
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

PERFORMANCE EVALUATION OF CEBUS POWER LINE
COMMUNICATION IN THE PRESENCE OF X-10 MODULE SIGNALING

by
Nashwa F. Kamel

A power line of CEBus has great potential towards inexpensive home automation. Both

PLBus and X-10 uses bursts of 120 KHz signals to transmit bits of information on the

power line. However, these two systems are completely incompatible and can conflict

with each other. This thesis presents the first performance evaluation of Power Line

CEBus communication in the presence of X-10 module signaling. The evaluation

included simulation experiments measuring packet delays, message delays, message

throughput, channel throughput and the percentage of messages received in error verses

different loads. Network performance has been confirmed to function well in terms of

delays and throughputs over the practical range of normalized offered load. Also the

percentage of CEBus messages received in error due to a collision with X-10 signals did

not exceed 2% in all our cases.
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CHAPTER 1

INTRODUCTION

Over the past ten years a new industry called "home automation" has been developing.

This industry will create the next generation of consumer appliances. Not only is modern

housing becoming more convenient to live in and more energy efficient, but also the

primary value added by home automation is the integration of products and services for

household use.

In America, several groups have attempted to develop home automation

standards. The most focused of these are CEBus, X-10, Smart House, and Echelon.

The EIA (Electronic Industries Association) has taken the lead with the development of

the CEBus, the Consumer Electronic Bus. In 1984, a committee was made up of such

major companies as Sony, Philips, Panasonic, General instruments, Mitsubishi, RCA, and

Johnson Controls to develop a standard to facilitate communication between home

appliances over various media. The primary goals of the CEBus are : It is retrofittable

which makes it low cost, expandable, ease of operation, use distributed intelligence (have

no central computer in order to operate), have an open architecture which means that any

product manufacture may produce compatible devices on their own. It follows the

ISO/OSI seven layer network model [1].

X-10 was introduced in 1978. It uses power line carrier transmission for system

control. It is a one-way open loop system with limited potential for intelligent home

control [2].

Echelon is similar to CEBus concept. It produced a specialized computer chip

called "LON" which allows multiple devices to communicate through any medium.

However, the primary difference is such issues as protocol, language and the proprietary

standards ( i.e. it is not an open architecture and is owned by the manufacturer) [3].
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Smart House is developed by the National Association of Home Builders

(NAHB). It is specially for new houses where a three multiconductor cable are installed

during original construction in place of conventional house wiring. This cabling system

combines power, control, telephone and coaxial conductors and provides a dedicated six-

wire bus throughout the house [4].

Table 1.1 shows the major characteristic comparison of home automation groups

in the United States.

Table 1.1 Major Characteristic Comparisons of the Home Automation Groups

ITEM CEBus X-10  Smart House  ECHELON

Communication Two-way One-way One-way Two-way

Control Method Distributed Distributed Centralized Distributed

Standards Open (OSI) Proprietary Proprietary Proprietary

Cost May low or not Low High Low or not

Simplicity May not simple Simple in
design and

functionality

Simple May not simple

Installation Easy Special wiring
not required

Special wiring
required

Easy

Flexibility Easy to control
channels

(control and
data) as well

volume control

No changing
channels and no
volume control

Not a do-it-
yourself

system at this
time

Easy to control
channels

(control and
data) as well

volume control



CHAPTER 2

CEBUS ARCHITECTURE AND PROTOCOLS

2.1 CEBus Architecture

CEBus follows the ISO/OSI seven layer network model with some layers being null as

shown in Figure 2.1. Each layer is responsible for one aspect of network communication,

with each layer only able to talk to the layers directly above and below it. By breaking the

model into well defined pieces, implementation and support are greatly simplified.

2.1.1 Application Layer

The highest level is the application layer and is responsible for what the end user

ultimately sees. In the case of CEBus, the highest level defined isn't what the end user

will see, (because in many cases, operation will be transparent or part of the device's

existing functionality), but what the programmer sees. Application layer will also provide

the capability to segment long messages into a sequence of shorter packets, and to

guarantee end-to-end message delivery. These packets are handed down to the lower

layers for transmission. EIA has defined CAL, Common Application Language, to allow

devices to communicate intelligently with each other. The main use of CAL initially will

be for control. The language has numerous commands defined for turning devices on and

off, dimming up and down, opening and closing, plus more complicated actions such as

setting VCR presets or responding to telephone commands. It is actually table driven.

There are tables of constants which have been defined to represent device categories,

commands, action and responses. As new devices are developed by manufactures, the

tables will be expanded (under ETA's control) to include those devices and any new

functions associated with them [5]. There is a header that is added to the front of the

3



Figure 2.1 - Organization of the CEBus
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CAL command to create the Application Protocol Data Unit (APDU), which is then

passed to the network layer.(Figure 2.2)

2.1.2 Transport, Session and Presentation Layers

In the CEBus, the transport, session and presentation layers have been omitted to

minimize packet length and device complexity. Some of their functions are handled by

the application, network and data link layers.

2.1.3 Network Layer

The network layer is responsible for all the functions described in the OSI reference

model except for segmentation and network connections, where segmentation takes place

in the application layer and the flow control of the segments is handled by the network

layer. The Network Protocol Data Unit (NPDU) is added to the front of the information

field passed down by the application level and is shown in Figure 2.2. It performs routing

of NPDU between different media through routers. There are six bits to determine which

media is to receive the packet. Setting a bit in the field results in the corresponding

medium receiving the packet (assuming proper bridge is present to transfer packets across

media). The last two bits determine whether the packet is to be sent using flood routing,

directly routing, or directory routing with a request for a return ID. In flood routing, the

packet is sent to every medium specified in the rest of the field. In directory routing, the

packet is only sent to the medium which hosts the destination node.

2.1.4 Data Link Layer

The function of the data link layer (DLL) is divided into two sublayers : the Medium

Access Control (MAC) Sublayer and the Logical Link Control (LLC) Sublayer.



Figure 2.2 - CEBus is based on the ISO/OSI seven-layer network model.Within that
model, a network is broken into seven functional pieces, each having responsibility

for one part of the network communication.
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Logical Link Control Sublayer (LLC)

The LLC Sublayer provides the interface to the Network Layer, and administers the

transmission and reception of NPDUs. It receives NPDUs where again, a header is added.

The LPDU has a fixed format, and may be of two types of services, unacknowledged or

acknowledged connectionless services. In unacknowledged service, a packet is sent

blindly in the hopes that it makes it to the destination. Acknowledge services makes use

of an IACK and retransmission mechanisms. To transmit a packet, a Logical Link

Control Sublayer Data Unit (LPDU) is generated and passed down to MAC Sublayer,

with its associated control parameters. If acknowledge service is used, the LLC Sublayer

waits for the reception of an JACK and if none arrives in 4 unit symbol time, it initiates a

retransmission of the MAC frame. When a frame is received by the MAC Sublayer, the

LPDU is removed and passed to the LLC Sublayer. The LLC header is then removed

from he LPDU and the remaining NPDU is passed up to the Network Layer.

Medium Access Control Sublayer(MAC)

The LPDU is passed down from the LLC to the MAC Sublayer, where the MAC adds

some more information onto the packet to create the MAC frame. Figure 2.2 shows the

final frame format. The basis in channel access in the CEBus is CSMAICD (Carrier

Sense Multiple access with collision detection). Before transmitting, each node listens to

the network to determine if anyone else is already transmitting. When the network is free,

the node waits a certain amount of time before trying to transmit to avoid collision. Node

start by sending out a preamble. If the preamble survives intact, the rest of the packet is

sent. If a collision is detected, transmission is aborted and the process starts again.

2.1.5 Physical Layer

At the lowest level is the physical layer. It is divided into 2 sublayers: Symbol Encoding

Sublayer and the physical sublayer. This is where CEBus's greatest strength lie since
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several different media are defined in the specification, with the choice of which medium

to use up to the appliance designer. A separate Physical Layer specification exists for

each different medium. All the layers above the physical layer are identical regardless of

medium, so the network is medium independent. Signaling is done on most of the media

by switching between a SUPERIOR and INFERIOR state. Times between changes

determined the information being conveyed. "One" bits last one "Unit Symbol Time"

(UST), "zero" bits last two USTs, end-of-field last three USTs and end-of -packet last

four USTs. Exactly what defines the superior and inferior states depends on the medium.

Also, since characterizing communication speed for a medium in bits per second is

meaningless since one bits and zero bits are of different duration, data rates are usually

defined in terms of "one bits per second" Statistically, the overall throughput in bits per

second is around two-thirds the value of one bits per second.

Table 2.1 Symbol Duration for PL

Symbol Transmission Time

ONE 1001.ts ± 100ms = 1UST

ZERO 2000 ± 200ms = 2UST

EOF 300ps ± 300ms = 3UST

EOP 4001.ts ± 400ms = 4UST

The CEBus specification defines six media which may be used to carry the signal:

power line, twisted pair, fiber optic, coaxial cable, radio frequency, and infrared.

The Symbol encoding sublayer represents necessary interface to the Medium

Access Control (MAC) Layer and the physical layer of the medium. The symbols of a
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frame are given serially to the SE Sublayer for transmission , and also error detection

takes place in this sublayer.

Power Line (PL)

It is likely to be the medium of choice for most appliances meant for retrofit installations

since almost every house and business in the world is wired for electricity. Since power

line is such a harsh environment, with noise and transients the norm, this is the slowest of

all media, but still able to attain a data rate of 10,000 one bits per second with a UST of

1001.ts. Transmission use a 120 kHz carrier to denote a superior state and the lack of a

signal for an inferior state. Unlike X-10 systems which transmits only at the 60 Hz zero

crossing, PLBus transmits regardless of the state of the AC power on the line. As a result,

transmission can still take place even if power isn't present, something that can't be done

with X-10.

Infrared or Single-Room Bus (SRBus)

SRBus is an attempt to have a single hand-held remote that transmits all valid CEBus

commands. Not only the VCR or TV in the same room, but with the proper bridge in

place to transmit the SRBus signals onto PLBus or one of other media it should be able

to control any CEBus-compatible device, including lights all over the house or the door

opener out in the garage. SRBus uses a 100-kHz infrared carrier and pulse-position

signaling to attain a data rate of 10,000 one bits per second. A 54ts burst of IR is used to

indicate a transition from superior to inferior. By using just short pulses, the hand held

remote's life is extend.

Radio Frequency Bus (RFBus)

Currently used predominantly in the security industry, RF is another medium that would

work well in retrofits. FCC regulations limit the strength of RF transmission, so whole
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house coverage may be possible without interfering with the neighbors' CEBus

appliances.

Twisted Pair (TPBus)

TPBus promises to be the most useful high speed medium in the majority of installations.

While most houses don't have an abundance of spare twisted-pair wire running room to

room, some may have extra telephone pairs that could be used in retrofits. TPBus runs at

a data rate of 10,000 one bits per second and uses a ± 125mv peak to peak signal. Similar

to SRBus, TPBus uses 50-1.ts pulses to indicate transition from superior to inferior and

vice versa.

Coax Cable (CXBus)

With the spread of cable TV, many houses are being wired with coax cable for television

distribution. Since, within the house the TV signal isn't using the entire bandwidth of the

cable, there is plenty of room for adding control information plus high-quality audio and

Video to the same cable. CXBus uses the same pulse width modulation used by PLBus,

with a UST of 100 1..t.s, providing a data rate of 10,000 one bit per second.

Fiber Optics (F0Bus)

Fiber Optics are becoming the medium of choice where high data transmission rates and

low noise pickup are important. While some provisions have been made for this medium

in the CEBus protocol definition, very little work has been done on the physical details.

2.1.6 Layer System Management (LSM)

Layer System Management (LSM) is the entity responsible for initializing variables and

processes and for keeping and reporting network status information. The LSM initializes

and maintains peer-to-peer protocol of each layer and provides an interface mechanism
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between non-adjacent layers [1] . The layer System Management is conceptually adjacent

to each of the layers and performs various network administrative functions, i.e.,

• Resetting Layer entity to a known state.

• Reading and setting parameter values indifferent sublayer.

• Notifying different sublayers of significant events in the Layer System

Management or in the other layer of the node.

2.2 Control Channel Signal Encoding

The signal encoding for the PL control channel will be Non Return to Zero (NRZ), Pulse

Width Encoding using the symbols "1", "0", "EOF", "EOP". These symbols are encoded

using a swept frequency carrier coupled to the power line.

The carrier will consist of a sinusoidal waveform that is swept linearly from 203

KHz to 400 KHz for 19 cycles, back to 100 KHz in one cycle, then back to 203 KHz in 5

cycles during a 1001Asec interval (Figure 2.3 a). This carrier sweep period represents the

shortest symbol time (" 1", or unit symbol time). During longer symbol times, the carrier

sweep repeats for a multiple of the unit symbol time[1].

The encoding of the symbols will be performed using the SUPERIOR and

INFERIOR states on the PL medium. During the preamble portion of the CEBus

message, the presence of the frequency swept carrier on the PL will represent the

SUPERIOR state, and the absence of the carrier will represent the INFERIOR state.

During the non-preamble portion of the message, the frequency swept carrier

continually transmitted and encodes the different symbols by reversing the phase of the

carrier sweep. This can be seen clearly in Figure 2.3 b. If SUPERIOROI and

SUPERIOR02 are used to denote different phase versions of the SUPERIOR state, then

they are opposite in phase, regardless of the value of the phase. In the Figure SUPERIOR

01 will be used to denote the phase of the carrier transmitted during preamble.



(b). Non-preamble Encoding Example
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Figure 2.3 - Power Line (PL) Control Channel
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2.3 The CEBus Channel Access

The CEBus channel access protocol is a carrier sense multiple access with contention

detection and contention resolution CSMA/CDCR. The protocol attempts to avoid

contention by delaying a random amount of time after the end of the previous

transmission before attempting channel access. This random wait is based on these

factors:

1. Deference to other channel traffic in SUPERIOR STATE.

2. Prioritization

3. Round-robin queuing

4. Random start.

2.3.1 Superior State Deference

A node, while transmitting as SUPERIOR state on the medium, will dominate any

attempt for the transmission by any other transmitting node in the INFERIOR state. A

node with a frame to transmit will defer its transmission till EOP symbol and a minimum

of 10 unit symbol times. This mandatory channel quiet time allows an immediate

acknowledge or a retransmission be sent without conflict for the channel.

2.3.2 Prioritization

Figure 2.4 illustrates the priority and round-robin queuing delays. The EOP symbols

defines the end of a previous transmission. 10 unit symbol times must follow each EOP

before any new transmission can begin. Following these 10 unit symbol times is a slot of

eight unit symbol times for high priority transmissions. Overlapping with the last four

unit symbol times of that slot is a slot reserved for standard priority transmissions.

Finally, overlapping with the standard priority is a slot reserved for deferred priority. This

scheme allows nodes with higher priority frames to seize the channel before nodes with

lower priority frames.
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2.3.3 Queuing and Round-robin Scheduling

The use of the round-robin scheme within the same priority level ensures that the

contenting nodes have equal opportunity to access the channel. Within each of the eight

unit symbol time priority slots are two subdivisions, four unit symbol times each, for

unqueued and queued transmissions.

Queued State

Once a transmitting node completes a transmission successfully. the node will be placed

in the queued state from an unqueued state . The effect of being in the queuing state is to

repeatedly defer channel access to all unqueued nodes at the same priority level which

have hot yet been able to transmit a message. If the queued node confirms that no other

unqueued nodes attempt to send a message during the 4 UST of its queued state's delay, it

may attempt to send a message, as needed.

Unqueued State

This state occurs in one of the following two circumstances:

1. If it has no message to send and the medium is sensed idle for the maximum channel

access time (26 USTs).

2. If none of the queued nodes complete a transmission during the following 4 UST slots.

2.3.4 Randomization

Because more than one node may be in the same priority level and queuing state, the

probability of contention still exists. A random delay of either 0, 1, 2, or 3 USTs is used

for the control of each node's transmission start time, which results in reduction of

contention probability during each of the priority queuing time slots (Figure 2.4 b). By

this method, the channel throughput can be improved significantly.
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2.4 Contention Detection and Resolution

In the earlier section, steps taken to avoid contention were discussed. However, two or

more nodes may still attempt to transmit a frame during the same time interval. To

ensure reliable communication between Data Link Layers, a means of detecting

contention and resolving in favor of one node is still required.

The use of SUPERIOR and INFERIOR states on the transmission medium

enables contention detection. Any node which senses a SUPERIOR state while sending

an INFERIOR state, will defer its transmission. It becomes aware of the presence of one

or more other transmitting nodes.

Contention will normally occur at the beginning of the transmission. Therefore,

the Preamble, positioned at the beginning of the frame, serves to provide signal pattern

and to shield the information from being lost during contention. The Preamble field is

made up of a random sequence of bits, which is usually a function of the node address

and the number of ONE symbols already transmitted by the node [11

Contention resolution involves the simultaneous transmission of more than one

Preamble. Since the node which drops into the INFERIOR state first is removed from

contention, the wining node is able to transmit free of contention. That is, contention has

to be resolved during the Preamble. Because the Preamble carries no information and its

bits are not included in the calculation of the checksum delivery of the frame will be

successful.

A collision refers to overlapping transmissions after the Preamble. Although

conflict over the channel during any part of the frame after the Preamble constitutes a

breakdown of the channel access method, a sending node will abort its transmission and

defer during any part of its frame. This will result in the reception of a bad packet.

Therefore, a retransmission will be required.
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2.5 Message Failure and Retransmission

Message failure occurs when the received frame does not appear to be valid to the

receiving node. If all required fields of the frame are not received properly, the frame

will be rejected as being a fragment. Also a packet could be rejected if the checksum

performed at the receiving node indicates faulty data. Noise on the channel and

conflicting node transmissions could cause these message failures. Therefore a

retransmission may be needed to guarantee a successful delivery. To increase the

reliability of the network, an Immediate Acknowledgment (IACK) and retransmission

mechanism could be used.

2.5.1 Immediate Acknowledgment (IACK)

The Immediate Acknowledgment mechanism enables the transmitting node to determine

the success or failure across a single medium. It is invoked when the Network Layer

requests acknowledged connectionless service.

When a message is received without errors, and an acknowledgment is requested,

the receiving node forms an IACK frame. The IACK frame is sent out onto the local

medium within 2 USTs of the end of the EOP symbol of the originating frame. By

immediately responding within the minimum channel access time (10 UST), the

receiving node is assured of sending the JACK without having to contend for the channel.

2.5.2 Retransmission

If a negative acknowledgment is received, or if no IACK is received within 6 USTs at the

originating node, then the originating node will begin a retransmission. Immediate

channel access is achieved by beginning the retransmission before the minimum channel

access time elapsed. All nodes counting the minimum wait time will hear the

retransmission and defer to it.



Tran.srnitter detects contention and stops

Figure 2.5 - Resolving Contention with SUPERIOR and INFERIOR states



CHAPTER 3

X-10

X- 10 was introduced in 1978. It uses power line carrier transmission for system control. It

is primitive and doesn't provide integrated network. Its products do not communicate on

a 2-way basis. It presently focuses as modular add-on type devices which are designed to

offer functions of on/off, and level control for resistive and reactive loads.

The X-10 operation is based on 16 letter codes and 32 number codes that are

combined into a single command packet. Of the 32 number codes, 16 represents unit

address and the remaining 16 represents commands like: on, off, ect. A letter code is used

to identify which group of units will receive commands. Combining a letter code with a

unit address results in a total of 256 possible addresses for X-10 units. The structure of

the code is simple. The letter code precedes the number code, which makes nine bits, plus

a start seauence of two bits for a total of eleven bits I -61.(Fiaure 3.1)

The units are first addressed by sending the letter code and unit code. The

operation tells the units to expect a command. Several units on the same letter code can
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be addressed simultaneously by sending multiple unit addresses before one command.

Next a command or series of commands are send to the units. The units remember that

they have been selected even after receiving a command, so as long as no new addresses

are send the same units will receive and carry out subsequent commands.

3.1 X-10 Signal Encoding

X-10 transmission denotes "1" bits with three 1-ms burst of 120-KHz signal and "0" bits

with the lack of this signal. One bit is transmitted at each zero crossing of the 60 Hz

power line frequency. Each bit is transmitted plus its complement side by side. This

aspect is true for all letter code and unit code data bits. The start code uses a different

format. It is always the same two cycles sequence 1110. The transmitter releases a burst

at its own zero crossing, then sends it again 60° later; the second burst coincides with the

zero crossing of the third phase. Then another burst is sent 120° from the first, which

corresponds with the zero crossing of the second phase. This is shown in Figure 3.2.

3.2 Theory of Operation

All receivers are looking for a "start code" before anything else. This start code is

defined as 1110. For the receiver to consider accepting a full transmission it must first

receive the 1110 in 4 adjoining, consecutive zero crossings. Once the start code has been

received, the next four true bits of data are compared to the letter code of the receiver's

address. Should the letter code not match, all further data will be ignored until the

receiver detects another start code. If the letter code match, the next five true bits of data

are compared to the number code. When both the letter and number codes match, the

receiver will await a function code. Time wise, this sequence, so far takes 11 cycles as

shown in Figure 3.3 [6]. For reliable transmission this series is sent twice.

The data string for the command portion of the transmission also begins with a

start code. After that, the code is again checked for true complement relationships and
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Figure 3.3 - X-10 Message takes 11 cycles
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letter code comparison, and if the next 5 bits indicate that this code is the command for

"ON", then the receiver will switch on. A pause of 3 power line cycles is inserted

between the identification data and function data. This means that a full and complete

transmission consists of 47 cycles, or .7833 seconds [7]. (Figure 3.4)



CHAPTER 4

SIMULATION MODEL

4.1 The Simulator

The simulator is briefly described in this chapter. The definitions which govern the

analysis and discussion of the simulation results are introduced here.

The simulator for the system and protocol model for the experiment was written

in C language using C Library functions provided by LANSF [8]. LANSF is a

configurable simulator designed to model communication networks. It can be modified

to simulate the CEBus architecture proposed in the EIA standard released in October

1992 [1], and the X-10 architecture. The attributes of a communication network specified

by LANSF can be divided into two categories. The first category contains static

elements, for example, system architecture and topology. The second category contains

dynamic attributes that describe the temporal behavior of the modeled system, for

example, traffic patterns and performance measures. The simulation involves two tasks,

system and protocol modeling and network configuration. There are four program files

needed to interface LANSF and the CEBus network. They are protocol. c, protocol. h,

options. h, and the input data file.

The protocol. c file specifies the executable part of the protocol specification and

functions which represent protocol process executed by stations (nodes). It also contains

two other subroutines that must be included with the protocol module. The first

in _protocol which initialize the simulator and reads the values of the global

protocol_ specific parameters. The second out protocol which contains the output results

and the protocol-specific input parameters.

The definitions of protocol-specific symbolic constants and the declarations of

non-standard station attributes are found in the protocol. h file.

23



24

The options.h file contains the local options such as precision of numbers, the

type of port variables representing port transmission rates, the length of additional

information carried by messages and packets, the type of transmission link, and the

number of moments to be calculated for standard statistics.

The input data file contains the time section and the configuration section which

define the backbone of the network. It contains the number of stations, the number of

ports per station, the link number and type, the total number of ports and their

transmission rates, the distance matrix describing the distance between the nodes, the

number of messages, the message length, the mean interarrival time, the number of

senders and receivers, and optional flood group or broadcast type messages. The final

segment consists of the exit conditions, namely, the total number of messages to be

generated, the simulation time, and the CPU time limit.

4.2 Network Model and Traffic Patterns

The Power Line (PL) for CEBus operates at a data rate of 10Kb/s. The assumptions used

to develop the model are as follows:

• Independent Poisson arrival process at each node with rate 1 packets/sec;

® The packet length for CEBUS are exponentially distributed with mean L bits.

• The end-to-end propagation delay is ignored, since it is much smaller than the

packet transmission time;

• The bit rate on the channel is c = 10,000 ONE bits/sec.

O There are M nodes on the network.

The total number of nodes, M, utilized in the simulation is 18. There are 9 nodes

for X-10 and 9 nodes for CEBus of which three nodes each for HIGH, STANDARD, and

DEFERRED priority classes. All CEBus generated messages are symmetric for each

priority class, thus each of the 9 nodes employ the same rates(e.g. same arrival time) to

get access to the medium. The CEBus normalized offered load G, which is defined as the
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total offered load normalized by the channel capacity C, is calculated using the following

relationship:

XHLH XSLS XDLD
G=

C

where X,i's and Li's (i=H, S, D, X, for HIGH, STANDARD, and DEFERRED messages

respectively) stand for the arriving rate of packet and packet length for the three types of

messages, respectively. In this simulation study packet length of 300 bits have been

considered for the CEBus packets. The packet arrival rates for all three priorities are

equal. Furthermore, the following studies involve equal message and packet length to

reveal the queuing time effect. The X-10 normalized offered load is calculated using the

following relationship:

XxLx
G=

Cx

where Xx stands for the arriving rate of packets, Lx is the packet length and is equal to 44

bits, and Cx is the bit rate on the channel and is equal to of 60 bits/sec. All the

simulations were run for a total of 5,000 messages.

4.3 Relation between CEBus and X-10 Transmission

CEBus power line uses bursts of 120 KHz signal, know as the SUPERIOR state to send

bits of information, similar to the way X-10 works. CEBus uses a swept frequency carrier

coupled to the power line. The carrier will consists of a sinusoidal waveform that will be

swept linearly from 203 KHz to 400 KHz for 19 cycles, back to 100 KHz in one cycle,

then back to 203 KHz in 5 cycles during a 100p,sec interval. The relation between time

and frequency during one UST is shown in Figure 4.1.
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• The presence of the filter will degrade this calculated probability of interference.

• The robustness of spread spectrum which allows considerable degradation before an

error is declared. So we assumed it to be in the order of 10 -3 .

In our experiment we used a CEBus packet of 300 USTs. Since one UST

takes 100i.tsec, then the whole packet will take 30msec. During this 30msec X-10
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transmits 6 1-ms bursts of 120 KHz. In one millisecond CEBus transmits 10 USTs.

This is shown if Figure 4.2.

I ms

nn
16.7 ms 	 ; 	 ; 	 16i7 ths

(a )

10 UTs

Li
. . .

•
	 . 	, 	 . 	CEBus

4 	

30 ms = 300 USTs

Figure 4.2 - (a) X-10 Transmits 3 1-ms Bursts of 120 Khz
Every Power Line Cycle or every 16.7 ms (b) CEBus

TransmitsUSTs each of 1001.isec Continuously

To estimate the probability of error, POE, in case of a collision between CEBus

and X-10 packets, we may write POE = 1 - PNE, where PNE is the probability of no

error.

PNE = (1-p) n

where n is the number of USTs that collides with the 120 KHz bursts of X-10, n = 6

bursts * 10 USTs per burst = 60, and p is the probability of interference, which was

assumed 10 -3 .

PNE = (1-p)n = (1 - 0.001)60 = (1 - 0.001*60) = 0.94

POE = 1 - PNE = 1 - 0.94 = 0.06
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Therefore the probability of error in CEBus packet in case of collision with X-10

packet is taken as 6% in our experiments.

4.4 Performance Measure and Definitions

The traffic generator in LANSF generates the packets and places them in station's queue.

Once a packet is in a queue it waits until it reaches the top of the queue [9]. When a

packet is on top of its queue it is ready to be transmitted. The time spent in the queue

awaiting transmission is called the queuing time.

The most important measures of network performance are delay of signal

transmission and throughput of the channel. There are two types of delays. They are

message delay and packet delay. Also we can consider two different types of throughput.

Namely, channel throughput and message throughput.

• Message Delay which was measured as the time elapsing from the moment the

message was queued at the sending node to the moment the entire message is

successfully received at the destination (including the message queuing time) [10].

• Packet Delay was measured as the time elapsing from the time the packet became

ready to be transmitted to the moment it is successfully received at its destination

[10].

• Message Throughput was calculated as the ratio of the total number of bits received

at the destination address to the number of bits generated at the source.

• Channel Throughput was measured as the ratio of the total number of information

bits successfully transmitted through the link to the simulation time. This sometimes

is also referred to as effective throughput of a link, in that it includes not only the bits
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that were received on the link, but also the bits that were successfully relayed to some

other link.

4.5 Analysis and Discussion of Simulation Results

4.5.1 CEBus Performance in the Presence of X-10 Modules

(a)Message Delay vs. Load

The message delay vs load at different loads of X-10, namely 0.1, 0.2 and 0.5 normalized

load, are shown in Figure 4.3, 4.4 and Figure 4.5. It is seen in Figure 4.3 that at low

CEBus loads the message delay experience slightly higher delays than in the absence of

X-10 signals. This is due to the fact that at low loads X-10 modules have high chance to

content for the channel and transmit packets which results in some delays in the CEBus

packets. As the load increases, the X-10 have little chance to content for the channel and

their message throughput decreases. The message delay for HIGH priority packets start

to increase rapidly when the normalized offered load reaches around 2.0. For the

STANDARD priority a similar trend is observed when the normalized is greater than

0.85, and for DEFERRED priority it is around 0.6.

Similar behavior is seen in Figure 4.4 and Figure 4.5 when the X-10 load is increased

to 0.2 and 0.5. At low loads the delays are higher in the second case, as compared to the

first case, i.e at higher X-10 loads, message delay were higher. However, at high loads,

both cases give similar results.

(b)Packet Delay vs. Load

Packet delay only includes the channel access plus transmitting time, unlike message

delay which also include the queuing time. Therefore for HIGH priority packets, packet

delay remains small and bounded as observed in previous studies [9]. The packet delay

seems to reach a point of saturation. The saturation occurs when the message throughput
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for STANDARD and DEFERRED priorities already reaches zero, and only HIGH

priorities transmit over the channel. After the load reaches the limit for optimum channel

throughput, then further increases in load does not have any effect. This is specially true

for the packet delay, since it indicates the service time. No matter how large the queue,

the service time remains approximately the same after passing its threshold. However, as

load increases the time spent in the queue increases. Thus, message delay rises with

increases load.

(c)Message Throughput vs. Load

The message throughput for the HIGH, STANDARD and DEFERRED priorities are

shown in Figure 4.11. It is clearly seen that the throughput starts to decrease when the

load rises to 2, 0.85, and 0.6 for the HIGH, STANDARD and DEFERRED priorities

respectively, in agreement with the corresponding observations for message delays.

(d)Channel Throughput vs. Load

The channel throughput vs. normalized offered load in shown in Figure 4.14. It is seen

the channel throughput increases as the load increase, until it reaches a maximum of 0.6,

0.81, and 0.88 for 100 USTs, 300 USTs, and 540 USTs, respectively.

(e) Number of Packets Received in Error

The number of packets received in error increases as the number of X-10 packets

transmitted on the channel increases. However, the percentage of CEBus messages

received in error due to a collision with X-10 signals did not exceed 2% in all our cases.
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CHAPTER 5

CONCLUSIONS

Computer simulation experiments have been carried out to evaluate the performance of

the Power Line CEBus communication in the presence of X-10 module signaling.

In conclusion, a system of 18 nodes with 9 for X-10 modules and 9 for CEBus, 3

for each of the three message priorities, namely, HIGH, STANDARD, and DEFERRED

has been investigated. All the simulation results are a statistical average of 5,000

messages. Performance parameters have been measured, including message delay, packet

delay, message throughput, channel throughput, and packets received in error, all as a

function of the normalized offered load over a wide range of the normalized offered load.

The message delays vs. load in the presence of X-10 modules is compared in 3

cases, namely, 0.1, 0.2 and 0.5 X-10 loads. It is seen that, at low loads, CEBus messages

experience delays. These delays were highest in the third case, i.e. as X-10 load

increases the CEBus message delays were higher. This is due to the fact that X-10 are

much slower than CEBus. CEBus transmit at rates of 10,000 one bits per second while

X-10 transmits at rate of one bit at each zero crossing of the 60 Hz power line frequency.

However, at high CEBus loads, the number of X-10 signals transmitted on the channel

are very small compared to the CEBus messages, and their effect on the CEBus

performance is unnoticeable.

Overall, CEBus network has been confirmed to perform well in terms of delays

and message throughput in the presence of X-10 modules over the practical range of
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normalized offered load. Also, the percentage of CEBus messages received in error due

to a collision with X-10 signals has found to be less than 2% in all our cases. However,

at high loads, substantial performance differences may occur, especially for DEFERRED

messages where their message throughput approaches zero, and only HIGH priority

packets get a chance to transmit.



APPENDIX

SIMULATION RESULTS FOR DIFFERENT PACKET LENGTH

In accordance with the thesis format, most of the figures from the simulations are

included in Appendix A. Namely, figures illustrating different performance measures for

different CEBus packet length have been included.
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