structural

systems with CFT columns.
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3. Load transfer mechanism between connections and columns could be studied using

the present finite element model. Standardized and cost effective connections could

be developed based on the obtained results.

4. The present finite element model can be used to investigate the flexural behavior of

CFT columns under biaxial bending. Interaction diagrams (i.e., axial load-bending

moment curves) can be developed using the results of the present study. The

proposed stress-strain relationship for concrete core can be combined with fiber

method through a simple computer program. A series of analysis is required to

establish the interaction diagrams.
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Table 2.1 List of tested specimens.
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Table 2.3 Measured dimension of specimens with stiffeners.
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Table 2.5 Comparison between different design codes and experimental data for ultimate
load carrying capacity of CFT columns



Table 3.2 Buckling load for the square thin plate.
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Table 3.4 Details of tested columns in combined loading tests.
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Table 5.1 Stress at top and bottom corners of steel tube
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Table 6.3 Effect of length-width ratio on maximum yield stress of steel tube
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Table 6.4 Comparison between experimental and the proposed model.
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Table 6.4 Comparison between experimental and the proposed model (continued).
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Table 6.5 Comparison between experimental and the proposed model.

133

* The tested column showed a very high compressive capacity. If it is assumed that the
steel tube sustain the maximum possible load (i.e., AsFy ), then the compressive stress

in the concrete should be 23.0 ksi. This means that the increase in the compressive
stress of concrete is almost five times of its uniaxial compressive stress which is
practically impossible.



Table 6.6 Effect of aspect ratio on the confined ultimate strain.
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Table 6.8 Flexural capacities obtained from RE. results and the proposed model.
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Figure 1.1 Schematic cross-sectional view of CFT, (a) square (b) circular columns.



Figure 1.2 Ultimate capacity for a square CFT Column, comparison of different design codes and experiment.



Figure 2.1a Load-strain relationships for axially loaded circular CFT columns (Tomii and Yoshimaro, 1977).

0.02 	 0.0250.01 	 0.015

Average Strain
0.0050

150

125

100

3
75

.-"c7d

50

25

t=2 mm

t=4.3 mm

D= 150 mm



Figure 2.1b Load-strain relationships of axially loaded square CFT columns (Tomii and Yoshimaro, 1977).
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Figure 2.2 Load-strain behavior in typical axial load test (Furlong, 1967).
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12.5                 

t = 3.2 mm 	 t = 4.5 mm 	 t = 6.0 mm  

1 0

0

4 7.5

0

as

2.5       

0
	

5
	

10 	 15 	 20
	

25
	

30
Deflection (mm)

Figure2.3b Bending moment-deflection curves for CFT columns with different aspect ratios (Okamoto and Maeno, 1988).



Figure 2.4 Typical test setup (Yoshioka, 1992). 	 Figure 2.5 Test program (Yoshioka, 1992).



Figure 2.6 Load-deflection relationship (Yoshioka, 1992).



(1)

Figure 2.7 (a) Unstiffened section; (b) Stiffened section (Ge and Usami, 1992).



Figure 2.8 Typical failure of (a) hollow steel tube, (b) concrete-filled column (Ge and Usami, 1992).



Figure 2.9a Load strain relationship for unstiffened CFT columns (Ge and Usami, 1992).



Figure 2.9b Load-strain relationship for stiffened CFT columns (Ge and Usami, 1992).
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Figure 2.11 Typical hysteresis curves for circular and square columns (Sugano and Nagashima, 1992).



Figure 2.12 Test setup (Boyd et al., 1995).



Figure 2.13 Hysteresis response (Boyd et al., 1995).



Figure 2.15 Hysteresis response of (a) RC column, (b) retrofitted column (Chaff, 1992).



Figure 2.16 Comparison between theoretical and experimental results for long CFT columns (Neogi and San, 1969).



Figure 3.1 Three-dimensional finite element mesh for square CFT columns (a) used in axial loading (b) used in combined loading.



Figure 3.2 Three-dimensional finite element mesh for Circular CFT columns.



Figure 3.4 The von Mises yield surface.
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Figure 3.5 Triaxial failure envelope of Leon's model in principal stress section.
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Figure 3.6 Leon's tensile and compressive meridians with test results.



Figure 3.7 Loading surface of isotropic hardening model.
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Figure 3.8 Inelastic volume change and plastic stress corrector.
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Figure 3.9 Finite element model for concrete triaxial compression test.
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Figure 3.11 Buckling of a square thin plate which attached to a concrete block.
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Figure 3.12 Load-displacement relationship for a simply supported square plate.
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Figure 3.13 Axial load-strain relationship for Square CFT column .17x6x6x24 inches.
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150 	 ›,
-0
0

100

50

0

250

_v_ Experimental Results 	 F.E. Result

200 	 2

1

y Initiation of local buckling
1 Experiment
2 F. E. model

I 	 I 	I 	1
0.005 	 0.01

Axial Strain (in./in.)
0.015 	 0.02

Figure 3.15 Axial load-strain relationship for Square CFT column .078x6x6x18 inches.



0.020.01
Axial Strain (in./in.)

0 0.0150.005

250

Experimental Results	 F.E. Results

200 _	 2
1 V

Nqpr Initiation of local buckling
1 Experiment
2 F. E. model

50

Figure 3.16 Axial load-strain relationship for Square CFT column .078x6x6x24 inches.



250
ri)

a 200

0

_4'4 150

100

350

Experimental Results r F. E. Result

v Initiation of local buckling
1 Experiment
2 F. E. model

I 	 I
0
	

0.01	 0.02
	

0.03
	

0.04
Axial Strain (inlin.)

Figure 3.17 Axial load-strain relationship for Square CFT column .17x6x6x18 inches.
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Figure 3.18 Axial load-strain relationship for circular CFT column .17x6x24 inches.
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Figure 3.19 Axial load-strain relationship for circular CFT column .078x6x24 inches.
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Figure 3.20 Axial load-strain relationship for circular CFT column .17x6x18 inches (f .= 4.2 ksi).
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Figure 3.21 Axial load-strain relationship for circular CFT column .118x6x18 inches.
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Figure 3.22 Axial load-strain relationship for circular CFT column .17x6x18 inches (f: .= 3.2 ksi).



Experiment, Okamoto 1988
=1■111■11•1■

F.E. Result

-I I I 	 I 	 I 	 I 	 I 	 I 	 I

0	 0.2	 0.4	 0.6
	

0.8	 1

Deflection (in.)

80

60

40

0

20

Figure 3.23 Moment-deflection relationship for square CFT column (0.039x6.89x6.89x67 inches).
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Figure 4.1a. Load-deflection relationship for concrete core and steel tube.

(Square CFT column B=6.0 in., L=24.0 in., f: = 2.0 ksi)
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Figure 4.1b Load-deflection relationship for concrete core and steel tube.

(Circular CFT column D=6.0 in., L=24.0 in., fc: = 2.0 ksi)



Figure 4.2 Lateral stress distribution at cross-section in square columns under axial loading.
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Figure 4.3 Axial stress distribution at the cross section.



Figure 4.4 Lateral stress distribution at cross-section in circular columns under axial loading.



Figure 4.5a Concrete stress-strain relationship for concrete core.



Figure 4.5b Steel stress-strain relationship.



Figure 4.6a Axial stress contours for the steel tube and the concrete core in square CFI column.



Figure 4.6b Axial stress contours for the steel tube and the concrete core in circular CFT column.
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Figure 4.7 Stress-strain relationship for concrete core in CFT columns.



Figure 4.8 Confining stress on the concrete core.



Figure 4.9 Poisson's ratio-axial strain relationship for the concrete core.
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Figure 4.12 Increase in the axial stiffness of concrete core compared with plain concrete.



Figure 4.13 Contact force between steel tube and concrete core.



Figure 4.14 Local buckling of steel tube and stress contours.



Figure 5.1 Bending moment-defection relationship for Square CFT columns.
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fc = 2000 psi
Circualr CFT column: 0.16x10x70 	 inches

Fy = 54000 psi



Crushing of concrete

I 	 I 1

200

0

First yield of steel in compression

CFT Column

Peak stress in concrete core

yield of steel in tension

Composite Section

0
	

0.0005
	

0.001	 0.0015
	

0.002
	

0.0025

Curvature

Figure 5.3 Moment-curvature relationships for CFT columns and composite sections.



Figure 5.4 Over strength in moment capacity of CFT columns compared to combined sections.



Figure 5.5 Longitudinal stress distributions for steel tube and concrete core in square CFT columns.



Figure 5.6a Axial stress distribution of concrete core in longitudinal and cross-sectional directions.



Figure 5.6b Axial stress distribution of concrete core at cross section.



Figure 5.7 Lateral distribution of concrete core at cross section.



Figure 5.8 Longitudinal stress distributions for steel tube and concrete core in circular CFT columns.
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Figure 5.9 Longitudinal and cross-sectional stress distributions for concrete core in circular CFT columns.
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Figure 5.11 Stress distribution of concrete core along the cross section (square column).
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Figure 5.12 Steel tube stress distribution along the cross-section width (square column).
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Figure 5.13 Steel tube stress distribution along the cross-section depth (square column).
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Figure 5.14 Cross-sectional stress distribution for a circular CFT column under combined loading.



0.8

0

C) 0.6

0

-0 0.4
N

•

0z 0.2

Compression

Tension

Neutral Axis

-1	 0	 1	 2	 3	 4	 5	 6

Stress (ksi)

Figure 5.15 Stress distribution of concrete core along the cross section (circular column).



Figure 5.16 Steel tube stress distribution along the cross-section depth (circular column).



Figure 6.1 Confinement-aspect ratios relationship for circular and square columns.



Figure 6.2 Confinement-aspect ratios relationship for square CFTs; comparison between the F.E. results and proposed model.



Figure 6.3 Confinement-aspect ratios relationship for circular CFTs; comparison between the F.E. results and proposed model.
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Figure 6.4 Confined peak strain-aspect ratio relationship for square CFT columns.
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Figure 6.5 Confined peak strain-aspect ratio relationship for circular CFT columns.
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Figure 6.7 Concrete core stress-strain relation for square CFT column.



Figure 6.8 Concrete core stress-strain relation for circular CFT column.



Figure 6.9 Concrete core stress-strain relation for circular CFA' column.



Figure 6.10 Effect of aspect ratio on the yield stress of steel tube in CFT columns.
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Figure 6.11 Effect of length-width ratio on the yield stress of steel tube in CFT columns.
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Figure 6.13 Axial load-strain relationships for square CFT columns.
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Figure 6.15 Concrete core stress distribution and equivalent stress block at cross section.



Figure 6.16 Steel tube stress distribution and equivalent stress block at cross section.
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