

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

AN INTEGRATED ENVIRONMENT FOR
PROBLEM SOLVING AND PROGRAM DEVELOPMENT

by
Fadi Pierre Deek

A framework for an integrated problem solving and program development environment

that addresses the needs of students learning programming is proposed. Several

objectives have been accomplished: defining the tasks required for program development

and a literature review to determine the actual difficulties involved in learning those

tasks. A comprehensive study of environments and tools developed to support the

learning of problem solving and programming was then performed, covering

programming environments, debugging aids, intelligent tutoring systems, and intelligent

programming environments. This was followed by a careful analysis and critique of

these systems, which uncovered the limitations that have prevented them from

accomplishing their goals.

Next, an extensive study of problem solving methodologies developed in this

century was caiTied out and a common model for problem solving was produced. The

tasks of program development were then integrated with the common model for problem

solving. Then, the cognitive activities required for problem solving and program

development were identified and also integrated with the common model to form a Dual

Common Model for problem Solving and Program Development. This dual common

model was then used to define the functional specifications for a problem solving and

program development environment which was designed, implemented, tested, and

integrated into the curriculum.

The development of the new environment for learning problem solving and

programming was followed by the planning of a cognitively oriented assessment method

and the development of related instruments to evaluate the process and the product of

problem solving. A detailed statistical experiment to study the effect of this environment

on students' problem solving and program development skills, including system testing

by protocol analysis, and performance evaluation of students based on research

hypotheses and questions, was also designed, implemented and the result reported.

AN INTEGRATED ENVIRONMENT FOR
PROBLEM SOLVING AND PROGRAM DEVELOPMENT

by
Fadi Pierre Deek

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Department of Computer and Information Science

October 1997

Copyright © 1997 by Fadi Pierre Deek
ALL RIGHTS RESERVED

APPROVAL PAGE

An Integrated Environment for
Problem Solving and Program Development

Fadi Pierre Deek

Dr. James A. McHugh, Dissertation Advisor 	 Date
Professor of Computer and Information Science, NJIT

Dr. Roxanne Hiltz, Committee Member	 Date
Distinguished Professor of Computer and Information Science, NJIT

Dr. Michael Hinchey, Committee Member 	 Date
Assistant Professor of Computer and Information Science, NJIT

Dr. Peter A. Ng, Committee Member	 Date
Professor and Chair of Computer and formation Science, NJIT

Dr. Wilhelm Rossak, Committee Member	 Date
Assistant Professor of Computer and Information Science, NJIT

Dr. Murray Turoff, Committe Member 	 Date
Distinguished Professor of Computer and Information Science, NJIT

Dr. Thomas Marlowe, Committee Meer	 Date
Visiting Professor of Computer and Information Science, NJIT
and Professor of Mathematics and Computer Science, Seton Hall University

Dr. Howard Kimmel, Committee Member
Professor of Chemistry and
Assistant VP for Academic Affairs / Pre-College Programs, NJIT

Dr. Naomi Rotter, Committee Member 	 Date
Professor of Management, NJIT

BIOGRAPHICAL SKETCH

Author:	 Fadi Pierre Deek

Degree:	 Doctor of Philosophy in Computer and Information Science

Undergraduate and Graduate Education:

® Doctor of Philosophy in Computer and Information Science,
New Jersey Institute of Technology, Newark, NJ, 1997

• Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1986

• Bachelor of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1985

Major:	 Computer and Information Science

Related Publications:

"Tools for Problem Solving and Program Development", Proceedings of the 14th International
Conference on Technology and Education, in press, 1997. (With J. McHugh, and M. Hinchey).

"On the Evaluation of a Problem Solving and Program Development Environment", IEEE
Proceedings of the Frontiers in Education Conference, in press, 1997. (With J. McHugh, R.
Hiltz, N. Rotter and H. Kimmel).

"The Delivery of an Introductoty Course in Computer Science Through the Virtual Classroom",
IEEE Proceedings of the Frontiers in Education Conference, pp. 958-961, 1996. (With M. Deek
and H. Kimmel).

"First Things First: Problem Solving Before Programming", INPUT: A Newsletter for Computer
Science Educators, John Wiley & Sons Inc., Number 3, Winter 1996.

"Instructional Technology: A Tool or a Panacea", Journal of Science Education and Technology,
vol. 4, No. 4, pp. 327-332, 1995. (With H. Kimmel)

"Enhancing the Delivery of Computer Science Instruction for first Year Engineering
Curriculum", Proceedings of World Conference on Engineering Education, pp. 121-124, 1995.
(With H. Kimmel).

"Teaching for Understanding: Redesigning Introductory Courses to focus on the Learner", IEEE
Proceedings of the Frontiers in Education Conference, pp. 336-341, 1994. (With H. Kimmel).

"Educational Reform: Integration of Technologies and Methodologies in Content Areas", IEEE
Proceedings of the 3rd International Conference for Systems Integration, pp. 124-133, 1994.
(With H. Kimmel).

"A Computer-Assisted Instruction System for Testing and Learning", Proceedings of the 10th
International Conference on Technology and Education, pp. 1095-1097, 1993. (With C.
Wingert).

Other Publications:

"The Management of Distance Education Using Computerized Tools for Instruction", Electronic
Proceedings of the 18th International Council for Distance Education World Conference, 10
pages, 1997. (With A. Lippel).

"Technology and Hands-On Strategies for Teaching Science and Mathematics to the Special
Education Population", Journal of Information Technology and Disabilities, vol. 3, No. 2, Article
3, 6 pages, 1996. (with H. Kimmel and L. Frazer).

"ECHOES: A Proposal for Spatializing On-Line Learning Environments", Proceedings of the 8th
International Conference on Systems Research, Informatics and Cybernetics, pp. 143-153, 1996.
(with P. Anders).

"Technology Support for the Enhancement of Science and Mathematics in the Special Education
Population", Proceedings of the 13th International Conference on Technology and Education, pp.
184-186, 1996. (With H. Kimmel and M. Deek).

"Managing Technology Integration and School Districts limitations", Proceedings of the 13th
International Conference on Technology and Education, pp. 187-189, 1996. (With H. Kimmel
and M. Deek).

"Using the System for Educational Learning and Feedback (SELF) in a Sociology Telecourse",
in M.T. Keeton, B. Mayo-Wells, J. Porosky, and B.G. Sheckley (Eds.), Efficiency in Adult
Higher Education: A Practitioners' Handbook, Chapter 7, Case 7.2, pp. 126-129. 1995. (With A.
Lippel)

"A Distance Learning Model for Advising Using Computerized Conftrencing", Academic
Advising (ACAD) Network Electronic Journal, vol. 2, No. 1, article 4, 8 pages, 1995. (With M.
Tress).

"Integration of Simulations with the Internet for Distance Education", Proceedings of 1st LAAS
International Conference on Computer Simulation, pp. 128-135, 1995. (With R. Kushwaha et al.).

"A Multimedia Laboratory and Training Program to Promote Technology Integration in
Elementary Education", Proceedings of World Conference on Educational Multimedia and
Hypermedia, p. 768, 1995. (With H. Kimmel and M. Deek).

v i

"Facilitating Technology Integration in Kindergarten Through Eighth Grade Curriculum",
Proceedings of the 12th International Conference on Technology and Education, pp. 314-316,
1995. (With M. Deek and H. Kimmel).

"An Electronic Model for Advising in a Distance Learning Environment", Proceedings of the
12th International Conference on Technology and Education, pp.680-682, 1995.

"The System for Educational Learning and Feedback (SELF) for Distance Learning",
Proceedings of the 11th International Conference on Technology and Education, pp. 873-875,
1994. (With A. Lippel).

"Changing the Students' Role: From Passive Listeners to Active Participants", IEEE Proceedings
of the Frontiers in Education Conference, pp. 321-325, 1993. (With H. Kimmel).

"A Modular Design for a Telecourse in Computer Science", IEEE Proceedings of the Frontiers in
Education Conference, p. 870, 1993. (With A. Lippel).

"Enhancing Televised Distance Learning Using Computerized Technology", Proceedings of the
Second International Symposium on Telecommunications in Education, pp. 277-279, 1993.
(With T. Terry).

"Teaching Assistants: Ensuring A Quality Experience", IEEE Proceedings of the Frontiers in
Education Conference, pp. 765-769, 1992. (With M. Tress).

"Distance Learning: A Pedagogical Alternative", IEEE Proceedings of the Frontiers in Education
Conference, p. 847, 1992. (With A. Lippel).

"Advising the Off-Campus Learner Via Computerized Conferencing", Proceedings of the
National Issues in Higher Education Conference Series on Quality in Off-Campus Credit
Programs: Bridging the Distance, vol. 40, pp.294-300, 1992. (With M. Tress and M. Maher).

"Implementing an Effective Freshman Teaching Assistant Program: Selection, Training, and
Monitoring", Proceedings of the llth annual Freshman Year Experience Conference: Science
and Technological Education, pp. 11-12, 1992. (With M. Tress).

"Improving Freshman Success Rate Through an Early Warning System", Proceedings of the 11th
annual Freshman Year Experience Conference: Science and Technological Education, pp. 13-14,
1992. (With J. Valyo and M. Tress).

"Maintaining the Momentum of Excellence: The Honors Program at NJIT', Proceedings of the
11th annual Freshman Year Experience Conference: Science and Technological Education, pp.
15-16, 1992. (With D. Donahue and R. Baker).

"Computer-Assisted Advising Relief System", Proceedings of the 8th Annual NACADA Mid-
Atlantic Regional Conference, pp. 5-6, 1992. (With M. Tress).

"Quality Distance Learning for the Quantitative Sciences: A Collaborative Approach",
Proceedings of the 9th International Conference on Technology and Education, pp. 1484-1486,
1992. (With A. Lippel).

vii

Related Presentations:

"Problem Solving and Program Development by Example." Conference on Computer Science
Education in the Secondary Schools, Newark, New Jersey. May 1997.

"Problem Solving and Programming Using Asynchronous Learning Networks." African Virtual
University Inauguration Meeting (Via satellite from NJIT Candid Classroom to education
officials of French speaking African countries), Senegal, Africa. April 1997.

"Introductory Computer Science Sequence: Can We Make it Work?" New Jersey Community
College Computer Consortium (NJCCCC), Annual Fall Meeting, Edison, New Jersey. October
1996.

"Recommendations on Content for H.S. Computer Science Curriculum and Professional
Development." Conference on Computer Science Education in the Secondary Schools, Newark,
New Jersey. May 1996.

"Teaching Methodologies for Problem Solving and Programming." Conference on Computer
Science Education in the Secondary Schools, Newark, New Jersey. May 1995.

Other Presentations:

"Academic Advising for the Virtual University". Sixth Annual New Jersey Advisors Conference,
Newark, New Jersey. June 1997.

"The Emerging Careers and Curricula of Computing". New Jersey Transfer Counselors'
Association (NJTCA), Annual Spring Meeting, Jersey City, New Jersey. May 1997.

"Asynchronous Learning Networks: An Example for Distance Education". Serving The Adult
Collegian (STAC), Annual Meeting, Trenton, New Jersey. April 1997.

"Professional Development for Pre-College Computer Science Education". Third Conference on
Computer Science Education in the Secondary Schools, Newark, New Jersey. May 1997.

"From Pascal to C++: Preparing for the Change in Computer Science Advanced Placement
Courses". Third Conference on Computer Science Education in the Secondary Schools, Newark,
New Jersey. May 1997.

"On-Line Advising Center". Fifth Annual New Jersey Advisors Conference, Jersey City, New
Jersey. June 1996.

"A Report on Computer Science Education in the Secondary Schools". Second Conference on
Computer Science Education in the Secondary Schools, Newark, New Jersey. May 1996.

"Technology and Hands-On Strategies for Teaching Science and Mathematics to the Special
Education Population". llth Annual International Conference on Technology and Persons With
Disabilities, Los Angeles, CA. March 1996.

"Computer Science Education and the ACM Recommendations". First Conference on Computer
Science Education in the Secondary Schools, Newark, New Jersey. May 1995.

viii

"Computer Science as a High School Subject Matter". First Conference on Computer Science
Education in the Secondary Schools, Newark, New Jersey. May 1995.

"Active Learning: Challenges and Discoveries". National Science Teachers Association National
Convention, Philadelphia, Pennsylvania. March 1995.

"Technology and Academic Advising". Third Annual New Jersey Advisors Conference, New
Brunswick, New Jersey. June 1994.

"Applications of The system for Educational Learning and Feedback (SELF)". Conference on
International Distance Education: A Vision for Higher Education, University park, Pennsylvania.
June 1994.

"Distance Learning: Effective Access to College Courses, Enrichment and Professional
Development". Educational Technology Conference, Long Branch, New Jersey. February l994.

"A Report on Using the System for Educational Learning and Feedback (SELF) in a Sociology
Telecourse". Research Seminars on Efficiency in Learning, College Park, Maryland. November
1993.

"The System for Educational Learning and Feedback (SELF): A Computerized Testing and
Tutoring Approach". Technology-Based Engineering Education Consortium Conference,
Melbourne, Florida. November 1992.

"A Telecourse Design Methodology". Eastern Educational Consortium Conference on Distance
Learning, Newark, New Jersey. February 1992.

"Computerizing the Campus". Conference on Technology in the Freshman Year: Computers
Across the Curriculum, New York, New York. May 1992.

"Pedagogical Implications of Freshman Microcomputer Programs". Decision Science Institute
Conference - Innovation Track Symposium, Miami, Florida. October 1991.

ix

Dedicated to

Maura Ann

who made this dissertation possible through love, help and understanding

ACKNOWLEDGMENT

I thank God for providing me with the strength, determination and persistence I

needed to complete this journey.

I offer my gratitude to Dr. McHugh, my advisor, for his extraordinary tutelage

throughout my academic career at NJIT. This began when, as an undergraduate student, I

chose him as my senior project advisor. He guided me into graduate school and offered

me my first teaching job as a TA. I later worked with him on my masters project while

my advisor was on sabbatical leave. Toward the end of my graduate study he offered me

my first full-time teaching job as a Special Lecturer. He continuously encouraged me to

go on and get this degree, and was there at every step of the way. I thank him for being

an excellent advisor, a great mentor, colleague and a friend.

I express my sincere appreciation to my committee members, Dr. Hiltz, Dr.

Hinchey, Dr. Kimmel, Dr. Marlowe, Dr. Ng, Dr. Rossak Dr. Rotter and Dr. Turoff for

their outstanding guidance during this research. I was fortunate to have such diverse

expertise and interest among the committee members. I enjoyed the many hours of

discussions I had with Dr. Kimmel about this research while carpooling to and from

NJIT. I thank Dr. Ng, the Chairperson of the Computer and Information Science

Department, for providing the supporting environment that enabled me to complete this

degree. I am grateful for the unwavering support I received, and continue to receive,

from Dr. Thomas, NJIT Provost, both at the academic and professional levels. I thank

Dr. John Poate, Dean of the College of Science and Liberal Arts, for his support and

interest in my work.

xi

My friend and colleague Bill Anderson, Dean of Admissions at NJIT, read the

dissertation and offered excellent feedback. I thank him for all the support and

encouragement he has given me. I thank Dr. Sol Magzamen of the Academic

Foundations Department at Rutgers-Newark, for providing me with excellent pointers to

the literature on problem solving. I am grateful to Dr. Rose Dios for her careful

explanation of statistical concepts and for her help in interpreting the evaluation results.

Many NJIT students are to be thanked as well. Richard Ordowich for

implementing the SOLVEIT prototype and for his friendship; Michael Butrym,

Farrow, and Yaro Zajac for their excellent comments on current systems. I also thank

fellow doctoral student Raquel Benbunan for sharing research literature and for providing

excellent feedback on the evaluation component of this dissertation. My sincere

appreciation to the three Teaching Assistants for the course: Edward Maybert, Michael

Piccolo, and Tifanie Levy who demonstrated profound dedication to the students and

interest in their teaching responsibilities. A special thanks for Tifanie's efforts in

statistical analysis. Also, a thank you for all the students that I have taught in the first

course on Problem Solving and Programming for over a decade is owed. They were the

inspiration.

I thank my friends, the administrators and support staff in the CIS Department,

Michael Tress, Barbara Harris, Carole Path, Rosemarie Giannetta, and Michelle

Craddock for their encouragement. Michael also read earlier versions of the dissertation

and provided excellent comments. I also thank Ray Bolden, another NJIT friend, for his

caring.

xii

Finally, I am certain that without the support of my family I would not be able to

claim this accomplishment. This is the result of the love and prayers of my parents Pierre

and Therese Deek and the love and encouragement of my brothers Wadih, Bassam, Sami

and Roland Deek. My father-in-law and my mother-in-law John and Nora McShane have

also been a generous source of support and encouragement. My brother-in-law Lawrence

also read the dissertation and made excellent suggestions. My wife Maura, to whom this

dissertation is dedicated, is a continual source of love and sacrifice. She has been there

from day-one and has given unconditional love, help, and understanding. I have the rest

of my life to say "thank you". To our three kids: Matthew, Andrew, and Rebecca I say

"no more going down to the basement to do my homework; at least not every night!".

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 DIFFICULTIES IN LEARNING PROGRAMMING 	 4

1.1.1 Deficiencies in Problem Solving Strategies and Tactical Knowledge 	 4

1.1.2 Ineffective Pedagogy of Programming Instruction 	 5

1.1.3 Misconceptions About Syntax, Semantics and Pragmatics 	 5

1.2 CURRENT SYSTEMS FOR SUPPORTING THE TASKS OF PROGRAM DEVELOPMENT 	 6

1.2.1 Programming Environments 	 6

1.2.2 Debugging Aids 	 8

1.2.3 Intelligent Tutoring Systems 	 8

1.2.4 Intelligent Programming Environments 	 8

1.3 LIMITATIONS OF CURRENT SOLUTIONS 	 8

1.4 PROBLEM SOLVING AND PROGRAM DEVELOPMENT 	 11

1.4.1 Problem Solving 	 11

1.4.2 Program Development 	 12

1.5 THE SOFTWARE PROCESS 	 13

1.5.1 The Software Process and Relationship with Problem Solving Activities 	 15

1.6 THEORY OF PROBLEM SOLVING, COGNITIVE SCIENCE AND RELATIONSHIP TO
SYSTEM SPECIFICATION 	 16

1.6.1 The Specification Oriented Language in Visual Environment for Instruction
Translation 	 17

1.7 EXPERIMENTAL DESIGN 	 19

1.8 RESEARCH CONTRIBUTIONS 	 20

xiv

Chapter	 Page

1.9 DISSERTATION OUTLINE 	 22

2 RELATED RESEARCH: A SURVEY OF ENVIRONMENTS AND TOOLS
FOR LEARNING PROGRAMMING 	 24

2.1 PROGRAMMING ENVIRONMENTS 	 26

2.1.1 Pict 	 29

2.1.2 PECAN 	 .30

2.1.3 SCHEMACODE 	 31

2.1.4 DSP 	 32

2.1.5 AMETHYST 	 33

2.1.6 University of Washington Illustrating Compiler 	 34

2.1.7 BACCII 	 36

2.1.8 ASA 	 37

2.1.9 SUPPORT 	 38

2.1.10 STRUEDI 	 39

2.1.11 Example-Based Programming System 	 40

2.1.12 Software Design Laboratory 	 42

2.1.13 MEMO-II 	 43

2.2 DEBUGGING AIDS 	 44

2.2.1 LAURA 	 45

2.2.2 The Debugging Assistant 	 46

2.2.3 GENIUS 	 48

2.2.4 VIPS 	 49

2.2.5 Lens 	 50

xv

Chapter	 Page

2.3 INTELLIGENT TUTORING SYSTEMS 	 50

2.3.1 The BASIC Instructional Program 	 52

2.3.2 The LISP Tutor 	 53

2.3.3 PROUST 	 55

2.3.4 The ACT Programming Tutor 	 56

2.4 INTELLIGENT PROGRAMMING ENVIRONMENTS 	 57

2.4.1 Bridge 	 58

2.4.2 Graphical Instruction in LISP 	 61

2.4.3 Intelligent Tutor, Environment and Manual for Introductory Programming 	 62

2.4.4 DISCOVER 	 63

2.4.5 Episodic Learning Model Programming Environment 	 65

2.4.6 Capra 	 67

2.4.7 INTELLITUTOR 	 68

2.5 CONCLUSION 	 70

3 ANALYSIS AND CRITIQUE OF EXISTING APPROACHES 	 72

3.1 FUNCTIONAL WEAKNESSES AND PRACTICAL DEFICIENCIES 	 72

3.2 FUNCTIONAL WEAKNESSES 	 73

3.2.1 Absence of Problem Solving/Software Engineering Frameworks 	 74

3.2.2 Overemphasis on Language Syntax 	 79

3.2.3 Inadequate User Interface 	 83

3.2.4 Incomplete Rules-and-Errors Knowledge Bases 	 83

3.2.5 Simplicity of Problem Domain 	 85

3.3 PRACTICAL DEFICIENCIES 	 85

xvi

Chapter	 Page

3.3.1 Limited Classroom Evaluation 	 86

3.3.2 Failure to Integrate the Tools into the Curriculum 	 88

3.3.3 Impede Creativity and Development of Higher Order Thinking Skills 	 89

3.4 SUMMARY 	 91

4 PROBLEM SOLVING, PROGRAM DEVELOPMENT 	 95

4.1 PROBLEM SOLVING 	 95

4.1.1 The Terminology of Problem Solving 	 97

4.1.2 Categories of Problems 	 99

4.2 PROBLEM SOLVING METHODS 	 101

4.2.1 Early Models 	 102

4.2.2 Enhancements to Earlier Models 	 103

4.2.3 Recent Methods 	 106

4.3 A COMMON METHOD FOR PROBLEM SOLVING 	 109

4.3.1 Formulating the Problem 	 110

4.3.2 Planning the Solution 	 111

4.3.3 Implementing the Solution 	 112

4.3.4 Verifying and Presenting the Results 	 113

4.4 PROGRAM DEVELOPMENT 	 114

4.4.1 Program Development Tasks 	 114

4.5 A COGNITIVE MODEL FOR PROBLEM SOLVING 	 118

4.6 A DUAL COMMON MODEL FOR PROBLEM SOLVING AND PROGRAM DEVELOPMENT 	 124

4.6.1 Formulating the Problem 	 125

4.6.2 Planning the Solution 	 130

xvii

Chapter	 Page

4.6.3 Designing the Solution 	 135

4.6.4 Translation 	 139

4.6.5 Testing 	 142

4.6.6 Delivery 	 145

4.7 MONITORING THE PROBLEM SOLVING PROCESS 	 145

4.8 CONCLUSION 	 147

5 AN ENVIRONMENT FOR PROBLEM SOLVING AND PROGRAM
DEVELOPMENT: SPECIFICATIONS FOR THE DUAL COMMON MODEL 	 151

5.1 THE SPECIFICATION ORIENTED LANGUAGE IN VISUAL ENVIRONMENT FOR
INSTRUCTION TRANSLATION 	 152

5.1.1 The Process 	 154

5.1.2 The Tools 	 156

5.2 SOLVEIT ARCHITECTURE 	 158

5.2.1 Tools for Problem Formulation 	 159

5.2.2 Tools for Solution Planning 	 161

5.2.3 Tools for Solution Design 	 162

5.2.4 Tools for Solution Delivery 	 169

5.2.5 Common Tools 	 169

5.3 A WALK THROUGH SOLVEIT 	 171

5.3.1 Formulating the Problem 	 175

5.3.2 Planning the Solution 	 180

5.3.3 Designing the Solution 	 183

5.3.4 Translating the Solution 	 190

5.3.5 Testing the Solution 	 191

xviii

Chapter	 Page

5.3.6 Delivering the Solution 	 192

5.4 IMPLEMENTATION OF SOLVEIT 	 .192

5.5 SUMMARY 	 193

6 EXPERIMENTAL DESIGN: TESTING AND EVALUATION 	 195

6.1 INTRODUCTION 	 195

6.2 SYSTEM TESTING 	 196

6.2.1 User Testing 	 197

6.2.2 Protocol Analysis 	 198

6.3 EVALUATION METHOD 	 199

6.3.1 Hypotheses and Research Questions 	 200

6.3.2 Subjects 	 202

6.3.3 Design 	 203

6.3.4 Instrumentation 	 205

6.3.5 Data Collection 	 207

6.4 ASSESSING THE EFFECT OF THE SOLVEIT ENVIRONMENT ON STUDENTS'
PROBLEM SOLVING AND PROGRAM DEVELOPMENT SKILLS 	 209

6.4.1 Process Measures 	 210

6.4.3 Subjective Measures 	 229

7 EXPERIMENTAL RESULTS AND ANALYSIS 	 235

7.1 DESCRIPTIVE STATISTICS 	 236

7.1.1 Demographic Information from Fall 1996 Semester 	 237

7.1.2 A Comparison of Students in the Control and Experimental Groups 	 238

xix

Chapter Page

7.2 RELIABILITY AND VALIDITY OF PERFORMANCE ASSESSMENT INSTRUMENTS ..238

7.3 TEST OF PROCESS HYPOTHESES 	 240

7.3.1 Results from Fall 1996 Semester 	 241

7.4 TEST OF PRODUCT RESEARCH QUESTIONS 	 246

7.5 TEST OF SUBJECTIVE RESEARCH QUESTIONS 	 259

7.5.1 Results from Fall 1996 Semester 	 261

7.6 PREVIEW OF RESULTS FROM SPRING 1997 SEMESTER 	 264

7.7 SUMMARY OF HYPOTHESES AND RESEARCH QUESTIONS TEST 	 265

8 CONCLUDING REMARKS AND FUTURE WORK 	 268

8.1 SUMMARY OF EVALUATION RESULTS 	 268

8.1.1 A Closer-Look at the Results 	 268

8.1.2 Experimental Problems 	 270

8.1.3 Effects Related to the Experimental Design 	 T71

8.2 ENHANCEMENTS TO SOLVEIT 	 271

8.2.1 Enhancing Functionality 	 272

8.2.2 Extending the Approach to Subsequent Courses 	 273

8.2.3 Restructuring Functionality for Alternative Programming Paradigms 	 274

8.2.4 Restructuring Functionality for Distance Learning 	 274

8.3 A PLAN FOR LONG-TERM EVALUATION 	 275

8.3.1 Learning Outcome Measures 	 275

8.4 SUMMARY OF CONTRIBUTIONS 	 280

XX

Chapter	 Page

APPENDIX 1 SURVEY INSTRUMENTS 	 283

APPENDIX 2 COURSE SYLLABUS AND RELATED MATERIAL 	 296

APPENDIX 3 SAMPLE ASSIGNMENTS, QUIZZES AND EXAMS 	 .301

REFERENCES 	 311

xxi

LIST OF TABLES

Table	 Page

1 PROGRAM DEVELOPMENT TASKS AND THEIR ASSOCIATED ACTIVITIES 	 13

2 THE SOFTWARE PROCESS AND ASSOCIATED ACTIVITIES 	 14

3 RELATIONSHIP BETWEEN THE SOFTWARE PROCESS AND POLYA'S PROBLEM

SOLVING STAGES 	 16

4 CLASSIFICATIONS OF SYSTEMS DEVISED TO ASSIST WITH PROGRAMMING 	 26

5 EXAMPLES OF VISUALLY-BASED PROGRAMMING ENVIRONMENTS 	 28

6 EXAMPLES OF TEXT-BASED PROGRAMMING ENVIRONMENTS 	 29

7 EXAMPLES OF DEBUGGING AIDS 	 45

8 EXAMPLES OF INTELLIGENT TUTORING SYSTEMS 	 52

9 EXAMPLES OF INTELLIGENT PROGRAMMING ENVIRONMENTS 	 58

10 FUNCTIONAL WEAKNESSES 	 74

11 FOCUS OF PROBLEM SOLVING AND PROGRAM DEVELOPMENT PROCESS IN VISUAL

ORIENTED PROGRAMMING ENVIRONMENTS 	 76

12 FOCUS OF PROBLEM SOLVING AND PROGRAM DEVELOPMENT PROCESS IN TEXT

ORIENTED PROGRAMMING ENVIRONMENTS 	 77

13 FOCUS OF PROBLEM SOLVING AND PROGRAM DEVELOPMENT PROCESS IN

DEBUGGING AIDS 	 77

14 FOCUS OF PROBLEM SOLVING AND PROGRAM DEVELOPMENT PROCESS IN

INTELLIGENT TUTORING SYSTEMS 	 78

15 FOCUS OF PROBLEM SOLVING AND PROGRAM DEVELOPMENT PROCESS IN

INTELLIGENT PROGRAMMING ENVIRONMENTS 	 78

16 PRACTICAL DEFICIENCIES 	 86

17 FOCUS OF PROBLEM SOLVING AND PROGRAM DEVELOPMENT IN SOLVEIT 	 151

18 THE SOLVEIT MODEL AND RELATIONSHIP TO THE SOFTWARE PROCESS 	 156

Table Page

19 DATA DICTIONARY ENTRY 	 166

20 DATA DESCRIPTION 183

21 THE TESTING PLAN 	 196

22 THE EVALUATION APPROACH 	 199

23 PROCESS HYPOTHESES 	 201

24 PRODUCT RESEARCH QUESTIONS 201

25 SUBJECTIVE RESEARCH QUESTIONS 	 202

26 ASSIGNMENTS OF SECTIONS TO CONDITIONS 	 203

27 HYPOTHESES' (PROCESS) VARIABLES 	 204

28 RESEARCH QUESTIONS' (PRODUCT) VARIABLES 	 204

29 RESEARCH QUESTIONS' (SUBJECTIVE) VARIABLES 	 205

30 HYPOTHESES' (PROCESS) INSTRUMENTS 	 206

31 RESEARCH QUESTIONS' (PRODUCT) INSTRUMENTS 	 207

32 RESEARCH QUESTIONS' (SUBJECTIVE) INSTRUMENTS 	 .207

33 CONSENT/PRE/POST TEST INSTRUMENTS 	 .207

34 DATA COLLECTION FOR HYPOTHESES (PROCESS) ...208

35 DATA COLLECTION FOR RESEARCH QUESTIONS (PRODUCT) 	 208

36 DATA COLLECTION FOR RESEARCH QUESTIONS (SUBJECTIVE) 	 209

37 DEFINITIONS OF DEPENDENT VARIABLES' CATEGORIES 	 210

38 PROCESS VARIABLES 	 211

39 INSTRUMENT FOR ASSESSING STUDENTS' PROBLEM FORMULATION SKILLS 	 214

40 INSTRUMENT FOR ASSESSING STUDENTS' PLANNING SKILLS 	 216

41 INSTRUMENT FOR ASSESSING STUDENTS' DESIGN SKILLS 219

42 PRODUCT VARIABLES 220

xx"

Table	 Page

43 INSTRUMENT FOR ASSESSING SOLUTION EFFICIENCY 	 223

44 INSTRUMENT FOR ASSESSING SOLUTION RELIABILITY 	 224

45 INSTRUMENT FOR ASSESSING SOLUTION READABILITY 	 226

46 INSTRUMENT FOR ASSESSING SOLUTION CORRECTNESS 	 228

47 INSTRUMENT FOR ASSESSING SHORT QUIZZES AND EXERCISE QUESTIONS 	 229

48 SUBJECTIVE VARIABLES 	 230

49 INSTRUMENT FOR STUDENTS' SELF-ASSESSMENT REPORTS 	 232

50 DISTRIBUTION OF SUBJECTS ACROSS CONDITIONS 	 236

51 INTER-RATER RELIABILITY FOR THE THREE GRADERS 	 239

52 ANOVA AND MEANS REPORT FOR PROBLEM FORMULATION 	 243

53 ANOVA AND MEANS REPORT FOR SOLUTION PLANNING 	 244

54 ANOVA AND MEANS REPORT FOR SOLUTION DESIGN 	 245

55 ANOVA AND MEANS REPORT FOR OVERALL PROBLEM SOLVING AND PROGRAM

DEVELOPMENT SKILLS 	 246

56 ANOVA AND MEANS REPORT FOR MIDTERM QUESTION 1.1 	 249

57 ANOVA AND MEANS REPORT FOR MIDTERM QUESTION 1.2 	 250

58 ANOVA AND MEANS REPORT FOR MIDTERM QUESTION 1.3 	 251

59 ANOVA AND MEANS REPORT FOR MIDTERM QUESTION 1.4 	 252

60 ANOVA AND MEANS REPORT FOR FINAL QUESTION 1.1 	 253

61 ANOVA AND MEANS REPORT FOR FINAL QUESTION 1.2 	 254

62 ANOVA AND MEANS REPORT FOR FINAL QUESTION 1.3 	 255

63 ANOVA AND MEANS REPORT FOR SECTION ONE OF THE MIDTERM 	 256

64 ANOVA AND MEANS REPORT FOR SECTION ONE OF THE FINAL 	 257

65 ANOVA AND MEANS REPORT FOR OVERALL FINAL GRADE 	 258

xxiv

Table	 Page

66 LETTER GRADE DISTRIBUTION FOR FALL 96 SEMESTER 	 259

67 ANOVA FOR QUESTION ON POST-TEST QUESTIONNAIRE DEALING WITH

VERBALIZATION 	 262

68 ANOVA FOR QUESTION DEALING WITH DISCUSSING PROBLEM SOLVING AND

PROGRAMMING WITH STUDENTS OUTSIDE OF CLASS 	 263

69 ANOVA AND MEANS REPORT FOR OVERALL TOTAL GRADE FOR SPRING 97

SEMESTER 	 264

70 LETTER GRADE DISTRIBUTION FOR SPRING 97 SEMESTER 	 265

71 SUMMARY OF HYPOTHESES AND RESEARCH QUESTIONS TEST 	 266

xxv

LIST OF FIGURES

Figure	 Page

1 A PROGRAMMING SESSION IN TURBO PASCAL 	 7

2 THE BEGINNING OF A CODING SESSION FOR FUNCTION 'CREATE-LIST` USING THE LISP

TUTOR (REDRAWN FROM ANDERSON, CORBETT, KOEDINGER, & PELLETIER, 1995)....80

3 AN IN-PROGRESS PROLOG PROGRAM, USING MEMO II, TO FIND WHETHER A NATURAL

NUMBER IS EVEN OR ODD (REDRAWN FROM FORCHERI AND MOLFINO, 1994) 	 82

4 TRANSFORMATION OF A PROBLEM STATEMENT INTO A SOLUTION 	 96

5 THE DUAL COMMON MODEL FOR PROBLEM SOLVING AND PROGRAM

DEVELOPMENT 	 125

6 THE INITIAL TASK OF PROBLEM FORMULATION 	 127

7 EFFECT OF VERBALIZATION ON PROBLEM FORMULATION 	 128

8 COGNITIVE SYSTEM OF PROBLEM FORMULATION STAGE 	 130

9 REFINEMENT OF PROBLEM INTO SUBPROBLEMS 	 133

10 COGNITIVE SYSTEM OF THE SOLUTION PLANNING STAGE 	 135

11 ORGANIZATION AND SEQUENCING OF SUBPROBLEMS 	 137

12 COGNITIVE SYSTEM OF THE SOLUTION DESIGN STAGE 	 139

13 COGNITIVE SYSTEM OF THE TRANSLATION STAGE 	 142

14 COGNITIVE SYSTEM OF THE TESTING STAGE 	 l44

15 AN EXTENDED-LEARNING ENVIRONMENT 	 150

16 THE SOLVEIT MODEL 	 155

17 THE TOOLS IN TRADITIONAL PROGRAMMING ENVIRONMENTS 	 157

18 THE TOOLS IN SOLVEIT 	 157

19 ARCHITECTURE OF THE SOLVEIT ENVIRONMENT 	 159

20 INITIAL REPRESENTATION OF THE STRUCTURE CHART 	 163

xxvi

Figure Page

21 REFINEMENT OF THE STRUCTURE CHART 	 164

22 A TEXT VIEW OF THE STRUCTURE CHART 	 165

23 STRUCTURE CHART AND DATA FLOW IN TEXT VIEW 	 167

24 MODULE LOGIC DEVELOPMENT 	 168

25 SOLVEIT: AN INTEGRATED PROBLEM SOLVING PROGRAM DEVELOPMENT

ENVIRONMENT 171

26 WORKFLOW IN PROBLEM SOLVING STAGES 172

27 WORKFLOW IN PROGRAM DEVELOPMENT STAGES 	 173

28 IDENTIFYING INFORMATION 	 175

29 OUTCOME OF PROBLEM FORMULATION 	 176

30 PROBLEM DESCRIPTION 	 177

31 VERBALIZATION IN PROBLEM FORMULATION 	 178

32 INFORMATION ELICITATION 	 179

33 OUTCOME OF SOLUTION PLANNING 181

34 SOLUTION STRATEGY 	 181

35 GOAL DECOMPOSITION ..182

36 OUTCOME OF SOLUTION DESIGN 184

37 STRUCTURE CHART - FIRST LEVEL REFINEMENT 185

38 STRUCTURE CHART - SECOND-LEVEL REFINEMENT 	 185

39 STRUCTURE CHART AND DATA FLOW 	 .186

40 MODULE SPECIFICATION FOR INPUT SUBPROBLEM 	 188

41 MODULE SPECIFICATION FOR COMPUTATION SUBPROBLEM 	 188

42 MODULE SPECIFICATION FOR OUPUT SUBPROBLEM 	 189

43 ALGORITHMIC LOGIC 	 189

xxvii

Figure	 Page

44 OUTCOME OF SOLUTION TRANSLATION 	 190

45 OUTCOME OF SOLUTION TESTING 191

46 DELIVERY OF COMPLETE SOLUTION 	 192

47 LEARNING OUTCOME VARIABLES 276

xxviii

CHAPTER 1

INTRODUCTION

The question of how best to facilitate the teaching and learning of programming has been

addressed by educators and researchers for some time, and continues to be addressed with

growing interest (Weinberg, 1971; Papert, 1980; Shneiderman, 1980; Soloway, Ehrlich,

Bonar, & Greenspan, 1982; Mayer, 1988; Shackelford & Badre, 1993; Ebrahimi, 1994).

It is now widely agreed that the ability to write programs, and the difficulties encountered

therein, extend far beyond learning the syntax of a specific language (Linn & Dalbey,

1985; Perkins, Schwartz, & Simmons 1988; Scholtz & Weidenbeck, 1992, 1993;

Weidenbeck, Fix, & Scholtz, 1993; Ennis, 1994). Similarly, developments in

programming environments, tools, and languages to support learning problem solving

and programming, carried out over the last two decades, have placed increasing emphasis

on investigating such questions as: How can programming and problem solving be

effectively taught to students? What are the tools and environments necessary to

facilitate the teaching and learning of programming? What are the underlying cognitive

skills required in programming and what are the cognitive effects of learning

programming (Weinberg, 1971; Shneiderman, 1980; Mayer, 1988; Hoc, Green,

Samurcay, & Gilmore, 1990; Lemut, du Boulay, & Dettori, 1993).

Given the trend of the research, it is surprising to note that introductory courses on

programming still often focus on language syntax, a role which students, and frequently

teachers, perceive as appropriate for the first course in computer science (Levy, 1995).

This approach is fostered by programming textbooks which present the subject from a

1

2

language construct view, ignoring the fundamentals not only of design methodology but

also of problem solving concepts. The recurrent debate over the appropriate choice of a

programming language for the first course (Noon, 1994) also promotes this emphasis on

syntax, an issue that should be incidental to the first course. This misemphasis persists

despite a series of computing curricula recommendations by the Association for

Computing Machinery (ACM) and the Computer Society of the Institute for Electrical

and Electronics Engineers (IEEE-CS) (ACM Curriculum 1968, 1978; ACM/IEEE-CS

Computing Curricula, 1991), and the work of noted computer scientists (Denning et al.,

1989; Tucker, 1994). For example, the ACM/IEEE-CS 1991 Joint Curriculum

Committee Report underscores that "programming is understood to denote the entire

collection of activities that surround the description, development, and effective

implementation of algorithmic solutions to well-specified problems." While not

minimizing the importance of syntactical issues (Shneiderman, 1980; Rogalski &

Samurcay, 1990, 1993), research clearly indicates that the most fundamental obstacles to

learning programming are related to its problem solving character (Mayer, 1981;

Perkins & Martin, 1986; Perkins, Hancock, Hobbs, Martin, & Simmons, 1986; Johnson,

1990; Navarat & Rozinajova, 1993; Ebrahimi, 1994; Ennis, 1994). Programming

languages should be merely the vehicles by which problem solving is realized, and the

common focus on syntax should be replaced by an emphasis on problem solving and

program development.

This thesis addresses the critical interdependence between the problem solving

process and program development. A primary goal is to make the process of solving

problems and writing programs simpler, more organized, and more coherent for the

3

beginning student by providing a theoretically well-founded system which supports the

entire process. The requirements of this system can be specified only after several

objectives have been accomplished. First of all, one must carefully determine the actual

difficulties involved in learning programming, since this identifies the needs that have to

be addressed. Then, one must review and critique existing environments, tutoring and

other systems with respect to how well they meet these needs. This critique will be based

on difficulties in problem solving and programming, the research on which is introduced

in this chapter. One must also critically survey the existing problem solving

methodologies, and synthesize from these methods a unified model for problem solving,

which can then be adapted to the particular requirements of program development.

Finally, one must identify the cognitive skills pertinent at each stage of the problem

solving and program development process, and define the proposed problem solving

environment's functionality in a way that is consistent with the needed skills. Subsequent

sections of this chapter: identify the difficulties involved in learning programming;

overview the kinds of support systems that have been developed to date, and their

limitations; briefly introduce problem solving methodology; present an analysis of the

software process and its relationship to problem solving; preview the problem solving

and cognitive justifications for the system specification; briefly describe the functionality

of the proposed system, SOLVEIT; and preview the experimental design that will be used

to evaluate the performance of the system.

4

1.1 Difficulties in Learning Programming

The teaching and learning of programming have been addressed by educators and

researchers (Soloway, Ehrlich, Bonar, & Greenspan, 1982; Mayer, 1988; Shackelford &

Badre, 1993). Students experience obstacles when learning programming, especially the

first language (Mayer, 1981; Linn & Dalbey, 1985; Bereiter & Scardamalia, 1985;

Perkins & Martin, 1986; Johnson, 1990; Weidenbeck, Fix, & Scholtz, 1993).

To understand the role of current systems and their inadequacy in responding to

the needs of students, it is necessary to first understand the basis of students' difficulties

with programming. There are three kinds of challenges students face when learning the

tasks of program development: deficiencies in problem solving strategies and tactical

knowledge; ineffective pedagogy of programming instruction, and misconceptions about

syntax, semantics, and pragmatics of language constructs.

1.1.1 Deficiencies in Problem Solving Strategies and Tactical Knowledge

The ability to solve a problem requires aptitude beyond the syntax and semantics of a

programming language (Linn and Dalbey, 1985; Perkins, Schwartz, & Simmons 1988;

Weidenbeck, Fix, & Scholtz, 1993). The lack of basic problem solving competence,

thinking skills, and transfer of knowledge to other domains is a prominent problem with

novice programmers (Mayer, 1981; Perkins, Hancock, Hobbs, Martin, & Simmons,

1986). Errors in students' programs are commonly related to deficiencies in problem

solving strategies and insufficient planning, not syntax (Scholtz & Weidenbeck, 1992,

1993; Anjaneyulu, 1994). Even those studies that uncovered novice difficulties with

syntax concluded that more emphasis is needed in teaching planning and design strategies

5

(Soloway, Ehrlich, Bonar, & Greenspan, 1982) along with software engineering

principles (Shackelford & Badre, 1993).

1.1.2 Ineffective Pedagogy of Programming Instruction

Students in introductory programming courses have difficulties solving problems. Even

simple problems are the cause for major errors, often due to inadequate or misdirected

teaching. Students are not taught the necessary skills and "have 'no choice' but to blur

the distinction between design and implementation. If we take the basic principles of

software engineering seriously, we should not be introducing students to programming in

this way." (Shackelford & Badre, 1993). In addition, the curriculum should prepare the

students to deal with the demands of program development by seeking the connection

outside the programming domain (Perkins, Schwartz, & Simmons, 1988; Ennis, 1994).

1.1.3 Misconceptions About Syntax, Semantics and Pragmatics

Learning the elements of a programming language and its constructs is a significant task

for programmers. Problem solving competence and understanding of the syntax,

semantics, and pragmatics of a programming language constitute the foundation skills

required to compose, comprehend, test and debug, document and modify programs.

Novice students appear to lack understanding of the purpose, structure and use of the

programming language constructs they study (Soloway, Ehrlich, Bonar, & Greenspan,

1982; Bereiter & Scardamalia, 1985; Perkins & Martin, 1986; Johnson, 1990; Ebrahimi,

1994).

6

1.2 Current Systems for Supporting the Tasks of Program Development

Both systems and methodologies have been developed to improve the learning and

practice of programming. The development of tools to enhance the learning of

programming began in the 70's with the initial introduction of Computer Aided

Instruction (CAI) (Carbonell, 1970; Brown, Burgon & Bell, 1974; Barr, Beard &

Atkinson, 1975).	 Methodologies were devised to aid in activities of program

development with the introduction of structured programming and top-down design

(Wirth, 1971; Dijkstra, 1976). Developments in the area of programming languages in

general, in methodologies (Weinberg, 1971; Shneiderman, 1980; Mayer, 1988), and in

tools (Hoc, Green, Samurcay, & Gilmore, 1990; Lemut, du Boulay, & Dettori, 1993),

aimed at supporting the learning of programming and enhancing the efficacy of

programmers, have since evolved considerably. This is illustrated in the subsequent

development of intelligent systems (Anderson & Reiser, 1985; Johnson & Soloway,

1985; Corbett & Anderson, 1993), and programming environments for teaching

(Brusilovsky, 1991; Ramadhan & du Boulay, 1993; Hohmann, Guzdial, & Soloway,

1992; Forcheri & Molfino, 1994).

The following breifly describes the four common classifications of these systems:

programming environments, debugging aids, intelligent tutoring systems and intelligent

programming environments.

1.2.1 Programming Environments

Traditional programming environments, such as Pascal and C compilers, consist of tools

that can be used in program construction, compilation, testing and debugging: editors,

7

language compilers, pre-coded function libraries, linking loaders, parsers, tracers and

debuggers. More current systems also include syntax-directed editors, code indentation,

graphical user interface tools, dynamic compilation capabilities, powerful library systems

and possibly code generators. Programming environments developed specifically for

teaching may include additional facilities that allow the student to experiment with

specific features of a programming language and some offer limited tutorial functions.

Students learning programming, using current tools, are accustomed to the entry

point in any programming language environment being through the compiler's editor. As

a result, when presented with a problem, students tend to reach for the keyboard and start

coding. This creates an impression that the formulation of the solution to the problem

starts by writing the code, a habit which must of course be altered. A typical tool bar is

shown in Figure 1.

File	 Edit	 Search	 Run	 Compile	 Debug	 Options	 Window	 Help
SIMPLE.PAS

PROGRAM Show_Them (Output);
BEGIN

Writeln ('WELCOME TO PROBLEM SOLVING AND PROGRAMMING')

END.

Fl Help	 F2 Save	 F3 Open	 Alt-F9 Compile	 F9 Make	 FIO Menu

Figure 1 A programming session in Turbo Pascal

8

1.2.2 Debugging Aids

Debugging aids are used by programmers to test programs, observe program behavior

during execution, detect and correct errors. Code watchers, tracers, flags, and

visualization and animation utilities are common tools. External debugging utilities can

also be used in conjunction with programming environments.

1.2.3 Intelligent Tutoring Systems

Intelligent tutoring systems allow access to tutoring and testing material on language

syntax, offer adaptive instruction to individual learner needs. They are also able to

analyze student responses and determine correctness; guide and interact with students;

and provide feedback and advice. This is typically done by presenting the student with

problems to be solved and checking student responses against rules or stored solutions.

1.2.4 Intelligent Programming Environments

Intelligent programming environments combine the features of intelligent tutoring

systems such as adaptive instruction, monitoring and assessment of students' progress,

and feedback and advice with tools that are used in the program development process.

They also provide access to traditional programming environments utilities such as

syntax editors, compilers and debuggers.

1.3 Limitations of Current Solutions

Reports from research studies point to students' difficulties with programming beyond

the scope of language syntax to include lack of problem solving skills and curricular

9

shortcomings. Despite this, research and development on the teaching and learning of

programming has devoted disproportionate attention to syntax-related activities, with

little attention given to the earlier tasks of problem definition, requirement, and

specification.

A review of existing systems (described in detail in Chapter 2) and an in-depth

analysis of their role in responding to the needs of students learning programming

(presented in Chapter 3) reveal a gap between the problems identified and the capabilities

and character of current systems. This research indicates these systems have not met their

goals as support tools for students learning programming and are ill-suited for the type of

obstacles encountered by students.

While it would appear that the systems developed to help students learning

programming have answered the problems they addressed, on closer examination,

concerns arise regarding the appropriateness of these systems as support mechanisms for

learning programming. These concerns fall into two categories, functional weaknesses

and practical deficiencies, described below. A complete discussion of each is included in

Chapter 3.

Functional weaknesses that apply to intelligent tutoring systems, intelligent

programming environments, programming environments and debugging aids include:

O Absence of problem solving/software engineering frameworks. Most systems do not

provide the essential facilities to assist the student in performing the tasks of problem

formulation, planning and design.

• Overemphasis on language syntax. Separating the coding activity from the rest of

the problem solving tasks create an overemphasis on syntax - an attention unjustified

10

by the findings of research on teaching and learning programming and the challenges

encountered by the students.

• Inadequate user interface. Students were notably dissatisfied with system user

interfaces; it is not apparent that either pre-deployment testing or protocol analysis

was performed by the prospective users.

Additional problems occur with systems that exhibit artificial-intelligent-like

behavior:

• Incomplete rules-and-errors knowledge base. A series of rules, a collection of error

types and an enumeration of these errors are used represent a bug catalog or an ideal

solution model.	 Students can make "undocumented" mistakes that will be

misinterpreted or erroneously labeled, rendering the knowledge-base incomplete.

• Simplicity of the problem domain. The need for intelligent tools to behave as experts

restricts the systems to the use of simple examples, reducing the systems' ability to

provide challenging problems.

Practical deficiencies that apply to intelligent tutoring systems, intelligent

programming environments, programming environments and debugging aids include:

• Limited classroom evaluation. To understand the tools' impact on the learning

process, well designed experimental studies must be performed. Reports on

evaluation results have been insufficient and inconclusive.

• Failure to integrate the tools into the curriculum. These tools have not received

widespread acceptance, and their impact on introductory courses and curriculum is

not clear.

11

Impeded creativity and development of higher order thinking skills. Student

creativity and the development of higher order thinking skills are hindered by the

rigid problem solving approach of intelligent systems.

1.4 Problem Solving and Program Development

Programming is a kind of problem solving that requires representing solutions to

problems in a coded manner suitable for processing. The relationship between problem

solving and programming is apparent: an algorithm is a precise step-by-step outline to

solve a well-defined problem; a program is a sequence of syntactically and semantically

correct instructions forming a solution for a problem.

1.4.1 Problem Solving

Many methods of problem solving have been developed and are reviewed in Chapter 4.

We shall justify the use of an enhanced method based on the approach proposed by the

mathematician George Polya (1945), the author of a widely recognized series of books on

problem solving . Polya defines the following four stages for solving a problem:

• Understanding the problem;

• Devising a plan;

• Carrying out the plan; and

® Looking back.

Each focuses on a unique aspect of the problem. The first step is concerned with

understanding the problem's question and requirements. The comprehension of the

problem requires the identification of the goal, the givens, the unknowns, the conditions,

12

the constraints, and their relationship. Devising the plan is the outline and refinement of

a potential solution to the problem. Carrying out the plan is the transformation of the

plan into a concrete reality and producing a solution to the problem. Finally, looking

back is the confirmation of the result and the assessment of correctness of the solution.

Algorithmic problem solving uses techniques, such as structured decomposition

and stepwise refinement (Wirth, 1971; Dijkstra, 1976), and facts, such as givens and

unknowns, to outline steps leading to a problem's solution.

1.4.2 Program Development

Program development refers to the activities involved in designing and implementing

programs. Depending on the complexity of the problem to be solved, these activities can

be limited to simple data representation, algorithm design, development and coding. In

some cases, such as those of large program developments even more activities requiring

additional skills and knowledge may be required (Dijkstra, 1976; Boehm, 1976). A broad

set of issues related to programming, or software development (discussed in section 1.5),

has evolved into the field of software engineering (Pressman, 1987; Ng & Yeh, 1990).

The collection of cognitive activities involved in programming, referred to as

program development tasks, begins with learning the syntax of the language and

developing the skills for writing and understanding programs, testing and debugging

solutions, and documenting and modifying programs. Problem solving skills:

understanding the problem and its requirements, devising a solution, as well as a practical

command of programming language constructs are required before a program can be

written and its solution tested. Thus, by teaching programming in conjunction with

13

problem solving skills, planning, and design strategies, the student is provided with an

understanding of the overall aspects of problem solving and program development. Table

1 enumerates the tasks and their associated activities.

Table 1 Program development tasks and their associated activities

Tasks Activities

Learning the
Language

Learning and understanding syntax, semantics and
pragmatics of programming language.

Composing
Programs

Representing solution into specific programming language
syntax.

Comprehending
Programs

Understanding of a given program, its functionality, and
design approaches and techniques.

Testing and Debugging
Programs

Performing exhaustive testing to verify program
correctness.

Documenting Programs Describing approaches and techniques used to solve problem

Modifying
Programs

Adding, removing, enhancing functionality, or adapting
previously written code to solve new problems.

1.5 The Software Process

The software process consists of a series of stages encompassing all the tasks and

activities performed in software production, beginning with the point at which a problem

is recognized and defined, and extending through requirements analysis, design

specifications, implementation and testing, integration and deployment, maintenance and,

ultimately, retirement (Page-Jones, 1988; Schach, 1993).

Various models for software production are described in the literature (Blum,

1982; Boehm, 1988). Despite the fact that varying terminologies are employed to refer to

the stages of software development, the role of the different stages are very similar. The

14

following is a generic list of the typical stages of a software process model. Table 2

depicts the software process and the activities of each stage.

Table 2 The Software process and associated activities

Phases of software
process

Activities

Problem recognition Awareness of problems or
deficiencies in current system

Feasibility study Identify scope of problem, objectives,
cost/benefits, plan of action, etc.

Analysis & requirements Functional & data requirements,
physical & conversion requirements, etc.

Design & specification Initial design: decomposition, detailed
design: refinement, technical specification, etc.

Implementation Translation to code

Integration Integration of components and units

Testing Comprehensive testing: unit testing,
integration testing, user testing, etc.

Delivery Turn over to user

Maintenance Corrective changes &
enhancements

Retirement Replacement of system

initial testing
begins here

done in
parallel

The problem recognition stage occurs with the awareness of the existence of

certain deficiencies in the current operation of a system, either manual or automated.

Further investigation of the nature and extent of the problem identified and the

implications of undertaking a corrective action is referred to as the feasibility study stage.

The requirements analysis stage conducts a more detailed study of needs and produces a

clear representation of the problem and its scope. In the design specification stage, needs

and requirements undergo a sequence of refinements yielding a detailed technical

presentation of all aspects of the design, functionality, documentation, and description of

15

the potential product. The next three stages are closely related and often overlap. The

outcomes of prior stages are translated into code in the implementation stage which are

then integrated and tested as a coherent unit. This culminates in the delivery of a product

that may undergo additional changes during its operational life until it is eventually

removed from service.

1.5.1 The Software Process and Relationship with Problem Solving Activities

The four stages of problem solving defined by Polya (1945), (understanding the problem,

devising a plan, carrying out the plan, and looking back), fall within the core of software

process stages. Problem recognition, feasibility study, and requirements analysis, are

initial stages in the software process, and contribute mainly to understanding the problem,

its needs, and its scope. Design specification constitutes planning. Implementation and

integration are equivalent to carrying out the plan. Testing is performed by looking back

at what was produced and done to solve the problem. Table 3 shows the relationship

between the software process and problem solving stages.

16

Table 3 Relationship between the software process and Polya's problem solving stages

Stages of Software
Process

Polya's Problem
Solving Stages

Problem Recognition

Feasibility Study

Understanding
the problem

Analysis & Requirements

Design & Specification
Devising a plan

Implementation

Integration

Carrying out the
plan

Testing

Deployment

Maintenance

Retirement

Looking back

1.6 Theory of Problem Solving, Cognitive Science and Relationship to System
Specification

A critical review of the various classic problem solving methods (presented in Chapter 4)

enables one to synthesize a common method which incorporates the essential features of

the classic methods. The review also justifies the choice of Polya's (1945) method as the

basic frame of reference for our work. By identifying the problem solving tasks specific

to program development, one can adapt or enhance the general problem solving method

to the area of program development. By scrutinizing each task of the common method

for the appropriate cognitive techniques and skills it requires, we can then define a Dual

Common Model which integrates problem solving methodology and program

development tasks with the cognitive techniques needed at each step of the process. This

Dual Common Model can then serve as the basis for the specification of functionality of

17

the proposed problem solving and program development environment presented in

Chapter 5.

Learning tools should promote the development of cognitive skills, so it is

important to explicitly identify those skills and design systems which encourage their

development. In addition to identifying the cognitive skills required in problem solving,

which are prerequisite to specifying the cognitive functions required for an environment

that facilitates problem solving, the cognitive analysis presented in Chapter 4 also serves

to define the experimental design for system evaluation.

1.6.1 The Specification Oriented Language in Visual Environment for Instruction
Translation

An integrated environment supporting the problem solving and program development

approach starting with the initial activity of understanding the problem and continuing

through program implementation is proposed (described in Chapter 5). The Specification

Oriented Language in Visual Environment for Instruction Translation (SOLVEIT) is a

model for a problem solving and program development environment that combines the

methodology for problem solving and program development and the supporting tools to

perform the tasks. The system takes into consideration the cognitive skills that must be

gained by students and the tasks performed in problem solving and program

development.

This environment is based on the Dual Common Model for Problem Solving and

Program Development produced in Chapter 4. Facilities to assist the student in learning

these skills and accomplishing these tasks are provided for each stage of the model. The

system was designed, implemented, deployed and evaluated.

18

SOLVEIT is intended as a problem solving and program development

environment that takes into consideration the problem solving skills required by students

learning how to program, as well as the specific knowledge related to the use of a

programming language. The system provides tools that the students use in formulating

the problem; planning and designing the solution; and monitoring and evaluating the

solution's progress. SOLVEIT encourages students to understand the problem and its

requirements and to think about possible solutions before engaging in implementation

details.

The SOLVEIT environment combines the process and the tools to support the

functionality of a traditional programming environment with a workbench facility and a

battery of utilities used in problem solving and program development. SOLVEIT is

designed to be used by beginning students working to solve programming problems. The

system surmounts the problems associated with current environments by:

• Taking into consideration the skills that must be gained by students and the tasks

required for problem solving and program development.

• Removing the emphasis on language syntax.

• Providing the framework and facilities that allow the student to deal with the common

difficulties related to problem solving.

• Providing a state-of-the-art user interface.

• Integrating the tool into the learning environment.

• Evaluating the impact of the tool on the learning process.

19

Specific features of this environment are:

• Students are able to describe the problem in written form, refine it, and update it as

required.

• Problem facts are identified through a formal interaction and elicitation process.

• Planning and design are aided with automation.

• Required code is translated into programming language syntax after problem is

solved.

• The system focuses on a meaningful subset of language constructs.

• An electronic project notebook and a complete transcript/playback recording is

provided.

1.7 Experimental Design

We have developed and implemented a plan for testing and evaluating SOLVEIT and for

studying its impact on students' problem solving and program development abilities, their

cognitive skills, knowledge, perception, and attitudes and motivation.

The aim of this research is facilitating the development of students' problem

solving skills and to enhance the learning of programming. The specific goals identified

for using SOLVEIT in the classroom are:

1.To facilitate students' development of problem solving and cognitive skills.

2. To enhance students' acquisition of knowledge necessary for program development.

3. To promote students' development of metacognitive abilities.

4. To encourage students' favorable perception, attitude and motivation toward the

learning of problem solving and programming.

20

5. As a long term goal, to enhance the retention and transfer of such skills, knowledge

and abilities to other situations.

This study sought to verify the claims made regarding the cognitive model of

SOLVEIT and to investigate the impact resulting from using the SOLVEIT environment

as a support tool for problem solving and program development.

The experiment to evaluate the effectiveness of SOLVEIT on students taking the

first course on problem solving and programming was conducted over two semesters.

The impact of the new methodology and tools was measured by testing a collection of

hypotheses and research questions. Data was collected from two main sources: (1) the

pre/post-questionnaire and (2) students' performance on course requirements.

Questionnaires data was related to identifying background, experience and general

information as well as information about the course, problem solving and programming.

A collection of statistical procedures were used to analyze the results (presented in

Chapter 7).

1.8 Research Contributions

This research addresses the obvious interdependence between the problem solving

process and program development and the lack of satisfactory solutions that take into

consideration the difficulties encountered by students learning programming. A

theoretically well-founded system to support the process of problem solving and program

development has been produced and evaluated.

21

For this to be accomplished, the following has taken place:

• Reviewed the literature to determine the actual difficulties involved in learning the

tasks of program development;

• Performed an extensive study of environments and tools, covering artificial intelligent

systems and traditional systems, developed to support the learning of problem solving

and programming;

• Critiqued existing environments and tools and identified the limitations that have

prevented them from accomplishing their stated goals;

• Performed an extensive review of problem solving methodologies developed in this

century, and synthesized from these methods a common model for problem solving;

• Presented a synthetic view of the tasks required for program development which were

integrated with the previously identified common model for problem solving and

created the Dual Common Model for Problem Solving and Program Development;

• Defined a cognitive model that identify the cognitive processes, the cognitive

structures that support these processes, and the cognitive outcome of the problem

solving and program development process;

• Defined the specifications for the problem solving and program development

environment's functionality, based on the Dual Common Model and its underlying

cognitive theory, in a way that is consistent with the needs;

• Designed, implemented, tested, and deployed the Specification Oriented Language in

Visual Environment for Instruction Translation (SOLVEIT);

• Integrated the new environment into the curriculum;

22

• Designed a cognitively oriented assessment method and related instruments to

evaluate the process and the products of problem solving; and

• Designed a detailed statistical experiment to evaluate the effect of this environment

on students' problem solving and program development skills, including system

testing by protocol analysis, and performance evaluation of students based on

hypotheses and research questions.

1.9 Dissertation Outline

The organization of the rest of this thesis is as follows: Chapter 2, presents the results of a

literature review on the development of methodologies and tools to support the teaching

and learning of programming, and a brief opinion on each is includes.

In Chapter 3, the related research is analyzed and a thorough critique of the tools

and their role in responding to the problems in learning programming and problem

solving is provided. Weaknesses and deficiencies of current systems are enumerated and

carefully discussed.

In Chapter 4, a comparison of a number of problem solving methods which are

synthesized into a common method, is presented, the program development tasks are

reviewed, the cognitive science and learning theory relevant to problem solving are

reviewed, a cognitive model of problem solving is defined, and the appropriate cognitive

techniques and skills required for each task of the common method is identified. The

chapter concludes by presenting a Dual Common Model which integrates problem

solving methodology and program development tasks with the cognitive techniques

needed at each step of the process.

23

In Chapter 5, the Dual Common Model is used as the basis for the specification of

SOLVEIT, an integrated environment that encapsulates the process and tools necessary to

support problem solving and program development.

In Chapter 6, the plan for integrating this new environment into the curriculum,

testing and evaluating SOLVEIT, and for studying its impact on students' problem

solving and program development abilities, their cognitive skills, knowledge, perception,

and attitudes and motivation are presented.

In Chapter 7, the results of the experiment conducted to test the hypotheses and to

answer the research questions of the study are presented.

Finally, Chapter 8 concludes with a summary of the research results and provides

an outline for future work.

CHAPTER 2

RELATED RESEARCH: A SURVEY OF ENVIRONMENTS AND
TOOLS FOR LEARNING PROGRAMMING

Developments in the area of programming languages, environments and tools aimed at

supporting the learning of problem solving and programming have been carried out for

some time and are still evolving. Computer scientists and cognitive scientists (Carroll &

Thomas, 1982) have worked on this subject for over two decades, and have produced

some encouraging results. An increasing emphasis has been placed on investigating and

answering relevant questions: How can problem solving and programming be effectively

taught to students? What are the cognitive components and their relationships required for

programming? What are the cognitive effects of learning programming on students?

What are the tools and environments necessary to facilitate the teaching and learning of

programming (Weinberg, 1971; Shneiderman, 1980; Mayer, 1988; Hoc, Green,

Samurcay, & Gilmore, 1990; Lemut, du Boulay, & Dettori, 1993)? Some of these

questions have been answered. Others remain open for further investigation.

Methodologies and systems were devised to assist in teaching and learning

programming and to aid both novices and experts in stages of the software process such

as analysis, design, implementation, and debugging. This began with the initial

introduction of CAI tools (Carbonell, 1970; Brown, Burgon & Bell, 1974; Barr, Beard &

Atkinson, 1975), the subsequent development of intelligent systems for teaching

(Anderson & Reiser, 1985; Johnson & Soloway, 1985; Corbett & Anderson, 1993), and

programming environments (Brusilovsky, 1991; Ramadhan & du Boulay, 1993;

24

25

Hohmann, Guzdial, & Soloway, 1992; Forcheri & Molfino, 1994). This chapter provides

a survey of systems in four common classifications:

• Programming environments

• Debugging aids

• Intelligent tutoring systems

• Intelligent programming environments

Each classification, as shown in Table 4, contains a wide range of tools, with

some classifications providing features that combine overlapping aspects from more than

one category. For example, systems that embrace features of both programming

environments and intelligent tutoring are known as intelligent programming

environments. Tools belonging to each of the four classifications have been designed to

include some common features such as on-line help systems, feedback mechanisms, data

and memory visualization, and algorithm animation capabilities. Traditional tutoring

systems are not commonly used to teach programming and were not reviewed.

Cognition theory played a role in the development of some of these systems.

Systems are considered cognitively based if they are designed to employ a certain

learning theory by which student knowledge of programming and problem solving skills

are analyzed. The ACT * (Adaptive Control of Thought) theory of learning and problem

solving, involving acquisition of cognitive skills, is one example (Anderson, 1983). ELM

(Episodic Learning Model) is another, based on a case-based learning model that stores

knowledge in terms of a collection of episodes (Weber, 1988).

A number of tools in each classification have been designed, prototyped or

implemented for students use in the acquisition of programming skills. Although it is

26

hard to classify these systems, due to overlapping characteristics, an attempt is made to

associate each with a category that closely matches its primary functions and stated goal.

Clearly, some can be associated with more than one category.

The following presents the results of a literature review of this area and includes a

brief opinion on each system reviewed. Further analysis and critique of the tools and

development efforts in this area is provided in Chapter 3.

Table 4 Classifications of systems devised to assist with programming

Classifications Functions

Programming
Environments

Allow student to experiment with specific
features of programming language and are
used in program construction, compilation,
testing and debugging.

Debugging Aids

Used by programmers to test programs,
observe program behavior during
execution, detect and correct errors. Some
may exhibit intelligent behavior.

Intelligent Tutoring
Systems

Allow access to tutoring and testing
material, offer adaptive instruction, analyze
student responses and determine
correctness, and provide feedback and
advice based on stored expert knowledge.

Intelligent
Programming
Environments

Combine features of intelligent tutoring
systems with tools used in problem solving
and program development process.

2.1 Programming Environments

Programming environments provide systems used by programmers to develop and test

programs. They are used by novices and experts, individuals and teams of programmers,

and provide a range of functionalities. Traditional programming environments, such as

27

Pascal and C compilers, consist of tools that can be used in program construction,

compilation, testing and debugging: editors, language compilers, pre-coded function

libraries, linking loaders, parsers, tracers and debuggers. More current systems also

include syntax-directed editors (that understand the language and provide syntax

verification), code indentation, graphical user interface tools, dynamic compilation

capabilities, powerful library systems and possibly code generators. This section

examines only those environment developed primarily for teaching programming and

therefore traditional programming environments are not considered..

Programming environments developed specifically for teaching may include

additional facilities that allow the student to experiment with specific features of a

programming language and some offer limited tutorial functions. In addition to text-

based systems, many programming environments use visual tools to demonstrate

concepts and provide pictorial explanation of algorithmic logic and data structures. Some

use graphical images, or icons, to represent language control and data structure

constructs, allowing programmers to create their programs by combining a collection of

these icons.

Tables 5 and 6 offer a concise description of, both visual and text, programming

environments reviewed. A thorough explanation of each system follows. The first eight

systems described are visually-based systems.

Table 5 Examples of visually-based programming environments

Programming
Environments Description

Pict
Programs are developed graphically by selecting pre-written
functions represented as icons.

PECAN
Provides the student with multiple views of a program in the
form of visual representations of abstract syntax trees.

SCHEMACODE
Addresses documentation of source code and understanding of
flow control. Coding is done using pseudocode which is
translated to language syntax.

DSP Constructing a program is a visual and graphical
manipulation task that is done by combining icons.

AMETHYST
Provides data visualization and graphical displays to help the
student understand program functions and data structures.

UWPI Uses code visualization to help students learn basic
programming concepts.

BACCII
Algorithms are developed using icons, independently of syntax
details. Iconic code is translated to language syntax.

ASA
Algorithms are developed using icons and represented using
flowcharts. Both pseudocode and language syntax are used.

28

Table 6 Examples of text-based programming environments

Programming
Environments Description

SUPPORT
Programs are created using function keys, menus, or parsed text.
Trace and debug facilities are provided.

STRUEDI
Students select predefined language constructs from a menu in
order to build the program.

EBPS
Uses a template-approach to programming and encourages
software reuse. Also provides examples to aid the programmer.

SODA Helps in identifying problem modularization during design
process and in integration of modules to form a solution.

MEMO -II
Helps beginning programmers build problem solving
abstractions which can be implemented with different
programming paradigms.

2.1.1 Pict

Pict (Glinert & Tanimoto, 1984) was developed at the University of Washington, as an

aid to program implementation and alternative to algorithm design. While they view the

human mind as a "multidimensional, visual, and dynamic" problem solving machine,

Glinert and Tanimoto contend that traditional programming methods force humans to

think in ways that are "one dimensional, textual, and static," and therefore advocate a

graphical and visual method of programming. The system is intended for Pascal

programs that be represented graphically.

Pict is a purely iconic graphical environment and consists primarily of an editor

where programming is done by selecting atoms, which are pre-written functions such as

29

30

input, output, looping control, etc. that are represented/displayed as icons. The atoms are

selected with a joystick and arranged in a flow-chart-like manner on the screen: with Pict,

the keyboard is not used. The program syntax representation can be formed, and the user

can observe the execution. The system detects syntactical errors, but does not assist in

planning the solution.

Pict is limited in what it can accomplish - no text manipulation, no real numbers,

and it is restricted to small programs because of lack of screen size. The graphical aspect

is arguably overdone: even numbers must be entered from a "softpad" by clicking on

them with the joystick. Pict was evaluated on about 60 graduate and undergraduate

students in a Pascal programming course at the University of Washington. They were

given a 30-minute explanation of the Pict system and two programming tasks. Beginning

students said they were able to write a program without knowing the language syntax, but

advanced students already familiar with other textual languages found Pict's graphical

system to be confusing and difficult.

2.1.2 PECAN

PECAN (Reiss, 1985) represents a family of program development systems created at

Brown University. This programming environment runs on UNIX-based APOLLO

workstations and requires powerful processing and high resolution capabilities. PECAN,

a language independent system, provides the student with multiple views of a program

including representations of the program, its semantics, and its execution.

PECAN consists of three main components: (1) a basic level support module that

includes the command manager which provides the user interface, a general purpose

31

parser, and an incremental compiler that consists of a control module and several special

purpose modules which interpret semantic actions; (2) a mid-level service module that

includes PLUM, a data structure support that provides data manipulation and database

management, event management, and data structure monitoring and ASPEN, which

provides program representation via abstract syntax trees; and (3) a higher level module

that includes the various program views. PECAN provides templates to help the user

build programs, but also allows the user to type text as well.

Program views are various visual representations of the abstract syntax trees that

include: the syntax directed editor, a pretty-printing view with multiple fonts; Nassi-

Shneiden-nan structured flow graph view showing nesting of program blocks; and module

interconnection diagrams. Semantic views are provided in the form of symbol table,

expression, data type, and data flow. PECAN also supports execution views of graphical

representation for data structures and statement level execution.

The system focuses on the implementation and testing activities and is, in its

current form, only comprehensive in its support for program construction. There was no

student evaluation reported.

2.1.3 SCHEMACODE

SCHEMACODE (Robillard, 1986) was developed with the goal of improving the use of

programming languages as opposed to improving a programming language itself. It was

developed at the Center for Development Technologies, Ecole Polytechnique de

Montreal. SCHEMACODE addresses the issues of documenting source code and

understanding flow control. The problem with documentation is that it is not systematic

32

because it is not part of the programming language, and it is usually done after the

program is completed (bottom up instead of top down). Robillard notes that the

understanding of flow control is another area that can be improved as a result of

enhancing documentation.

SCHEMACODE consists of two main components: (1) a schematic editor, where

the programmer constructs the problem solution in Schematic Pseudo Code (SPC) and (2)

code generation module, where the system generates the program source code in either

FORTRAN IV, FORTRAN 77, PASCAL, dBase III, COBOL, or C. The SPC

specifications are automatically incorporated as comments into the generated code.

Robillard indicates that many universities have used SCHEMACODE in software

development courses and fundamental programming courses, but no details are provided.

This system is also concerned with the implementation aspect of program

development. It is evident that SPC is of no help in planning and designing solutions to a

problem. The system will, however, help the student with automatic code generation

based on schematic specification, although the schema language must be learned. No

information on classroom evaluation was reported.

2.1.4 DSP

The DSP system (Olsen, 1988) was designed at Molde College in Norway to support the

teaching of programming in introductory courses with an emphasis on program

development, maintenance, and code reuse. It is intended to encourage algorithmic

thinking and to support modular programming. The DSP system is highly visual and

allows for selecting, moving or copying predefined templates to avoid syntactical errors.

33

The DSP system is designed to combine the advantages of application generators and

traditional programming languages. Programs can be generated in Ada, Modula II, or

Pascal.

The DSP system consists of five main components: (1) a visual high level

language, including a set of templates; (2) a language sensitive editor where program

construction is done by combining icons; (3) a module base encompassing a predefined

set of generic definitions and routines represented in target language syntax, which can be

extended by the teacher; (4) a generator for translating DSP code to the target

programming language; and (5) a visual runtime system, which executes DSP programs

and displays content of data structures and variables. A text editor is also provided,

though it is seldom used since constructing a program in DSP is mostly a visual and

graphical manipulation task.

There are some advantages to the DSP system. For one, the system allows the

user to work on various parts of the problem. The template method eliminates the

problem of frustrating syntactical mistakes. The system relies on the "understanding by

seeing" concept. However, there is no support for the tasks of problem solving and

program development beyond the implementation stage.

The DSP system was developed as a prototype and no information on evaluation

was provided.

2.1.5 AMETHYST

Amethyst (Myers, Chandhok, & Sareen, 1988) is part of a family of programming

environments designed at Carnegie-Mellon University for novice programmers. It was

34

developed on an Apple Macintosh, written in object Pascal, and stands for A

MacGNOME Environment That Helps You See Types.

The goal is to teach introductory programming through visualization. Amethyst

provides data visualization and graphical displays to help the student understand program

functions and conceptualize the data structure.

Amethyst consists primarily of a sophisticated editor that can represent the syntax

for a specified program in different views such as outline, tree decomposition, and linear.

Each basic data type is represented by its own differently shaped box. Structured

types such as arrays are represented by rows or columns of boxes. There are also two

basic object types. Graphics generators use mapping functions to create the visual objects

based on the appropriate data type to be displayed. Amethyst recursively draws

composite types such as records and arrays.

Amethyst also has a custom display feature. For example, an instructor may want

to illustrate certain complex data types such as linked lists, stacks, and queues using

special displays.

System functions focus strictly on the data and control; structures aspect of

programming. Support for other programming tasks is not provided. There are no

evaluation reports available.

2.1.6 University of Washington Illustrating Compiler

The University of Washington Illustrating Compiler (UWPI) (Henry, Whaley, & Forstall,

1990) was developed at the University of Washington. The system's main purpose is to

use program illustration or visualization to help students learn basic programming

35

concepts, such as those taught in first-year computer science courses and to help them

debug programs. UWPI illustrates the data structures for simple program written in a

subset of Pascal. A program illustrator works by watching for events through hookpoints

which are inserted into the program. UWPI inserts these hookpoints automatically.

UWPI consists of two main components: (1) a conventional compiler/interpreter

including an analyzer, interpreter and runtime-state parts and (2) an extended compiler

core including an inferencer, two illustrators, layout tools and a renderer. The inferencer

searches for the abstract data types within the code, chooses a layout plan, and passes the

plan to the data illustrator. The inferencer is supported by a data flow analyzer which

gathers definition information, a statement pattern matcher which looks for intra- and

inter-statement idioms, a subrange inferencer which determines the range of values for

each variable, and a concrete data type to abstract data type converter which finds which

possible ADTs are inferred by a variable.

The data illustrator creates and updates the illustration, and the interpreter-driven

source illustrator maps each node in the intermediate representation with the

corresponding part in the source code.

UWPI does not understand the illustrated program. Instead it gathers information

and accesses knowledge base of rules to construct and display the program view.

The system provides tools that are useful for activities of program implementation

and debugging. Earlier stages of program development are not supported. The authors

do not report on evaluation but note that although UWPI performs well despite small

bugs, larger bugs can cause a break down in the system.

36

2.1.7 BACCII

BACCII (Calloni & Bagert, 1994) was developed at Texas Tech University. The

system's premise is that the best way to learn programming is by developing algorithms

using icons, independently of syntax details. BACCII runs under Microsoft Windows

environment and is used to teach beginning procedural programming. Students develop

algorithmic flowcharts using icons selected from a menu without any regard to the

programming language syntax. ASCII format code is automatically generated for Pascal,

C, FORTRAN and BASIC. The current version enforces top-down design methodology

and an object oriented version is being considered.

BACCII consists of two main components: (1) the iconic algorithm development

module, which allows the students create solution logic by combining icons and (2) the

code generation system allowing the students to convert the iconic algorithm into

language syntax.

As with other traditional programming environments, the system supports

activities closely related to the implementation stage - namely flowchart construction and

code generation only. Other problem solving tasks cannot be performed using the

system. BACCII was evaluated in a five section Pascal course using two groups. One

group (three sections) used VAX Pascal and the other group (two sections) used both

BACCII and VAX Pascal. Calloni and Bagert report that the results were successful and

state that the BACCII group earned significantly higher grades.

37

2.1.8 ASA

ASA (Guimaraes, de Lucena, & Cavalcanti, 1994) was created at SENAC, a Brazilian

organization that promotes technical education. ASA is an environment designed to

teach algorithms at the introductory level. It supports code execution, animated tutorials,

and a program construction facility.

ASA consists of two main components: (1) the lessons model, which presents

information in tutorial form with animation of concepts and algorithms and (2) the

constructor, which consists of a flowchart editor and an interpreter allowing for

algorithms to be formed using menus and icons, and to be represented graphically using

flowcharts. The student can also visualize the algorithm in pseudocode, Pascal, C, or

Clipper.

While ASA provides instruction in a tutoring fashion, it does not monitor

students' performance, and no records of students progress are maintained. ASA was

evaluated in two steps using eight students in the first step and 20 in the second step.

Guimaraes, de Lucena, and Cavalcanti reported, with no specific details, that the main

advantages were an increased learning rate for experimental students versus control

students, as well as improved student motivation for learning in the experimental group.

They also noted two drawbacks: students tended to create correct algorithms without

understanding their purpose, and the teacher could lose control of the students due to lack

of knowledge about their strengths and weaknesses.

38

2.1.9 SUPPORT

SUPPORT (Zelkowitz, Kowalchack, Itkin, & Herman, 1987) is a development

environment that was designed at the University of Maryland and has been in use since

1986. This PC-based system is intended for programming using a subset of Pascal. The

goal is to create a self-sufficient system which does not require the student to deal with

the operating system or even be exposed to language features that are beyond the scope of

the first course.

SUPPORT consists of three main components: (1) a syntax-directed editor to

build the program; (2) a Pascal interpreter to execute the programs; and (3) a user

interface module, which uses windows to communicate with the user.

The student communicates with the system through the Program Text window and

the syntax-directed editor that only understands the features of the Pascal subset used.

Programs are created using function keys, menus, or parsed text from the internal parser.

The code is always syntactically correct since it is stored as a parse tree and will not

allow for incorrect input. Menu buttons are used for constructs such as statements and

procedures, and the parser is used for constructs such as expressions. This eliminates the

frustration of novices trying to build a syntactically correct program. If the text is

syntactically incorrect, then the Internal Character Oriented Editor (COED) is invoked.

COED consists of simple cursor commands. It is the major tool for making

modifications. Changes must keep the "syntactic balance" of the program syntax tree.

SUPPORT allows to import or export programs and fragments to and from other

applications.

39

SUPPORT includes a logging function to simplify generation of screen output.

All write and writeln statements are automatically output to a file. The system also

includes an interface between the text window and execution. The interpreter can be

halted at any point during execution via the keyboard. Program trace and debug windows

are also available at this time.

The utilities provided by support are valuable for the beginning programmer. But,

the system's functionality is limited to the implementation and testing stages.

SUPPORT was used in a computer science course in Spring of 1986 with an

estimated 240 students registered. A limited evaluation consisting of two student surveys

was performed, one during the third week and one at the end of the semester.

2.1.10 STRUEDI

STRUEDI (Kohne & Weber, 1987) is a LISP STRUcture EDItor for novice programmers

developed at the Institute of Psychology, Technische Universitat Braunschweig in

Germany. The system was designed to reduce syntax difficulties common with novice

programmers.

The basic idea behind STRUEDI is to allow the student to select predefined

language constructs from a menu in order to build the program. STRUEDI maintains

control of syntax, provides for understandable presentation of code, and helps the student

understand syntax and semantics by offering explanations. The number of predefined

constructs is limited to those taught in a first year LISP course. However, the number can

be modified by the instructor.

40

STRUEDI consists of primarily of a sophisticated syntax-directed editor and a

collection of predefined language-constructs that are selected from a menu.

STRUEDI works by copying constructs from a menu to the work space. The

student begins by copying template constructs, such as selective or iterative statements.

The constructs contain empty slots that need to be completed by the student such as

specific operators, variable or constant names. Pre-implementation activities are not

considered in STRUEDI. All facilities are actually used to build the program syntax.

A prototype of STRUEDI was evaluated by ten students with varying degrees of

knowledge. Subjects were divided into two groups. One group wrote programs using

STRUEDI and the other used a LISP environment that support a common display editor.

The students participated in six sessions of programming using recursive and iterative

LISP functions. They were given two tests -- one before the programming sessions and

one after. The reported results showed that the syntactical skills of STRUEDI users

increased by 14% and only by 5% for students using the LISP display editor. Semantic

skills increased by 26% for STRUEDI users and 12% with LISP editor users. The

authors concluded that STRUEDI enables students to learn syntax and semantics better

than they would with an ordinary LISP display editor. However, the increase in

algorithmic and problem solving skills was the same, at 5%. Such result is consistent

with the fact that the system aimed to support coding only.

2.1.11 Example-Based Programming System

Example-based Programming System (EBPS) (Neal, 1989), developed at Harvard

University, combines the concepts of syntax-directed editors and software reuse. It was

41

observed that novice programmers had problems with the terminology used in currently

available syntax-directed editors. It was also noticed that programmers use previously

written code, either from textbooks or their own code, when writing programs. The idea

for this system is to use pre-written examples to aid the programmer.

There were two goals for this system: to use sample language constructs to

enhance the template approach to programming, and to provide a tool that displays

examples within the programming environment, and thus develop a new approach to

programming. The system prototype was developed on a MacIntosh computer for the

Pascal language.

EBPS consists of two main components: (1) a syntax-directed editor and (2) an

example library. The syntax-directed editor is supported with an editing and an example

windows. Example programs can be viewed, edited, or copied into the editing window.

The system provides very limited capabilities to the student and does not extend

its functionality beyond the implementation stage.

EBPS was tested on 22 undergraduate and graduate students with various degrees

of programming expertise. They were asked to write a program which converts an

integer value into change (dimes, nickels, etc.). Only six of the students did not use the

example facility at all. Half of the other 16 used the examples during program

development, while the others used it only while editing. Most of the students used the

example library for syntactical purposes, such as when to use "div" vs. "/", or "write" vs.

"writeln". Only seven of the 16 subjects copied all or part of an example. The author

states that overall response to the system was reported as useful and positive.

42

2.1.12 Software Design Laboratory

Software Design Laboratory (Hohmann, Guzdial, & Soloway, 1992) (SODA) is a design

support environment for introductory programming in Pascal. It was created at the

University of Michigan, Ann Arbor. SODA is based on a software design model, and

provides a "workspace" for each stage of the process. The system was developed to help

students overcome serious difficulties in identifying problem modularization during the

design process, and to integrate those modules in the proper order to form a solution to

the problem. Its primary goal is to support the software design process.

SODA consists of three main components: (1) a problem decomposition module,

which provides reference to existing program solution techniques; (2) a composition

module, which support the students in integrating solution parts; and (3) a debugging

module to facilitate solution verification.

SODA has a graphical interface consisting of multiple windows for the Code

View, the Goal-Plan View, and the Hierarchy View. The system is worksheet-based and

self-paced. Students complete worksheets (programs, output, etc.) that are maintained in

a notebook and are used for grading.

Although SODA provides a more realistic support for the problem solving process

than other systems, it nevertheless ignores support for earlier stages of the process and

begins with problem decomposition in the design stage. The system also maintains a

tight control over the design process which must be followed in a sequential fashion. The

student must first identify explicit goals, then specify plans, and then assemble the pieces

into a working solution. Though a good idea, it is possible that certain activities can be

43

performed in parallel or through evolving iterations. Otherwise, it may so restrictive that

it hinders student discovery.

The system was used at a high school in 1991, but does it not appear that a

controlled evaluation was performed. However, a predecessor to SODA, called the

GPCeditor, was used and evaluated by having the students write an end-of-semester

program, using LightSpeed Pascal, without the use of GPCeditor. The evaluation was

based on the length of programs written by the students. Students in the experiment

group performed better than those in the control group. Hohmann, Guzdial, and Soloway

state they feel confident discussing the "expected outcome of SODA in terms of actual

outcomes from the GPCeditor."

2.1.13 MEMO-II

MEMO-II (Forcheri & Molfino, 1994) was developed at the Istituto per la Matematica

Applica del Consiglio Nazionale Belle Richerche, Genoa, Italy. Forcheri and Molfino

address what they perceive as shortcomings in earlier tutoring systems developed

specifically for learning particular languages and paradigms, and systems that promote

learning programming methodologies, but do not aid students in solving problems. They

classify these systems as being too "cognitively oriented." Because of the variety and

complexity of the cognitive processes involved in programming, they observe that these

systems can only apply to some of them. On the other hand, Forcheri and Molfino state

that traditional programming environments are too "software engineering oriented," and

are design tools based on systems for software development. They note that the software

tools developed fall short of solving the problems with learning programming. They

44

propose to surmount these limitations by designing a system which combines aspects of

the two categories into a single tool.

MEMO II consists of three major components: (1) a specification acquisition

module used to build solution specifications using an editor and a verifier; (2) a reasoning

mechanism, which proves the specification base; and (3) a direct implementation module

that allow students to automatically translate specifications into code.

MEMO II is a realistic teaching and learning environment that falls between two

extremes (cognition based and software engineering based) and is designed to help

beginning programmers build proper problem solving abstractions that can be

implemented with different programming paradigms. It allows students to deal with

problems in the following areas: problem representation, specification validation,

implementation, and execution of the program.

The system takes an approach consistent with the process of problem solving.

The activities performed by the students are essential for understanding and solving

problems. However, the system may not be suited for novice students. For example,

problem representation is performed using a syntactically complex language that consists

of a set of predefined operators. The students must learn the syntax of this language to

define the problem. This seems a inconsistent with the goals of MEMO II. In addition, it

appears that MEMO II was not evaluated in the classroom.

2.2 Debugging Aids

Debugging aids are used by programmers to test programs, observe program behavior

during execution, detect and correct errors. Some debugging aids may include limited

45

program development tools in the same way that traditional programming environments

include facilities designed specifically for debugging. Code watchers, tracers, flags, and

visualization and animation utilities are common tools. External debugging utilities can

also be used in conjunction with programming environments.

Table 7 offers a concise description of debugging aids reviewed. A thorough

explanation of each system follows.

Table 7 Examples of debugging aids

Debugging Aids Description

LAURA Uses information on what program is intending to achieve in order to
debug it. That information is presented in form of program model.

DA If the student's program does not match the library plan, it compares
the plan to its own stored plan and suggests corrections.

GENIUS Uses natural language interface approach to program debugging.
Presented as an alternative to knowledge-based systems.

VIPS Provides control flow visualization and uses graphical interface that
shows changes in programs' data during execution.

Lens Uses a debugger of the C language to help user find logical
mistakes by graphically executing code.

2.2.1 LAURA

LAURA (Adam & Laurent, 1980) was created at the University of Caen, France. The

purpose of this debugger is not to find syntactic errors in programs, but to locate and

possibly correct (or suggest corrections for) semantic errors in a program. Adam and

Laurent note that much work has been done on using the computer to teach students how

46

to write correct programs. LAURA, on the other hand, is used to debug programs that

have already been written.

LAURA. consists of two main components: (1) a knowledge base that contains

program model and (2) a debugger that translates programs into graphs and then

compared to solution representations in the knowledge base to provide diagnostics.

LAURA runs independently after a program has been written, and therefore will

not interact with the student except to produce the final outcome. The system requires

information about what the program is intended to achieve in order to debug it properly.

That information is presented in the form of a "program model." The model is a

syntactically and semantically correct version of the program to be tested. By recreating

a representation of the program using graphs, the variation in syntax is removed and

LAURA is able to identify or localize the semantic inconsistencies in the program.

In order for the debugging to be effective, it is essential for the system to receive

correct information about the program. The method used is to supply LAURA with the

correct program which is in turn compared against the student's solution. LAURA was

evaluated with 100 programs written to solve 8 different problems. The system was able

to identify correct versions and find errors in others, regardless of the structure of the

programs.

2.2.2 The Debugging Assistant

The Debugging Assistant (DA) (Laubsch & Eisenstadt, 1981) is an aid designed at Open

University in England. It was developed in MacLISP for use by novice programmers

with the programming language SOLO.

47

DA consists of four main components: (1) a translation module; (2) a plan

recognition module; (3) a symbolic evaluation module; and (4) an effect description

matching module. In the translation step, the program is translated into a "plan diagram"

notation which is language independent. It contains the program's control flow, data

flow, and a description of the program's overall effect. It detects the following instances

of "irrational code": unreached code, unbound variables, and useless code.

The plan recognition step recognizes sequences of code as manifestations of

different "standard library plans". It refers to a plan library and recognizes the plan and

its effect description.

The symbolic evaluation step is when all possible paths are analyzed, the

debugger generates an "effect description" which accounts for any changes in the

database achieved by the program.

The effect description matching step matches the previously generated effect

description with an "ideal" effect description to find mismatches. If the student's

program does not match the library plan, the domain specific plan library (DSPL)

compares the plan to its own "stored plan" and suggests corrections. It checks the

bindings of the variables, checks to see if a step insertion is needed, looks at the branches

to see if a change occurred at the wrong branch, and finally looks for a branch where a

disagreement in the effect exists, despite correct conditions. No reporting on student

evaluation was provided.

48

2.2.3 GENIUS

The GENIUS prototype (McCalla, 1991) was designed at the University of Saskatchewan

in Canada as an experiment in "ignorance-based reasoning" using a "psychiatric"

approach to program debugging. It was written in C, runs on UNIX-based PDP 11/70,

and is intended for the novice PL/C programmer. McCalla contends that knowledge-

based systems require great intelligence and much knowledge and that current systems do

not provide complete solutions to the problems of novice programmers. Such systems,

McCalla states, concentrate on only a subset of the many problems facing students

learning programming and it will be some time before a general and flexible knowledge-

based support tools are available. Thus, he proposed GENIUS, a program debugging

assistant.

GENIUS was designed to give the student the illusion that the system knows a lot

about programming when in fact it does not (hence the ignorance-based system). It was

created based on the idea that if a student spends enough time examining the program

closely, the errors will eventually be found and resolved.

GENIUS consists of two main components: (1) a natural language module that

finds "granules" in the students input, such as "yes", "no" or "don't know" and their

variations and (2) a domain knowledge module which is made up of nodes containing

hints and advice.

When a student first calls on GENIUS, the system tries to determine if the error is

a syntax error or a logic error. The system is not equipped to handle logic problems since

it would need more information on the type of program the student is working on. The

syntax error handler asks the student to provide the error number given in the program

49

listing, then attempts to find the cause of the error by repeatedly asking questions and

then provides a general advice on that type of error.

Several evaluations were performed. The GENIUS system fell short in several

areas. For example, 60% of the requests were unfulfilled, which means GENIUS could

not find the reason for the error. Also, the GENIUS system is not equipped to deal well

with logic errors. As the complexity of the problems increased, the usefulness of the

ignorance-based system decreased.

2.2.4 VIPS

VIPS, a visual debugger (Isoda, Shimomura, & Ono, 1987; Shimomura & Isoda, 1991)

was created at the Electrical Communications Laboratories, NTT. It was developed to

overcome weaknesses in existing visual debuggers, such as inadequate program flow

visualization, the lack of dynamic code execution, and character-based representation of

the debugging data (as opposed to a graphical representation).

VIPS consist primarily of a visual debugger for Ada, with a graphical interface

that shows the user the changes in the programs' data during execution.

An advantage of the system is that it allows the user to determine the graphical

method used to represent the various data types. On the other hand the user must learn

Figure Description Language (FDL) before doing so. VIPS is useful only as a debugging

aid for Ada, and no details on system evaluation are provided.

50

2.2.5 Lens

Lens (Mukherjea & Stasko, 1994) was developed at Georgia Institute of Technology.

Lens provides programmers with a tool for viewing the code as a series of animation

without having to learn a graphics paradigm or writing additional code. Lens is not

intended to catch syntax errors. Instead, its purpose is to help the user see logical

mistakes resulting from incorrect coding. By graphically executing the code, the user can

see what the program is actually doing. The system is suited for learning, especially in

introductory courses and courses that focus on software development.

Lens is primarily of an algorithm animation with an interface to a traditional

source-level debugger.

Currently, the system uses the dbx debugger of the C language. It is not capable

of creating animations of conditional executions. Also, mapping certain algorithmic

principles, such as recursion, can prove to be difficult since Lens does not support direct

manipulation of graphical items. Without this option, the user may actually have to work

to create the animation themselves. Stasko and Mukherj ea have evaluated their system

and reported that all of its operations are functional, but they do not provide information

on the methodology for their evaluation.

2.3 Intelligent Tutoring Systems

Artificial intelligence techniques are employed in some tutoring systems to provide more

sophisticated support for students learning programming. Such systems are referred to as

intelligent tutoring systems and allow access to tutoring and testing material on language

syntax. Intelligent tutoring systems offer adaptive instruction to individual learner needs

51

and are able to analyze student responses and determine correctness; guide and interact

with students; and provide feedback and advice (Wenger, 1987; Snow & Swanson, 1992).

This is typically done by presenting the student with problems to be solved and checking

student responses against rules or stored solutions. Such systems are used to help novice

students learn a specific programming language, develop cognitive models, form mental

representations of problem domains, and gain testing and debugging skills. Intelligent

tutoring systems include three main components:

• The domain knowledge base contains representations of solutions, errors and rules

constructed by compiling expert knowledge and skills on domain-specific problems.

This knowledge base is used to evaluate student progress toward the solution,

compare and verify results to form basis for error detection and correction.

® A student model used to construct a representation of the student learning progress

and knowledge acquisition process. This information is crucial for the tutoring

component as it determines what to teach, when to teach it, and how to teach it.

® A tutoring agent concerned with delivery of organized instructional modules to

students. The selection of teaching material is based on the overall learning goals of a

tutoring session, and feedback from the student model formed as a result of

monitoring student interaction with the system.

These components may vary depending on the specific system architecture.

However, most intelligent tutoring systems, as well as intelligent programming

environments and debugging aids with intelligent behavior, share many commonalties.

Table 8 offers a concise description of intelligent tutoring systems reviewed. A thorough

explanation of each system follows.

Table 8 Examples of intelligent tutoring systems

Intelligent
Tutoring Systems

Description

BIP

Determines program correctness by comparing student answers to
its optimal solution. If program does not match, student starts
coding process again.

LISP
Tutor

Monitors for divergence from expert behavior. If student deviates
from correct path, tutor "guides" student back toward solution.

PROUST Examines student's code using stored solutions that are already in
its library and returns feedback on this basis.

APT Assumes that programming knowledge can be modeled around a
series of production rides forming an ideal student model.

2.3.1 The BASIC Instructional Program

The BASIC Instructional Program (BIP) (Barr, Beard & Atkinson, 1976) was developed

at the Institute for Mathematical Studies in the Social Sciences of Stanford University,

and was designed to study the feasibility and effectiveness of tutorial methods of

computer aided instruction. BIP is an independent, self-contained instructional course for

learning the BASIC programming language, geared toward students at the high school or

college level as an informal introduction to problem solving in BASIC. BIP was

intended for students with no prior computer knowledge as a tutor or a supplement for

learning computer literacy.

BIP consists of five main components: (1) an enhanced BASIC interpreter which

also collects knowledge about student performance and presents errors in a more readable

52

53

fashion; (2) a database of 100 programming problems of varying difficulty; (3) a HINT

feature which provides text help and text-based "graphical" problem solving hints; (4) the

Curriculum Information Network (CIN), which through a series of error counters and

self-reported student ability information will select problems for the student based upon

skill set; and (5) a BASIC language student manual.

BIP determines a correct program by comparing student answers to its "optimal

solution". This is done by looking for key syntactical program elements. If the student's

program does not match with the model solution, the student is considered to have failed

to acquire a particular skill, and is expected to start the process again. The system

presents another lesson dealing with that skill, but it teaches mainly through hints and

examples. Error counters and self-reported information about the users' understanding of

the lesson are the primary methods of determining user ability.

One evaluation involving 42 students, split into control and an experiment groups,

was completed. Each student used the system for ten hours solving the same problems,

but using two different strategies for task selection: the control group followed a

predetermined strategy for task selection and the experiment group used BIP's task

selection algorithm. No significant difference was found in students post-test scores.

However, a significant difference was reported in throughput with the experiment group

solving more problems and encountering few difficulties.

2.3.2 The LISP Tutor

Goal-Restricted Environment for Tutoring and Educational Research on Programming

(GREATERP), also known as the LISP Tutor (Anderson & Reiser, 1985), was developed

54

at Carnegie-Mellon University to provide students with assistance as they work on

exercises using the LISP language. The LISP Tutor combines a psychological theory of

skill acquisition with artificial intelligence to create a teaching device for the LISP

language. It was developed on the assumption that private tutoring is much more

effective than classroom training (Bloom, 1984). According to the Anderson and Reiser

studies involving learning LISP, students with private tutors need only 1 1 hours to learn

the same amount as students who had 43 hours of classroom training. They also note that

humans learn best with immediate feedback about their errors. The tutor is intended for

beginning LISP programmers in introductory courses, is written in LISP and runs on

VAX systems.

The LISP Tutor consists of three main components: (1) the domain expert, which

writes LISP functions from problem specifications; (2) the bug catalog, which holds

possible divergence from the ideal "expert behavior"; and (3) the tutoring module, which

consists of an expert system used for instruction.

The LISP Tutor provides immediate feedback at all stages of learning. If a

student follows the path of a correct solution, the tutor remains in the background and

monitors the student's progress. As soon as the student deviates from that path, the tutor

steps in to "guide" the student back toward the solution. When an error is encountered,

the tutor offers an explanation of the correct answer based on templates stored with the

LISP production rules.

Two evaluations of the tutor were reported. The system was compared to

experienced tutors and self-learning conditions. The results of the evaluations of the

LISP tutor versus a human tutor and "on your own" conditions for learning six lessons

55

are not surprising. In one study, students with human tutors took 11.4 hours, students

with the LISP Tutor took 15 hours, and students learning on their own took 26.5 hours.

The system has an effective rate of catching and correcting student errors of between 45

and 80 percent, depending on the complexity of the problem being solved. Students

complained, however, that the system uses too many menus.

2.3.3 PROUST

PROUST, a tutoring system for Pascal programs (Johnson & Soloway, 1985), was

developed at Yale University with a two-fold goal: to provide students with their own

"programming expert", and to create a "pedagogical expert" that could interact effectively

with students.

PROUST consists of three main components: (1) a module to address the location

and content of the bugs in a program; (2) a module to determine what the student intends

to do with the code; and (3) a module, the most important, to identify misconceptions a

student may have that explain the presence of bugs in the program.

On the highest level, PROUST uses an explicit system of goal decomposition to

break down a program. This system creates a tree-like structure that takes into account

the algorithms for solving a problem. After this occurs, PROUST examines the student's

code using "stored solutions" contained in its library. During debugging, PROUST looks

for matches between the student's code and its own. If it cannot reconcile differences

between the two, a series of transformation rules are invoked. These rules make it

possible to break the program up again by examining individual functions. It prints out

messages that describe the error, its location, and offers help for users if they request it.

56

PROUST examines the student's code using solutions from its library and

provides feedback on this basis. The system was evaluated on 206 novice solutions to a

simple program that computed average rainfall in a day. Seventy nine percent (of 161

programs) were completely analyzed. Ninety four percent of the bugs were recognized,

though not accurately (there were 55 instances of either misinterpretation or erroneous

labeling). Among the 35 programs receiving partial analyses, 191 bugs were found.

Seventy one of the bugs were recognized correctly. Seventy were deleted from the

analysis and 50 were not recognized. PROUST was unable to analyze four percent (or

nine) of the programs.

Johnson and Soloway state that these inaccuracies in bug recognition are likely to

occur in programs that contain undocumented errors, or in cases where the students use

novel plans or ambiguous cases requiring interaction with the tutor. This is a drawback

for a system designed to teach programming. Novice students will invariably write

programs that contain unusual errors or even use some creative ways to solve a problem.

2.3.4 The ACT Programming Tutor

The ACT Programming Tutor (APT) (Corbett & Anderson, 1993), a cognition based

tutor, was created at the Psychology Department of Carnegie-Mellon University. The

APT tutor is designed as a programming environment to help students complete short

programming assignments, and based on an ideal student model using production rules as

its knowledge base. The knowledge base currently supports LISP and Prolog syntax.

APT consists of two main components: (1) the tutor interface, which presents the

exercises for the students to solve and provides feedback and (2) the cognitive model,

57

which consists of a set of rules for writing LISP code. APT is a graphical environment

that uses several windows, each with a different function. Some of these include the

`Problem Statement', 'Exercise', 'Hint', 'Menu' and 'Skill Meter' windows. The

functions of these windows are self explanatory, except the 'Skill' window, which shows

as a bar graph the tutor's model of the student -- the probability that the student has

learned the skills being presented in that exercise. This process is called "knowledge

tracing".

The APT tutor was created to test viability of the ACT * theory of skill acquisition

(Anderson, 1983). The ACT* theory assumes that programming knowledge can be

modeled around a series of "if-then" production rules forming an "ideal student model."

In the case of the APT tutor, it is several hundred production rules.

APT is designed to help students write short programming exercises. As such, a

set of production rules can be used to create an ideal student model. However, as the

complexity of problems increase, so does the complexity of the rules. Moderate success

is reported on system evaluation, but the number of students used in that testing may have

been inadequate. APT was evaluated in one semester using 41 students.

2.4 Intelligent Programming Environments

Intelligent programming environments combine the features of intelligent tutoring

systems such as adaptive instruction, monitoring and assessment of students' progress,

and feedback and advice with tools that are used in the program development process. In

addition to the domain knowledge base, the student model, and the tutoring agent,

58

intelligent programming environments provide access to traditional programming

environments utilities such as syntax editors, compilers and debuggers.

Table 9 offers a concise description of intelligent programming environments

reviewed. A thorough explanation of each system follows.

Table 9 Examples of intelligent programming environments

Intelligent
Programming
Environments

Description

Bridge Relies on pre-stored ideal solutions to verify student's program.

GIL
Uses a knowledge base of reasoning rules and plans and responds
to errors by comparing the student's steps with its own reasoning.

ITEM/IP

Compares solutions against model programs. If any
inconsistencies are detected, system explains wrong behavior of
student's program.

DISCOVER Uses a pre-stored reference solution against which it matches
user's program.

ELM -PE Determinations of correctness is made by the use of rules
knowledge base for good, suboptimal, and buggy code.

Capra Uses stored model solutions to verify correctness of student's
work.

INTELLITUTOR Evaluates student's intentions based on algorithmic structure
knowledge base that contains possible solutions.

2.4.1 Bridge

Bridge (Bonar & Cunningham, 1985) was developed at the University of Pennsylvania.

Bridge is an intelligent tutor that provides a "complete tutorial environment" for the

beginning programmer. In addition to finding student errors, it also understands partially

59

completed programs and student intentions for their code. Bonar and Cunningham also

wanted to bridge the gap between the syntactic approach to learning a language and the

cognitive processes necessary for problem solution. The tutor is able to understand

natural language specifications to problems and the syntactical solution.

Bridge consists of three main components: (1) solution specification module,

which allows the students to formulate their ideas in English; (2) plan specification

module, which teaches the students programming skills and allows them to translate from

informal specifications to plan specifications; and (3) the syntax module, where students

build the programming language code for the solution.

One benefit of Bridge is its use of the natural language to allow the students to

describe a problem solution, build it into a programming plan, and receive guidance

through the conversion into Pascal syntax. However, the student is restricted to using the

natural language vocabulary selection such as 'Sum', 'Add', 'Keep doing steps', etc. The

sentence is then completed by selecting choices from a menu. There are three main steps

for building a program: informal specification of the solution, translation from the

informal specification to the programming plan (more specific than an informal

specification - also using terms like 'Read in', 'Count', etc.), and translation of the

programming plan to program code. This provides some flexibility and encourages

students to think about problem solutions in simple language, an important step in

problem solving as it encourages the student to be creative. However, support for design

and problem decomposition is lacking. Bridge does not support functions and procedural

abstractions.

60

To build the English language solution, in phase 1, the student selects choices

from the "Natural language selections menu". A second menu selection is used to

complete the sentence, which is then placed into the plan window.

Phase 2 involves matching representations of the prior phase with menu selections

of formal programming plans. For example, 'Add integer to running total' produces a

`Plan to: Keep a running total' which is translated to 'INITIALIZE', 'UPDATE', and

`VALUE'. In phase 3, the student uses a menu to select Pascal constructs and matches

them to programming plan of phase 2.

Although Bridge allows the student to build a natural language plan specification

of the problem, transform it into plans by making choices from a menu, and consider

possible solutions to a problem, it remain restrictive due to its limited vocabulary and

syntax. Problems used in Bridge are of a very simple nature and emphasis is on

algorithmic and syntactic implementation throughout the process of problem solving.

The system also relies on a pre-stored "ideal solution" to verify the student's program.

The student solves the problem by first using a "well defined" language to form the

English language solution, then converts it to a plan using coded terms, and finally

translate the plan to Pascal syntax.

Bonar and Cunningham compare Bridge with PROUST, which they consider

unable to have meaningful interaction with the user, and the LISP tutor, which forces the

student into a highly directed process, does not allow informal ideas and provides no

provision for intennediate components during problem solving. The evaluation of the

system took place with 10 students who were able to work through the lessons with little

or no human intervention. However, the sample is too small to be able to draw

61

conclusions. Students reported difficulties with the visual display and inadequate textual

materials presented.

2.4.2 Graphical Instruction in LISP

Graphical Instruction in LISP (GIL) (Reiser, Ranney, Lovett, & Kimberg, 1989) was

developed at Princeton University. The goal of GIL is to construct explanations based on

its knowledge of the problem and the solution and to use visual representations to aid the

student in writing simple LISP programs.

GIL consists of four main components: (1) a problem solver, which uses a

knowledge base of reasoning rules and plans; (2) an explainer, which follows the problem

solver's logic and explains its own reasoning; (3) a response manager, which responds to

program errors, errors which are legal LISP expressions, but are not useful to the

program, non-confirming strategies, and specific hint requests; and (4) a graphical

interface, which allows students to build programs by connecting objects representing

different program constructs into a graph instead of using LISP's traditional text form.

The user selects functions from a menu and specifies its input or output. The

complete program is a graph representation of functions that transform input data into the

desired output. GIL allows the user to plan in several directions, for example: forward,

from the data toward the goal, or backward, from the goal back toward the data. In GIL,

there is no formal planning and design stage. Students begin solving the problem by

implementing the solution logic. GIL compares the student's steps with its own reasoning

and suggests steps to take based on the student's method of problem solving.

62

GIL was tested on nine undergraduate students, who had no prior programming

knowledge. The students learned basic LISP functions from a textbook. They were

assigned 14 to 15 programming problems dealing with lists. The solutions required three

to seven steps. After the ten minute demonstration, none of the subjects asked for

assistance with the interface. The subjects completed the assignment in less than two

hours which is half the time spent by non-tutored students. GIL students solved the

problems faster than other students (an average of 15 minutes for GIL students vs. 58

minutes). The subjects made only .4 errors per problem and requested .3 hints per

problem. 95% used forward reasoning. Backward reasoning was rarely used and was not

used more than once per problem. More legal errors were made (83%) than strategic

(17%), with most occurring when the operators were misunderstood. Subjects were able

to fix approximately 50% of the errors. Even though the subjects did not regularly

request hints, they often followed the hints (74%) immediately and were successful 69%

of the time. The sample of students used for the evaluations is too small to draw accurate

conclusions.

2.4.3 Intelligent Tutor, Environment and Manual for Introductory Programming

Intelligent Tutor, Environment and Manual for Introductory Programming (ITEM/IP)

(Brusilovsky, 1992) was developed at the International Center for Scientific and

Technical Information in Moscow. ITEM/IP is an integrated intelligent tutor an

programming environment for teaching the mini-language Turingal (Brusilovsky, 1991),

designed for this system's use. ITEM/IP was developed as an example of a system that

63

provides functionality by integrating an electronic manual, a tutor, and a

programming/learning environment.

ITEM/IP consists of three main components: (1) the programming laboratory as

an integrated editor/debugger; (2) the information kernel, which contains the student

history); and (3) the pedagogical module, which controls teaching operations such as

when to move on or repeat a lesson.

The system presents a task for the student to solve, guides the student through the

process, and then evaluates the outcome. The solution is compared against the "model

program". If any inconsistencies are detected, the system "explains" its solution by

demonstrating the "wrong behavior" of the student's program.

The intended user is a high school or beginning college student. The system was

evaluated over a year period with 45 students (three groups of 15 each) from 14-year-olds

to Moscow State University freshman. The students in the experimental group learned

Turingal using ITEM/IP, while students in the control group learned Pascal via

blackboard lessons. Brusilovsky reports, "without any special measurement", an increase

in interest among the ITEM/IP students, and a decrease in the number of students deemed

"weak". Brusilovsky notes that the design of such an environment for a "real" language

is a difficult task.

2.4.4 DISCOVER

DISCOVER (Ramadhan, 1992; Ramadhan & du Boulay, 1993) is an intelligent tutor and

programming environment designed to teach beginning programming. It was developed

at the School of Cognitive and Computing Sciences, University of Sussex, United

64

Kingdom. Ramadhan and du Boulay (1993) acknowledged the results of intelligent

tutoring systems have been questioned, and designed DISCOVER as their response. It

combines visualization and traditional programming environment features with intelligent

tutoring.

The system consists of two main components: (1) the free phase module, which

allows the students to construct programs on their own with no feedback from the system

other than memory visualization and (2) the guided phase module, where students learn

from a set of problems under the guidance of an "intelligent programming expert."

DISCOVER's free phase allows students to construct programs without the

intervention of the system, and the guided phase offers problems to the student and

monitors progress toward a solution. All programs must be written in a pseudocode

language designed for DISCOVER. In the guided phase, the system selects the problem

and presents the specification to the student to find a solution by combining programming

concepts from a menu (similar to Bridge). It uses a pre-stored "reference solution" which

it matches against the user's program. Its ability to analyze partial code segments is an

asset.

The language of DISCOVER is, however, very limited. It supports input, output,

selection (using an "If' statement), and repetition (using a "While" statement). The use

of pre-stored problem statements and solutions as a means of verification in the guided

phase is restrictive and limits the number of solutions that the system will recognize as

correct. The user builds answers by selecting "concepts" from a menu. These concepts

are then translated into program statements. An apparently effective way to teach

language constructs and syntax. DISCOVER was evaluated using eight students, four in

65

the experimental group and four in the control. The authors' experiment showed that the

students using the system solved problems quicker and with greater accuracy than those

who did not use the system. They commented that the application of these findings is

limited due to the small number of participants in the experiment.

2.4.5 Episodic Learning Model Programming Environment

Episodic Learning Model Programming Environment (ELM-PE) (Weber, 1993), a

cognition based intelligent programming environment designed for teaching the LISP

language, was developed at the Department of Psychology, University of Trier, Germany.

Weber notes that novices usually need explicit examples and reminders of previous

problems when they are faced with new problems to solve. Thus, ELM-PE is an

example-based system designed to support students learning LISP through the use of

analogies.

ELM-PE consists of five main components: (1) a syntax-based structure editor,

designed to reduce syntax errors by filling in LISP statement slots with appropriate

insertions, allowing only valid LISP syntax to be constructed; (2) example-based

programming tutor to teach LISP whose code may be modified and copied into the

student's own programs; (3) a stepper module allowing the student to visualize the flow

of data during the execution of the program, which can be stepped through line by line

and stopped anywhere to allow the student to see mistakes made; (4) error messages

delivery and explanation module; and (5) a cognitive diagnostic module based on the

ELM theory.

66

An important feature of ELM is the fact that the code produced by the student

undergoes a cognitive diagnosis. This diagnosis serves as the impetus for offering hints

to the student on incorrect code, which plans should be followed, and partial solutions to

the problem. Student solutions are categorized as good (correct), suboptimal (correct but

could be better), and buggy (incorrect). The cognitive diagnosis makes such

determinations by the use of a rules knowledge base (similar to the LISP tutor) for good,

suboptimal, and buggy examples.

The system offers the student reminders and analogies when errors occur or when

the student's code is determined to be suboptimal. Also, the student can ask for help

while writing the code for a problem and the system responds by offering similar

examples. This is possible because ELM stores resulting explanation structures of pre-

analyzed examples in the case-based learner model.

Novices do have difficulties recalling analogies between old and new problems

(Gentner & Landers, 1985). This system is based on the premise that, in an example-

based learning environment, a tutor's ability to show and explain relevant examples can

ameliorate the problem. An important factor would then be the comprehensive state of

the problem domain case-base. The same is true regarding the completeness of the buggy

rules which are stored in an error library. ELM-PE was tested with a total of 20 students,

ten novices and ten advanced; clearly too small a sample to demonstrate the system's

ability to promote creative problem solving and understanding.

67

2.4.6 Capra

Capra (Verdejo, Fernandez, & Urretavizcaya, 1993) is an intelligent programming

environment developed at the Ciudad Universitaria and Universidad del Pais Vasco,

Spain. It was designed to overcome shortcomings of similar existing environments. The

authors say many such systems focus on the drill and practice, through exercises, of a

particular programming language constructs, imparting knowledge of the syntax and

semantics only. The goal of the Capra system is to teach program design at an

elementary level. Its methodology is based on the use of plans or schemas for reasoning

about the construction of a program. Capra supports planning and implementation and

combines features of programming environments and tutoring systems. The system helps

the student understand and write elementary programs and provides tutoring based on

students' knowledge. There are three steps to a programming solution: problem

abstraction, relationship to a class of solutions, and refinement to produce a final answer

as designed and stored in the system's knowledge base.

Capra consists of three main components: (1) the tutor module, which presents the

students with exercises to check concept comprehension; (2) the knowledge based

debugger, which monitors students problem-solving activities; and (3) the interface

module, which manages the system's multi-window interface.

The tutor's role is defined as "a process where two agents cooperate to attain

some instructional/learning objective." The first agent facilitates a Socratic style dialog

which is followed by a decision facilitated by a second agent as an instructional plan for

the student presented in the form of lessons. The debugger uses stored "model solutions"

to verify the correctness of the student's work. The diagnosis of a student's work

68

involves matching the version of the code written by the student to the correct one stored

in the knowledge base. The interface consists of a graphical user interface through which

the student communicates with the system.

Capra relies on a knowledge base of previously defined solutions to verify the

student answers. The system uses classes of stored problems to teach problem solving.

A problem may arise in the case where a student may come up with a unique solution that

is correct, but does not exist in the knowledge base. This method restricts the student's

thought process. The student is expected to apply the system's logic in solving certain

types of problems. It has not been reported whether the system was evaluated.

2.4.7 INTELLITUTOR

INTELLITUTOR (Deno, 1994) is another example of an integrated intelligent

programming environment. The system was developed at the Tokyo Denki University,

S aitama-ken, Japan.

INTELLITUTOR consists of three main components: (1) GUIDE, (2) ALPUS,

and (3) TUTOR. GUIDE is a knowledge-based editor which assists the student in writing

programs with built-in syntax knowledge. ALPUS is the portion of the system which

attempts to "understand" the student's intentions based on an "algorithmic structure"

knowledge base that contains possible solutions. It analyzes buggy statements and

detects logical errors. It then "guesses" the intentions of the student and offers advice for

fixing errors. The TUTOR subsystem receives information from GUIDE and ALPUS to

build a model of the current user's abilities. TUTOR can then present the appropriate

69

knowledge to the student to facilitate learning. The system does not, however, consider

the student's knowledge level.

The system is not intended for the novice; it was developed for students with a

basic knowledge of Pascal. According to Ueno, it is best used in an intermediate

programming course in which students are learning algorithms and practicing

programming skills. INTELLITUTOR's program understanding capability has been

evaluated with experiments on intermediate level programmers using sorting algorithms

at the Department of Systems Engineering of Tokyo Denki University. Students were

first taught the Quicksort and Straightsort algorithms in a class lecture. They were then

asked to code the algorithms. The results were entered into the system and examined by

ALPUS. In the Quicksort programs 68.6% were correctly evaluated by ALPUS. For

Straightsort, 77.5% were correctly understood by ALPUS.

There are several limitations to the INTELLITUTOR system. In terms of its

teaching capability, intentions are inferred by evaluating buggy code and not by

evaluating the student's individual knowledge level. The ability of the ALPUS module to

"comprehend" a program is limited. One reason for this is that the "algorithmic

structure" knowledge base does not include all possible solutions - a serious problem

since the system was specifically designed for intermediate students. Such students are

unlikely to write only "simple" programs. Take as an example the 68% success with the

common Quicksort routine coded by the students. Ueno states there are two reasons for

this: the knowledge base does not contain every possible solution pattern and therefore it

cannot recognize everything coded by the students; and the pattern matching routines are

not powerful enough to understand complex bugs, only relatively simple ones. It does

70

not appear that a comprehensive evaluation testing of INTELLITUTOR was done. The

two sorting algorithms can not be considered general enough to test the effectiveness of

the system.

2.5 Conclusion

The efforts in teaching and learning programming and the development of computing

systems to assist novice programmers underscore the necessity and importance of

enhancing the experiences of learning a programming language. Computer Science is

now a well defined field. College students can earn degrees in many areas of computing-

related specialization. Computer science, or computer education as it is known at the pre-

college level, is also studied in the secondary schools as a required or elective subject.

More students in secondary schools and colleges are taking computer science courses - in

fact, a course on programming and problem solving is a standard requirement in virtually

all university engineering and science curricula. Many other curricula - business, liberal

arts, and education - also include a required course in computer science, though not

necessarily in programming. Additionally, applications software ranging from drawing

and engineering applications to database systems, spreadsheets, and word processors

provide programming facilities for the end user. Problem solving skills are essential to

understanding the fundamentals of computing, and should be learned while studying

programming. Clearly, recent development efforts have enabled more people to take

advantage of technology.

As evidenced by the literature review, a notable emphasis has been placed on

meeting the needs of students learning programming. A large number of tools and

71

environments have been designed and developed to improve the learning and teaching of

programming skills and, consequently, the productivity of programmers. However, there

are questions that must still be answered. These are: Did the systems achieve their

defined goals? Was the developments of these tools grounded by the needs of the

classroom? Were they consistent with the difficulties in problem solving and program

development - namely, errors and misconceptions in understanding of syntax, semantics,

and use of programming languages, deficiencies in problem solving strategies, tactical

knowledge, and ineffective pedagogy of programming instruction? The following

chapter presents a thorough analysis and critiques of the surveyed systems and their role

in enhancing the acquisition of programming, and provides some answers the these

questions.

CHAPTER 3

ANALYSIS AND CRITIQUE OF EXISTING APPROACHES

Problem formulation, planning and design are essential prerequisite tasks to coding and

testing because any difficulties or errors at these earlier stages, due to deficiencies in

problem solving skills or inadequate domain knowledge, lead to errors in the final stages

(Wirth, 1971; Walker, 1994). Reports from research studies point to students' difficulties

with programming beyond the scope of language syntax to include lack of problem

solving skills and curricular shortcomings. Despite this, research and development on the

teaching and learning of programming has devoted disproportionate attention to syntax-

related activities, with little attention given to the earlier tasks of problem definition,

requirement, and specification. However, language syntax should be learned in

conjunction with problem solving skills and analysis and design methodologies to

provide students with an overall understanding of effective program development.

This chapter provides a thorough analysis of the problems and critiques the

systems designed to address students' difficulties in learning programming.

3.1 Functional Weaknesses and Practical Deficiencies

It would appear that the systems developed to help students learning programming have

answered the problems they addressed. But, on closer examination, concerns arise

regarding the appropriateness of these systems as support mechanisms for learning

programming. These concerns fall into two categories, functional weaknesses and

practical deficiencies, described in sections 3.2 and 3.3.

72

73

Some of the problems apparent in current research and development are: the

absence of problem solving and software engineering frameworks; an overemphasis on

syntax; a lack of integration of the technology and pedagogy in the classroom;

insufficient testing and evaluation (Rosenberg, 1987; Ramadhan, 1992); and problems

with the user interface. For AI systems, there are problems with the domain and rules

knowledge bases; the bug catalog; the limited scope of examples; and rigid teaching

paradigms (Sleeman & Brown, 1982; Snow & Swanson, 1992; Eisenstadt, Price, &

Domingue, 1993; Ramadhan & du Boulay, 1993).

3.2 Functional Weaknesses

Is the focus on programming too narrow? Is this focus warranted? Have these overly

ambitious systems, especially intelligent tutors, accomplished their defined goals? Are

the expense and complexity of these systems justified when dealing with simple

programs that are often about one page in length? Researchers themselves have asked

these questions (Johnson & Soloway, 1985) and some are reassessing their research

directions. For example, the developers of the LISP tutor have totally abandoned the

original idea of emulating a human tutor (Anderson, Corbett, Koedinger, & Pelletier,

1995). We address answers to these questions from a learning viewpoint. Table 10

summarizes the functional weakness in programming environments, debugging aids,

intelligent tutoring systems and intelligent programming environments.

74

75

conformity with the problem solving and program development process for the four

categories of systems described in Chapter 2.

Some of the tools support a broader, but still incomplete, aspect of the problem

solving and program development process. Examples are the intelligent programming

environment Bridge (Bonar & Cunningham, 1985), the design support environment

SODA (Hohmann, Guzdial, & Soloway, 1992), and the programming environment

MEMO-II (Forcheri & Molfino, 1994).

Bridge allows the student to build an English language specification for the

solution by making "task" choices from a well-defined "natural language selections

menu." To refine the solution, a second selections menu is used where the student can

convert the specification to plans. Finally, the program syntax is built, using once again

menu selections. However, Bridge has no explicit planning stage or a design stage where

the solution is developed and improved by successive refinements. The solution evolves

from natural language specifications, which is then converted to an algorithm, and then to

syntax.

With SODA, on the other hand, problem solving starts with the design stage,

bypassing problem definition and planning stages. Specialized tools for defining goals,

plans and data objects are provided. The process only consists of problem

decomposition, solution composition and debugging.

The activities performed in MEMO-II are problem representation, specification,

implementation and execution, but it omits solution planning and design stages.

Furthermore, under problem representation, the student uses a syntactically complex

language which employs predefined operators to model problem specification, obligating

76

the student to deal with another form of language syntax in the very first stage of the

process.

Table 11 Focus of problem solving and program development process in visual oriented
programming environments

Programming
Environments

Understanding
Problem

Planning
Solution

Designing
Solution

Implementing
Solution

Pict X

PECAN X

SCHEMACODE X

DSP X

AMETHYST X

UWPI X

BACCII X

ASA X

77

Table 12 Focus of problem solving and program development process in text oriented
programming environments

Table 13 Focus of problem solving and program development process in debugging aids

Table 14 Focus of problem solving and program development process in intelligent
tutoring systems

78

Table 15 Focus of problem solving and program development process in intelligent
programming environments

79

3.2.2 Overemphasis on Language Syntax

A major shortcoming of present tools is an intense emphasis on syntax. The student is

led directly into the implementation stage, without any allusion to the problem solving

activities. Research results (Soloway, Ehrlich, Bonar, & Greenspan, 1982; Perkins,

Schwartz, & Simmons, 1988; Shackelford & Badre, 1993) have consistently uncovered

student difficulties with programming beyond the scope of syntax. Despite this, the

overwhelming majority of the tools continue to solely address the implementation stage

of the software process. Even the tools that do not solely focus on the coding task devote

a disproportionate amount of attention to this activity compared to other software process

activities (Bonar & Cunningham, 1985; Hohmann, Guzdial, & Soloway, 1992; Forcheri

& Molfino, 1994).

Moreover, current systems are language specific. Both intelligent programming

environments and intelligent tutoring systems include features which require the students

to solve problems by writing simple code segments or short programs using a

programming language such as Pascal, LISP or Prolog. These systems provide useful

facilities such as syntax editors, partial code execution, data structures and memory

animation, and an interface designed to help the student with the syntax. But they lack

facilities to assist students in focusing on the problem solving tasks. The LISP tutor, an

extensively referenced system, is used as an example to illustrate this point. Figure 2

shows the beginning of a coding session for function 'create-list' using the LISP

tutor and is redrawn from Anderson, Corbett, Koedinger, & Pelletier (1995). There are a

few problems with this example:

1. The student is immediately engaged in syntax construction.

80

2. The student does not have to do any investigation of problem requirements. For

example, the wording of problem description includes phrases like "accepts one

argument".

3. The student is not given the opportunity to think about possible solutions, rather;

the student is told "You should count down in this function", or "...just insert

each new number into the front of the result variable."

Figure 2 The beginning of a coding session for function 'create-list' using the
LISP tutor (redrawn from Anderson, Corbett, Koedinger, & Pelletier, 1995)

81

Even where facilities for problem solving are provided, such as Bridge (Bonar &

Cunningham, 1985) and MEMO II (Forcheri & Molfino, 1994), these systems appear to

be rigid and complex to use. For example, Bridge allows the student to build a natural

language specification for the problem and the solution by choosing keywords from a

menu. But the students must continue to deal with a restrictive syntax and a limited

vocabulary.

It is even more complex to use MEMO II, where the initial activity of problem

representation is performed using the computational interpretation of algebraic

specifications, a syntactically complex language that consists of a set of predefined

operators. This basically requires the students to learn the syntax of another language,

one using terminology that approaches the complexity of any other language, to define

the problem.

Given that the system is designed for novice programmers, this seems a

contradiction of the stated goals. The system would be better suited for intermediate

students. Figure 3 shows an in-progress Prolog program to find whether a natural

number is even or odd, redrawn from Forcheri and Molfino (1994).

Figure 3 An in-progress Prolog program, using MEMO II, to find whether a natural
number is even or odd (redrawn from Forcheri and Molfino, 1994)

82

83

3.2.3 Inadequate User Interface

The inadequacy of the user interface has also been criticized. Students must typically

spend considerable time learning how to use the system, creating the need for tutorial

support to overcome basic operational difficulties. With these systems, student

dissatisfaction with the user interface is frequent (Eisenstadt, Price, & Domingue, 1993).

Problems with the user interface were reported with many of the graphical

systems. For example, students who used Bridge (Bonar & Cunningham, 1985)

complained of difficulties with the system's visual display. Advanced programmers

familiar with text based languages found Pict (Glinert & Tanimoto, 1984) to be confusing

and difficult. Students who used the LISP tutor (Anderson & Reiser, 1985) complained

about the system's menus.

Protocol analysis is a technique developed in order to examine the thought

processes involved in problem solving (Newell & Simon, 1972), but it is commonly

utilized as an important measure of information systems' ease of use (Turoff & Hiltz,

1997). It is not apparent if either pre-deployment testing or protocol analysis were

performed for these systems. For example, there is no report in the literature of protocol

analysis performed by prospective users before the systems were used in the classroom.

Such testing and analysis is vital given the inexperience of the users, the intricacy of the

tools, and the complexity of the user interface.

3.2.4 Incomplete Rules-and-Errors Knowledge Bases

Intelligent systems evaluate student programs based on comparison with stored "ideal

solutions." A knowledge base of solutions, errors and rules is maintained for comparison

84

and verification. Such a knowledge base is intrinsically incomplete because it is

impossible to include a pattern for every solution and a complete list of errors (Raga &

Kojima, 1993). Because the solution knowledge base is incomplete, students will

inevitably propose correct solutions deemed invalid by the system (Sleeman & Brown,

1982). The error knowledge base or bug catalog, typically organized as a collection of

errors categorized by type, is also ineffective because of its incompleteness (Rosenberg,

1987; Eisenstadt, Price, & Domingue, 1993). Thus, student responses that reflect factors

not represented in a model solution may be incorrectly categorized as errors (Snow &

Swanson, 1992), or students may make "undocumented" mistakes that are placed under

the wrong error category (Wenger, 1987; Snow & Swanson, 1992), as happened with

PROUST. Johnson and Soloway (1985) characterize three kind of programs that will

always cause PROUST problems, due to knowledge base incompetence, and require the

aid of a teacher. Those are:

1) unusual bugs;

2) programs containing novel plans; and

3) ambiguous cases requiring interaction with the student.

It is unrealistic to expect such cases to occur infrequently. It is not unusual to

encounter programs containing one, a combination, or all of these characteristics. Novice

students will likely write programs that contain unusual errors or use a creative way to

solve a problem.

The incompleteness of a rule-based system is normally ameliorated by having a

domain-specific expert maintain and extend the knowledge base over time (Sleeman &

Brown, 1982; Snow & Swanson, 1992). This was not done in any of the tools we have

85

considered, and in any case would have to be done by a programmer or an experienced

user, complicating the application of the system.

3.2.5 Simplicity of Problem Domain

The simplicity of their examples is another concern regarding the problem solving

approach of intelligent systems. As observed, this is inevitable given the limitations

intrinsic to the rules-and-errors knowledge base essential to an intelligent tutoring system

(Naga & Kojima, 1993). The tools actually address this incompleteness problem by the

expedient of using only highly specified and simple problems for which reasonably

complete knowledge bases can be developed. Thus, the very "problem simplicity" that

enables the knowledge based system to behave as an expert simultaneously reduces its

usefulness once the student is ready to move beyond the basics of the subject. The

reliance on a limited number of teaching paradigms and simple examples makes these

systems too restrictive to suit student needs, reducing their ability to provide significant

experiences (Eisenstadt, Price, & Domingue, 1993).

3.3 Practical Deficiencies

Do current tools solve the problems of learning programming? Are the characteristics of

these tool driven by actual classroom needs? And what are the effects of these systems on

students? An attempt to answer these questions is handicapped because many of these

systems remain prototypes (Rosenberg, 1987; Snow & Swanson, 1992) and there are few

reports on evaluation and integration into the curriculum. Table 16 summarizes the

86

practical deficiencies in programming environments, debugging aids, intelligent tutoring

systems and intelligent programming environments.

Table 16 Practical deficiencies

Practical Deficiencies Reasons

Limited Classroom Evaluation.
Reports on evaluation results are insufficient and
inconclusive.

Failure to Integrate Tools into
Curriculum.

Tools remain isolated and have no direct relationship to
learning taking place in classroom.

Impede Creativity and Development
of Higher Order Thinking Skills.

Imposing constraints on structure of program as student
constructs it to assure that certain solution is found.

3.3.1 Limited Classroom Evaluation

It is important to understand the impact of these tools on student/teacher dynamics and

the effect this might have on computer science education. Evaluation of post-system

deployment is an important assessment technique; however, little such evaluation has

been reported. Those experiments that were done, almost invariably report success and

improvement in student performance, but offer little supporting detail. An examination

of the reported evaluations reveal a variety of problems with experimental design,

including frequency of experiments, selection of course sections, number of subjects, the

type of evaluation performed and the conclusions reached by the authors.

For example, two evaluations were conducted in the case of the LISP tutor

(Anderson & Reiser, 1985 & Anderson, Corbett, Koedinger, & Pelletier, 1995).

Information on the number of students involved and a clear numerical discussion of the

outcome is not provided. The first study stated that "generally, students are happy with

the tutor and rate it better than learning experiences they had in other introductory

87

programming courses." However, it is not clear what kind of students were involved in

this evaluation, what introductory courses are referred to, and under what conditions these

courses were taken. The LISP tutor was compared to experienced human tutors and self-

learning conditions. But, the tutors' level of experience was not specified, nor were the

conditions of self-learning. The first study concluded that "the human tutor is still the

best, the computer tutor not far behind (and constantly improving), and the traditional on-

your-own (self-learning) condition much worse". The second evaluation reported similar

results.

PROUST (Johnson & Soloway, 1985) was evaluated using a simple programming

example that computed the average rainfall in a day. It was pronounced successful,

although the authors identified three kind of common program errors that cause the tutor

problems.

SODA (Hohmann, Guzdial, & Soloway, 1992) was used at a high school but not

evaluated. A predecessor to SODA, called the GPCeditor, was used and evaluated, but

no details were reported. Despite this, the authors still discussed the expected outcome of

SODA in terms of actual outcomes from the GPCeditor (Hohmann, Guzdial, & Soloway,

1992).

The lack of adequate evaluation is common to many of the systems. The

following are some additional examples. The evaluation of Bridge (Bonar &

Cunningham, 1985) was done with 10 students. APT (Corbett & Anderson, 1993) was

evaluated in one semester using 41 students. DISCOVER (Ramadhan & du Boulay,

1993) was evaluated using eight students, four in the experimental group and four in the

control. ELM-PE (Weber, 1993) was evaluated with a total of 20 students, 10 novices

88

and 10 advanced. After one semester of evaluation, ITEM/IP (Brusilovsky, 1992) was

said to have fulfilled its research mission. ASA (Guimaraes, de Lucena, & Cavalcanti,

1994) was evaluated in two steps, first using eight students and then 20 students. The

program understanding ability of INTELLITUTOR (Deno, 1994) was evaluated using

two sorting algorithms. Lens (Mukherjea & Stasko, 1994) was evaluated but the result,

other than that the system was fully operational, was not provided. No evaluation was

reported on Capra (Verdejo, Fernandez, & Urretavizcaya, 1993), MEMO II (Forcheri &

Molfino, 1994), SCHEMACODE (Robillard, 1986), or VIPS (Isoda, Shimomura, & Ono,

1987; Shimomura & Isoda, 1991).

3.3.2 Failure to Integrate the Tools into the Curriculum

To measure the impact of intelligent systems, programming environments and debugging

aids on computer science education and the delivery of introductory courses, they must

receive widespread acceptance. However, it is questionable whether these systems have

been integrated into the curriculum. There is no evidence in the literature that true

integration has taken place; by integration, we mean a system has become an important

and integral part of the learning process and is regularly used by students and teachers to

enhance the learning environment.

The literature lacks any clear description of how these systems are being used in

the curriculum beyond the reported research studies and limited evaluations. Indeed, it

appears that the tools largely remain prototypes or, exceptionally, are isolated and with no

direct relationship to classroom learning (Rosenberg, 1987; Snow & Swanson, 1992).

89

Researchers admit a number of factors had not been addressed (Anderson, Corbett,

Koedinger, & Pelletier, 1995), including:

• No attempt to consider the curriculum content.

• Ignoring overall curriculum objectives in favor of immediate results, such as

performance on a specific exam. Students' needs beyond the tutor were not

addressed.

• The inflexibility of the tutors hinder teachers' ability to reconcile their instructional

methodology with the tutoring system.

• Lack of support for teachers once the tools were deployed in the classroom.

Another reason for these systems lack of widespread acceptance is hardware

requirements. AI systems in general tend to be large, complex, and expensive;

educational software is not much different. These tools require considerable

computational power. Many were designed in research laboratory settings to run on

mainframe computers that can be accessed from school facilities, creating time and place

restrictions that hindered students from taking full advantage of systems designed to be

self-paced learning tools.

3.3.3 Impede Creativity and Development of Higher Order Thinking Skills

Intelligent systems present the student with a simple problem containing a clear

definition, specifications and constraints. The student is then led into finding the "ideal

solution." The systems monitor student activity very closely and adapt to their responses,

but never relinquish control (Marco & Colina, 1992; Snow & Swanson, 1992).

Therefore, students often become dependent on the system's ability to lead them in

90

solving the problem. Imposition of such barriers to creativity and the acquisition of

higher order thinking skills undermines student cognitive development. This is a serious

drawback, considering that these are the very skills the intelligent systems propose to

teach. For example, it is often the case that a problem can be solved in a variety of ways.

The problem solver may also explore alternative solutions to a particular problem.

Students may identify correct solutions that are judged erroneous by the system because

the solution is not within its domain. Such is the case with the LISP tutor, which is

designed to prevent students from diverging off the optimal solution path (Marco &

Colina, 1992; Snow & Swanson, 1992). Indeed, the rule in these systems seems to be

imposing additional and artificial constraints on the structure of programs as students

construct them in order to assure certain solutions. This inhibits student creativity,

unnecessarily confining and restricting the student to the systems' pre-defined

boundaries.

The effects of these systems on the development of students' higher order

thinking skills must be addressed. Therefore, we ask: Is the development of higher order

thinking skills an important factor to be considered when designing tools to support

students in learning problem solving and program development? Higher order thinking

skills include an understanding of problem solving methodologies, creative and critical

thinking skills, logical and reasoning skills, analysis, synthesis and evaluation abilities,

and cognitive strategies. The following (Resnick, 1987) are key characteristics of higher

order thinking skills:

• The total solution path is not visible, conceptually, from any single vantage point.

91

• Higher order thinking yields multiple solutions, each with distinct costs and benefits,

rather than unique solutions.

• Higher order thinking involves the application of multiple, conflicting criteria.

• In contrast to guided learning, higher order thinking involves self-regulation of the

thinking process.

We question the wisdom of merely obtaining a solution, rather than focusing on

the entire problem solving process. While under the "ideal" circumstances of "guided

learning", it may not be harmful to jump right into the development and implementation

of a solution, the students may not appreciate the consequences of their mistakes.

Intelligent systems continually "correct and guide" the student back within the

boundaries prescribed by the "expert behavior" for an "optimal solution," eventually

"leading" the student to a solution, though not necessarily one of the student's own

devising.

3.4 Summary

The reported evaluations indicate that intelligent systems have proved partially effective

as support tools for the novice programmer, but, in spite of their complexity and expense,

have provided only modest results (Rosenberg, 1987 & Ramadhan, 1992). In any case,

many of these systems were not integrated into the curriculum or adequately evaluated.

The investment in developing such systems appears not to have paid off (Lippert, 1989).

While such systems do show notable success in teaching syntax and language constructs,

they do not appear as successful in the comprehensive teaching of problem solving skills.

92

The type of problems these systems ask the students to solve are simple and well-

defined. The solutions to these problems are circumscribed by the knowledge domain of

the system. Students delve into the solution immediately and are confined to trying to

identify the correct solution under "coaching" from the system.

The effect of this methodology is debatable. It is known that students can solve

problems without even understanding required concepts (Halloun & Hestenes, 1987).

This is even more feasible in the context of the intelligent system. The student may not

experience meaningful problem understanding, planning and design tasks using such

systems, even though these activities constitute a large and essential part of the problem

solving process.

The findings of this research coincide with other research that has challenged the

ability of intelligent systems to seriously meet the needs of novice programmers

(Rosenberg, 1987; Lippert, 1989; Ramadhan, 1992; Snow & Swanson, 1992; Eisenstadt,

Price, & Domingue, 1993). Indeed some researchers have questioned whether

educational need or merely available technology is the motivation behind these tools

(Rosenberg, 1987). Others concede there have been no clear indications of success for

intelligent programming tutoring and debugging systems (Ramadhan, 1992; Snow &

Swanson, 1992).

Programming environments, including those with development facilities, and

debugging aids suffer from similar problems: (1) they focus on the programming aspect

of the process, and (2) they provide a totally unstructured facility for problem solving.

Only the functionalities required to construct, test and debug code are provided.

93

Traditional programming environments, of course, provide even less support for

problem solving. They are tools to support only the programming aspect of the software

process. A language compiler is the centerpiece of such facilities. Normally an editor, a

programmer's workbench, and various additional tools are the components used to carry

out the tasks of coding, testing and debugging. Predefined libraries and utilities are also

provided (e.g. the Turbo Pascal Environment). Apart from the editing and debugging

tools, traditional programming environments offer no support for the software process.

The problem definition, planning and design stages are totally neglected by these tools.

To a large extent, the software process with these systems remains a methodology

disconnected from the language and the tool (Yeh, 1990). This may perhaps be viewed

as a natural result of using a tool (the compliler) designed for one purpose - the non-

interactive translation of high-level language programs into executable code - for another

- teaching programming skills.

In large development environments, the entire software process may be aided by

tools. Progress toward software development systems encompassing the language, the

methodology, and technology has been made (Yeh, 1990). For example, a Computer

Aided Software Engineering (CASE) tool may be used in various stages of the software

process, most commonly in analysis, design and implementation (Mimno, 1990). Some

programming environments now include tools used for the design of the user interface,

data modeling, code generation, and integration (e.g. the Visual C++ Environment).

Programming environments designed for students must similarly offer functions beyond

mere specialized components (Papert 1980, Brusilovsky, 1993). Chapter 4 presents the

94

theoretical foundations for such a system and Chapter 5 includes the design specifications

for a system to be used by novice students learning problem solving and programming.

CHAPTER 4

PROBLEM SOLVING, PROGRAM DEVELOPMENT
AND COGNITION

This chapter introduces the concepts and terminology of problem solving, carefully

compares a number of classic problem solving methods, and then synthesizes a common

method incorporating the essential features of the classic methods. We then review the

problem solving tasks specific to program development, identifying how to adapt or

enhance the general common method to the area of program development. We next

examine the cognitive science and learning theory relevant to problem solving, and define

a cognitive model of problem solving. Finally, we identify for each task of the common

method the appropriate cognitive techniques and skills required, thus defining a Dual

Common Model which integrates problem solving methodology and program

development tasks with the cognitive techniques needed at each step of the process. This

Dual Common Model serves as the basis for the specification of SOLVEIT presented in

Chapter 5.

4.1 Problem Solving

Problem solving is often described using state transition terminology. A problem solver

goes through a sequence of subjective mental states or processes (or operations on

information in the subject's memory) which progress toward the goal of solving a

problem (Mayer 1983). Objectively, the problem solver creates a sequence of problem

transformations, which transform the given problem from an initial state to a goal state,

and which taken together define a path to the solution (Simon, 1978; Mayer, 1983).

95

96

Figure 4 illustrates the correspondence between the subjective mental processes of

problem-solving and the corresponding objective transformations of a problem statement

into a solution.

A well-defined problem statement contains three principal parts: goal, givens, and

unknowns, which are shaped by the process of problem solving into a solution. A

problem may also contain additional important elements that must be recognized and

defined, such as conditions, constraints, and operators. Identifying the problem's goal,

givens, unknowns, conditions and constraints, based on the current representation of the

problem, is the first step in problem solving. The process starts with formulation of a

general representation of a solution, and progresses to a more highly specified solution

through a series of reformulations (Polya, 1945 & 1962; Schoenfeld, 1979). One way to

accomplish such transformations is to redefine the problem into subproblems and restate

the goal in terms of subgoals (Duncker, 1945; Newell & Simon 1972; Wickelgren, 1974;

Rubinstein, 1975; Mayer 1983). In order to find the unknown, one applies a sequence of

operators on the givens of the problem, changing the problem state from an initial

97

representation of the problem, into a final representation of a solution (Newell & Simon,

1972).

4.1.1 The Terminology of Problem Solving

Terminology for the various elements of problem solving has developed over time. The

most common terms are defined below, following (Polya, 1945, Duncker, 1945; & 1962;

Newell & Simon 1972; Wickelgren, 1974; Rubinstein, 1975; Mayer, 1983).

4.1.1.1 Goal, Givens and Unknowns

A goal is what one wants to accomplish. It must be extracted from the problem statement

by the problem solver and then appropriately represented. The goal is accomplished by a

sequence of problem transformations. A well-defined problem begins with a

representation of its specific facts that must be identified prior to solving the problem,

and which are known as the problem givens. A problem begins with a single goal, but

may have many unknowns. The goal tends to be a general statement of the problem

objective, while the unknowns are the detailed, particular things that have to be found out

in order to accomplish this goal. As one example of this terminology, consider the

problem of sorting a list. The given is the unsorted list. The goal is to rearrange the list

so it is sorted. The unknown is the sorted list. In this case, the goal and the unknown are

almost synonymous. In a more complex problem, such as where the goal is to design a

payroll system, there may be many unknowns, such as: gross pay, net pay, tax deduction,

etc., that have to be determined in order to accomplish the general goal.

98

4.1.1.2 Conditions and Constraints

Conditions and constraints are qualifying factors that must be taken into consideration

when solving a problem. Conditions tend to be logical restrictions, while constraints tend

to be quantitative restrictions. Conditions are similar to givens since both are existing

factors imposed in developing the solution. Constraints include, for example, restrictions

on the types of operators that can be used, their frequency, the conditions under which

they can be used, or the sequence they must follow (Wickelgren, 1974; Mayer 1983).

Any solution path from the initial to the goal state must satisfy the problem's conditions

and constraints. In particular, performing an operation that changes the problem state

from one state to another must either satisfy all or part of a condition or constraint.

4.1.1.3 Subgoals and Tasks

Subgoals are identified by restating the problem goal in terms of subproblem goals. This

refinement of the goal into subgoals makes it easier to devise a solution (Duncker, 1945;

Newell & Simon, 1972; Wickelgren, 1974; Rubinstein, 1975; Mayer 1983). Divide-and-

conquer with step-wise refinement is one common method for identifying and integrating

subgoals (Wirth, 1971). The work required to achieve a subgoal is called a task. The

integration of these tasks forms a complete solution.

4.1.1.4 States and Operators

The states that a problem takes on during problem solving can be distinguished into the

initial, problem and goal states. However, the problem itself may be ill-defined, so it is

the problem solver's first responsibility to create a well-defined initial problem

99

representation, which constitutes the problem statement. This may be a written, verbal,

or visual description of the problem's elements. The initial state is the situation

represented by this well-defined problem statement. In general, a problem state is a

description of the elements of the problem at any stage of the problem solving process.

The goal state is reached when a solution is found and the goal is met.

An operator is a function that accomplishes a task, moving the process closer to

the solution. Operators transform problems from one state to the next (Ernst & Newell,

1969; Simon, 1978; Mayer, 1983). Operators can be represented as sequences of steps or

algorithms that take into consideration the conditions and constraints of the problem.

Successive problem states are produced by applying operators that transform one

problem state to the next.

4.1.2 Categories of Problems

Two main kinds of problems are recognized in problem solving research (Rubinstein,

1975): problems of analysis, also known as transformational problems, and problems of

synthesis, which are the kind of problems frequently faced by engineers. Problems may

have characteristics of both analysis and synthesis.

Rubinstein (1975) defined a problem of analysis as one in which the solution

consists of a series of transformations, or changes in the representation, of a given

problem statement into a final solution. Greeno (1978) referred to these as problems of

transformation (p. 245) where, given an initial state and a desired goal, a set of operators

are defined and applied to produce the solution. Polya (1945) suggests using regressive

reasoning or solution backwards (p. 142) to solve such problems. In this technique, one

100

works backwards from what is required, developing and executing a plan which always

keeps in mind the goal or result sought, until one eventually arrives back at the problem

givens.

In contrast, a problem of synthesis is one in which the major effort is in selecting

and integrating known components to achieve a desired goal. While the problem as a

whole may be new, the individual steps needed to solve the problem are not (Rubinstein,

1975). Greeno (1978) referred to these as problems of arrangement (p. 255): given some

components, the task is to find a combination of components which meet the solution

criteria. Polya (1945) refers to these as problems of construction (p. 23) and suggests

solving them using progressive reasoning, which starts with what is already known, such

as the plan of action. As an example, integrating the known kinds of components of a

computer into a desired architecture requires selecting components with appropriate

characteristics, for each type of component category, in such a way that the selected

components can be integrated into a system which meets the requirements of the problem.

Computer scientists address both types of problems, but most of the problems in a

first course on programming are of the transformation type. In such programming

problems, the initial conditions and the desired result are known, but the tasks required to

solve the problem must be established by the problem solver. Problem solving methods

and systems that support the solution of synthesis problems require a very different set of

capabilities. They tend to be highly domain specific and knowledge dependent. For

example, in designing a house (a synthesis problem), the known components: walls,

doors, windows, etc., come in a variety of forms. A variety of basic plans are also

available to the overall architecture of the house. The solution entails first selecting a

101

plan to meet specified characteristics from a (knowledge) base of plans, then selecting

appropriate components that can be integrated within the plan. The solution is both

knowledge-based, for the overall plan and the individual components, and highly domain-

specific: a system that supported "solving" a house would be totally different from the

system that supported defining a computer architecture. Since this dissertation is about

problem solving in the context of programming, we focus on problems of analysis.

4.2 Problem Solving Methods

This section describes twelve different models of problem solving from Dewey (1910) to

Hartman (1996). The Polya (1945) model, already described in Chapter 1 and used as the

basis for the problem solving and program development model proposed later in this

chapter, is reconsidered and related to these other models of problem solving. This

review legitimizes the choice of Polya's as the basic frame of reference for our model.

Where possible, the authors' original terminology has been retained in the following

discussion.

Interest in problem solving is not new, with major developments that still

influence current problem solving methods reaching far back into history. The work of

Rene Descartes (1596-1650) on geometry was an important milestone in problem solving

(Rubinstein, 1975; Grabiner, 1995). Descartes (1637) in his Discourse on Method

observed that the problem solver must go about things in the right way and must use the

right method to arrive at a solution, otherwise nothing will be discovered. Further back

still, there was the work of Alkowarazmi (A.D. 825) from whose name the very word

algorithm is derived (Rosen, 1995). Euclid's (300 B.C.) Elements was of fundamental

102

significance to the whole systematic enterprise of science (Rosen, 1995), and even

provided Descartes with the first problem on which he applied his new "method"

(Grabiner, 1990). However, since our work is concerned less with historical

developments in problem solving, than with the process of problem solving itself, we

restrict our review to research starting early in this century.

4.2.1 Early Models

Two of the earliest methods for problem solving were given by Dewey (1910) and Wallas

(1926), and represent opposite approaches. Dewey's approach essentially articulates the

scientific method for problem solving, while Wallas' approach represents the non-

systematic, creative view of problem solving.

4.2.1.1 Dewey's Model

Dewey (1910) divided the problem solving process into four stages: (1) Define problem -

document exact nature and requirements of problem; (2) Suggest possible solutions -

identify possible alternative solutions; (3) Reason about the solutions - assess, select,

plan, and implement solution; (4) Test and prove - evaluate and verify results through

experimentation and validation.

Dewey's model resembles the classic "scientific method," following an orderly

process of observation, analysis, hypothesis and experimental validation.

103

4.2.1.2 Wallas's Model

Wallas (1926) identified four stages in problem solving: (1) Preparation - formulate

problem and gather information about the problem; (2) Incubation - unconscious

thinking about problem while engaged in other activities; (3) Illumination - gain insight

into problem and discover solution; (4) Verification - inspect solution for accuracy.

This model resembles the "sudden solution" or "Eureka" method described by

Hadamard (1945) and the "creative method" of Poincare (1913); see also Couger (1995).

It describes the introspective accounts and personal observation of prominent scientists

regarding their own creative process when they solved problems. The phenomenon was

recorded by Descartes who described a vision he had that led to his discovery of

Cartesian coordinates, establishing the link between algebra and geometry (Rubinstein,

1975); similarly, there is the famous anecdote of the French mathematician Poincare who

described how he solved an important mathematical problem while traveling by bus, even

though he was not (consciously) thinking about the problem.

4.2.2 Enhancements to Earlier Models

Subsequent models combined elements of both the scientific and the creative approaches.

Principal among these is Polya's famous work on problem solving. The Polya model

(1945 & 1962) elaborately specifies a problem solving method supported with examples

and documented in a series of books. Independently, Johnson's model (1955) refers to

Wallas, while Kingsley and Garry's model (1957) elaborated on Dewey. A separate, but

similar, model was presented by Osborn (1953) and Parnes (1967).

104

Neither Johnson nor Kingsley and Garry introduced significant development over

their predecessors. Despite the independence of these three methods, they are basically

consistent in their approach, an important indication of the stability of the methodology

over time. A different approach was introduced by Simon (1960) who viewed the

process as a collection of four cognitive abilities: intelligence, design, choices and

implementation.

4.2.2.1 Polya's Model

Polya (1945 & 1962), a prominent mathematician, wrote a series of books on problem

solving that are considered an outstanding contribution to the study of problem solving.

In two of his works, How to Solve It and Mathematical Discovery, he presented a general

method and applied it to solve many types of problems. Polya's model is among the most

widely used and referenced framework for a problem solving methodology. This model,

based on Polya's classroom experimentation and his own teaching observations,

comprises four stages: (1) Understand the problem - state the question, identify goal,

givens, unknowns, conditions, and their relationship. The student may draw a figure and

introduce suitable notation; (2) Devise a plan - outline a potential solution. Look at a

similar problem, restate the problem differently and break into parts; (3) Carry out plan -

refine and transform plan into a solution to the problem, decompose tasks and relate to

givens and unknowns, check validity of each step, and define each in relation to whole

problem; (4) Look back - confirm results and arguments, assess effectiveness of solution,

accuracy of results and usefulness of solution for other problems.

105

4.2.2.2 Johnson's Model

Johnson (1955) presented a variation on Wallas' creative method and divided problem

solving into three stages: (1) Preparation - understand the problem, gather relevant

information, and plan possible solutions; (2) Production - construct solution and produce

results; (3) Judgment - examine solution and results to determine accuracy, effectiveness,

and suitability of solution.

4.2.2.3 Kingsley's and Garry's Model

Kingsley and Garry (1957) presented a variation on the Dewey's scientific method that

includes five stages: (1) Clarify and represent problem - investigate and define problem

requirements; (2) Search for clues - identify and learn about alternatives for solving the

problem; (3) Evaluate alternatives - review and compare alternatives to select most

suitable solution; (4) Accept an alternative - select the best alternative and refine it into

final solution; (5) Test solution - validate results through experimental observations.

4.2.2.4 Osborn's and Parnes' Model

Osborn (1953) initially presented a three-stage model that included: fact finding, idea

finding and solution finding. Later Parnes (1967) revised it to include two additional

stages as follows: (1) Find facts - identify and analyze information; (2) Find problem -

produce representation of the problem; (3) Find idea - examine and develop alternatives

for a solution; (4) Find solution - evaluate alternatives, select and refine a solution, and

formulate a plan for implementation; (5) Find acceptance - carry out the plan and

produce results.

106

4.2.2.5 Simon's Model

Simon (1960) offered a four component model: (1) Intelligence - ability to recognize a

problem, gather pertinent information, and produce an accurate definition; (2) Design -

plan and generate possible solutions; (3) Choice - select and implement a suitable

solution from available alternatives; (4) Implementation - put choice into effect and

produce the solution. Each of Simon's components encompasses a set of skills

comparable to the ones required in other methods, such as those suggested by Dewey and

Polya.

4.2.3 Recent Methods

More recent methods were developed to provide mathematics, science and engineering

students with an explicit method for problem solving. Generally, these models divided

the problem solving process into a more finely specified process than the earlier methods.

Notable among these models is the work of Rubinstein (1975), who introduces an

element of reservation. One such reservation is at the problem understanding stage where

he looks at possible solutions before finalizing the problem statement; there is a similar

withholding of commitment at the final problem solution. Otherwise his method

represents the standard view. Similar observation were made by Halloun and Hestenes

(1987). Other popular methods are Etter's (1995) and Hartman's (1996), who presented

models that basically follow the Polya model without any radical changes.

107

4.2.3.1 Rubinstein's Model

Rubinstein (1975) presented a six stage model (taught to engineering students at UCLA)

described in his book Patterns of Problem Solving: (1) Get total picture - examine

problem elements until a pattern emerges. Defer working with details; (2) Withhold

judgment - search for a number of possible solutions without committing to any course of

action; (3) Model - verbalize and communicate; write down statement of problem using

mathematical and pictorial symbols, if needed; (4) Change representation - devise a plan

for solution and apply transformations that simplify the solution process; (5) Ask

questions - change the frame of reference while searching for information and solution

patterns; (6) Doubt results- accept premises as tentative until proven. In other words,

verify the outcome.

4.2.3.2 Stepien's, Gallagher's and Workman's Model

Stepien, Gallagher, and Workman (1993) offered a standard , now familiar view of the

methodology: (1) Analyze problem - understand problem. Discuss with others, if

possible; (2) List what is known - write down information known about the problem; (3)

Develop problem statement - describe what is to be solved and produced from what is

known about the problem; (4) List what is needed - write down questions to be

answered, information to be found, and concepts or principles to be learned; (5) List

possible actions - identify tasks to be completed and consider potential solutions; (6)

Analyze information - inspect information gathered and implement appropriate solution;

(7) Present findings - verify outcome and report results.

108

4.2.3.3 Etter's Model

Etter (1995) presented a general problem solving model, another close variation of

Polya's, used by students to solve engineering and science problems both manually and

by computer. The model includes five steps: (1) Define problem - state problem clearly;

(2) Gather information - describe problem input and output; (3) Generate and evaluate

potential solutions - find and assess possible solutions; (4) Refine and implement

solution - select, develop and produce solution; (5) Verify and test solution - evaluate

solution method and result.

4.2.3.4 Meier - Hovde's Model

Meier, Hovde & Meier (1996) introduced a recent instance of the standard model of

problem solving as a method for teaching mathematics and science problem solving. The

model also includes five steps: (1) Define problem - ask questions, collect preliminary

data, and understand problem; (2) Assess situation - collect information, establish

hypothesis, and begin investigation; (3) Plan strategy - establish strategy for solving the

problem; (4) Implement plan - carry out plan, modifying it as need arises; (5)

Communicate results - analyze and evaluate the outcome; share results.

4.2.3.5 Hartman's Model

Hartman (1996) describes an explicit model, similar to Polya's, to help students improve

their thinking and problem solving skills: (1) Identify and define problem - describe

problem, find givens, unknowns, and identify relevant/irrelevant information; (2)

Diagram problem - draw a sketch of problem and arrange in relationship to each other;

109

(3) Recall content - search for required concepts, definition, and rules needed to solve

problem; (4) Explore alternative strategies - find and plan most efficient way to solve

problem. Break problem into parts and examine difficulties; (5) Apply content and

strategies - combine knowledge and skills to carry out the solution; (6) Monitor work-in-

progress - review approach and progress toward solution; (7) Assess solution product

and process - look back at problem statement and answer. Check results for accuracy and

completeness. Evaluate solution method and experience.

4.3 A Common Method for Problem Solving

The purpose of this section is to identify a common integrated model for problem-solving

based on the models just reviewed. However, we first make some general observations.

Problem solving methodologies have stabilized over time, become more explicit, and are

demonstrably natural. The fact that the methods have settled down to a fairly well

agreed-upon and detailed form indicates that they provide a reliable theoretical

framework for the present work. The naturalness of these methods, in the sense that they

are psychologically spontaneous, has been established by the work of (Duncker, 1945;

Newell & Simon, 1972; Chi, Glaser, & Rees, 1982) using thinking-aloud verbalization,

protocol analysis, and related experimental techniques. Thus, Newell and Simon

carefully monitored how students thought about problems while solving them. The

process identified was similar to the methods reviewed and consisted of a series of stages.

Problem solvers began by trying to understand what was expected of them and by

gathering and organizing information. Facts about the problem were then used to

examine and plan possible solutions. The plan was then refined, executed, and tested. If

110

the putative solution was not confirmed, it was modified or new solutions were generated

and the process was repeated.

Although the general form of the methodology is clear from the review, it will be

beneficial to carefully synthesize these methods into a coherent, comprehensive model for

problem-solving. Polya's (1945 & 1962) method captures the essential features of these

problem-solving approaches, and so provides an established, recognized (Grabiner 1995)

framework which can serve as the basis for a problem solving method. Polya defined a

four-stage process that required: formulating the problem, developing a plan for solving

the problem, implementing the plan to produce a solution, and verifying and presenting

the results. A synthetic view of the detailed tasks involved by these steps and based on

all the models follows. It represents a common model for problem solving. A more

comprehensive model that addresses the cognitive and program development aspects of

the process will be defined later in this chapter.

4.3.1 Formulating the Problem

If we identify all the significant recommendations by the different methods regarding the

problem definition/understanding phase, then that stage includes the following. The key

ingredient was captured by Polya: State the question, and identify the goal, givens,

unknowns, and relations. Kingsley-Garry and Osborn-Parnes emphasize producing a

representation of the problem. Polya's method accomplishes one such representation,

though others are possible. Simon highlights the ability to recognize that there is a

problem in the first place; however, our emphasis tends to be on problems that are given.

Rubinstein's exhortation to defer details is implicitly addressed by any method, since a

111

method, by definition, enforces caution and clarification, constraining the impulse to

charge blindly ahead. Nonetheless, Rubinstein's recommendation is a good guideline to

keep in mind throughout the whole process of problem solving. Hartman recommends

diagrammatic aids and an initial search for relevant concepts. Stepien, Gallagher, and

Workman recommend collaboration, that is, discussing the problem with others.

Our approach includes all these elements, thus representing an inquisitive

(Socratic) approach requiring: understanding the problem through verbalization, asking

and answering questions, gathering information, restating the problem, introducing

notations and drawing diagrams to visualize the problem and its solution: the goal being

to identify the pertinent facts about the problem, ignoring inessentials. The initial

problem state produced in this way is a description of the problem and an organized

representation of all relevant information: the goal, givens, unknowns, conditions and

constraints. All of this is subject to revision as problem understanding develops.

4.3.2 Planning the Solution

A review of the methods for this stage reveals two key recommendations: identify

alternative solutions and devise a plan. Almost all the methods explicitly emphasize the

necessity of generating alternative solutions, which are then evaluated, and from which

one is selected. Polya, in contrast, recommends examining similar and/or simpler

problems and restating the problem. Though apparently different, this is in fact just a

more fundamental recommendation than "finding an alternative solution," because it

provides an actual technique for generating solutions by examining simpler or alternative

problems, which one may be able to solve, and whose solutions can then be adapted to

112

the current problem. This provides a technique, for example, for accomplishing what

Wallas only recommends: gain insight into the problem and discover solution, or into

Rubinstein's recommendation to: change the frame of reference and search for solution

patterns. Once a solution is selected, Polya again provides the most inclusive

recommendation; namely, devise a plan, by outlining a potential solution and breaking

the problem into parts. The outline or plan for a solution is just a high level view of the

solution. This high level view serves several purposes. It helps ensure the coherence of

the implemented solution and its fidelity to the objective of the original problem, by

deferring premature and distracting immersion in the details of implementation. Once

such a high level view is defined, the next logical step is to refine the plan by breaking

the plan/problem/solution into parts.

In summary, possible alternatives are assessed and a strategy for solving the

problem is devised. The solution is more manageable when the problem is reformulated

into a set of smaller subproblems. Therefore, the goal is refined into subgoals that are

more easily achieved, the tasks to accomplish each subgoal are defined, and the

relationship between the problem's givens and unknowns is established.

4.3.3 Implementing the Solution

If we identify all the significant recommendations by the different methods regarding the

implementation of the solution, then that stage includes the following. Most of the

methods explicitly emphasize the necessity to select a solution from generated

alternatives, which is then refined and produced. The essential tasks were clearly stated

by Polya in his carry-out-plan stage: Refine and transform the plan into a solution, and

113

decompose tasks. Others also call for refinements, transformations and decomposition.

For example, Kingsley-Garry and Osborn-Parnes emphasize refining the solution,

Rubinstein calls for transformations to simplify the process and Hartman recommends

breaking the problem into parts.

In summary, the plan devised in the earlier stage must be implemented in order to

produce the desired outcome. This is done by refining and transforming the plan into a

solution to the problem. A transformation from a high level solution outline to a precise

solution may require further decomposition of tasks, reorganization and specification of

an explicitly stated algorithm.

4.3.4 Verifying and Presenting the Results

This is the last stage of the problem solving process and is the most similar among all

reviewed methods. The standard recommendation of the different methods is verify the

solution. All of the methods explicitly emphasize the necessity for verifying solutions.

This verification procedure includes effectiveness of solution and accuracy of results.

Many of the methods also emphasize the evaluation of solution suitability for other

problems and, naturally, sharing and reporting results.

In summary, the main purpose of this stage is to produce an answer consistent

with the goal of the problem. Therefore, the problem solver has to look back and

evaluate the process and verify the correctness of the solution. This is determined by

testing the solution using data and examining the results. An equally important purpose

is to learn from the problem solving experience itself, acquiring knowledge and skills that

114

can be transferred to other problem solving situations. Finally, the solution and the

results are presented in a readable and organized manner.

4.4 Program Development

Programming, as distinguished from the specific task of coding, refers to the activities

involved in both designing and implementing programs in order to solve problems

(Wirth, 1971). These activities may be limited to simple data representation, algorithm

design, development and coding, but often, when dealing with large program

development, more complex activities requiring additional skills and knowledge are

required (Dijkstra, 1976; Boehm, 1976; Pressman, 1987; Page-Jones, 1988; Ng & Yeh,

1990). This section presents a synthetic view of the tasks required for program

development. These tasks will later be integrated with the previously identified common

problem solving methodology to define a Dual Common Model. These programming

development tasks will also be useful later on when specifying the evaluation plan for the

system.

4.4.1 Program Development Tasks

Programmers must develop skills which include: learning the language, composing new

and comprehending existing programs, testing and debugging solutions, and documenting

and modifying the programs they write. These are cognitive tasks related to language and

require knowledge of the syntax and semantics of the programming language

(Shneiderman, 1980; Rogalski & Samurcay, 1990, 1993). Other cognitive tasks, related

to problem solving, such as problem understanding, analysis, and design of the solution,

115

require domain, strategic and tactical knowledge, as well as practical knowledge of the

programming language (Wirth, 1971; Pennington & Grabowski, 1990). All of the

following skills are required for program development.

4.4.1.1 Learning the Language

Acquisition of a programming language is the first important task (Hoc & Nguyen-Xuan,

1990). Students must learn and understand the syntax, semantics and pragmatics of

language constructs and become familiar with the tools and utilities of the programming

language environment they use. A programming language has three aspects: syntactical,

semantic, and pragmatic. Syntactical knowledge refers to the ability to construct

grammatically correct instructions in order to write a program. This task requires both

accurate comprehension and detailed knowledge of the language rules, control structures,

and data structures. Syntax includes the grammar of a programming language, such as

the precise form for declaring a variable, constructing a repetition statement, forming a

selection condition or referencing a specific location in a list of values. Semantic

knowledge, in contrast, refers to functional understanding of the programming language

and the meaning of its instructions, such as the behavior of the language's control and

data structures. For example, given integer variables A and B, the syntax of the relational

expression: A B refers to its numeric variables and relational operator, while the

semantics of the expression indicates that A B is true whenever the value of A is larger

than or equal to the value of B, and false otherwise. Pragmatic knowledge refers to an

understanding of the context and use of language features, such as under what

116

circumstances recursion should be used as opposed to iteration, or when post-test looping

is more appropriate than pre-test looping.

A knowledge of the syntax, semantics, and pragmatics of a programming

language, combined with a knowledge of problem solving methodology, together

constitute the foundation skills required to compose, comprehend, test and debug,

document and modify programs.

4.4.1.2 Composing Programs

Program composition involves the representation of a solution for a problem in a specific

programming language, which is usually referred to as coding. The detailed design is

translated into instructions suitable for execution by a computer. Program composition is

a principal task of program development, requiring close attention to implementation

details and knowledge of language syntax, semantics, and pragmatics.

4.4.1.3 Comprehending Programs

Program comprehension involves understanding the code from data/control structure and

design views, thus making it an especially inclusive task of program development.

Program comprehension is not merely problem understanding, which relies on a rather

different set of skills. Students must develop the ability to read a program in such a way

that they understand its functionality and design. This requires comprehending the data

representations, logic and data flows, the purpose of individual instructions and

subprogram references, and the collective function of the program as a whole (Pennington

117

& Grabowski, 1990). It thus includes domain and strategic knowledge, as well as a

knowledge of language syntax and semantics.

4.4.1.4 Testing and Debugging Programs

A program must meet its specification requirements and errors must be identified and

fixed. Programs are tested for correctness at various stages of their development, both as

a whole and in parts. Students should learn to perform code testing, to develop and use

test data suitable for verifying program correctness, and to correct identified errors.

Testing and debugging are complex tasks and require a thorough grasp both of domain

knowledge and logic tracing skills not easily mastered. In addition to errors related to the

syntax and semantics of language constructs, programs may also contain errors that result

from mistakes arising at the problem definition and analysis phase, or errors that arise at

the design stage of software development.

4.4.1.5 Documenting Programs

Program documentation is essential for both comprehension and modification of

programs. Documentation may be internal, with comments and explanations embedded

in the code describing the approach and techniques used in solving the problem. External

documentation includes documentation developed prior to writing the code, such as

algorithms, charts, data modeling, and end-user documentation.

118

4.4.1.6 Modifying Programs

Testing is successful if it finds errors. Thus the result of testing will typically entail

changes to a program that may affect its logic, language constructs, or data

representations. Programmers must also be able to modify programs in order to alter

their functionality or adapt previously written code to solve new problems. The ability to

modify a program, especially after deployment, depends on the availability of

documentation, as well as the program comprehension and composition skills of the

programmer doing the modification. Knowledge of language syntax, semantics, and

pragmatics are paramount here too.

4.5 A Cognitive Model for Problem Solving

Cognitive psychology is relevant to this dissertation for several reasons. First of all, the

cognitive skills required in problem solving must be identified before we can specify the

cognitive functions required for a computerized environment that facilitates problem

solving. Secondly, learning tools should promote the development of cognitive skills, so

it is important to explicitly identify those skills and design systems which encourage their

development. Finally, explicit recognition of the relevant cognitive skills will help in

framing suitable hypotheses for system evaluation. In order to clearly address these

issues, it will be useful to have a framework that explicitly identifies the cognitive

elements of problem solving (Gabel, 1989), a so-called cognitive model for problem

solving (Schoenfeld, 1985). The subsequent section will integrate this cognitive model

with the previously developed program development and problem solving views. We

will define the cognitive model after the following brief historical review.

119

Historically, cognitive psychology became a factor in research on problem solving

and program development in the late 1960's and early 1970's with such work as

(Sackman, 1970; Weinberg, 1971) on the psychology of programming, and has continued

to be an active area of research (Shneiderman, 1980; Mayer, 1981 & 1988; Hoc, Green,

Samurcay, & Gilmore, 1990; Lemut, du Boulay, & Dettori, 1993). The objective of

cognitive psychology is to provide a more precise and detailed understanding of human

cognition, which in turn should lead to improvements in problem solving, teaching

programming, and ultimately to more effective software environments (Shneiderman,

1980). Some areas addressed in cognitive psychology include: comprehension and

mental models, knowledge acquisition and processing, knowledge organization and

management; and knowledge retention and transfer (Ormerod, 1990; Rogalski &

Samurcay, 1990, 1993; Shih & Alessi, 1993, 1994; Bertels, 1994; Greeno, Collins, &

Resnick, 1996). The related area of learning theory investigates learning, defined as the

acquisition of knowledge and understanding of information, concepts, and strategies.

Learning is a fundamental element of problem solving and an important element of such

cognitive processes as memory, perception, and thinking (Lachman, Lachman, &

Butterfield, 1979; Mayer, 1983). Problem solving itself requires a broad range of

cognitive skills, abilities, and knowledge essential to recognizing, understanding, and

utilizing facts, as well as planning, designing, and implementing solutions (Polya, 1945 &

1962; Simon, 1980; Mayer, 1983).

A cognitive model for problem solving should identify: the cognitive processes

that problem solving uses, the (hypothesized) cognitive structures or systems that support

these processes, and the cognitive results and affects on cognition of the problem solving

120

process. Accordingly, the cognitive model that we propose will have three elements: a

set of cognitive processes, based on Bloom's research (Bloom, 1956); a cognitive

structure, based on Sternberg's work (Sternberg, 1985); and cognitive results, based on

Gagne's learning outcomes (Gagne, 1985). Bloom's work is the most extensively

referenced model for the cognitive processes of thinking. Sternberg's well-known model

of the human information-processing system postulates cognitive systems which are

presumed to underlie these cognitive processes, thus defining a cognitive structure.

Gagne's work identifies the cognitive outcomes and effects of these processes.

Bloom (1956), in his Taxonomy of Educational Objectives, identifies a two-level

cognitive or thinking framework built on six cognitive processes: a higher-level set of

processes where problems are analyzed, synthesized, and evaluated, and a lower-level

which support knowledge, comprehension, and application. Bloom's conception of the

processes involved in problem solving parallels Polya's work.

The higher level processes Bloom defined are as follows. Analysis refers to the

strategies applied to problem solving using heuristic methods such as subgoal

decomposition to break down a problem into its component parts, means-end analysis,

and the use of similar problems or solution by analogy. Analysis includes identifying and

hierarchically organizing parts (Polya, 1945; Lindsay & Norman, 1972, Mayer, 1983).

Synthesis refers to the tactics applied to reintegrate the component parts, rearrange when

necessary, establish their relationship, and produce a new and well-organized whole as a

viable solution to the problem (Polya, 1945). Evaluation refers to judging the quality and

correctness of solutions based on established criteria and the problem requirements.

121

Evaluating the adequacy of a process and its appropriateness for other situations is

another element of evaluation (Polya 1945).

Bloom's lower-level processes are as follows: Knowledge refers to the ability to

bring past problem solving experience to bear and to identify and recall relevant facts.

This may include both general and domain knowledge, such as concepts, theories and

principles, as well as basic observations and advanced understanding of subjects.

Knowledge is demonstrated by awareness of specific facts about a problem available

from within a problem statement, or by awareness of information about related problems

(Polya, 1945; Lindsay & Norman, 1972; Mayer, 1983). Comprehension refers to the

ability to interpret and understand the meaning of presented material and relevant

information. This may be demonstrated by correctly explaining and answering questions

about the problem, restating the problem in a different verbal, written, or visual form, and

describing important facts about the problem (Polya, 1945). Application refers to the

ability to use the knowledge and identified facts and to apply the recalled concepts,

theories, or principles to plan a solution to the problem. This may be demonstrated by

outlining necessary steps to reach a solution, solving a simpler problem, or drawing

charts or graphs to represent the solution (Polya, 1945).

Sternberg's Beyond IQ: A Triarchic Theory of Human Intelligence (1985) defines

a hypothetical architecture for human thinking based on three components or

componential categories: knowledge acquisition, performance, and metacognition.

Sternberg's hypothesized Knowledge Acquisition Component includes processes used in

acquiring new knowledge, determining what is relevant, and integrating new and

previously acquired knowledge to solve problems (Gagne, 1985). Sternberg's

122

Performance Component executes processes concerned with devising and implementing

the problem solving plan. These entail goal decomposition, task selection, task

organization and relationships, and task execution (Duncker, 1945; Newell & Simon

1972; Wickelgren, 1974). Sternberg's Metacognitive Component guides thinking about

thinking. It performs the control processes that monitor all problem solving activities,

including knowledge acquisition and performance. These processes guide strategies and

tactics, beginning with problem representation through planning, implementing and

evaluating the solution (Schoenfeld, 1992; Butler & Winne, 1995).

Gagne's Essentials of Learning for Instruction (1985) describes what a good

learning environment should develop, its so-called cognitive results or learning

outcomes. Gagne identifies verbal information, intellectual skills, cognitive strategies,

and attitudes as the major categories of learning goals (Gagne 1985; Gagne & Driscoll,

1988). These learning outcomes also demonstrate that one has gone through the various

cognitive processes that Bloom has identified.

Verbal information refers to knowledge acquired by observing and reading, such

as stated facts and recalled principles, possession of which demonstrates awareness and

understanding of concepts. Such verbal information confirms that the problem solver has

gone through Bloom's knowledge and comprehension processes, and demonstrates

"knowing that." Acquiring and organizing such information is an essential requirement

for further learning since it is drawn upon as a source of ideas and possible solutions

when solving problems (Mayer, 1983; Gagne, 1985).

Intellectual skills are correlative to verbal information. The ability to plan, define

concepts, select objects, identify obstacles, and the demonstration of "knowing how" are

123

applied to problems in the form of concepts and knowledge to formulate and express

solutions (Gagne, 1985). The application for these skills demonstrates Bloom's

application process has been done.

Cognitive strategies refer to the mental processes in solving problems. Tactics

and approaches used to transform knowledge and facts in order to generate a solution for

a problem include: perception and reasoning (recognition of input stimuli and

identification of information), learning and understanding (encoding of information),

remembering (retrieval of information), and thinking (manipulation of information)

(Lachman, Lachman, & Butterfield, 1979; Mayer, 1983). These demonstrate completion

of Bloom's analysis and synthesis processes.

Attitudes are internal states that influence one's actions and preferences toward or

away from a situation, a concept or a person. For example, it is possible that students,

due to a specific learning environment or experience, will develop attitudes that will

positively or negatively affect their outlook on the learning process (Mager, 1968;

Rokeach, 1972). Attitude as a learning outcome is not directly related to the actual

process of solving problems and writing programs in the same way as verbal information,

intellectual skills, or cognitive strategies are, but is certainly an important measure to

consider when evaluating students' perspective of learning.

This tripartite view of the structure of problem solving: Bloom's cognitive

processes of problem solving, Sternberg's architecture structure of the thinking system,

and the associated learning outcomes of Gagne, defines our cognitive model of problem

solving and serves as the foundation for the model of problem solving in a program

development environment introduced in the following section.

124

4.6 A Dual Common Model for Problem Solving and Program Development

Previous sections of this chapter provided a review of problem solving methods, a

common model summarizing the essence of these methods, the tasks of program

development, and a cognitive model for problem solving. In this section, our common

model of problem solving, the work of Bloom (1956) on cognition, Gagne (1985) on

human learning, and Sternberg (1985) on human information-processing were joined with

the program development tasks to create a Dual Common Model for Problem Solving and

Program Development (see Figure 5) supported by the necessary cognitive skills that

must be developed and the expected learning outcomes at each stage of the process. This

dual model (called dual because it brings problem solving and program development into

one method) forms the basis of the SOLVEIT environment for problem solving and

program development described in Chapter 5. The stages of this comprehensive model

are considered in details in the following six sections. They are problem formulation,

solution planning, solution design, solution translation, solution testing and delivery.

125

Figure 5 The Dual Common Model for Problem Solving and Program Development

4.6.1 Formulating the Problem

The common model indicates this stage should result in an organized representation of all

relevant information: the goal, givens, unknowns, conditions and constraints of the

problem. This corresponds to the conclusions of a cognitive analysis of problem solving,

according to which: The objective of this stage is to produce a model of the problem and

its elements (Mitroff & Turoff, 1973; Benbasat & Taylor, 1982; Rogalski & Samurcay,

1993). This cognitive activity, marking the beginning of problem comprehension,

126

requires developing a mental representation of the problem before it is solved (Pylyshyn,

1984).

To understand a problem, the student must define initial and goal states of the

problem based on facts. Problem description is normally the first task encountered in

both the problem solving and the software process (Chestnut, 1967; Sage & Palmer,

1990) and is the initial task of problem formulation. Problem interpretation and

understanding (Bloom, 1956) require the construction of a well-defined description

through progressive refinement and elaboration of the given problem statement. This

process continues by extracting and organizing the relevant information from the problem

description (Hayes & Simon, 1976; Espinasse, 1994) and defining initial and goal states

for the problem (Greeno, 1978; Simon, 1978; Mayer, 1983). Domain knowledge and

problem modeling skills are required to understand the problem and identify its facts.

4.6.1.1 Preliminary Problem Description

The literature describes many representation techniques for defining the problem question

(Smith, 1993) and identifying needed information, and proposes language models for

defining problems (Mitroff & Turoff, 1973; Volkema, 1988; Smith, 1993). Descriptions

may be verbal, written, symbolic, graphic, or a combination (Rubinstein, 1975; Eden,

1988; Huff, 1990; Greeno, Collins, & Resnick, 1996). Rubinstein (1975) suggests

writing the problem down in its primitive form, then transforming it to simpler language,

translating it to mathematical formulation if necessary, and finally, representing it using

diagrams, charts or graphs. Greeno, Collins, and Resnick (1996) also stress the

importance of written problem description as a basis for encoding information from text

127

into meaningful mental representations of letters, word, phrases and sentences conveying

coherent information. Describing a problem effectively and then identifying and utilizing

its facts compensates for two of the most common difficulties in problem solving:

overlooking known information which can be found within the problem statement, and

introducing unnecessary constraints which are not part of the problem, yet are included

(Rubinstein, 1975; Anderson, 1983). Figure 6 shows the initial task of problem

formulation.

r figure o Inc inivai tasx oz prooiem iounumuun

4.6.1.2 Preliminary Mental Model

A preliminary mental model of the problem can be constructed using verbalization and

inquiry questions. This preliminary model is then used by the subsequent phase where a

more structured model of the problem is defined.

Verbalization usually takes place as communication between individuals, or with

oneself, for the purpose of understanding a problem, understanding a solution, or

explaining an idea. Verbalization is an essential part of problem solving (Whimbey &

Lochhead, 1980; Whimbey, 1987) because problem formulation requires the

understanding of the question as well as the meaning of the problem's terminology and

facts (Charles, Lester, & O'Daffer, 1987). Written notes and diagrams are indicators of

Problem
Statement
(raw data)

Verbalization
(inquiry questions) Mental

Model
)1►

128

verbalization. Although verbalization may be used throughout the process of problem

solving, the most common form of verbal interaction takes place in problem formulation.

The effects of verbalization on the subsequent tasks of problem solving beyond the

problem description are critical (Tversky & Kahneman, 1981).

Understanding the problem and finding important information within its

description require the use of inquiry questions (Polya, 1945; Mitroff & Turoff, 1973;

Lauer, Peacock & Graesser, 1992), which oblige the problem solver to explicitly identify

what is known about the problem, what needs to be discovered, what should be done, and

how it should be done (Stepien, Gallagher, & Workman, 1993). Inquiry questions also

force the problem solver to perform verbalization. Problem understanding, central to

successful problem solving (Lyles & Mitroff, 1980), is the primary beneficiary of this

technique. Inquiry questions can be effected by asking questions which provoke the

student to examine the problem closely and uncover its goal, givens, unknowns,

conditions, constraints or any additional requirements for understanding and solving the

problem (Polya, 1945; Rubinstein, 1975). The result is an initial mental model of the

problem to be solved. These problem understanding activities have a permanent effect on

the rest of the problem solving process (Volkema, 1983). Figure 7 shows the effect of

verbalization on problem formulation.

Figure 7 Effect of verbalization on problem formulation

129

4.6.1.3 Structured Representation of Problem

Identifying and organizing all the relevant information in a problem requires the use of a

more structured approach. Finding problem facts takes place by applying a formal

information elicitation method to the problem description in order to extract and

organize meaningful information in an appropriately structured model for use in the next

stages of the process (Simon, 1969; Benbasat & Taylor, 1982). The goal, givens,

unknowns, conditions and constraints are extracted from the problem description and

organized by category. Such formal elicitation and documentation of information is

essential for identifying, retrieving, and utilizing information in problem solving

(Anderson, 1983; Rubinstein, 1975; Miller, 1956). Students proceed through this task by

refining the preliminary problem description, transforming the problem statement into an

organized knowledge base that will then evolve during the remaining stages of the

process. The knowledge base contains only the essential facts of the problem, ignoring

irrelevant details. This explicit prompting for re-examination of the problem helps ensure

that the student actually attempts to find all relevant information before seeking a

solution.

4.6.1.4 Relationship to Cognitive Model

Identification of knowledge through information gathering methods and representation of

this knowledge are primary requirements of the problem solving process. From the

viewpoint of the cognitive model, the combination of this information with other

knowledge such as domain knowledge, leads to comprehension of the problem question,

a major objective of this stage (Bloom, 1956). In terms of cognitive structures,

130

knowledge acquisition processes are used to acquire, recall, and integrate the information

and knowledge needed to devise and implement a solution (Sternberg, 1985). In terms of

cognitive outcomes, verbal information that confirms problem understanding and

identifies facts is an important result of this stage (Gagne, 1985). Figure 8 describes the

cognitive system of the problem formulation stage.

Figure 8 Cognitive system of problem formulation stage

4.6.2 Planning the Solution

The common model indicates that this phase should identify alternative solutions and

devise a plan by outlining the potential solution and breaking the problem into parts.

From the viewpoint of cognitive theory, planning is the cognitive activity in which the

student determines, without carrying out the steps, the best course of action for reaching

the goal state. Planning requires using general problem solving strategies to assess

131

solution alternatives and produce a plan for the problem (Greeno, Collins, & Resnick,

1996).

Solution generation and planning require access to relevant, well-organized

knowledge, adequate domain-specific knowledge, and strategies or heuristics to solve

problems (Polya, 1945; Newell, 1980; Greeno, Collins, & Resnick, 1996). Two

prominent strategies are solution by analogy and solution by subgoal decomposition. In

solution by analogy, students draw on prior knowledge and experience to recall similar or

simpler problems (Polya, 1945). Correspondences between the current problem and

related, previously solved problems are exploited, with similarities and differences

between the problems providing hints to solve the current problem. Another powerful

strategy is subgoals. The original goal is decomposed into a collection of intermediate

subgoals, which are then decomposed into sub-subgoals, and so on (Duncker, 1945;

Newell & Simon 1972; Wickelgren, 1974; Rubinstein, 1975; Mayer 1983). This allows

one to reach the problem goal by meeting each of its subgoals one at a time, eventually

producing a complete solution. Thereafter, implementation of the outlined design

strategy can proceed. Domain knowledge and strategic knowledge are required to plan

and to further develop the solution plan (Pennington & Grabowski, 1990).

4.6.2.1 Devising a Preliminary Plan

Devising a preliminary plan to solve the problem is necessary before the additional

problem transformations that take place during the subsequent design and translation

stages. The pre-existing knowledge, beliefs and information about the problem afford an

understanding of the problem's requirements, enabling the student to plan a preliminary

132

course of action and to devise a potential solution for the problem (Butler & Winne,

1995).

4.6.2.2 Refining the Goal into Subgoals

Refining the goal into subgoals and subgoals into smaller subgoals is an effective

problem solving strategy. The intent is to break the problem into smaller problems that

are more easily solved. This is done by restating the problem in terms of a series of

coherent subproblems. Decomposing complex problems into smaller parts is another

known difficulty in problem solving (Whimbley & Lockhead, 1980) and a systematic

technique is required. Divide-and-conquer, using step-wise refinement, is one commonly

used technique, based on identifying, organizing and sequencing subgoals (Wirth, 1971).

The work required to achieve a subgoal is later defined as an autonomous task. Subgoal

decomposition is an intrinsic concept in programming since almost all problems are

trivially divided into at least three subproblems: input, computation, and output

(Wickelgren, 1974). These subproblems are further subdivided into smaller subproblems.

This stage is concerned mainly with the subdivision aspect, while organization and

sequencing (and further subdivision, if needed) are done in the next stage. The integrated

("conquered") collection of these ("divided") subgoals forms the complete solution to the

problem. Figure 9 shows the refinement of problem into subproblems.

133

Figure 9 Refinement of problem into subproblems

4.6.2.3 Refining the Data Description

The next step is refining the data description from givens and unknowns, which were

already identified through the elicitation technique of problem formulation, into data

structures (Wirth, 1971). Having outlined a plan and a strategy to implement it, an

accurate organization of information suited for manipulation is the last effort of this stage.

Facts acquired during problem formulation may be incomplete or imprecise, but can be

used as the basis for a comprehensive analysis and refinement of data requirements. The

relationship between the problem's givens, unknowns, and the various solution

components will need be to established in the next stage.

134

4.6.2.4 Relationship to Cognitive Model

From a process viewpoint, the major cognitive activities at this stage are the application

of knowledge, and problem analysis and decomposition. According to Moore and Newell

(1973), understanding of knowledge is demonstrated by the appropriate application of

that knowledge. The use of knowledge, facts, and the application of concepts, theories or

principles to plan a solution are in turn demonstrated by outlining the steps necessary to

reach a solution by solving simpler, related problem, or by drawing charts and graphs

which visually depict a solution. The cognitive processes of analysis and decomposition,

which involve breaking the problem into component parts, entail identifying and

establishing a hierarchy which organizes the problem into its parts and sub-parts (Bloom,

1956). The most relevant cognitive structure is the performance component which directs

the solution planning and the problem decomposition process (Sternberg, 1985). The

important cognitive outcomes of this stage include intellectual skills, which demonstrate

the ability to apply knowledge and outline a detailed plan for a solution (Gagne, 1985).

Figure 10 describes the cognitive system of the planning stage as the evolution of

knowledge gathered from the problem description into a detailed plan for the solution to

be designed.

135

Figure 10 Cognitive system of the solution planning stage

4.6.3 Designing the Solution

The objective of this stage is to use specific problem solving strategies to carry out the

solution plan outlined in the previous stage (Polya, 1945). A solution to the problem may

be designed using the outcome of the prior two stages. Design is a two-level cognitive

activity: (1) the student organizes and refines the components of the solution strategy, and

(2) develops, and represents the solution specification algorithmically (Wirth, 1971;

Rogaiski & Samurcay, 1990, 1993; Bertels, 1994).

Design is a central point of the process simultaneously representing the final stage

of problem solving and the beginning stage of program development. The high level

phase of design produces the initial framework for the solution to the problem, based on

what already started in problem formulation and planning. The solution outline,

136

described either in text or in visual form, is refined. This involves the sequencing of

subgoals, the determination of whether the subgoals require further decomposition, the

establishment of relationship among the various solution components, and the association

between data and subgoals. The detailed phase transforms each subgoal into

corresponding algorithmic specification, and the solution logic is readied to be translated

into programming language syntax. As with planning, domain knowledge and strategic

knowledge are required to design and carry out the solution plan (Pennington &

Grabowski, 1990).

4.6.3.1 Organizing, Sequencing and Further Decomposition

Refinement of subgoals should proceed until each subgoal corresponds to a functionally

well defined task. Wirth (1971) viewed the programming activity as a sequence of design

decisions for decomposing tasks into subtasks, and maintains that the level of

decomposition will effect the ease or difficulty with which a solution will be

implemented, adapted or changed. These decisions begin early in the process and

continue through this stage. The initial problem state defined in problem formulation was

replaced by the decomposition of the planning stage. Now, the hierarchy among the

various components of the solution must be examined. Because the decomposition

proceeds in a top-down flexible manner, the tasks' inter-relationship may require

reorganization and sequencing once refinement is complete. The structure chart, a visual

representation of problem decomposition and the hierarchy between subgoals, is used.

This organization and sequencing produces a design sketch, but additional

refinements may still be required. The solution components, represented by the structure

137

chart, are examined and, if necessary, subgoals are decomposed into yet smaller subgoals.

This refinement process determines the complexity of code translation, which takes place

in the next stage, and must continue until each subgoal is considered well-defined,

focused, and easily solvable. A structure chart representing the different subgoals, or

modules, of a solution is drawn in Figure 11 to show the organization, hierarchy, and

4.6.3.2 Communicating between Modules

Module communication is necessary to facilitate the flow of data from one module to

another. The information already identified and organized in the previous two stages is

related to the various tasks and the role of each is defined. The structure chart, produced

earlier, shows the depth of the decomposition, the individual modules, and their

hierarchy. Data and control interface among modules is formed next. Wirth (1971 &

138

1975) suggested that each refinement in the description of subgoals should be

accompanied by a refinement of the data description, which is the primary mode of

communication between the subgoals. There are two categories of module

interconnection: data flow and calling sequence. Data flow refers to the dependency

between inter-modules data sharing. Calling sequence refers to the module control flow

(transfer/return) process.

4.6.3.3 Specifying Modules' Logic

Module logic is specified based on the information gathered and transformed during the

current and previous two stages. Once modular decomposition and data flow are

completed, the process proceeds by defining the algorithmic logic needed to accomplish

the desired outcome for each module. This is done by describing what each module

computes and how it computes it by specifying the required steps. Specifying the design

requires the use of a suitable algorithmic language that supports the data structures,

control structures, operators, and notations required to describe the modules' operations.

Thus, the target language may in fact affect the nature of data structure selection or

problem decomposition.

4.6.3.4 Relationship to Cognitive Model

From a process viewpoint, the major cognitive activity at this stage is synthesis, which is

concerned with the reintegration of interrelated components into a coherent whole,

rearranging when necessary, establishing relationships, and producing a new and well-

organized whole as a viable solution to the problem (Bloom, 1956). The most relevant

139

cognitive structure is the performance component which in addition to directing the

decomposition process, it is concerned with the identification and selection of tasks; and

the organization, sequencing and execution of these tasks (Sternberg, 1985). Figure 12

describes the cognitive system of the solution design stage.

4.6.4 Translation

The objective of this stage is to use program development skills to translate the

algorithmic solution into programming language code. Translation is the first syntax-

related stage, and is a cognitive activity where the student makes the transition into the

programming language environment (i.e. Pascal, C, C++ compilers) to produce a program

that runs on the computer.

Program implementation, normally carried out in parallel with the next stage of

testing, proceeds by carefully selecting an order for module translation and then

140

converting module specifications from algorithmic logic into language syntax. The

program is then compiled, executed, tested, and results are produced. This brings an end

to the process of transformation and signifies reaching the goal state - the solution to the

problem and the results. Syntax, together with semantic and pragmatic knowledge that

includes data structures, control structures, and modularization skills, are required to

translate the solution design into language code.

4.6.4.1 Ordering Module's Translation

Module translation is primarily based on the structure chart and the algorithmic solution,

and should proceed in conjunction with a testing plan. Although it is feasible to

implement program modules in any order, an organized and incremental implementation

strategy allows for modules to be tested as they are translated. Implementation strategies

must be chosen based on the circumstance of the problem (i.e. type of problem, size,

complexity).

4.6.4.2 Translating Module's Specifications

This involves transforming the detailed design into instructions suited for compilation

and execution by the computer. Although program implementation can be a complex

task, its difficulty is decreased when the design stage is done carefully. Data described in

problem formulation stage and refined in the planning stage is transformed into type

definition, declaration, and parameter statements. Algorithmic notations are converted to

syntax statements specifying operators to manipulate and transform the data to produce

the desired results. These tasks are done for each module and include data modeling, and

141

data and logic flow. The documentation of the role of individual instructions and the

module as a whole should be done at the same time.

4.6.4.3 Documenting Modules' Logic

Documenting modules as they are being implemented has significant consequences on

the clarity and readability of the whole solution and is essential for comprehending and

modifying programs (Tremblay & Bunt, 1989). This covers both program documentation

and programming style. In addition to the documentation generated during the earlier

stages of problem solving, comments and explanations in the program are important to

understand the approaches and techniques used to solve the problem. Maintenance -

modification of existing program functionality or addition of new user requirements -

would be difficult without adequate documentation. Other forms of documentation, such

as help features or user manuals in the case of complex systems, are also essential for

understanding system operations. Program style, which varies from one programmer to

another, refers to the presentation of code in language syntax. It is impractical to impose

a specific style on all programmers, but establishing and adhering to conventions and

guidelines is crucial in order to produce a readable solution (Tremblay & Bunt, 1989).

Figure 13 describes the cognitive system of the solution translation stage.

142

143

trying to divide by zero. (3) Logical errors in solution design that produce unexpected

results, such as using the wrong formula to calculate the weighted average of a set of

grades. The first two types of errors are detected by the programming environment.

Syntax errors are found when the program is compiled. Modem programming

environments provide sophisticated error reporting and debugging utilities to assist with

syntax problems. Run-time errors are detected and reported during program execution.

Logical errors, on the other hand, are not detected by the system and may be a challenge

for the student to correct. Tracing and code visualization utilities provided by

programming environments are helpful, but the work is largely done by the programmer.

To guard against logical errors, each module must first be verified independently and then

the solution as a whole should also be verified. Syntax, semantics, and domain

knowledge are required to ascertain program correctness.

4.6.5.1 Developing Test Data

Developing test data to use as input for the program under verification is the first task in

this stage. The objective is to design a testing strategy that uncovers all program errors.

Students should develop and use comprehensive test data to verify program correctness,

and fix errors when found. This requires that expected program output is determined

based on a problem's requirements and its design specifications (Graham, 1985).

Although it is difficult or even impossible to develop for programs performing massive

calculations, it is easier to develop for the type of problems encountered in the first course

on programming and may be verified by hand computations based on design

specifications.

144

4.6.5.2 Performing Code Testing

Ensure that the program functions properly under all test cases to which it is subjected,

works for all valid input, and anticipates and responds to all invalid input is the most

common type of program verification is essential (Tremblay & Bunt, 1989). The

program is considered successful if it contains no errors. In the case where errors are

found, the program will require debugging and perhaps modification either in the code or

the design. This requires that the location of the error is determined, its cause established,

and corrective measures taken. The result of testing may require changes to a program

affecting its logic, language constructs used, or data representation. Figure 14 describes

the cognitive system for the solution testing stage.

145

4.6.6 Delivery

This problem solving and program development process consists of five stages each made

up of multiple tasks, beginning with describing the problem through producing the

results. Delivery, the least complex stage of all, signifies the end of the process and

entails no further problem transformations. The process culminates with the presentation

of different solution parts in an organized and comprehensible form.

4.7 Monitoring the Problem Solving Process

As a solution plan is being devised and implemented, either the whole solution or some

part of it frequently does not match the purpose intended when the plan was created. It

may be necessary to reorganize or retrace the solution path, returning to "planning the

solution" or even "formulating the problem". This requires monitoring the thinking

process and evaluating transformations as the solution evolves.

Cognitive strategies, or metacognition, refer to techniques used to monitor

thinking. Metacognition guides a person's own knowledge of thought processes and the

regulation of these processes during problem solving. Students become effective learners

when they are aware of their own thinking processes and develop the ability to monitor

their understanding of the tasks they perform. Realizing that there is a need to assess or

modify the problem solving strategy requires that students develop effective skills for

monitoring and evaluating their thinking and produce progress feedback.

Understanding of the problem deepens as the process of problem solving evolves

(McAllister, 1995), peaking as the complete solution is implemented (Smith, 1993).

Observations made as the solution evolves, called internal feedback, provide grounds for

146

reassessing the problem's need and the solution. Internal feedback is an important

progress indicator of the problem solving process and is triggered as a result of the

problem solver's own comprehension of what has been done, is being done, and remains

to be done.

External feedback, such as comments provided by a teacher, classmate, or a

problem solving tool, can either confirm or conflict with the student's strategy, thereby

also causing reassessment and adjustment (Butler & Winne, 1995). External feedback

heightens students awareness and helps to develop metacognitive skills to monitor and

evaluate their thinking strategies through the problem solving process.

Students have difficulty in initiating the problem solving process and adhering to

a specific methodology. They often do not know where to begin, what to do next, how

and where to look for relevant information, how to make sense of the given information,

and how to organize the information gathered and later retrieve it for subsequent use. A

structure to aid student's thinking process while solving problems is needed (Pea &

Sheingold, 1987).

Task flow coordination and outcome visualization help guide students through the

process, from the initial stage of problem formulation until the delivery of a solution.

Visualization, allowing students to view the result of their work in an organized form at

all points in problem solving, has been shown to be beneficial in computer-based learning

(du Boulay, 1981; Reiser, Ranney, Lovett, & Kimberg, 1989; Ramadhan, 1992;

Ramadhan & du Boulay, 1993). It enables the student to observe and certify the outcome

of their work and witness the progress they have made. This is especially important for

147

the novice since the programming language syntax may obscure the solution behind its

coded programming language representation.

4.8 Conclusion

The tasks of problem solving and program development form an interdependent process.

Each stage requires specific skills and cognitive abilities. Problem formulation, planning,

and design are fundamental skills required for successful program development (Mayer,

1983; Scholtz & Wiedenbeck, 1992; Ebrahimi, 1994). The role of problem solving in

programming is extensive, and the language does not have to become a factor until

implementation stage later in the software process. Problem formulation allows for the

understanding of problem question and the identification of its facts. Domain knowledge

and problem modeling skills are necessary for this stage. Planning and design allow for

representation of possible solutions; decomposition of problem into subproblems;

organization and refinement of solution; and specification of solution logic without

profound concern for implementation details. Domain knowledge and strategic

knowledge are essential skills to plan and design a solution to a problem. Translation

allows for the algorithmic solution to be mapped into programming language code.

Syntax, semantic, and pragmatic knowledge are important skills for this stage.

The question of how to integrate this new model into the classroom must be

addressed. Programming is usually taught in a lecture/recitation format. In the lecture,

language syntax and simple examples are presented to illustrate the concepts. In the

recitation, the instructor presents examples, demonstrates the algorithmic solution, and

applies the syntax presented in the lecture to the algorithm. This method and sequence

148

follow the typical textbook approach to the subject, and while students and instructors do

interact during class somewhat, the material is essentially presented by the instructor.

An alternative method (Deek & Kimmel, 1993, 1995) is to introduce the problem

in the lecture, engage the students in defining the problem, analyze the requirements, and

allow the students to seek a possible solution independent of the programming language.

Once the problem is solved, the language syntax is presented and the complete solution

implemented.

The lecture begins where it would be expected to end: The examination of a

problem to be solved (programming textbooks do this last). With the introduction of the

problem as the first activity of the lecture session, the students are engaged in

understanding the problem, analyzing and identifying the needs, and devising possible

solutions with total independence of the programming language syntax. The students

concentrate on the design of the algorithms, choice of data representation, and outlining

testing strategies. Once the algorithmic solution for the problem is constructed, the

language syntax (i.e. control structures, data structures) necessary to carry out the

solution to its final stages may be presented (programming textbooks do this first).

Equipped with both the algorithmic solution which the students developed and the

language syntax - now more meaningful and appreciated - the complete solution is

implemented and tested.

Throughout the process the focus is on problem solving with less emphasis on the

language syntax. This emphasis on problem solving becomes possible by delaying the

programming activity and by easing the syntax burden on the novice programmer,

typically in the last two stages of the process: implementation and testing. Reducing the

149

concerns for language syntax allows the students to focus on problem solving, and

algorithm design and development principles.

A paradigm for teaching and learning programming which integrates the problem

solving methods, the language, and the instructional methodology in a comprehensive

system is necessary. Such an environment for facilitating the study of programming must

truly mirror the activities of the actual learning situation and support the entire problem

solving and program development process. Thus, we propose a complete environment to

support the problem solving and program development approach, starting with the initial

activity of describing the problem, through testing the solution. Thus, the entire aspect of

the problem solving and program development process, and not only the programming

activity, receives adequate attention and support.

The system, intended as an adjunct to classroom instruction, must comprise three

components: The problem solving and program development method, the supporting

tools, and the learning setting. The instructor continues to be an important part of the

learning equation. Figure 15 depicts this learning environment. The classroom

environment is extended to form a link with students working independently. The result,

in essence, is the mapping of the guided learning atmosphere of the class into a student's

workspace.

150

CHAPTER 5

AN ENVIRONMENT FOR PROBLEM SOLVING AND PROGRAM
DEVELOPMENT: SPECIFICATIONS FOR THE DUAL COMMON

MODEL

A framework for an integrated environment to support the students in all problem solving

and program development stages including problem formulation, planning, design,

translation, testing and delivery is proposed. This environment is based on the Dual

Common Model for Problem Solving and Program Development produced in Chapter 4

and takes into consideration the cognitive skills that must be gained by students and the

tasks performed in problem solving and program development (see Table 17). Facilities

to assist the student in learning these skills and accomplishing these tasks are provided

for each stage of the model. The system was designed, implemented, deployed and

evaluated.

This chapter describes this environment which we call: SOLVEIT, an acronym for

Specification Oriented Language in Visual Environment for Instruction Translation.

Table 17 Focus of problem solving and program development in SOLVEIT

Integrated Problem
Solving and

Programming
Environment

Understanding
Problem

Planning
Solution

Designing
Solution

Implementing
Solution

SOLVEIT X X X X

151

152

5.1 The Specification Oriented Language in Visual Environment for Instruction
Translation

The SOLVEIT environment combines the process and the tools to support the

functionality of a traditional programming environment with a workbench facility and a

battery of utilities used in problem solving and program development. SOLVEIT is

designed to be used by beginning students working to solve programming problems. It

provides an intuitive graphical environment complemented by online help and enforces a

structured methodology as suggested by software engineering. The system surmounts the

problems associated with current environments (as discussed in Chapter 3) by:

• Taking into consideration the skills that must be gained by students and the tasks

required for problem solving and program development. The essential facilities to

assist the student in learning these skills and performing these tasks are provided.

Students produce their solutions in an environment that does not restrict creativity or

cognitive development.

• Removing the emphasis on language syntax. Problem solving and program

development in this environment is a progressive task that begins with the problem

foirnulation stage using language-independent tools and continues through

subsequent stages of problem solving in a similar manner. Code translation and

testing takes place later in the process and is a further refinement of the earlier,

language-independent solution.

• Providing the framework and facilities that allow the student to deal with the common

difficulties related to problem solving. Information gathering, organization and

retrieval, solution planning, problem decomposition, and task flow coordination are

facilitated by system tools.

153

• Providing a state-of-the-art user interface. The system features a graphical, iconic,

window-based interface that was tested in the classroom before it was fully deployed.

Protocol analysis by prospective users was performed during and after development.

• Integrating the tool into the learning environment. The system was used in

conjunction with normal classroom activities and provided a reporting mechanism for

teachers who in turn provided feedback and comments to the students.

• Evaluating the impact of the tool on the learning process. An experimental study was

performed over two semesters in multiple sections of the introductory course on

problem solving and programming.

Specific features of this environment are:

• Students are able to describe the problem in written form, refine it, and update it as

required. This is done freely without the restrictions of a limited dictionary of natural

language keywords or the complexity of a problem definition language.

• Problem facts are identified through a formal interaction and elicitation process.

Goals, givens, unknowns, conditions and constraints are identified and organized in a

reference database. They may be refined and restructured as more knowledge is

gained.

• Planning and design are aided with automation. Goal decomposition, data definition,

subgoal hierarchy, data flow, and logic specification are performed using specialized

tools.

• Required code is translated into programming language syntax after the problem is

solved. Code is created by the students based on problem requirements only once

154

design specifications are developed independent of the specific language syntax.

Syntax and modular code templates are provided by the system.

• The system focuses on a meaningful subset of language constructs. Control structures

and data structures necessary to learn the fundamentals of programming (sequential,

selective and repetitive structures; input and output functions; basic data types; and a

composite list structure) are provided.

• An electronic project notebook and a complete transcript/playback recording is

provided. Students' problem solving self-monitoring and feedback is achieved by

maintaining progress records that can be examined by both the student and teacher.

5.1.1 The Process

The problem solving and program development model described in Chapter 4 provides

the theoretical and cognitive basis for the SOLVEIT environment. A synthesized

common method for problem solving (see section 4.?) and the tasks of program

development were combined into a Dual Common Model supported by cognition, human

information-processing and learning theories to form the stages of this model. They are:

Problem formulation, solution planning, solution design, translation, testing and delivery.

Figure 16 describes the model. A detailed description of the Dual Common Model for

Problem Solving and Program Development is provided in section 4.6.

155

156

5.1.2 The Tools

The SOLVEIT environment combines existing tools of traditional programming

environments, shown in Figure 17, with additional tools to support the process of

problem solving in problem formulation, planning, designing, translating, testing and

delivering the solution. Figure 18 describes the tools in SOLVEIT.

157

158

While some of the tools are shared by the entire SOLVEIT environment (inner

layer of Figure 18), others are associated with specific stages of the process (outer layer

of Figure 18) and are used to perform the various tasks of problem solving and program

development. Compiling and debugging tools shown in this figure are utilities that

already exist in traditional programming environments and are used by SOLVEIT.

Section 5.2 presents a more detailed description of the tools and their inter-relationship.

5.2 SOLVEIT Architecture

The relationship between the different tools and components are shown in Figure 19

representing the system architecture of the SOLVEIT environment. Tools are grouped

based on their association with a specific stage. This section provides a functional

description of each problem solving and program development tool (upper-level of

Figure 19) in the SOLVEIT environment. Common tools (mid-level of Figure 19) are

described in a separate section. stage. Existing tools of traditional programming

environments (lower-level of Figure 19) are not discussed.

159

Figure 19 Architecture of the SOLVEIT environment

5.2.1 Tools for Problem Formulation

Three tools are used for problem formulation: (1) the problem description editor (2) the

verbalization tool, and (3) the information elicitation tool. They are described below.

5.2.1.1 The Problem Description Editor

The problem description editor is invoked from within the problem formulation stage to

enter and save the problem statement into the system. The assignment sheet distributed

160

by the instructor or the student's own terminology can be used. If the problem is already

in electronic form, the file can be opened and read into the editor. The problem

description text is stored in the multiple-view reference database.

5.2.1.2 The Verbalization Tool

The verbalization tool is active in all stages of SOLVEIT, but is invoked automatically in

problem formulation after the problem description is saved. Questions are presented to

the student while the problem statement is still visible in the editor. The student can

answer the questions or can skip the entire verbalization session. These questions will

provoke the student to re-examine the problem statement which remains displayed

throughout the interaction session. The result of this verbalization is saved, along with

subsequent verbalization sessions, by the recorder and are available to the student during

the entire problem solving process. A complete transcript is created as part of project

deliverables. Questioning in SOLVEIT is general, but can be changed to fit a specific

class of problems. The teacher or the student can add more questions that might be

appropriate to the current problem. In addition to questioning, access to a project

notebook/graphics editor is made available to the student to draw and make notes as

necessary. The interaction transcript is stored in the project notebook/graphics editor.

5.2.1.3 The Information Elicitation Tool

The information elicitation tool is invoked from within the problem formulation stage. It

is used to extract and organize relevant information, found within the problem

description, in a structure suited to perform the transformations of subsequent stages and

161

to carry out the tasks that will lead to the solution. This technique of information

elicitation will transform the problem description from its text format into a database of

problem facts. Using the information elicitation tool, the student returns to the typed

problem and extracts the goal, givens, unknowns, conditions and constraints. All

gathered information is stored in the multiple-view reference database and is accessible

from within other stages of SOLVEIT.

5.2.2 Tools for Solution Planning

Three tools are used for solution planning: (1) the plan definition editor, (2) the goal

decomposition tool, and (3) the data description tool. They are described below.

5.2.2.1 The Plan Definition Editor

The plan Definition editor is invoked from within the planning stage. It is a simple text

editor used by the student to describe their approach and the steps required for solving the

problem. Although the SOLVEIT environment provides a linear problem solving

process, it does not impose a rigid sequence on the student. The student may decide to

design a solution before completing all the tasks of problem formulation or planning

stages. However, some of the information required for the completion of a certain task

may not have been collected and organized. This initial plan will help coordinate

student's thoughts and actions in solving the problem. The plan is written to the project

notebook/graphics editor.

162

5.2.2.2 The Goal Decomposition Tool

The goal decomposition tool is invoked from within the planning stage. It allows the

student to begin the process of transforming the goal identified in the information

elicitation phase into subgoals that need to be completed to solve the problem. The

student refines the goal into a collection of subgoals and associates two attributes with

each subgoal: an identification name and a description. A goal can have multiple

subgoals and subgoals themselves may be decomposed into smaller subgoals. The

decomposition tree and the information about all the subgoals are stored in the multiple-

view reference database.

5.2.2.3 The Data Description Tool

The data description tool is invoked from within the planning stage. It is used to

transform the givens and unknowns identified in the information elicitation phase into

data representation. Givens are the problem's input-data or constants. Unknowns are

output-data or intermediate data elements. Using the editor, the student associates a

series of attributes with givens and unknowns: name, description, origin/source, type and

structure. Data description table is stored in the multiple-view reference database.

5.2.3 Tools for Solution Design

Three tools are used for solution design: (1) the module organization tool, (2) the module

communication tool, and (3) the module logic specification editor. They are described

below.

Level 0

Goal

Subgoal 1.2 Subgoal 1.3
Level 1

Subgoal 1.1

163

5.2.3.1 The Module Organization Tool

The module organization tool is invoked from within the design stage. It is used to

establish the hierarchy of the subgoals already refined in previous stages and now

contained in the reference database. The goal and subgoals are displayed in a graphical

representation using a structure chart format as shown in Figure 20. SOLVEIT uses a

simplified version of the structure chart covering only the module decomposition and

data flow.

Figure 20 Initial representation of the structure chart

This initial representation may require organization and refinement. The top level

of the structure chart is the primary goal selected during the information elicitation task of

problem formulation. At the next level are the subgoals refined in goal subdivision task

of solution planning. Refinements of any subgoal will create subsequent levels in the

structure chart as shown in Figure 21.

Figure 21 Refinement of the structure chart

164

There is an implied left to right organization and top to bottom hierarchy of

subgoals in the structure chart. To reorganize or change the hierarchy, goals can be

165

repositioned vertically and horizontally. New subgoals can be added, others can be

removed or merged.

Information about the organization/hierarchy of subgoals in the structure chart is

Figure 22 A text view of the structure chart

5.2.3.2 The Module Communication Tool

The module communication tool is invoked from within the design stage. It is used to

establish the data flow relationship between modules. Communication between modules

is formed using information gathered during the planning and design stages, now stored

in the reference database. Additional data may be defined and added to the database as

needed. Data elements can be associated with specific modules as a sender or receiver of

that element. The result is a data dictionary table, also stored in the reference database,

166

that includes the data element names, type, description, the associated goal/subgoal and

the direction of the data flow as shown in Table 19.

Table 19 Data dictionary entry

Data
Element
Name

Data
Type

Data
Description

Goal/Subgoal
Name

Input/Output

5.2.3.3 The Module Logic Specification Editor

The module logic specification editor is invoked from within the design stage. It is used

once the organization and refinement of the structure chart and data flow is completed.

This tool enable the student to develop module logic for each box of the structure chart.

Module logic is constructed using an algorithmic constructs toolbox. A program shell,

based on the structure chart, is displayed as a "table of contents" to facilitate module logic

development as shown in Figure 23.

167

Figure 23 Structure chart and data flow in text view

The "table of contents" shows the name of the main module and all other program

modules along with the data flow and the direction of each. Each module and associated

entry in the "table of contents" is hypertext sensitive and when selected it invokes the

module logic development window as shown in Figure 24.

168

Figure 24 Module logic development

The student gains access to the SOLVEIT algorithmic constructs toolbox which is

used to describe the logic for each module. This toolbox contains templates for a

SOLVEIT-specific algorithmic language consisting of basic data types, control structures,

a list structure and modular abstraction. Syntax templates are selected and copied into the

student's work space.

The module logic is saved in the reference database as a text file using SOLVEIT

algorithmic language syntax. General purpose routines that are developed in this stage

may be stored into a library of functions for reuse in other problems. Similarly, any

modules developed in earlier problem solving sessions that are appropriate for other

situations may be integrated and reused.

169

The algorithmic logic created in the specification editor, stored in the reference

database, can not be compiled directly. The logic is copied into the syntax editor of the

target programming environment (i.e. Pascal, C, C++) and is used by the student as the

basis for code translation from algorithmic logic into language syntax.

5.2.4 Tools for Solution Delivery

The delivery stage is the simplest stage of the process and only one file management tool

is provided, as described below.

5.2.4.1 The File Management Tool

The file management tool is invoked from within the delivery stage. It is used to

organize and produce the complete solution package consisting of the outcome of each

stage and, if desired, the content of the reference database and project notebook/graphics

editor. The result is a fully documented program maintained in an organized manner and

can be printed or saved on a disk.

5.2.5 Common Tools

In addition to the specialized tools in each stage of the process, SOLVEIT provides a host

of environment-wide tools that may be invoked from within any stage of SOLVEIT.

5.2.5.1 The Project Notebook/Graphics Editor

The Project notebook/graphics editor is a text and graphics editor used as a scratch pad by

the student. The student is prompted to invoke the editor during the problem formulation

170

stage, but can also be invoked at any time during the problem solving process. Text and

graphics capabilities are available for the student to make notes and to draw.

5.2.5.2 The Recorder

The recorder monitors the student's activities within SOLVEIT and acts as an event-

capture log. It allows the student and teacher to replay the activities of a problem solving

session, at a later time. Each time the student enters a stage within SOLVEIT, the event

is recorded, the task performed is also recorded. Upon exiting, a snapshot of the

reference database is copied to the recorder. Activities log are listed in the sequence they

occurred. The recorder content cannot be edited.

5.2.5.3 The Multiple-View Reference Database

The multiple-view reference database contains the result of all data transformation within

SOLVEIT beginning with entering problem description through the development of the

algorithmic solution. The database organizes this information and makes it available to

the student at different stages of the problem solving process.

5.2.5.4 The Algorithmic Constructs Toolbox

The algorithmic constructs toolbox is a syntax template database represented as icons and

is accessible from within the design stage to specify modules' logic.

In summary, the process of the SOLVEIT environment, the tools supporting this

process and the existing tools of a traditional programming environment are combined to

171

form an integrated environment for problem solving and program development as shown

in Figure 25.

V t11 consist of six stages. The first three stages are problems solving stages ana tne

next three stages are program development stages. SOLVEIT will guide the student

through a linear process of problem solving. However, the student can begin working at

any stage of the process. Figures 26 and 27 depict the student's work flow from problem

formulation through delivery of solution using SOLVEIT.

172

173

174

Each step of every stage is supported by tools to assist the students in solving the

problem. SOLVEIT captures the outcome of each stage and stores it in a reference

database. Each subsequent stage of SOLVEIT can access the database and use the

information relevant to the tasks done in that stage.

The following is an example problem solving and program development session

using SOLVEIT. The figures presented in this section show the sequence of

transformations beginning with problem description through code testing and the

outcome of each stage from problem formulation to solution delivery. Arrows in the

figures refer to the output of each step which is stored in the reference database and may

be refined in subsequent stages. Dotted boxes imply that the data is stored in the

reference database, but is not transformed any further. An example is also provided

showing the progress toward a complete solution for a problem comparable to those

solved by students in the earlier part of the first course on problem solving and

programming. Only the activities of the problem solving stages performed within

SOLVEIT are included.

The student invokes SOLVEIT, encountering an initial screen that displays a

project status and a view of all six stages and the tasks carried out in each stage. This

screen remains active throughout the problem solving session, allowing the student to

have an overall view of project progress. The system displays, within this main window

of SOLVEIT, a command bar giving five options to choose from: FILE, EDIT,

SOLVEIT, TOOLS, AND HELP. FILE opens a new file or an existing file, saves a file,

prints or exits the system. EDIT provides cut, copy, and paste functions. SOLVEIT, the

primary feature of the system, provides the student with the choice to formulate the

175

problem, plan, design, test, translate and deliver the solution. TOOLS provide access to

the project notebook/graphics editor, verbalization tool, information elicitation editor,

reference database and recorder. A HELP feature is also provided. An iconic

representation of functionalities and tools is also displayed.

Starting a problem solving session requires the opening of a new file. For this, the

student must enter identifying information including project name, student name,

identification number, course, section, instructor name, teaching assistant name and

project number. This information, shown in Figure 28, is written to the database. To

continue with a previously started session, an existing file can be re-opened and the

desired tasks can be selected.

Identifying Information

Project	 Student Instructor/TA Course	 Section

Figure 28 Identifying information

5.3.1 Formulating the Problem

The student begins the process by describing the problem to be solved. Typically, the

problem is presented to the student in the form of a handout given in class. Then, the

student must carefully examine this description and find the information necessary to

solve the problem. By the end of this stage, all relevant facts of the problem are

identified and stored in the reference database, as shown in Figure 29.

176

r igure 29 outcome of problem formulation

5.3.1.1 Describing the Problem

A text editor enables the student to type in the problem description using either their own

wording or the wording of the assignment sheet. Access to editing functions and to the

notebook is provided. Once the problem description is entered and saved in the reference

database, the student invokes the verbalization tool that initiates a series of questions.

Figure 30 shows a problem description.

Formulating the Problem
1. Problem Description

Space travel will soon become a reality. Commercial rockets will be able to
take those interested for short trips into space. Flight departures and arrivals
will have to be predictable, as you would not want to travel into the far
reaches of the unexplored without first considering what time your favorite
computer science class is held, and whether you will return on time for the
lecture. A program to solve this dilemma should be written.

Given the blastoff-time of a rocket ship represented as 3 numeric values
(hours, minutes and seconds) and a 4th numeric value representing the ship's
flight-time given in seconds, calculate the return-time of the rocket ship (time-
of-day and day). Rocket refueling must be taken into consideration when
calculating return-time. That is: for every 6 hours of fight-time a 15 second
refuel-time is required.

The program will run (accept keyboard input) as many times as the user
requests.

Figure 30 Problem description

5.3.1.2 Verbalization

Questions about the problem are asked using the verbalization tool to make the student

revisit the problem description typed-in via the editor. One way for the student to answer

these questions is to closely re-examine the various aspects of the problem. The

questions are related to problem facts such as goal, givens, unknowns and other

requirements. If the student cannot answer these questions using the current description

of the problem, this may indicate that the problem was not well formulated by the

student, or perhaps was poorly presented in the assignment sheet. Otherwise, the student

can then edit the problem description in the editor. The verbalization tool can be

reinvoked as many times as it is necessary to assure that the description accurately

177

178

represents the problem. Repeated answers to the questions are overwritten in the

reference database, with only results of last session stored, but saved in their entirety into

the recorder. The questions are based on Polya's problem solving method and can be

modified to suit specific types of problem. Figure 31 shows a verbalization session.

Figure 31 Verbalization in problem formulation

5.3.1.3 Finding Relevant Facts

The student now moves further into problem formulation. The information elicitation

option is selected and a new window is displayed. Once again, the system redisplays the

problem description. The student re-examines the description and identifies problem's

goal, givens, unknowns, conditions, and constraints using the information elicitation

editor. Information elicitation is done by allowing the student to select the raw data in

the problem description by highlighting the relevant text and adding it to appropriate

fields, such as goal, givens, unknowns, conditions, and constraints.

All information gathered in this stage and subsequent stages, as well as any

changes to the information are stored in the reference database. Also, a project

notebook/graphics editor is made available at the beginning of a problem solving session

179

for students to use and a project recorder is activated to maintain a progress transcript.

Figure 32 shows the result of information elicitation.

Formulating the Problem
3. Information Elicitation

I. Goal
1. calculate the return-time of the rocket ship (time-of-day and day)

II. Givens
1. the blastoff-time of a rocket ship represented as 3 numeric values (hours,

minutes and seconds)
2. the ship's flight-time in seconds
3. for every 6 hours of fight-time a 15 second refuel-time

III. Unknowns
1. the return-time of the rocket ship (day and time-of-day)

IV. Conditions
1. ship's flight-time given in seconds
2. program will run (accept keyboard input) as many times as the user

requests

V. Constraints
1. refueling must be taken into consideration

Figure 32 Information elicitation

5.3.1.4 Organizing Relevant Facts

The information produced in all stages of SOLVEIT is logged to the reference database

where it is maintained for access and transformation throughout the problem solving

session.

5.3.1.5 Making Notes and Drawing

The student is given access to a project notebook/graphics editor that can be used to write

notes, record ideas, test possibilities, draw diagrams, and introduce notations to represent

aspects of the solution as the student deems necessary. This project notebook/graphics

180

editor is analogous to the scratch pad usually used by students when solving problems.

The notebook and its content remain available during a problem solving session.

5.3.1.6 Project Transcript and Playback

A transcript of all interactions is maintained by the project recorder, which is write-

protected from the student. In addition, snapshots of the reference database are also

copied to the recorder any time the student advances through the stages of SOLVEIT.

This recording can be used by the instructor to evaluate the students thinking process and

approach to problem solving, or can be examined by students to retrace their progress

toward the solution.

5.3.2 Planning the Solution

The student has identified the goal, givens, unknowns, conditions and constraints in the

problem formulation stage. In this stage, an initial plan for solving the problem is

outlined and the information gathered earlier is transformed into subgoals and data

structures. By the end of this stage, the problem is decomposed into smaller sub-

problems and a solution is ready to be designed. Subgoals and data description are stored

in the reference database, as shown in Figure 33.

iS11

Figure 33 Outcome of solution planning

5.3.2.1 The Project Plan

The student must outlines the steps to be taken to solve the problem. The Project Plan is

entered into a text editor. This plan is an initial and brief description of the student's

strategy to solve the problem. Figure 34 shows a high-level solution strategy.

Planning the Solution

1. Solution Strategy

Convert givens to same time unit
Add up time
Convert back, if needed
Add refueling time

Figure 34 Solution strategy

182

5.3.2.2 Refining Goals into Subgoals

The goal identified in problem formulation is retrieved from the reference database and

the student decomposes the goal into subgoals and assigns an identification name and a

description to each subgoal. The result is a series of subgoals maintained in the reference

database. Figure 35 shows goal decomposition.

Planning the Solution
2.Goal Decomposition

Sub-goal 1
Get input

Sub-goal 2
Perform calculations

Sub-goal 3
Display results

Figure 35 Goal decomposition

5.3.2.3 Refining Givens and Unknowns into Data Structures

Having refined the goal, the student may begin to refine the givens and unknowns into

data structures. This information is retrieved from the reference database and the student

can edit the field to use a syntactically correct or more meaningful name. Object types

are selected from a list of valid data types. The origin or source of the data, for example

whether the values for variables are to be entered through the keyboard or a file, is

specified. Finally the structure of each object is defined as a basic or composite data

type. The definition of the output data proceeds in a similar fashion with the contents of

the reference database retrieved and appropriate fields edited as required. The

destination of the output can be the screen, printer, or file. The same procedure is

183

followed for intermediate data and problem constants. As a result the reference database

is updated. Table 20 shows a list of data description.

Table 20 Data description

5.3.3 Designing the Solution

The student has refined the goal into subgoals and refined the givens and unknowns into

data structures in the solution planning stage. In this stage, subgoals are organized and

refined, relationships between them are established, and specifications and algorithmic

logic are determined. By the end of this stage, the algorithmic solution is ready to be

translated into language code. Design charts, solution specification and algorithmic logic

are stored in the reference database, as shown in Figure 36.

184

185

hierarchy to form the logic of the solution. Figures 37 and 38 show a structure chart

refinement.

186

5.3.3.2 Module Communication

Communication between modules is established as a data flow relationship. A list for all

input/output data is retrieved from the reference database and displayed side-by-side with

the structure chart. The student selects the data element and associates it with a specific

module as a sender or receiver of that element. Figure 39 shows the data flow between

modules.

Figure 39 Structure chart and data flow

5.3.3.3 Modules Specification and Algorithm Construction

Constructing the algorithmic specification and logic for each module is the last step

before translation to language code. Language-independent syntax is provided to

represent module logic. The student may implement all modules in the sequence

prompted by the system or may choose specific modules for implementation.

187

Information about each module, stored in the reference database, is displayed and used to

complete solution specification. The student is requested to enter a short English

description for each module including pre-conditions and post-conditions, which will be

used as comments in the heading of the module during translation.

The computational requirements of the solution is accomplished by constructing

syntactically correct statements. Remembering syntax details, while elementary to the

expert, is often daunting to the beginner. This activity requires that the student has

detailed syntactical knowledge of language constructs. SOLVEIT provides the student

with access to an algorithmic constructs toolbox containing syntax templates used to

define and construct the logic for these modules. The modules can be saved and reused

in subsequent problem solving and program development sessions. Previously written

modules appropriate for the present problem may be reused and combined with new

modules created to meet the requirements of the current problem. General purpose

modules developed in this stage are stored in a library of functions for reuse. Figure 40

to Figure 43 show module specifications and algorithmic logic based on structure chart

hierarchy and data flow.

Designing the Solution
3. Module Specifications

1.0 Get_Input_Data
Data Received: Hours, Minutes, Seconds, Flight_Time from keyboard
Information Returned: Hours, Minutes, Seconds, Flight_Time

by reference.
Logic: Gets hours, minutes, seconds and flight time from user.

1.1 Check_Validity
Data Received: Hours, Minutes, Seconds, Flight_Time.
Information Returned: I for valid input 0 otherwise.
Logic: Check variables Hours, Minutes, Seconds, Flight_Time

to see if input falls within predefined ranges.

Figure 40 Module specification for input subproblem

Designing the Solution
3. Module Specifications

2.0 Perform_ Calculations
Data Received:Hours, Minutes, Seconds, Flight_Time.
Information Returned: Return_Hour,Return_Minute,Return_Second,

Return_Day by reference.
Logic: Calls Calc_Return_Time() and Calc_Return_Day(long int, int&).

2.1 Calc_Return_Time
Data Received: Hours, Minutes, Seconds, Flight_Time.
Information Returned: Return_Hour, Return_Minute,

Return_ Second, Return_Day by reference
Logic: Calculates Return_Hour, Return_Minute,

Return_ Second from Blast off Hours, Minutes,
Seconds, Flight_Time, and Refueling constants

2.2 Calc_Return_Day
Data Received: Total flight time (in seconds)
Information Returned: Day of return (by reference).
Logic: Calculates how many days after blastoff rocket returns.

188

Figure 41 Module specification for computation subproblem

Designing the Solution
3. Module Specifications

3.0 Dispaly_Results
Data Received: Return_Hour, Return_Minute, Return_Second, Return_Day.
Information Returned: none
Logic: Displays the returning flight time and day on the computer screen.

Figure 42 Module specification for ouput subproblem

Designing the Solution
4. Algorithmic Logic

0.0 Do steps 1.0 to 3.0
1.0 Get Input: Hours, Minutes, Seconds, Flight_Time from keyboard

1.1 Check Validity
1.1.1 Check Hours,Minutes,Seconds, and Flight_Time for range validity.
1.1.2 if valid Continue from step 2.0.
1.1.3 else Repeat from step 1.0

2.0 Perform Calculations
2.1 Cale Return Time

2.1.1 Convert to seconds and add to get preliminary flight time
Temp = (3600 * Hours) + (60 * Minutes) + Seconds + Flight_Time

2.1.2 Calculate refuel time needed and add to total time
Total = Temp + ((Temp / TIME_TO_REFUEL) * REFUEL_TIME)

2.1.3 Convert back to Hours,minutes,seconds
Return_Hour = Total / 3600
Return_Minute = Temp / 60
Return_Second = Temp % 60

2.2 Cale Return Day
2.2.1 Return_Day = Total / 86400

3.0 Display Results
3.1 Display: Return_Day,Retum_Hour, Return_Minute, and Return_Second

4.0 Check to see if user wants to repeat process
4.1 if yes Repeat from step 1.0
4.2 else end

189

Figure 43 Algorithmic logic

This concludes the problem solving stages within SOLVEIT and the student

continues with the program development stages by transferring into a programming

190

language environment (i.e. Pascal, C, C++ compilers) to translate the algorithmic

specification and logic into code.

5.3.4 Translating the Solution

The algorithmic logic created in the module logic specification editor is stored in the

reference database as a text file, but cannot be compiled directly. In this stage, the

algorithmic logic created in the design stage is copied into the syntax editor of the target

programming environment and is used as the basis for code translation. By the end of

this stage, syntactically correct code that can be compiled using a language compiler is

produced and is ready to be tested, as shown in Figure 44.

Module Translation

Program Code

Figure 44 Outcome of solution translation

5.3.4.1 Code Translation

The algorithmic logic produced in the design stage is used as the basis for code

translation. The work done in previous stages amounts to a solution for the problem, but

additional work is required to be able to execute the solution on a computer. Using the

facilities of the programming environment, the student can initially translate the logic into

a program shell that displays the entire skeletal program, which can be then visually

verified. Final translation can proceed either on a module-by-module basis or complete

translation can take place.

191

5.3.5 Testing the Solution

The translation stage produces a program that can be compiled, executed, and tested

using the tools of a programming language compiler. In this stage, the syntax and logic

correctness of the program must be verified and any errors removed. By the end of this

stage, a syntactically correct solution is ready to be executed and to produce the results,

as shown in Figure 45.

Module Testing

Tested/Debugged Program Code, Test Cases and Result

Figure 45 Outcome of solution testing

5.3.5.1 Code Testing

Test data is constructed and used for comprehensive program verification to uncover

program errors, both syntactical and logical, and to fix them when found. This requires

that the program does not violate any language rules and its output is consistent with

problem requirements and design specifications. With SOLVEIT, the student follows an

organized process of problem formulation, planning and design before the code is

produced. This makes it possible to compare the problem requirements, solution

specifications and program results.

192

5.3.6 Delivering the Solution

After execution and testing, the student returns to SOLVEIT and completes the process

by carrying out the delivery stage. By the end of this stage, a project turn-in package to

be delivered to the instructor is assembled, as shown in Figure 46.

Solution

Delivery of Completed/Partial Solution and/or
Recorder/Notebook/ Database Content

Figure 46 Delivery of complete solution

5.3.6.1 The File Manager

The student has access to the information produced in all stages of SOLVEIT, the content

of the reference database, a complete transcript of the project notebook/graphics editor

and the recorder showing the result of interactions between the student and the system.

The student can choose to print the result of the entire project, saves it to a disk file, or

select the parts needed.

The end result is a fully documented program based on problem requirements and

solution specifications. The file manager is used to produce a complete package

consisting of the outcome of all stages of the process and, if required, the content of

reference database, project notebook, and recorder.

5.4 Implementation of SOLVEIT

The implementation, deployment and testing of an initial prototype version of SOLVEIT

based on the specifications described in this chapter took place over a period of 2 years.

193

The system was used in a problem solving and programming course for the first time

starting in the Fall of 1996. Initial system testing were performed during the Summer and

Fall of 1996. The system was modified as a result this testing (see sections 6.1.1 and

6.1.2). Integration into the curriculum took place in the Fall of 1996 and Spring of 1997.

Evaluation was performed during these two semesters. The evaluation design is

presented in Chapter 6 and the results are reported in Chapter 7.

5.5 Summary

When first learning problem solving and programming in a setting such as the

introductory course in computer science, students must develop the necessary skills that

enable them to carry out all of the involved activities. As documented in Chapter 2, some

problem solving and program development activities are supported by existing tools that

are intended to assist novice programmers. Programming, in its implementation stage, is

one of the activities that has been the beneficiary of such automation. SOLVEIT

addresses the entire problem solving and program development process and advocates the

need for further automation. It provides the students with a system that emulates the

types of activities and interactions that take place when solving a problem using the Dual

Common Model described in Chapter 4. This environment can be an integral part of the

curriculum. The system serves mostly as a facilitator of the problem solving process.

The students remain active participants and self-regulated learners who ask questions,

formulate answers, explore alternatives, and, more importantly, learn from their own

experiences. The teacher also remains involved in the learning process. The problem, its

194

solution and the student thought processes during problem solving can be obtained by the

teacher for assessment and feedback, through the aggregation of an electronic portfolio.

CHAPTER 6

EXPERIMENTAL DESIGN: TESTING AND EVALUATION

A key motivation for the development of educational computing systems is improving

students' ability to learn independently. Most efforts in this area have focused on the

theoretical aspects of systems and not on measuring their effectiveness for students (see

Chapter 3). In our research, we have developed and implemented a plan for testing and

evaluating SOLVEIT and for studying its impact on students' problem solving and

program development abilities, their cognitive skills, knowledge, perception, and

attitudes and motivation.

This chapter discusses the two components of this study: (1) system pre-

deployment testing and (2) system evaluation. For testing, a description of user testing

and protocol analysis is presented. For evaluation, a description of the experiment

including the hypotheses and research questions used in the evaluation, the subjects, the

design, instrumentation and data collection are presented.

6.1 Introduction

SOLVEIT was designed as a problem solving and program development environment

that takes into consideration the problem solving skills required by students learning how

to program, as well as the specific knowledge related to the use of a programming

language. The system provides tools that the students use in formulating the problem;

planning and designing the solution; and monitoring and evaluating the solution's

195

196

progress. SOLVEIT encourages students to understand the problem and its requirements

and to think about possible solutions before engaging in implementation details.

This study sought to verify the claims made regarding the cognitive model of

SOLVEIT and to investigate the impact resulting from using the SOLVEIT environment

as a support tool for problem solving and program development.

6.2 System Testing

Pre-deployment testing was strictly concerned with system functionality and the

readiness of SOLVEIT to be integrated into the classroom. It began in the Summer of

1996 with an initial version of SOLVEIT. This covered user testing and protocol analysis

as described in Table 21.

Table 21 The testing plan

197

Two distinct student populations were selected to obtain a broad view of student

feedback. One group was comprised of students in the Summer Program in Computer

Science (SPCS), a program designed for highly motivated high school students in grades

nine through twelve. The other group included students in the computer science course

of the Educational Opportunity Summer Enrichment Program (EOSEP), which is

designed for underprepared high school seniors accepted to attend MIT as freshmen.

These students, as well as other students, are the system's expected future users when

taking their first course in computer science.

6.2.1 User Testing

SOLVEIT was installed in two laboratories used by students in both summer programs to

solve assigned programming projects. Sixty two students, 16 in SPCS and 46 in EOSEP,

participated in testing. Teaching assistants and tutors selected to work with students in

the lab solicited and compiled user feedback. The results were used to correct bugs and

to enhance the system and produce a new version before it was integrated into the

curriculum for first semester evaluation in Fall 1996.

The system was tested again with 16 first year students, registered to take the first

course in computer science in the Spring 1996 semester, enrolled in a preparatory winter

session. Students solved a complete problem using a new version of SOLVEIT and the

instructor and two teaching assistants solicited and compiled user feedback. The testing

results, along with results of protocol analysis (discussed below), performed at the same

time, were used to produce a new system to be used in the second semester evaluation in

Spring 1997.

198

6.2.2 Protocol Analysis

The method to assess the usability and to understand how students formed their mental

model of SOLVEIT was protocol analysis (Goodwin, 1987; Turoff & Hiltz, 1997). This

method involves asking potential users of the system to perform a predeteunined task

using the system and at the same time "think out loud" about what they are doing (Newell

& Simon, 1972; Carrol, et al. 1985).

Again, two distinct student populations were selected to obtain more conclusive

feedback on the user interface and the ease of use of system functionality using the

thinking out loud method. The first group of students consisted of two graduate students,

whose undergraduate degrees were not in computer science, taking a bridge course in

program design and data structures. The second group was made up of three students,

selected randomly from the winter session group discussed above. Students participating

in protocol analysis gave a running commentary on what they were attempting to do,

what type of problems they encountered, and any other task related thoughts. Each

session was tape recorded and analyzed. Both groups encountered significant problems

with the user interface of the information elicitation and the goal decomposition tools.

Some minor problems with inconsistencies in the placement of help, next and back

buttons. Corrective actions were taken by redesigning the screen interface for both

information elicitation and goal decomposition tools. Also, a reorganization of command

buttons was made on all screens. Problems with the goal decomposition tool were

uncovered again during an informal protocol analysis session with the same graduate

199

students that lead to more changes and simplification of the user interface. No other

major problems were reported.

6.3 Evaluation Method

The principal method of evaluation was controlled experimentation designed to

understand and thereby improve the learning and teaching of problem solving and

program development to novice students. There are many different ways to design the

evaluation plan, with no single correct approach (Frechtling, 1992). Some studies require

qualitative analysis; others require quantitative analysis; most benefit from a combination

of the two (Herman, Morris, & Fitz-Gibbon, 1987). The testing of hypotheses and

research questions of this study required analysis of students' performance on homework,

quizzes and exam; self-administered questionnaires and reports; and in-class students'

observation and monitoring. Therefore a combination of qualitative, quantitative and

anecdotal reporting was selected for this study (Fowler, 1993; Love, 1991). Table 22

describes the evaluation approach.

Table 22 The evaluation approach

User Evaluation Method Type of Data

Students Taking First
Course in Computer
Science.

Controlled Experiment
Qualitative,
Quantitative, and
Anecdotal

An experiment to test the hypotheses, answer the research questions and analyze the

results was conducted over two semesters. Students were advised of the evaluation plan

200

and how it was to proceed; those who agreed to participate were asked to read and sign a

Protection of Human Subjects consent form and to answer the pre-test questionnaire

included in Appendix 1. A post-test questionnaire was also administered at the end of the

semester (also can be found in Appendix 1).

6.3.1 Hypotheses and Research Questions

Hypotheses and research questions were designed to assess whether the tools within the

SOLVEIT environment aid the students in their search for the solution, producing better

results, enhancing their perception, attitude, and motivation, and in the development of

skills and knowledge necessary for problem solving and program development. The

hypotheses were designed to test the relationship between the various tools of the system

and students' performance. The major assumption of the hypotheses was that students

using SOLVEIT will perform better on problem solving and program development tasks

than students not using the system. The research questions were designed to examine

unforeseen effects not directly related to the system. Table 23 describes the hypotheses

and Tables 24 and 25 describe the research questions. Detailed discussion of hypotheses

and research questions, the rationale for their selection, their measures and impact, the

procedure and instruments for their verification is provided in section 6.3.

201

Table 23 Process hypotheses

Hypothesis
(process)

Measures Impact Assessment

1. Students in the experimental group will: Problem Solution Problem
1.1 show clearer understanding of problem,

and will
Fonnulation
and Facts

Planning
and Solution

Description,
Information

1.2 identify problem's facts better than students
in the control group.

Identification Correctness Elicitation and
Organization

2. Students in the experimental group will: Solution Solution
2.1 engage in planning more often than Planning and Design and Plan Outline, Goal

students in the control group, and will Goal Solution and Data
2.2 apply early decomposition of problem

goals into subgoals.
Decomposition Correctness Refinement

3.	 Students in the experimental group will
demonstrate a higher level of competence in

Solution Design
and Module

Program Design Charts and

problem decomposition, inter-module Decomposition/
Composition Algorithmic

organization, refinement, and specification Organization/
and Solution Module Logic

skills than students in the control group. Specification
Quality

Table 24 Product research questions

Research Question
(product)

Measures Impact Assessment

I . Will students in the experimental group
produce more efficient, or better suited,
programs compared to students in the
control group?

Code
Efficiency

Program
Composition

Program Code

2. Will students in the experimental group
produce more complete and robust
programs compared to students in the
control group?

Code
Reliability Correctness

ProgramProg
Test Data

3. Will students in the experimental group Program

produce clearer and more understandable Code Comprehension Program

solutions compared to students in the control
group?

Readability and
Modification

Documentation

4. Will students in the experimental group Solution
produce more accurate solution specifications,
program code and results consistent with

Overall
Solution

Program
Testing and

Specifications,
Program Code

problem requirements compared to students in
the control group?

Correctness Debugging and Results

202

majoring in computer science, information systems, mathematics and physics (see

Appendix 2 for course syllabus and related material) were used each semester. In the first

semester, two sections were the control and one received the experimental treatment. In

the second semester, one was the control and two were experimental. Table 26 describes

the assignments of sections to conditions in the two semesters.

203

programming environment (C++ compiler) and the second method used both SOLVEIT

for problem solving activities and a traditional programming environment (also C++

compiler) for program development. The traditional group was the control group and the

SOLVEIT group was the experimental group. Both groups received the same instruction,

assignments, quizzes and exams.

The independent variable is the integration of SOLVEIT environment into the

course for students in the experimental group and the absence of SOLVEIT for students

in the control group.

The dependent variables fall into three categories. Each category consists of a set

of variables: (1) the problem solving process includes problem formulation, planning,

204

design, translation and testing (the last two tested in terms of product), (2) the product

includes efficiency, reliability, readability and correctness, and (3) subjective includes

perception, attitude and motivation. Table 27 describes the independent and dependent

variables of the hypotheses and Tables 28 and 29 describe the independent and dependent

variables of the research questions.

Table 29 Research questions' (subjective) variables

Research Question
(subjective)

Independent Variable Dependent Variable

5 Perception
SOLVEIT

(presence or absence)

6 Attitude and Motivation

All grading was done by course Teaching Assistants (TAs) who were not given

any details of the evaluation plan, and who received training covering course content,

teaching skills, grading criteria, method and instruments, given by the course instructor.

The grading process was blind as to whether the student was in the experimental or

control group. The instructor was in charge of the lecture and preparation of course

material, programming assignments, quizzes and exams, but did not participate in any

evaluation of students' performance. The TAs and the instructor met weekly to discuss

the coverage of material and assigned work.

6.3.4 Instrumentation

Researchers analyzing students' problem solving abilities have suggested assessment

methods and developed various evaluation instruments with comparable objectives and

performance (Hartman, 1996; Meier, 1992; Szetela, 1987; Charles, Lester, & O'Daffer,

1987). How to Evaluate Progress in Problem Solving by Charles, Lester, and O'Daffer

(1987) provides comprehensive guidelines for conducting evaluation plans for problem

solving. Some of the techniques and instruments for measuring problem solving progress

205

206

provided in the book were adapted and revised to fit the needs of this evaluation. New

instruments for evaluating the process and the product of problem solving and for

students' self-assessment reports were devised. Each process and product instrument

contains a description of possible outcome, the indicators to be examined, and a scoring

scale. An additional instrument for quiz/exercise problems was also devised. These

instruments were used initially to grade students work in both SPCS and EOSEP

programs and in one section of the first course in problem solving and programming in

Summer 1996. Uncovered problems were corrected and the instruments were revised

before they were used during the experiment, in the following Fall and Spring semesters.

The pre-test questionnaire covered identifying, general and experience

information. The post-test questionnaire covered identifying and general information,

course content, problem solving and programming issues, and course outcomes. Table 30

describes the instrument for the hypotheses and Tables 31 and 32 describe the

instruments for the research questions. Table 33 describes the consent form and pre-post

test questionnaires.

Table 30 Hypotheses' (process) instruments

Instrumentation

Hypotheses
(process)

Four evaluation instruments
(three for problems and one for
exercise questions) covering
possible stage outcome, the
indicators to be examined, and a
scoring scale of 0-4.

Table 31 Research questions' (product) instruments

Instrumentation

Research Questions
(product)

Four evaluation instruments
covering possible outcome,
the indicators to be examined,
and a scoring scale of 0-2.

Table 32 Research questions' (subjective) instruments

Instrumentation

Research Questions
(subjective)

Students' self-reports
covering their
retrospective feedback
on problem solving.

Table 33 Consent/pre/post test instruments

Instrumentation

Consent form explaining
research project.

Overall
course

Pre/post test questionnaires
covering identifying and
general information, course
content, problem solving and
programming issues, and
course outcomes.

6.3.5 Data Collection

Recognizing that the evaluation of all students' problem solving and program

development work can be a massive undertaking (Charles, Lester, & O'Daffer, 1987),

207

208

five programming assignments, five quizzes and two major exams of all students, in all

sections of the course, were selected for evaluation. The data were obtained from

multiple sources including: (1) students' pre and post-test questionnaires, (2) student

performance on programming assignments, quizzes, exams, (3) students' self-assessment

reports, and (4) in-class student observation and monitoring. Table 34 describes the data

collection for the hypotheses and Tables 35 and 36 describe the data collection for the

research questions.

Table 34 Data collection for hypotheses (process)

Data Collection

Hypotheses
(process)

Programming Assignments

Quizzes

Self-reports

Midterm Exam

Final Exam

Pre/post Questionnaires

Throughout the
semester

Periodic
	 ..	 .

Mid-semester

End-of-semester

Beginning/ end-of-semester

Table 35 Data collection for research questions (product)

Data Collection

Research Questions
(product)

Programming Assignments

Quizzes

Midterm Exam

Final Exam

Throughout the
semester

Mid-semester

End-of-semester

209

Table 37 Definitions of dependent variables' categories

Category Definition

Process
Problem solving and program development method
and cognitive skills required to produce solution.

Product Solution as a product of problem solving process.

Subjective
Perception, attitude, and motivation toward
problem solving and programming.

6.4.1 Process Measures

Process measures focused on the approach to problem solving used by the students to

understand, develop, and produce the solution. Table 38 describes the dependent

variables for the process of problem solving and program development.

210

Table 38 Process variables

Variable Description

Formulating the Problem

Understanding the question as well as the
meaning of the problem's terminology, and
the identification of its facts.

Planning the Solution

Determining if problem goals can be
subdivided into subgoals, identifying the tasks
to accomplish each goal and subgoal, and
searching for a solution strategy.

Designing the Solution

Refining the solution strategy. Organizing
and sequencing of goals and subgoals, and
transforming tasks into algorithmic
specifications.

Translating the Solution
Implementing solution by translating detailed
design into programming language code.
Executing code to produce results.

Testing the Solution

Developing and applying test data to verify
program correctness and accuracy of
produced results.

Three evaluation instruments were developed to assess students' problem

formulation, planning and design skills, and to grade their work. Twelve points out of a

total of twenty points were assigned for the first three stages of the process. Translation

and testing stages were graded as the product of problem solving, and were worth the

remaining eight of the twenty points. The following is a discussion of the process, the

tasks performed and a presentation of the hypotheses developed for this set of variables.

211

212

6.4.1.1 Formulating the Problem

The process of problem solving requires a variety of cognitive skills and begins with

formulating the question. Problem formulation requires the understanding of the question

as well as the meaning of the problem's terminology, and the identification of its facts.

Problem understanding requires the processing of information. The techniques of

verbalization and visualization are contributing factors in creating an initial

understanding of the problem. For example, making a drawing, talking, or answering

questions about the problem aid the task of problem understanding. However, problem

formulation evolves with the transformation of the given problem statement into a

precisely formulated model. Developing a precise model of the problem requires

elicitation and organization of all relevant information and elimination of irrelevant

information.

SOLVEIT requires the student to describe the problem to be solved in written

and, if possible, visual form. The student also interacts with the system and answers

questions about the problem. This prompts the student to think and construct

interpretations about problem facts, conditions and constraints, and presumably facilitates

problem understanding. Using the information elicitation tool of SOLVEIT, students

also gather information about the goal, givens, unknowns, conditions and constraints of

the problem. This should enable the student to form a concise and meaningful model of

both the initial and goal states of the problem. The following hypothesis is presented in

this domain.

213

Hypothesis # 1: Problem formulation

Students in the experimental group will:

1.1 show clearer understanding of problem, and will

1.2 identify problem's facts better than students in the control group.

Measures: Problem formulation and facts identification. Outcome of problem

formulation stage of students in experimental and control groups for programming

assignments, quizzes and exams was judged by course TAs. Table 39 shows the

instrument for assessing students' problem formulation skills.

Impact: Solution planning and solution correctness. Students in the experimental group

will develop better skills at understanding the problem and identifying the information

needed to solve it. This will also provide students in the experimental group with

knowledge needed to represent a precise and complete model of a problem's initial and

goal states. A higher level of understating of the problem and an accurate representation

are likely to lead to a correct solution.

Assessment: Using the given problem, the students are expected to write, in their own

words, the statement of the problem, to answer questions about the problem and to

identify and organize the information needed to solve the problem. This was graded

using a scale of 0-4. Also, the post-test questionnaire included a series of problem

formulation questions.

Table 39 Instrument for assessing students' problem formulation skills

The Process - Formulating the Problem

Outcome Indicator
Scoring

Scale

Excellent	 representation	 of	 problem	 and	 complete Problem is clearly and correctly

identification	 of	 relevant	 facts,	 indicating	 full stated. All goals, givens, and 4
understanding, required to solve the problem. unknowns are identified.

Reasonable representation of problem and identification Problem is correctly stated. Most

of	 almost	 all	 relevant	 facts,	 indicating	 adequate goals, givens, and unknowns are 3

understanding, required to solve the problem. identified.

Incomplete	 representation	 of	 problem	 and/or Problem is partially stated
identification of facts, indicating some understanding,
but not enough to solve the problem.

and/or some facts are
identified.

2

Inappropriate representation of problem and inability to Problem statement is incorrect
identify	 relevant	 facts,	 indicating	 complete and meaningless facts are 1
misunderstanding, required to solve the problem. identified.

Lack of problem representation and identification of No problem representation/fact
relevant facts, 	 indicating complete misunderstanding,
required to solve the problem.

identification attempted or
completely irrelevant work.

0

6.4.1.2 Planning the Solution

Planning is a cognitive activity where the development of an appropriate solution strategy

begins. The student considers various alternatives to determine the course of action

suited to achieve the goal of the problem, subdivides the goal into subgoals, and identifies

the tasks needed to accomplish each subgoal. The relevant information identified in the

previous stage is related to the various subgoals and its role and meaning are defined.

This enables the student to begin the process of carrying out the strategy to progress

214

215

toward meeting each subgoal of the problem and eventually producing the complete

solution.

Using SOLVEIT, the student first outlines the strategy to solve the problem.

Next, the student explicitly refines the goal into subgoals and defines the tasks associated

with each subgoal. To complete the planning stage, SOLVEIT also requires the student

to transform the given information into formal data representation. The following

hypothesis is presented in this domain.

Hypothesis # 2: Solution Planning

Students in the experimental group will:

2.1 engage in planning more often than students in the control group, and will

2.2 apply early decomposition of problem goals into subgoals.

Measures: Solution planning and goal decomposition. Outcome of planning stage of

students in experimental and control groups for programming assignments, quizzes, and

exams was judged by course TAs. Table 40 shows the instrument for assessing students'

solution planning skills.

Impact: Solution design and solution correctness. Strategic planning, early

decomposition of problem goal into subgoals, and data representation should produce

sufficient details essential for a design that, if properly implemented, will lead to a correct

solution. Students in the experimental group should develop better skills at planning the

solution and outlining the strategy needed to implement it. This experience will also

provide students with the opportunity to learn the needed skills of selecting and using

problem solving strategies. An accurate representation of the problem and a complete

216

identification of relevant information followed by a carefully planned solution is likely to

lead to a correct solution.

Assessment: Using the information produced in problem formulation, the students are

expected to produce a clear and appropriate plan for a solution strategy, decompose the

goal into subgoals and represent the data that will lead to the design stage. This was

graded using a scale of 0-4. Also, the post-test questionnaire included a series of solution

planning questions.

Table 40 Instrument for assessing students' planning skills

217

6.4.1.3 Designing the Solution

Design is a cognitive activity where the student organizes and refines the components of

the solution strategy, and defines specifications to be translated into code. There are two

levels of design. The first is a high-level design where a framework structure for a

solution to the problem is produced, typically in visual or outline form. This involves the

organization and sequencing of subgoals, the determination of whether the subgoals

require further refinement, the establishment of relationships among the various solution

components, and the association between data and subgoals. Subsequently, detailed

design transforms subgoals into corresponding algorithmic specifications and the solution

logic is readied to be translated into programming language syntax.

SOLVEIT supports a modular design methodology that allows the student to

decompose and represent the problem in terms of smaller subproblems. Using a

structured chart representation, the subproblems are presented visually as modules along

with a data description table showing the data flow between the various modules. The

algorithmic logic and module specification details are constructed within SOLVEIT. The

following hypothesis is presented in this domain.

Hypothesis # 3: Solution design

Students in the experimental group will demonstrate a higher level of competence

in problem decomposition, inter-module organization, refinement, and

specification skills than students in the control group.

Measures: Solution design and module decomposition, organization and specification.

Outcome of design stage of students in experimental and control groups for programming

218

assignments, quizzes, and exams was judged by course TAs. Table 41 shows the

instrument for assessing students' solution design skills.

Impact: Program composition and solution quality. Modular organization, sequencing,

and refinement provide a complete overview of the various solution components which

direct the formation of the algorithmic solution and simplify program composition by

providing a framework for control and data flow. Students in the experimental group will

gain tactical skills in problem decomposition, modular organization and refinement

required for problem solving and program development. An accurate understanding of

the problem and a carefully planned and designed solution is likely to lead to a good

quality solution.

Assessment: Using the result of the planning stage, students are expected to produce a

well organized, refined and specified design, including charts and algorithmic

specifications, that will lead to the implementation of a good quality solution. This was

graded using a scale of 0-4. Also, the post-test questionnaire included a series of solution

design questions.

01 1 ft

220

6.4.2 Product Measures

The effect of the instructional context (i.e. the use of SOLVEIT) on the problem solving

and program development outcome was also investigated. Product measures examined

the result of problem solving - the solution. Table 42 describes the dependent variables

for the product of problem solving and program development.

Table 42 Product variables

Variable Description

Efficiency Finding and implementing a well suited
solution for a problem.

Reliability
Whether or not a program provides a
complete and robust solution to the problem.

Readability
Clarity of program solution covering both
program documentation and programming
style.

Correctness Merit and validity of any solution to a
problem hinges on whether the correct answer
has been found.

Unlike process measures where we claimed, in forming the hypotheses, that using

the various tools of SOLVEIT will have positive cognitive benefits, with product

measures we simply asked questions and searched for answers on whether such an

advantage will translate into producing a better solution to a given problem.

Research questions are more appropriate than hypotheses for these measures

because SOLVEIT focuses primarily on the process of problem solving, and not on the

product itself. Two factors are considered in the evaluation of the solution: quality and

correctness. Four evaluation instruments were developed to assess student solution

221

quality and solution correctness, and to grade their work. Eight points out of a total of

twenty points were assigned for the product of problem solving. The following is a

discussion of the product and the expected outcome, and a description of research

questions developed for this set of variables.

6.4.2.1 Solution Quality

Any solution that correctly meets the requirements of the problem is considered an

effective solution. The quality of solution, however, is a measure that extends beyond

effectiveness and includes efficiency, reliability and readability. The research questions

investigated in solution quality covered all of these three variables.

Efficiency: Efficiency in problem solving is finding and implementing the best

suited solution for a problem. Often, there are several possibilities to consider when

solving a problem, with some more appropriate and more efficient than others. Choosing

the most appropriate algorithms, data structures and control structures for a specific

problem situation leads to efficiency. Solution time, the length of time spent solving the

problem, is another factor of efficiency, as are execution time and memory requirements.

Solution time and machine time/space factors, however, are secondary when dealing with

relatively small programs such as those in the first course on problem solving and

programming and were not considered here.

Research question # 1: Efficiency of solution

Will students in the experimental group produce more efficient, or better suited,

programs compared to students in the control group?

222

Measures: Code efficiency. Data structures, algorithms, control structures, and language

constructs of the solution code of students in experimental and control groups for sample

programming assignments, quizzes and exams were judged by course TAs. Table 43

shows the instrument for assessing solution efficiency.

Impact: Program composition. The answer to this research question will show whether

problem solving skills developed by students in the experimental group will lead to

composing more efficient programs more often than students in the control group could.

This can be shown if the coding of students in the experimental group demonstrate the

use of more appropriate algorithms, choice of data structures, and control structures more

often than students in the control group.

Assessment: Using the problem's requirements, the students are expected to produce the

best suited and most efficient problem solution by selecting the most appropriate

algorithms and constructs for the given problem. This was graded using a of 0-2.

Table 43 Instrument for assessing solution efficiency

The Product - Solution Quality: Efficiency

Scoring
Outcome Indicator Scale

Well suited solution is produced.

Most appropriate algorithms, data
structures, control structures, and
language constructs for this
problem situation are chosen.

2

Minimally acceptable solution is produced.
Program accomplishes its task,
but lacks coherence in choice of
either data and/or control
structures.

I

Program solution lacks coherence
Unacceptable solution quality is produced. in choice of both data and control

structures.
0

Reliability: Reliability refers to whether or not a program provides a complete

and robust solution to the problem. The programmer must ensure that the program will

function properly under all possible test cases, work for all valid input, and anticipate and

respond to all invalid input.

Research question # 2: Reliability of solution

Will students in the experimental group produce more complete and robust

programs compared to students in the control group?

Measures: Code reliability. Solution and program execution results of students in

experimental and control groups for programming assignments, quizzes and exams were

judged by course TAs. Table 44 shows the instrument for assessing solution reliability.

223

224

Impact: Program correctness. The answer to this research question will show whether or

not problem solving skills developed by students in the experimental group will lead to

developing solutions that will produce more reliable programs. This can be shown if the

programs of students in the experimental group, when tested at various stages of their

development, survive exhaustive code testing necessary to verify program correctness

more often than students in the control group.

Assessment: Using the problem's specification and the produced solution, the students

are expected to develop test data suited for verification of program reliability. Each

module must be verified to ensure that unexpected mistakes, such as syntax and run-time

errors, are unlikely to appear. This was graded using a scale of 0-2.

Table 44 Instrument for assessing solution reliability

The Product - Solution Quality: Reliability

Outcome Indicator
Scoring

Scale

Program functions properly under
all test cases. Works for all valid

Robust solution is produced. input, and responds to all invalid
input.

2

Minimum requirement solution is produced.

Program functions under limited
validfworks only for vatest cases or wor	 l

input and fails to respond to
invalid input.

1

Unacceptable solution quality is produced. Program fails under most test
cases.

o

Readability: Readability is a function of both program documentation and

programming style, and is necessary for ensuring the clarity of program solution.

225

Comprehending and modifying programs is facilitated when comments and explanations

are embedded within the code to explain approaches and techniques used to solve the

problem. Maintenance would be difficult without adequate documentation. Program

style is enhanced by establishing and adhering to coding conventions and guidelines, and

contributes to producing readable solutions.

Research question # 3: Readability of solution

Will students in the experimental group produce clearer and more understandable

solutions compared to students in the control group?

Measures: Code readability. Documentation and style of solution code of students in

experimental and control groups for programming assignments, quizzes and exams were

judged by course TAs. Table 45 shows the instrument for assessing solution readability

Impact: Program comprehension and modification. The answer to this research question

will show whether students in the experimental group will develop the documentation

skills and habits that are essential for understanding programs and, if necessary, change

program logic or functionality, or possibly adapt previously written code to solve a new

problem. This can be shown if code written by students in the experimental group

demonstrates effective use of comments and explanations within the code describing

approaches and techniques used to solve the problem and of user documentation more

often than students in the control group.

Assessment: The students are expected to produce programs that are easily read and

understood. Each module must be documented using comments to explain code and data

226

definition statements, and adopting a consistent programming style that enhances

readability. This was graded using a scale of 0-2.

Table 45 Instrument for assessing solution readability

The Product - Solution Quality: Readability

Outcome Indicator
Scoring

Scale

Clear and understandable solution is produced.

Program includes commented
code, meaningful identifiers,
indentation to clarify logical
structure, and user instructions.

2

Program lacks clear
Minimally documented solution is produced. documentation and/or user

instructions.
1

Unacceptable solution quality is produced. Program is totally incoherent. 0

6.4.2.2 Solution Correctness

The merit and validity of any solution to a problem hinges on whether the correct answer

has been found - in other words, the solution must work. It is possible that mistakes can

be made at different stages of the problem solving and program development process.

The resulting product is either (1) a correct solution, (2) a partial solution, or (3) an error-

ridden solution. The research question investigated covers the correctness of solution

specification, code and results.

227

Research question # 4: Correctness of solution

Will students in the experimental group produce more accurate solution

specifications, program code and results consistent with problem requirements

compared to students in the control group?

Measures: Overall solution correctness. Solution specifications, program code and

execution results of students in experimental and control groups for programming

assignments, quizzes, and exams were judged by course TAs. Table 46 shows the

instrument for assessing solution correctness.

Impact: Program testing and debugging. The answer to this research question will show

whether problem solving skills developed by students in the experimental group will lead

to producing more accurate solution specifications and code consistent with the problem

requirements and, therefore, correct results more often than students in the control group.

Assessment: Using problem requirements the students are expected to produce solution

specifications, program code and correct results that satisfy the actual problem being

solved. In addition to the test scenario developed to test program reliability, each

module's specification and code must be carefully examined to ensure program and result

correctness consistent with problem requirements. This was graded using a scale of 0-2.

Table 46 Instrument for assessing solution correctness

The Product - Solution Correctness

Outcome Indicator
Scoring

Scale

Appropriate solution is produced.

Correct solution specifications,
program code and results consistent
with problem requirements.

2

Partial solution

Incomplete solution is produced. specifications/program code
and/or some results.

1

No solution specifications/
No solution or totally inappropriate solution is produced. program code, or results

inconsistent with problem
requirement.

0

Finally, the instruments presented in the sections on process and product are

suited for evaluation of complete problem solving and program development sessions,

such as programming assignments and exam problems. Table 47 presents an instrument

designed for assessing other types of problems, such as those given in short quizzes and

exercise questions. This instrument uses a scale of 0-4.

228

Table 47 Instrument for assessing short quizzes and exercise questions

Quiz/Exercise Problems

Outcome Indicator
Scoring

Scale

Excellent solution indicating full understanding of the Answer is clearly and correctly
problem, its requirements, and its constraints. stated.

4

Reasonable solution indicating adequate understanding Answer is correct, with minor
of the problem, its requirements, and its constraints. omissions or inaccuracies. 3

Incomplete solution indicating some understanding of Answer is partially stated

the problem, its requirements, and its constraints, but not and/or some evidence of 2

enough to completely solve the problem. correct result is shown or
invalid assumptions are made.

Inappropriate	 solution	 indicating	 complete
misunderstanding of the problem, its requirements, and
its constraints.

Answer does not make any sense. 1

Lack of solution indicating complete misunderstanding No attempt at solving problem.
of the problem, its requirements, and its constraints. 0

6.4.3 Subjective Measures

In addition to the performance-based measures of the process and the product of problem

solving, the effect of the instructional context on students' perception, attitude and

motivation was also investigated. These measures are examined from the viewpoints of

both the students and the teachers. Table 48 describes the subjective dependent variables.

229

Table 48 Subjective variables

Variable Description

Perception

Students' own feelings and assessment of the
environment and methodology for learning
problem solving and programming.

Attitude and Motivation

Performance may be reflected in students
commitment to the course and is evidenced
in their attitude toward learning, and their
motivation for achievement.

As with product measures, we questioned whether using the various tools of

SOLVEIT would have cognitive benefits and whether such advantages would translate

into developing favorable perception, better attitude and increased motivation toward the

learning of problem solving and programming specifically and the field of computer

science generally. Two methods were used to evaluate these measures: (1) students' self-

reporting and (2) observations and monitoring of students' behavior.

Self-reporting allows the students to participate in an on-going evaluation of their

progress by providing information about their performance on homework problems,

quizzes, or exams and the difficulties they may be encountering in the course. Self-

reporting was restricted to selected experiences in problem solving, was not used for

course grading, and only anecdotal reporting of results will be provided. The course

pre/post-test questionnaires, also a self-reporting mechanism, included questions related

to these measures.

230

231

Observations and monitoring of students' activities covered class attendance,

completion and quality of assigned work, and interest in course topics. The following is a

discussion of subjective measures and a description of research questions developed for

this set of variables.

6.4.3.1 Perception

Perceptions are formed based on observations and interpretations of knowledge about

particular situations or experiences (Solso, 1988) which lead to acceptances or rejections.

Students' perception about the learning environment is an important satisfaction measure

of their learning goals (Gagne, 1988). Perception, as well as attitude (Rokeach, 1972), is

difficult to determine and its evaluation depends on the students' own recognition and

communication of their beliefs and feelings. The research question investigated whether

the use of SOLVEIT improved student confidence regarding learning, increased student

satisfaction in their learning experience, and enhanced the relevance of learning goal.

Research question # 5: Perception of students

Will students in the experimental group have a more favorable perception of their

learning experience compared to students in the control group?

Measures: Students' satisfaction. Course questionnaires and students' periodic self-

assessment reports on their experience with problem solving and program development

were examined to uncover successes, difficulties or other relevant information.

Impact: Students' morale. The answer to this research question will show whether or not

the instructional context for students in the experimental group will lead to developing

232

favorable perceptions of learning problem solving and programming, the methodology, or

anything else about the course.

Assessment: To evaluate students' perception toward the learning experience, students

were asked to reflect on specific problem solving experiences by assessing their own

performance through open-ended comments immediately after completing a

programming assignment or an exam problem. Also, the course questionnaires included

a series of perceptual questions. Table 49 shows the instrument used by students' for

self-assessment.

Table 49 Instrument for students' self-assessment reports

Self-assessment Report

Completing this report provides the instructor and the TA with a retrospective feedback on your success,
difficulties, feelings or anything else you wish to comment regarding the problem you have just solved.
This enables you to communicate your thoughts to us throughout the semester. Please be as candid and
informal as you wish. Answers can be as short (or as long) as you feel is necessary (use the back side of
this form or attach additional sheets). The following is intended to give you some direction to the report:

1. When I first saw the problem ...

2. I formed the solution by ...

3. This problem solving experience ...

4. Anything else?

233

6.4.3.2 Attitude and Motivation

The research literature contains many definitions for attitude and researchers recognize

that it is not a valid scientific construct and it is difficult to determine what data to include

or exclude as part of an attitude (Rokeach, 1972). Nevertheless, Rokeach offers the

following definition: "An attitude is a relatively enduring organization of beliefs around

an object or situation predisposing one to respond in some preferential manner."

Successful learning experiences can shape students' general attitudes toward

learning and their motivation for achievement will have impact on their performance in

school (Gagne, 1988). For example, the use of a specific teaching method or a tool can

have cognitive benefits as well as positive effects on students' attitude (Mager, 1968;

Papert, 1980). In addition to students' general attitude, the motivation to accomplish the

tasks required in a course is important. The research question investigated whether

differences regarding school in general and problem solving and programming in

particular occur regarding students' attitude and motivation as a result of the use of

SOLVEIT.

Research question # 6: Attitude and motivation of students

Will students in the experimental group exhibit better attitude and increased

motivation toward learning problem solving and programming compared to

students in the control group?

Measures: Students' commitment. Students' answers on course questionnaires and their

course record for attendance in lecture/recitation-laboratory sessions, quality of course

234

work and submission of homework on time were analyzed as indicators of students'

commitment to the course.

Impact: Students' performance. The answer to this research question will show whether

or not the instructional context for students in the experimental group will lead to

developing better attitude toward what they are learning and increased motivation

regarding their responsibilities to the course requirements.

Assessment: To evaluate students' attitudes and motivation toward problem solving and

programming, an observational and monitoring record of students' commitment and

performance was maintained in addition to the overall course grading database. Also, the

course questionnaires included a series of questions on attitude and motivation. The

differences between the two groups may be observed in students' commitment to the

course and their interest in the topic, even though it may be hard or unexciting to them, as

well as in students' feedback on their learning experience.

CHAPTER 7

EXPERIMENTAL RESULTS AND ANALYSIS

An experiment to evaluate the effectiveness of SOLVEIT for students taking the first

course on problem solving and programming was conducted over two semesters. The

impact of the new methodology and tools was measured by testing a collection of

hypotheses and research questions.

This chapter presents the results of the experiment conducted to test the

hypotheses and to answer the research questions of the study. Data were collected from

two main sources: (1) course questionnaires and (2) students' performance on course

requirements. Questionnaire data were related to identifying background, experience and

general information as well as information about the course, problem solving and

programming. Only end-of-semester course questionnaires were administered in the Fall

semester, but pre/post-course questionnaires were administered in the Spring semester.

Students' performance data consisted primarily of results on five problem solving and

programming projects, five quizzes, a midterm and a final examination.

A collection of statistical procedures were used to analyze the results including

analysis of variance, cross-tabulations and chi square tests. The results and analysis are

presented in sections 7.2 to 7.5 using a combination of tables and charts.

The results presented in this chapter are based only on first semester evaluation.

Data from second semester evaluation is still being analyzed, but initial analysis show

similar trends as the first semester. Some results of second semester evaluation are

235

236

included in section 7.6 of this chapter and final analysis will be reported in scholarly

journals and conference proceedings.

7.1 Descriptive Statistics

The evaluation took place in the Fall 1996 and Spring 1997 semesters. The students were

split into two conditions as shown in Table 50. The reported results are based only on the

performance and response of those students who completed the experiment. There was

81 students (48 students in the control sections and 33 students in the experimental

section) in the Fall semester and 105 students (30 in the control section and 75 in the

experimental section). Students who did not do any of the assigned course work, whether

they officially withdrew or just did not show up for class, were removed from the

statistics file. Students who withdrew after the midterm exam were kept in.

237

7.1.1 Demographic Information from Fall 1996 Semester

Individual characteristics were collected via an end-of-semester course questionnaire that

was completed by 64 students (41 in the control group and 23 in the experimental group)

who took the final exam. The following is a discussion of some important information.

The students answered questions regarding their background. Nearly all students

(96.9%) were NJIT undergraduates. The majority of them were full-time students (92%),

taking 12 to 19 credits (90%), in either their first (67%) or second-year (22%), and most

were majoring in computer and information science (70%).

Most students age fell between 18 and 22 (93%), 83% of them were males and

17% females, less than half (48%) reported that English was their first language, and the

overall ethnic composition was as follows: 8% African Americans, 33% Asian or Asian-

Americans, 23% Hispanics, and 33% Whites.

The students also answered questions regarding their experiences with computers

and programming. Most were frequent users of computers (69%), most also had some

programming before this course (73%) with BASIC (23%) and Pascal (18%), or a both

(16%) being the most popular languages. Students' self-assessment of programming

skills was as follows: 29% for poor, 32% for average, 22% for good, 13% for excellent

and 5% were not sure. As for problem solving skills, the results were as follows: 13% for

poor, 29% for average, 37% for good, 19% for excellent and 3% were not sure.

Finally, most students expected to graduate with a degree in computer science

(67%) and find employment within their chosen field (67%).

238

7.1.2 A Comparison of Students in the Control and Experimental Groups

A host of cross-tabulations and chi square tests were performed on the results of the

course questionnaire items. No significant difference was found in any of the categories

regarding background or experience of the students in the two groups.

7.2 Reliability and Validity of Performance Assessment Instruments

It is important that the evaluation instruments are appropriate for the specific application

in order for the results to be meaningful and useful. While all measurements are subject

to fluctuations that influence their reliability and validity (Rosenthal & Rosnow, 1991),

these two important characteristics are essential for any type of instruments used for

evaluation. Reliability refers to the consistency of results obtained using a certain

method and validity refers to the appropriateness of the interpretation made of such

results (Gronlund, 1985).

The results of any performance-based evaluation should be viewed as a

combination of the student's ability level and the limitations of the overall method used.

Ideally, the results must truly reflect the student's ability and, although sometimes

difficult, attempts can be made to minimize errors (Moore, 1983). There are four main

types of reliability tests that can be used to establish consistency of results. Specific

types, or a combination, of reliability tests can be useful for certain situations. One in

particular, internal consistency (Rosenthal & Rosnow, 1991) or inter-rater reliability, is

essential when students' performance is being judged by an instrument, as was the case in

this study. The reliability of scoring using the seven performance assessment instruments

(see Tables 39 to 41 and Tables 43 to 46) developed for this evaluation was established in

239

two separate courses before these instruments were used in this study. Two Teaching

Assistants (TAs) working in the Summer Program in Computer Science (discussed in

Chapter 6) and the instructor for the summer program (also the instructor for the course

used in this study) used the instruments to grade seven programming assignments and

four exams. The two TAs, who had previous teaching experience, and the instructor

graded all of the programming assignments and exams separately. The instruments were

revised three times based on feedback and consensus among the TAs and the instructor.

Inter-rater reliability tests were performed on the grading of the last programming

assignment and exam. The correlation coefficient for the three graders were calculated to

find the degree of grading agreement. Table 51 shows the reliability coefficients for the

three graders ranging from 0.82 to 0.95.

Table 51 Inter-rater reliability for the three graders

TA 1 TA 2 Instructor

TA 1 1.00 0.82 0.92

TA 2 0.82 1.00 0.95

Instructor 0.92 0.95 1.00

Validity is an indicator of an instrument's quality. There are three types of

validity tests that can be used to establish whether an instrument measures what it says it

measures (Moore, 1983). As with reliability, specific types or a combination of validity

240

tests can be useful for certain situations. Content validity is appropriate in this case.

Unlike reliability, no numerical coefficient is obtained with content validity (Moore,

1983). To assure content validity, Rosenthal and Rosnow (1991) suggest that when

creating an assessment instrument, a list of skills or material that the students should

master must be made. This list should be used to create any required instruments. Moore

(1983) recommends that individuals with expertise in the field should examine the

instrument and analyze it to determine what it measures. Both techniques were used to

develop the seven performance assessment instruments. The instructor who teaches all

on-campus sections of the first course and the instructor for the distance learning sections

collaborated on the development and the revision of these instruments. Other methods

were also used. How to Evaluate Progress in Problem Solving by Charles, Lester, and

O'Daffer (1987) contains instruments already tested and used for measuring problem

solving progress. Some of these instruments and techniques were adapted for this

evaluation. The course questionnaires were used primarily to gather information, but

were not used for grading.

7.3 Test of Process Hypotheses

Three hypotheses were developed for "process measures" which focused on students'

approach to problem solving in formulating the problem and in planning and designing

the solution. Students' performance was judged based on five quizzes, five programming

assignments, a midterm exam and a final exam.

Programming assignments were graded out of a total of twenty points. Twelve

points were assigned for the first three stages of the process divided equally among

241

problem formulation, solution planning and solution design. The remaining eight were

split equally among reliability, efficiency, readability and correctness of the solution.

Quizzes focused mostly on the choice of control and data structures and were graded out

of a total of four points. The common midterm and final exams consisted of three

sections: (1) the first section was similar in style and grading system to the quizzes,

contained four problems and was worth 40 % of the total grade; (2) the second section

was similar in style and grading system to the programming assignments, contained one

large problem and was worth 40 % of the total grade; (3) the third section covered general

computer science topics and was worth the remaining 20 % of the total grade. Sample

copies of assignments, quizzes, midterm and final exams are included in Appendix 3.

To test the process hypotheses, a spectrum of analysis of variance (ANOVA) and

means comparison for students' performance on programming assignments, quizzes and

exams were performed. Results are reported below.

7.3.1 Results from Fall 1996 Semester

The results from the Fall semester were interesting. The students performed equally in a

unilateral analysis of programming assignments and quizzes. But the experimental group

performed much better on some problems of the midtemi exam; in particular, those

problems in section one which focused on the program development skills related to the

choice of solutions' control and data structures.

Significantly better results were attained in the final exam performance. The final

exam problems in section one, focusing on the choice of solutions' control and data

structures, and the problem in section two that dealt with formulation, planning and

242

design skills resulted in dramatic significant differences between the experimental and

control groups. The experimental group performed extremely well.

We tabulate below a selection of the ANOVA and means results showing the

significance levels for problem 2.1 of the final exam, designed specifically to test

students' comprehensive skills in the process of problem solving and program

development.

7.3.1.1 Analysis of Problem Formulation Hypothesis

Hypothesis # 1: Students in the experimental group will:

1.1 show clearer understanding of problem, and will

1.2 identify problem's facts better than students in the control group.

The ANOVA performed on students' problem formulation grades reveals a

significant difference (> 99.9% level of confidence) between the two groups, as shown in

Table 52. Based on these results, the hypothesis is supported.

243

244

1

(

245

rr,1-1- L.L. ^X TZ-1 -1 7' A 	 _1 	 _, /‘ 1 1 	 1 1 	 1 _ • 	 i

246

247

the process of problem solving and not the product, we asked whether there will be any

effect.

To test the product research questions, a spectrum of ANOVA and means

comparison for students' performance using a combined grade for efficiency, reliability,

readability and correctness on programming assignments, quizzes and exams were

performed. Results are reported below.

7.4.1 Results from Fall 1996 Semester

The results from the Fall semester for research questions are similar to what was reported

for the hypotheses. The students again performed equally on programming assignments

and quizzes. But the experimental group performed uniformly better on all problems in

section one of the midterm exam and three out of four problems in the same section of the

final exam. This section was designed to evaluate the product of problem solving.

We tabulate below a selection of the ANOVA and means results showing the

significance levels for the problems in section one of both the midterm and final exams,

designed specifically to test students' problem solving and program development skills

related to the choice of solution's control and data structures. The four research questions

are discussed together because one combined grade was assigned for each of the midterm

and final exam questions of this section.

7.4.1.1 Analysis of Product Research Questions for Midterm and Final Problems

Research question # 1: Will students in the experimental group produce more efficient,

or better suited, programs compared to students in the control group?

248

Research question # 2: Will students in the experimental group produce more complete

and robust programs compared to students in the control group?

Research question # 3: Will students in the experimental group produce clearer and

more understandable solutions compared to students in the control group?

Research question # 4: Will students in the experimental group produce more accurate

solution specifications, program code and results consistent with problem

requirements compared to students in the control group?

The ANOVA performed on students' grades for problem 1.1 of the midterm

reveals significant difference (99.5% level of confidence) between the two groups, as

shown in Table 56.

249

250

251

252

253

254

255

256

257

In addition, students overall grade for the three sections of the final exam also

reveals significant difference (96.8% level of confidence) between the two groups as

shown in Table 65.

258

259

260

questions examined the performance-based differences between the two groups.

Subjective differences were also examined but judged based on students' self-reporting as

well as students observation and monitoring.

For students' self-reporting, we intended to examine two sources: (1) the periodic

students' self-assessment reports and (2) the post-test questionnaire.

The first request for students self-reporting was to be returned with the third

programming assignment. The result of this request was not encouraging. Seven

students submitted the self-assessment reports, with more than half of these reports

turned-in at least a week after the assignment submission. A second attempt to collect

self-assessment information was made during the midterm exam. The report was to be

submitted with the problem in section two that dealt with students' comprehensive skills

and abilities in the problem solving and program development process. This second

request was met with even less student enthusiasm than the first request. Only three

students returned their reports.

As a result of the first semester experience, the instrument for self-reporting was

redesigned to be brief, and a note was added encouraging the students to be informal and

honest in their feedback. As with the first semester, the third assignment was the first

attempt at collecting self-assessment reports in the second semester evaluation. The

results were nearly identical to the first semester. Since these reports were not part of the

announced course grading criteria, it was decided by the instructor and TAs that no

further requests for the reports will be made.

The feedback from the post-test questionnaire was easier to obtain. All students

who took the final exam also completed the questionnaire. Students' perception of their

261

satisfaction with the quality of course content and their perception of their own problem

solving and programming skills was evaluated. Students' attitude and motivation toward

learning problem solving and programming and their commitment to the course was also

evaluated.

In addition to the attitude and motivation feedback obtained from the post-test

questionnaire, a students' observation and monitoring record was maintained. Class

attendance, quality of produced work and timely submission of homework were used as

indicators of students' commitment to the course.

To test the subjective research questions, a spectrum of ANOVA, cross-

tabulations and chi square tests for students' answers on the post-test questionnaire were

performed. Anecdotal reporting is provided for the results of students observation and

monitoring. Results are reported below.

7.5.1 Results from Fall 1996 Semester

The results from the Fall semester for subjective research questions are mixed. No

significant difference is found for most of students' answers on the post-test

questionnaire. The results of only two items show significant difference. The first item

is question # 4 in the section on problem solving and programming dealing with

verbalization and the second item is question # 13 in the section on course outcomes

dealing with discussing issues related to problem solving and programming with other

students outside of the class.

We tabulate below the ANOVA and means results for the two questions of the

post-test questionnaire, regarding verbalization and discussion of issues related to

262

problem solving and programming, showing the significant difference and we also

provide results from the observation and monitoring record.

7.5.1.1 Analysis of Subjective Research Questions

Research question # 5: Will students in the experimental group have a more favorable

perception of their learning experience compared to students in the control group?

Only one question dealing with students' perception of their problem solving and

program development skills shows a significant difference. The ANOVA performed on

students' response for question # 4 of the post-test questionnaire in the section on

problem solving and programming dealing with verbalization reveals significant

difference (96.7% level of confidence) between the two groups, as shown in Table 67.

Table 67 ANOVA for question on post-test questionnaire dealing with verbalization

AN OVA

Sum of
Squares df

Mean
Square F Sig.

Verbalize 	 Between
Groups 5.965 1 5.965 4.786 .033

Within
Groups 76.035 61 1.246

Total 82.000 62

Research question # 6: Will students in the experimental group exhibit better attitude

and increased motivation toward learning problem solving and programming

compared to students in the control group?

Only one question dealing with students' attitude and motivation toward problem solving

and program development shows a significant difference. The ANOVA performed on

students' response for question # 13 of the post-test questionnaire in the section on course

263

outcomes dealing with discussing issues related to problem solving and programming

with other students outside of class reveals significant difference (> 99.9% level of

confidence) between the two groups, as shown in Table 68.

Table 68 ANOVA for question dealing with discussing problem solving and
programming with students outside of class

AN OVA

Sum of
Squares df

Mean
Square F Sig.

PS Discuss Between
Groups 27.317 1 27.317 19.595 .000

Within
Groups
Total

86.433

113.750

62

63

1.394

Other evidence of students' attitude and motivation toward learning problem

solving and programming was investigated. For example to examine students'

commitment to the course, we decided to use the dates on which the five unannounced

quizzes were given as attendance indicators and the rate of submission of the five

programming assignments as a motivation indicator. Records on late assignments were

kept beginning with the third assignment. No significant difference was found in either

attendance, rate or timely submission of assignments. The quality of work, however, of

students in the experimental group was better. This is demonstrated by the results of the

process hypotheses and product research questions.

In summary, perception, attitude and motivation of students in the experimental

group appeared to be the same compared to students in the control group. Given these

results, the answer to these research questions is not significantly positive.

Overall course performance of students in the Spring 1997 semester reveals

265

considerable differences in letter grades earned by students. Table 70 shows the

percentage of each letter grade earned by students in the two groups.

Table 70 Letter grade distribution for Spring 97 semester

LETTER GRADE Crosstabulation

GROUP
TotalControl Experiment

LETTERG A Count 5 20 25
°A within
GROUP 16.7% 26.7% 23.8%

B+ Count 3 8 11
% within
GROUP 10.0% 10.7% 10.5%

B Count 1 13 14
% within
GROUP 3.3% 17.3% 13.3%

C+ Count 5 13 18
% within
GROUP 16.7% 17.3% 17.1%

D Count 6 12 18
0/0 within
GROUP 20.0% 16.0% 17.1%

F Count 5 2 7
0/0 within
GROUP 16.7% 2.7% 6.7%

Inc Count 1 1
% within
GROUP 3.3% 1.0%

W Count 4 7 11
% within
GROUP 13.3% 9.3% 10.5%

Total Count 30 75 105
% within
GROUP 100.0% 100.0% 100.0%

7.7 Summary of Hypotheses and Research Questions Test

Based on the results and analysis from the Fall semester and the initial results from the

Spring semester the process hypotheses are found to be supported, the product research

266

questions are found to be significantly positive and the subjective research questions

appear to be not significantly positive. Table 71 summarizes the results of the hypotheses

and research questions test.

Table 71 Summary of hypotheses and research questions test

Hypothesis
(process)

Result

1. Students in the experimental group will:
1.1 show clearer understanding of problem, and will
1.2 identify problem's facts better than students in the control group.

2. Students in the experimental group will:
2.1 engage in planning more often than students in the control group, and will Supported
2.2 apply early decomposition of problem goals into subgoals.

3.	 Students in the experimental group will demonstrate a higher level of competence in
problem decomposition, inter-module organization, refinement, and specification
skills than students in the control group.

Research Questions
(product)

Result

1. Will students in the experimental group produce more efficient, or better suited,
programs compared to students in the control group?

2. Will students in the experimental group produce more complete and robust programs
compared to students in the control group? Significantly

positive

3. Will students in the experimental group produce clearer and more understandable
solutions compared to students in the control group?

4. Will students in the experimental group produce more accurate solution
specifications, program code and results consistent with problem requirements
compared to students in the control group?

267

Research Questions
(Subjective)

Result

5. Will students in the experimental group have a more favorable perception of their
learning experience compared to students in the control group?

6. Will students in the experimental group exhibit better attitude and increased
motivation toward learning problem solving and programming compared to students
in the control group?

Not significantly
positive

CHAPTER 8

CONCLUDING REMA ' S AND FUTURE WORK

This chapter concludes with a summary of the evaluation results and their implications;

proposed enhancements to SOLVEIT which would allow it to be used in subsequent

courses, under different programming paradigms, and in other learning environments; a

plan for long-term follow-up evaluation for later courses and additional instructors; and a

summary of the research contributions.

8.1 Summary of Evaluation Results

The results of the evaluation from the Fall 1996 semester suggest that students in the

experimental group acquired a higher-level of competence in both problem solving and

program development skills than the control group. While the experimental group's

scores on quizzes and programming assignments were statistically similar to the control

group, the experimental group's midterm and final exam scores showed statistically

significant improvements; indeed, some of the differences were dramatic. The initial

results from the Spring 1997 semester are comparable to the Fall's, but with more

significantly positive outcomes for the subjective research questions dealing with

perception, attitude and motivation.

8.1.1 A Closer-Look at the Results

The significant differences between the exam results as opposed to the results on quizzes

and programming assignments reflect the different characteristics of these activities and

268

269

the contexts in which they were given. The quizzes were intended to encourage students

to keep up with assigned readings and provide the instructor and TAs with quick

feedback on difficulties with comprehension of the material. The quizzes also tended to

focus in an ad hoc manner on specific concepts, were short and administered in the class

immediately following the introduction of the concept, typically before students could

practice writing programs using the new ideas. Since both the experimental and control

groups had the same level of exposure to the material and minimal practical experience

with the concepts when the quizzes were given, one would expect the performance of the

two groups on the quizzes to be comparable.

Programming assignments were more complex than the quizzes and required the

understanding of several problem solving and program development concepts. They

were given to provide students with problem solving situations that required problem

formulation, solution planning and design skills, as well as substantial practice with the

language control and data structures being studied. These assignments were solved in

stages, and then submitted within a one or two week time frame, depending on their

complexity. Students were allowed to discuss the problem with others, use problems

solved in class as guiding examples, and seek help from the instructor, TAs, and tutors in

the school's learning center. Thus, since every student tended to have access to a

comparable level of assistance, it is unsurprising that their results were comparable.

The exams were different than the quizzes and programming assignments.

Students solved exam problems under uniform circumstances. Exams were announced in

advance and given at the same time to all sections. Each student had to rely solely on

their own knowledge of the subject, their preparedness and experience, that is, they had to

270

show independence. These two factors, uniformity and independence, suggest that the

statistically significant differences in the performance of the experimental and control

groups on the exams was due to the independent variable; namely, their access to

SOLVEIT or not.

8.1.2 Experimental Problems

The implementation as well as the results of this evaluation were successful. The only

significant problem with the experiment was self-reporting, where students were asked to

participate in an on-going evaluation of their progress by providing feedback on their

performance on homework problems, exams, and any difficulties they might be

encountering in the course. However, students' reports on what took place in class were

not easily obtained. The self-assessment technique required a written response which

was viewed as burdensome by the students. Since these responses were not even used for

grading, the response was accordingly minimal. We refer to Charles, Lester, and

O'Daffer, (1987) who describe important factors that hinder students' self-reporting that

appear to apply directly in this case. For example, their work indicates that students may

resent spending time on activities that are not graded and not directly related to the course

work; students may also simply not remember all the important information about their

experiences; and others may not possess the writing skills necessary for such a task. The

last factor may be also be a relevant one in this situation. The course is normally taken in

the first year at the same time as English composition, with some students taking

remedial composition. Indeed, according to the results of the pre-test questionnaire, 52%

of the students reported that English was their second language.

271

8.1.3 Effects Related to the Experimental Design

Students in all sections involved in the evaluation and the two TAs for the course were

fully aware of the experiment, but not aware of any specific details of the design. Despite

this, the so-called selection and originator effects are relevant.

The selection effect refers to a situation where students selected to participate in a

special project may perform better because of the attention they receive, either because

those selected feel better for receiving the attention, or because the extra attention is itself

correlated with success. One could thus ask: how will the method work when it becomes

the method everyone is using?

The originator effect refers to the situation where the developer of an idea is

enthusiastic about the idea, wants to see it succeed, and may understand the experimental

approach better than the standard one. One could then ask: how well will the new

method work when it is used by someone else, who understands it only as well as, or

perhaps less well than, the standard approach?

Both questions, regarding selection effect and originator effect, will be addressed

as part of the future work planned to begin in the Fall 1997 semester.

8.2 Enhancements to SOLVEIT

Four different types of enhancements are envisioned for SOLVEIT:

1) Enhancements to improve its usability in the first course on problem solving and

programming;

2) Enhancements to extend the system to address issues arising in subsequent courses

on data structures and algorithms (dynamic data structures);

272

3) Enhancements to the extend the system's functionality to accommodate different

program development paradigms;

4) Enhancement of the system to the Distance Learning environment.

8.2.1 Enhancing Functionality

The current version of SOLVEIT can benefit from several additional functions that will

enhance its usefulness for students in the first course on problem solving and

programming: a hypertext help system, a seamless transition into the programming

environment, and a database of sample problems and solutions.

8.2.1.1 Hypertext Help System

SOLVEIT's current help facility consists of text descriptions of the various tools and

their functionality. An improved help system, including a glossary of terms, is needed.

Current hypertext-based Help facilities typically include links in each help document to

allow students to navigate through in-depth information on a specific subject. An

additional useful function would be to allow the students to add their own descriptions or

clarifications to the Help database, using hypertext links.

8.2.1.2 Transition from SOLVEIT into the Programming Environment

Currently, once the student completes the problem solving stages within SOLVEIT and

produces an algorithmic solution ready for translation and compilation, the language

compiler is manually invoked. A seamless integration of SOLVEIT with the target

programming environment would invoke the compiler from within SOLVEIT, passing

273

the pseudocode algorithm specification directly to the compiler. The student at that point

would then work within the programming environment to generate executable code and

results, and under appropriate conditions or at the student's choice, control would be

returned to SOLVEIT.

8.2.1.3 Database of Sample Problems and Solutions

Another function that would be useful for both the student and the instructor is a facility

to allow cataloging and presentation of sample problems and their solutions. This could

be used as a guide for solving similar problems and could include a variety of problems

that could be solved using SOLVEIT, ranging from the simple to the more complex.

8.2.2 Extending the Approach to Subsequent Courses

Extending the technique to other courses requires additional research. In particular, the

functions and tools that need to be added to the environment must be carefully identified.

For example, the second course deals with complex data structures and more elaborate

algorithms, and so will require a greater emphasis on data modeling and choice of control

structures. Correct specification of the new functions will require reexamination of the

underlying problem solving and program development model.

For example, for programs written in the first course, the calling structure and

module decomposition closely correspond with one another, while for more complicated

programs, user-defined functions can be called at multiple, semantically different call

locations, with the same effect but for different purposes. This raises problems both for

the logic flow description and inter-module communication.

274

Complex data structures also introduce new difficulties. Even for simple lists,

verifying correctness has an added dimension; namely, verifying that the data structure

primitives do the correct thing, particularly for dynamic structures. Program testing

where there are pointers is also significantly more difficult. Similarly, generating test sets

for complicated control flows (sequences, nested conditionals, nested loops, recursion) is

also more difficult.

8.2.3 Restructuring Functionality for Alternative Programming Paradigms

SOLVEIT was designed to be used in a top-down structured design paradigm. Using this

methodology, a problem to be solved is decomposed into smaller subproblems, these

subproblems are then further decomposed, and so on. A structure chart is used to

represent the various functional components of the solution (modules) and their

relationships. An alternative methodology is the object-oriented design paradigm.

Instead of decomposing the problem into functional components, autonomous objects are

identified according to abstractions in the problem domain to perform well-defined

operations upon certain data (Booch, 1991). The current facilities of SOLVEIT that need

to be adapted and the new ones that need to be designed to support object-oriented design

will be investigated and developed.

8.2.4 Restructuring Functionality for Distance Learning

In the traditional classroom setting, the instructor has opportunities to facilitate the

learning process directly and indirectly through feedback, reinforcement material, and the

integration of necessary tools. Such support mechanisms do not, for the most part, exist

275

for the typical distant learning student, who is often working in isolation, and acquiring

information from videotapes, electronic interactions, and print material. Distance

Learning could be greatly enhanced by improving the range of interaction available to

both teachers and students. Additional SOLVEIT facilities will be identified and

developed to support students learning problem solving and programming through the

distance leaning environment.

8.3 A Plan for Long-Term Evaluation

The effect of the instructional context on further learning will be investigated. The

impact of SOLVEIT on students' performance when it is no longer used in subsequent

courses will be examined in terms of learning outcome variables, described in Figure 47,

that includes the acquisition, retention, and transfer of knowledge, skills and cognitive

strategies required for advanced problem solving and program development beyond the

first course.

8.3.1 Learning Outcome Measures

As with product and subjective variables, we ask questions whether the use of the various

tools of SOLVEIT will have cognitive benefits and whether such advantages will

translate into acquiring, retaining, and transferring superior skills and knowledge. We

also ask whether the students will demonstrate better metacognitive strategies and more

creative thinking.

Variable Definition

Learning outcomes

knowledge acquisition and understanding

knowledge retention and transfer

Cognitive strategies: monitoring the problem solving
process and creative thinking

Figure 47 Learning outcome variables

8.3.1.1 Knowledge Acquisition and Understanding

In addition to problem solving and program development skills, students must also

acquire a thorough understanding of the theory of programming languages, including

alternative programming paradigms, such as object-orientation and functional

programming. Knowledge of programming and problem solving methodology, as

demonstrated by the ability to understand problems, plan and design solutions, compose,

comprehend, test and debug, document, and modify programs, constitute the basic skills

required of programmers, and are already addressed by SOLVEIT. Understanding more

complex programming languages issues would require addressing topics such as data

structures and algorithms, axiomatic semantics, formal methods, and alternative

programming paradigms. The appropriate research questions would measure student

acquisition and understanding of such concepts, demonstrated as usual when the

knowledge is applied appropriately (Moore & Newell, 1973). The time it takes to acquire

and understand knowledge could also be an additional measuring factor.

276

277

The following research questions regarding knowledge acquisition and

understanding suggest themselves:

1.1 Will there be differences between the experimental group and control group in

acquiring and understanding concepts related to data structures, algorithm

design, axiomatic semantics, formal methods, etc.?

1.2 Will the method apply equally well to other programming languages and

paradigms, such as object-orientation and functional programming?

1.3 Will there be differences between the experimental group and control group the

time its takes to acquire an understanding of concepts related to data structures

and algorithm design.

8.3.1.2 Knowledge Retention and Transfer

A key goal of education is to allow students to make the transition from guided to

independent learning, and be able to transfer knowledge and strategies from old to new

problems (Greeno, Collins, & Resnick, 1995). The independent learner must demonstrate

not only self-instruction and self-regulation of learning (as considered in the next

section), but also retention and transfer of knowledge (Schoenfeld, 1992), since the very

ability to make use of acquired knowledge depends on retention. Both classroom

teaching and instructional tools enable students to acquire knowledge and skills, in each

case assisting students in the learning process. Students learning programming, however,

also need the opportunity to practice problem solving strategies and program

development skills independently of the teacher and the tool in order to master such

strategies and enhance their transferability (Gagne & Driscoll, 1988). Short term

278

evidence of knowledge and skill retention and transfer is demonstrated through quizzes,

exams, and problem solving and programming assignments. However, long term

retention and transfer requires evaluation of student performance in various situations,

multiple courses, and over a long period of time.

Two related research questions suggest themselves regarding knowledge retention

and transfer:

1.1 Will there be any differences between students in the experimental group and

students in the control group in retaining and transferring knowledge about

problem solving, program development and programming language concepts?

1.2 How long (as students continue to take future courses) will the difference

between the experimental group and the control group be seen?

1.3 Will the difference carry over into areas other than Computer Science courses?

8.3.1.3 Cognitive Strategies: Monitoring the Problem Solving Process

Metacognition, or cognitive strategies, refers to techniques used to guide and monitor

thinking. Metacognition guides the knowledge of one's own thought processes and the

regulation of theses processes during problem solving. Students can learn more

effectively when they are aware of their own thinking processes and develop the ability to

monitor their understanding of the tasks they perform. Realizing there is a need to assess,

and perhaps modify, the problem solving strategy requires that students develop effective

skills for monitoring and evaluating their thinking and feedback on their progress.

Internal feedback is an important indicator of the progress of the problem solving process

and is triggered as a result of the problem solver's own comprehension of what has been,

279

is being, and remains to be done. External feedback, such as that from an instructional

environment for problem solving, can heighten student's awareness and develop

metacognitive skills for monitoring and evaluating their own thinking strategies through

the problem solving process.

The following research questions suggest themselves regarding monitoring of the

problem solving process:

1.1 Will students in the experimental group demonstrate more monitoring of their

thinking processes compared to students in the control group?

1.2 Will students in the experimental group demonstrate better abilities to evaluate

their understanding of the tasks they perform, compared to students in the

control group.

8.3.1.4 Cognitive Strategies: Creative Thinking

The strategy a student uses to arrive at a solution and the solution itself are the product of

creative thinking, a cognitive activity the research literature generally defines as the

production of novel and useful solutions to a problem (Gouger, 1995). Creative thinking

is related to factors such as fluency and originality (Guilford, 1967; Mayer, 1988), where

fluency is defined as the ability to form multiple solutions satisfying the requirements of a

problem, and originality is defined as the ability to generate unusual solutions.

The following research questions suggest themselves regarding creative thinking:

1.1 Will students in the experimental group exhibit more fluency in problem solving

as demonstrated by their ability to form multiple solutions satisfying the

requirements of a problem, compared to students in the control group?

280

1.2 Will students in the experimental group exhibit more originality in problem

solving as demonstrated by an ability to generate unusual solutions, compared to

the control group?

8.4 Summary of Contributions

This dissertation has proposed a framework for an integrated problem solving and

program development environment that addresses the needs of students learning

programming. Several objectives have been accomplished by this research:

• The tasks required for program development were defined. These are: developing the

skills for composing and comprehending programs, testing and debugging solutions,

and documenting and modifying programs. Essential problem solving skills such as

understanding the problem and its requirements and devising a solution, as well as a

practical command of programming language constructs are also required before a

program can be written and its solution tested.

• A literature review to determine the actual difficulties involved in learning the tasks

of program development was performed. These difficulties are: deficiencies in

problem solving strategies and tactical knowledge; ineffective pedagogy of

programming instruction, and misconceptions about syntax, semantics, and

pragmatics of language constructs.

• A comprehensive study of environments and tools developed to support the learning

of problem solving and programming was performed. Twenty nine different systems

were studied, described, and classified in four categories: programming environments,

281

debugging aids, intelligent tutoring systems, and intelligent programming

environments.

• A careful analysis and critique of these tools was performed, which uncovered

limitations that have prevented them from accomplishing their goals. These are:

absence of problem solving/software engineering frameworks, overemphasis on

language syntax, inadequate user interface, incomplete rules-and-errors knowledge

base, simple problem domain, limited classroom evaluation, failure to integrate the

tools into the curriculum, impeded creativity and development of higher order

thinking skills.

• An extensive study of problem solving methodologies developed in this century was

carried out and a common model for problem solving was produced. The tasks of

program development were integrated with the common model for problem solving.

Then, the cognitive activities required for problem solving and program development

were identified and integrated to form a Dual Common Model for problem Solving

and Program Development.

• The Dual Common Model was used to define the functional specifications for a

problem solving and program development environment which was designed,

implemented, tested, and integrated into the curriculum.

• The development of the new environment for learning problem solving and program

development was followed by the planning of a cognitively oriented assessment

method and the development of related instruments to evaluate the process and the

products of problem solving. A detailed statistical experiment to study the effect of

this environment on students' problem solving and program development skills,

282

including system testing by protocol analysis, and performance evaluation of students

based on research hypotheses and questions was designed and implemented over two

semesters.

The results of the evaluation suggest that students in the experimental group acquired

a significantly higher-level of competence in both problem solving and program

development skills than the control group. Based on the analysis from the two

semesters, the process hypotheses are found to be supported, the product research

questions are found to be significantly positive and the subjective research questions

appear to be not significantly positive.

APPENDIX 1

SURVEY INSTRUMENTS

CONSENT STATEMENT

Title of Research Project: An Integrated Environment for Problem Solving and
Program Development

Investigator: Fadi P. Deek

I acknowledge that on 	 , I was informed by Fadi P. Deek of New
Jersey Institute of Technology of the research project on an "Integrated Problem
Solving and Program Development Environment". This phase of the project
consists of collecting information on student performance in the introductory
course in computer science.

I was told with respect to my participation in this project that:

1.	 a. Confidentiality of replies will be fully protected.

b. Data on individuals will be used for statistical analysis only.

c. Quotations will not be identifiable unless the participant explicitly gives
permission to quote.

d. No risks to the students are involved.

The following procedures are involved:

a. Distribution of course questionnaires and possible participation in
interviews.

b. Collection of data such as placement records, SAT scores and other
standardized tests, student grades, semester GPA, and transcripts for
analysis.

3.	 The following benefits are expected by my participation:

a. An opportunity to experience alternative learning methods for problem
solving and programming.

b. An opportunity to contribute to the evaluation and possible
enhancement of a Problem Solving and Program Development System
whose goal is to improve the teaching and learning of problem solving and
programming for first-year students.

283

I am fully aware of the nature and extent of my participation in this project, and I
hereby agree, with full knowledge and awareness of all of the foregoing, to
participate in the project. I further acknowledge that I have received a complete
copy of this consent statement.

I also understand that I may withdraw my participation in the project at any time.

Signature of Subject	 Printed Name of Subject

Address of Subject	 City, State, ZipCode

Student ID #	 Telephone Number

284

285

PRE-COURSE QUESTIONNAIRE

The purpose of this questionnaire is to gather information about students in the course. If
you feel that any of these questions invade your privacy, you are of course free to decline
to answer them.

IDENTIFYING INFORMATION

Name: 	 Instructor:

	

last	 first
Local Telephone: 	 TA: 	

Email: 	 Course #: 	 Section #:
Date: 	 /	 /	

BACKGROUND INFORMATION:

1. I am: []

[]

[]

2. Major: 	

an NJIT undergraduate student
a Rutgers (Newark) undergraduate student
a non-matriculated student
a graduate student (in bridge program)
Other (please specify) 	

	

Academic standing: [] 	 Freshman

	

[]	 Sophomore

	

[]	 Junior

	

[]	 Senior

Status: [] Full-time	 taking	 credits
[] Part-time	 taking	 credits

3. Age (at last birthday): 	

4. Is English your native or first language? [] Yes

5.	 (Optional) Ethnic background. Please check one:

African American
Asian or Asian-American
Hispanic
White
Other (please specify) 	

[] No

286

6. Gender:	 [] Male	 [] Female

EXPERIENCE INFORMATION:

7. How frequently have you used computers in the past, for any kind of applications?

[] Never
[] Occasionally
[] Frequently

8. How many programming courses have you taken previously?

[] None
[] One
[] Two or more

[] taken in High school	 [] taken in college

9. What programming languages do you know (either self-taught or learned in
school)?

[BASIC
[Pascal
[C/C++
[Assembly
[LOGO
H 	 Other (please specify) 	

10. How would you describe your programming skills?

[Poor
[Average
[Good
[Excellent
[Not sure

11. How would you describe your problem solving skills?

[Poor
[Average
[Good
[Excellent
[Not sure

287

288

16. What grade do you expect to receive in this course?

[]A	 [] B	 [] C	 [] D 	 [] F

17. When I graduate from college, I probably will have majored in

18.	 I expect to pursue a career as a

THANK YOU !!!

289

290

9. How would you rate this course over-all? (check one).
[] Excellent [] Very good [] Good [] Fair [] Poor

PROBLEM SOLVING AND PROGRAMMING

Please respond to each of the following statements by circling the number (from 1-5) that
best indicates your agreement or disagreement with each statement.

Never 	 Hardly 	 Sometimes 	 Most of the
ever 	 time

1 	 2 	3 	4-

1. Before I start solving a problem, I think about what I should know or understand.
1 	 2 	3 	4 	

2. Before I start solving a problem, I think about what I already know about the problem's
topic.

1 	 2 	 3 	 4 	 5

3. Before I start solving a problem, I think about whether I have seen this problem before,
or one like it.

1 	 2	 3 	 4 	 5

4. Before I start solving a problem, I talk about it to myself, or other people in my class.
1 	 2 	 3 	 4 	 5

5. Before I start solving a problem, I verify my understanding of the question before I go
on.

1 	 2 	 3 	 4 	 5

6. Before I start solving a problem, I try to find all the information I need to solve the
problem.

1 	 2 	 3 	 4 	 5

7. When preparing to solve a problem, I draw sketches or graphs.
1 	 2 	 3 	 4 	 5

8. When preparing to solve a problem, I organize the information, gathered from the
problem statement, by their relevant categories.

1 	 2 	 3 	 4 	 5

9. When preparing to solve a problem, I think about different ways to find the solution.
1 	 2 	 3 	 4 	 5

Always

5

5

291

10. When preparing to solve a problem, I think about what tasks I should do first, second,
third, ...?

1 	 2 	 3 	 4 	 5

11. When preparing to solve a problem, I break the problem into parts.
1 	 2	 3	 4	 5

12. When solving a problem, I consider different approaches.
1 	2 	3 	 4 	 5

13. When solving a problem, I organize and order the tasks that need to be done.
1 	 2 	 3 	 4	 5

14. When solving a problem, I check to make sure that I understand the problem.
1 	2 	3 	 4 	 5

15. When solving a problem, I periodically check to make sure I am on the right path to a
solution.

1 	 2 	 3 	 4 	 5

16. After solving a problem, I try to verify my solution.
1 	2	 3	 4 	 5

17. After solving a problem, I check to make sure that I responded to everything that was
asked.

1 	 2 	3 	4 	 5

18. After solving a problem, I think about what I have learned that will improve my
problem solving skills.

1 	 2 	 3 	 4 	 5

19. I have the skills needed to solve problems in this course.
1 	 2	 3 	 4	 5

20. By taking my time to think about the problem before I write the program, I am able to
develop better solutions.

1 	 2 	 3 	 4 	 5

21. I know where to begin working on a problem.
1 	 2 	 3 	 4 	 5

22. My analysis and design of solutions is systematic.
1 	 2 	 3 4 	 5

23. I am satisfied with the quality of my solutions.
1 	 2 	 3 	 4 	 5

292

293

13. I frequently discuss issues related to problem solving and programming with other
students outside of class.

1 	 2 	 3 	 4 	 5

Strongly 	 Disagree 	 Undecided 	 Agree 	 Strongly
Disagree 	 Agree

1 	2 	3 	 4 	 5

14. Solving the problems was a good learning experience.
1 	 2 	 3 	 4 	 5

15. I always completed the assignments on time.
1 	 2 	 3 	 4 	 5

16.1 thought the quizzes and exams were difficult.
1 	 2 	 3 	 4 	 5

17. I increased my confidence with computers.
1 	 2 	 3	 4 	5

18. This class was a good learning experience.
1 	 2 	 3 	4	 5

19. It is hard to do well in a problem solving and programming course.
1 	 2 	 3 	 4 	 5

20. Once I master problem solving and programming, I will do better in my computer
science, math, and science courses.

1 	 2 	 3 	 4 	 5

21. I need to learn problem solving and programming well so that I can become a good
computer scientist.

1 	 2 	 3 	 ---4 	 5

22. My hard work in this course paid off. I expect to get a good grade.
1 	 2 	 3 	 4 	 5

23. It is important for me to learn programming.
1 	 2 	 3 	 4 	 5

24. I feel frustrated when solving problems and writing programs.
1 	 2 	 3 	 4 	 5

25. If I cannot find the answer immediately I give up.
1 	 2 	 3 	 4 	 5

294

295

[10 or more hours

3. Average number of hours per week that studied for all of your other courses this
semester (use a similar scale as above)?

4. How many credits including this course did you complete this semester? 	 (insert
number)

5. What grade do you expect to receive in this course?

[] A	 []B	 [] C	 []D	 []F

6. What is your major? 	

THANK YOU V.!

APPENDIX 2

COURSE SYLLABUS AND RELATED MATERIAL

CIS 113 INTRODUCTION TO COMPUTER SCIENCE I
COURSE SYLLABUS

Fadi P. Deek
Computer and Information Science Department
Room 4406 GITC, phone number: 596-2997
e-mail: deek@cis.njit.edu
http ://www . cis . nj it. edu/—fadi

1. Course Description

Fundamentals of Computer Science are introduced, with emphasis on
programming methodology and problem solving. Topics include basic concepts of
computer systems, software engineering, algorithm design, programming languages, and
data abstraction, with applications. A high level language (C++) is fully discussed and
serves as the vehicle to illustrate the concepts in the course.

This class meets twice a week: for a lecture (three 40-minutes periods) given by
myself, and a recitation/laboratory session (two 40-minutes periods) given by a Teaching
Assistant (TA). Please consult my Web Page (URL given above) for my office hours and
other important information.

Your TA is Edward Maybert. His office is located in room 2505 GITC (phone
number: 642-4883, e-mail: exm7575@megahertz.njit.edu).

Your TA's office hours:
Thursday	 9:15 - 9:55 a.m.	 (Room 2505 GITC)

4:00 - 5:55 p.m. 	 (Room 2505 GITC)

If these hours conflict with your schedule, you may talk to me and your TA after
the class session or request an appointment through the department's secretary or by
sending an e-mail request to me and/or to the TA.

2. Class Notes

Class notes are on reserve in the NJIT library and my be borrowed to review or
copy. An electronic version can be found in my Web Page. You may download class
notes to your local disk.

296

297

3. Course Requirements

5 programming assignments	 25%
Midterm examination (date to be announced in class) 	 25%
Final Examination (date to be announced in class and in the VECTOR)	 30%
5 Quizzes	 10%
Class participation	 10%

4. Tutoring

There is plenty of help available in this class. Your instructor and TA will answer
questions related to topics covered in class, programming assignments, or any other
related questions. Additionally, structured tutoring programs for students who request it
or need it is also available.

The CIS department runs a tutorial center located in room 4308 GITC. Tutors
will help students with troublesome program problems.

The University Learning Center located in University Hall also runs a
comprehensive CIS tutorial program coordinated by me. Tutors at the center will assist
the students in course and homework related problems and provide them with tutorial
sessions.

5. Academic Integrity

The work you do and submit is expected to be the result of your effort ONLY.
You may discuss the high level (general) solution of a problem. However, cooperation
should not result in one or more students having possession of a copy of all or part of a
program written by another student. The penalty for violating the university's code may
include failure in the course and probation.

6. Lecture Outline and Textbook Readings

Topic 1	 The Machine: Hardware and Software
Text 1:	 Ch. 1
Text 2:	 Ch. 0, Sec. 1.1-1.4, 2.1-2.4, 3.1-3.3

Topic 2	 Introduction to Problem Solving and Programming
Text 1:	 Ch. 2 and Ch. 3
Text 2:	 Sec. 4.1-4.3, 5.1

Topic 3	 Modular Design and Abstraction
Text 1:	 Sec. 4.1 and 4.2
Text 2:	 Sec. 5.3, 5.4

Topic 4	 Control Structures: Sequential, Selective, and Repetitive
Text 1:	 Sec. 5.1-5.4 and Sec. 6.3
Text 2:	 Sec. 4.4, 5.2

Topic 5 	 More on Modular Design: Module Communications
Text 1:	 Sec. 4.3-4.5

298

299

CIS 113 INTRODUCTION TO COMPUTER SCIENCE I
PROBLEM SOLVING AND PROG M DEVELOPMENT

DOCUMENTATION RULES

All assignments should be submitted in a format consistent with the problems
presented and solved in the class lecture and recitation sessions. The following sections
must be included in all of your programs:

0. The program should start with a paragraph of comments. This paragraph should
always include:
a) The name and number of the assignment.
b) The student name, course/section and ID #.
c)	 The instructor name and TA name.

	

1.	 Problem Formulation
a) Describe the problem being solved in a few sentences.
b) Identify the goal, givens, and unknowns.
c)	 Other information as necessary.

	

2.	 Planning
a) Describe the strategy you will use to solve the problem.
b) Define data requirements:

Input (describe the data that will be entered and processed by the
program).
Output (describe the expected output).
Intermediate data.

c) Refine goals into subgoals and identify tasks to be performed.
d) Provide explanations of all formulae used.

	

3.	 Design
a) Structure and data flow charts.
b) Module specifications
b)	 Algorithms.

	

4.	 Translation
a)	 The problem solution is translated into C++ code.

	

5.	 Testing
a)	 Provide comprehensive test run showing both input and output.

Naming of objects and functions should be meaningful. Declarations of objects
that are logically related should be grouped together. All definition and declaration
statements should be fully commented. Modules are to be documented in a similar way
like the main program. Describe exactly what each function does, the input to the
function, the logic, and the output produced. Define the type and role of each parameter

300

in a separate comment block at the top of each module. All input data must be checked
for validity, when appropriate.

Sixty percent of the program grade is given for the problem solving stages and
forty percent is for the program development stages. Submit all work. Points will be
deducted for non-conforming programs.

Assignments should be submitted during recitations only. Late programs will be
penalized and must be submitted to the TAs or instructor in-person. The penalty is as
follows: the total grade that the assignment is marked out of 100% will be reduced by
100% for each day that it is late. For example, after one day the assignment will be
marked out of 90%.

APPENDIX 3

SAMPLE ASSIGNMENTS, QUIZZES AND EXAMS

2/10/97
CIS 113 INTRODUCTION TO COMPUTER SCIENCE I

Programming Assignment # 2

NAME:	 SID:

Develop a solution for the following problem. Clearly document each stage of your
problem solving and program development process as per class lecture and the handout
on Assignment Rules.

Problem:

Hand-held calculator

Write a program to simulate a hand-held electronic calculator. (In other words, write a
program that will cause your computer to behave as though it were a hand-held
calculator). Your program should execute as follows.

Step 1: Display a prompt and wait for the user to enter an instruction code (a single
character):

,+, for addition
for subtraction

4*, 	 for multiplication
for division

c p , for power (exponentiation)
s'	 for square root

4 q , for quit

Step 2 (if needed): Display a prompt and wait for the user to enter a type float number
(which we will call the left-operand).
Step 3 (if needed): Display a prompt and wait for the user to enter a type float number
(which we will call the right-operand).
Step 4: Display the accumulated result at any point during processing and repeat steps 1
through 3 (unless, of course, the instruction code 'q' was entered).

Use a separate module to prompt the user for the instruction code and to ensure that a
valid code was entered. Also use a separate module for the entry of the left-operand and

301

302

the right-operand. Finally, use another module to perform the indicated operation (unless
`q' was entered). All output from the program should be displayed to the screen. As a
result of testing phase, you are to submit a printout of the screen output.

Note: The implementation of the solution to this problem requires the use of sequential,
selective and repetitive control structures.

Due date: Recitation period of the week of Feb. 17. Submit a disk copy and related
documentation.

303

2/17/97
CIS 113 INTRODUCTION TO COMPUTER SCIENCE I

Quiz # 3

NAME:	 SID:

In this problem, you are asked to implement a module for the following task. Pay
particular attention to your choice of parameters, such as how many? what type? No
input or output should be done inside the module unless you are specifically asked to do
so.

Problem

Some programming languages do not provide the exponentiation operator (sometimes
indicated by **). However, for positive integer exponents, we can do exponentiation by
repeated multiplication (using the * operator). Thus, 2 3 = 2 X 2 X 2 or 8; 5 5 = 5 X 5 X 5
X 5 X 5 or 3125; and so on. Implement a module that receives x and n and returns the
value off where the value of x is real and that of n is an integer greater than or equal to
zero.

The main module should only include (1) the prototype, (2) the function call statement,
and (3) the output statement.

Name:
Id#

Student

Section: TA

CIS 113 INTRODUCTION TO COMPUTER SCIENCE I
FINAL EXAMINATION May 12, 1997

304

1. Be sure your test has:
a. 10 pagefaces (including this one and 3 blank pages)
b. 4 questions in Section I,

1 question in Section II, and
2 questions in Section III.

2. Remove the last (blank) page and use it for scratch work.
3. Do not begin until instructed to do so.
4. Do not sit next to anyone with whom you have studied.
5. Be sure your student ID number is on this page.
6. Use your time efficiently.

Section I: Short Answer, Programming Concepts

[40 Points Total]

1.1:	 [10 Points]
1.2:	 [10 Points]
1.3:	 [10 Points]
1.4:	 [10 Points]

Section II: Problem Solving and Program Development Skills

[40 Points Total]

2:	 [40 Points]

Section III: Overview - Computer Science Concepts

[20 Points Total]

3.1:
3.2:

[10 Points]
[10 Points]

Total

305

Section I: Short Answer, Programming Concepts
[40 Points Total]

An important note. Please READ IT!!!

In this section, you are asked to implement a module for each of the following tasks. Pay
particular attention to your choice of control structures, data structures, and parameters,
such as how many? what type? and whether they are passed by copy (value), reference
(variable), or returned by function result. No input or output should be done inside the
module unless you are specifically asked to do so.

1.1	 [10 Points] Implement a module that receives an N-element array of characters
and the actual size of the array (i.e. how many valid elements are passed in the array),
returns the number of capital letters within the array. The result should consist only of
the number of the capital letters.

Do not use any library function calls pertaining to capital letter determination. You must
code the entire solution yourself.

PS. In order to simplify your code you need to only check for the letters "A to F"
inclusive.

306

1.2 [10 Points] One of the popular sorting methods is the bubble sort. It differs from
the selection sort in that, instead of finding the element with the smallest value (for
ascending order) and then performing an interchange, two elements are interchanged
immediately upon discovering that they are out of order.

With this approach, at most N - 1 passes are required. During the first pass, LIST [0] and
LIST [1] are compared, and if they are out of order they are interchanged; this process is
repeated for elements LIST [1] and LIST [2], LIST [2] and LIST [3], and so on. This
method will cause elements with the small values to "bubble up." After the first pass, the
element with the largest value will be in the Nth position. On each successive pass, the
elements with the next largest value will be placed in the position N - 1, N - 2, ..., 3, 2,
respectively.

After each pass through the array, a check can be made to determine whether or not any
interchanges were made during the pass. If no interchanges have occurred during the last
pass, then the array must be sorted and, consequently, no further passes are required.

Your task is to use the description above to develop a module for this sorting algorithm
that receives an unordered N-element array of whole numbers and the actual size of the
list (i.e. how many elements in the list), returns the list in ascending order.

307

1.3	 [10 Points] Develop a module that accepts 2 numbers and an arithmetic operator
(+, /, *) from the user. This input module returns the entered values to the calling
module. The following module specifications must be used:

Get_Data: Get two numbers and an operator from user and return
those values.

Input: numl, num2 - float values representing the numbers
the user wants to perform operation on.
Operation - char value representing operation(+,-,*,0

Output: Return numl, num2, operation
Logic: Read Input from keyboard, Error check those values

and return values.

This module (Get_Data) uses a pre-defined function to check for validity of input. The
prototype for this pre-defined module is as follows:

int ErrorCheck(float, float, char);

This function returns a -1 on an input error, a 0 otherwise. You are to use this function in
your module to error check the user entered data and have the user re-enter the data if it
contains an error.

308

1.4	 [10 Points] Develop a module that receives and traverses a linked list of real
numbers and returns the sum and average of all the numbers on the list. A single
element of the list is defined by:

typedef CellType *CellPointer;
struct CellType

{

float number;
CellPointer next;
};

Also assume the following pointer variable declarations:

CellPointer head, // external pointer to the list
current;	 // moving pointer

Remember that the last element's next field of the list contains NULL.

309

Section II: Problem Solving and Program Development Skills
[40 Points Total]

2. PROBLEM:

EARLY WARNING SYSTEM

Performance of freshmen students in CIS 113 is monitored in the first five weeks of the
semester, and those students who are in danger of failing the class or receiving a low
grade are sent a warning notice. The average of three quiz grades and two assignments
are used to determine this feedback. They all are, quizzes and assignments, of equal
weights (100 points each).

You are asked to design and implement a complete program that will calculate each
student average, and then print out the student ID number, the average and a possible
warning. Student's average grade is considered a passing one if it is a 60 point or higher.
If the student's average grade is passing but with less than a 70 average, then the student's
final grade may be in danger. The program should indicate that the student performance
is marginal.

To store and process the data, create a list structure, where each component in the list
can hold a student's ID number , assignment grades as well as quiz grades. Next, get in
all students data (from the keyboard). Lastly, process each student as detailed above.

Your program must be modular, and communication should take place through
parameters. Input, output, and error checking routines are be done in separate modules.
Calculations should also take place within separate modules.

Show all work performed throughout the stages of the problem solving and program
development process.

310

Section III: Overview - Computer Science Concepts
[20 Points Total]

	

3.1 	 [10 Points] When faced with a situation requiring the use of a repetition control
structure, you may choose one of three constructs: the while, the do-while, and the for.

a) Summarize the distinctions among them.

b) Under which circumstances would you use any of them? Be specific.

	

3.2	 [10 Points]
a) What is the difference between coupling and cohesion?

b) Which should be minimized and which should be maximized? and why?

REFERENCES

1. ACM Curriculum Committee on Computer Science, Curriculum 68:
Recommendations for the Undergraduate Program in Computer Science,
Communications of the ACM, 11 (3), pp. 151-197, March 1968.

2. ACM Curriculum Committee on Computer Science, Curriculum 78:
Recommendations for the Undergraduate Program in Computer Science,
Communications of the ACM, 22 (3), pp. 147-166, March 1979.

3. ACM/IEEE-CS Computing Curricula 1991, Report of the Joint Curriculum task
force, ACM Press and IEEE Computer Society Press, New York, Feb. 1991.

4. Adam, A., and J.P. Laurent. "LAURA: A system to debug student programs",
Artificial Intelligence, 15, pp. 75-122, 1980.

5. Anderson, J.R., The Architecture of Cognition, Cambridge, Massachusetts: Harvard
University Press, 1983.

6. Anderson, J.R., and B. Reiser, "The LISP tutor", Byte, vol. 10 (4), pp. 159-175,
1985.

7. Anderson, J.R. (Ed.), Rules of the Mind, Hillsdale, New Jersey: Lawrence Erlbaum,
1993.

8. Anderson, J.R., A.T. Corbett, K.R. Koedinger, and R. Pelletier, "Cognitive tutors:
lessons learned", The Journal of the Learning Sciences, 4 (2), pp. 167-207, 1995.

9. Anjaneyulu, K.S.R., "Bug analysis of Pascal programs", ACM SIGPLAN Notices,
29 (4), pp. 15-22, April 1994.

10. Barr, A., M. Beard and R.C. Atkinson, "A rationale and description of a CAI
program to teach the BASIC programming language", Instructional Science, 4, pp.
1-31, 1975.

11. Barr, A., M. Beard and R.C. Atkinson, "The computer as a tutorial laboratory: the
Stanford BIP project", International Journal of Man-Machine Studies, vol. 8, pp.
567-596, 1976.

12. Benbasat, I., and R.N. Taylor, "Behavioral aspects of information processing for the
design of management information systems", IEEE Transactions on Systems, Man,
and Cybernetics, vol. SMC-12 (4), July/August 1982.

311

312

13. Bereiter, C., and M. Scardamalia, "Cognitive coping strategies and the problem of
inert knowledge", in S.S. Chipman, J.W. Segal, and R. Glaser (Eds.), Thinking and
Learning Skills, Current Research and Open Questions, 2, pp. 65-80, Hillsdale, New
Jersey: Lawrence Erlbaum, 1985.

14. Bertels, K., "A dynamic view on cognitive student modeling in computer
programming", Journal of Artificial Intelligence in Education", 5 (1), pp. 85-105,
1994.

15. Bloom, B.S., (Ed.), Taxonomy of Educational Objectives, Handbook I: Cognitive
Domain, New York, New York: McKay, 1956.

16. Bloom, B.S., "The 2 sigma problem: the search for methods of group instruction as
effective as one-to-one tutoring", Educational Researcher, 13, page 3, June 1984.

17. Blum, B.I., "The life cycle-a debate over alternative models", ACM Software
Engineering Notes, 7, pp. 18-20, October 1982.

18. Boehm, B.W., "Software engineering", IEEE Transactions on Computers, C-25, pp.
1226-1241, 1976.

19. Boehm, B.W., "A spiral model of software development and enhancement", IEEE
Computer, 21 (5), pp. 61-72, 1988.

20. Bonar, J., and R. Cunningham, "Bridge: An intelligent tutor for thinking about
programming", in J. Self (Ed.), Artificial Intelligence and Human Learning,
Intelligent Computer Aided Instruction, pp. 391-409, London: Chapman and Hall,
1988.

21. Booch, G., Object Oriented Design with Applications, Redwood City, California:
B enj amin/Cummings, 1991.

22. Brown, J.S., R.R Burgon and A. Bell, An Intelligent CAI System that Reasons and
Understands, Cambridge, Massachusetts: Bolt Beranek and Newman, 1974.

23. Brusilovsky, P.L., "Turingal - The language for teaching the principles of
programming", Proceedings of Third European Logo Conference, pp. 423-432,
Parma, Italy, August 1991.

24. Brusilovsky, P.L., "Intelligent tutor, environment and manual for introductory
programming", Educational and Training Technology International, 29 (1), pp. 26-
34, 1992.

313

25. Brusilovsky, P.L., "Towards an intelligent environment for learning introductory
programming", in E. Lemut, B. du Boulay, G. Dettori (Eds.), Cognitive Models and
Intelligent environments for Learning programming, pp. 114-124, Berlin: Springer-
Verlag, 1993.

26. Butler, D., and P. Winne, "Feedback and self-regulated learning: A theoretical
synthesis", Review of Educational Research, 65 (3), pp. 245-281, 1995.

27. Calloni, B., and D. Bagert, "ICONIC programming in BACCII Vs textual
programming: which is a better environment", in Proceedings of 25th SIGCSE
Technical Symposium, ACM CSE Bulletin, 26 (1), pp. 188-192, 1994.

28. Carbonell, J.R., "AI in CAI: An artificial approach to computer-aided instruction",
IEEE Transactions on Man-Machine Systems, MMS-11, pp. 190-202, 1970.

29. Carroll, J.M., and J.0 Thomas, "Metaphor and the cognitive representation of
computing systems", IEEE Transactions on Systems, man, and Cybernetics, SMC-
12, (2), March/April 1982.

30. Charles, R., F. Lester, and P. O'Daffer, How to Evaluate Progress in Problem
Solving, Reston, Virginia: National Council of Teachers of Mathematics, 1987.

31. Chestnut, H., Systems Engineering Methods, New York: Wiley, 1967.

32. Chi, M.T.H., R. Glaser, and E. Rees, "Expertise in problem solving", in R.J.
Sternberg (Ed.), Advances in the Psychology of Human Intelligence, pp. 7-75,
Hillsdale, New Jersey: Lawrence Erlbaum, 1982.

33. Clements, D.H., and S. Merriman, "Componential developments in LOGO
programming environments", in R.E. Mayer (Ed.), Teaching and Learning
Computer Programming, pp. 13-54, Hillsdale, New Jersey: Lawrence Erlbaum,
1988.

34. Corbett, A.T., and J.R. Anderson, "Student modeling in an intelligent programming
tutor", in E. Lemut, B. du Boulay, G. Dettori (Eds.), Cognitive Models and
Intelligent Environments for Learning programming, pp. 135-144, Berlin: Springer-
Verlag, 1993.

35. Couger, J.D., Creative Problem Solving and Opportunity Finding, Danvers,
Massachusetts: Boyd and Fraser, 1995.

36. Deek, F.P., and H. Kimmel, "Changing the students' role from passive listeners to
active participants", in IEEE Proceedings of 23rd Frontiers in Education
Conference, Washington, DC, pp. 321-325, 1993.

314

37. Deek, F.P., and H. Kimmel, "Enhancing the delivery of computer science
instruction for first year engineering curriculum", in Proceedings of Fourth
Conference on Engineering Education, Saint Paul, pp. 121-124, October 1995.

38. Denning, P., D. Corner, D. Gries, M. Mulder, A. Tucker, A. Turner, and P. Young,
Report of the ACM Task Force on the Core of Computer Science, New York: ACM
Press, 1989.

39. Descartes, R., Discourse on the Method of Rightly Conducting the Reason to Seek
the Truth in the Sciences, 1637, tr. L.J. Lafleur, New York: Bobbs-Merrill, 1956.

40. Dewey, J., How We Think, Boston, Massachusetts: Heath, 1910.

41. Derry, Si., and D.A. Murphy, "Designing systems that train learning ability: From
theory to practice", Review of Educational Research, 56 (1), pp. 1-39, 1986.

42. Dijkstra, E., A Discipline of Programming. Englewood Cliffs, New Jersey: Prentice
Hall, 1976.

43. Duncker, K., On Problem Solving, Psychological Monographs, 58 (5), Whole no.
270, 1945.

44. du Boulay, B., T. O'Shea, and J. Monk, "The black box inside the glass box:
Presenting computing concepts to novices, International Journal of Man-Machine
Studies, 14 (3), pp. 237-249, 1981.

45. Earnst, G.W., and A. Newell, GPS: A Case Study in Generality and Problem
Solving. New York: Academic Press, 1969.

46. Ebrahimi, A., "Novice programmer error: language constructs and plan
composition" International Journal of Human-Computer Studies, 41, pp. 457-480,
1994.

47. Eden, C., "Cognitive mapping", European Journal of Operational Research, 36, pp.
1-13, 1988.

48. Eisenstadt, M., B.A. Price, and J. Domingue, "Redressing ITS fallacies via software
visualization", in E. Lemut, B. du Boulay, G. Dettori (Eds.), Cognitive Models and
Intelligent Environments for Learning Programming, pp. 220-234, Berlin: Springer-
Verlag, 1993.

49. Ennis, D., "Combining problem solving and programming instruction to increase the
problem solving abilities in high school students", Journal of Research on
Computing in Education, 26 (4), pp. 488-496, 1994.

31 5

50. Espinasse, B., "A cognitivist model for decision support: COGITA project, a
problem formulation assistant", Decision Support Systems, 12, pp. 277-286, 1994.

51. Etter, D.M., "Engineering Problem Solving with ANSI C: Fundamental Concepts",
Englewood Cliffs, New Jersey: Prentice Hall, 1995.

52. Fowler, F.J., Survey Research Methods, Newbury Park: California: Sage, 1993.

53. Forcheri, P., and M.T. Molfino, "Software tools for the learning of programming: A
proposal", Computers Education, 23 (4), pp. 269-276, 1994.

54. Frechtling, J., (Ed.), User-Friendly Handbook for Project Evaluation: Science,
Mathematics, Engineering and Technology Education, Arlington, Virginia: National
Science Foundation, 1992.

55. Gagne, R.M., The Conditions of Learning, Fourth edition, New York: Holt,
Rinehart and Winston, 1985.

56. Gagne, R.M., and M.P. Driscoll, Essentials of Learning for Instruction, Englewood
Cliffs, New Jersey: Prentice Hall, 1988.

57. Gallopoulos, E., "Workshop on problem-solving environments: Findings and
recommendations", ACM Computing Surveys, 27 (2), pp. 277-279, June 1995.

58. Gentner, D., and R. Landers, "Analogical reminding: a good match is hard to find",
in Proceedings of International Conference on Systems, Man and Cybernetics,
Tucson, Arizona, pp. 607-613, 1985.

59. Glinert, E., and S. Tanimoto, "Pict: an interactive graphical programming
environment", IEEE Computer, 17 (11), pp. 7-25, 1984.

60. Grabel, D., (Ed.), Problem Solving: What Research Says to the Science Teacher,
vol. 5, Washington, DC: National Science Teachers Association, 1989.

61. Grabiner, J., "Descartes and problem-solving", Mathematics Magazine, 68 (2), pp.
83-97, April 1995.

62. Graham, N., Introduction to Computer Science, St. Paul, Minnesota: West
Publishing, 1985.

63. Greeno, J.G., "Natures of problem-solving abilities", in W.K. Estes (Ed.), Handbook
of Learning and Cognitive Processes, 5, pp. 239-270, Hillsdale, New Jersey:
Lawrence Erlbaum, 1978.

316

64. Greeno, J.G., A.M. Collins, and L.B. Resnick, "Cognition and learning", in D.C.
Berliner and R.C. Calfee (Eds.), Handbook of Educational Psychology, pp. 15-45,
Simon & Schuster Macmillan, 1996.

65. Gronlund, N.E, Measurement and Evaluation in Teaching, fifth edition, New York,
New York: Macmillan Publishing Company, 1985.

66. Guimaraes, M., C. de Lucena, and M. Cavalcanti, "Experience using the ASA
algorithm teaching system", ACM SIGCSE Bulletin, 26 (4), pp. 45-50, December
1994.

67. Hadamard, J., The Psychology of Invention in the Mathematical Field, Princeton,
New Jersey: Princeton University Press, 1945.

68. Haga, H., and H. Kojima, "On the multimedia computer aided instruction system
with an exercise facility for novice programmers", in B.Z. Barta, J. Eccleston, and
R. Hambusch (Eds.), Computer Mediated Education of Information Technology
Professionals and Advanced End-Users (A-35), pp. 155-163, Amsterdam: Elsevier
Science North-Holland, 1993.

69. Halloun, I.A., and D. Hestenes, "Common sense concepts about motion", American
Journal of Physics, 53, page 1056, 1987.

70. Hartman, H., Intelligent Tutoring, preliminary edition, Clearwater, Florida: H&H
Publishing Company, 1996.

71. Hayes, J.R., "Teaching problem solving mechanism", in D.T. Tuma and F. Reif
(Eds.), Problem Solving and Education: Issues in Taching and Research, pp. 141-
147, Hillsdale, New Jersey: Lawrence Erlbaum, 1980.

72. Hayes, J.R., and H.A. Simon, "Understanding complex task instruction" in D. Klahr
(Ed.), Cognition and Instruction, Hillsdale, New Jersey: Lawrence Erlbaum, 1976.

73. Henry, R.R., K.M. Whaley, and B. Forstall, "The University of Washington
illustrating compiler", in Proceeding of ACM SIGPLAN on Programming Language
Design and Implementation, White Plains, New York, pp. 223-233, June 1990.

74. Herman, J.L., L.L. .Morris, and C.T. Fitz-Gibbon, Evaluators Handbook, Newbury
Park, CA: Sage, 1987.

75. Hesselberth, J., "Problem-solving in research and development", International
Journal of Technology Management, 9 (2), pp. 253-260, 1994.

317

76. Hohmann, L., M. Guzdial, and E. Soloway, "SODA: A computer-aided design
environment for the doing and learning of software Design", in Proceedings of
Computer Assisted Learning 4th International Conference, Nova Scotia, Canada, pp.
307-319, June 1992.

77. Huff, A.S., (Ed.), Mapping Strategic Thought, Chichester, United Kingdom: Wiley,
1990.

78. Hoc, J. -M., and A. Nguyen-Xuan, "Language semantics, mental models, and
analogy", in J.-M. Hoc, T.R.G Green, R. Samurcay, and D.J. Gilmore (Eds.),
Psychology of Programming, London: Academic Press, 1990.

79. Hoc, J.-M., T.R.G. Green, R. Samurcay, and D.J. Gilmore (Eds.), Psychology of
Programming, London: Academic Press, 1990.

80. Isoda, S., T. Shimomura, and Y. Ono, VIPS: a visual debugger, IEEE Software, 4
(2), pp. 8-19, 1987.

81. Johnson, D.M., The Psychology of Thought and Judgment, New York, New York:
Harper, 1955.

82. Johnson, W.L., "Understanding and debugging novice programs", Artificial
Intelligence, 42, pp. 51-97, 1990.

83. Johnson, W.L., and E. Soloway, "PROUST", Byte, 10 (4), pp. 179-190, 1985.

84. Johnson, W.L., and E. Soloway, "PROUST: Knowledge-based program
understanding", Transactions on Software Engineering, SE-11 (3), pp. 267-275,
March 1985.

85. Kingsley, H.L., and R. Garry, The Nature and Conditions of Learning, Englewood
Cliffs, New Jersey: Prentice Hall, 1957.

86. Kohne, A., and G. Weber, "STRUEDI: A LISP-structure editor for novice
programmers", in Proceedings of Second IFIP Conference on Human-Computer
Inteaction, Sttutgart, Germany, pp. 125-129, 1987.

87. Lachman, R., J.L. Lachman, and E.C. Butterfield, Cognitive Psychology and
Information Processing: An Introduction, Hillsdale, New Jersey: Lawrence
Erlbaum, 1979.

88. Laubsch, J., and M. Eisenstadt, "Domain specific debugging aids for novice
programmers", in Proceedings of Seventh International Joint Conference on
Artificial Intelligence, Vancouver, Canada, pp. 964-969, August 1981.

318

89. Lauer, T.W., E. Peacock and A.C. Graesser (Eds.) Questions and Information
Systems, Hillsdale, New Jersey: Lawrence Erlbaum, 1992.

90. Lemut, E., B. du Boulay, G. Dettori, (Eds.), Cognitive Models and Intelligent
environments for Learning programming, Berlin: Springer-Verlag, 1993.

91. Levy, S.P., "Computer language usage in CS1: survey result", ACM SIGCSE
Bulletin, 27 (3), pp. 21-26, September 1995.

92. Linn, M.C., and J. Dalbey, "Cognitive consequences of programming instruction:
instruction, access, and ability", Educational Psychologist, vol. 20, pp. 191-206,
1985.

93. Lippert, R.C., "Expert systems: Tutors, tools, and tutees", Journal of Computer-
Based Instruction, 16, pp. 11-19, 1989.

94. Love, A.J., (Ed.), Evaluation Methods Sourcebook, Ottawa, Canada: Canadian
Evaluation Society, 1991.

95. Lyles, M.A., and I.I. Mitroff, "Organizational problem formulation: An empirical
study", Administrative Science Quarterly, 25, pp. 102-119, 1980.

96. Mager, R.F., Developing Attitude Toward Learning, Belmont, CA: Fearon, 1968.

97. Marco, R.E., and M.M. Colina, "Programming languages and dynamic instructional
tools: Addressing students' knowledge base", in S. Dijkstra, H.P.M. Krammer,
J.J.G. van Merrienboer (Eds.), Instructional Models in Computer-Based Learning
Environments. pp. 445-457, Berlin: Springer-Verlag, 1992.

98. Mayer, R.E, "The psychology of how novices learn computer programming", ACM
Computing Surveys, 3 (1), pp. 121-141, March 1981.

99. Mayer, R.E., Thinking, Problem Solving, Cognition, New York: W.H. Freeman and
Company, 1983.

100. Mayer, R.E., "Introduction to research on teaching and learning computer
programming", in R.E. Mayer (Ed.), Teaching and Learning Computer
Programming, pp. 1-12, Hillsdale, New Jersey: Lawrence Erlbaum, 1988.

101. Mayer, R.E., (Ed.), Teaching and Learning Computer Programming, Hillsdale, New
Jersey: Lawrence Erlbaum, 1988.

102. McAllister, H.C., "Common sense problem solving and cognitive research",
University of Hawaii at Manoa, World Wide Web Page, 1995.

319

103. McCalla, G., and K. Murtagh, "GENIUS: An Experiment in ignorance-based
automated program advising", AISB Quarterly, pp. 13-20, Winter, 1990/91.

104. Meier, S.L., "Evaluating Problem Solving Processes", Mathematics Teacher, 85 (8),
pp. 664-666, 1992.

105. Meier, S.L., R.L. Hovde, and R.L. Meier, "Problem solving: Teachers' perception,
content area models, and interdisciplinary connections", Journal of School Science
and Mathematics, 96 (5), pp. 230-237, 1996.

106. Miller, G., "The magical number seven, plus or minus two", Psychological Review,
63 (2), pp. 81-97, 1956.

107. Mimno, P.R., "Survey of CASE tools", in P.A. Ng and R.T. Yeh (Eds.), Modern
Software Engineering, Foundations and Current Perspectives, pp. 323-350, 1990.

108. Mitroff, LI., and M. Turoff, "Technological forecasting and assessment: science
and/or mythology?", Technological Forecasting and Social Change, 5, pp. 113-134,
1973.

109. Moore, G.W., Developing and Evaluating Educational Research, Boston,
Massachusetts: Little, Brown and Company, 1983.

110. Moore, J., and A. Newell, "How can MERLIN understand?", in Knowledge and
Cognition L. Gregg (Ed.), Hillsdale, New Jersey: Lawrence Erlbaum, 1973.

111. Mukherjea, S., and J. Stasko, "Integrating algorithm animation capabilities within a
source-level debugger", ACM Transactions on Computer-Human Interaction, 1 (3)
pp. 215-244, 1994.

112. Myers, BA., R. Chandhok, and A. Sareen, "Automatic data visualization for novice
Pascal programmers", in Proceeding of IEEE Workshop on Visual Languages,
Pittsburg, Pennsylvania, pp. 192-198, October 1988.

113. Navarat, P., and V. Rozinajova, "Making programming knowledge explicit",
Computers Education, 21 (4), pp. 281-299, 1993.

114. Neal, L.R.,"A system for example-based learning", in Proceedings of CHI
Conference on Human Factors in Computing Systems, Boston, Massachusetts, pp.
63-68, May 1989.

115. Newell, A., and H.A. Simon, Human Problem Solving, Englewood Cliffs, New
Jersey: Prentice Hall, 1972.

320

116. Newell, A., "One final word", in D.T. Tuma and F. Reif (Eds.), Problem Solving
and Education: Issues in Taching and Research, pp. 175-189, Hillsdale, New Jersey:
Lawrence Erlbaum, 1980.

117. Ng, P.A., and R.T. Yeh (Eds.), Modern Software Engineering, Foundations and
Current Perspectives, New York: Van Nostrand Reinhold, 1990.

118. Noon, J.P., (Ed.), Teaching CS1: What is the Best Language, Computer Science
Product Companion, 3 (3), 1994.

119. Norman, D.A., "Cognitive engineering and education", in D.T. Tuma and F. Reif
(Eds.), Problem Solving and Education: Issues in Teaching and Research, pp.97-
107. Hillsdale, New Jersey: Lawrence Erlbaum, 1980.

120. Olsen, K.A., "The DSP system: A visual system to support teaching of
programming", in Proceeding of IEEE Workshop on Visual Languages, Pittsburg,
Pennsylvania, pp. 199-206, October 1988.

121. Ormerod, T., "Human cognition and programming, in J.-M. Hoc, T.R.G. Green, R.
Samurcay, and D.J. Gilmore (Eds.), Psychology of Programming, pp. 63-82. San
Diego, CA: Academic Press Inc., 1990.

122. Osborn, A., Applied Imagination, New York: Scribner's Sons, 1953.

123. Page-Jones, M., The Practical Guide to Structured Systems Design, second edition,
New Jersey: Yourdon Press, Prentice Hall, 1988.

124. Papert, S., Mindstorms: Children, Computers and Powerful Ideas, New York: Basic
Books, 1980.

125. Parnes, S.J., Creative Behavior Guidebook, New York: Scribner's Sons, 1967.

126. Pea, R.D., and K. Sheingold, (Eds.), Mirrors of Minds: Patterns of Experience in
Educational Computing, Norwood, New Jersey: Ablex, 1987.

127. Pennington, N., and B. Grabowski, "The tasks of programming", in J.-M. Hoc,
T.R.G Green, R. Samurcay, and D.J. Gilmore (Eds.), Psychology of Programming,
London: Academic Press, 1990.

128. Perkins, D.N., C. Hancock, R. Hobbs, F. Martin, and R. Simmons, "Conditions of
learning in novice programmers", Journal of Educational Computing Research, 2
(1), pp. 37-56, 1986.

129. Perkins D.N., and F. Martin, "Fragile knowledge and neglected strategies in novice
programmers", in E. Soloway and S. Iyengar (Eds.), Empirical Studies of
Programmers, pp. 213-229, Norwood, New Jersey: Ablex, 1986.

321

130. Perkins, D.N., S. Schwartz, and R. Simmons, "Instructional strategies for the
problems of novice programmers", in RE. Mayer (Ed.), Teaching and Learning
Computer Programming, pp. 153-178, Hillsdale, New Jersey: Lawrence Erlbaum,
1988.

131. Piaget, J., Genetic Epistemology, New York: Columbia University Press, 1970.

132. Poincare, H., The Foundations of Science, New York: Science Press, 1913.

133. Polya, G., How to Solve It, Princeton, New Jersey: Princeton University Press,
1945.

134. Polya, G., Mathematical Discovery: On Understanding, Learning and Teaching
problem Solving, New York: Wiley, 1962.

135. Pressman, R., Software Engineering: A Practitioner's Approach, second edition,
New York: McGraw-Hill, 1987.

136. Pylyshyn, Z.W., Computation and Cognition, Cambridge, Massachusetts: MIT
Press, 1984.

137. Ramadhan, H., "An intelligent discovery programming system", in Proceedings of
ACM Symposium on Applied Computing: Special Track on Visuality in
Computing, Kansas City, USA, 1992.

138. Ramadhan, H., "Intelligent vs. unintelligent programming systems for novices", in
IEEE Proceedings of the Sixteen Annual International Computer Software and
Applications, pp. 375-380, Chicago, Illinois, 1992.

139. Ramadhan, H., and B. du Boulay, "Programming environments for novices", in E.
Lemut, B. du Boulay, G. Dettori (Eds.), Cognitive Models and Intelligent
Environments for Learning Programming. pp. 125-134. Berlin: Springer-Verlag,
1993.

140. Reiser, B.J., M. Ranney, M.C. Lovett, and D.Y. Kimberg, "Facilitating students'
reasoning with casual explanations and visual representations, in Proceedings of the
Fourth International Conference on Artificial Intelligence and Education, pp. 228-
235, 1989.

141. Reiss, S.P., "PECAN: Program Development Systems that Support Multiple
Views", IEEE Transactions on Software Engineering, SE-11 (3), pp. 276-285,
March 1985.

142. Resnick, L.B., Education and Learning to Think, Washington, DC: National
Academy Press, 1987.

322

143. Robillard, P.N., "Schematic pseudocode for program constructs and its computer
automation by SCHEMACODE", Communication of the ACM, 29 (11), pp. 1072-
1089, 1986.

144. Rogalski, J., and R. Samurcay, "Acquisition of programming knowledge and skills",
Psychology of Programming, in J.-M. Hoc, T.R.G. Green, R. Samurcay, D. Gilmore
(Eds.), pp. 157-174, London: Academic Press, 1990.

145. Rogalski, J., and R. Samurcay, "Task analysis and cognitive model as a framework
to analyze environments for learning programming", in E. Lemut, B. du Boulay, G.
Dettori (Eds.), Cognitive Models and Intelligent environments for Learning
programming. pp. 6-19, Berlin: Springer-Verlag, 1993.

146. Rokeach, M., Beliefs, Attitudes, and Values, London: Jossey-Bass Publishers, 1972.

147. Rosen, K.H., Discrete Mathematics and its Applications, third edition, New York:
McGraw-Hill, 1995.

148. Rosenthal, R. and R. Rosnow, Essentials of Behavioral Research: Methods and Data
Analysis, second edition, New York: McGraw-Hill, 1991

149. Rubinstein, M., Patterns of Problem Solving, Englewood Cliffs: New Jersey,
Prentice Hall, 1975.

150. Sage, M.P., and J.D. Palmer, Software Systems Engineering, New York: Wiley,
1990.

151. Schach, S.R., Software Engineering, second edition, Illinois: Asken Associates and
Irwin, 1993.

152. Schoenfeld, A.H., "Explicit heuristic training as a variable in problem solving
performance", Journal for Research in Mathematics Education, 10, pp. 173-187,
May 1979.

153. Schoenfeld, A.H., Mathematical Problem Solving, Orlando, Florida: academic
Press, 1985.

154. Schoenfeld, A.H., "Learning to think mathematically: Problem solving,
metacognition, and sence making in mathematics, in D. Grouws (Ed.), Handbook
for Research on Mathematics Teaching and Learning, New York: Macmillan, 1992.

155. Scholtz, J., and S. Wiedenbeck, "The role of planning in learning a new
programming language", International Journal of Man-Machine Studies, 37, 191-
214, 1992.

323

156. Scholtz, J., and S. Wiedenbeck, "An analysis of novice programmers learning a
second language", in Proceedings of the Fifth Workshop on Empirical Studies of
Programmers, pp. 187-205, Palo Alto, CA, 1993.

157. Shackelford, R., and A. Badre, "Why can't smart students solve simple
programming problems?", International Journal of Man-Machine Studies, vol. 38,
pp. 985-997, 1993.

158. Shih, W., and S.M. Alessi, "Mental models and transfer of learning in computer
programming", Journal of Research on Computing in Education, 26 (2), pp. 154-
175, Winter 1993-1994.

159. Shimomura, T., and S. Isoda, "Linked-list visualization for debugging, IEEE
Software, 8 (3), 44-51, 1991.

160. Shneiderman, B., Software Psychology: Human Factors in Computer and
Information Systems, Boston, Massachusetts: Little, Brown and Company, 1980.

161. Simon, H.A., The New Science of Management, New York, New York: Harper and
Row, 1960.

162. Simon, H.A., "Information-processing theory of human problem solving", in W.K.
Estes (Ed.), Handbook of Learning and Cognitive Processes, Hillsdale, New Jersey:
Lawrence Erlbaum, 1978.

163. Simon, H.A., The Sciences of the Artificial, Cambridge, Massachusetts: MIT Press,
1969.

164. Simon, H.A., "Problem solving and education", in D.T. Tuma and F. Reif (Eds.),
Problem Solving and Education: Issues in Teaching and Research, pp. 81-96.
Hillsdale, New Jersey: Lawrence Erlbaum, 1980.

165. Skinner, B.F., "An operant analysis of problem solving", in B.F. Skinner (Ed.),
Problem Solving: Research, Method, and Theory, Benjamin Kleinmuntz, New
York: John Wiley and Sons, 1966.

166. Sleeman, D.H., and J.S. Brown, (Eds.), Intelligent Tutoring Systems, London:
Academic Press, 1982.

167. Smith, G.F., "Defining real world problems: A conceptual language, IEEE
Transactions on Systems, Man, and Cybernetics, 23 (5), pp. 1220-1234, 1993.

168. Snow, R.E., and J. Swanson, "Instructional psychology: Aptitude, adaptation, and
assessment", Annual Review of Psychology, 43, pp. 583-626, 1992.

324

169. Soloway, E., K. Ehrlich, J. Bonar, and J. Greenspan, "What de novices know about
programming", in A.N. Badre and B. Shneiderman (Eds.), Directions in Human-
Computer Interaction, New York: Ablex, 1982.

170. Soloway, E., J. Spohrer, and D. Littman, E unum pluribus: generating alternative
design, in R.E. Mayer (Ed.), Teaching and Learning Computer Programming, pp.
137-152, Hillsdale, New Jersey: Lawrence Erlbaum, 1988.

171. Spohrer, J., and E. Soloway, "Novice mistakes: are the folk wisdom correct?",
Communications of the ACM, 29, pp. 624-632, 1986.

172. Stepien, W.J., S.A. Gallagher, and D. Workman, "Problem-based learning for
traditional and interdisciplinary classrooms", Journal for the Education of the
Gifted, 16 (4), pp. 338-357, 1993.

173. Sternberg, R.J., Beyond IQ: A Triarchic Theory of Human Intelligence, Cambridge,
Massachusetts: Cambridge University Press, 1985.

174. Sumiga, J., "Programming and design, in E. Lemut, B. du Boulay, G. Dettori (Eds.),
Cognitive Models and Intelligent environments for Learning programming, pp. 59-
70, Berlin: Springer-Verlag, 1993.

175. Szetela, W., "The problem of evaluation in problem solving: Can we find
solutions", Arithmetic Teacher, 35, pp. 36-41, November 1987.

176. Tremblay, J.P., and R.B Bunt, Introduction to Computer Science: An Algorithmic
Approach, second edition, New York: McGraw-Hill, 1989.

177. Tucker, A.B., "New directions in the introductory computer science curriculum", in
Proceedings of 25th SIGCSE Technical Symposium, ACM CSE Bulletin, 26 (1),
pp. 11-15, 1994.

178. Turoff, M., and R. Hiltz, On the Design and Evaluation of Interactive Information
Systems, in progress, 1997.

179. Tversky, A., and D. Kahneman, The framing of decisions and the psychology of
choice, Science, 211, pp. 453-458, 1981.

180. Ueno, H., "Integrated intelligent programming environment for learning
programming, IEICE Transactions on Information and Systems, E77-D (1), pp. 68-
79, 1994.

181. Verdejo, M.F., and I. Fernandez, "Methodology and design issues in Capra: an
environment for learning program construction, in E. Lemut, B. du Boulay, G.
Dettori (Eds.), Cognitive Models and Intelligent environments for Learning
programming, pp. 156-171, Berlin: Springer-Verlag, 1993.

325

182. Volkema, R.J., "Problem formulation in planning and design, Management Science,
vol. 29, pp. 639-652, 1983.

183. Volkema, R.J., "Problem complexity and the formulation process in planning and
design, Behavioral Science, 33, pp. 292-300, 1988.

184. Wales, C.E., A.H. Nardi, and R.A. Stager, Thinking Skills: Making a Choice, Center
for Guided Design, West Virginia University, Morgantown, 1987.

185. Walker, H.M., The Limits of Computing, Boston, Massachusetts: Jones and Bartlett
Publishers, 1994.

186. Wallas, G., The Art of Thought, New York: Harcourt Brace Jovanovich, 1926.

187. Weber, G., "Cognitive diagnosis and episodic modeling in an intelligent LISP-tutor,
Proceedings of Intelligent Tutoring Systems-88, pp. 207-214, Montreal, Canada,
1988.

188. Weber, G., "Analogies in an intelligent programming environment for learning
LISP", in E. Lemut, B. du Boulay, G. Dettori (Eds.), Cognitive Models and
Intelligent environments for Learning Programming, pp. 210-219, Berlin: Springer-
Verlag, 1993.

189. Weidenbeck, S., V. Fix, and J. Scholtz, "Characteristics of the mental
representations of novice and expert programmers: an empirical study",
International Journal of Man-Machine Studies, 39, pp. 793-812, 1993.

190. Weinberg, G.M., The Psychology of Computer Programming, New York: Van
Nostrand Reinhold, 1971.

191. Wenger, E., Artificial Intelligence and Tutoring Systems, Los Altos, CA: Morgan
Kaufmann Publishing, 1987.

192. Wetzel, G.F., and W.G. Bulgren, The Algorithmic Process: An Introduction to
problem Solving, Chicago: The SRA. Computer Science Series, 1985.

193. Whimbey, A., and J. Lochhead, Problem Solving and Comprehension: A Short
Course in Analytical Reasoning, Philadelphia, Pennsylvania: The Franklin Institute
Press, 1980.

194. Whimbey, A., "Think Aloud Pair Solving-TAPS: the key to higher order thinking in
precise processing, Educational Leadership, 42 (1), pp. 67-70, 1987.

195. Wickelgren, W.A., How to Solve Problems, San Francisco: W.H. Freeman and
Company, 1974.

326

196. Wirth, N., "Program development by stepwise refinement, Communications of the
ACM, 14 (4), pp. 221-227, 1971.

197. Wirth, N., Algorithms + Data Structures = Programs, Englewood Cliffs, New
Jersey: Prentice Hall 1975.

198. Yeh, R.T., "An alternative paradigm for software evolution" in P.A. Ng and R.T.
Yeh (Eds.), Modem Software Engineering, Foundations and Current Perspectives,
pp. 7-22, New York: Van Nostrand Reinhold, 1990.

199. Zelkowitz, M.V., B. Kowalchack, D. Itkin, and L. Herman, "A SUPPORT tool for
teaching computer programming", in R. Fairley and P. Freeman (Eds.), Issues in
Software Engineering Education, pp. 139-167, Berlin: Springer-Verlag, 1989.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page (1 of 2)
	Approval Page (2 of 2)
	Biographical Sketch (1 of 5)
	Biographical Sketch (2 of 5)
	Biographical Sketch (3 of 5)
	Biographical Sketch (4 of 5)
	Biographical Sketch (5 of 5)

	Dedication Page
	Acknowledgment (1 of 3)
	Acknowledgment (2 of 3)
	Acknowledgment (3 of 3)

	Table of Contents (1 of 8)
	Table of Contents (2 of 8)
	Table of Contents (3 of 8)
	Table of Contents (4 of 8)
	Table of Contents (5 of 8)
	Table of Contents (6 of 8)
	Table of Contents (7 of 8)
	Table of Contents (8 of 8)
	Chapter 1: Introduction
	Chapter 2: Related Research: A Survey of Enviroments and Tools for Learning Programming
	Chapter 3: Analysis and Critique of Existing Approaches
	Chapter 4: Problem Solving, Program Development and Cognition
	Chapter 5: An Enviroment for Problem Solving and Program Development: Specifications for the Dual Common Model
	Chapter 6: Experimental Design: Testing and Evaluation
	Chapter 7: Experimental Results and Analysis
	Chapter 8: Concluding Remarks And Future Work
	Appendix 1: Survey Instruments
	Appendix 2: Course Syllabus and Related Material
	Appendix 3: Sample Assignments, Quizzes and Exams
	References

	List of Tables (1 of 4)
	List of Tables (2 of 4)
	List of Tables (3 of 4)
	List of Tables (4 of 4)

	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

