

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

A COST MODEL FOR MULTI-LIFECYCLE ENGINEERING DESIGN

by
Bin Zhang

Design for Environment aims to yield a product whose aggregate environmental impact is

as small as possible. This thesis characterizes a product recovery system and defines the

concepts of product lifetime and part lifetime. A multi-lifecycle product recovery model

is developed based on the concepts of product tree and disassembly path representation,

four product recovery choices, time varying costs, cost comparison. The four product

recovery choices of a part in the product tree are: Reconditioning, Part Remanufacturing,

Material Recycling, and Landfill. This thesis focuses on how to improve the product

design while minimizing environmental impact of the product and introduces an indirect

product design improvement method based on the concept of candidate set. A monitor

and a Personal Computer are used to illustrate the model and method. A PC Windows 95

software based computer aided DFE tool is partially implemented to demonstrate our

method and model. More research and development is needed to implement a complete

DFE tool incorporating Multi-lifecycle Engineering concept. The obtained model and

results will play an important role in research and development of Multi-lifecycle

engineering product design and guide designers in their product and process design.

A COST MODEL FOR MULTI-LIFECYCLE ENGINEERING DESIGN

by
Bin Zhang

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

January 1997

APPROVAL PAGE

A COST MODEL FOR MULTI-LIFECYCLE ENGINEERING DESIGN

Bin Zhang

Dr. MiefigC1111 Zhou, Thesis Advisor 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr.	 gie Caudill, Committee Member	 Date
Pro es%or of Mechanical Engineering and Executive Director of Multi-Lifecycle
Engineering Research Center, NJIT

Dr. *irwan Ansari, Commrttee Member - 	Date
Associate Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	 Bin Zhang

Degree:	 Master of Science

Date:	 January, 1997

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1997

• Bachelor of Engineering in Automatic Control,
Tsinghua University, Beijing, P. R. China, 1993

Major:	 Electrical Engineering

Publication:

MengChu Zhou, Bin Zhang, Reggie J. Caudill and Donald Sebastian,
"A Cost Model for Multi-Lifecycle Engineering Design,"
Proceedings of 5 th IEEE international Conference on Emerging Technologies and
Factory Automation, Hawaii, pp. 385-391, November, 1996.

iv

To my beloved family

v

ACKNOWLEDGMENT

I would like to express my deepest appreciation to Dr. MengChu Zhou, who not only

served as my research supervisor, providing valuable and countless resources, insight,

and intuition, but also constantly gave me support and encouragement. Special thanks are

given to Dr. Nirwan Ansari and Dr. Reggie Caudill for actively participating in my

committee.

Many of my fellow graduate students in the Discrete Event System Laboratory are

deserving of recognition for their support.

vi

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Design for Environment 	 1

1.2 Reasons for Changing to DFE 	 2

1.3 Product Recovery 	 3

1.4 Product Lifetime 	 6

1.5 Computer Aided DFE Tools 	 6

2 REVIEW OF COMPUTER AIDED DFE METHODS AND TOOLS 	 9

2.1 ReStar 	 9

2.1.1 Product Design Representation — ReStar's Disassembly Table 	 10

2.1.2 Automatic Generation of Product Retirement Plan 	 12

2.2 LASeR 	 15

2.2.1 LINKER — The DFPR Product Design Representation Method 	 15

	

2.2.2 Reverse Fishbone Diagram 18

2.2.3 DCA — Environmental Issues Assessment Method 	 19

2.2.4 Product Retirement Plan Generation 	 21

3 COMPUTER AIDED PRODUCT DESIGN SYSTEM 	 23

3.1 Computer Aided DFE 	 23

	

3.2 Product Design Representation 27

	

3.2.1 Tree Structure and Product Layout 28

3.2.2 Product Retirement Plan and Disassembly Paths 	 31

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

3.3 Product Recovery System and Product Design Evaluation 	 33

3.4 Time Varying Cost and Multi-Lifecycle Product Design Model 	 38

3.4.1 Part Lifetime 	 38

3.4.2 Multi-Lifecycle Product Recovery 	 39

4 PART SELECTION OPTIMIZATION 	 42

	

4.1 Costs and Degradation Rate 42

	

4.2 Part Selection Optimization 44

	

4.3 Example 49

5 PRODUCT DESIGN OPTIMIZATION 	 53

6 COMPUTER AIDED TOOL IMPLEMENTATION 	 63

6.1 Ideal Computer Aided DFE Tool 	 63

6.2 Tool Implementation 	 64

7 CONCLUSION 	 69

7.1 Contributions of this Thesis 	 69

7.2 Limitations and Future Research 	 70

APPENDIX 	 72

REFERENCES 	 112

viii

LIST OF TABLES

Table Page

2.1 Handlight Disassembly Table 	 11

2.2 DCA Rating Assignments for Material Compatibility Table 	 20

4.1 Costs and Failure Rate of a Computer Monitor 	 49

4.2 Comparison of Reconditioning Cost and Replacement Cost 	 50

4.3 The Data of Two Different Designs 51

5.1 Costs and Rates of Parts in Personal Computer 	 54

5.2 Data for A6, P10 and Pll After the First Product Lifetime 	 57

5.3 Data for A6, P10 and Pll After the Third Product Lifetime 	 57

5.4 Costs and Rates of Assembly Nodes in Personal Computer 	 58

5.5 Retirement Plan of Personal Computer After the First Product Lifetime 	 60

5.6 Retirement Plan of Personal Computer After the Second Product Lifetime 	 61

5.7 Retirement Plan of Personal Computer After the Third Product Lifetime 	 62

ix

LIST OF FIGURES

Figure	 Page

1.1 The Consideration of Design 	 2

1.2 Product Recovery Process 	 4

1.3 Computer Aided Tool and Knowledge Base 	 7

2.1 A Simple Diagram of a Handlight Assembly 	 11

2.2 Disassembly Process Graph of Handlight 13

2.3 Disassembly Cost Tree for Handlight 	 14

2.4 Simple Assembly Diagram of a Food Processor 	 16

2.5 LINKER Model for Food Processor 	 17

2.6 Reverse Fishbone Diagram for a Food Processor 	 19

3.1 A Feedback DFE System Structure 	 24

3.2 A Simple Design and Modification Example 	 25

3.3 A DFE System Structure Using the Concept of Candidate Set 	 26

3.4 A Tree Structure of Handlight 29

3.5 LINKER Representation of Handlight 	 31

3.6 Two Disassembly Paths 	 32

3.7 Product Recycle System 	 36

3.8 Open-loop Part Recovery 37

3.9 Part Lifetime and Product Lifetime 	 39

3.10 An Example of a Multi-Lifecycle Product Recovery Process 	 39

LIST OF FIGURES
(Continued)

Figure	 Page

4.1 Product Reconditioning Cost 	 42

4.2 (a) Relationship between Reliability and Cost	 (b) Relationship between X,
and Cost 	 43

4.3 A Part's Lifetime 	 44

5.1 The Tree Structure of A Personal Computer 	 52

5.2 Two Possible Disassembly Paths 	 54

6.1 Part Information Input Form 	 64

6.2 Optimal Retirement Plan Search Algorithm Flow Chart 	 67

xi

CHAPTER 1

INTRODUCTION

1.1 Design For Environment

Sustainable industrial development seeks to meet current needs of society without

compromising the ability of future generations to satisfy their own needs. Unfortunately,

our industrial society is not yet on the right path. In order to be able to sustain further the

growth and development, we have to make adjustments in the way how we manage the

industrial environment interface.

Over the past decade, much research and efforts were put into understanding issues such

as waste management and material recovery, as they related to products after they entered

the waste stream. Attention is now being focused on the product design. It is known that

70% of the monetary cost of a product is decided in the design stage [3][9]. Once its

design is done, almost the whole product life-cycle is set. Design is the most important

stage in reducing product environmental impacts and conserving precious resources.

The consideration scope of design activity has been enlarged. Figure 1.1 shows the four

main stages of a product lifetime: Manufacturing, Use, Service, and Retirement [5].

Originally, the goal of product design is simple, i.e., Design For Function (DFF). DFF

focuses on providing the products which have certain usage. Later on, engineers began to

consider more and more about the manufacture and service stages in their design. Design

For Manufactureability (DFM) and Design for Serviceability (DFS) are aimed at

improvement of convenience for manufacture and service. Most recently the scope was

2

enlarged again. Design For Environment (DFE), which refers to the practices that are

intended to provide products whose aggregate environmental impact is as small as

possible [5], is becoming more and more important. It finally entends the design

consideration scope to the whole product lifetime.

DFS: Design For Service	 DFE:	 Design For Environment

Figure 1.1 The Consideration of Design

The goal of DFE is to generate products which incorporate environmental concerns and

to avoid environmental problems before they occur. It is always better to take a proactive

approach than a reactive approach which tries to fix problems only after they occur.

1.2 Reasons for Changing to DFE

Why should manufacturers change to DFE? Some of the factors that are pushing

companies towards DFE are:

1. Current and anticipated environmental legislation;

3

2. Corporate image and public perception;

3. Demanding consumers; and

4. Rising waste-disposal and landfill costs.

There are many literature papers which have already described in detail about these

factors and here we are not going to discuss them again [1] [3] [5]. Compared to the above

four "have to" reasons, there are also some more important "pulling" factors which are

making it financially attractive for companies to invest in DFE projects. DFE can not

only save the manufacturers much cost of waste disposal and retired product landfill, but

also make them extra money from "waste". For example, when expensive products, such

as buses and trains, reach the end of their service life, it is often much less costly to

recover old products rather than to purchase new ones. New buses, for example, cost

municipalities about $220,000 apiece, while it costs an average of $70,000 to recover

one, which brings the old bus back to the same condition as a new bus. Significant price

differences create a demand for the recovery of retired products and the research of DFE.

1.3 Product Recovery

Product recovery is an efficient way to cut down the environmental impact. Once a

product or part is recovered, the raw material and energy used in it is salvaged.

Several diagrams have been proposed to represent the product recovery process. Figure

1.2 is a general diagram which shows the circular nature of material and energy flows

through a product life cycle [2].

A product life cycle can be organized into the following stages:

• Raw Material Acquisition

• Manufacturing

• Assembly

• Use and Service

• Disposal and Landfill

4

trigure 1.L rroduct Kecovery rrocess LLB

According to the condition of a retired product, recovery could be implemented in three

forms: Repair and Reuse, Parts Recycling (Re-manufacturing), and Materials Recycling.

Most people are familiar with Material Recycling. In a junk yard, hundreds of thousands

of cars are waiting to be recycled as metal and go into another product cycle. Both in

industry and academia, much attention is given to material recycling. However, more

dramatic reduction in environmental impact can be made by product remanufacture and

reuse in which the geometrical form of the part and product is retained. With respect to

material recycling, remanufacturing and reuse have the two added benefits: 1) not only is

5

the material waste and amount of landfill reduced, but also energy and matter

consumption during manufacture is reduced; and 2) the utilization of existing components

reduces an enterprise's monetary cost of producing or acquiring new components. For the

products and function blocks which still work well, we may consider to reuse them for

the same purpose as during its original life-cycle. Even if some products are not good for

the original purpose, we can still consider reusing them for a secondary purpose. For

example, we may reuse the automotive tires as mooring cushion in a harbor. Sometimes a

product partially fails after its retirement and some of its components are good. We may

consider disassembling these components from the block either in parts or in clumps and

reassemble them, together with some new replacement parts, to new products.

Recovery is a leveraged process. The original intent of recovery is to relieve the

environmental burden. Landfill, in some cases, is not the worst thing. There are many

other environmental issues concerned, such as energy consumption, pollution and human

consciousness. If we could evaluate all these issues into costs reasonably, we could

transform all the criteria into one domain and find an optimum solution by searching the

tradeoff of the costs of recovering and discarding. If the overall cost to recover a part is

even higher than that to replace it with a new one, obviously it is no longer worthy to

recover it. This is the reason why we may not always expect 100% recovery of a product

in practice. As shown in Figure 1.2, we have the fourth choice, landfill, for a retired

product even though landfill is not what we like. Current research keeps trying to

discover new material, new recovery method, and new product design which could

reduce the product recovery cost. On the other hand, landfill cost has been increasing and

6

becomes prohibitive in some countries, e.g., some countries in Europe. As a result, one

needs to minimize or completely avoid landfill of products.

If we consider landfill as a special recovery loop, actually we have four recovery loops in

total. Repair and reuse is the smallest loop and landfill is the biggest one. Normally, the

smaller the loop, the more profit we can gain from the recovery.

1.4 Product Lifetime

In the past, the product lifetime was such a concept that it begins when a product is

manufactured and ends when it is out of function. Now the concept is changing. Some

high-tech products are out-of-date much earlier than the time when they actually fails.

Hence, the endpoint of the lifetime of a product should be the time when it "retires".

In modern industry, manufacturers are responsible for not only providing new products

but also disposing their retired products. For example, some manufacturers now have

their buyback policy for their products which were sold three or four years ago. This

thesis defines lifetime of a product as the time interval between the completion of its

manufacture and the time when a manufacturer buys back it for recovery. This definition

is useful for designers because the product lifetime is no longer an uncontrollable factor

for them. One of the DFE designers' tasks is to set the appropriate product lifetime which

results in the most profit of a class of products.

1.5 Computer Aided DFE Tools

Although much research work has been done in this field, DFE is still a new concept to

most people. In order to perform effective DFE, a computer aided tool performing DFE

7

methods transparently is very helpful and may be essential for designers, especially those

who have little experience in this area.

DFE will not become widely practised throughout the industry until excellent and easy-

to-use computer aided tools are available. The primary purpose of green design is to

make practising DFE as simple as possible. Thus, aids or tools ought to present DFE in

an easily understandable and usable form. They should enable designers to improve the

environmental attributes of products without requiring them to become experts in

environmental science and impact analysis. Furthermore, the design advice offered

should be presented in such a way as to require little or no additional analysis.

Designers

Computer Aided DFE Evaluation & Suggestion Model

Design and Recovery Knowledge Base

Environmental Issues

Figure 1.3 Computer Aided Tool and Knowledge Base

Figure 1.3 shows the general idea of a computer aided DFE tool. Using certain evaluation

and suggestion model and based on a design and recovery knowledgebase, designers can

consider the environment issues and embed the result in their product design.

There are three main challenges in developing good computer aided DFE tools:

1. There is a lack of practical environmental impact assessment methods.

Reliable impact assessment methods are needed to transform

environmental issues into standard criteria and knowledgebase to ascertain

8

that design decisions which are based on them will indeed yield products

whose aggregate, lifetime impact on the environment is minimized.

2. There is a scarcity of proven environmentally benign material and

technology alternatives that can be chosen for designers.

3. The effectiveness of a particular green design solution often depends on an

accurate assessment of external parameters, which is hard to predict

sometimes.

Some interesting computer aided DFE tools are being developed, such as ReStar [I],

LASeR [2], and Cost-Benefit Analysis Model of Product Design for Recyclability* [4]. In

Chapter 2, we will focus on discussing two of them, ReStar and LASeR. Both of them are

powerful DFE Analysis tools. However, they are short of time varying consideration. In

Chapter 3, we try to set up a general Multi-Lifecycle product recovery model based on

the concept of time-varying product retirement plan. By applying the model on a single

part and whole product, Chapters 4 and 5 continue the discussion. Examples are used to

explain the ideas. Chapter 6 discusses some of our preliminary computer implementation

of the proposed optimization method. Chapter 7 concludes the thesis by summarizing the

contribution of the thesis and presenting the limitation of this research and indicating the

future research along the line of multi-lifecycle engineering research.

CHAPTER 2

REVIEW OF COMPUTER AIDED DFE METHODS AND TOOLS

As we mentioned in the last chapter, computer aided tools are important for designers to

implement Design For Environment (DFE). While no such commercial tools are yet

available, some interesting tool development efforts are already under way. In the first

two sections of this chapter, we will introduce two typical and successful tools. The first

one is a design tool for environmental recovery analysis named ReStar, developed at

Carnegie Mellon University. The second one is a service model and recyclability analysis

system named LASeR which is developed at Ohio State University. In the third section,

we will give a brief review of some other interesting ideas.

There are three key main aspects in a DFE tool: product design representation,

environmental issues assessment and evaluation method, and product retirement plan

generation and optimization. Our introduction to these tools and methods will focus on

these aspects.

2.1 ReStar

ReStar is a powerful computer aided product environmental issue evaluation tool which

is developed by Carnegie Mellon University [1]. Navin-Chandra believes that the optimal

recovery plan represents a tradeoff between cost, time and environmental distress and one

cannot expect that the best product retirement plan is always 100% recycling. The

optimal recovery plan search is called the Recovery Problem. ReStar is aimed at detecting

9

1 0

the break-even points which carry the maximum profit. ReStar can help designers find

environmentally better design alternatives.

2.1.1 Product Design Representation —ReStar's Disassembly Table

A product design representation is needed for the product environmental impact

evaluation. Actually, the product design representation is a portion of the original product

design. It ignores the very detailed information and captures the environment related

issues of the product design. There are two main reasons why we need a product design

representation:

1. Product designs are quite different form each other. It is hard to evaluate

the designs in different product representation forms. We need a general

product representation form which could be easily used by a DFE analysis

model; and

2. We may not need all the detailed information in a product design. What

we really want to know are its attributes related to the environmental

impact. A simple representation is desired to capture these attributes such

that we can check and evaluate the recoverability clearly.

In ReStar, a product assembly graph is represented as a table. Connections are also

included in the table as standard parts. The representation is based on specifying, for each

part, all the other parts that obstruct it in a particular direction.

Here, we employ an example to show the idea. Figure 2.1 shows a simplified diagram of

the assembly of a handlight. The metal head housing is screwed on the same materiel

11

main housing on which there is a spring welded. The cover is screwed on the head

housing to hold the glass. The bulb is screwed on the head housing.

Figure 2.1 A Simple Diagram of a Handlight Assembly

In order to evaluate the recoverability of the handlight, we need its disassembly

information. The disassembly feature of this handlight is represented in the form of a

disassembly table, as shown in Table 2.1.

•

Table 2.1 Handlight Disassembly Table

12

The disassembly table is explained as follows. Consider the first entry of the table. If we

want to move the cover in +X direction while all other parts are rigidly held in place, we

can see from the diagram that head housing and glass hold it back. These two items are

entered in the disassembly table as obstructs of cover moving in +X direction. In this

table, an entry which has a threading in any direction means that the entry can be screwed

off from that direction. For example, we can screw off the cover from -X direction. The

same is done for every part in every direction and we obtain the disassembly information

of this headlight assembly.

2.1.2 Automatic Generation of Product Retirement Plan

Once we have this disassembly table, the disassembly algorithm is simple. Two rules are

used [1]:

1. if any part is unobstructed in any direction, then it can be removed in that

direction, and

2. if any part is held only by a connection in some direction then it can be removed

by undoing that connection.

The disassembly rules are applied recursively. Every time a part is removed, all

references to that part are removed from the table. For example, if the cover is removed,

all its references in rows 2 (Head housing, +X and -X direction), 3 (Bulb, -X direction),

and 7 (Glass, -X direction) can be removed. Now we can see the glass is free in -X

direction. Thus, next step the glass can be removed and so can all its reference in rows 3

and 4.

Step by step, we can generate the disassembly graph as shown in Figure 2.2.

Figure 2.2 Disassembly Process Graph of Handlight

13

In Figure 2.2, each disassembly status is numbered and each step from status to status

denotes one step disassembly procedure which just breaks one connection. Some statuses

1 4

have multiple disassembly choices. For example, at status 3, we can either unthread the

screw and go to status 5, or unthread the bulb and go to status 6. Therefore, such

disassembly process graph may not be unique.

(a)	 (b)

Figure 2.3 Disassembly Cost Tree for Handlight

Figure 2.3 is the disassembly cost tree of the handlight. The numbers shown in the circles

and on the arrows are the revenues and cost of the disassembly procedure, respectively.

For example, the number 3 in the left node on the second row means that the revenue

from the top to this node is 3. The number 1 on the line between the node with 0 and that

with 3 means that the disassembly cost for this step is 1. Figure 2.3(b) shows the net cost

of the disassembly process and in this diagram, the number in each circle represents the

overall cost. We can see that the best status is the right node on the second row from the

bottom and the net revenue is 5. The physical meaning of this optimal node is

1 5

disassembling Cover, Glass, Bulb, and Head housing and material-recycling the Main

housing and Spring as a clump.

During the process of disassembly, ReStar keeps track of disassembly costs and revenues.

It also keeps track of subassemblies of compatible materials. Comparing all the cost and

revenues, ReStar can find the best disassembly statues and the best retirement plan.

2.2 LASeR

LASeR, a computer aided Design For Product Retirement (DFPR) tool, is developed by

Ohio State University. The name LASeR stands for Life-cycle Assembly, Serviceability,

and Retirement. LASeR allows designers to specify a design in terms of a LINKER

model, which is a graph of parts and connections. It also allows designers to assess

disassembly cost and recycling cost. The designers can change materials and joints to

improve their design.

2.2.1 LINKER—The DFPR Product Design Representation Method

The original LINKER is a method used to evaluate layout designs for manufacturing and

life-cycle serviceability [2]. Marks et al. [7] modified the LINKER to support DFPR.

LINKER models the structure of a product and captures the necessary data for evaluation.

We use another example to explain the idea. Figure 2.4 shows the simple assembly

diagram of a food processor.

The food processor has 9 main components. Its structure and recovery intent information

is captured in the LINKER model which is shown in Figure 2.5. LINKER is a

hierarchical semantic network comprising components, subassemblies (node) and links

7

16

which are the relationships between the nodes. Links could be actuarial connections

between components or other geometrical relationships, such as supports. In general,

nodes contain data for material type, part of material cost, part weight, the name of the

item or process, a user-defined part number or code, and the next higher assembly (if

applicable). Links contain data for link type, removal and installation time, and fastener

type.

1: Cover
2: Knife
3: Cup
4: Upper Housing
5: Axle
6: Belt
7: Electrical Motor
8: Frame
9:	 Base Housing

9

Figure 2.4 Simple Assembly Diagram of a Food Processor

There is a kind of special nodes called "clump" which denotes as the dot-line ellipse in

Figure 2.5. A "clump" is a collection of components which share a common characteristic

based upon the designer's post-life intent: reuse, remanufacture, and material recycle [2].

17

The disassembly stops at clumps and it is recovered as a whole. Clump is a powerful idea

because it allows the user to consider partial disassembly strategies [1]. For example, in

Figure 2.5, cover, knife, and cup are grouped as a clump to be material recycled. Axle,

belt, and electrical motor are grouped as another clump to be reused.

LINKER is a kind of structural representations. It represents the geometrical and

topological characteristics which are pertinent to recoverability evaluation. Together with

the representation, there are a database which records object-oriented environmentally

related data of entries for each node and link. Once we have this representation, the

inference of disassembly steps becomes a network search that results in a list of links that

must be addressed to disassemble a product.

Node

component O

subassembly

fastener 0
clump

Links

cover
0	

attach

attach & cover

engage

supports

Figure 2.5 LINKER Model for Food Processor

18

2.2.2 Reverse Fishbone Diagram

Several groups in Stanford's graduate DFM curriculum found that LINKER did not fully

capture the details of the retirement specification needed to effectively evaluate the

product recoverability. Ishii et al. [7] formalize the reverse fishbone diagram to

supplement the LINKER in developing a DFE tool.

Reverse fishbone diagram is an emerging essential analytical tool in the design and

evaluation of product retirement processes to minimize the product environmental

impact. It helps the designers to identify the disassembly complications and difficulties

and ensure that product retirement concerns are addressed up front [7].

Figure 2.5 shows the core idea of a reverse fishbone diagram using the food processor

example which is used in the last subsection. As shown in Figure 2.5, the first assembly

seperated from the food processor is Cup Assembly which is material recycled as a

clump. Then part Upper housing is removed and also recycled as material. The next

assembly disassembled is the Electrical Motor assembly and it is reused as a clump. The

parts in this assembly include Belt, Axle, Electrical Motor, and Frame. The last part is

Base Housing which is recycled as material. Reverse fishbone schematically describes the

disassembly steps for a product and specifies the retirement intent for each component

and clump.

From Figure 2.6, we can see that the Reverse Fishbone method can show not only the

part post-retirement recovery intent, but also the disassembly process of the product.

Figure 2.6 Reverse Fishbone Diagram for a Food Processor

2.2.3 DCA -- Environmental Issues Assessment Method

In order to evaluate designs, we have to have an assessment method which could

transform different kinds of environmental issues to the domain which we can easily

evaluate them.

For example, the residual value of a clump which consists of many different kinds of

materials is an important data for calculating the recovery cost of a product. The residual

value of a clump is a function of the compatibility of all the materials in it. Thus, we need

a method which can reasonably transform the compatibility into residual value. A typical

20

environmental issues assessment method Design Compatibility Analysis (DCA) is briefly

introduced below, which is developed by Ohio State University [2].

DCA can transform the compatibility of a clump to its recovery cost. The transformation

is based on a material compatibility expert knowledgebase. The knowledgebase contains

compatibility rules, or called C-data. Each C-data contains a compatibility adjective

which maps to a [0,1] rating, as shown in Table 2.2.

Table 2.2 DCA Rating Assignments for Material Compatibility Table [2]

Level of compatibility DCA rating

"Very compatible" 1.0

"Compatible" 0.8

"Some level of compatibility" 0.6

"Incompatible" 0.2

"Hazardous" 0.0

"No information"
•

0.5

DCA automatically checks the knowledge for the compatibility of every component with

other component, connection, and process in the part or clump. It creates a set of [0,1].

DCA then map the set of [0,1] into a single part or clump compatibility rating

CC(s) E [0,1] for each part or clump s, using the following function:

Max DCA(x), if Vx E s # (1), DCA(x) 0.5;

Min DCA(x), if 3x E s, such that. DCA(s) < 0.5;

0.5 if s = c , indicating neutral compatibility.

CC(s) =

21

Once we obtain CC(s), the part or clump recovery cost is estimated as follows [2]:

CRC(s) = LFC(s) x
ln(CC(s))

where

CRC(s) = Part or Clump Recovery Cost

LFC(s) = Land Fill Cost

CC(s) = Part or Clump Compatibility (real number in [0,1])

In summary, DCA is a two-step method. First, it maps design information, the retirement

plan and the compatibility knowledge into a rating between 0 and 1 inclusive. Then, it

translates the rating to the recovery cost using an experience function.

2.2.4 Product Retirement Plan Generation

The goal of LASeR is to provide a quick analysis and what-if capability based on the

system structure and retirement strategy. It focuses on making it easy to change and

adjust the structure and strategy representations. In LASeR, the product retirement plan

generation relies on designers themselves and designers fully control the analysis of

product disassembly and reprocessing.

Compared with LASeR, ReStar focuses on finding the best product retirement plan. It

uses a component graph and disasseinbly table to perform an automated search and

analysis for optimal retirement plans based on the level of disassembly and component

material compatibility. LASeR pays more attention to evaluation of the existing product

design and retirement plan.

ln(0.2)

22

2.3 Material Mortgage and Stepped Obsolecence

Beside product recovery, Navin-Chandra also introduces two interesting ideas which are

important in reducing the product environmental burden [1].

One is "material mortgage". If there is a durable and expensive part in the product which

a customer needs buy every few years, the part can be sold to the customer with a long-

term mortgage. For example, sometimes designers use gold on the connectors of a Hi-Fi

audio in order to improve the performance. This, however, will raise the product price

greatly. Fortunately, the gold connector is durable and can be used for a long time.

Suppose that a custom will buy a new Hi-Fi audio about every five years and trade-in the

old one. The manufacturer may consider to sell the gold connector to the custom with a

long-term mortgage. This method can spread out the large initial investment over several

product lifetimes and provide very high-quality products without raising the price.

The other idea is "Stepped Obsolescence". Some customers are called "early adopters"

because they look for the latest and best features. Some others who may care more about

the price are called "late adopters". The idea of Stepped Obsolescence is to set up a trade-

in system where manufacturers can take back the product from the early adopters in a

couple of years and re-sell it to the late adopters at a lower price. Stepped Obsolescence

could cut down the product environmental burden by extending the lifetime of a product.

CHAPTER 3

COMPUTER AIDED PRODUCT DESIGNSYSTEM

3.1 Computer Aided DFE

As discussed in the first two chapters, on top of functionability, manufacturability, and

serviceability, designers are now asked to contribute to reducing the enviromnental

impact of products. Although some DFE guidelines and checklists are available to help

designers implement DFE, they are not much helpful for designers to perform DFE

efficiently. Most likely, DFE will become widely practised only after good and easy-to-

use computer aided DFE tools become available and acceptable for designers.

Product design is such a complicated activity that it is very difficult to find out a general

method to improve the product environmental friendliness in a direct way [1][2]. As an

alternative, most methods proposed now help designers in an indirect way. Figure 3.1

shows a typical DFE system structure diagram. We can see that it uses a feedback

mechanism. There are already many standard CAD tools which can help designers

implement the draft design, the first part of this system. In order to make environmentally

better draft designs, we can also embed some guidelines and checklists into these

standard CAD tools.

The second part of the system is the design improvement which consists of the processes

in the dot-line box in Figure 3.1. As the feedback and modification part of the design

system, the second part is important for the improvement of product environmental

friendliness. However, there is no successful commercial computer aided tool which can

fulfill the function of this part.

23

24

The design improvement part consists of three processes. The first process is retirement

plan generation. The draft design specifies the product issues in manufacture, use, and

service stages. Retirement plan generation process completes the whole product recycle

lifetime specification by settling down the product issues in the retirement stage. The

second process is environment impact evaluation. Using certain evaluation method, we

can obtain the environmental impact features of our product design [2]. The feedback

information results from the comparision between the actual evaluation results and

designers' expected ones. It is used to guide designers to modify and improve the

environmental friendliness of their products.

25

Al	 B 1	 A2	 B1
0 T1 0 0 T1 0

rfol2

C 1	 C 1

(a)	 (b)

Figure 3.2 A Simple Design and Modification Example

Suppose the retirement plan of this product generated by Retirement Plan Generation

process is

• To break Ti between A and B, and reuse part B, and

• To material-recycle part A and C as a whole, since T2 is very hard to break.

Using some evaluation method, we find this draft design and retirement plan is not

satisfactory and the problem is that Al is not compatible with Cl. In order to improve the

product design designers modify the draft design. They change Part A from type 1 to type

2. The modified design is shown in Figure 3.2(b). This time the design is better and

satisfying all the manufacturability, serviceability and environmental considerations. So it

passes the design stage.

Most related studies focus on the first two processes of design improvement and many

interesting results are reported [1][2][4]. However, the third process as the most important

step of design improvement was not well addressed in the previous research. Compared

with the first two processes, Modification of Draft Design and Retirement Plan is harder

to model and thus more difficult to implement in a computer aided tool. In the last

26

example, following a certain algorithm and model, designers can use a computer aided

tool to evaluate the draft design and the retirement plan and obtain a result. But how can a

computer know where the problem is and how the product design can be improved? As

we know, a computer is such a machine that it is good at "calculating", but not good at

"thinking". It is easier for a computer to search all the possible situations of a product

design than to figure out how to improve it. Thus, the alternative solution is to generate

the retirement plans of all the possible designs for a product and choose the best one from

them. We modify DFE system structure in Figure 3.1 to the candidate set structure as

shown in Figure 3.3.

27

evaluation of the environmental impacts of these designs and their retirement plans, we

can obtain the best one whose environmental impact is the least.

The following sections continue discussing how to use a computer to help designers

implement DFE. Section 3.2 focuses on how to represent the DFE design and Section 3.3

proposes a Multi-lifecycle cost model to evaluate designs.

3.2 Product Design Representation

Section 2.1 indicates that direct evaluation of a product's draft design is inconvenient. A

product design representation is needed to capture its necessary information for the

purpose of environment impact assessment.

In order to evaluate the recoverability of a product, we need to know:

1. how well all the part materials are compatible to each other; and

2. how easily the product can be disassembled;

Thus, a product design representation should cover at least three aspects of information:

1. each part type and material selection;

2. each connection type among these parts; and

3. the product structure.

3.2.1 Tree Structure and Product Layout

The relationship between parts in a product can be represented as a tree structure as

shown in Figure 3.4. The root of the tree is the product itself. It is the most abstract level

of a product design. An assembly . at level k can be disassembled into several

subassemblies at level k+1. As the level goes down, the information becomes more

28

detailed. For example, at level 1 we can say that the handlight consists of the head

assembly and cell housing assembly. At level 2 we have more detailed information and

we know the handlight consists of four parts, i.e., Cover, Glass, Spring and Main housing,

and one assembly, i.e. Bulb assembly. The leaf nodes in this tree represent the parts

which are basic units in the product and cannot or will not be disassembled anymore.

The tree structure is used to set the abstract level of the candidate sets. As we mentioned

earlier in this chapter, all the possible design choices of a product can be represented as a

candidate set. Actually, when designers specify a part, a connection, and the structure of a

product, they have many choices. The choices of each element constitute the candidate set

of that element. If there are well developed candidate sets for all the elements (parts,

connections, and structure) in a product, product design becomes a process of selection

from these candidate sets [12]. Sometimes the candidate set may be not rich enough and

there is no suitable candidate, designers need to create another better candidate. The

candidate creating activity expands the candidate set and provides more choices for the

designers to perform the similar design next time. Currently, much Green Engineering

research focuses on generating new material, new manufacture and assembly process, and

new structure of products. Its objective is to enrich the candidate sets and give designers

more and better choices.

	 / I \ 	
C3 	 C4 	 C5

Q111)

/ \
C6 	 C7

C9

(a)

Level 0

Level 1

CI 	 C2

/T\
C3 C4 CS C6 C7

Level 2

29

Level 3

(b)

Figure 3.4 A Tree Structure for Handlight

3 0

Designers may consider constructing a product using candidate sets at different abstract

levels. For example, designers may have a candidate set for cell housing assembly at level

1 and candidate sets for spring and housing at level 2. Product designs based on different

candidate set considerations are different. Thus, the first design issue needed to be set is

the candidate set abstract level.

How to set the candidate set level depends on two factors. The first factor is the amount

of available information. Sometimes, designers do not have all the condidate set for all

the nodes in the tree. Designers have to conduct their design based on what they have.

The second factor is the designers' intent. Sometimes, designers would like to use certain

parts or subassemblies and they do not want to change them. A product tree structure

clearly shows the relationship of parts and assemblies. Designers can use it to determine

the abstract level of candidate sets.

For example, designers may set the abstract level as level 2 for the handlight example in

Figure 3.4(a). Thus, they need not consider the disassembly of the bulb assembly. Then,

the basic units of the handlight are considered as Cover, Glass, Bulb assembly, Spring,

and Main housing.

Once the candidate set abstract level is set, basic units of the product are determined. The

connections of these basic units can be represented by a LINKER model. Figure 3.5

shows the LINKER model of the handlight based on abstract level 2.

From Figure 3.5 we can see that there are five part and assembly elements and four

connection elements. Suppose that there are N 1 candidates in the candidate set of the

31

9

element which is a part, subassembly or connection, there are if N i different designs of

this handlight.

Figure 3.5 LINKER Representation of Handlight

3.2.2 Product Retirement Plan and Disassembly Paths

A LINKER model can capture the necessary product design information. However, it is

weak in representing a product retirement plan. A product retirement plan represents the

product post-retirement consideration. It defines the retirement stage features of a

product. There are two key points in a product retirement plan. One is the product

disassembly process. The other is the post-retirement recovery intent of each part and

assembly.

32

Kosuke Ishii, et al., [7] developed a Reverse Fishbone method to represent a product

recovery process. In this method, designers set a product retirement plan. If a plan is not

satisfactory, designers need to consider modifying and improving it. Here the problem

comes again: How can designers modify the plan to improve it and know whether a

retirement plan is the best for this product or not? In this subsection, we will introduce the

concept of disassembly path and discuss how to find the best retirement plan for a

product.

Consider the example shown in Figure 3.2. This simple product consists of three parts, A,

B, and C. There are two connections which are T 1 and T,. Suppose the retirement plan is

to totally disassemble this product. Considering the disassembly order, there are two

different disassembly processes which are shown in Figure 3.6.

Figure 3.6 Two Disassembly Paths

We call the two disassembly processes "disassembly paths" of the product design. A

disassembly path is a possible disassembly process form top (product) to bottom (parts)

of the product. We use the word "possible" because the real disassembly process may not

necessarily follow the path to the end. It may stop at some nodes.

33

In order to represent a disassembly situation, we introduce the "stop node" concept. For

example, if the recovery intent of Assembly2 in Figure 3.6(b) is part re-manufacturing,

the disassembly will continue to next level. If its intent is to landfill, which means that

Assembly2 will be landfilled as a clump, the disassembly process will stop at Assembly2

and in this case, we call Assembly2 a "stop node".

A disassembly path has a set of stop nodes. Whether a node is a stop node or not is

decided by the comparison of the costs among its choices. We will fulfill this discussion

in Chapter 5.

The disassembly path and stop node set capture the disassembly features of a product.

The stop node set represents the best recovery plan in its disassembly path. For one

product layout, there may be many possible disassembly paths and we can find the best

recovery plan for each of them. Comparing the overall best plans for all possible

disassembly paths of a product layout, we can find out the optimal retirement plan for this

product design layout. This is the basic idea of the optimal retirement plan generation.

3.3 Product Recovery System and Product Design Evaluation

In this section, we will discuss how to evaluate a product design and its retirement plan.

As we mentioned before, once the design of a product is done, its whole lifetime is

almost set. The objective of DFE is to provide an optimal product design whose

environmental impact in its overall lifetime is as little as possible.

In every stage of product lifetime, environment resources are consumed and wastes may

be generated. In order to provide products, manufacturers have to mine renewable and

nonrenewable material, purify the bulk materials into engineered materials, manufacture

34

the materials into parts, and assembly the parts into products. All these activities require

resource and energy. In the usage and service stages, resource and energy may also be

required to operate them, repair defects and maintain their performance.

In addition to problems created by resource and energy consumption themselves, wastes

and residuals which are produced by these problems also generate significant

environmental impacts. Many residuals are temporarily concentrated in landfills. Both the

disposal cost and the cost for landfill space are rising.

As we discussed earlier in this chapter, for a certain product, a manufacturer may have a

set of design candidates. Since designs are different, their environmental impacts are

different. Certainly we want to choose the one whose overall environmental impact is the

least. Thus, a method to evaluate the environmental impact of product designs is needed.

The product environmental impact is complicated. There are many aspects of impacts and

they are often related to each other. For example, sometimes if we want less toxic waste

to enter the environment, we have to spend more resource and energy in the waste

disposal process. It is hard to compare these different aspects of issues in a direct way. In

order to evaluate a product's overall environmental impact, we should reasonably

translate all the criteria of different domains into a single domain.

Some criteria can be easily translated into costs. For example, the environmental cost of

raw material and energy used by manufacturing and serving a product can be represented

by their prices because the price, to some extent, is an environmental impact index. The

environmental cost of a kind of waste generated in a process can be represented by the

disposal cost and government fine on it. However, some criteria are very difficult to

estimate and translate to costs because there is lack of the accurate date for waste,

3 5

especially the waste gas . Sometimes the manufacturers do not know the type and amount

of waste which are generated by a manufacturing process and the accurate information of

their environmental impact.

Although the research of product environment impact is still in its infancy, some

interesting results have already come out, such as the Netherlands VNCI system and the

IVL/VOLVO EPS system [13]. In IVL/VOLVO system, first the environmental indices

for each raw material and emission are calculated by a team of environmental scientists

ecologists, and materials specialists. Then, according to these indices, the product

environmental impact are translated into Environmental Load Unit (ELU), which is a

special kind of cost.

To develop a reasonable method to translate all the environmental issues into costs

requires the research results of chemistry , physics, meteorology, climatology, biology,

political science, economics and a variety of more specialized disciplines. This is an

important topic for the future DFE research.

The first thing to find out the best design is to set the optimization scope. Two issues may

be considered when designers set the scope. One is the optimization level. Product design

optimization could be done at part, assembly, product, and product set levels. The level

selection is based on designers' intent. The other is the time interval. The optimal design

for a product intent for two year use may be different from that for four year use. Time

interval setting also depends on designers' intent.

Once we set the optimizaton and evaluation scopes, we can consider the whole product

recycle process as a blackbox system. As shown in Figure 3.7, the product environmental

impact in its time scope is the system input minus the system output. System inputs

36

include the costs of material, energy and landfill space which are used to manufacture,

use, maintain, and recover a product and disposal the industry waste. System output is the

residual value of components which go out of the system and enter the environment.

Figure 3.7 Product Recycle System

In a product recovery cycle, some parts may go out of the system. The residual value of

these parts can be considered as a special kind of system revenue. The part may leave the

system in the following tluee forms:

1. At the end of the time scope we set, some parts are still worthy to recover and

can be used into another lifecycle of the same type of products. The recover

choice could be reconditioning and material recycling;

2. The product recovery shown in Figure 1.2 is a closed loop. But actually, some

parts which no longer satisfy the requirements of certain level products may

still be usable for a lower level product. The product recycle could be an open

loop as shown in Figure 3.8;

3. If the value of a retired part reused or recycled for a secondary purpose is

higher than that for the original purpose, this part may leave the original

product recovery cycle and enter the secondary product cycle. For example, in

Section 1.3 we mentioned the automotive tire example. Suppose that the value

of the material recycled from a retired tire is $4 and the recycle processing

cost is $2. Then, the residual value of this retired tire for its original purpose is

$2. The retired tire can also be reuse as a mooring cushion. If its value for this

second purpose is $6, it is higher than $2. For such cases, the retired tire

should go out of the tire recovery system and its residual value is treated as

$6.

High level product recovery

Low level product recovery

•

:37

Figure 3.8 Open-loop Part Recovery

3S

Therefore, we have the following index to represent the product system's overall

environment impact density

A — Material Cost + E Energy Cost + E Landspace Cost — Re sidual Value

Considered Time Period

3.4 Time Varying Cost and Multi-Lifecycle Product Recovery Model

This section introduces the concept of time varying cost and a Multi-lifecycle product

Model. In order to know the inside situation of the black box in Figure 3.7, consider how

a single part is recycled in the system first. Then the product recovery system is

discussed.

3.4.1 Part Lifetime

When a product retires, its lifetime ends. But the lifetimes of the parts in this product may

not end yet. Recovery expands the part lifetime.

What is the part lifetime? We define it as the service time of a part. Ignoring a part's

further disassembly, we have three choices for a retired part which are reconditioning,

material recycling, and landfilling. When it is recycled for material, a part "disappears"

and the recycled material is used in a brand new part next time. Only the part

reconditioning has the service time memory. The part lifetime ends when the part is

landfilled or recycled, whichever comes first.

There are several recovery choices for a retired part. Which is the best depends on the

comparison of the costs related to each choice. Thus, after each product lifetime the part

recovery choice may be different. This time the reuse is the best for a part, but next time

3 9

material-recycle may be better. This is an important idea because it means that after each

product life the retirement plan for its parts and subassemblies may be different.

The model shown in Figure 1.2 is a representation of product recovery. It shows all the

recovery choices clearly. However, it is short of time consideration. Since the material

will degrade with time to a greater or less extent, all the cost and revenue items should be

a function of time. It is easy to understand that the residual value of a part which has

served for four years is lower than that of the one which has just used for a few months.

As an example, consider Figure 3.9. At the ends of first and second product periods, a

part may have high residual value so that it is worthy to disassemble it from the whole

product and reuse it in a new product. But at the end of the third product period, it is no

longer worthy to recover it. It is either landfilled or material recycled.

1" Product	 2nd Product	 3rd Product

3.4.2 Multi-Lifecycle Product Recovery

Parts have lifetimes and their lifetimes are different. Therefore, the recovery situation is

different from one product lifetime to another. We should extend our views to consider a

few product lifecycles instead of only one. Although the model shown in Figure 1.2

40

considers the product recovery, it still focuses on single product life. In fact, the meaning

of Multi-Lifecycle is quite different from several same single lifecycles. Therefore, we

should modify the product recovery model accordingly.

As an example of multi-lifecycle consideration, in Figure 3.10 the lines in different styles

represent different parts in a product, i.e., Parts A, B and C are represented by bold solid,

solid and dotted lines, respectively. Each block represents a product period or lifecycle.

As we see, at the end of the first lifecycle, two of the three parts, Parts A and B, are

recovered into a new product lifecycle. Part C, whose "life time" is just one product

lifetime, is landfilled and replaced by a new part. After the second lifecycle, Part B, at the

time after two product periods, is discarded while Part A can still be reused in another

new product. At the end of the fourth product lifetime, all the parts are landfilled.

Figure 3.10 shows the way how components are recovered and recycled in the multi-

lifecycle product recovery system. As we mentioned before, once a product design is set,

its recovery system is determined. In order to evaluate this system, first we should set the

candidate abstract level and the time consideration scope. The environmental impact of

this product is the summation of all the material, energy, and landfill space consumed by

41

the product in the scope. In the following two chapters, we will continue discussing the

multi-lifecycle product recovery model in a more rigorous mathematical language.

CHAPTER 4

PART SELECTION OPTIMIZATION

In this section, we will focus on a single node in a product tree and continue the

discussion about time-varying cost.

4.1 Costs and Degradation Rate

There are many aspects of a part, which relate to its cost, reliability and recyclability. One

of the most important ones is degradation rate X. It is known that some features of a part

will degrade with its service time. The degradation reflects in the residual value of a part

and reconditioning cost as well. Normally, the longer the service time, the worse the

condition of a part and the higher we have to pay if we want to recondition it such that it

can be used in a new product.

Consider the following situation. After a product period, n same electronic parts are sent

back to their manufacturer through certain buyback policy. From the standpoint of

probability, among these n parts, the expected number of "good" parts among n is

nP[good]. Here P[good] is the probability for a part being good, and a function of time.

For each part, if it is good, we perform only some simple treatment such as cleaning or

repainting. This cost C good is relatively low. If the part fails, we must take some inspection

and replace some parts. This cost Cfaihi„ is very high because the failure inspection of an

electronic part is relatively difficult and the repair is more expensive. Thus, the whole

expense to recondition the retired parts to new ones is

42

43

E = C good nP [good] + C faiiti„nP [failure]

As we know, the failure probability of many electronic parts obeys the exponential

distribution. P[good]=e' , where X. is the degradation rate of a product and t is the service

time.

Thus

E = ne —At Cgood + n(1—)Cfailure

The average cost for each product Crecondition is:

C recondition = E/n = Cgood e 	 + Cfailure (1 —)

The curve of an example reconditioning cost is shown in Figure 4.1 when C good=4,

Cfailure 70, and k=0.02888.

70

60

50

40

Cost 3°
20

10

Time Varying Reconditioning Cost

— cost

1 I 1—h---I—F-1-1-1-1--1 I I I I F---I 	
0 	 24 	 48 	 72 	 96

Time

Figure 4.1 Product Reconditioning Cost

It is easy to understand that all the costs are functions of X, and there is always a tradeoff

between k and part costs. The smaller the degradation rate X, the better the part quality,

44

and the longer the part lifetime. However, its original new part cost is also higher. In

another word, with X going down, the cost goes up [6]. Figure 4.2(a) shows the

relationship between reliability and cost, and Figure 4.2(b) shows the relationship

between X, and cost.

cost +

Cost

Reliability

	

(a)	 (b)

	Figure 4.2	 (a) Relationship between Reliability and Cost [6]
(b) Relationship between 2 and Cost

4.2 Part Selection Optimization

Based on the concept of degradation rates of parts, how can we evaluate and select the

best part whose environmental impact is the least? In Chapter 3 we discussed that the first

thing to evaluate a product system was to set up the consideration scope. In this chapter,

we consider the lifetime of a part. It starts from the manufacture of the virgin material and

ends at the landfill of the part. We want to find the best 2 which carries the least overall

cost in this scope.

There are four choices for a retired node (part) for whose disassembly is not applicable:

Choice 1: landfilled and replaced with a new one;

45

Choice 2: recycled as material and replaced with a new part;

Choice 3: reconditioned to a new part (repaired or reused); and

Choice 4: reused for a second purpose replace with a new one.

The costs related to these choices are:

Cost 1: C replacement = C lancifiuiCnewpart, the cost for landfilling the used part and replacing with

a new one. The cost of a new part includes material and manufacturing costs;

Cost 2: C recycle = Cmaterial recycling material 4Cnewpart , the cost should be the difference between

the cost for recycling the used part back to material and the residual value of the

material plus the cost of a new part;

Cost 3: C recondition the cost to recondition the old part to an equivalent new part; and

Cost 4: C Sp = C„ewpart-Rsp , the cost to reuse the retired part for a second purpose and

replace with a new part.

For some products, especially computer products, we have to consider another important

issue: out-of-date. Even though an IBM 386 personal computer may still function, in

normal case, no one would consider reconditioning it any more. Of course, we can still

recover it as material. In the reconditioning cost of these products we should add an out-

of-date punishment cost, C cmt_d_date'

C recondition = C good `'	
j_
 failure (1 —	 C out—of—date

In the following discussion, we will set up an optimum problem to find the best X, for a

part.

Recall the concept of part lifetime. If the lifetime of a part is I, it has been reconditioned

/-1 times before it is replaced with a new part (choices 1, 2, and 4). I is actually the total

46

number of times for which a part is used in a product. The part overall multi-lifecycle

cost in its lifetime is

I--1

C recondition (i, X,)+ min IC replacement (13 X)1 C recycle (X) C sp (i , 2'')}
i=i

where ? is the degradation rate of a part. As we mentioned before, each part has its own

k. For a mechanical part, 2 is mainly related to its material and for an electronic part, to

its type. Cost which relates to this part is the function of its degradation rate 2. Therefore,

if we change the degradation rate, the whole cost changes as well. Our idea is to find an

optimum X * which gives us the lowest cost per product lifecycle.

This 2 can be found by solving the following optimization problem.

Denote

C 1 (i, X)= Crecondition 	the cost of recovering a used part which has served i product

lifetimes into a new product; this cost includes disassembly cost

and reconditioning cost;

the cost of replacing a used part with a new one; this coste,(i,	 = emplacement

includes new part and landfill cost;

C" (i, 2) = C recycle(i,	 The cost of material recycling a used part. It is the difference

between the material recycle processing cost and the residual

value of the recycled material;

C(i, k) =	 2\J) 	
The cost to reuse the retired part for a second purpose;

C 1 (i, X,)---Cnewpart(i, 	The cost of a new part;

C4(i , 20=Clandfill(i5	 The cost of disposing and landfilling a used part;

47

C 5(i,)0=C,,,,,d(i,	 The cost of reconditioning a used part when it is good;

C 6(i, k)=C fail(i,	 The cost of reconditioning a used part when it fails;

C7(i,	 C)rocessing(il	 The processing cost of recycling a used part into material;

R8(i,	 Rmaterial(i5 2L)	 The residual value of recycled material from a used part

Then we can represent the optimization problem as:

Objective Function:

C 1 (i, 7)+C 2 (i, X)

min

Subject to:

1=1

I

C 2 (i,	 = C 3 (1,2) + C 4 (i,2)	 (1)

C 112 (i,	 = C 3 0,20 + C 7 (i,	 — R 8 (i,	 (2)

C 2 (i,	 = C 3 (i, X) — R sp (i,	 (3)

C 2 (i, 2) = min{C 12 (i, X), C;(1, X), C 12 (i, 20}	 (4)

-kxZt j

1 C 5e	 + C 6 (1— e)	 (5)
C I O,	 C2(1, 2) 	(6)

where t i is the jth product lifetime, and I is the part lifetime, i.e. the number of lifecycles of

the same type of products. After I product cycles, the recovery cost is equal to or greater

than the replacement cost.

This problem to obtain optimal 2 leads to no analytical solution in general because of the

complexity of all the functions of time. Actually, some costs, such as the material recycle

processing cost and recycled material residual value, do not change significantly and can

be considered as constants. Sometimes t 1 is also a constant. For example, some

48

manufacturers have certain policy to buy back retiring products which were sold a couple

of years ago. For these products, all the ti 's are equal to tp which is the product buy-back

time.

By considering the above facts, Equation (4) is reduced to

CI = C5e
-Xxixt

P + C6(1 — e
-XXiXt

P) C6 - (C6 - C5)e
-xx1xt r,

Combining (5) and (6), we obtain

C 2 - C 6
ln()

I	 C6= Ceiling(
Cc C

 °)
—Xt p

where Ceiling(x) is the smallest integer u such that u x.

Therefore,

C ,X,)+ C 2

A = =1
I

e
2-2t

P
C - C 6

C2 + I - 1C +
	

C5 - C6 X 3
C, C 6

I 	 I	 6	 1- e-kt
P

When material changes, the cost changes as well. C 2(2), C 5(20, and C 6(X,) are specified in

each product. Now we can see that all the items in A in Equation (8) are functions of k.

Thus we can find the best X by solving this optimization problem.

In most cases, we need to select the best one among a limited number of choices. This is

much simpler than finding a theoretic solution if the number of choices is small. Using

this model, we simply compute all the A's for all k's and choose the 2. which carries the

smallest A. Sometimes we know all the cost data and we can use them directly.

(7)

(8)

(9)

49

Sometimes we do not know all of them but we know the function type, we can also figure

out all the data and obtain the result.

4.3 Example

A computer monitor is a typical consumer electronic product. Since it consists of many

incompatible materials and it is difficult to disassemble, we do not consider material

recycling or re-manufacturing it. Thus, there are two choices for a retired monitor. One is

to recondition, and the other is to landfill.

Suppose the costs and failure rate of a monitor are given in Table 4.1. The product

lifetime is 24 months, i.e., t p=24 months.

Table 4.1 Costs and Failure Rate of a Computer Monitor

Therefore, C 2=min{C3+C4 , C 3+C 7-R8 }=min{100+50, 100+80-10}=150

Thus, the part lifetime

In

1= Ceiling(

C, +C 4 —C 6)
In(

100 +50 — 200
)C, —C6	 15— 200) = Ceiling(

—0.01199 x 24

50

Ceiling(4.547) = 5 (product lifetime)

and the average cost of the monitor is its overall cost divided by its lifetime, i.e.,

I-1
0,20+ C,(20

A — i=1

—Xtp C3 + C 4 — C 6

C 3 00 + CA
	 C1 -1
	 e	 C5 C,	 Cc.

—C+	 C6 + 1 e-xtp °	 X	 6 — 114.15

Table 4.2 shows the comparison of reconditioning cost and replacement cost after each

product lifetime.

Table 4.2 Comparison of Reconditioning Cost and Replacement Cost

Product lifetime 1 2 3 4 5

Reconditioning Cost C I 61.25 96.4 122.3 140.8 155.6

Replacement Cost C ., 150 150 150 150 150

Material Recycle Cost C; 170 170 170 170 170

The costs in Table 4.2 is obtained according to:

CI = c5e-x.xixtp
+ C6(1 — e

- kxixt
'

c 3 c 4

51

From Table 4.2 we can see that after first four product lifetimes, the reconditioning cost is

lower than the replacement cost. After the fifth product lifetime, the reconditioning cost

becomes higher than the replacement cost, which means that the monitor is no longer

worthy to recondition.

Discussion 1: The Need to Continue Product Recovery

Since (C 5 -C6) is definitely negative, Equation (5) has no solution if (C 3+C4-C6) is positive

which means that the replacement cost is higher than the reconditioning cost when a part

fails. With new recovery and disassembly methods emerging, the reconditioning cost C6

can drop. Meanwhile, with the environmental problem becoming more and more serious,

the landfill cost C4 is rising. These show the need to continue the product recovery.

Discussion 2: Design Selection

Suppose that we have two design candidates for the computer monitor. Since the designs

are different, they have different costs and failure rate. The data of these two designs is

shown in Table 4.3.

Table 4.3 The Data of Two Different Designs

C3 C4 C5 C6 C7 Rs k

Design 1 100 50 15 200 80 10 0.01199

Design 2 80 60 15 200 90 5 0.02398

52

In Design 2, we use some cheap components. The new part cost of Design 2 is 20 lower

than that of Design 1, but the failure rate is twice as that of Design 1 and the landfill cost

rises from 50 to 60 due to the different materials and part volumes.

We have already calculated the result of Design 1. Its lifetime is 5 and average cost per

product lifetime is 114.15.

For Design 2,

C 2 = 	 C;} = min{80 + 60, 80+90 - 5} =140

C,
—C `')") 	 In(1

40— 200)

I= Ceiling(
C s —C, 	 ceiling(15— 200)

p	—0.02398 x 24

= Ceiling(1.956) = 2 (product lifetime)

and

A=(140+96.4)/2=118.2

Although the new part cost of Design 2 is cheap than that of Design 1, it has higher

average cost. In this case, designers will certainly choose Design 1.

CHAPTER 5

PRODUCT DESIGN OPTIMIZATION

In the last section, we focused on a single part and did not consider part disassembly. The

model discussed above is suitable for those simple products which just have a few

relatively independent components,. However, most products, especially the electronic

products, are very complicated and there are tight relationships between components. The

part optimum is not independent of each other. We have to take the whole product into

our consideration.

In Chapter 3, we discussed the product. design optimization. In this chapter, we employ a

personal computer example to fulfill the discussion.

The draft structure of a personal computer is shown in Figure 5.1.

54

We take abstract level 2 and do not consider the disassembly of the power box. The costs

and rates of all the components are assumed in Table 5.1. Since the data for a part used

for a second purpose is not available, we do not consider this recovery choice in this

example.

Table 5.1 Costs and Rates of Parts in Personal Computer

Here. CMR equals material recycle processing cost minus recycled material value. ri is the

out-of-date punishing factor. In this example, we assume that the punishing cost is equal

to n x t2 x C- newpart' All the data above are based on the assumption that product lifetime is

24 months. In this example, we also consider the inflation of landfill cost and the rate is

assumed 9.2% [13]. The landfill cost consists of tipping, transportation, management,

55

and treatment fees. Since the accurate data is not available for this present research, the

landfill costs in this example are assumed based on the data given in [12]. Considering

that PC as a whole contains hazardous material, its landfill cost is significantly higher

than that of the municipal waste. Note that the tipping fee of a ton waste in Newark area

was $100 in 1984 [12].

Using a LINKER model and disassembly table, we can represent the position structure of

the product design and generate a set of disassembly paths. Figure 5.2 shows two of these

disassembly paths.

In Figure 5.2, " • " represents the part and "— " represents the assembly.

56

Although a disassembly path is similar to the Reverse Fishbone diagram, there are two

differences between these two:

1. A Reverse Fishbone represents the product retirement plan which is set by the

designers and it may not be the best retirement plan for the product. A

disassembly path represents a possible disassembly order from the top to the

bottom. It does not set the disassembly depth and the retirement intent of each

node. The best retirement plan in this path can be obtained by search all the

possible situations. We will discuss how to find the best plan later.

2. A disassembly path shows not only the parts but also all the assemblies.

As we mentioned before, there are five recovery choices for each non-leaf node in the

disassembly path. In Section 4.2 we discussed four of them and the costs related to the

four choices are Cep lacement, C recycle, C ap , and Crecondition• The fifth choice is part re-

manufacturing which means to disassemble the subassembly represented by the node and

recover the children of that subassembly. Its cost is Cremanufactur• The best recovery form of

this node should be the one carries the least cost. If we denote the recovery cost of this

node at level k as C:ecovery , then

57

Equation 5.2 means that the remanufacturing cost of a node at level k is the summation of

all the recovery costs of its children at level k+1 plus the disassembly cost at level k. N is

the number of children.

For example, Let us look at node A6 in disassembly path 5.2 (a). Suppose the costs of

A6, P10 and P11 after the first product lifetime are given in Table 5.2.

Table 5.2 Data for A6, P10 and P11 After the First Product Lifetime

The least cost of P10 and Pll are their reconditioning cost 9.6 and 19.3, respectively. If

the disassemlby cost is 5, the remanufacture cost of A6 is 5+19.3+9.6=33.9. It is less than

any of other three costs. Therefore, the recovery cost of A6 is 33.9 and the recovery intent

of A6 after the first product lifetime is part re-manufacturing.

Table 5.3 shows the data of the three nodes after the third product lifetime. Since time is

longer, the reconditioning costs are higher as shown in Table 5.3.

•	 MN nft 	 " 	 • 	 " 	 •	 " 	 • 	 •,-,Y • 	 • 	 • ■■ 	 •

58

Now the recovery costs of P10 and P11 are 31.6 and 73, respectively based on the

calculation results in the 2nd and 3' d rows in Table 5.3. Thus Cremanufacture of A6 is

5+31.6+73=109.6. We can see that the least cost of A6 changes to material recycle cost,

i.e. 108. Thus, the best recovery intent of A6 is material recycle and the recovery cost is

108. This means that A6 is no longer worthy to be disassembled and the product

disassembly process stops at A6.

If we keep doing the calculation on all the nodes in the disassembly path, we can find the

best recovery intent for each node and the stop node set for this disassembly path.

In order to calculate the result, we need not only the data for each part node but also the

data for each assembly node. Table 5.1 lists the data for all parts and Table 5.4 lists the

data for all the assembly nodes.

Table 5.4 Costs and Rates of Assembly Nodes in Personal Computer

the disassembly path shown in Figure 5.2 (a). Table 5.5 shows the result after the first

59

product lifetime, which is 24 months in this example. Tables 5.6 and 5.7 show the results

after second and third product lifetimes.

As we mentioned before, from one product design we could generate a set of disassembly

paths. Using the above method, we can obtain the best retirement plan and the overall

cost for each of them. The optimal disassembly path for this product design is the one

whose overall cost is the least. Therefore, we can find the optimal retirement plan and

overall environmental impact for each of the product candidates and finally find the best

product design. For example, suppose that a PC only have two possible disassembly

paths, Path A and B, as shown in Figure 5.2 (a) and (b) respectively. We have already

known that the least overall cost for Path A for the first three product lifetime is

249.9+512+782.4=1544.3. We can do the same calculation for Path B. Suppose that its

overall cost in the same time period is 1600. This means Path A is better than Path B and

the best retirement plan is following Path A and going to the stop node set. The overall

environmental impact of this product design in this time period is 1544.3.

Using this method, we can obtain all the overall environmental impacts of the design

candidates and therefore, we can find the best design.

Table 5.5 Retirement Plan of Personal Computer after the First Product Lifetime

60

Table 5.6 Retirement Plan of Personal Computer after the Second Product Lifetime

61

Table 5.7 Retirement Plan of Personal Computer after the Third Product Lifetime

62

CHAPTER 6

COMPUTER AIDED TOOL IMPLEMENTATION

6.1 Ideal Computer Aided DFE Tool

We should not assume that all the designers are DFE experts. An ideal computer aided

DFE tool can support designers to implement DFE transparently. The data input and

product layout representation should be similar to the standard CAD tools which are

commonly used by designers.

There are three key issues in the development of a DFE tool. The first one is the import of

design information. The information needed to evaluate a product layout, in a general

case, includes

• the structure of a product,

• the material or type of each part in the product,

• each connection method, and

• manufacturing processes.

For simple products which just have a few components, designers can input all the

information by drawing the structures and filling out each part information form.

However, for a complicated product, this process becomes impractical. One solution is to

develop an import system which can read all the data from the product design layout

database of some standard CAD tool. Another solution is to integrate the DFE module

into the standard CAD tool which lets designers implement DFE directly in their design

process.

63

64

The second issue is the environmental impact assessment tool which supports transferring

the standard product information and its environment impact into cost domain so that

designers can evaluate different aspects of their design using indexes in one single

domain. There are two main parts in this tool, which are the environmental impact

assessment method and the environmental impact database. This database is also a

knowledge base which is based for one to develop design improvement suggestion

systems.

The third issue is the optimal design search method. As we mentioned before, there are

three steps in optimal design search. The first step is to generate design candidates.

Currently this task relies on designers themselves. The second step is to generate

disassembly paths. From each product design layout generated in the first step, a DFE

tool should automatically generate all the possible disassembly paths. The third step is to

generate and find the optimal retirement plan for each disassembly path.

6.2 Tool Implementation

Currently, a computer aided tool is under development to demonstrate our model and

method. It is developed on PC Windows 95 platform using Object-Oriented method and

Microsoft Visual C++ 4.0 IDE. The coding follows the Microsoft Application Frame and

is supported by Microsoft Foundation Class Library (MFC) 4.0.

Among the three steps we just discussed, we have implemented the third one. Currently,

an automatic disassembly path generation algorithm is still under development. Our

automatic optimum search starts from a disassembly path and designers have to input the

65

product information by filling out all the part forms one by one according to their position

order. Figure 6.1 shows one of such input forms.

To represent a disassembly path, first we define a part class. The data members of the

class include:

66

• Name: the part name;

• Part ID.: each part is numbered according to its position order;

• Parent ID.: If a part could be disassembled into several subparts, we call the

subparts as children of the part. .The part is the parent of these subparts;

• New Part Cost;

• Landfill Cost;

• Connection Type: According to the disassembly difficulty, we set four types of

connections. This data member is belong to non-leaf (parent) node;

• Material Recycle Cost;

• Reconditioning Cost;

• Failure Rate k; and

• Out-of-date Rate.

All the information above can be obtained from the input form as shown in Figure 6.1.

Each part in a product is an object of this class. Using the C++ Array Template, we can

organize them as an array. The disassembly order information is represented by the parent

part No. data member.

Once we have all the information, we can follow the following algorithm to find the

optimal retirement plan on this disassembly path.

Step 1: Calculate the C	 for each node based onC rep e 	 Cmaterial recycle , Crecondition

Equations (1), (2), and (4). Set the recovery cost of each node as the least

of the three costs of that node. Move the node pointer to the end of Array.

Step 2: If this node is a leaf node, go to Step 3. Otherwise, add disassembly cost

to part re-manufacturing cost. If remanufacturing cost is less than

recovery cost, set recovery cost as re-manufacturing cost.

Step 3: Add recovery cost of this node to the part remanufacturing cost of its

parent and move up one node.

Step 4: If not finished, go to Step 2. Otherwise go to Step 5.

Step 5: Move down from the top node and set the node as a stop node if the its

recovery cost is not equal to its re-manufacturing cost.

Step 6: finished.

The algorithm flow chart is shown in Figure 6.2.

67

Figure 6.2 Optimal Retirement Plan Search Algorithm Flow Chart

CHAPTER 7

CONCLUSION

7.1 Contributions of this Thesis

Product design is the most important stages in reducing product environmental impacts

and conserving precious environmental resource. The design of a product determines its

recovery system. This thesis discusses the concept Design For Environment (DFE) and

the method of evaluating a product recovery system. The ideas and results of this thesis

are helpful for designers to improve their product design with environmental issues

considered.

The contributions of this thesis are summarized as follows:

1. It introduced the concept of product design based on candidate sets and

indirect design improvement.

2. It proposed the method of disassembly path which can capture the product

disassembly features and automatically find the best product retirement plan

based on each disassembly path.

3. It introduced the concept of time varying cost and builds a multi-lifecycle

product recovery model based on this concept.

4. It defined the Multi-lifecycle part lifetime. The part lifetime begins at the

manufacture of the part and ends at the time when the part is material-recycled

or landfilled. Among the four recovery choices, which choice is the best for a

retired part depends on the comparison of the costs related to the four choices.

69

70

5. It applied the proposed method to a monitor and PC to decide their part life

times and costs given their new part, landfill, reconditioning, and residual

material costs and the part degrading and out-of-date rates.

6. It discussed the components of a Computer Aided DFE Tool.

7. A PC Windows 95 based Software tool is partially developed to demonstrate

our method and model.

7.2 Limitations and Future Research

The improvement of product design could be done in many levels. The optimization can

be performed at the levels of part, assembly, product, and product set. In the low level

optimization, i.e., the part selection, the problem is clear and we can well define a

mathematical programming model to find a solution. In the higher level, i.e. product

structure, the activity of improvement becomes more complicated. This thesis has not

discussed how to model product structure improvement. Research is needed to deal with a

complex electronic product to explore the applicability of our model and method. We also

hope to improve our model and method by giving more consideration at the higher levels.

Currently, a method which can reasonably translate product environmental impact into

cost is still not available. Based on the research results on the environment related

disciplines, such a method to support our model needs to be developed.

Some ideas proposed in this thesis, such as product design based on candidate set and

DFE design suggestion system, are not well developed. We will continue the research on

these ideas.

71

Much work should be directed to development of a complete computer aided DFE tool

with a more friendly interface to a user. A product design representation import system

and automatic disassembly path generation algorithm are needed. Embedding our DFE

tool as a module into standard CAD tools should be performed.

APPENDIX

SOFTWARE SOURCE CODE

//
// //
// File Name:	 InputDialog.h //
// //
// Description: The file is the definition of the class InputDialog //
//	 The dialog is used to input the product lifetime //
// //
// Update date: 10/19/1996 //
// //
//

///
// ClnputDialog dialog

class ClnputDialog : public CDialog

Construction
public:

ClnputDialog(CWnd* pParent = NULL); // standard constructor

// Dialog Data
//{ {AFX_DATA(CInputDialog)
enum { IDD = IDD_TIMEINPUT };
DINT m_nTime;
//} I AFXDATA

// Overrides
// ClassWizard generated virtual function overrides
//{ {AFX_VIRTUAL(CInputDialog)
protected:
virtual void DoDataExchange(CDataExchange* pDX);
//I I AFX_VIRTUAL

// Implementation
protected:

// Generated message map functions
//{ {AFX_MSG(ClnputDialog)

// DDX/DDV support

72

// NOTE: the ClassWizard will add member functions here
//I }AFX_MSG
DECLARE MESSAGE MAP()

1•
I

////0//////////////0/0///000////////////////////8///////00/////////////////////////////////0
// //
// File Name: 	 InputDialog.cpp //
// //
// Description: The file is the implementation of the class InputDialog //
// 	 The dialog is used to input the product lifetime //
1/ 	 The default value is 24 (months) //
// //
// Update date: 10/19/1996 //
// //
//

#include "stdafx.h"
#include "PT.h"
#include "InputDialog.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS FILE
static char THIS_ FILE[] = FILE_ ;
#endif

///
// ClnputDialog dialog

CInputDialog::CInputDialog(CWnd* pParent /*=NULL*/)
: CDialog(CInputDialog::IDD, pParent)

//{ {AFX_DATAINIT(CInputDialog)
m_nTime = 24;
//} AFX_DATAINIT

}

void CInputDialog::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
{AFX_DATA MAP(CInputDialog)

DDX_Text(pDX, IDC_PTIME, mnTime);

'7'3

//} } AFX_DATAMAP
1
}

BEGINMESSAGE_MAP(CInputDialog, CDialog)
//{ {AFX_MSG_MAP(ClnputDialog)

// NOTE: the ClassWizard will add message map macros here
//} IAFX_MSG_MAP

END MESSAGE MAP()

///
// ClnputDialog message handlers

74

// //
// File Name: MainFrm.h //
// //
// Description: The file is the interface of the CMainFrame class //
//	 It is the main window of the Application //
// //
// Update date: 10/19/1996 //
// //
//

///

class CMainFrame : public CFrameWnd
{

protected: // create from serialization only
CMainFrame();
DECLARE_DYNCREATE(CMainFrame)

// Attributes
public:

// Operations
public:

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CMainFrame)
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
virtual void ActivateFrame(int nCmdShow);
//} IAFX_VIRTUAL

// Implementation
public:

virtual —CMainFrame();
#ifdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif

protected: // control bar embedded members
CStatusBar m wndStatusBar;
CToolBar mwndToolBar;

75

76

END MESSAGE_MAPO

static UINT indicators[] -
{

ID SEPARATOR,	 // status line indicator
ID INDICATOR CAPS,
ID INDICATOR NUM,
ID INDICATOR SCRL,

} ;

///
// CMainFrame construction/destruction

CMainFrame:: CMainFrame()
{

// TODO: add member initialization code here

}

CMainFrame::—CMainFrame()
{

}

int CMainFrame::OnCreate(LPCREATESTRUCT 1pCreateStruct)

{

if (CFrameWnd::OnCreate(1pCreateStruct) 	 -1)
return -1;

if (!m_wndToolBar.Create(this)
!mwndToolBar.LoadToolBar(IDR_MAINFRAME))

{

TRACE0("Failed to create toolbar\n");
return -1;	 // fail to create

}

if 0 m_wndStatusBar.Create(this) II
!mwndStatusBar.SetIndicators(indicators,
sizeof(indicators)/sizeof(UINT)))

TRACE0("Failed to create status bar\n");
return -1;	 // fail to create

// TODO: Remove this if you don't want tool tips or a resizeable toolbar
m_vvndToolBar.SetBarStyle(m_wndToolBar.GetBarStyle()

77

,7n

class CPart:public CObject
{

DECLARE SERIAL(CPart)
public:

CString m_strName;
CString m_strConnectType;

UINT m nID;
UINT mnParentID;

int mnChildNumber; 	 //child number is limited in 5;

UINT m nChildID[5];

int mnCostRG;
int m_nCostRF;
int mnCostLandfill,
int mnCostNew,
int mnCostMR;	 -

double mfRateDate;
double m_fRateFailure;
double rnfCostR,
double m_fCostM;
double m_fCostC;
double mfCostP;
double minCost;

BOOL IsLeaf;
BOOL IsStopNode;

CPart()
{

m_nID= 1 ;
m_nParentID=0;
m_nChildNumber=0;

for(int j=0 ;j <5 ;j++){
m_nChildID[j]=0;

}

m_nCostRG=0;
mnCostRF=0;
m_nCostLandfill=0;
m_nCostNew=0;
m_nCostMR=0;
m_fRateDate=0.0;
m_fRateFailure=0.0;
mfCostR=0.0;
m_fCostM=0.0;
mfCostC=0.0;
mfCostP=0.0;

}

CPart(const char* szName, UINT nID, UINT nParentlD, long nCostNew, long
nCostMR, long nCostLandfill

, long nCostRG, long nCostRF, double fRateDate, double fRateFailure,
const char* szConnectType):m_strName(szName)

m_strConnectType=szConnectType;
mnID=nID;
rnnParentID=nParentID;
m_nCostNew=nCostNew,
mnCostRG=nCostRG;
m_nCostRF=nCostRF;
m_nCostLandfill=nCostLandfill;
mnCostMR=nCostMR,
m_fRateDate=fRateDate;
mfRateFailure=fRateFailure;

}

CPart(const CPart& s):m_strName(s.m_strName){
m_strConnectType=s.m_strConnectType,
m_nID=s.m_nID;
m_nParentID=s.m_nParentID;
m_nCostNew=s.m_nCostNew;
mnCostMR—s.m_nCostMR;

80

return FALSE;
}

}

BOOL operator !=(const CPart& s) const{
return !(*this==s);

}

void CPart::Serialize(CArchive& ar)
{

if (ar.IsStoring())1
ar << m_strName << (long)m_nCostNew<<

(long)m_nCostLandfill
<< (long)m_nCostMR << (long)m_nCostRG <<(

long)m_nCostRF
<< m_fRateFailure<<

m_fRateDate<<m_strConnectType<<m_nID
<<m_nParentID;

else {
ar >> m_strName>> (long&)m_nCostNew>>

(long&)m_nCostLandfill
>> (long&)m_nCostMR>> (long&)m_nCostRG >>

(long&)m_nCostRF
>> m fRateFailure >>

m_fRateD ate>>m_strConnectType>>m_nID
>>mnP arentl D ;

}

#ifdef DEBUG
void Dump(CDumpContext& dc) const;

#endif

};

typedef CTypedPtrArray<CObArray, CPart*> CPartArray;

//
/1 //
// File Name:	 Part.cpp //
// //
// Description: The file is the implementation of the class part. //
//	 The method to operate the data members can be put in this file //
// //
// Update date: 10/19/1996 //
/1 //
//

82

#include "StdAfx.h"
#include "part.h"
IMPLEMENT SERIAL(CPart, CObject,0)

#ifdef DEBUG
void CPait:Dump(CDumpContext& dc) const

CObject::Dump(dc);
dc<<" \nmstrName="<<mstrName;

#endif

83

84

//th//
//
// File Name: PT.h
//
	

//
// Description: The file is the defination of the class PT. 	 //
//	 It defines the class attributions for the application. 	 //
//	 //
// Update date: 10/19/1996 	 //
//	 //
///

#ifndef AFXWIN_H
#error include 'stdafx.h' before including this file for PCH

#endif

#include "resource.h" 	 // main symbols

///
// CPTApp:
// See PT.cpp for the implementation of this class
//

class CPTApp : public CWinApp

{

public:
CPTApp(),

// Overrides
// ClassWizard generated virtual function overrides
//{ AFX_V IRTUAL (CP TApp)
public:
virtual BOOL InitInstance();
//I I AFX_VIRTUAL

// Implementation

//I {AFX_MSG(CPTApp)
afx_msg void OnAppAbout();

// NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code !

//IIAFX_MSG
DECLARE_MESSAGE_MAPO

85

// Standard print setup command
ON_COMMAND(ID_FILE_PRINT_SETUP, CWinApp::OnFilePrintSetup)

END MESSAGE MAP()

///
// CPTApp construction

CPTApp:: CPTApp()
{

// TODO: add construction code here,
// Place all significant initialization in Initlnstance

}

//////////////////////// ///
// The one and only CPTApp object

CPTApp theApp;

///
// CPTApp initialization

BOOL CPTApp::InitInstance()
{

// Standard initialization
// If you are not using these features and wish to reduce the size
// of your final executable, you should remove from the following
// the specific initialization routines you do not need.

#ifdef _AFXDLL
Enable3dControls(); 	 // Call this when using MFC in a shared

DLL
#else

Enable3dControlsStatic();	 // Call this when linking to MFC statically
#endif

SetRegistryKey("Inside Visual C++");
LoadStdProfileSettings(); // Load standard INI file options (including MRU)

// Register the application's document templates. Document templates
// serve as the connection between documents, frame windows and views.

CSingleDocTemplate* pDocTemplate,
pDocTemplate = new CSingleDocTemplate(

IDR_MAINFRAME,
RUNTIME_CLASS(CPTDoc),
RUNTIME_CLASS(CMainFrame), // main SDI frame window

86

RUNTIME CLASS(CPTView));
AddDocTemplate(pDocTemplate);

// Parse command line for standard shell commands, DDE, file open
CCommandLineInfo cmdInfo;
Parse CommandLine(cmdlnfo);

// Dispatch commands specified on the command line
if (!ProcessShellCommand(cmdInfo))

return FALSE;

return TRUE;
}

///////////////////////// //
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{

public:
CAboutDlg();

// Dialog Data
//{ {AFX_DATA(CAboutD1g)
enum IDD = IDD ABOUTBOX I;
//} AFXDATA

// ClassWizard generated virtual function overrides
//{ {AFX_VIRTUAL(CAboutD1g)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//I I AFX_VIRTUAL

// Implementation
protected:

//I {AFX_MSG(CAboutD1g)
// No message handlers

//}) AFX_MSG
DECLARE_ MESSAGE MAP()

1;

CAboutD1g::CAboutD1g() : CDialog(CAboutD1gADD)
{

//{ { AFXDATA_TNIT(CAboutD1g)
//1)AFX_DATAINIT

87

0 0

RC)

#ifdef DEBUG
virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif

protected:

// Generated message map functions
protected:

//{(AFX_MSG(CPTDoc)
afx_msg void OnEditClearAllQ;
afx msg void OnUpdateEditClearAll(CCrndUI* pCmdUI);
afx msg void OnUpdateFileSave(CCmdUI* pCmdUI);
afx_msg void OnReportQ;
//afx_msg void OnUpdateReport(CCmdUI* pCmdUI);
//} }AFX_MSG
DECLARE_ MESSAGE MAP()

//
// //
II File Name:	 PTDoc.cpp //
// //
// Description: The file is the implementation of the CPTDoc class //
//	 It define the storage behavior of the application //
// //
// Update date: 10/19/1996 7/

// //
///7//

#include "stdafx.h"
#include "PT.h"

#include "part.h"
#include "ReportDialog.h"
#include "InputDialog.h"
#include "PTDoc.h"
#include "math.h"

#ifdef DEBUG

90

91

92

93

ri A

if(! stopFlag) {

stopNodeName="No stop";

CReportDialog dl/;
dlg.m_strStopNode=stopNodeName;
dig.m_fCostFinal=(rn_partArray.GetAt(1))->minCost;
dlg.m_pArray=&m_partArray;
int ret=d1g.DoModal();

96

97

public:
virtual BOOL PreCreateWindoW(CREATESTRUCT& cs);
virtual void OnlnitialUpdateO;
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
virtual void OnUpdate(CView* pSender, LPARAM Mint, CObject* pHint);
virtual BOOL OnPreparePrinting(CPrintlnfo* pInfo);
virtual void OnBeginPrinting(CDC* pDC, CPrintlnfo* pInfo);
virtual void OnEndPrinting(CDC* pDC, CPrintlnfo* pInfo);
virtual void OnPrint(CDC* pDC, CPrintlnfo*);
//I AFX_VIRTUAL

// Implementation
public:

virtual —CPTView();
#ifdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif

protected:

// Generated message map functions
protected:

//{{AFX_MSG(CPTView)
afx_msg void OnCommandHome();
afx_msg void OnUpdateCommandHome(CCmdUI* pCmdUI);
afx_msg void OnCommandEndO;
afx_msg void OnUpdateCommandEnd(CCmdUI* pCmdUI);
afx_msg void OnCommandNextO;
afx_msg void OnUpdateCommandNext(CCmdUI* pCmdUI);
afx_msg void OnCommandPrev();
afx_msg void OnUpdateCommandPrev(CCmdUI* pCmdUI);
afx_msg void OnCommandDel();
afx_msg void OnCommandIns();
afx_msg void OnClear();
//}}AFX_MSG

protected:
virtual void GetEntry(int position);
virtual void InsertEntry(int position);
virtual void ClearEntry();

DECLARE MESSAGE MAP()

98

1 •

IIIIIIIIIIIIIIIIII///11/1111111111111111111111111111111111111/1111IIIIIIIIIIIIIiill 11 1 1, 1 1, 1 , 1 ;;;;; I ttttttttt 1111111/111

#include "stdafx.h"
#include "PT.h"

#include "part.h"
#include "PTDoc.h"
#include "PTView.h"

#ifdef DEBUG
#define new DEBUG_ NEW
#undef THIS FILE
static char THIS_ FILE[] = FILE •
#endif

///
// CPTView

IMPLEMENT DYNCREATE(CPTView, CFormView)

BEGIN_ MESSAGE MAP(CPTView, CFormView)
//{ {AFX MSG MAP(CPTView)
ON COMMAND(ID PART HOME, OnCommandHome)
ON_UPDATE_COMMANDUI(ID_PART_HOME, OnUpdateCommandHome)

100

ON COMMAND(ID PART_END, OnCommandEnd)
ON_UPDATE COMMAND UI(ID PARTEND, OnUpdateCommandEnd)
ON COMMAND(ID PART_NEXT—, OnConunandNext)
ON1UPDATE COMMAND UI(ID PART NEXT, OnUpdateCommandNext)
ON_COMMAND(ID PART_PREV, OnCommandPrev)
ON_ UPDATE COMMAND_UI(ID PART_PREV, OnUpdateCommandPrev)
ON COMMAND(I]) PART DEL,OnCommandDel)
ON COMMAND(ID PART INS,OnCommandIns)
ON 13N CLICKED(IDC CLEAR, OnClear)

//I IAFX_MSG_MAP
// Standard printing commands
ON COMMAND(ID FILE PRINT, CFormView::OnFilePrint)
ON COMMAND(ID FILE PRINT_DIRECT, CFormView::OnFilePrint)
ON COMMAND(ID FILE PRINT PREVIEW,

CFormView::OnFilePrintPreview)
END MESSAGE MAP()

111,111111111111111111111111111111
// CPTView construction/destruction

CPTView::CPTView()
: CFormView(CPTView::IDD)

{

TRACE("Entering CPartView constructor\n");
//{ {AFX_DATAJNIT(CPTView)
m_strName = _T("");
mnCostNew = 0;
m_nCostRF = 0;
mnCostMR = 0;
mnCostLandfill = 0;
mnCostRG = 0;
m_nID = 1;
mfRateDate = 0.0;
mfRateFailure = 0.0;
m_strConnectType = _T("");
mnParentID = 0;
mposition=0;
//} IAFX_DATAINIT
// TODO: add construction code here

}

CPTView::—CPTView()
{

1 Ai

1 A 1

void CPTView: :OnUpdateCommandHome(CCmdUI * pCmdUI)

l03

104

{

pCmdUI->Enable((m_position>1) && (rn_position<=m_pArray->GetSize0-1)
);

void CPTView::0nUpdateCommandEncl(CCmdUI* pCmdUI)

{

pCmdUI->Enable((mposition<=m_pArray->GetSize()-2)&&(m_position>=0));

}

void CPTView::OnUpdateCommandPrev(CCmdUI* pCmdUI)

.t

pCmdUI->Enable((m_position>1)&&(m_position<=mpArray->GetSize()-1));

}

void CPTView::OnUpdateComrnandNext(CCmdUI* pCmdUI)
{

pCmdUI->Enable((mposition>=0) && (mposition<=mpArray->GetSize()-2)
);

}

void CPTView::OnInitialUpdate()
{

TRACE("Entering OnInitialUpdate\n");
CFormView::OnInitialUpdate();

// TODO: Add your specialized code here and/or call the base class

}

void CPTView::OnClear()
{

// TODO: Add your command handler code here
TRACE("Entering Onclear\n");
ClearEntry();

}

void CPTView::GetEntry(int rnposition)
{

if ((m_position<=rn_pArray->GetSize0-1)&&(m_position>=1))

CPart* pPart=mpArray->GetAt(rn_position);
m_strName=pPart->m_strName,
m_strConnectType=pPart->m_strConnectType,
m_nID=pPart->m_nID;
m_nParentID=pPart->m_nParentID;
m_nCostNew=pPart->m_nCostNew;
m_nCostMR=pPart->m_nCostMR;
m_nCostRG=pPart->m_nCostRG;
m_nCostRF=pPart->m_nCostRF;
m_nCostLandfill=pPart->m_nCostLandfill;
m_fRateFailure=pPart->m_fRateFailure;
m_fRateDate->pPart->m_fRateDate;

}

else {
ClearEntry();

}

UpdateData(FALSE);
}

void CPTView::InsertEntry(int position)
{

if (UpdateData(TRUE))1
CPart* pPart=new CPart;
pPart->m_strName=m_strName;
pPart->m strConnectType=m_strConneetType,
pPart->m_nID=m_nID;
pPart->m nParentID=m nParentID;
pPart->m nCostNew=m_nCostNew;
pPart->m_nCostMR=m nCostMR;
pPart->m_nCostLandfill=m_nCostLandfill;
pPart->m_nCostRF=m_nCostRF;
pPart->m_nCostRG---m nCostRG;
pPart->m_fRateFailure=m_fRateFailure;
pPart->m_fRateDate=m fRateDate;
m_pArray->InsertAt(++in_position,pPart);

}

}

void CPTView::ClearEntry()
{

m_strName="";
m_strConnectType="";
m_nID=1;
m_nParentID-0;
m_nCostNevv=0;

105

mnCostMR=0;
m nCostLandfill=0;
mnCostRF----0;
mnCostRG=0;
mfRateFailure=0;
mfRateDate=0;

UpdateData(FALSE);
((CDialog*) this)->GotoDlgCtrl(GetDlgltem(IDC NAME));

}

void CPTView::OnUpdate(CView* pSender, LPARAM 1Hint,CObject* pHint)

TRACE("Entering OnUpdate\n");
m_pArray—GetDocument()->GetArray();
m_position=0;
GetEntry(m_position);

106

107

/11/1/1/////1/1////////////////////////////11//1/1/1///////////////////////////////////////1/N/11/11/1/1/1////////////
// /1
II File Name: ReportDialog.h
/1
// Description: The file is a header file. It is the defination of the class 	 //
//	 ReportDialog	 I/
1/	 The dialog is used to output the result

	
//

//
// Update date: 10/19/1996

	
/1

/I
11

H111
// CReportDialog dialog

class CReportDialog : public CDialog

{
// Construction
public:

CReportDialog(CWnd* pParent = NULL); // standard constructor

// Dialog Data
//{ {AFX_DATA(CReportDialog)
enum { IDD = IDD_REPORT };
double m fCostFinal;
CString	 m_strStopNode;
ClmageList m_imageList;
CPartArray* m_pArray ;
//} IAFXDATA

// Overrides
// Class -Wizard generated virtual function overrides
//{{AFX VIRTUAL(CReportDialog)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//} IAFX_VIRTUAL

// Implementation
protected:

// Generated message map functions
//{ {AFX_MSG(CReportDialog)
virtual void OnOKO;

virtual BOOL OnInitDialog();
void insertNode(UINT x,TVINSERTSTRUCT* ptv, CTreeCtrl* pTree);
//I }AFX_MSG
DECLARE MESSAGE_ MAP()

111/111111111/81111111/1111111111111111111/1111111111111111//111II/111/11111111
/1
// File Name:	 ReportDialog.cpp
//
// Description: The file is the implementation of the class ReportDialog //
//	 The dialog is used to output the result //
// //
// Update date: 10/19/1996 //
/1 //

#include "stdafx.h"
#include "PT.h"
#include "part.h"
#include "ReportDialog.h"

#ifdef _DEBUG
#define new DEBUG_ NEW
#undef THIS FILE
static char THIS FILED = _FILE, ;
#endif

///
// CReportDialog dialog

CReportDialog::CReportDialog(CWnd* pParent /*=NULL*/)
: CDialog(CReportDialog::IDD, pParent)

//{ {AFX_DATA INIT(CReportDialog)
miCostFinal = 0.0;
m_strStopNode = _T("");
//} I AFX_DATA

}

void CReportDialog::DoDataExchange(CDataExchange* pDX)
{

108

CDialog::DoDataExchange(pDX);
//{ {AFX_DATA_MAP(CReportDialog)
DDX_Text(pDX, IDC_FINALCOST, m JCostFinal);
DDX_Text(pDX, IDC_STOPNODE, m_strStopNode);
//}}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CReportDialog, CDialog)
//{{AFX_MSG_MAP(CReportDialog)
//} } AFX_MSG_MAP

END MESSAGE MAP()

///
// CReportDialog message handlers

void CReportDialog::On0K0

{

// TODO: Add extra validation here

CDialog::On0K();
}

BOOL CReportDialog::OnInitDialog()
{

CDialog::OnInitDialog();

// TODO: Add extra initialization here
HICON hIcon[3];

m_imageList.Create(16,16,0,0,8);

hIcon[0]=AfxGetApp()->LoadIcon(IDI_RED);
hIcon[0]=AfxGetApp()->LoadIcon(IDI_BLUE);
hIcon[0]=AfxGetApp()->LoadIcon(IDI_GREEN);

for (int n=0 ;n<3 ;n++)
{

m_imageList.Add(hIcon[n]);

}

CTreeCtrl* pTree=(CTreeCtrl*) GetD1gItem(IDC_TREEVIEW1);
pTree->SetImageList(&m_imageList,TVSIL_NORMAL);

//tree structure common values
TV INSERTSTRUCT tvinsert;

109

//

/* strcpy (tvinsert. item.p szText,LP CT S TR(m_pArray->GetAt(1)->m_strName)) ;
tvinsert.item.iImage=1;
HTREEITEM hDad=pTree->Insertltem(&tvinsert);

tvinsert.hParent=hDad;

strcpy(tvinsert.item.pszText,LPCTSTR(m_pArray->GetAt(2)->m_strName)) ;
tvinsert.item.ilmage=2;
HTREEITEM hD=pTree->Insertltem(&tvinsert);

strcpy(tvinsert.item.pszText,LPCTSTR(m_pArray->GetAt(3)->m_strName)) ;
tvinsert.item.iImage=2;
HTREEITEM hDa=pTree->InsertItem(&tvinsert);

*/

insertNode(1,&tvinsert,pTree);
return TRUE; // return TRUE unless you set the focus to a control

I/ EXCEPTION: OCX Property Pages should return FALSE
}

void CReportDialog::insertNode(UINT x,TV_INSERTSTRUCT* ptv,CTreeCtrl* pTree)
{

strcpy(ptv->item.pszText,LPCTSTR(m_pArray->GetAt(x)->m_strName));
if(mpArray->GetAt(x)->IsStopNode){

ptv->item.ilmage=2;

}

else {
ptv->item.iImage=1;

}
HTREEITEM hP=pTree->InsertItem(ptv);

if(m_pArray->GetAt(x)->m_nChildNumber==0)

return;

111

}

else {
ptv->hParent=hP;
for(int k=0;k<m_pArray->GetAt(x)->m_nChildNurnber;k++) {

insertNode(mpArray->GetAt(x)->m_nChildID[k],ptv,pTree);

}

}

REFERENCE

1. D. Navin-Chandra, "The Recovery Problem in Product Design", Journal of
Engineering Design, Vol. 5(1), pp. 67-87, 1994.

2. K. Ishii, C. F. Eubanks and P. D. Marco, "Design for Product Retirement and
Material Life-cycle", Materials & Design, Vol. 15, Number 4, pp. 225-233, 1994.

3. G. A. Keoleian and D. Menerey, "Sustainable Development by Design: Review of
Life Cycle Design and Related Approaches", AIR & WASTE , Vol. 44, pp. 645-
668, May 1994.

4. R. W. Chan, D. Navin-Chandra and F. B. Prinz, "A Cost-Benefit Analysis Model of
Product Design for Recyclability and its Application" , IEEE Transactions on
Components Packaging, and Manufacturing Technology-Part A, Vol. 17, No. 4,
pp. 502-507, December 1994. .

5. W. J. Glantschnig, " Green Design: An Introduction to Issues and Challenges", IEEE
Transactions on Components Packaging, and Manufacturing Technology-Part A,
Vol. 17, No. 4, pp. 508-513, December 1994.

6. R. A. Bones, " Design for Reliability " , Engineering, pp. 798-800, Nov. 1976.

7. K. Ishii and B. Lee, "Reverse Fishbone Diagram: A Tool in Aid of Design for
Product Retirement", 1996 ASME Design Technical Conference.

8. T. Amezquita, R. Hammond, M. Salazar, and Bert Bras, "Characterizing the
Remanufacturablity of Engineering System", 1995 Design Engineering Technical
Conferences, Volume 1, pp. 271-278, ASME 1995.

9. J. Emblemsvag and B. Bras, "Activity-based Costing in Design for Product
Retirement", Advances in Design Automation, Vol. 2, pp. 351-361, ASME 1994.

10. J. F. Scheuring, B. Bras, and K. M. Lee, "Effects of Design for Disassembly on
Integrated Disassembly and Assembly Processes", working paper, G.I.T., 1994.

11. Bras and J. Emblemsvag, "The Use of Activity-based Costing, Uncertainty, and
Disassembly Action Charts in Demanufacture Cost Assessments", 1995 Design
Engineering Technical Conference, Vol. 1, pp. 285-292, ASME 1995.

12. G. A. Hazelrigy, Systems Engineering: An Approach to Information-Based Design,
Prentice Hall, Upper Saddle River, New Jersey, 1996.

112

113

13. H. L. Rishel, T. M. Boston, and C. J. Schmidt, Costs of Remedial Response Actions at
Uncontrolled Hazardous Waste Sites, Noyes Publications, Park Ridge, New
Jersey, 1984.

14. T. E. Graedel and B. R. Allenby, Industrial Ecology, Prentice Hall, Englewood Cliffs,
New Jersey 07632.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Review of Computer Aided DFE Methods and Tools
	Chapter 3: Computer Aided Product Design System
	Chapter 4: Part Selection Optimization
	Chapter 5: Product Design Optimization
	Chapter 6: Computer Aided Tool Implementation
	Chapter 7: Conclusion
	Appdendix: Software Source Code
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

