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ABSTRACT

AN INVESTIGATION OF THE MECHANISM OF ADVANCED OXIDATION
PROCESSES (AOP) INVOLVING FREE RADICALS AND
CHARGED SPECIES

by
Yaw-Kuen Lin

Hydrogen peroxide is a key component in Advanced Oxidation Processes (AOP).
Its decomposition at different pH conditions has been studied and some interesting results
were observed. When the pH value of hydrogen peroxide solution is less than 9, its rate of
decomposition is independent of pH. On the other hand, in the pH range of 9-12.6, its rate
of decomposition increases as pH increases, and goes through a maximum value then
suddenly decreases with respect to pH. A reaction kinetic model with three rate constants
in the form of beta probability function was used to describe the experimental data of the
decomposition of hydrogen peroxide at various pH values.

The decomposition of hydrogen peroxide at different pH conditions with UV
radiation was also examined. The results showed that the higher the alkalinity, the higher
the decomposition rate of hydrogen peroxide. A reaction kinetic model was proposed to
describe the experimental data of the decomposition of hydrogen peroxide at various pH
values under UV radiation. |

The decomposition of phenol at different pH conditions in the presence of
H,0,/UV was studied not only in order tc verify the kinetic model of the decomposition
of hydrogen peroxide under UV radiation but also to investigate the mechanism of the
decomposition of phenol. The results showed that the higher the alkalinity, the lower the
decomposition rate of phenol. These results were in good agreement with those of the
decomposition of hydrogen peroxide under UV radiation. A mechanism for the

decomposition of phenol at various pH conditions was proposed.



The effect of bicarbonate ion, a known scavenger of free radicals, on the
decomposition of hydrogen peroxide with and without UV radiation has been investigated.
The results showed that bicarbonate ion not only is a free radical scavenger but also
causes an incremental increase in hydrogen peroxide decomposition. A reaction kinetic
model was proposed to describe the experimental data of the decomposition of hydrogen
peroxide at different bicarbonate ion concentrations.

The effect of bicarbonate ion on the decomposition of phenol in the presence of

H,0,/UV was studied in order to verify all kinetic models proposed in this study.
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CHAPTER 1

INTRODUCTION
Advanced Oxidation Processes (AOP), which utilize ultraviolet (UV) radiation with
hydrogen peroxide (H,O,), are widely used for treatment of hazardous organics in
groundwater and industrial wastewater [Glaze et al. (1988), Kawagnchi (1992),
Lipczynska-Kochany (1993), Shu (1993), and Smith (1992)]. AOP involve the generation
of the hydroxyl radical (OHe), a very active intermediate that generally has great oxidizing
power.

Hydrogen Peroxide, which plays a key role in AOP, is a thermodynamically
unstable compound. Many efforts have been made to clarify the base-induced
decomposition of hydrogen peroxide [Abbot and Brown (1990), Duke and Hass (1961),
Evans et al.(1985), Galbacs et al. (1983), Koubek et al. (1963), Oki et al. (1964), and
Tanabe et al. (1965)]. Most researchers report that hydrogen peroxide decomposition
rate exhibits a maximum in the pH range of 11-12. However, Oki et al. (1964) and Tanabe
et al. (1965) revealed that the maximum decomposition rate occurred in the pH range of
13-13.5. Abbot and Brown (1990) report that the decomposition rate increases with the
alkalinity. A maximum does not appear up to pH = 13.6.

A mechanism for decomposition of hydrogen peroxide was proposed by Duke and

Hass in 1961 as follows;

H,0, + OH X2 5 HO,” + H,0

H,0,+ HO;, —4—-H,0 + OH + O,



In the approach taken in our investigation, we proposed a mechanism composed of
a series of simultaneous reactions involving charged species. The rate constants for these
reactions and their unusual variation with respect to pH values were obtained. To our
surprise, the variation follows the beta probability function. Thus, we expressed
quantitatively the three rate constants as a function of pH by beta probability function.

Huang et al. (1994) found that the pH is one of the key factors in the presence of
H,0,/UV for the treatment of textile wastewater. In order to increase the understanding of
AOP, the kinetics of base-induced decomposition of hydrogen peroxide without UV
radiation need to be confirmed. In this study, we reported experimental results at elevated
pH and proposed an enhanced kinetic mechanism of base-induced decomposition of
hydrogen peroxide.

The decomposition of hydrogen peroxide under UV radiation has been widely
studied. Many investigators [Hochanadel (1962), Malaiyandi et al. (1980), Ogata et al.
(1980), Shu (1993)] proposed similar mechanisms. These mechanisms can not be used to
describe results at high pH conditions. It needs to be modified for these higher conditions.

Weir et al. (1987) studied the destruction of benzene by H,O,/UV process. They
pointed out that at high pH levels, benzene decomposed fnore slowly. Shu (1993) reported
that at high pH conditions, phenol decomposed more sluggishly when the H,O,/UV
process was used. In order to explain this phenomena accurately, the pH dependence of
the decomposition of hydrogen peroxide should be studied first.

Glaze et al. (1988) reported that in the groundwater, there is a significant amount

of bicarbonate ion, which should trap OH radicals and interfere with the destruction of



target compounds such as trichloroethylene (TCE) and tetrachloroethylene (PCE).
Bicarbonate ion is one kind of scavengers. In order to further understand these results,
data on the effect of bicarbonate ions on the decomposition of hydrogen peroxide with and

without UV radiation must be obtained.

1.1 Objective
The primary objective of this study is to investigate the mechanism of base-induced
decomposition of hydrogen peroxide and the pH dependence of the rate of decomposition
of hydrogen peroxide under UV radiation. Other objectives include studies of phenol
decomposition induced by the H,O,/UV system to obtain a mechanism of decomposition
of phenol and verify the mechanism in base-induced and UV-induced decomposition of
hydrogen peroxide. In addition, the effect of bicarbonate ion as a scavenger of hydroxyl
radical on decomposition of hydrogen peroxide and phenol in the H,O,/UV process and
on decomposition of hydrogen peroxide without UV radiation will be studied. The rate
constants will be determined from experimental data by using the Rosenbrock Hillclimb

Optimization Algorithm with the LSODE solver.

1.2 Target Compound
Phenol is toxic if absorbed through the skin and may result in death, even if the exposed
area is as small as that of a hand or forearm. Contact with skin also causes dangerous and
painful burns (Kirk - Othmer 1982). Phenol can be found in wastewater from various

industries such as dye manufacturing, epoxy resins, additives and aromatic chemical,



solvents, and aromatic chemical and pharmaceutical, etc. ( Stryker et al. 1985). Its high
toxicity and its presence in wastewater from a variety of industries makes phenol a suitable
substance that serves as a model in studying the degradation of related compounds such as

chlorophenol, chlorinated pesticides, phenoxyl herbicides, etc. (Shu 1993).



CHAPTER 2
LITERATURE REVIEW
As expected, much literature was searched for the fundamental study of hydrogen
peroxide. They are divided into; (1) base-induced decomposition of hydrogen peroxide,
(2) H20; decomposition using UV radiation, (3) oxidation of target compound in the

presence of HxO,/UV, (4) effect of scavengers in the presence of H,O,/UV.

2.1 Advanced Ozxidation Processes
Advanced Oxidation Processes (AOP) involve the generation of hydroxyl radical (OH.), a
very active intermediate that generally has far greater oxidizing power than ozone (Glaze
et al. 1987 a, b). Hydrogen peroxide is a key component in the presence of H,O,/UV, an
example of an AOP. Physicochemical processes, one of AOP which are sometimes able to
destroy biorefractory contaminants, are affected less by environmental and contaminant
variables. The catalyzed decomposition of hydrogen peroxide by iron (II), commonly

known as Fenton’s reagent, produces the hydroxyl radical (OHe).

H;0, + Fe** — OHe + OH + Fe**

Fenton’s chemistry is well-documented in the chemistry literature and is now being used to

treat aqueous industrial waste stream. The supporting research has measured industrial



waste treatment kinetics, mass balances, and toxicity reduction associated with the
oxidation of chlorobenzenes and chlorophenols [Bowers et al. (1989), sedlak et al
(1991)]. The remediation of contaminated soils is the most recent application of Fenton’s

process chemistry [Watts et al. (1990, 1991, 1992), Tyre et al. (1991)].

2.2 Base-induced Decomposition of Hydrogen Peroxide
The study of base-induced decomposition of hydrogen peroxide has been the subject of
many investigation (Schumb et al. 1955). Many efforts have been made to clarify the base-
induced decomposition of hydrogen peroxide [Abbot and Brown (1990), Duke and Hass
(1961), Evans et al. (1985), Galbacs et al. (1983), Koubek et al.(1963), Oki et al. (1964),
and Tanabe et al. (1965)).

The specific reaction rate of hydrogen peroxide decomposition increases linearly
with concentration of hydroxyl ion uatil pH level reaches 13.4, and above 14.0 linearly
with the square of hydroxyl ion concentration. The pH range in which the N-shape
variation of the rate has been observed is nearly independent of the reaction temperature
(OKki et al. 1964). Most researchers reported that in most alkaline solutions a maximum in
decomposition rate occurred in the pH range of 11-12. OKki et al. (1964) and Tanabe et al.
(1965) revealed that the maximum occurred in the pH range of 13-13.5. Abbot and
Brown (1990) reported that the more the alkalinity, the higher the decomposition rate and

that no maximum appeared up to pH = 13.6.



The mechanism of hydrogen peroxide decomposition proposed by Duke and Hass

(1961) is as follows:

H,0; + OH %23 HO, + H,0

H,0,+ HO; —43H,0+ OH + O,

The dissociation constant of hydrogen peroxide is 1.78 x 102 (Evans and Uri
1949). Early work on the base-induced decomposition of hydrogen peroxide has been
summarized by Schumb et al.(1955). Duke and Haas (1961) reported a kinetic study using
highly purified reagents. They observed a rate equation of the type v = k,[H,0,][HO;7]
with ko= 7.4 x 10™ Vmole-sec at 35°C; k, is equal to 2k where k is the conventional
second-order rate constant at the pK, of H,O, (11.5 at 35°C)(Evans and Uri 1949 ). A
similar value for k; (7.0 x 10* I/mole-sec) was subsequently obtained by Goodman et al.
(1962 ). These results were shown to be incorrect by Koubek et al. (1963). Using
ethylenediaminetetra-acetate (EDTA) to complex catalytic impurities, and purified alkali,
they observed an initial rate of decomposition of about one hundredth that reported by
Duke and Haas and Goodman et al.. Koubek and co-researchers did not claim to have
observed the spontaneous decomposition of hydrogen peroxide. However, Galbacs and
Csanyi (1983 ), again using EDTA, reported a value of 3 x 10°® I/mole-sec for the second-
order rate constant k at 35°C and pH of 11.6, which they believed to be the true rate of

base-induced decomposition.



2.3 H,0, Decomposed by UV Radiation
The H,0,/UV has been shown to generate hydroxyl radicals and other reactive species by
photochemical reaction of UV radiation on hydrogen peroxide. Hochanadel (1962) and

Ogata et al. (1980) proposed a similar mechanism.
H,0,+ hv—#2 5 2 OHe
H,0; + OHe—%HO,e + H;0
H,0; + HOo—— OHe + H;0 + O,
2 OHe—4+ 3 H,0,

2 HOz“-—k”——) H,0, + 0,

Bielski et al. (1985) and Shu (1993) proposed the mechanism with rate constants
which are in Table 2.1.

Table 2.1 The Mechanism and Rate Constants Used by Shu (1993)

Reactions rate constants | reference

(I/mole-sec)

H,0, + OHe—*~_3HO,s + H,0 2.7x 10’ Christense et al.(1982)
H,0; + HO,e—4 3 OHe + H,0+ O, 3.7 Koppenol et al. (1978)
2 OHe—4 3 H,0, 4.0 x 10° Thomas et al. (1965)

2 HOo—4: 3 H,0, + O, 8.3x 10° Beilski et al. (1978)

OHe+ HO,o—* 3H,0 + O, 3.7 x 10" Burrows et al. (1981)




But this mechanism can only be applied when the pH is lower than 7. For alkaline

conditions, this mechanism needs to be modified.

2.4 Oxidation of Target Compound in the Presence of H,0,/UV

The process of H,0,/UV has gained acceptance as a capable method to destroy toxic and
hazardous organic compounds in water.

Weir et al. (1987) studied the destruction of benzene in the presence of H,O/UV.
They pointed out that at higher pH levels, benzene decomposed more slowly. They said
that it is probable for hydrogen peroxide to decompose by itself to oxygen and water at
base-induced condition that could not provide free radicals to oxidize benzene. Their study
also showed that the effect of temperature on the decomposition was not significant.

Destruction of aromatic pollutants such as benzene, toluene, chlorobezene, phenol,
chlorophenols, dimethyl phthalates, and diethyl phthalate by H,O,/UV process were
studied by Sundstrom et al. (1989). They found that the higher hydrogen peroxide
concentration to pollutants ratios, the higher decomposition rates could happen. The
intermediates formed while the aromatic pollutants degraded and caused the solution
brown color which increased the absorbance at 254 nm comprehensively. The reaction
rates were obtained by the order of 2,4,6-trichlorophenol > toluene > phenol > 2.4-
dichlorophenol > chlorobezene > 2-chlorophenol > diethyl phthalate > dimethyl phthalate.
It apparently showed that most aromatic pollutants studied in this paper received high

degradation rates for UV radiation alone. However, there were three compounds: phenol,
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dimethyl phthalate, and diethyl phthalate could hardly decomposed by UV radiation alone.
Nevertheless, they could be significantly improved by H,0,/UV process.
Prat et al. (1988) studied bleaching water treatment in the paper industry by the
process of H,0,/UV. They also reported that the reaction rate decreased as pH increased.
Shu (1993) investigated the destruction of phenol in the process of H,0,/UV. He
reported that the higher the alkalinity, the lower the decomposition rate of phenol. He did
not discuss this phenomena further. He proposed a mechanism which applied for the

condition of pH < 7.

Phenol + OHe — Catechol + Hydroquinone
Phenol + OHe — Phe (Phenolic radical)

Catechol + Hydroquinone + OHe — Organic acid
Phenol + Phe — Higher molecular

Phenol + HO,e¢ — Products

2.5 Scavenger Effect in the Presence of H,0,/UV
Glaze et al. (1988) reported that in some ground water there is significant amount of
bicarbonate ion which might trap OH radicals and intertere with the destruction of target
compounds. The OH radical is far more reactive with TCE than with the bicarbonate ion.
However, the molarity of the bicarbonate ion is much greater than that of organic

contaminants in some ground water. Glaze et al. (1989) pointed out that chloride is not a
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significant scavenger of hydroxyl radicals except at very low pH values, suggesting that

AOP may be useful for the treatment of concentrated brine solution.



CHAPTER 3
REACTION MECHANISM AND KINETIC MODELS
3.1 Outline

Advanced Oxidation Processes using hydrogen peroxide with UV radiation are widely
used for treating some types of wastewater. Even though these processes have high
efficiency in degrading water contaminants, their mechanisms are not well understood
especially in alkaline solution. In this research, a series of experiments were conducted to
determine the rate constants for a group of reactions. Then by computer simulation,
kinetic model were studied. Some rate constants obtained from the literature are adopted
in these kinetic models.

The reaction kinetic models used in this work were initially developed by Dr. C. R.
Huang in 1983 and revised in 1984, 1988, 1990 and 1993. This study focused on the
reaction mechanisms in alkaline conditions and in the presence of scavengers. In order to
distinguish the effects of the different processes and solve for reaction rate constants for
the degradation of the target compound, phenol, the following six experiments were
conducted:
(1) Effect of pH on the decomposition of hydrogen peroxide without UV radiation
(2) Effect of pH on the decomposition of hydrogen peroxide with UV radiation
(3) Effect of pH on the decomposition of phenol in the presence of hydrogen peroxide

with UV radiation

12
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(4) Effect of bicarbonate on the decomposition of hydrogen peroxide without UV
radiation

(5) Effect of bicarbonate on the decomposition of hydrogen peroxide with UV radiation

(6) Effect of bicarbonate ion on the decomposition of phenol in the presence of hydrogen
peroxide with UV radiation.

The reaction kinetic models set up for each experiment are based on the following

four assumptions:

1. The reactions in each mechanism are considered to be first order with respect to both
reactants

2. Temperature effect is negligible

3. The reactants and intermediates which absorb UV radiation will be taken into account
by a light intensity model by measuring absorbance at 254 nm

4. Complete mixing is achieved by bubbling.

3.2 Effect of pH on the Decomposition of Hydrogen Peroxide
without UV Radiation

The mechanism for the decomposition of hydrogen peroxide in alkaline solutions proposed

by Duke and Hass (1961) is as follows:

H,0, + OH «242 5 HO, + H,0

H,0,+ HO, — 5 H,0+ OH + O,
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However, this mechanism can not fit the experimental data. Thus, we proposed two more

reaction steps (the formation of oxide ion, O* , and its backward reaction) which are:

OH + HO, —&— 0% + H,0,

0” + H,0, —2— OH + HO;
From this mechanism, the rate expression of the decomposition of H;O is
determined as follows:

d[l;li;;OZ] = _k| [Hzoz ][Hoz— I+ kz [OH_][Hoz- 1- k3 [02_ ][H202]

d[(ff_] = k[H,0, [ HO,” |- b, [OH™JIHO, 1+ k,[0* ] H,0,]

d[do:-] = b [OH" 1HO, ]~ k[0¥ [ H,0,]

The concentration of HO; can be expressed in terms of [H,O.] and [OH]. The

dissociation constant of hydrogen peroxide, Kiszo; has a value of 1.78 x 10 (Evans and

Uri 1949).

_[HO, YH,0*)_ _[HO Ik,
“TTTH,0,] [H,0,]10H]

[HO,™1= Ky.o, [H,0,110H"1/ k,, = 1.78 x10*[H,0,][OH" ]
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The rate expression for the decomposition of hydrogen peroxide becomes

d[ljzio_ﬂ =~k x1.78x10*[H,0,[OH" 1+k, x 178X 10°[OH "V [H,0,]1- k,[0* ][H,0,]

AOH 1. X178 x10°[H,0, FOH" )~k X LT8x 10°[OH" PLH,0,1+ k,[07 T H,0,)
2-

d[g 1k, x178x10°[OF P[H,0,]1- K,[0% 1H,0,]

Initial conditions for the experiment were:
[H,0:]o = 4.73x10™ mole/l
[OH]o = variable /
[0*]r=0.

The rate constants were determined from experimental data using the Rosenbrock

Hillclimb Optimization Algorithm with the LSODE solver.

3.3 Effect of pH on the Decomposition of Hydrogen Peroxide
with UV Radiation

Hydrogen peroxide plays a very important role in the process of H,0,/UV. Hydrogen
peroxide could serve as a source of hydroxyl radicals in the aqueous solution under UV
radiation. Shu (1993) proposed a mechanism for the decomposition of hydrogen peroxide

with UV radiation as follows:



16

H,O+ hv—22224 2 OHe

H,0, + OHs—. 3, HO,e + H,0
H,0, + HOye—* 3 OHe + H,0+ O,
2 OHe—+5H,0,

2 HOye—4+ 3 H,0, + O,

OHe+ HO o —4 3 H,0 + O,

This mechanism can only apply in neutral solutions. For alkaline conditions, this

mechanism needs to be modified.

For alkaline conditions, the following reaction must be included in the mechanism

deveolped by Shu (1993):

OHe+HO, —1250, e+ H,0
HO,0 22 sH* + Oy'e
HO,e+ Oy e—4e 3 HO, + O,

Oy’e + HzOz—km—) HO; + HO,e
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The dissociation constant Kyo,. is 1.6 x 10° reported by Bielski et al. in 1985. The
rate constant ks for the reaction of hydroperoxyl radical (HO,¢) and superoxide ion
radical (Oy'e), is 7.9 x 10’ I/mole-sec, reported by Rabani et al. in 1969.

From equilibrium,
[0,¢]=1.6 x 107 [HO,e] /[ H'] =1.6 x 10°[HO,¢][OH]
The rate expression is as follows:

d[H,0,] _

222 =y X178 X 10 H,0,F[OH ]+, X 118X 10°[OH"T'[H,0,]~ k[0 11H,0,]

_kmzozj[Hzoz 1- k\()f [(H,0,][OHe]- knf[Hzoz HO, ]+ k14[0H’]2 + kls[HOz']z
_kl9[02_ .][Hzozl

d [T 1§, x 178X 102 [ H,0, PIOH ™1~ k, 1. 78X 10[OH" P H,0, 1+ &, [0* [ H,0,

071y w178x 10*[OH" T'[H,0,]- k,[0" 1 H,0,]

d[OH
[ dt ] = 2kyy,0,1[H,0,]- k., [H,0,]JOH}+ k), [H,0,][HO,°]

—2k,,[OH®)* = k\[OH $][HO, *]~ kyy [OH ][ HO, ]

d“fz °]_ k., [H,0,)[OHe]-k,, [H,0,][HO, ] - k;s [ HO, o]’

—kis[OH®][HO, ®]- k3 [HO, *][0, ©]+ k\x[O, *][H,0,]
Initial conditions:
[OHe],=0

[HO,#];=0
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The rate constant k;; and ko are optimized in order to give the best fit to the

experimental data.

3.4 Effect of pH on the Decomposition of Phenol under UV Radiation alone
and the Presence of Hydrogen Peroxide with UV Radiation

Phenol is one of the most common compounds used in the fundamental study of the
mechanism of the decomposition of the phenol group in the presence of H,O,/UV. It is
partially ionized at a pH value of 9 (Kirk-Othmer 1982). The phenolate not only absorbs
UV radiation (Lipczynska-Kochany 1993) but also reacts with hydroxyl radical (Buxton et
al. 1988). The objective of this experiment is to determine the mechanism of
decomposition of phenol and to verify the mechanisms of hydrogen peroxide

decomposition with and without UV radiation as discussed in sections 3.2 and 3.3.

3.4.1 Effect of pH on the Decompositicn of Phenol under UV Radiation alone

The dissociation constant of phenol is 1.78 x 10™'° (Kirk-Othmer 1982). The mechanism of

decomposition of phenol under UV radiation alone is proposed as follows:

phenol + H20<—KE"‘—"°L—>phenolate anion + H;O"
Phenol + hv —{ products
Phenolate anion + hv—2— products

The rate constants ki] and kpnd can be obtained by fitting experimental data

taken at pH values between 7 and 11.
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3.4.2 Effect of pH on the Decomposition of Phenol in the Presence of Hydrogen
Peroxide with UV Radiation

The intermediate products of phenol decomposition under the presence of H,O,/UV in
neutral conditions which have been reported are catechol, hydroquinone, and phenolic
radical. In neutral conditions, the concentration of phenolate can be neglected. Thus, the

following mechanism is proposed:

Phenol + hv —-ﬁ‘l"i—-)products

Phenol + OHe —£23 Catechol

Phenol + OHo —2— Hydroquinone

Phenol + OHe —%2— Phe(Phenolic radical)
Catechol + OHe —2— Products(Organic acid)
Hydroquinone + OHe —*2— Products(Organic acid)
Phenol + Phe —2 5 Higher molecular

Phenol + HO,¢ —¢ 5 Products
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The reaction rate for each species is as follows:

d[H,0,]

2% = kX 178x10°[H,0, J [OH™ |+ k, X 1.78x10° [OH™ ' [H,0,]

—k; [0* I1#,0,1- km,o,I[Hzoz 1- kmf [H,0,][OHe]- knf [H,0,][HO, ]
+k,,[OH¢]* + ks[HO, ) -k, [0, o][H,0,]

d[?iH_] =k, x1.78x10°[H,0, [OH™ ]- k, x 178 x 10 [OH™ '[H,0, ]

+k, [0* 1[H,0,]

f‘lgli]- = k, X118 x10*[OH" P'[H,0,]- k,[0* [H,0,]
AOB o 2y 1H,0,1- b, [H,0, TOHo)+ ko [H,0, [ HO, o)
~2k,, [OH )" ~ b [OH *] HO, o]~ ki, [OH )L HO, 1~ sy [ pH]OH ]
~k [PHI(OH ¢] kyy [ pRIOH 8]~ kiy [CallOH o]~ hiyy [HQYOH o]
~ky [ pha)[OH o]
ﬂgﬂ = kw (H,0,)[OHs]1-k, ,[H,0,]HO,*]-k,[HO, o]
~ki[OH ) HO, ] k;j [HO, ][0, #]+k;, [0, ©][H,0,1-k,; [ phl{HO, °]
P ., Uph)~ by [ PHILOH o1~ by, [ PHIOH 1~ ks, [ PHIIOH o]~ ki L Y ph]

—ky, [PR)[HO, *]



21

d[Ca]

di = ky [PhI[OH #]~ k; [Cal[OH *]

w = k21 [ph][OH.] - ku [HQ][OH.]

dt
d[Z:“] = k,, [ ph][OH o]~ k,;[ ph][ phe]
d[Zfa] = ~kyu.l [Pha] - k,; [ pha][OH o]

where: [ph] = [phenol], [Ca] = [Catechol], [HQ] = [Hydroquinone}, [phe] = [phenolic
radical], [pha] = [phenolate anion]

Initial conditions: t = 0, [ph] = [ph],, [Ca] = 0, [HQ] = 0, [phe] = 0, [pha] = [pha]o

The rate constants for the above reactions can be obtained by fitting the
experimental data of the concentration of phenol, hydroquinone, and catechol with respect

to time during the process of H,0,/UV.

In the alkaline condition, phenolate anion will dominate. It will react with hydroxyl

radical. Thus, the following reaction needs to be considered.

Phenolate anion + OHe —*2— products

The rate constant of phenolate anion reacting with hydroxyl radical can be

obtained by fitting experimental data and applying the rate constants obtained for neutral

condition.
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3.5 Effect of Bicarbonate on the Decomposition of Hydrogen Peroxide
without UV Radiation

Bicarbonate ion might trap OH radicals and interfere with the destruction of the target
compound (Glaze et al. 1988). It was also observed that the bicarbonate ion can also
decompose hydrogen peroxide without UV radiation and it may interfere with the
destruction of the target compound. The following mechanism is proposed for the

decomposition of hydrogen peroxide in the presence of bicarbonate ion:

HCO; + H,0 «—4= 3 H,0" + CO;”
H,0, + HCO; —*2 5 HO; + H,0 + CO,

H,0, + CO;~ —2= 3 HO, + HCOs

Using Kyucos- = 5.62 x 10", the concentration of CO;™ can be computed as:

K, [HCO3"]

o =m0

K, .
= —;Z%—[HCOT JIOH™]

w

=5.62x10°[HCO3 J[OH ]
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The reaction rate for each species are as follows:

1%0—2—] =~k, X 1.78x10*[H,0, P [OH 1+ k, x 1.78x10*[OH J*[H,0,]1~ %,[0* |[H,0,
~K oo, LH20, THCO;™ 1=k . [H,0,11CO;7 ]
5’%_] =k, X178 x10* [H,0, F [OH" 1 k, x1.78 X 102 [OH" T [H,0,1+ k; [0% [ H,0,]
d [Z—] =k, x1.78x10°[OH™ *[H,0,]- k,[0* [ H,0,]
iL’fth] = ke [H,0,THCO, 1+ k.. [H,0,1(CO,”]
ﬂ%?-:—] =~k [H,0,]1CO,"]

Initial condition: t = 0, [H,0;] = [H20:]o

The rate constants kycos. and keos- can be obtained by fitting experimental results.
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3.6 Effect of Bicarbonate on the Decomposition of Hydrogen Peroxide
with UV Radiation

The objective of this experiment is to find out the rate constant of the reaction of
bicarbonate ion and carbonate ion with hydroxyl radical. From the literature, the
mechanism for the reaction of bicarbonate ion and carbonate ion with hydroxyl radical is

shown below:

HCO; + OHe —£2 5 CO;0 +H,0
CO;™ + OHe —%1 3y COse +OH

CO3'- + HzOz —k’g——) HOz. + HCO3-

The reaction rate for each species are as follows:

Lfffto—” =—k, x1.78x 10*[H,0, ' [OH ]+ k, x .78 x 10’ [OH " }*[H,0,]- k,[0* |[H,0,]
"klﬂ,o, I1[H,0,]- kios [H,0,][OHe]- kn/ [(H,0,][HO,*]+k,, [OH’]2 + kys[HO, o]’
—kys [0, @l H,0,1- kyco, [HCO, 1H,0, 1= ke, [CO,™ 1[H,0,]1- ki, [CO;™ 0][H,0, ]
AlOHTT_ 4 4 78x10*[H,0, ' [OH ™ 1-k, x1.78 x10*[OH ™ J*[H,0, 1+ k,[0* ][H,0, ]
dt - M : 22 2 . 2¥2 3 2Y2

+k,,[CO,” J[OH ]

071 _ t, 178X 10 [OH" P[H,0, ]~ k [0* 11 H,0, ]
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d[HCO, ] _

@t ~k o [H,0,THCO, 1+ k. [H,0, 1[CO;™ 1+ sy [H,0,1[CO;, ™ o]
~ky[HCO, J[OH]
f{[_C‘%___] =~k . [H,0,]IC0,” 1~ ky [CO," J(OH ]

LD 2] ko [HCO, NOH o1+ k, [CO NOH o]~ ks [H,0,11CO o]

-d[—(();ﬂ = 2y, ILH,0, )~k [H,0, O]+, , [H,0, 1 HO, o]
-2k, [OH']2 ~ki[OH®][HO, ]~ k,[OH*][HO, ]
—ky[HCO,™ JOH ®]-k;,[CO;” JOH o]

ﬂh{%’—] =k, [H,0,[OH®] k,, [H,0, [ HO, o]~ ks [ HO, o

—ki[OH®][HO,]— ks [HO, °][O0, o]+ k[0,  ][H,0,]
+ky, [Hy,0,1[CO;" o]

Initial conditions: [}1202] = I}IzOz]o, [I‘ICO3-] = [HC03-]0, [CO;] = [CO3=]0, [CO3..] = 0,
[OHe] = 0, [HOz#] =0
The rate constant ks is 8.0 x 10° V/mole-sec (Behar et al. 1970). The rate constants

k3o and k3, can be obtained by fitting the experimental data.
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3.7 Effect of Bicarbonate Ion on the Decomposition of Phenol in
the Presence of Hydrogen Peroxide with UV Radiation

The objective of this experiment is to determine the effect of bicarbonate ion on the
decomposition of phenol in the process of H,0,/UV. Bicarbonate ion should trap hydroxyl
radical and stabilize phenol in AOP. All the reactions which appeared in previous sections

should be considered in this process and the reaction of carbonate ion radical (COse’) and

phenol was also considered.

Phenol + COse” —%2 Products

The reaction rate for each species is as follows:

—d[idzloz—] =—k, x1.78x10°[H,0,) [OH" 1+ k, x 1.78 x 10’ [OH ™ )*[H,0, ]~ k,[0* 1[H,0,]
"km,o2 I[H,0,]1- kIOf [H,0,][OH ]~ k, i [(H,0,1[HO,°]+k,, [OH']2 + ks [HO, ’]2
~kis[0;, o1 H,0,1-kyycos. [HCO,” N[ H,0, 1= ko [CO,” [ H,0, ]~ ks, [CO, ™ 0][H,0, ]

d[OH" ]

=k, x 1.78 x 10*[H,0,*[OH" 1- k, x .78 10*[OH " 1*[H,0, |+ &, [0*" 1[H,0, ]

—k,,[CO;” J[OH ]

d[;)Z_—] =k, x1.78x10°[OH" J’[H,0,]- K [0™ ][H,0,]
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d[HCO;, ] _
dt = —kHCO,'

~ky [HCO," J[OH ]

[H,0,]1HCO; 1+ kg, . [H,0,][CO5™ 1+ ks, [H,0,][CO; 0]

ﬂ%?ﬂ ==k o [H,0,)]CO,”" ]~ by, [CO, " J[OH ]

d[CO, » - = - -
[ it = iy [HCO, JIOH 1+ 1, [CO,” IOH o1~ ky [H,0,11CO, o] iy [PHILCO,™ o]

d[OHe
[ ” ] =2k 0 1[H,0,)~ k. [H,0,IOHe}+k,, [H,0,][HO,*]

~2k,, [OH)? — k,[OH ][ HO, 8]~ k,, [OH ][HO, ]~ k[ ph][OH ©]
—ky [phl[OH ]~ ky, [ ph][OH o] - ky; [Ca][OH o] - k,, [ HQ][OH o]
—ky [pha][OH ] - ki [ HCO,” ]JOH ®] - k3, [CO,™ 1[OH o]

d[fc{i?z °] _ k. [H,0,[0He] -k, [H,0, ] HO, ¢]- k[ HO, ]’
_k16[0H.][H02 .] - le [HOZ .][02- 0] + kl9 [02— 0][H202 ] —_ k27 [ph][HOZ .]

+k3, [CO;” ©][H,0,]

d [(zh] = =kl [ Ph]= koo [ PRI OH ®] - kyy [ PHIOH ®] = ey, [ PRI OH #]= kys [ ph[ phe]

~ky; [ ph][HO, 0] = k[ ph][CO, ™ ]

AL - ko0 1~ ks CalOH )

ALHOL_ k., [ phILOH o] - by, [ HOIOH ]



d[g:z‘] = k22 [ph][OI-I»]—k25 [ph]l phe]
ﬂ% = —klphal[pha] - k27 [pha][OH.]

The rate constant ka5 can be obtained by fitting the experimental data.
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CHAPTER 4
EXPERIMENTS AND EQUIPMENT
4.1 Materials and Chemicals
Hydrogen peroxide, Cobaltous sulfate heptahydrate (C0S0,7H;0) and sodium
hexametaphosphate were obtained from Fluka Chemika. The phenol used was from Sigma
Chemical Co., with 0.15 % Hs;POQ, as inhibitor. Sodium bicarbonate and sodium carbonate

were from Aldrich Chemical Co.

4.2 Analytical Methods

4.2.1 Analysis of the Concentration of Hydrogen Peroxide

The method of analysis of hydrogen peroxide concentration as proposed by Masschelien et

al. (1977) was used in this study. It is described as follows:

1. An 80-ml sample solution was placed in a 100 ml volumetric flask, 1 ml of the Co™
reagent (19 g CoSO4.7H;O in 1 liter distilled water) and 1 ml of the sodium
hexametaphosphate solution (10g/l) was added, then it was made up to 100 ml with
saturated bicarbonate solution.

2. The absorbance was measured at 260 nm by comparing the solution with a blank
reagent solution. |

3. A calibration curve was made from standard hydrogen peroxide solutions in different

concentrations.

29
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4.2.2 Analysis of the Concentration of Phenol, Catechol, and Hydroquinone

The concentration of phenol, catechol, and hydroquinone was analyzed by High
Performance Liquid Chromatogragh (HPLC). The stationary phase was Nova-Pak 3.9 mm
x 150 mm C,3 column. The mobile phase was 35 % of 1% acetic acid in methanol and 65

% of 1 % acetic acid in water.

4.3 Experimental Equipment
4.3.1 Photochemical Reactor
The experiments were conducted in a photochemical reactor, Model RPR-100 which was
made by New England Photochemical Co.. There were 16 high pressure mercury Arc UV
lamps ( wavelength 254 nm, 35 watts/lamp) arranged on the inner wall of the reactor
which gave a total power of 560 watts. The reactor consisted of a vertical cylindrical
quartz vessel ( ID = 40 mm, Height = 320 mm) with an air sparger for stirring. The

experimental setup is shown in Figure 4.1.

4.3.2 Spectrophotometer
A Varian DMS 200 UV-Vis spectrophotometer was used to measure the concentration of

hydrogen peroxide at 260 nm.

4.3.3 High Performance Liquid Chromatogragh (HPLC)
A Waters 600E system controller, a Waters 715 Ultra Wisp sample processor and a

Waters 994 programmable photodiode array detector all coupled with a Chromatography
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server data acquiring system was used to determine the concentration of phenol and its
intermediates. The stationary phase was Nova-Pak 3.9 mm x 150 mm C,g column. The
mobile phase was 35 % of 1% acetic acid in methanol and 65 % of 1 % acetic acid in

water.

4.3.4 Sample Collection
A 1-ml sample was collected to determine the concentration of hydrogen peroxide. A 0.5-

ml sample was collected for analysis of the concentration of phenol.

4.4 Experiments
4.4.1 Standard Calibration Curve
Hydrogen peroxide solutions were prepared in 1.0 to 20 ppm to develop the calibration
curve for the spectrophotometer. The phenol, catechol, and hydroquinone were prepared
i 1.0 to 19 ppm for HPLC. By plotting the absorbance or HPLC peak area versus the
concentration of compounds, the calibration curve was obtained. The retention time of

phenol, catechol, and hydroquinone in analysis of HPLC is shown in Figure 4.2.

4.4.2 The Absorbance of Phenol and Its Intermediates
Phenol and its intermediate has strong absorbance at 254 nm. Therefore, it must be
considered in the modeling. As a result, the sample must be collected and analyzed by

spectrophotometer at 254 nm.
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4.4.3 Kinetic Model Study of Base-induced Decomposition of Hydrogen Peroxide
A series of hydrogen peroxide decomposition reactions were performed at different pH
conditions. Reaction models were run to determine which set of input parameters would
provide results consistent with the experimental data. The rate constants were determined
using the Rosenbrock Hillclimb Optimization Algorithm with the LSODE solver.

The pH of the reaction solution was determined at the beginning and at the end of

each reaction. The pH change did not exceed 0.1 unit. The temperature was at 22 + 0.1°C.

4.4.4 Kinetic Model Study of the Decomposition of Hydrogen Peroxide under UV
Radiation in Different pH Conditions

A series of hydrogen peroxide decomposition reactions with UV radiation was performed
at pH values of 3.08, 6.94, 9.61, 10.89, 11.50. The fundamental reaction rate constants for
pH < 7 were obtained from the literature. These rate constants were applied at pH = 6.94
to confirm the kinetic model and to determine the rate constant, kpiool, by fitting the
experimental data. The rate constants of the important reactions at higher pH conditions
can be obtained by fitting the experimental data obtained at pH = 10.80. The resulting rate

constants were used at pH = 11.50 to confirm the kinetic mechanism proposed.

4.4.5 Kinetic Model Study of Oxidation of Phenol with UV Radiation alone at
Different pH Conditions

Phenol is partially ionized at pH = 9 and becomes a phenolate anion. Three experiments at
conditions of pH = 6.45, 9.35, 10.80 were conducted. The effects of absorbance of

reactants and intermediates were considered in this model. The rate constant kI was
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obtained by fitting experimental data taken at pH = 6.45. The rate constant kil was
determined by fitting experimental data obtained at pH = 10.80. These rate constants were

verified by comparing the prediction of the model to experimental data at pH = 9.35.

4.4.6 Kinetic Model Study of Effect of Bicarbonate on the Decomposition of
Hydrogen Peroxide

In order to find the relationship between the decomposition of hydrogen peroxide and the
dosage of bicarbonate, the ratio of bicarbonate to hydrogen peroxide was 2, 10 and 100 in
three experimental runs, respectively. The rate constants kycos- and kcos- could be

obtained by same procedure.

4.4.7 Kinetic Model Study of the Effect of Bicarbonate As a
Scavenger of OH. Radical

Different dosages of bicarbonate were used in experimental runs. When the ratio HCO5’
/H;0, = 100 was reached, the effect of bicarbonate on the kinetics was significant. The

rate constants kso and k3, were obtained by same procedure as section 4.4.5.

4.4.8 Bicarbonate Interfere with the Destruction of Phenol
in the Presence of H,0,/UV

Bicarbonate can trap free radical and can interfere with the destruction of target
compound. To investigate this phenomenon, two different dosages of bicarbonate were
added to the reaction system of phenol-H,O,/UV. The model prediction using the

previous rate constants was compared to experimental data.



CHAPTER 5
RESULTS AND BISCUSSION
5.1 Effect of pH on the Decomposition of Hydrogen Peroxide
The effect of the hydroxyl ion (OH') on the decomposition of hydrogen peroxide was

determined using the proposed mechanism as follows:

H,0, + OH «2%2 3 HO, + H,0
H,0,+ HO; —%>5H,0 + OH + 0,
OH + HO, —&— 0% + H,0,

0% + H,0, —— OH + HO;

Figure 5.1 shows the normalized concentration (Ca/Cao) of decomposed hydrogen
peroxide versus reaction time in the pH range of 11.46 to 12.58. The points are
experimental data, and the lines are model predicted concentration values. The
concentration of decomposed hydrogen peroxide predicted by proposed the mechanism
are in excellent agreement with the experimental data. By using numerical methods of
parameter estimation at different pH conditions individually, we got k;, k,, ks at different
pH values. When the pH is lower than 11.2, the three rate constants gradually approach a
constant value of k; = 9.17 x 10 Vmole-sec, ky = 2.5 x 10 Vmole-sec, k; = 1.67 x 10”
Vmole-sec. The theoretical predicted curves based on these three constants and
experimental data were plotted in Figure 5.2. Points represent the experimental data,

while lines show the model prediction. The concentration of decomposed hydrogen

36
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peroxide predicted by the proposed mechanism are in excellent agreement with the
experimental data. Less than 1 % of the original hydrogen peroxide is decomposed after 9
hours of reaction time at pH values below 9. The rate constants are summarized in Table
5.1. These results show that as the pH value increases, the rate of decomposition of
hydrogen peroxide as indicated by k; also increases. This increase continues until a

maximum is reached at a pH value of 12.29.

Table 5.1. Summary of Rate Constants k,, k; and ks of Decomposition of Hydrogen
Peroxide under Different pH Conditions

pH kj, Vmole-sec | kj, /mole-sec | k3, I/mole-sec
<11.2 9.17 x 107 2.50x 107 1.67 x 10!
11.46 1.08 x 102 4.88x 10 3.52x 10
11.85 3.87 x 107 1.50 x 10 7.97 x 10”!
12.29 5.00x 107 548 x 107 9.40 x 107
12.58 9.97 x 107 1.67 x 107 1.43 x 107

The observation of a maximum rate was in agreement with results published by
Oki et al. (1964) and Duke and Hass (1961). However, the reported pH values at which
the decomposition of hydrogen peroxide is at a maximum appear to vary. Our results
indicated that the maximum is at a pH of 12.29, as compared to Oki et al. where the pH is
13.4 and Duke and Hass where the pH is 11.5. The deviation of resuits by different

investigators may be caused by the additives in hydrogen peroxide by different suppliers.
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It is interesting to note that the two charged species reaction showed that both rate
constant ko and k; also reaches a maximum value at the same pH value of 12.29. These
two reactions were added to our proposed mechanism which gave a much better
representation of our experimental data.

In our study, the rate constants k,, k, and k;, for the decomposition of hydrogen
peroxide under different pH conditions followed the beta probability function with

parameters o > 0, 3 > 0 (Larson, 1967):

S(0)=0
_ F(a+[5) a-1,q _ .\B-1
f(x)_—_F(a)F(ﬁ)x (1-x) 0<x<1

After the shifting of the base line, the beta probability function becomes the

following:
k, =k, pH<11.2
ki = kio +a‘- r(al +ﬂx) xa,-l(l_x)ﬂ,—l
T'(e)T(B;)
11.2 <pH <127
where x=PH-11.2
1.5

i=1,2,3
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Figures 5.3, 5.4, and 5.5 shows the variation of the rate constants k,, k, and k;
with respect to pH. It can be seen that the curves are slightly skewed to the right. By
numerical method of parameter estimation, the parameters k;,, a;, o; and [3; were obtained
and the results are tabulated in Table 5.2.

From parameters listed in Table 5.2, we could predict the rate constants of the
decomposition of hydrogen peroxide in the pH range from 3 to 12.70 using the beta

probability function.

Table 5.2 The Parameters k;, a;, o; and B; from the Parameter Estimation of

Beta Probability Function
i ki a; o Bi
1 [9.17x10° [4.00x10% |4.88 3.37
2 |250x10% [1.83x10" [8.78 4.62
3 |1.67x107 |1.073 421 3.19
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5.2 Effect of pH on the Decomposition of Hydrogen Peroxide
under UV Radiation

The decomposition of HO, under UV radiation is fundamental in understanding the AOP
reaction mechanisms. From previous study of Shu (1993), the photodecomposition rate
constants of hydrogen peroxide were approached by considering five reactions (as shown
in Table 5.3). The results gave a good fitting of experimental data. However, this
mechanism can only be applied in the pH range of 3-9. In alkaline conditions, this
mechanism should be modified.

Figure 5.6 shows the normalized concentration (Ca/Ca,) of decomposed hydrogen
peroxide versus reaction time in the pH range of 3 to 11.5 under UV radiation. The results
showed that the higher the alkalinity, the higher the decomposition rate of hydrogen
peroxide. Since the mechanism reported by Shu (1993) can not be applied in this
condition, four additional reactions were picked from the literature. Table 5.3 showed the
reactions used in this study compared to the previous work of Shu (1993).The products of
reactions k;; and k;o have been modified because there is no significant pH variation
during the reaction. The results gave a good fitting of experimental data. The rate
constants k7 and kj9 were obtained from computer modqling and are shown in Table 5.3.
The comparison of these two constants obtained from this study with those reported by
other authors is shown in Table 5.4. It should be noted that rate constant k;; obtained
from this study is very close to the one reported by Christensen et al. in 1982, but the
products between these two reactions are different as shown in Table 5.4. Besides, rate

constant k), obtained from this study is three times that of the one reported by Ferradini et
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al. in 1978. Again, the products between these two reactions are different as shown in

Table 5.4.

Table 5.3 The Reactions Used in This Study Compared to the Previous

Work of Shu (1993)
Reactions Rate constants this study | Previous work
H,Op+ hv—22 3 2 OHe Kiroad=5.8x10% [ X X
H,0, + OHe—.3HO,e + H,0 kir=27x10" [X X
H,0, + HO,0—% 5 OHe + H,0+ O, | kir=3.7 X X
2 OHe—44 3 H,0, kis=40x10° |X X
2 HOo—* 3 H,0, + O, kis=83x10° [X X
OHe+ HOo—¢ 5 H,0 + O, kis=37x10" |X X
OHe+HO, —*250, e+ H,O ki7=74x10°(1) | X not considered
HOzo 222 3H* 4+ O,e pK=4.3 @) | X not considered
HO,e+ Oy0—f2 s HO, + O, kis=7.9x 10" (3) | X not considered
0Oy @ + H,0,— 3 HO, + HO,e kio= 6.61 M X not considered

(1) Obtained from computer simulation in this study.

(2) Reported by Bielski et al. in 1985
(3) Reported by Rabani et al. in 1969
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Table 5.4 Comparison of k;; and ko Obtained from this Study and

from other Authors
Reactions Rate constants | Source
OHe+HO, —H25 0, e+ H,0 7.4 x10° this study
OHe+HO, —42 5 OH + HO2e 7.5 x 10° Christensen et al.(1982)
O;'¢ + H;0,—%2=»HO, + HO;e 6.61 this study
O;'¢ + H,0,—> > OH + OHe + O, |2.25 Ferradini et al.(1978)

From computer modeling, at higher alkalinity the k;o[O;¢ J[H.O:] term becomes
more important for the decomposition of hydrogen peroxide. Figure 5.7 shows the
concentration of OH radical during the decomposition of H,O, by UV radiation at
different pH conditions. This data is obtained from computer simulation. The result shows
that the concentration of OH radical at pH = 10.89 is one order less than that at pH =
6.94. At higher alkalinity there is a significant amount of HO, ion, which should trap OH
radicals and interfere with the destruction of target conipounds. This was proven by the
experiment where the decomposition of the target compound was monitored in the
presence of H;O,/UV. This result will be discussed later in section 5.4.

Figure 5.8 shows the decomposition of H,0, under different light intensities at pH
= 6.94. The results gave a good fitting to the experimental data. The rate constants were

taken from computer simulation as shown in Table 5.5. Figure 5.9 shows the rate constant
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Figure 5.8 The Decomposition of Hydrogen Peroxide by Different UV Light Intensities

Initial H202 conc. = 4.73 x 10-3 mole/l, pH=6.94
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of hydrogen peroxide decomposition versus light intensity. The results demonstrated the

almost linear relationship between kyyyo,I and light intensities.

Table 5.5 Rate Constant kyypo,I Varied with Light Intensities

Light intensity rate constant ( kiy02I)(1/sec)
280 Watt 5.85x 10
420 Watt 8.71 x 10*
560 Watt 1.15x 107

5.3 Effect of pH on the Decomposition of Phenol under UV Radiation alone

Phenol can be decomposed by direct photolysis. It is already partially ionized at pH = 9.0

and becomes a phenolate anion (pKa = 9.75, Kirk-Othmer 1982 ). The phenolate anion

absorbs more of the light emitted by a Xe lamp than the phenol molecules (Lipczynska-

Kochany 1993). The rate of decomposition of the phenolate anion by direct photolysis is

different from the rate of decomposition of phenol by direct photolysis. Three pH

conditions pH = 6.45, 9.35 and 10.80 were studied. The color of solution becomes brown

during the reaction. Thus, the transmittance of solution must be considered in the

modeling because the penetration of UV light in the reactor plays an important role for

the destruction of organics in AOP system.

Figure 5.10 shows the transmittance of phenol solution with respect to time under

different pH conditions during direct photolysis. Results have shown that in the beginning
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of the reaction the phenolate anion absorbs more of the light emitted by the UV lamp
than phenol molecules. However, the products of phenol absorb more light than those of
the phenolate anion. It should be noted that at pH = 10.80 under this condition almost all
of the phenol became phenolate anion. Therefore, in the photolysis process, the effect of
absorbance of products must be considered when modeling is conducted. In HPLC
analysis, it is hard to separate the phenol and phenolate anion because they have similar
properties. Fortunately the initial concentration of phenol and phenolate anion can be
known at different conditions by the dissociation constant of phenol.

Figure 5.11 shows the concentration of phenol plus phenolate anion with respect
to time under different pH conditions. The points are experiment data, and the lines denote
the predicted model. The photodecompositon rate constants kI and kignl were solved by
computer simulation at pH = 6.45 and pH = 10.80, respectively. The rate constants are
summarized in Table 5.6. The results in Table 5.6 shows that k.l is smaller than kgl
This means that the phenolate anion is more difficult to decompose by direct photolysis
than phenol.

The reaction curve for pH = 9.31 is predicted by applying these two rate

constants. The prediction of the model is in good agreement with the experimental data.
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Table 5.6 The Photodecomposition Rate Constants of Phenol and Phenolate and
Dissociation Constant of Phenol

Reactions rate constant ( V/sec)

phenol + H;0 «Xe#=_3 phenolate anion + H* | 1.78x 107 (¥)

Phenol + hv —#— products 7.67 x 10
Phenolate anion + hv ——kl"ﬁ,—-) products 9.07 x 10°

(*) Obtained from Kirt-Othmer 1982

S.4 Effect of pH on the Decomposition of Phenol in the Presence of H,0»/UV

In this study, the effect of direct photolysis and the absorbance of products was
considered. It is known that both phenol and the phenolate anion react with hydroxyl
radicals and have comparable rate constants ( Buxton et al. 1988). Three pH conditions
pH = 6.49, 9.31 and 10.76 were used in this experiment. From HPLC analysis the
intermediates, catechol and hydroquinone, were detected. The phenolic radical exists
during the reaction as suggested by the literature [Leuven (1972), Matthews et al.(1965 )).

Figure 5.12 shows the transmittance of phenol soiution with respect to time under
different pH conditions in the presence of H,O»/UV. Initially, the transmittance of a
solution with a pH =10.76 is less than that of a solution with a pH = 6.49. However, as
reaction time increases, transmittance of the solution with a pH =10.76 significantly
increased compared with transmittance of the solution with a pH = 6.49. These results

were considered in the following modeling.
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Figure 5.13 shows the variation of the concentration of phenol and its
intermediates, catechol, hydroquinone, and phenolic radical, with respect to time at pH =
6.49 in the presence of HO,/UV. The points are the experimental data and the lines are
predicted model. In this condition the phenolate anion can be neglected. There is very
good agreement between the experimental data and the kinetic model prediction for
phenol, catechol, and hydroquinone concentration. However, the reaction curve for the
phenolic radical was constructed solely using computer simulation since phenolic radical
can not be detected experimentally. The rate constants obtained from computer simuiation

are summarized in Table 5.7.
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Table 5.7 The Reactions Considered in the Decomposition of Phenol in the Presence of

H;0,/UV and Rate Constants
Reactions Rate constants(l/mole-sec)
Phenol + hv —*2 products 7.67 x 10
Phenol + OHe —2 Catechol 6.44 x 10°
Phenol + OHe —*— Hydroquinone 7.98 x 10°
Phenol + OHe —2— Phe(Phenolic radical) 3.50 x 10°

Catechol + OHe —2 5 Products (Organic acid) | 3.45 x 10°

Hydroquinone+OHe—*—Products (Organic acid) | 8.14 x 10°

Phenol + Phe —*:— Higher molecular products 9.55x 107
Phenol + HO,» —*— Products 8.02 x 10°
Phenol + COss” —*2— Products # [6.12x10°
Phenolate anion + hy —2< 3 Products * |907x 10°
Phenolate anion + OHe —*2— Products *) |3.86x10°

(#) when bicarbonate is present.
(*) these two reactions became significant at higher pH condmons
Figure 5.14 shows the pH variation during decomposition of phenol at pH = 6.49
in the presence of H,O,/UV. The points are the experimental data, and the line is the
predicted model. The result shows that pH value decreased with respect to reaction time.

Although the trend were the same, the model did not quite predict the experimental data.
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At pH = 10.76, 91% of phenol is ionized and becomes phenolate anion. Figure
5.15 showed the concentration of phenol plus phenolate ion with respect to time in the
presence of HO,/UV at pH = 10.76. The points are the experimental data, and the lines
are the predicted model. Applying the rate constants from kj, to kas for pH = 6.49, the
rate constant ka; was obtained from computer simulation using experimental data at pH =
10.76. From the model, we get the predicted concentration curve of phenol and phenolate
anion individually. By combining these two curves, the predicted concentration of phenol
plus phenolate anion can be obtained. The model prediction gave a good agreement with
the experimental data.

Figure 5.16 shows compares the experimental data to the model. In one caes
phenol and phenolate anion is considered. In the other case, only phenol is taken into
account. It indicated the predictions based on the inclusion of the formation of the
phenolate anion were found to be in closer agreement with experimental data than those
based on phenol only.

At pH = 9.31, 27% of phenol is ionized and becomes phenolate anion. Figure 5.17
shows the concentration of phenol plus phenolate anion versus time in the presence of
H;0,/UV at pH = 9.31. The points are the expen'mentai data and the lines are predicted
model. The prediction curves of phenol only, phenolate anion only and phenol plus
phenolate were obtained by applying the rate constants in Table 5.7.

Figure 5.18 shows the concentration of phenol plus phenolate anion at different pH

conditions in the presence of H,O,/UV with respect to time. One can see that the higher
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fact that at higher pH conditions, hydroperoxyl ion (HO;') traps more hydroxyl radical and
interferes with the decomposition of phenol and phenolate anion.
Comparison of rate constants of phenol and phenolate obtained from this study

along with that obtained from other authors were summarized in Table 5.8.

Table 5.8 Summary of Rate Constants (1/mole-sec) of Phenol and Phenolate Obtained
from this Study and that Obtained by other Authors

Reactions Rate constant of Rate constants of
this study Other autbors

Phenol + OHe — Catechol + Hydroquinone | 1.44 x 10° (1) 6.2x10° (2)

Phenolate anion + OHo—> Products 3.86 x 10° 9.2x10° (2)

(1) =kyo + ky; in Table 5.6
(2)Reported by Matthews et al. in 1965.

Figure 5.19 shows the concentration of OH radical during destruction of phenol in
different pH conditions in the presence of H,O,/UV. The data was obtained from
computer simulation at three pH conditions. The results had good agreement with the
results of the decomposition of hydrogen peroxide by UV radiation in Figure 5.7. The
more the alkalinity, the lower the concentration of OH radical. But in this case, the time
for the concentration of OH radical reaching steady state was more than three minutes at

pH = 6.49. The one in Figure 5.7 reached steady state in seconds.
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5.5 Effect of Bicarbonate Ion on the Decomposition of Hydrogen Peroxide
without UV Radiation

Bicarbonate ion might trap OH radicals and interfere with the destruction of target
compound (Glaze et al. 1988). Results from this study also showed that bicarbonate ion
can also decompose hydrogen peroxide without UV radiation and may interfere with the
destruction of the target compound. The following proposed mechanism is a modified
version of the mechanism described in section 5.1. As can been seen, there are three new

reactions added. It is as follows:
H,0, + OH «2%2 3 HO, + H,0
H,0,+ HO; —->H,0 + OH + 0,
OH +HO; —— 0 + H,0,
0> + H,0, —2— OH + HO;
HCOy + H;0 <225 H,0" + CO;"
H,0, + HCO; — < HO; + H,0 + CO,

H;0, + CO;™ —2:— HO, + HCOy

Sodium bicarbonate was used as a source of bicarbonate ion. Figure 5.20 shows
the normalized concentration (Ca/Cao) of decomposed hydrogen peroxide versus reaction
time with bicarbonate and carbonate ion in the absence of UV radiation. The results
showed that the higher the bicarbonate ion concentration, the higher the rate of
decomposition of hydrogen peroxide. With a reaction time of 100 minutes, the normalized
concentration of decomposed hydrogen peroxide was 0.95 and 0.60 for the experiments

where the ratio of bicarbonate ion to hydrogen peroxide was 10 and 100,
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respectively. The rate constants which were obtained by parameter estimation was
summarized in Table 5.9. It should be noted that rate constant, kcos-, is three orders of
magnitude larger than that of kycos.. This result will be confirmed in section 5.5. The

results gave a good fitting of the experimental data.

Table 5.9 Summary of Rate Constants kycos. and kcos- Obtained from
Parameter Estimation

Reactions Rate constant (/mole-sec)

-6
H,0; + HCOy’ TN HO, + H,0 +CO, | 90x 10

-2
H,0, + CO5~ —%<a= 5 HO, + HCOy 1.10x 10

The experiment described above was repeated using sodium carbonate as a source
of carbonate ion in place of sodium bicarbonate. Figure 5.21 shows the normalized
concentration (Ca/Cap) of decomposed hydrogen peroxide versus time in the presence of
carbonate and bicarbonate ion. However, this reaction takes place in the absence of UV
radiation. The points are the experimental data, and the lines are the predicted model. The
results showed that the higher the carbonate ion concentration, the higher the rate of
decomposition of hydrogen peroxide. It was observed that for a given reaction time of 100
minutes, the normalized concentration of decomposed hydrogen peroxide was found to be
0.45 and 0.05 for a given ratio of bicarbonate ion to hydrogen peroxide of 3 and 10,
respectively. There was very good agreement between the experimental data and the

predicted model using the rate constants which were obtained from previous experiments.
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Comparing the experimental result of Figure 5.20 to that of Figure 5.21, one can see that
the decomposition rate of hydrogen peroxide by carbonate is faster than that of hydrogen

peroxide by bicarbonate.

5.6 Effect of Bicarbonate Ion on the Decomposition of
Hydrogen Peroxide with UV

From the literature, the mechanism for the reaction of bicarbonate ion and carbonate ion

with hydroxyl radical is shown below:

H,0,+ hv—%2%4 2 OHe
HCO; + OHe —2 3CO;e +H,0
CO;™ + OHe —X15 CO40 +OH

COze + H;0, —%25 HO,e + HCOy

Figure 5.22 shows the normalized concentration (Ca/Cag) of decomposed
hydrogen peroxide versus time in the presence of bicarbonate ion and UV radiation. The
results showed that when the ratio of the concentration of bicarbonate to hydrogen
peroxide was 1 or 10, the effect of bicarbonate on the decomposition of hydrogen
peroxide was not significant. The effect became significant when the ratio was 100. The
rate constants ks and k3 which were determined using computer modeling, are
summarized in Table 5.10. It should be noted that rate constant ki obtained from this

study was twice that of the constant reported by Buxton et al. in 1969. Similarily, the rate
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constant kj; obtained from this study was three times that of the one reported by Shali et

al. in 1969.

Table 5.10 Comparison of Rate Constants (1/mole-sec) Obtained from this Study
and from other Authors

Reactions

Rate constants of

Rate constants of

this study previous studies
HCO; + OHe —%2 3 CO30” +H,0 1.48 x 10° 7.9%x 10
(Buxton et al. 1969)
CO;™ + OHe —%15 COse” +OH 1.68 x 10° 4.7x10°
(Shali et al. 1969)
COse + H,0, —*23 HOpe + HCO; 8.5x 10’ 8.5x10°

(Behar et al. 1970)

(Behar et al. 1970)

5.7 Effect of Bicarbonate Ion on the Decomposition of Phenol
in the Presence of H,0,/UV

To model this experiment, the rate constant obtained from previous experiments were

applied and the reaction of carbonate ion radical (CQO3e’) and phenol was also considered.

Phenol + COse° —%— Products

Figure 5.23 shows the variation of the normalized concentration (Ca/Cay) of
reacted phenol versus reaction time. These results were obtained from experiments under
the following conditions: (1) in the presence of bicarbonate ion and H,O,/UV and (2) in

the presence of HyO,/UV alone. It can be seen that the concentration of phenol is
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stabilized in the presence of bicarbonate ion. The higher the concentration of bicarbonate,
the lower the decomposition rate of phenol. Bicarbonate is known as a strong hydroxyl
radical scavenger (Glaze et al. 1988) and its presence in water reduces or even inhibits the
reaction of these radicals on the organics. The model prediction using the rate constants
which were obtained from previous experiments had good agreement with experimental
data at different dosages of bicarbonate ion. The rate constant, ks, was 6.12 x 10° Vmole-
sec obtained from computer simulation.

Figure 5.24 shows comparison of the accuracy of the prediction of considering the
reaction of carbonate ion radical (CO;¢”) and phenol and not considering the reaction. The
results showed that the prediction of considering the reaction of carbonate ion radical
(CO;¢’) is more accurate than that of not considering the reaction.

Figure 5.25 shows the effect of bicarbonate on the concentration of OH radical
during the destruction of phenol in the presence of H,0,/UV. Results from the computer
simulation demonstrated the relationship between bicarbonate concentration and OH
radical--- the higher the concentration of bicarbonate, the lower the concentration of OH

radical. This experiment proved that bicarbonate ions trap OH radicals.
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5.8 Discussion
5.8.1 Base-induced Decomposition of Hydrogen Peroxide
The maximum rate of decomposition of hydrogen peroxide occurred at a pH value of 12.
This result is consistent with results obtained by other researchers. Even though the rate of
base-induced decomposition of hydrogen peroxide is much less than that of UV-induced
decomposition of hydrogen peroxide, the first should not be ignored for the following
reasons:
e The effect of base-induced decomposition becomes significant for long term storage of
hydrogen peroxide.
o In the application of Fenton’s reagent for soil remediation, this effect should be
considered.
o To model the system of H,0,/UV, the effect of base-induced decomposition must be
taken into account, especially at high pH conditions.
The beta probability function can fit three rate constants at different pH conditions.
The rate constants at different pH conditions can be predicted by beta probability
function.. This is fundamental information which should be used and incorporated into

the AQP studies for the treatment of hazardous organics in wastewater.
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5.8.2 UV-induced Decomposition of Hydrogen Peroxide
under Different pH Conditions

The more the alkalinity, the higher the rate of decomposition of hydrogen peroxide.
Computer simulation shows that the more the alkalinity, the lower the concentration of
hydroxyl radical (OHe), since more hydroperoxyl ion (HO;) traps hydroxyl radical at
higher pH conditions.

The rate constants obtained from computer simulation in this part could be applied
in Fenton’s reagent reaction, since the reaction also involves hydroxyl radical. At higher
pH conditions, hydroperoxyl ion trap hydroxyl radical. This is the reason why the

condition of Fenton’s reagent reaction must be kept at lower pH conditions.

5.8.3 Effect of pH on the Decomposition of Phenol in the Presence of H,0,/UV

The dissociation of phenol at higher pH conditions must be considered in the mechanism.
Phenol and phenolate anion can not be separated by HPLC, but initial concentration of
phenol and phenolate anion can be evaluated from the dissociation constant. The
absorbance of the products of the phenol reaction is very significant and it needs to be
applied in the modeling.

In the mechanism of phenol-H,O./UV, the reaction between catechol or
hydroquinone and hydroperoxyi radical (HO,e) was not considered. The rate of reaction
of phenol and hydroperoxyl radical is two orders of magnitude lower than the rate of
phenol and hydroxyl radical. Also, the concentration of catechol and hydroquinone is

lesser than that of phenol. Thus, the term k[catechol]l[ HO,#] and k[hydroquinone][ HO,e]

can be neglected.
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The more the alkalinity, the lower the rate of decomposition of phenol. This result
is consistent with the result of the UV-induced decomposition of hydrogen peroxide. The
hydroperoxy! ion traps hydroxyl radical and interferes with the decomposition of phenol.
Taking into consideration the formation of phenolate anion improves the accuracy of the
model prediction. From computer simulation, we can see the formation curve of hydroxyl
radical with respect to time. From this, we can determine how quickly the concentration
reaches steady state -- something that can not be measured experimentally.

At pH = 10.76 when phenolate anion is in the presence of H,O,/UV, neither
catechol nor hydroquinone was detected by the HPLC. This means that no catechol and
hydroquinone was formed in destruction of phenolate higher pH conditions in the process
of H,0,/UV. This is the reason why catechol and hydroquinone were not considered as

intermediates of the phenolate anion in the mechanism.

5.8.4 Effect of Bicarbonate Ion

The bicarbonate ion not only scavenges free radicals but also allows hydrogen peroxide to
directly decompose. The effect of carbonate on the decomposition of hydrogen peroxide is
larger than that of bicarbonate.

Experimental results show that the effect of bicarbonate ion on the decomposition
of phenol in the presence of H,O,/UV is significant. Bicarbonate ion can trap hydroxyl
radical and stabilize phenol. In some groundwater and soil contaminants, there is a
significant amount of bicarbonate ion. Thus, this effect must be seriously considered,

especially in soil remediation by Fenton’s reagent.



CHAPTER 6
CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

From the experimental studies and kinetic modeling the following conclusions can be

made:

L.

A mechanism of the base-induced decomposition of hydrogen peroxide was proposed.
We found that all three rate constants from the mechanism go through a maximum
value at pH = 12.29. The plot of rate constants versus pH followed the beta
probability function.

Hydroperoxyl ion and bicarbonate ion can trap hydroxyl radical and interfere with the
decomposition of phenol.

The kinetic models proposed in the study showed excellent agreement with the
experimental data.

The rate constants obtained from computer simulation may prove very useful for
scale-up to a commercial wastewater treatment.

The consideration of the formation of phenolate anion into the model improved the
accuracy of the prediction.

The fqrmation of hydroxyl radical with respect to time can be obtained by computer
simulation.

Bicarbonate ion not only scavenges free radical but also allows hydrogen peroxide to

directly decompose.

83
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6.2 Recommendations

To fully understand the mechanisms suggested in this study, future studies should involve

the following:

L

2.

The mechanism should be applied in Fenton’s reagent reaction to test its feasibility.
The technique of separation of phenol and phenolate anion should be studied.
Measuring the concentration of intermediate products may improve the kinetic model.
The color of phenol degradation products is brown. The source of the color should be

identified.
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