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ABSTRACT

LEAST SPACE-TIME FIRST SCHEDULLNG ALGORITHM:
SCHEDULING COMPLEX TASKS WITH HARD DEADLINE ON

PARALLEL MACHINES

by
Bo-Chao Cheng

Both time constraints and logical correctness are essential to real-time systems

and failure to specify and observe a time constraint may result in disaster. Two

orthogonal issues arise in the design and analysis of real-time systems: one is the

specification of the system, and the semantic model describing the properties of real-

time programs; the other is the scheduling and allocation of resources that may be

shared by real-time program modules.

The problem of scheduling tasks with precedence and timing constraints onto

a set of processors in a way that minimizes maximum tardiness is here considered. A

new scheduling heuristic, Least Space Time First (LSTF), is proposed for this NP-

Complete problem. Basic properties of LSTF are explored; for example, it is shown

that (1) LSTF dominates Earliest-Deadline-First (EDF) for scheduling a set of tasks

on a single processor (i.e., if a set of tasks are schedulable under EDF, they are also

schedulable under LSTF); and (2) LSTF is more effective than EDF for scheduling

a set of independent simple tasks on multiple processors.

Within an idealized framework, theoretical bounds on maximum tardiness for

scheduling algorithms in general, and tighter bounds for LSTF in particular, are

proven for worst case behavior. Furthermore, simulation benchmarks are developed,

comparing the performance of LSTF with other scheduling disciplines for average

case behavior.

Several techniques are introduced to integrate overhead (for example, scheduler

and context switch) and more realistic assumptions (such as inter-processor commu-



nication cost) in various execution models. A workload generator and symbolic

simulator have been implemented for comparing the performance of LSTF (and a

variant — LSTF+) with that of several standard scheduling algorithms.

LSTF's execution model, basic theories, and overhead considerations have been

defined and developed. Based upon the evidence, it is proposed that LSTF is a good

and practical scheduling algorithm for building predictable, analyzable, and reliable

complex real-time systems.

There remain some open issues to be explored, such as relaxing some current

restrictions, discovering more properties and theorems of LSTF under different

models, etc. We strongly believe that LSTF can be a practical scheduling algorithm

in the near future.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

A number of real-time scheduling algorithms have been developed; these algorithms

can be categorized into static! dynamic and on-line/off-line scheduling. When the

task priority does not change during its execution, we term this static scheduling;

otherwise, we have dynamic scheduling. For example, the rate monotonic scheduling

algorithm (RMS) [50] is a well-known static scheduling policy, and earliest deadline

first (EDF) [23] is the best-known dynamic one. Scheduling of tasks at compile time

is termed off-line scheduling; whereas on-line policy makes a decision after receiving

requests.

We label tasks with only a single resource computation requirement, and

without any synchronization or parallelism (other than trivial inter-task parallelism),

`simple', and all other tasks 'complex' or 'non-simple'. We likewise characterize

computer systems as 'single processor' or 'multiple processor'. Many of the appli-

cations and research efforts found in existing scheduling disciplines are restricted

to "Simple Tasks on Single Machine" [54. 63, 64], "Simple Tasks on Multiple

Machines" [26] or "Complex Tasks on Single Machine- [51, 60, 70]. Although

some work can be found on "Complex Tasks on Multiple Machines", the network

configurations are limited to particular topologies such as two machines [59], three

machines [5] or hypercubes [56].

We propose a new scheduling algorithm, least space-time first (LSTF), to

deal with "Complex Tasks on Multiple Machines" for an arbitrary topology. LSTF

makes scheduling decisions based on a combination of precedence and real-time

constraints.

1
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1.2 Context -

In the past forty years, many scheduling papers have been published. Most focus

on "Simple Tasks on Single Machine", "Simple Tasks on Multiple Machines", or

"Complex Tasks on Single Machine". In the "Complex Tasks on Multiple Machines"

category, there are no provably optimal scheduling disciplines, in the sense of meeting

hard real-time deadlines.

Task scheduling also naturally divides into on-line and off-line scheduling. Off-

line task scheduling occurs at compile time and it needs to have a good planning agent

to evaluate interactions of tasks and resources and to make a scheduling list, based

on which the dispatcher will allocate the resources to tasks [3, 14, 17, 28, 30, 34]. For

example, requirement-driven scheduling (REDS) [35], ar artificial-intelligence-based

architecture, is composed of planning agents and has a number of advantages over

the conventional hierarchical, distributed, and subsumption architectures for real-

time distributed systems. Similarly, the Branch-and-Bound method is based on a

depth-first solution strategy; in the solution tree, each nodes represents a resource

and precedence feasible partial schedule. Branches emanating from a parent node

correspond to exhaustive and minimal combination scheduling [22, 71]. The module

allocation algorithm (MAA) [42] uses branch-and-bound based on objective functions

embedding timing constraints. The objective functions drive MAA in assigning task

modules to processing nodes and using a module scheduling algorithm to schedule

all modules for meeting all task deadlines.

On-line scheduling orders the execution based on some a priori knowledge of

the tasks allocated by assignment algorithms. Rate-monotonic-next-fit-scheduling

(RMNFS) [25], an extended basic rate-monotonic-scheduling algorithm, assigns the

task to the processor where it can be feasibly scheduled based on RMS; however,

RMNFS does not consider communication. Agne [1] suggests that the scheduler

compute local scheduling plans, one for each node that reserves time slots for
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execution of software modules with hard execution deadlines, and the other for

the transmission medium that reserves time slots for the transmission with hard

deadline. It produces low utilization when a reserve technique is applied. A heuristic

algorithm is proposed by Wang et al. [72], combining list scheduling (finding a good

bound) with H scheduling (finding a feasible schedule). The algorithm performs

well in both respects, but is not scalable in the number of tasks. The algorithm,

scheduling real-time periodic tasks on a fault-tolerant multiprocessor system, incor-

porates both redundancy and masking techniques, and an imprecise computation

model. A trade-off between the quality of the result and the processing time used

to produce the result is provided by their imprecise computation model [74].

An on-line algorithm makes a decision immediately after receiving the requests,

while an off-line algorithm makes a decision based on its planning. An off-line

algorithm knows the entire sequence of requests in advance and chooses its actions

optimally. The competitive ratio is defined as cc:go'ffiznnee)) , where Cost(on - line) is

the worst-case cost of an on-line scheduling algorithm and Cost(off- line) is the worst-

case cost for optimal off-line scheduling. Hsu et. al. [43] use competitive ratios to

compare the performance of on/off line scheduling in lists. off-line static search trees,

dynamic search trees, and the k-server problem.

Generally, there are advantages and disadvantages in both on and off-line

scheduling [47]:

• flexibility:

On-line scheduling is good at handling unexpected events.

• extension:

In on-line scheduling, it is easy to add new tasks to the systems or increase the

load of an original task (by increasing code, data input size, etc.).
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• dynamic execution effect:

On-line scheduling is effective in the presence of synchronization, contention

for shared resources, communication between processors.

• information:

On-line scheduling needs less information than off-line because off-line should

know the entire sequence of requests, and the parameters of all tasks and

resources.

• overhead:

In off-line-scheduling, there exists a dispatcher allocating the resources to tasks

based on the scheduling list determined at compiling time. The dispatcher

need not compute a priori information and so can spend less execution time

than the scheduler.

• schedulability analyzer:

For both scheduling algorithms, it is hard to implement a schedulability

analyzer which guarantees whether tasks meet deadline.

• provability and complexity:

Except for EDF and RMS, both on and off-line scheduling algorithms should

be investigated further.

LSTF is designed as an on-line scheduling approach, because we are interested in

flexible and extensible systems (such as multimedia systems). We can use a simulator

to assist LSTF building a schedulability analyzer.

1.3 Problem and Approach

Evaluation of performance of real-time systems is based on satisfaction of deadline

constraints. In the "Simple Tasks on Single Machine" case, RMS is an optimal
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static scheduling algorithm in the term of schedulability or feasibility, and EDF is

an optimal dynamic one. When a set of tasks is scheduled by an algorithm, and all

tasks meet their deadline, we call this set schedulable. If a set of tasks is schedulable

under an algorithm, it is also schedulable under an optimal scheduling algorithm. We

have two observations. First, both RMS and EDF deal with a simple model which

is the classic one for real-time scheduling community (Table 1.1, page 7). Second,

it is difficult to use "schedulability" to compare two algorithms when both of them

satisfy or both miss deadlines in the "Simple Tasks on Multiple Machines", "Complex

Tasks on Single Machine", or "Complex Tasks on Multiple Machines" models. In

some applications, we need information on how late the tasks will be and how much

penalty each should pay if it misses its deadline. French [29] defined the lateness

of process i, L(i), as the difference between its completion time and its deadline.

This implicitly suggests that if process i completes before its deadline, then L(i) is

negative. A process is tardy when it completes after its deadline, otherwise, it is

early; the non-negative value variable T(i), the tardiness of process i, is then defined

as T(i) max(L(i), 0). That is, when a job completes before its deadline, T(i) 0,

but it will pay a penalty if it completes after its deadline. Let '7max define as the

maximum value of T(1), T(2), ..., T(n). When a set of tasks is schedulable, Trn,ax = 0.

A scheduling algorithm which minimizes tardiness will necessary satisfy all deadlines

for any schedulable set of tasks.

Under certain conditions, EDF minimizes the lateness and the tardiness of a

set of tasks with deadlines executing on a single processor [52, 64]. Previous work

surveyed by Cheng [15] treats several lateness and tardiness performance criteria.

Different criteria can be used to classify different time requirement applications,

to specify precise requirements on applications, and to evaluate the performance

relative to requirements. For example, musical instrument digital interface (MIDI)

applications need to consider the lateness of early and tardy tasks (both early and
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tardy tasks should be penalized); in contrast, most real-time systems should be

evaluated by a tardiness criterion only, because the system should pay small (soft-

real-time-system) or huge (hard-real-time-system) penalty for tardy tasks, but will

not be either penalized or rewarded for tasks which complete before deadline.

Determining minimum weighted tardiness, for preemptible and for non-

preemptible jobs on both single and parallel machines. is NP-Complete [32] in

each case. Some heuristic algorithms seek to minimize the total tardiness [16, 37, 40]

or the mean tardiness [9]. If all jobs' weights are equal, a weighted tardiness problem

reduces to the tardiness problem. The tardiness problem is NP-Complete for the two

machine case, and is open for more_than two machines [48]. Root's algorithm [58] is

the only published approach for minimizing the tardiness problem [15].

Our new scheduling algorithm, Least Space Time First Algorithm (LSTF),

seeks to minimize tardiness (Tmax ) in the "Complex Tasks on Multiple Machines"

model. We assume that N non -simple and preemptible tasks with deadlines are

ready at the same scheduling time 0 and should complete by its deadline. Tasks

require fixed processing time, must satisfy arbitrary precedence constraints, may

share resources, and may execute in parallel with other tasks during their execution.

M identical parallel machines are available to process these complex tasks, where each

machine can execute any tasks at any time. The classical model, which has provable

properties, is much simpler than the extended model handled by LSTF (Table 1.1). In

fact, LSTF also handles relaxed guarantees of machine characteristics (for example,

a machine may break down during a scheduling period) and task properties (such
■•■

as an aperiodic arrival pattern). We start with the outlined model to study LSTF

properties; we will extend the model further in future work.

Without a priori knowledge (such as deadline, processing time, start time,

period, etc.), it is impossible for a scheduler to get an optimal result in the sense

of schedulability even if there is no restriction on preemption, owing to precedence



and/or mutual exclusion constraints [24]. For example, EDF is driven by deadline;

RMS is driven by period. The Precedence Graph (PG) and Unit Precedence Graph

(UPG) represent program structures and offer a priori information for the LSTF

scheduler. To construct the PG, program translation, code unrolling and inlining,

transformation and conditional linking techniques are applied [65, 66, 67, 68] 1 . A

transformation to a mutually commensurable unit [53] is applied to transform the

PG into the UPG. The scheduler computes the Space-Time for each executable point

over all processes (initial vertices in UPG), and allocates an available processor to

an initial vertex with the least Space-Time. LSTF makes scheduling decisions based

on precedence and real-time constraints.

1 See page 15.
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1.4 Contributions of this Thesis

We propose a new scheduling algorithm, LSTF, for scheduling complex tasks on

parallel machines. Obviously, the operation research and real-time communities are

interested in this work. Our major contributions are as follows:

• Theoretical

—LSTF has been proved to be more effective than EDF in four different

scheduling models: `simple-tasks-single-processor', 'simple-tasks-multiple-

processor', and 'complex-tasks-single-processor' (Chapter 4) and 'complex-

tasks-multiple-processor' (Chapter 7).

—Relatively sharp lower and upper bounds of work-conserving scheduling

algorithms in general and LSTF in particular, have been obtained

(Chapter 5).

• Practical/Pragmatic

—Context switch overhead and communication cost have been incorporated

into LSTF (Chapter 6).

—We have built a task generator that generates precedence-constrained

real-time tasks, and a symbolic simulator that evaluates the performance

of LSTF and other scheduling disciplines under different platforms

(Chapter 7).

1.5 Why LSTF?

When a system's performance is based on a tardiness criterion, LSTF is a good

scheduling algorithm to minimize the maximum tardiness under certain simplifying

assumptions (such as no context switch overhead). LSTF is also a practical
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scheduling algorithm to integrate and work well in realistic systems. Some features

of LSTF are:

• Simplicity

LSTF is an algorithm combining precedence and real-time constraints. It is

simple to understand, implement and maintain. As input to the algorithm, we

need the N task graphs, including the graph structure, node costs, and sink-

node deadlines, plus the number M of processors. For the bound evaluator, we

need only N and M, plus, for each task, the length of the longest path, the total

CPU requirement, and the deadline. To incorporate context-switch or commu-

nication, we need respectively the context-switch cost and the communication

costs for each edge.

• Performance

We have been able to show, under a number of restrictions on tasks and

operating system properties, that LSTF minimizes maximum tardiness, and

so produces a deadline-satisfying schedule whenever one exists (Chapter 4).

• Schedulability

Relatively sharp lower and upper bounds can be provided for LSTF; these tight

bounds enable us to design predictable real-time systems.

• Integration into realistic systems

Unlike some other algorithms, LSTF is not difficult to accumulate, minimize

and integrate the cost of various overheads (for example, context switch) into

LSTF algorithm (Chapter 6).

1.6 Outline of Dissertation

The rest of this dissertation is organized as follows.
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• Chapter 2: Reviews the scheduling model and presents a new scheduling

algorithm, Least Space-Time First (LSTF), to minimize the tardiness of all

processes.

• Chapter 3: Gives an overview of the related work such as PERT and DDM.

• Chapter 4: Uses an example to illustrate LSTF and explore some properties of

LSTF.

• Chapter 5: Investigates the lower and upper bound of tardiness on general

algorithms and LSTF.

• Chapter 6: Discusses a variety of cost measures in a realistic system.

• Chapter 7: Presents the simulation results on three different platforms: ideal,

context switch and communication, and discusses a substantial treatment of

modelling algorithmic issues of real-time systems.

• Chapter 8: Makes the conclusions and outlines future work.



CHAPTER 2

THE SCHEDULING MODEL AND DEFINITIONS

In this Chapter, we characterize our scheduling model and introduce a new algorithm,

Least Space-Time First (LSTF), to deal with the general 'complex-task-multiple-

processor' model.

2.1 Execution Model

Two types of parallelism are popular in practical use: one is single-instruction stream,

multiple-data stream (SIMD), and the other is multiple-instruction stream, multiple-

data stream (MIMD) [27]. SIMD is the easiest to understand and implement. On

entering a parallel region, a serial program can be transformed from one process

into multiple processes (threads). In SIMD, all threads execute the same (possibly

guarded) code on different array elements in a for loop processing members of

an array. MIMD provides independent-block parallelism. A block of code, with

operations on global and local (private) data different from other blocks, is executed

in its own thread independently. Variables within code executed in parallel are either

shared between threads or are local to a specific thread. Shared variables are stored

in shared memory pointed to by each execution thread, while for local variables, each

thread has its own private copy.

Our execution model uses both blocking and non-blocking calls on MIMD

parallel machines, where each node (PE) has a single CPU and contains the code

of some tasks and objects [69]. When a task makes an non-blocking call to other

objects, the application program (parent) forks a thread for the non-blocking call

(child). These two threads execute in parallel until they reach a synchronization

point, where the parent thread needs to reference IN/OUT or OUT parameters of

11
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the child thread (or one or the other terminates). At the synchronization point,

parent and child threads join together.

Figure 2.1 Application program for event 1

In Figure 2.1, Event 1 makes a non-blocking call to object 1 after it has executed

6 instruction units so that Event 1 forks one child thread to execute object 1. After

executing four more instruction units, Event 1 also generates another thread for

calling object 2. Object 1 must synchronize (join) with Event 1 at the the synchro-

nization point, wait(01.opl), added to application program by the compiler.

2.2 Scheduling Framework

The scheduling framework is based upon a given precedence graph (PG), G 	 (V,

E), representation of a real-time application program. V is a set of vertices, each

associated with a distinct execution weight, and E is a set of directed edges, each

associated with a data volume. Standard program translation, code unrolling and
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inlining [46, 65], transformation [67] and conditional linking techniques [68] are

applied to facilitate PG construction. We will henceforward assume that all PGs

have been transformed by such techniques, and that in particular, there is no condi-

tional execution which affects the timing behavior of the code 1 . Transforming from

programming source code into PG, a synchronization point has two in-edges, one

from task itself and the other one from the non-blocking region (Figure 2.2 is a PG

for event 1 in Figure 2.1).

Figure 2.2 Precedence graph (PG) for event 1

Now, we specify the task and hardware model formally. Suppose that we have

a number of M identical processors and a set T =	 712, T} of N independent

tasks with each task, 	 having a distinct deadline D2 and fixed processing time

Xi. All tasks are ready at the same scheduling time 0. Ti is a subtask of task i

1 This is of course an unreasonable simplification, but any scheduler without perfect
future knowledge can perform arbitrarily badly in the presence of conditionally-executed
code which affects timing.
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and has the execution requirement V. Precedence constraints, denoted by "-+",

between subtasks; edges are denoted by T ii 4 Tik , which represent (1) a precedence

relationship between predecessor Tij and successor T ik , and/or (2) a data volume A

sent from subtask to subtask Tik. The data volume on a pure precedence edge

is A = 0. Task Ti is defined to be ready when all its predecessors have completed

execution and it has received all messages from all its predecessors. A ready vertex

corresponds to a point where the thread is ready to execute, and competes for

resources with other ready vertices. If we have 10 ready vertices in the PG graph,

the scheduler has 10 threads competing for processors. A PG-based scheduler now

operates more-or-less-as a topological sort. After an ready vertex has been scheduled,

the vertex with its out-edges can be deleted from PG, and its direct successors then

become new ready vertices. With a single sink subtask, each task Ti can be repre-

sented as a directed acyclic graph (DAG). M identical parallel machines are available

to process these complex tasks, where each machine can execute any tasks at any

time.

A set of nodes is said to be mutually commensurable [53] if there exists a U

such that each node's weight is an integer multiple of U — in practical programs,

U is of course also a multiple of the real-time unit. Based upon this concept of

commensurable nodes, we will sometimes conceptually look upon the PG as a unit

precedence graph.

It is convenient to treat processors as non-preemptible during a real-time unit

U. Using UPG, the scheduler treats each node equally and schedules ready vertices

step-by-step.



Figure 2.3 Unit precedence graph (UPG) for event 1

2.3 Definitions

To demonstrate LSTF and its properties clearly, we define a number of terms.

a TASK, : a task with ready vertex v. By extension. a (partially executed) task

on which v is one of the ready nodes.

• D(v): deadline of TASK,.

• C(v): completion time of TASK,.

• 7-(v) : the tardiness of TASK,; 7- (v) = max(C(v) — D(v), 0).

• rmax: the maximum T among all tasks.

• R(v): remaining time for TASK,; R(v) = D(v) — Present_Time.
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• L(v): the length (level) of a longest path from the vertex v to a sink. (a vertex

with no descendants) of the PG.

• P(v): the longest path in TASK,.

• LP,: the longest path length in TASK,.

• TX,: the total execution cost of TASK,.

• BX(v , i ,j) : the execution cost of all TASK,'s branches except Pv between level

i and j; BX(v ,o , Lp7,) = TX, —

• Sy : space time of a vertex v at a particular scheduling point: S(v) = R(v) L(v).

2.4 Least Space Time First (LSTF) Scheduling Algorithm

Without a priori knowledge (such as deadline, processing rime. start time, period,

etc.), it is impossible for a scheduler to get an optimal resul: in the sense of schedu-

lability, even if there is no restriction on preemption, owing to precedence and/or

mutual exclusion constraints [24]. Most common schedulers assume the availability

of such information; for example, EDF is driven by deadline. RMS by period. LSTF

uses the Unit Precedence Graph (UPG), which encodes a priori information repre-

senting program structures and deadline 2 .

At a particular time, the remaining time of a task is its deadline less the

present time. The level of a vertex is the length (measured in time units as per UPG

construction) of the longest path from the vertex to a leaf of the UPG. The Space-

Time of a vertex is then defined to be the remaining time of the task less the level

2The UPG is a conceptual model. It is a straightforward to implement LSTF using just
the PG and unit preemption, with concomitant savings in space_ but slightly higher time
cost.
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of the vertex 3 . The LSTF algorithm instructs the scheduler to allocate an available

processor to a ready subtask (whose predecessors have all already executed) which

has the least space time. When a tie occurs between subtasks, a subtask with early

deadline is granted a processor. If there is still a tie, it is handled arbitrarily [13].

3 Space time ( Time_before_deadline - Longest_execution_path_remaining) is different from
the laxity (Time_before_deadline - Remaining_exec_time) used by Least Laxity First (LLF)
algorithm.



CHAPTER 3

RELATED WORK

To satisfy different real-time applications, various scheduling algorithms were inves-

tigated before. Usually, feasibility is used to evaluate the hard real-time applications

(i.e., Tmax should be equal to 0; every task should meet its own deadline.). For soft

real-time applications, several criteria are also discussed, such as total/mean lateness,

total/mean tardiness, total/mean number of tardy jobs and imprecise results [15, 18,

32, 39, 62]. In multimedia applications, the engineers look other quality of service, for

example, (m,k)-firm scheduling [38]. A stream is said to have (m,k)-firm deadlines

if at least m out of any k consecutive customers must meet their deadlines. The

basic idea is to assign higher priorities to customers from streams that are close to a

dynamic failure (fewer than m out any k consecutive customers meet their deadlines).

For World-Wide Web (WWW) applications, the server should respond to all

requests prior to specified deadlines. If the server fails to do so, it should "fairly"

schedule all tasks, and in particular tasks behind in their schedules. LSTF assures

that all tasks are finished as close possible to their deadlines, while (m,k)-firm

scheduling may starve some tasks. For such applications. it seems sensible to choose

maximum tardiness as the performance criterion, and thus (as we shall see) LSTF

as the scheduling discipline.

The following example demonstrates the difference between LSTF and (m,k)-

firm scheduling. Suppose that there are six tasks on one processor, each with a pair

of parameters (processing time, deadline), are listed as follows:

{A(1, 1), B(1, 2), C(1, 2), D(1, 3), E(1, 5), F(1, 6)}

The sequence of executions for (2,3) scheduling algorithm is (A, B, D, C, E, F).

Therefore, (2,3) scheduling algorithm has the maximum tardiness 2. On the other

hand, LSTF would schedule (A, B, C, D, E, F) and The maximum tardiness is 1.

18
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3.1 Transformation between LSTF and DDM _

Program Evaluation and Review Technique (PERT) and Critical Path Method

(CPM) are two well-known and closely related network analysis methods in the

field of planning, scheduling and construction projects [19]. For example, Navy

used PERT to complete the Polaris missile project two years earlier than scheduled

and Du Pont Cooperation used CPM to reduce maintenance time of plant by

one-third. PERT/CPM can find the answer for questions such as: when does the

whole project finish as early as possible? when does a specific activity (sub-project)

start and finish? which sub-projects are "critical"? how long can "non-critical"

sub-projeCts delay? The difference between PERT and CPM is that CPM has an

option of cost-time trade-offs, i.e., CPM can reduce sub-project time dynamically

by adding/subtracting resources.

In management science, PERT/CPM is a good method for minimizing the

make-span where the application has an effectively infinite number of processors

in the presence of precedence constraints between tasks. Without taking some

considerations and constraints into account, PERT/CPM is an inadequate model

for planning and control paradigm [33]. LSTF can be viewed as a variant of a least-

laxity scheduler accounting for parallelism, or as a critical path method with a limited

resources scheduler. However, LSTF is quite different in execution from techniques

for computer systems process scheduling usually identified as CPM-schedulers [2, 4,

55].

The least-space-time-first (LSTF) algorithm is a preemptible CPM variant

closely related to the deterministic deadline modification (DDM) algorithm [7]. DDM

is an optimal algorithm for scheduling in-tree unit-processing-time tasks, in the sense

of tardiness minimization on an overhead-free platform.

The DDM algorithm consists of two phases. The first phase modifies the

deadline, propagating through Equation 3.1, and produces an (increasing) ordered
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list based on the new deadline. Then, the second phase schedules the ready task

with the smallest modified deadline.

Did min(D i Di tk - 1)	 (3.1)

where Ti,k is Tag 's successors and D i ,j is the deadline of subtask Tij (D i j is

updated for each predecessor Ti,k of Ti j )

We use Figure 3.1 to illustrate the DDM algorithm. There are three list tasks,

each with its own time-dependent subtasks. Each node represents a subtask and

is labeled by the ordered pair (old deadline, new deadline), where old deadline is

the original deadline, and the new deadline is the new modified deadline based on

Equation 3.1. With two processors, the DDM scheduler will choose the two smallest

modified-deadline ready nodes at each step; the execution sequence is as follows:

{(T1,4, T2,4), (T1 ,3, T2,3), (T2,2, T3,4), (T1,2. T3,3), (T2.1, T3,2), (T1,1, T3,1)}

It is easy to transform the models between LSTF and DDM.

• DDM LSTF:

1. Group nodes with the same deadline into a cluster node such that there

is no communication and synchronization within the cluster node.

2. Find the GCD (Greatest Common Divisor) of node execution costs and

constructing the UPG.

3. Assign the same appropriate deadline to each node.

4. Add a sink node (is) with zero cpu requirement and infinite deadline, and

construct arcs with zero data volume from original sink nodes to 'c.

1 For the PG, the equation becomes Di ,j min(Di 	 - Wi,k), where Wi,k is the
execution cost of Ti,k •



Task 1	 Task 2	 Task 3

Figure 3.1 An example for DDM

• LSTF DDM:

1. Divide each node into a list of unit processing nodes, i.e., each node has

unit cpu requirement in the list. Every arc has no communication cost

within the list.

2. Calculate space time as follows: S(v) min{R(v) L(v), S(w)}, where

w is v's successors and predecessors.

Although those two models can be mutually transformed, we investigate more

properties based on the LSTF model (such as feasibility and bounds) and integrate

some realistic issues (such as context switch and communication).



CHAPTER 4

EXAMPLES AND PROPERTIES OF LSTF

Through an example, we demonstrate that LSTF can outperform the rate-monotonic-

scheduling (RMS), highest-level-first [44], earliest-deadline-first and least-laxity-first

scheduling disciplines [41] in the sense of minimizing maximum tardiness of a set of

tasks. Some properties of LSTF as applied upon idealized platforms are presented.

4.1 Example

As an example, assume there are four tasks to be scheduled on two identical

processors, and that tasks can migrate freely without migration overhead. We

assume that independent units of a task can execute in parallel. Each task has

its own unit precedence graph and deadline, as illustrated in Figure 4.1. Using

Figure 4.1, Table 4.1 and Figure 4.2, we demonstrate how LSTF outperforms Rate-

Monotonic-Scheduling, Highest-Level-First, Earliest-Deadline-First, and a naive

Least-Laxity-First scheduling discipline. Intuitively, we have cases which show

LSTF outperforming other algorithms, formal results in Section 4.2, and simulations

in Chapter 7.

The Rate Monotonic Scheduling (RMS) algorithm assigns higher priorities to

the higher request rate. Under certain assumptions, RAMS is optimal, in the sense

that no other fixed priority assignment rule can schedule a set of tasks which can not

be scheduled by RMS [50]. RMS performs well in single processor systems but not in

multiple processor systems [25]. Assigning priorities to the four tasks in Figure 4.1

based on their request rates, twenty-four possibilities may occur. In Table 4.1, H

stands for highest priority, HM for High-medium, M for medium and L for lowest

priority and C(TASKi ) is the completion time of TASKi . The tardiness of all tasks

22



Figure 4.1 Example of four tasks to be scheduled on two processors

is denoted by Tmax . In most of cases, max, is greater than 0 (i.e., some tasks missis

their deadlines) and the schedulable ratio is low (2 out 24).

The Highest Level First (HLF) policy gives priority to higher-level tasks. It

produces the optimal completion time schedule for inforest [44] and outforest [8]

precedence graphs. HLF schedules task 2 with the highest level at scheduling

point 0 and 1, and it misses task 4 at scheduling point 1. HLF executes (in

the format of Ttaski.level.vertex): { (T2 .4.1, T2.4.2), (T2.4.3, T2.4.4), (T2.3.1, T3.3.1),

(T1 .3.1, T3 .2.1), (T1 .2.1, T2 .2.1), (T4 .1.1,713 .1.1), (Ti .1 .1, T2.1.1) Tmax is 5 because

of task 2 finishing with tardiness 1, task 2 finishing with tardiness 2 and task 4

finishing with tardiness 5 (Figure 4.2).

Earliest Deadline First (EDF) policy takes deadline as priority. EDF minimizes

the lateness and the tardiness of a set of tasks with deadlines on a single processor [52]

Even relaxing some assumptions significantly — allowing, for example, an arbitrary

(possibly infinite) number of tasks with arbitrary arrival and service times and

deadlines EDF remains an optimal algorithm [64]. EDF executes: { (T4 .1.1, T3 .3.1),

(T3 .2.1, T2 .4.1), (T3 .1.1, T2 .4.2), (T2 .4.3,712 .4.4), (T2.3.1,71.3.1), (T2 .2.1, T1.2.1),



(T2 .1.1, T1 .1.1) }. EDF can meet task 4's deadline but misses task 2 with tardiness

1, so that Tmax isis equal to 1 (Figure 4.2).

Defining laxity to be the difference between remaining time and remaining

requested computation time (initially the difference between deadline and total

computation), the Least-Laxity-First (LLF) policy assigns the highest priority

to the least laxity task. Under certain assumptions, EDF and LLF are optimal

algorithms in single processor systems but not in multiple processor systems [47].

LLF misses task 4 because task 2 with least laxity (6 - 7 -1) will be scheduled
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ahead of task 4. LLF executes: { (T2 .4.1, T2.4.2), (T2 .4.3. T4 .1.1), (T2 .4.4, T3 .3.1),

(T2 .3.1, T3 .2.1), (T2 .2.1, T3 .1.1), (T2 .1.1, T1 .3.1), (T1 .2.1). (T1 .1.1) }. Task 4 finishes

with tardiness 1 and Tmax is equal to 1 (Figure 4.2). Although LLF considers

execution request and deadline together, LLF does not account for parallelism.

When independent units of a task can not execute in parallel, LSTF reduces to LLF.

Tasks are free to run on any processor so that the LSTF scheduler will assign

time slots of processors to executable nodes with the lowest space-time. The

procedures for the LSTF scheduler are as follows:

LSTF Scheduler

Step 1: Calculate the Space-Time, S(v), for each initial vertex.

Step 2: Find v(T), a set of initial vertices which have low S(v),

so that the cardinality of v(T) is equal to the number of
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processors available at scheduling point T.

Step 3: Dispatch to each processor a member of vj').

Step 4: Advance the scheduling point by 1, and update UPG.

Step 5: While there are units left to schedule, go to Step 1.

At scheduling point 0, LSTF calculates the Space-Time for each initial vertices,

S(T1 .3.1) = 5, S(T2 .4.1) 	 S(T2 .4.2) 	 S(T2.4.3) = SJ'2 .4.4) 	 S(T3 .3.1) = 2,

S(T1 .1.1) 	 0 (Table 4.2). The level of initial vertices in TASK2 are higher than

TASKS and LSTF assigns the processors to task 2 and 4. LSTF executes:

{ (T2 .4.1, T4.1.1}, (T2 .4.2, T3 .3.1), (T2.4.3, T2.3.4). (T2 .3.1, T3 .2.1), (T2 .2.1, T3 .1.1),

(T2 .1.1, T1 .3.1), (T1 .2.1), (T1 .1.1) }. LSTF meets all tasks' deadlines and T 	 Smax

equal to 0 (Figure 4.2). We summarize the scheduling r -ults for various algorithms

A '2



every task is ready at scheduling point 0. We also assume all conditionals are either

balanced (same computation requirements on both branches) or evaluable before task

execution. Any scheduler which relies on the computational structure of a task will

in fact fail to construct optimal schedules (in any reasonable sense) in some cases if

the above condition fails.

The following two lemmas characterize the runtime behavior of LSTF:

Lemma 1 Suppose that the ready node a is in the longest path of T AS K a . The

space time of vertex a does not change if the system schedules vertex a, otherwise it

decreases by one.

Lemma 2 If, at some scheduling point, ready nodes a and b of Pa and Pb have

identical space-time, then the nodes in Pa and Pb are executed by LSTF one level at

a time until one finishes.

Theorem 1 compares the performance of LSTF and EDF in a uniprocessor

environment.

Theorem 1 LSTF dominates EDF for scheduling a set of tasks on a single

processor; i.e., if a set of tasks are schedulable under EDF, they are also schedulable

under LSTF.
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Proof:

We assume that there are two tasks (TASK, and TASKb) and the deadline of

TASKa is less than TASKb. They are schedulable under EDF. At some scheduling

point, we have two possibilities:

1. Sa < Sb: LSTF has the same action as EDF.

2. Sa > Sb: We have Ca and Cb under EDF:

Da > Ca = TX,. LPa + BX(.,0,LP.)

Db > Cb = T Xa T Xb LPa BX(a ,o ,Lp.) LPb BX( b , 0 , 1,pb ) 	 (4.1)

Suppose that k = Db — Da and i 	 — Sb . From Lemma 2, the processor is devoted

to executing TASKb before finishing TASKa in two ways: (1) the longest path, Pb:

LPa time units, and (2) the branches: BX(b,k+i,L,Pb)+ BX(b,k,k+i). So, we have C:,

and Cb under LSTF as follows:

Ca/ = LPa BX(a,o,LP,,) i LPa BX(b,k+i,LPb) BX(b,k,k+i)

C;) = Cb

Now, we should prove D a > Ca if they are also schedulable under LSTF.

Sa > Sb	 — 	 — i = Db LPb
	 (4.2)

We subtract BX(b,o,Lpo + LPa + BX(a,o,Lpo ) on both side in Equation (4.2).

Da — LPa — i (BX(b,o,LPb) + LPa + BX(,,o,LP.))

Db LPb (B-X0,0,LP0+ LPa + BX(a,o,LPa))
	

(4.3)

From Equation (4.1) and (4.3), we derive Da > LP, +	 BX(b,0,LPb) + LPa +

BX(a,o,L.P0 )• Since BX(b,o,LPb ) > BX(b,k+i,LPb) + BX(b,k,k+i), we can obtain

Da > LPa BX(a,O,LPc) + 	 LPa

BX(b,k+i,LPb) + BX(b,k,k+i) = Cal  ❑
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Corollary 1 LSTF is optimal in the simple-tasks-single-processor - environment.

Proof:

EDF is optimal [50]. 0

Theorem 2 LSTF is more effective than EDF for scheduling a set of tasks in the

simple-tasks-multiple-processor environment.

Proof:

A simple task does not have any branches; hence, the total requirement is equal

to the length of the longest and only path (TX, = LP,). The space time is the same

as laxity in this special case. However LLF is more effective than EDF for scheduling

a set of tasks on m > 1 processors [49]. 0



CHAPTER 5

BOUNDS ON TARDINESS

There are two ways to evaluate the performance of heuristic algorithms: (a) worst

case behavior, (b) average case behavior. In this chapter, we prove theoretical

bounds on maximum tardiness for scheduling algorithms in general and for LSTF

in particular, within an idealized framework that ignores several implementations

details such as context switch time, etc.

5.1 General Bounds on Tardiness

Since the target problem is known to be NP-Complete, many approaches have been

focused on the development of heuristic which do not provide optimal solutions but

whose algorithms run in polynomial time [20, 61, 73]. Unfortunately, they provide

neither relative error bounds nor absolute lower and upper bounds. In this section,

we discuss lower/upper bounds for general algorithms based on D i and M. Of

course, bounds can be sharpen if more task information is acquired. For purposes of

this analysis, we assume that there are n tasks {T1 , ..... Tn } to be scheduled on M

processors, and task each task Ti is characterized by

• A deadline D i .

• A computational requirement at time t, R i (t). For simplicity, let R1 = Ri (0).

• A maximum height at time t, L i (t). Again, Li = Li (0).

We assume that tasks are ready at time t = 0.

All scheduling algorithms are assumed to be work-conserving, that is, they

schedule as many nodes as possible at each scheduling instant t 1 . The performance

of a scheduling algorithm x on task set T is characterized by 2 :

1 That is, the server cannot be idle if there is a job in the waiting queue.
2 Where context is clear or irrelevant, we will suppress the superscript x.

30
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• The time it completes task

• The makespan, or maximum completion time, r' = mnax 7f.

• The tardiness of each task, rf , and the maximum tardiness Tx .

Finally, we use [n] for {1, 2, 3, ... , n}. We identify several useful permutations

of task indices [n]: a is the permutation of indices by increasing D i , )3 by decreasing

and (5 by decreasing it — Di , which is an approximation of slack if task i is

executed in isolation. To minimize nested subscripts, we will use function notation,

e.g., a (i), rather than the more usual a i .

Bounds for general scheduling algorithms follow largely from the precedence

structure and the work-conserving property.

Lower Bound. Our principal lower bound schema follows from looking at a subset
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k no _-o( i=
max
k= 1 {1i=1

E
M

t3 rifax{Dj(i)=

• t4 = max {Li - Di}
k=1

Theorem 3 Let x be any scheduling algorithm. Then

max { 0, fi, £2, £3, £4 } < rX .

Further, this bound can be computed in 0 (n) (plus the 0 (n log n) cost of forming

the permutations a, )3, 6).

Proof:

Li, £2, £3 are special cases of Lemma 3; Da (k) is the last and necessarily the

largest D i by definition of a.

£4 is a lower bound since only one unit of computation on the longest path can

be scheduled at any time t.

Finally, note that each of the first three t i can be computed by maintaining a

running sum and max, at cost n, and that £ 4 trivially has cost n. ❑

Upper Bound. Upper bounds on tardiness follow from deadlines and bounds on

makespan. Moreover, there is a well-known relative upper bound for makespan rx

due to Graham [31]:

I'x <(2- 1 )r-Pt 	 (5.1)

where roPt is the makespan when scheduled by an optimum algorithm, opt.

When all task deadlines are 0, the problem of minimizing tardiness reduces to

the problem of minimizing the makespan. However, given this or any other upper

bound for makespan, an upper bound on tardiness can easily be obtained:

Tx < TX — Da (1).
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Further, this bound can be attained, if some node from Tc, ( 1) is scheduled at time

t	 .

The problem thus reduces to finding upper bounds for makespan. We can

obtain a slightly sharper absolute version of the Graham result by first considering

some properties of work-conserving schedulers; Lemma 4 gives these key observations.

Lemma 4 Suppose x is a work-conserving algorithm. and T a task set. Let 1 11 be a

task scheduled by x at scheduling instant rx . Then:

1. At any time t, 0 < t < rz, either x schedules m nodes, or x schedules at least

one node of Tf .

2. At any time t at which a node of T1 is scheduled. either x schedules m nodes,

or Lf (t + 1) = Lf (t) - 1.

Proof:

For every task Ti , and at any time t between its ready time and its completion

time, every node v E Ti with height h (v) L, (t) is ready. If there are r ready

nodes at time t, a work-conserving scheduler will schedule min (r, m) nodes. Finally,

all tasks, and in particular T1 , are ready at time 0. ❑

Theorem 4 Suppose x is a work-conserving algorithm_ and T a task set. Let Lmax

be max {L i }. Then

n

rs <
E Lmax
i=1

M
Lmax

Further, this bound can be computed in time 0 (n).

Proof:

Every scheduling instant either schedules m nodes. or reduces L1 (t). Clearly,

makespan is maximized when L1 (t) is never reduced when m nodes are scheduled,

and when T1 is Tmax . ❑



5.2 Sharper Upper Bounds on Tardiness for Specific Algorithms

Some heuristics offer a priori information that determines the execution orders of

tasks, but not their order of completion (i.e., priority can order which task should

run first but it cannot guarantee which task will finish first). Consider, for example,

the three tasks which are to be scheduled on two processors in Figure 5.1. Although

TASK1 has the highest priority, TASK1 finishes at the last. This phenomenon — a

higher priority task finishes after a lower-priority one — is called contrapositive termi-

nation. Due to contrapositive termination, any task can complete at the end of the

makespan, and hence bounds sharper that are in Theorem 4 cannot be obtained for

most algorithms. However, for some algorithms, it is possible to deduce further infor-

mation about the order in which tasks complete when executed by these algorithms

and sharper bounds may be possible. We present below each improved bounds for

the EDF and LSTF scheduling algorithms.

Upper Bounds for EDF. Under EDF, tasks are known to execute in deadline

order, and the tardiness of each task can be computed by considering only those

tasks with earlier and equal deadlines.
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always favors the task earlier in the a-list, or if the a-list breaks ties in favor of the

shortest Lk (so that the last task with a given Dk will necessarily result in the worst-

case tardiness for tasks with that deadline). Otherwise, it is sufficient to replace Lk

by max {Dk - Dj, Lj}, with the same effect.

Upper Bounds for LSTF. The following lemma characterizes the finish order

under LSTF:

Lemma 5 Suppose that we have two task, Ti and T.; with space time Si and Si

respectively. If Si < Si , L i < Li and D i < Di then Ti completes at least (Li — L i )

time units before Ti ; i.e., ryi < -yi — (Li — Lij.
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Proof:

When Si Sj , the subtasks in L i and Li are executed by LSTF one level at a

time until one finishes. Since of L i < L3 , the completion time of T; is therefore equal

to or greater than (y  +(Li — L i )). When Si < Si , Ti may execute in parallel with Ti

or be inactive, the completion time of Ti is thus less than or equal to (7; —(Li —L i)). 0

Let E3 , 2 be defined to equal (L3 - Li ). For each task T1, we build a list LS.i

of task Ti such that Di > Di and L; > Li, ordered by decreasing Ei , i . Let Ai (j)

denote the jth item on list A i , and d i I denote the cardinality of A i . When LSTF

completes the execution of each task in Aim, has .E; i levels remaining to be
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Follows from the definition of the maximum tardiness.. D

Example:

Suppose that a task set T 	 {T1 , T2, T3, T4 } with each task Ti being characterized

by an ordered 3-tuple (D i , Ri , Li ), where Di is the deadline, and Ri is cpu execution

requirement, and L i is the longest path length of task T, respectively (Table 5.1).
•,,,, 	 ,,,.,,,



CHAPTER 6 -	 -

INTEGRATION OF LSTF INTO REALISTIC REAL-TIME SYSTEMS

When we build a realistic system, we need to consider practical issues such as

interrupts, timers, context switch, the scheduler, and communication because they

consume system resources. We discuss how to integrate these issues with LSTF in

Chapter 6.

6.1 Interrupts and Timers

There are two categories of real-time processes: event-driven and time-driven [36].

Event-driven processes generally are based on external hardware devices which

generate interrupts to 'wake up' corresponding processes. An interrupt invokes an

interrupt handler to recognize which task to execute. Time-driven processes use

a periodic timer to generate interrupts. We can thus treat time-driven processes

as a subcase of the event-driven. If a hardware interrupt priority is mapped to

software task priorities then we name it an integrated interrupt event, otherwise a

non-integrated interrupt event [45]. A non-integrated interrupt event consists of two

sections; the interrupt and software sections, the interrupt section is responsible for

handling the interrupt (e.g., acquisition of data) and sending the information to the

software section to process. These two sections each have their own priorities.

Under the same assumptions as in Cesar [10], there is an interrupt for each task.

Each interrupt is an integrated interrupt and consistent with the corresponding task

period. In this case, we can simply add a weighted interrupt node to the root of PG

for every event before translating PGs into UPGs. When an event becomes active,

the processor starts to executes the interrupt part.

38
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6.2 Scheduler Overhead and Context Switch

Let At denote the task multiset executed by the system at time i. When Ai is different

from A i+1 , the system incurs a context-switch cost, W. When a processor performs

a context switch, it needs to save and restore the entire processor state, no matter

whether the restored states will be used or not before the next context switch. This

procedure takes a lot of resources and time, and may cause LSTF to miss deadlines

that have been met in a schedule with fewer context switches.

To study how to minimize the context switch overhead, we had better

understand when the context switch occurs.

* Memory miss: Instructions reference the data which causes block misses in the

cache or page faults in the main memory. In a distributed system, the system

may across the network to get the data from a remote side.

• Preemption: The processor is preempted by the arriving interrupts or higher

priority process.

• Remote procedure call: The program make a procedure call which is located at

a remote side. If the program needs to wait for the result, the program should

be be blocked.

• Synchronization: To assure consistency of variables and data structures during

updates, locks are used.

When the system meet this situation, the processor has either to be idle

(spinning) or to make a context switch to load the head process of the ready

queue (blocking). The choice between spinning and blocking involves balancing the

processor time lost for spinning against the processor time to the context switch.

In [6, 11], ways of estimating an optimal limit on spinning time before blocking are

explored.
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In general, LSTF schedules may involve a large number of context switches.

For example, if there are two identical list tasks (each with L associated subtasks)

running on one processor, LSTF will flip-flop between these two tasks (performing

at least L context switches). If the scheduler does too many unnecessary context

switches, system performance (such as CPU utilization and feasibility of meeting

deadline) will drop tremendously.

We propose two techniques to minimize the context switch overhead: soft-

precedence edges and a modified heuristic, LSTF+ [12]. The evaluation of these two

techniques will be addressed in Chapter 7.

6.3 Soft-Precedence Edge

We introduce soft-precedence edges to coalesce two non-waiting segments, sequences

of consecutive nodes without synchronization points, of the same UPG or different

UPGs, into one Super UPG (SUPG). The SUPG may resemble, but is not necessary

equivalent to, the original PG plus soft precedence edges. This helps the scheduler

to decide which thread to run first, as well as to prevent flip-flop between threads

with same space-time.

6.4 Further Definitions

* Object(Vi ): the process or object containing graph node Vi

• Non-waiting execution code from vertex Vi , it(Vi): the maximal single-entry

subgraph of the nodes associated with Object(Ifi) and containing Vi . i.e. if

E p(Vi) then

1. Vi is reachable from V inside p(Vi )

2. Vj is a node of Object(Vi)
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3. if Vk reaches Vi on path P, then either Vk E p(3;) or V is an internal node

of P.

6.4.1 Example

In Fig 6.1-a, there are two threads with initial vertex x (thread x) and y (thread y)

are ready to execute. Based on definitions, L(x) 3 and L(y) = 4. If thread x and

y have to execute on the same processor, then obviously only one can be executed .

Soft-precedence uses L(a), L(x), S(a) and S(x) to decide which one should execute

first. A soft-precedence edge is constructed from lower S to higher one. If two threads

have the same S, the thread with higher L runs first; if L's are the same, the choice

is arbitrary. For example, if S(x) is smaller then S(y), a directed soft-precedence

edge is built from p(x) to 11(y) (Figure 6.1-4

The use of soft-precedence edges reduces the number, and thus the cost, of

context switches and simplifies scheduler migration and execution decisions. In

Figure 6.1-a, 'flip-flop' execution will occur between the tasks with initial vertices

X and Y, since they have the same space-time. This situation results in numerous



42

context switches. Using soft-precedence edges to construct a SUPG (Figure 6.1-b),

execution will entail only two context switches instead of six.

When one non-waiting contiguous segment finishes execution, the scheduler

switches the CPU from this finished segment to a new group of non-blocking

segments.

6.4.2 LSTF+ Scheduler

We propose a modified heuristic, LSTF+ for scheduling real-time tasks under context

switch overheads. First, LSTF+ computes space time in a manner identical to LSTF.

_LSTF+ maintains a priority queue Q of all ready subtasks prioritized by space time .

Let m denote the number of processor available. At any time t, let 77 denote the set

of (at most m) subtasks scheduled for execution. We define two vertex sets: Y is the

set of all "fresh" ready subtasks at the start of the next-time slot (i.e., those ready

subtasks which have at least one predecessor in 71), and Z is the set of (at most m)

smallest modified deadline ready subtasks. Let W denote the overhead of context

switch (measured as theithimfeoriarcon_qtuexant...stlitch ) and ; denotes the highest space time

in Y, and Sz denotes the smallest space time in Z. The pseudo-code for LSTF+

scheduler is as follows (each iteration of the which loop coresponds to the scheduling

of another time quantum):

LSTF+ Scheduler

construct Q;

while (Q 0) {
Determine new Y, 2, Sy and S.;

if (W > X) { 1* context switch cost is above threshold */

if (Sy < Sz + K)

C = Y;

else
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C = Z;

}

}

else { /* context switch cost is below threshold */

C=Z;

}

schedule all the members of C;

delete them from Q;

insert all ready children of C into Q

LSTF+ handles context switch through these two control parameters (X and

K). X is the threshold for context-switch cost that determines whether LSTF+

makes the same decision as LSTF or not. If W < X, LSTF+ behaves the same

way as LSTF does. When W exceeds X, the parameter K quantifies the degree

to which LSTF+ favors continuing to execute the current tasks rather than paying

for a context switch. Adjusting these two values (X and K), we can improve the

performance of LSTF+ and satisfy the feasibility requirement.

Theorem 7 Let LSTF+[X, K] denote LSTF+ with threshold X and degree K.

LSTF+[0.5,1] dominates LSTF for scheduling list tasks in the sense of feasibility.

Proof:

We consider a set of tasks that is successfully scheduled by LSTF, and prove

that LSTF+ with X 0.5 and K = 1 will successfully schedule this system as well.

At time (i -I- 1), we assume that (m — 1) ready nodes gain the processors and node k

and p compete for the last processor. When the condition (Sk < Sp), (Sk > Sp + 1),

and (Sk = Sp + 1 and W < 0.5), LSTF+ has the same execution sequence as LSTF.

Now, we discuss the rest of cases.
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• Sk = Sp (Figure 6.2-Case 1): LSTF picks up either node k or p randomly. If

LSTF chooses k, LSTF is the same as LSTF+ Suppose that LSTF schedules p

first and, finishes p at (i + 2 + W); node k is completed at (i + 3 + 2W). Let

C(a , b) denote the completion time of subtask b under algorithm a.

Sp = Sk > {C(LSTF,k)1 = + 3 + 2W1

C(LSTF+,p) C(LSTF+,k) 	 (6.1)

From Equation 6.1, LSTF+ will finish them on time.
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> C(LsTF÷,4)
	 (LSTF+.k)

Sp = Sk — 1 > + 3 + 2W1

> i+ 3+W C(LSTF-f-,p)

Case 3: LSTF executes q and k in parallel as p --4 (q 11 k) (more processors for

execution and Sk < Sq )

Sq > Sk ?_1C(LSTF,k) -1 = Fi + 3 + 2W1

i>- W+ 	 W	 (LsTF+ ,q) C(LSTF+,k)

Sp = Sk — 1> ri + 2 + 2W1

> 	 3 W C(LSTF+,P)13

The following example illustrates how LSTF+[0.5. 1] improves upon LSTF.

Suppose that there are M processors and N (N = K * M) identical list tasks

each with L levels. Let W be greater than 0.5. LSTF would have (K — 1) * L

context switches, but LSTF would have only (K —1)* With this example, the

LSTF±[0.5, 1] scheduler achieves a 50% reduction in context-switch cost.

6.5 Communication

To handle communication, we add a new type of node representing communication,

where the vertex's weight is set to the cost of call request signal plus transmission time

requirement plus acknowledgement signal. The unit of communication nodes should

be compatible with processor nodes. This may result in a smaller unit and larger

graph. Alternatively, the larger grain size can be used, at the cost of larger communi-

cation or processor nodes. For example, suppose two procedure calls are made by an

application program, A--413 and A—+C (Figure 6.3-a). After the assignment algorithm

is applied, we can distinguish whether the procedure call is local or remote. If the
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caller and callee are located on different processors, the caller should make a Remote-

Procedure-Call (RPC) to the callee (for example, A--+B). The weights of communi-

cation nodes are dependent on a number of parameters (such as the network capacity,

the size of message, ..., etc.). One sending node (in front of procedure body) and

one returning node (at back of procedure body) are added to the PG (Figure 6.3-b).

These nodes are responsible for sending and returning arguments of the procedure

.1.61LL.L. G id • .L.LG VY l-AJ1 1 V..71.1lJJ1l-1..3 UV CI, 1

We can schedule network nodes based on our network assumption. A network

link is treated as a virtual processor. In the fully connected network case, the unit

network node can be scheduled without any delay. In the bus case, only one process

at a time can use the bus, so soft-precedence edges will be needed. The major

differences between a CPU and a network node is the restriction on in-degree; the

degree of a network node always is equal one, but degree of CPU node can be greater.



CHAPTER 7

SIMULATION RESULTS

We have implemented a prototype symbolic simulator for a preliminary evaluation

of LSTF performance. With different parameters of the workload generator, a set of

benchmarks are used to compare LSTF with other established dynamic scheduling

algorithms in our simulation study. Three benchmarks are used:

• Ideal case: There is no cost except execution requirement.

• Context overhead: The cost of context switch overhead is added to costs of the

ideal case.

• Communication: There is a communication cost between subtasks, paid if

segments execute on different processors.

7.3. Workload Generator

We have implemented a workload generator to produce in-tree-like structured tasks

(each node representing as a subtask). The set of workload parameters is defined as

(N, M, L, B): N is the total number of tasks (each task with a single sink node); M

is the the number of processors; L is the maximum PG depth of a task; and B is

the largest possible number of ancestors for a node. The pseudo-code for the in-tree

generator is showed as following:

The Single Sink In-tree Generator

for (i = 1; i < N; i++) {

put sink in queue Q;

	while(Q	 0) {

	q 	 first (Q);

47
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Preds	 level(q).
L

if (Preds > rand(0,1)) {

Num_Preds rand (1, B);

insert all Num_P'reds children into Q;

delete q from Q;

}

}

}

To obtain precedence graph (PG) structures, we add a parameter, E (the

ratio of cross edges to nodes), to the original parameter set. We randomly pick

one pair of source and destination nodes as two end-points of one cross edge, where

theievel_of _source > the_level_of __destination and there does not exist a directed

edges between them. Each subtask (node) will be assigned with an execution

weight generated by a truncated non-negative binomial distribution as defined in

Equation 7.1. We have used r 4, p 0.4 and X 28 for our simulation study.
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Finally, a parameter for communication cost (1;) is introduced., Let tv i is

the total weight of cpu requirement and c i is the total weight of communication

requirement for Ti respectively. Four communication load conditions are discussed.



50

7.2 Benchmark I

We simulate four established (HLF, LLF, EDF and MPF), one linear integrated

heuristic algorithm (H3) and two other heuristic algorithms (H1 and H2) in this

benchmark. Let P(v) denote the priority of vertex v, where the vertex v with lowest

P(v) has highest priority. The definitions of various heuristics are listed as follows:

• Earliest-Deadline-First (EDF): P(v) =

• Highest-Level-First (HLF): P(v) = — Lv.

• Minimum Processing-Time First (MPF): P(v) = A(v), where A(v) is the

requested computation time of TASK,,.

• Hi (combination of EDF, HLF and LLF): each vertex has a priority function

of processor number, m and fan-out degree, f . Intuitively, the completion time

of TASK, should be greater than or equal to na .R(rr..1) and L,, where RX, is

the remaining computation time of TASK,. The heuristic calculates the P(v)

as follows: P(v) D, — max(Lv, mift4„,- ,f 

• H2 (combination of EDF, HLF and LLF): similar to Hi, the heuristic calculates

the P(v) as follows: P(v) = D, (L, RA:vLvnun(m,f)

• H3 (combination of EDF and MPF): P(v) = D(v) A(v)

• Least-Laxity-First (LLF): P(v) = Dv — RX,

• CPM: the non-preemptive mode of LSTF, with the same P(4) = S(4) =

D(v) — L(v) — t.

We have implemented a prototype symbolic simulator (without considering

overhead) for a preliminary evaluation of LSTF performance. Tasks are free to

execute on any processor; e.g., if task i is executing on processor k at time t, then it

can continue execution on any processor(s) at time (t+i) without extra cost.
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Different applications have different performance criteria, so we compared

LSTF with the above heuristics with respect to the number of tasks missing their

deadline (0), tardiness (T), and make-span (7)). We run 200 different seeds of one

particular parameter set (10, 10, 7, 3, 2, 0) on 10 processors. The average results of

200 simulations with 95% confidence intervals (CI) are tabulated in Table 7.1. From

Table 7.1, we observe that EDF is good at minimizing missing tasks; HLF is good

at minimizing make-span; LSTF is good at minimizing tardiness. In fact, LSTF and

HLF appear optimal with respect to the appropriate metrics among these algorithms

with 95 % confidence, and EDF is better than all but H3 with 95 % confidence.

_ Pr 	 M1 	 P 	 • 	 L

We have compared the performance of these algorithms by varying each element

of the parameter set, without including any other costs, such as communication and

context switch overhead.

Each of the points in the following simulation results represent the average data

of 100 random graphs (with the generator initialized at time-dependent seeds). The

performance penalty is measured as 
A (7.z.
  where A(71 is the mean TX of

rx100 runs (;o  ).



Figure 7.1 Effect of number of tasks (N) in benchmark I

In the following simulations, we randomly choose 10 processors for our

simulation study. To observe a considerable difference between LSTF and other

algorithms (such as H1, H3 and CPM), the number of tasks should be less than 40

(Figure 7.1). Except for HLF and LLF, there have similar results for N = 10,

N = 20 and N = 30. Simply, we take (N = 10, M = 10) as our test-

seed. Also, we can see the clear comparisons when L is greater than or equal to 6

from Figure 7.3. Some target algorithms (such as MPF. H1, H3 and EDF) have a

"constant" difference between LSTF for the range (from L = 7 to L = 10). The

value of factor L is collected as our test-seed. Under certain range of B (not too

small or large; B = 3 or B = 4), LSTF has remarkable difference between LSTF

and target algorithms (Figure 7.4). Therefore,, the parameter set (10, 10, 7, 3, E, 0)

is chosen for observing the effect of E.

7.2.1 Single Factors

The Number of Tasks, N: Figure 7.1 shows the relation between the number

of tasks and the performance penalty (TzTIrs'.7-7 x 100), where Tx is the maximum
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Figure 7.2 Effect of number of processors (M) in benchmark I

tardiness when scheduled by algorithm x. We use the parameter set (N, 10, 7, 3, 2,

0) for workload generator. When /S- > 4, the performance difference between LSTF

and target algorithm is not great. Except for HLF, H2 and LLF, the heuristics do

not pay a high penalty relative to LSTF under heavy load conditions. EDF and 111

are only lightly affected by factor N; they have a steady relative performance with

LSTF.

The Number of Processors, M: Figure 7.2 shows the relation between the

number of processors and the performance penalty (Ti 	  x 100). We use the
TLSTF

parameter set (10, 10, 7, 3, 2, 0) for workload generator, and run on different

numbers of processors. When the system has a single processor, LSTF has the

same performance as LLF, EDF and H1. With increase in the number of processors,

the gain versus LLF increases rapidly, because LLF does not consider parallelism at

all. Also, the gain versus other algorithms increases with increasing the number of

processors, but declines as the number of processors becomes very large relative to



Figure 7.3 Effect of depth of task (L) in benchmark I

the number of tasks. If the number of processors is infinite, the schedule for LSTF

is the same as the other algorithms which schedule the task level by level.

Maximum Task Depth, L: Figure 7.3 shows the relation between the depth

of task and the performance penalty ( F x 100). We use the parameter set

(10, 10, L, 3, 2, 0) for workload generator. EDF and MPF have steady relative

performance to LSTF; the other heuristics have increased penalty as L increases.

When L = 1 (each task has one or two levels), LLF, EDF, H1 and CPM have the

same performance as LSTF.

Maximum Branching Factor, B: Figure 7.4 shows the relation between the

branches of tasks and the performance penalty (Tx
T
-
LS
rLS

T
 TF x 100). For low density

of cross edges, vertices with high space time can not obtain processors in general.

For high density of cross edges, high space time vertices may be executed because



least space time tasks needed to synchronize. Thus, CRM (non-preemptive mode)

has troubles in scheduling high density cross edges graphs.

Why does the performance penalty for CPM vary so irregularly with high E

(E > 4)? Actually, the penalty is in a certain range (110 - 250). The density of cross

edges is defined as the ratio of the number of cross edges to the number of in-tree

edges. For example, considering a list (N nodes and N-1 in-tree edges) and N = 8,

the maximum density of different cross edges will be (N-1)/2 = 3.5. Because we

allow parallel cross edges in task graphs, the density of distinct cross edges may be

higher in a task graph with lower total density of cross edges; we surmise that this

is the major cause of this phenomenon.

We took the longest path = 7 as an input parameter of the workload generator

so that the density of different cross edges will be less 3.5 (we do not build the cross

edges between two nodes with the same level). Therefore, there are three major

range for the penalty of CPM in the Figure 7.4:

1. 0 < E < 1, CPM almost has the same results as LSTF.
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Figure 7.5 Effect of cross edge (E) in benchmark I

2. 2 < E < 4, CPM has penalty between 20 and 100.

3. 5 < E, CPM has penalty between 110 and 250.

The penalty of HLF, LLF and H2 increases sharply when B > 3. The rest

of the algorithms keep a certain range of relative performance. The number of

branches indicate the number of parent processes needed to be synchronized. With

a low number of branches, H1 performs similarly to LSTF. When the number of

branches increases, parallelism drops. Due to considering fan-out degree only (no

fan-in consideration), the penalty for H1 is large when B is high. On the other hand,

the penalty for CPM decreases when B is high.

Cross-Edge Density, E: Figure 7.5 shows the relation between the density of

cross edges and the performance penalty ( rz 71sLTFTF x 100). We use the parameter

set (10, 10, 7, 3, E, 0) for workload generator to run on 10 processors, and increase

E step by step. When E 0, H1 is the same as LLF, because P(v) = D,

r. 
min(m f) ) = 1), RX,,. The parameter E does not affect the performance a



Figure 7.6 Effect of N and M (N = 3M) in benchmark I

lot, i.e., LSTF has steadily better performance as we go from trees to the complex-

structure graphs. We also can see the clear performance difference between non-

preemptive and preemptive mode when E is greater than 5.

7.2.2 Combination of Factors

Scaling and Changing both N and M: Figure 7.6 shows the relation between

the combination of the numbers of tasks and processors and the performance penalty

( TZ-TLSTF x 100). For N 3M, we use the parameter set (N, M, 7, 3, 2, 0) for
TLSTF

workload generator to run on M processors, and increase N step by step There is no

particular pattern in this simulation, but LSTF has 10% better performance than

most of the algorithms, although Ill is competitive. We have a similar result when

N 5M.

Figure 7.7 shows the relation between the combination of the numbers of tasks

and processors and the performance penalty (TxrLLTs.,7 x 100). Under N = M — 2,

we use the parameter set (N, M, 7, 3, 2, 0) for the workload generator to run on

M processors, and increase N step by step. Every algorithm has steady relative
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Figure 7.7 Effect of N and M (N = M — 2) in benchmark I

performance to LSTF. H1 and EDF perform very close to LSTF under a lightly

loaded condition.

Tree vs. Cross Edge, B and E: Figure 7.8 shows the relation between the

relative density of tree cross edges and performance penalty (rx,-LLT7F x 100). With

B + E = 10, we use the parameter set (10, 10, 7, B, E. 0) for workload generator to

run on 10 processors, and increases B step by step. We have two observations: (1)

HLF, LLF, H2 do very badly as B increases. (2) EDF,MPF, H3, CPM do well at

either low or high B, but perform badly in the middle (B = 3 or B 4).

Figure 7.9 shows the relation between the combination of density of cross edges

and number of branches and performance penalty ( F x 100). For E = 3B,

we use the parameter set (10, 10, 7, B, E, 0) for workload generator to run on

10 processors, and increase B step by step. The results are similar to the case

of B + E = 10, but CPM has different relative performance from Figure 7.8 (the
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relative performance of CPM is not bell-shaped; it does not droop as B increases).

We conclude that E has more influence on CPM than B.

7.2.3 Insight from the Simulation

Under light load (N = M 2), all algorithms have steady relative performance to

LSTF. Although there is no particular pattern in a heavy load condition, LSTF has

better performance (10%) than other algorithms (except H1). The factors B and E

have a lot of influence on CPM and F11. H1 performs well with a low value of B

(Figure 7.4) and CPM does well with low E (Figure 7.5). We also observe that E

has more influence on CPM than B (Figure 7.8 and 7.9). EDF and MPF are not

sensitive to factor L. Except for H1, LSTF performs better than the target algorithms

under our simulations (and H1 only performs well with low B).
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7.3 Benchmark II

From the previous simulation study, LSTF works well without overhead, but does

not do well with context switch overhead. For example, if two tasks have same

space time, both tasks will execute at the same rate under LSTF until one finishes.

Thus, there will be large numbers of context switches between tasks with same space

time. In this benchmark, we compare target algorithms with original LSTF and L-S

(integrated LSTF and soft-precedence edge) and additional modifications of LSTF

(LSTF+) in presence of context switch overhead.

To achieve preemption in practice, a hardware interrupt clock is typically set

for a certain quantum period. Using this interrupt clock, the CPU regains control

and decides whether the first process of the ready queue gains control based on

scheduling policy. A good quantum size is essential to the performance of operating

systems [21]. If the quantum size is infinity, the tasks become non-preemptable. For

small quanta, the context-switch overhead becomes unacceptable. For a practical

system, the time for context switch is around 10,000 ns, and the quantum time

is around 100,000,000 ris [57]. Thus, the overhead per quantum is around 0.1%.

Arguably, real-time systems will require finer context switch granularity in order to

meet deadlines, so we have explored an overhead range of 0 to 10 %.

Table 7.2 shows the relation between the context overhead and the performance

penalty (rzr-LWFTE x 100). Each attribute represents the average of penalty of 100

different seeds of simulations with the parameter set (10, 3, 7, 3, 2) running on 3

processors. As the context switch overhead grows, the penalty for EDF, H1, H2, and

H3 decreases, and the gain for L-S increases. We observe that the soft-precedence

edge technique helps LSTF when context-switch overhead is large.

In the following results, we omit the simulations of HLF, LLF, and H2 because

of poor performance; on the other hand, various versions of LSTF+ have been added.
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Table 7.2 The performance of various algorithms with context switch overhead

Algorithm
Overhead to Quantum

0% 1% 2% 3% ' 	 4% 5% 10%
HLF 1669.3 1658.0  1646.9 1636.6 1625.8 1615.3 1564.5
LLF 157.4  165.0 172.4  179.7 186.8 193.7 227.8
EDF 13.2 11.9 10.6 9.3 8.1 6.9 1.2
MPF 47.4 45.5 43.7 42.0 40.3 38.6 30.7

H1 22.7 23.0 23.3 23.6 23.8 24.1 25.0
H2 136.1 129.1 122.3 115.7 109.3 103.0 72.9
H3 17.5 16.1 14.7 13.4 12.1 10.8 4.7

CPM 	 J 8.5 7.3 6.4 - 5.5 4.8 4.0 -1/
L-S 1.7 0.8 0 -0.8 -1.6 -2.4 -6.1

The Context Switch Overhead, W: Figure 7.10 shows the relation between

the context switch overhead and the performance penalty ("
TLSTF 

" x 100). Let

W denote the overhead of context switch (measured as .t;.e _time_ f or _context_switch ) Wethe _time _f or _quantum

use the parameter set (10, 10, 7, 3, 2) for the workload generator, and simulate

different overhead platforms. We assign X to the value of W for the LSTF+[X, K].

Not surprisingly, LSTF has the best performance for an overhead-free environment.

With even a small context switch overhead, LSTF's performance is not acceptable

(all other heuristics are better than LSTF). We observed that LSTF+[X, 6] has the

best general performance when context-switch overheads are considered.

The Maximum Branching Factor, B: Figure 7.11 shows the relation between

the number of branches and the performance penalty (
rLSTP

 x 100). We use the

parameter set (10, 10, 7, B, 2) for the workload. With small B, all tasks have very

simple task structure, so there is no difference among heuristics. When B is greater

than 2, the performance of various LSTF+ varies widely for varying (X, K) values,

and seems to follow no definite trend.
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The Number of 'Tasks

Figure 7.12 Effect of factor N

From Figures 7.10 and 7.11, we conclude that the selection of the appropriate

K is sensitive to statistical properties of the task distribution, i.e., indicate a need

for profiling (to estimate these properties) and simulation (to select K).

The Number of Tasks, N: Figure 7.12 shows the relation between the number of

tasks and the performance penalty ( Tx T—LTS7 x 100). We use the parameter set (N,

10, 7, 3, 2) for the workload generator, and run on 10 processors with 0.1 overhead.

When N ti M, the performance of various LSTF+ varies widely for all chosen (X,

K) values. This implies that there exist enough processors for critical subtasks,

and LSTF+ cannot get a lot of benefit from this workload. The profit for LSTF+

increases as N increases until the number of tasks reaches a certain value. After

that, the profit for LSTF+ decreases because the denominator of the performance

penalty computation is big.

The Number of Processors, M: Figure 7.13 shows the relation between number

of processors and performance penalty 
(rzTLSTF

—71STF x 100). We use the parameter set
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Figure 7.13 Effect of factor M

(10, 10, 7, 3, 2) for the workload generator, and run on di -Terent numbers of processors

with 0.1 overhead. From Figure 7.13 and corresponding graphs for other parameter

sets, we observe that graphs can be divided into three regions: M < N, M ti N,

and M N. In the first and third regions, choosing an appropriate K results in

uniformly better performance; in the second region, the relation between algorithms

is highly unpredictable. Intuitively, when M < N. imert ask contention results in

frequent context-switch; when M N, an algorithm which accounts for context-

switch can better take advantage of intratask parallelism. For the current task set,

with a low edge density (B E = 5), M ti N more-or-less assigns each task to a

single processor. We have observed that for higher B + E, LSTF+ algorithms again

does better when M N; we suspect this reflects the frequent need to schedule

multiple predecessors of critical nodes.

Scaling & Changing both N and M: Figure 7.14 shows the relation between

the combination of the numbers of tasks and processors and the performance penalty

Crx-IISTF x 100). We use the parameter set (N, M, 7, 3. 2 , for the workload generator,T.L.sTF



Figure 7.14 Effect of factor N and M (N = 5M)

where N 5M, and run on M processors with 0.1 overhead. We observe that LSTF+

has better performance most of the time. Again, the profitability of LSTF+ drops

when N is large because the performance penalty denominator is big.

7.3.1 Insight from the Simulation

For idealized platforms where context-switch operations incur no cost, LSTF is

known to perform extremely well. An enhanced version, LSTF+, is proposed for

environments in which context switch incurs an overhead cost. To obtain a feasible

schedule, two parameters (X and K) are adjusted for different task and machine

properties. From the simulation results, we conclude that the selection of the appro-

priate parameters for LSTF+ is sensitive to statistical properties of the task distri-

bution.
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7.4 Benchmark III

This benchmark investigates the model where communication cost is considered.

The tasks should be fixed on host processors and there exist inter-process commu-

nications between subtasks. The arcs of PG represent inter-process communication

relationship and a weight associated with each arc represents the data volume. For

example, a 4 s denotes that subtask a sends data volume A to subtask /3. If

subtasks a and reside on different hosts, the inter-process communication incurs a

cost.

7.4.1 The Factor of Workload Generator Parameters

We analyze the workload parameter under the "heavy amount of communication"

condition (0.75 < < 1.25). There are two heuristics added to our simulation

study.

LSTFC: After transforming a arc into a communication node with a commu-

nication cost, PG consists of two kind of nodes, cpu and communication, as

described in Section 6.5. LSTFC calculates the space time based on the new

transformed PG (i.e., LSTFC takes account of the communication weight for

the critical path).

• Static LSTF (LSTFS): The heuristic assigns the static space time at the

entrance of the node and keeps the same space time while the node is being

executed.

After obtaining the data from the workload generator, we assign every subtask

(vertex) randomly. Then, we run the symbolic simulator with different algorithms

(such as LSTFC, LSTFS, LLF, EDF, and various LSTF+). In this simulation

benchmark, the processors are fully connected to each other and communication

is contention-free. Similar to the previous benchmarks, each of the points in the

following simulation results represents the average data of 100 runs.
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Figure 7.15 Effect of factor N

The Number of Tasks, N: Figure 7.15 shows the relation between the number

of the tasks and the performance penalty ( Tx .77:sLTS FT F x 100) . We use the parameter

set (N, 10, 7, 3, 5, Heavy) for the workload generator, and run on 10 processors.

LSTFC and LSTFS have a slightly better performance over LSTF along the number

of tasks axis. EDF and LLF do not have any particular trend in this experiment.

The performance penalty for LSTF+ starts around 0%. It monotonically drops to

-15% at N=30 then monotonically increases to 0% as the number of tasks (N) is

greater than 50.

The Number of Processors, M: Figure 7.16 shows the relation between the

number of the processors and the performance penalty. We use the parameter set (10,

10, 7, 3, 5, Heavy) for the workload generator, and run on different processors. The

performance penalty to LSTF+ jumps up and down along the number of processors

axis. With a trend, the performance penalty of LSTF— increases to 10% as the

number of processors increases to 15. Except for LSTFC and LSTFS, which have



Figure 7.16 Effect of factor M

performance close to LSTF, other heuristics show lower gains as the number of

processors increases.

Maximum Branching Factor, B: Figure 7.17 shows the relation between the

number of the branches and the performance penalty. We use the parameter set (40,

10, 7, B, 5, Heavy) for the workload generator, and run on 10 processors. Again,

LSTFC and LSTFS have a performance close to LSTF. The performance penalty

for LSTF+ starts at a lower value of -10% and monotonically increases to 0% as the

number of branches (B) increases to 6.

Cross-Edge Density, E: Figure 7.18 shows the relation between the density of

the cross edges and the performance penalty. We use the parameter set (10, 10, 7, 3,

E, Heavy) for the workload generator, and run on 10 processors. The performance

penalty for LSTF+ starts at a higher mark of 10% and nearly monotonically drops

to -10% as the number of cross edges (E) increases to 10. Except for LSTFC and

LSTFS, other heuristics increase profit as the number of cross edges increase.
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Scaling and Changing both N and M: Figure 7.19 shows the relation between

the combination factor of the number of tasks and processors and the performance

penalty. We use the parameter set (N, M, 7, 3, 5, Heavy) for the workload generator,

where N 5M, and run on M processors. As the value of f/if is kept as a constant

5, the performance penalty for LSTF± is pretty stable (around -5%).

Tree vs. Cross Edge, B and E: Figure 7.20 and 7.21 show the relation between

the combination factor of the density of cross edges and the number of branches

and the performance penalty. We use the parameter set (40, 10, 7, B, E, Heavy)

for the workload generator, and run on 10 processors. From Figure 7.17 and 7.18,

factor B and E work oppositely (LSTF±s work well with low B but with high E).

To show which the dominate factor is, we run two sets of experiments, E = 3B and

B E = 10. Based on Figure 7.20 and 7.21, we conclude that the performance

penalty is dominated by the number of branches (B).
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Figure 7.22 An example of concurrence in cpu execution and communication

7.4.2 Insight from the Simulation

To explain the results of experiments, we use one example to demonstrate. Suppose

that there are T1 with cpu requirement 8 and T2 with cpu requirement 10 on the

same processor in Figure 7.22-a. With the same space time, they share the cpu in a

round robin manner. As both tasks complete, they will send the data volume, 7 and

1 (compatible with cpu requirement), respectively to the critical task T3 located at

another processor. The communication link delivers data without any delay because

of absence of contention. To start 7'3 as early as possible, all predecessors of T3 are

scheduled in such a manner that total completion time (which consist of computation

and communication times) is minimized. Obviously, computation and communi-

cation should be performed concurrently.

Figure 7.22-b demonstrates the case of LSTF and LSTF+ [0, 5] scheduling T 1 at

time 0. We observe that T3 can start execution on time 20 under LSTF10, 5] which

is earlier than under LSTF (time 22). On the other hand, we list various LSTF+

results, where case one denotes T1 is running on time 0 and case two denotes 2'2 is
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running on time 0. The mean of case one and case two is also tabulated in column

"Average".

but not always in case two. This phenomenon can expla'n how the performance of

LSTF+ can jump up and down over LSTF.

In the example of Figure 7.22-a, LSTF+ can get a lot of profit if T 1 has more out-

edge (i.e., high cross edges density) because T 1 completes earlier under LSTF+. Thus,

communication and computation can perform concurrently. The higher density, the

more profit of LSTF+ has (Figure 7.18).

With a large number of branches, the processes are needed to be synchronized

with a large number of predecessors. Suppose that T3 has another predecessor, T4.

Although T1 complete early under LSTF+, T3 need to wait the completion of T4 .

Intuitively, LSTF+ can not get a lot of profit with a large number of branches, B,

(Figure 7.17).

From Figure 7.20 and 7.21, we conclude that the factor B has more influence

on the performance penalty of LSTF+ than factor E.

7.4.3 Impact of Assignments on the Performance of Algorithms

Because of the tasks represented as PGs, we view the tasks in three granularity:

vertex, path, and task. Besides various workload generator parameters, we also
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investigated the impact of assignments on the performance of algorithms based on

granularity, When a whole task is assigned to a processor, communication cost will

be zero and the model can be reduced into a model: each task runs on its own host

processors independently. We have provided the theoretical result in Chapter 4 (such

as Theorem 1) so that we only investigate the granularity of vertex and path.

• Random (RD): Let V denote the set containing all vertices of the PG. We label

the processor from 1 to M, and construct the array Placement keeping the

location information for each vertex. The pseudo-code for random assignment

is presented as follows (where the function rand returns the integer number

between I and M randomly):

fori=ltolVI{

Placement[i] 	 rand(1, M);

}

• Round Robin (RR): The pseudo-code is similar to the random assignment. The

function mod returns the reminder of i over M.

Placement[i] = mod (i, M) 	 1;

}

• Path-W (PW): Clustered by the path, a group of vertices are assigned together

to the least loaded processor, where the heavier weight path is assigned earlier.

Let P denote the set containing all paths.

group_vertices (&P);

sort_by_execution_weight (&P);
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fori=ltolPI{

m 	 least_loaded();

for j E	 {

PlacementUj m;

}

}

• Path-D (PD): The pseudo-code is similar to Path-W assignment. The path

will be sorted by deadline and the earlier deadline path will be assigned earlier.

group_vertices (&P);

sort_by_execution_cleadline (&P);

fori=lto1P11

m leastioaded();

for j E Pi; {

Placement[j] = m;

}

}

After we receive the data from the workload generator, we apply different

assignment algorithms (RD, RR, PW and PD) to allocate the tasks to processors.

We use the parameter set (10, 3, 7, 3, 5, U) for workload generator and run on 3

processors with four different traffic load (light, moderate, heavy and super-heavy).

The symbol C in the following tables stands for the testbed with communication cost

and CC stands for the testbed with communication cost and context switch overhead

(0.1). For example, With PD assignment, LSTFC has performance profit over LSTF

-0.7% under light communication condition and -0.3% -tinder light communication

and context switch overhead (Table 7.4).
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We summarize some observations from our preliminary simulation results

(Table 7.4, 7.5, 7.6 and 7.7):

• Trends in column C:

—We observe that the technique of transformation of arcs into communi-

cation nodes helps LSTF when the communication takes place (LSTFC

has better performance than LSTF under four different types of traffic

load). The heavier communication, the more profitable LSTFC is.

—Similar to LSTFC, LSTFS has better performance than LSTF under four

different traffic loads. Usually, LSTFS outperforms LSTFC.

—Except for LSTFC and LSTFS, LSTF gets more profit under light commu-

nication when assignment is done on the path basis rather than vertex

basis.

—With PD assignment, LSTF is usually better than with RD assignment.

—The heavier load is, the smaller gains in performance LSTF gives over

LLF.

—LSTF+ becomes more profitable under heavy load conditions (especially

in the super-heavy condition).

• Trends in column CC: LSTF is not a good algorithm in these cases and LSTF+

has better performance than other algorithms.



Table 7.4 The light communication simulation
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Table 7.5 The moderate communication simulation



Table 7.6 The heavy communication simulation
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Table 7.7 The super-heavy communication simulation



CHAPTER 8

SUMMARY AND FUTURE WORK

Least-Space-Time-First (LSTF) is a new scheduling policy aimed at the 'complex-

tasks-multiple-processor' category of problems. We have proven that LSTF is a

more effective scheduling algorithm than EDF in three different scheduling models

(`simple-tasks-single-processor', `simple-tasks-multiple-processor', and `complex-

tasks-single-processor'). We have also been able to show, under a number of

restrictions on the tasks and the operating system, that LSTF minimizes maximum

tardiness when compared to other scheduling disciplines in the `complex-tasks-

multiple-processor' model.

We present both lower and upper bounds on tardiness of schedules for general

work-conserving scheduling algorithms, and refinements of the upper bounds for

EDF scheduling and our LSTF algorithm. This information helps system engineers

to know how badly scheduling algorithms perform so that the upper bound can be

used a schedulability test in the design of hard real-time systems.

Also, we have explored other refinements of LSTF, LSTF+, for use with context

switch overhead and communication cost. We are able to show the outperformance

of LSTF+ through theoretic and experimental results. From the simulation results,

we conclude that the selection of the appropriate parameters for LSTF+ is sensitive

to statistical properties of the task distribution.

We give simulation results on three different platforms and show that (1) LSTF

outperforms EDF and other scheduling algorithms on the ideal platform. (2) LSTF+

is a good algorithm in the presence of context switch and communication.

80
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8.1 Extent to Dynamic Task Sets and Environment

In this dissertation, LSTF schedules the task set statically. We provide a brief

discussion of some of the ways in which LSTF can be extended to handle dynamics

in the task set of environment, as a partial skeleton of future work.

Ready time: The original assumption of ready time is released; some tasks may

not be ready at time 0. Given a task j, with a deadline and task graph information

(such as the total requirement R3 , the longest path Li and the deadline Di), arrives

dynamically (the ready time of task j is not equal to 0). There are two possible ways

for LSTF to handle the new incoming task j:

1. If the system does not care about quality of service (i.e., no threshold for

tardiness), the control systems simply adds the ready nodes of this new task

into the ready queue. LSTF treats the new task in the way as old ones.

2. The control system invokes the bound-evaluator to estimate the tardiness for

each task. Intuitively, the evaluator considers (R:, Li , Di ) for each old task and

(R3 , Li , D3 ) for the new task j, where 1? is the remaining requirement and g

is the reaming execution longest path of task j respectively. If LSTF would

degrade the service of existing old tasks (i.e., exceed the threshold for any one

of old tasks) based on the evaluator, the control system regretfully rejects the

request of task j. The task j may j may request to be scheduled again in the

future.

Reclaiming unused time: Our scheduling frame work is based on static task

graphs and weights which are known a priori from the worst case. If the scheduler

does not take the worst branch during the execution, there may remain processing

time units left in a execution node. Suppose that node X finishes F time units earlier
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than the worst-case time; the processor may then either execute other ready nodes,

or remain idle. LSTF handles the situation as follows:

• Context switch is free:

LSTF continues to execute any ready node with the least space time for the F

time units. When the real-time quantum is expired, the scheduler calculates

the space time of each node in the same way as before (ignoring the fragment).

For example, node i with L i and Di has been executed for F fragment time

units. The space time of node i is equal to (D i — present_time — Li ).

• Context switch is not free (W cost):

—X's successors are ready

* successors have least space time:

LSTF continues to execute its successors for the F fragment time

units.

* other ready nodes have least space time:

LSTF pays the W cost and jumps to execute the least space time

task.

— X's successors are not ready :

* successors have least space time:

LSTF executes the fragment (F — 2W) time units for other ready

nodes, if (F — 2W) is greater than 0; otherwise, the processor keeps

idle.

* other ready nodes have least space time:

LSTF pays the W cost and jumps to execute the least space time

task.
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8.2 Future Work

From the history of RMS, we know a lot of work needs w be done. We will continue

to extend other work in several directions:

• Discover more properties and theorems of LSTF under different models.

• Formulate objective functions for making migratim. decisions and simulate the

results.

• Find and apply LSTF to different case studies. For example, multimedia

systems.

• Apply the developed methodology to different sysem models.

• Relax some current restrictions, such as on ready -.ime, periodic tasks, etc.

• Cooperate with other heuristics to assignment anc scheduling.

The RMS community spent almost 20 years investigating these latter issues

and they keep on going. Optimistically, we may have sLgaificant results in a couple

of years.
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