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ABSTRACT

ANAEROBIC DIGESTION AND ACID HYDROLYSIS 
OF NITROCELLULOSE

by
Fong-Jung Tai

In this investigation, studies were conducted to evaluate the biodegradation of 

nitrocellulose in anaerobic batch reactors with and without the supplemental carbon 

inducers, such as cellulose, cellobiose, and lactose. Results from the anaerobic study show 

that degradation o f nitrocellulose alone is difficult and that nitrocellulose degradative 

enzymes could be induced by the three inducers tested. As high as 48.91% conversion 

could be obtained at Cellulose/Nitrocellulose ratio of 1 to 1. Studies also indicated that 

type 20 and 50 celluloses would be more effective and optimum pH was about 6.4 in 

biodegradation o f nitrocellulose. Three testing systems, namely, single-stage, two-stage, 

and staged-feed anaerobic treatment were utilized in the biodegradation study. Results 

from this study showed that a two-stage anaerobic treatment did not clearly enhance 

biodegradation. Stage-feed system had a higher rate o f gas production; unfortunately, the 

system sometimes was not stable. Experiments indicated that nitrocellulose affected the 

biodegradation o f cellulose and decreased gas production at cellulose/nitrocellulose ratios 

lower than 1/1. Analysis o f the data shows that the inhibitory effect o f nitrocellulose on 

cellulose degradation behaved like competitive inhibition. This inhibitory effect can be 

overcome at higher cellulose concentrations.

In the second part o f this study acid hydrolysis o f  nitrocellulose was conducted by 

using concentrated hydrochloric acid at intermediate temperatures. Results showed that



the end products from acid hydrolysis were mainly glucose and small molecular weight 

organic acids. Glucose yields ranged from 45 to 85 percent depending on acid 

concentration, acid/solid ratio, reaction time, and heating temperature. It was found that 

the higher the acid concentration and temperature, the faster the hydrolysis reaction. 

Nitrogen dioxide gas was the dominant species o f nitrogen formed during the hydrolysis 

reaction. From a kinetics study o f nitrocellulose hydrolysis and glucose degradation, it 

was found that the rate o f the reaction is related to acid concentration, acid/solid ratio, and 

temperature.

A complete treatment system, including acid hydrolysis process to decompose 

nitrocellulose, electrodialysis system to recover the hydrochloric acid used in the acid 

hydrolysis process, and fermentation to finally convert glucose into ethanol, proved to be a 

technically feasible alternative to convert waste nitrocellulose into useful products.
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CHAPTER 1

INTRODUCTION

O f the various inorganic esters o f cellulose which can be made, the only one that has 

achieved large commercial production is nitrocellulose. In addition to its wide use in 

industry, this inorganic ester is a versatile material for studying the chemistry o f  cellulose. 

Many advances in understanding the structure and properties of cellulose have been 

derived from studies o f nitrocellulose.

Nitrocellulose, more correctly called cellulose nitrate since it is an inorganic ester, 

is the oldest cellulose derivative. The use of nitrocellulose as a propellant was the first 

major break from the use o f black powder, which was used without change for centuries. 

At present nitrocellulose based powders are extensively used for the propulsion o f bullets, 

shells, and various missiles for tube munitions. The next major step in the history of 

nitrocellulose was the development o f celluloid, a thin and transparent material for film 

industry. Nitrocellulose is soluble in a wide variety of organic solvents, such as 

tetrahydrofuran, ether/alcohol mixtures, ethyl acetate, and acetone, and yields a clear and 

tough films which are compatible with many plasticizers and resins. Nitrocellulose has 

also been largely used in chemical industries, such as varnishes, films, adhesives, artificial 

leather, printing materials, and pharmaceuticals.

Nitrocellulose with high nitrogen content is a principal ingredient in propellants, 

smokeless powder, and some explosives. Nitrocellulose is currently manufactured by 

either a batch nitration process or a continuous nitration system. The Radford Army 

Ammunition Plant (RAAP) generates about 0.2 to 0.9 metric tons (500 to 2,000 lb.) per

1



day o f  waste nitrocellulose fines in process wastewater (Kim and Park, 1992). Because o f 

the insolubility o f nitrocellulose in water, the suspended solids from this process 

wastewater are primarily nitrocellulose fines, 50 percent o f which are smaller than two 

micron, p. (Patterson, 1976). Two basic pollutants resulting from the nitrocellulose 

manufacturing process are nitrating acid rinses and nitrocellulose fines. Acidic rinse 

waters are discharged to the acid recovery plant for recovery o f nitric and sulfuric acids. 

The recovery water is recycled and reused for the nitration and purification processes. 

The suspended solids from the manufacturing process are removed from the wastewater 

using a series o f settling pits, lagoons, and a centrifugation system. Sometimes, 

nitrocellulose fines overflow the treatment reactors and reach the New River.

Nitrocellulose fines have created a water pollution problem for the manufacturing 

wastewater treatment process in RAAP. Based on the study conducted by Arthur D. 

Little, Inc., (1987) the US Army Toxic and Hazardous Materials Agency (USATHAMA) 

recommended removal of nitrocellulose by cross-flow microfiltration followed by alkaline 

digestion pretreatment, then biological treatment. Other potential alternatives, such as 

UV/Ozone oxidation, biological treatment by anaerobes, fungus, and composting, and 

other physicochemical treatments, are also attractive methods for nitrocellulose fines 

removal, treatment, and disposal.



CHAPTER 2 

BACKGROUND

2.1 Characteristics of Nitrocellulose

2.1.1 M anufacturing Process of Nitrocellulose

Nitrocellulose is made by the mixed-acid (including nitric acid, sulfuric acid, and water) 

nitration o f cellulose, a natural high polymer obtained from cotton linters or wood pulp. 

Figure 1 shows the nitrocellulose batch manufacturing process used in the American 

Military Munitions Industry (Patterson, 1976).

Pre-purified cotton linters or wood pulp are shredded and dried to remove excess 

moisture and then treated with mixed nitric and sulfuric acids in "dipping pots" fitted with 

agitators to esterify most o f the hydroxyl groups. Since cellulose nitration is an 

equilibrium reaction, the extent of nitration at equilibrium is governed primarily by the 

composition o f the mixed acid. Some researchers have found that the maximum nitrogen 

content that could be obtained was with sulfuric acid : nitric acid ratios between 0.25 : 1 

and 3 : 1 (Ott et al., 1954). Enough water is required in this mixed acid solution. The 

extent o f nitration is affected to a lesser degree by the ratio o f mixed acid to cellulose 

(Lunge et al., 1901). The industrial mixture usually consists o f 20-30% H N 0 3, 55-65% 

H2S 0 4, and 8-20% water. The nitration temperature is between 10°C (dynamite type) and 

36 °C (celluloid type). Even though the reaction is nearly completed after about five 

minutes, the mixture remains in the reactor for about 30 minutes. The temperature must 

remain constant (cooling), since hydrolytic degradation processes that lead to considerable 

losses in yield begin at a temperature as low as 40 °C. In theory, it should be possible to

3
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Figure 1 Batch Manufacturing Process o f Nitrocellulose (Patterson, 1976)



nitrate all o f the hydroxyl groups in cellulose for a nitrogen content o f  14.14 percent; but 

in practice, the most desirable compositions fall between 10.5 to 13.8 percent nitrogen, 

representing a hydroxyl degree o f substitution (D.S.) within 1.8 to 2.9 per glucose 

anhydride unit rather than the theoretical value 3.0.

After the nitration process the nitrocellulose/acid slurry is passed through a 

centrifugal wringer which removes the bulk of the spent acids for recovery. The crude 

nitrocellulose then is pumped as a water slurry to the purification area. The purification 

processes includes an elaborate series o f water washes, boiling treatments (to destroy 

unstable sulfate esters and nitrates o f partially oxidized cellulose by acid hydrolysis), 

neutralization (with dilute sodium carbonate solution), and heating steps to stabilize the 

nitrocellulose. After purification, the nitrocellulose is centrifuged to have approximately a 

30 percent moisture. It is then processed in accordance with the specific end-use 

requirements o f the batch.

2.1.2 Properties of Nitrocellulose

Nitrocellulose is yellowish-white, odorless, matted mass of filaments, with a specific 

gravity in the range of 1.58 to 1.65 for commercial usage and it has the appearance o f raw 

cotton. The dry density o f commercially available nitrocellulose is between 0.15 to 0.40 

Kilogram/Liter and the specific surface o f nitrocellulose is 1850-4700 cm2/gram, 

depending on the fineness o f the nitrocellulose. Its characteristics are dependent on the 

degree o f substitution. Cellulose is a linear polymer composed o f individual 

anhydroglucose units (also called glucopyranose units) linked at one and four position by



glucosidic bonds with beta configuration. The alcoholic hydroxyl groups o f cellulose are 

polar and can be substituted by nucleophilic groups in strongly acid solution. The 

mechanism o f esterification assumes the formation o f a cellulose oxonium ion followed by 

the nucleophilic substitution of an acid residue and the splitting off o f water. The 

esterification reaction from cellulose to nitrocellulose is shown in Figure 2.

The primary hydroxyl group on the C-6 atom reacts most readily, while the 

neighboring hydroxyl groups on the C-2 and C-3 atoms o f the anhydorglucose react 

considerably slower due to steric hindrance. Basically, esterification is possible with all 

inorganic acids. Limiting factors are the type and the size o f the acid residue as well as the 

varying degree of acid-catalyzed hydrolysis, which can lead to a complete cleavage o f the 

cellulose molecule as the result of chain splitting. The three hydroxyl groups o f cellulose 

can be completely or partially esterified by nitrating acid. The degree o f nitration can be 

related to the following theoretical nitrogen contents:

Cellulose Mononitrate, C6H70 2(0H )2(0 N 0 2) 6.75% N

Cellulose Dinitrate, C6H70 2(0 H )(0 N 0 2)2 11.11% N

Cellulose Trinitrate,C6H70 2(0 N 0 2)3 14.14% N

The degree o f nitration is most commonly designated by the nitrogen content 

expressed as percent nitrogen or, less frequently, as the number o f cubic centimeters o f 

NO ( at 0 °C and 760 mm pressure) evolved from one gram o f nitrocellulose. It is often 

convenient to designate the degree o f nitration by the "Degree o f Substitution" (D.S.) 

which is the average number o f hydroxyl groups nitrated per anhydroglucose unit. 

Nitrocellulose with a nitrogen content between 11.2 and 12.2% is a suitable raw material
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for lacquers, and nitrocellulose with nitrogen content 12.2% or higher is suitable for 

explosives exclusively (Conaway, 1938).

Dry nitrocellulose is a very powerful explosive and, very sensitive to shock and 

spark. Its explosive strength depends on the nitrogen content. The higher the nitrogen 

content the easier it is to explode. In addition, nitrocellulose in dry state is a rather poor 

conductor o f electric static charge and can develop a strong charge which can cause a 

accidental ignition (Qunichon and Tranchant, 1989). Nitrocellulose mixes with at least 25 

percent of water or alcohol are stabilized completely.

Nitrocellulose, like cellulose, is insoluble in water. This property easily allows its 

preparation, stabilization, and transportation by quenching with water. The solubility of 

nitrocellulose in organic solvents varies with its nitrogen content. Usually, increasing the 

solubility also increases the viscosity. Carbonyl compounds, like ketons - acetone, methyl 

ethyl keton, and cyclohexamone and esters - ethyl acetate, butly, and amyl acetate, are the 

good solvents for nitrocellulose in industrial use. All nitrate esters including nitrocellulose 

have poor resistance to acid, and are more stable in basic medium. Treating nitrocellulose 

with concentrated or slightly diluted acids or bases usually leads to denitration, even 

destruction (Quinchon and Tranchant, 1989).

2.1.3 H azards of Nitrocellulose

Nitrocellulose is extremely flammable and, has a flash point o f 12.8 °C (closed cup). The 

melting point and auto ignition range is ffom 160 to 170 °C (Kim and Park, 1992). 

Because of its low flash point and highly explosive potential, nitrocellulose is classified as



a highly flammable and explosive (or reactive) hazardous material. According to Resource 

Conservation and Recovery Act (RCRA), sludge ffom nitrocellulose manufacturing 

process wastewater treatment plant is also classified as hazardous waste by code K044 

(ffom specific source). Data drawn ffom experiments feeding sheep nitrocellulose with 

regular food shows no negative effect based on blood analysis (Stoller, 1993). Results on 

the health risk study ffom contact with nitrocellulose has also shown negligible effect. In 

view o f the nontoxic nature o f nitrocellulose, turbidity and palatability have been used as 

the guidelines for drinking water standard. Nitrocellulose may blanket benthic habitats 

and limit available oxygen in receiving water producing significant abiotic environmental 

effects.

2.1.4 W aste from Nitrocellulose M anufacturing Process

Recent data indicated that Army Ammunition Plant generates about 0.2 to 0.9 metric tons 

(500 to 2,000 lb.) waste nitrocellulose fines ffom manufacturing process everyday. The 

volume o f wastewater ranged ffom 16 to 100 gallons for every pound o f nitrocellulose 

produced (Kim and Park, 1992). Since nitrocellulose is insoluble in water, the suspended 

solids are primarily fine nitrocellulose fibers, 50 percent o f which are smaller than two 

micron (p). Tables 1 and 2 show the detailed volume and characteristics o f wastewater 

generated ffom the nitrocellulose manufacturing process (Patterson, 1976).

The two basic pollutants resulting ffom the nitrocellulose manufacturing process 

are nitrating acid rinses and nitrocellulose fines. Acidic rinse waters are discharged to the 

acid recovery plant for recovery o f nitric and sulfuric acids. The recovered acidic wastes 

are recycled and reused for nitration. The suspended solids-laden wastewater ffom
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Table 1 Volume o f Wastewater Generated from NC Production 
(Patterson, 1976)

Source Volume*, gpd Percent Use

Nitration Cooling 1,000,000 29.1

Boiling Tub 998,000 29.0

Beaters 400,800 11.7

Poachers 343,000 10.0

Blender 423,000 12.1

Wringer 273,800 8.0

Total 3,438,600 100.0

* Flow per Manufactruing Line. NC capacity per line is 120,00-144,000 lb./day

Table 2 Characteristics o f Wastewater Produced ffom NC Manufacturing Process 
(Patterson, 1976)

Source pH TSS, mg/1 COD, mg/1 N 0 2+ N 0 3-N, mg/1

Boiling Tub 1.1-3.9 8.3-10.0 103.5-136.0 277.3-406.8

Beaters 7.2-9.1 140-580 31.0 0.6-4.0

Poachers 5.5-9.8 214-278 72-685 21.1-26.9

Blenders 6.0 463-495 - 30.0-34.0

W ringer 7.4-8.2 343-828 135 -
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are recycled and reused for nitration. The suspended solids-laden wastewater from 

manufacturing processes is treated by a series of settling pits, lagoon, and centrifugation 

system. Currently, nitrocellulose fines in RAAP wastewater end up as sediments in 

settling pits or lagoons, some overflow into the New River. Waste nitrocellulose such as 

floor sweepings are collected and treated in a pit by alkaline digestion and given to 

hazardous waste disposal contractors for final disposal.

Since nitrocellulose is nontoxic, the measure o f total suspended solids (TSS) is 

used as the water quality criteria. The general water quality criteria for TSS is that 

settleable and suspended solids should not reduce the depth o f the compensation point for 

photosynthetic activity by more then 10% from the seasonally established average for 

aquatic life. The current TSS limitation set by the National Pollutant Discharge 

Elimination System (NPDES) is an average of 40 ppm for a 24-hour composite sample. 

Radford Army Ammunition Plant currently meets these permit requirements. However, 

the regulation may become more stringent in the future, and at that time additional 

removal and treatment technologies of nitrocellulose will be critically needed. 

Furthermore, Radford Army Ammunition Plant does not have the capability presently to 

further remove and treat nitrocellulose during mobilization (Kim and Park, 1992).

2.2 Decomposition of Nitrocellulose

The susceptibility o f nitrocellulose to degradative processes is a reflection o f both o f the 

chemical nature o f the cellulose chain molecule and o f the substituents along the chain. 

The extent to which each o f these factors contributes to the total effect is dependent upon 

the type and degree of substitution o f the nitrocellulose. Since the material is composed o f
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macro-molecules, decomposition is caused by changes in physical properties due to the 

physical, chemical, or biological reactions.

2.2.1 Mechanical Decomposition

Grinding, milling, and cutting are common unit processes in the chemical industry and are 

employed in order to achieve both size reduction and an increase surface area o f the 

treated substance. These mechanical processes are applied to high polymers such as 

cellulose and nitrocellulose. In this process the crystal lattice of cellulosic structure is 

deformed and the degree o f polymerization (D.P.) is also reduced (Ott et al., 1954). The 

mechanism by which the mechanical decomposition occurs is not completely delineated, 

but it has been attributed to oxidation, hydrolysis, and mechanical rupture. Under the 

conditions o f ball milling, cellulose and nitrocellulose undergoes a lattice structure 

deformation, chain scission, increase in solubility, and increase in moisture absorbability.

2.2.2 Thermal Decomposition

Nitrocellulose is relatively stable at moderate temperatures in high purity form. Thermal 

decomposition only becomes detectable at temperatures above 100 °C. The initial step 

(rupture o f the 0 -N 0 2 bond) is followed a series o f oxidation reactions. The reaction is 

catalyzed by the production N 0 2 which is responsible for the self-ignition phenomenon in 

nitrocellulose (Kennedy et al., 1970).

Fowler et al. (1954) tested nitrocellulose (D.S. = 2.2) in an oven with air at 130 °C 

for various periods o f heating time. Results showed that after 17 hours very little change
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occurred in the surface chemistry of nitrocellulose. Vandoni et al. (1954) measured 

thermal decomposition of nitrocellulose at 108 °C. Carbon monoxide and dioxide, nitric 

and nitrous oxides, methane and nitrogen were found as products o f thermal 

decomposition. Hydrogen cyanide was found by Muraour et al. (1954) when 

nitrocellulose was ignited in a confined space. The propellant type o f nitrocellulose 

(>12.6% nitrogen) was studied by Wolffom et al. (1955). A solid residue was formed as a 

result o f thermal decomposition which was characterized analytically. By analyzing 

homolytic bond scission, the residues were shown to be the fragmented type of 

oxycellulose nitrate in an extremely low degree o f polymerization.

2.2.3 Photochemical Decomposition

Photochemical radiation is capable of cleaving C-C bonds. During photo-decomposition, 

chain scission, crosslinking, and monomer production, including other small molecular 

weight fractions, could occur. Random chain scission caused by photodecomposition in 

ethyl acetate and methanol solution has been found for nitrocellulose at high and low 

degrees o f nitration. The quantum yields for chain scission were about 0.01-0.02 

(Kennedy et al., 1970). Nitrocellulose, in film form breaks down under ultraviolet 

irradiation. The denitration reaction produces N 0 2 and HNO3 as well as organic reducing 

materials. The latter compound will cause further degradation of nitrocellulose and 

liberation o f nitrogen oxides and instigate the autocatalytic process. Researchers reported 

that after UV irradiation for a period o f time decomposition and certain degree of 

denitration took place in nitrocellulose. The decomposition products included carbon
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monoxide, carbon dioxide, nitrogen gas, and Oxides o f nitrogen (Berthelot and 

Gaudechon, 1965; Kraus, 1965; Oguri et al., 1965).

Some surface degradation o f nitrocellulose caused by X-rays has been studied. 

The degradation process in the surface regions during X-ray exposure involved a decrease 

in the nitrate concentration and results in the concomitant evolution NOx. On extended 

exposure a further nitrogen functionality became evident by the appearance o f a peak 

centered at ~ 400 eV binding energy. After X-ray degradation, a sample showed slight 

yellowing and conversion from a fibrous character to a powdery form (Kennedy et al., 

1970).

A study o f destruction nitrocellulose by irradiation o f pulsed lasers was conducted 

by Yang and Ramsey (1993). The laser induced denitration o f nitrocellulose was 

investigated using an ion trap mass spectrometer for gaseous products. Results showed 

that shorter laser wavelengths seemed to be better for denitration o f nitrocellulose. 

Results also indicated that laser detonation was undesirable for treating nitrocellulose 

because o f a large number of by-products. Pulsed UV laser induced denitration with an 

appropriate laser intensity appeared to be a technical feasible alternative for nitrocellulose 

destruction.

2.2.4 Alkaline Decomposition

Previous workers have shown that the action o f alkalies, especially potassium or sodium 

hydroxides, on aliphatic nitrates is not a simple saponification regenerating the alcohol and 

forming sodium nitrate, but is a profound decomposition yielding also sodium nitrite and
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oxidation products o f the aliphatic group. The products reported by various investigators 

on the action of alkalies on nitrocellulose included inorganic nitrate and nitrite, ammonia, 

oxides o f  nitrogen, cyanide, carbon dioxide and monoxide, organic acids (oxalic, malic, 

glycolic trihydroxyglutaric, dehydroxybutyric, malonic, and tartronic acids), sugars, 

modified celluloses and their nitrates and partially denitrated nitrocellulose (Kenyon and 

Gray, 1936).

The decomposition o f nitrocellulose in aqueous sodium hydroxide was studied in a 

quantitative manner by Kenyon and Gray (1936). A relatively small amount o f carbon 

dioxide was produced and a relatively large percentage o f  the nitrate groups was reduced 

to nitrite. The decomposition o f nitrocellulose appeared to be related to time, 

concentration o f alkali, ratio o f alkali to nitrocellulose, and the temperature. The oxidative 

decomposition o f the cellulose molecule was accompanied by reduction o f the nitrate 

groups to nitrite groups. The time required to decompose a given weight o f nitrocellulose 

decreased with increasing temperature and alkali concentration but appeared independent 

to the alkali-nitrocellulose ratio at constant alkali concentration.

Lure et al. (1991) conducted a study for heterophase alkaline hydrolysis of 

cellulose nitrate in aqueous sodium hydroxide by UV spectroscopy. He concluded that 

degradation o f cellulose nitrate was significantly slower than denitration. And dissolution 

o f the degradation products in the alkaline solution proceeded with higher rate than in 

neutral or acid solution. The main denitration step involved elimination o f H N 02.

Alleman et al. (1993) conducted an investigation on alkaline hydrolysis by using 

three types o f alkalis at a variety o f dosage levels and reaction temperatures. Results



showed that 4 % sodium hydroxide could digest most o f the original carbon into a soluble 

form at 25 °C. The cyanide released was likely to be in the low ppm range. But some 

uncertainties still remained in this study. Total nitrgoens released ffom hydrolysis process 

were only up to 40%. Apparently some o f nitrogen was still bounded with organic carbon 

residuals. The end products ffom the reaction were also unidentified at that time. The 

residual solids and liquor ffom alkaline hydrolysis were tested by a series o f  respirometric 

studies for biodegradability. Results show that the residual solids were still relatively 

recalcitrant to biodegradation. Although the BOD ffom residual liquor test was much 

higher than the solids' BOD, by comparing the total soluble organic carbon this BOD 

value was still too low. A similar study conducted by Wendt and Kaplan (1976) used a 

modified activated sludge process to treat NaOH-digested nitrocellulose solution. Results 

indicated a relatively good removal o f BOD (88.6 %) but less satisfactory removal o f TOC 

and COD (54.5 % and 55.2 %, respectively). From these two studies, obviously, the 

soluble form o f the organics still exhibit resistance to biodegradation.

2.2.5 Acid Denitration and Hydrolysis

Denitration o f nitrocellulose also takes place with treatment by acids, but the reaction is 

much slower than that with alkalies. Acid denitration o f nitrocellulose has been 

demonstrated by the treatment with mixed acid containing more water than the acid used 

to produce the nitrocellulose. In this case, the esterification equilibrium shifts in the 

direction o f lower nitrogen content. One practical aspect o f this behavior is observed in
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the denitration o f nitrocellulose which occurs while wringing out the spent acid. This 

denitration is caused by dilution of the spent acid with moisture ffom humid air.

Since the acid residue in the esterification process can cause a varying degree of 

acid-catalyzed hydrolysis, which can lead to decomposition or even a complete cleavage 

o f cellulosic molecules as the result of statistical chain splitting, denitration and cleavage 

o f the cellulosic structure caused by acids and acid hydrolysis shows attractive potential to 

treat the waste nitrocellulose fines. Little information is available for a detail study o f  acid 

hydrolysis to treat nitrocellulose fines, but acid hydrolysis has been used to convert 

cellulose, which has a formula structure similar to nitrocellulose, to useful products for a 

very long time.

Lure et al. (1991) conducted a study on chemical transformation o f cellulose 

nitrate with aqueous sulfuric acid by UV spectroscopy. This study concluded that 

denitration occurred basically within the fibers and the rate o f denitration was faster than 

rate o f degradation. Denitration was accompanied by a series o f oxidation-reduction 

reactions, the form o f H N 03 reduction products (NO, N20 , N2) and the oxidation of 

organic compounds (CO and C 0 2).

In theory, any mineral acid is effective, but sulfuric and hydrochloric acids are 

widely used in the acid hydrolysis of cellulosic material because o f their lower costs. 

Between sulfuric and hydrochloric acids, hydrochloric is used by most industries because it 

is easier to recover ffom the process. Glucose is the major product o f acid hydrolysis of 

cellulosic materials. Glucose yields range ffom 40 % to almost 100 %  depending on acid 

concentration, heating temperature, and reaction time (Goldstein et. al., 1985 and 1992).



18

Because it has the same crystal cellulosic structure as cellulose, nitrocellulose can be 

treated by the acid hydrolysis process to produce large amount glucose.

2.2.6 Biological Degradation

Biological degradation is chemical change in nature. However, it is not considered 

chemical degradation since the source o f the attacking chemicals are microorganisms, such 

as fungi and bacteria. These chemicals are of a catalytic nature, e.g., enzymes. The 

susceptibility of a polymer to microbial attack generally depends on the enzyme availability 

for the polymer for, enzyme specificity o f the polymer, and presence o f a coenzyme, if 

required.

Little work has been done for biological treatment o f nitrocellulose, because 

nitrocellulose was reported to be extremely bioresistant. Bokomy (1965) found that mold, 

e.g., aspergillus, grew on nitrocellulose in a medium comprising an aqueous solution o f 

mineral salts. He suggested that nitrocellulose provides the mold with essential carbon, 

and perhaps nitrogen. Malenkovic (1965) and Jacque (1965) concluded that only the 

mineral salts dissolved in water and various organic substances, such as incompletely 

nitration cellulose were used by the mold. However, Hubregste (1978) conducted a 

feasibility study on treatment o f nitrocellulose lime sludge and oxidation o f nitroglycerin 

from wastewater stream. He found that nitrocellulose was only slowly degraded in 

landfills. Lacey (1980) reported fungal growth on gunpowder which caused deterioration.

Brodman et al. (1981) conducted a study using microorganisms for partial 

denitration o f nitrocellulose-based small arms propellants, in order to gain burning rate



control. He reported that Aspergillus fumigatus was found to grow on gunpowder 

suspended in a nitrogen deficient, carbon supplemented medium, but no growth was 

observed under the same conditions when carbon source was absent. He concluded that 

nitrate was released from nitrocellulose by hydrolysis o f the nitrocellulose nitrate ester 

group which was enhanced by the microorganisms. But Aspergillus fum igatus did not 

directly attack the nitrocellulose. Gallo et al. (1993) conducted an investigation using 

three different fungus, Phanerochaete chrysosporium, Aspergillus fumagatus, and 

Actinomycetes, to evaluate the potential degradative capability o f fungus. Results showed 

that none o f the tested organisms utilized nitrocellulose as a carbon source under the 

surveyed conditions. However, some nitrocellulose hydrolysis did occur when it was 

cultured with Aspergillus fumagatus and Actinomycetes.

Williams et al. (1989) also reported significant removal efficiency o f nitrocellulose 

in soil by composting. A field demonstration o f using static pile composting technique for 

nitrocellulose-contaminated soils was conducted by Roy F. Weston, Inc. (1993) at the 

Badger Army Ammunition Plant (BAAP) in Baraboo, Wisconsin. In this study, the 

contaminated soil and sediment is mixed with organic amendments (bulking agents/carbon 

sources) to enhance microbial metabolism and contaminants destruction. Results showed 

that the removal efficiency ranged from 26 % to almost 100 % for extractable 

nitrocellulose.



CHAPTER 3 

OBJECTIVES

Although nitrocellulose production technology research and development has a long 

history, there has only been limited research on nitrocellulose waste treatment and 

disposal. Separation techniques employed in removing nitrocellulose fines from 

manufacturing wastewater include centrifugation, microfiltration, coagulation/ flocculation 

and sedimentation, and air flotation. However, the removal efficiency is low with these 

physical separation techniques because nitrocellulose fines are small and their sizes are 

distributed over a wide range. Another problem with the separation o f nitrocellulose fines 

is that sludge produced from manufacturing process is listed as a hazardous waste because 

o f its reactivity, which makes its disposal expensive.

Some early researches showed that even a very small degree o f substitution in 

molecular structure o f  cellulose can render it resistant to microbial breakdown (Siu et al, 

1949; Siu, 1951). Since nitrocellulose used by military has very high degree of 

substitution (about 2.3 to 2.9), it is believed the nitrocellulose is quite resistant to 

microbial attack. But, the biological studies conducted by Roy F. Weston, Inc., using 

static pile composting for treating nitrocellulose contaminated soils, showed that 26 % to 

100 %  nitrocellulose reduction was possible in more than one hundred days. The 

amendment mixtures used in this composting study included alfalfa leafs (chopped and 

whole), woodchips, and manure. Most o f these amendments contained cellulose. Since 

cellulose has been shown to be more readily biodegradable in anaerobic conditions, it is 

possible that anaerobic microorganisms can be used to degrade nitrocellulose as well.

20
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The residual acids remaining in nitrocellulose from the manufacturing process can 

cause nitrocellulose to be unstable and accelerate the rate o f decomposition (Ott et al., 

1954). This decomposition results from the cleavage o f the cellulosic molecule and chain 

splitting. Therefore, acid is a possible alternative way to treat nitrocellulose due to its 

ability to accelerate the hydrolysis process. Acid catalyzed hydrolysis has been used for a 

long time in wood industry and agricultural waste treatment to convert cellulose to useful 

products (Goldstein et al., 1985 and 1992). Additionally, nitrocellulose is a cellulose 

derivative. They have similar chemical and physical crystal structure. Acid hydrolysis 

should be as effective treating nitrocellulose as it is for cellulose.

In order to study these two potential alternatives mentioned above, this 

investigation was divided into three major phases and the objectives o f study are as 

follows:

3.1 Anaerobic Treatment Process

• To study the effects o f substrate and inducers concentration on anaerobic

biodegradation o f nitrocellulose. This treatability study used both serum bottle and 

biochemical methane potential technique by controlling the concentrations of 

nitrocellulose and inducers/ nitrocellulose ratios at neutral pH condition. Lactose, 

cellobiose, and cellulose were selected as enzymatic inducers in this study. The

biogas, volatile acids, nitrite, nitrate, and ammonia produced were used as the

parameters to evaluate the system performance.

• To investigate the nitrocellulose biodegradation with co-substrates by using two

batch type o f single-stage anaerobic reactors.



To study the effects o f pH values in enzymatic inducers. A treatability study using 

anaerobic biodegradation on nitrocellulose was performed by controlling the 

concentrations o f nitrocellulose and inducers at different pH values. The biogas, 

soluble chemical oxygen demand, volatile acids, nitrite, nitrate, and ammonia produced 

were used as the parameters to evaluate the system performance.

To evaluate a batch two-stage anaerobic system to enhance the biodegradation of 

nitrocellulose by separation o f acidogenesis and methanogenesis phases.

To evaluate a batch staged-feed anaerobic system to study the enhancement o f the 

biodegradation o f nitrocellulose.

To investigate the inhibition caused by adding nitrocellulose into an anaerobic 

biological system.

3.2 Hydrochloric Acid Hydrolysis of Nitrocellulose

To study the feasibility o f acid hydrolysis o f nitrocellulose, a series o f tests were 

conducted by controlling the concentration o f acid, reaction time and heating 

temperature, within a moderate temperature range at ambient pressure.

To predict the hydrolysis reaction o f nitrocellulose with hydrochloric acid using the 

kinetic model modified ffom Saeman's work (1945).

To identify the degradative intermediate and end products in acid hydrolysis of 

nitrocellulose, and to analyze the material balances for both carbon and nitrogen 

contents.



To study the mechanism of hydrolysis reaction and, to evaluate the optimal operational 

condition. Glucose yield, other small molecular weight organic acids, nitrite, nitrate, 

and ammonia were measured.

3.3 Proposed Nitrocellulose Treatment Method

To recommend a complete treatment process that fully convert waste nitrocellulose 

into useful products, by combining the results o f this study with the currently available 

technologies.



CHAPTER 4

MATERIALS AND METHODS

Pure nitrocellulose was obtained from Radford Army Ammunition Plant (RAAP) in 

Virginia. The nitrogen content was about 13.5 %. Nitrocellulose received from RAAP 

was mixed with a large amount o f water. Deionized water was added to nitrocellulose 

mix and allowed to sit to expel alcohol overnight. Then it was dried at room temperature 

for 12 to 16 hours. The air dried nitrocellulose was then put into a vacuum oven 

(NAPCO vacuum oven model 5831, Fisher Scientific Inc.) at a pressure o f two to five cm 

of mercury at 65 °C for four hours to evaporate all water then placed in a desiccator 

(White, 1962). After the drying process, the nitrocellulose was ready to be used for all 

tests in this investigation. Cellulose (type 20, 20 |i average particle size), crystalline D- 

(+)-cellobiose, lactose (sugar milk), and other chemicals used in this study were obtained 

form Sigma Chemical Company, St. Louis, MO.

4.1 Anaerobic Treatment Process

Two types of enzyme systems are usually utilized by bacteria for their cellular activities 

and energy conversion. Biosynthetic enzyme systems provide essential amino acids and 

other intermediates which are essential for growth and other cellular activities. Organic 

compounds are converted by the second enzyme system, the catabolic enzyme system, into 

simpler growth substrates and energy. Biosynthetic enzymes are often produced 

continuously, while on the other hand catabolic enzymes usually require induction by the 

degradation products o f interested compounds. These kinds o f enzyme systems can be 

substrate specific but some are not. Sometimes compounds o f similar structure,

24
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degradation products, or earlier precursors may induce these enzymes (Babcock and 

Stenstrom, 1993).

Because its chemical structure is similar to that o f nitrocellulose, cellulose was 

utilized as the inducer in this study. Both cellulose and nitrocellulose are linear polymers 

composed o f individual anhydroglucose units linked at 1 and 4 positions through 

glucosidic bonds with beta configuration. The only difference is that the hydroxyl groups 

o f  cellulose were esterfied by nitro- groups in nitrocellulose. As it was mentioned earlier, 

it is possible to treat nitrocellulose contaminated soil with a composting technique. In this 

application, contaminated soil was mixed with bulking agent and amendment materials 

which contained large amount o f cellulose. Therefore, cellulose would be a good 

candidate for a co-substrate to enhance biodegradability in nitrocellulose treatment. 

Cellobiose consists o f two anhydroglucose units and is the degradation product of 

cellulose. To provide the degradation products for biological hydrolysis, cellobiose was 

chosen as another enzymatic inducer in this investigation. Upon hydrolysis, the molecule 

o f lactose, or milk sugar, is split to yield a molecule o f glucose and a molecule of 

galactose. Glucose is the major degradation product from the hydrolysis o f  cellulose. 

Therefore, lactose was considered as the third inducer in this study.

For many enzymes, the rate of catalysis, V, varies with the substrate concentration, 

[S], V is defined as the number of moles o f product formed per unit time. At fixed 

concentration o f enzyme, V is almost linearly proportional to [S] when [S] is small. At 

high [S], V is nearly independent of [S], In 1913, Leonor Michaelis and Maud Menten 

proposed a simple model to account for these kinetic characteristics. The critical feature



in their system is that a specific ES complex is a necessary intermediate in catalysis. The 

model proposed, which is the simplest one that accounts for the kinetic properties o f many 

enzymes, is

ki k3
E + S <=> ES —» E + P 

k2

An enzyme, E, combines with S to form an ES complex, with a rate constant k,. The ES 

complex has two possible fates. It can dissociate to E and S, with a rate constant k2, or it 

can proceed to form product P, with a rate constant k,. After rearrangement and 

substitution, the Michaelis-Menten equation results :

v=Vmax m + k ,  E q ( 1 )

where KM is Michaelis constant and Vmax is the maximal rate. KM is equal to the substrate 

concentration at which the reaction rate is half o f its maximal value. The Michaelis 

constant and the maximal rate can be readily derived from rates o f  catalysis measured at 

different substrate concentrations. A plot o f 1/V versus 1/[S], called a Lineweaver-Burk 

plot, yields a straight line with an intercept of 1/Vmax and a slope o f KM/Vmax.

1 1 ^  1
— = ----- + - M- x —  Eq (2)v v v m  }max max J

In enzyme catalysis, some specific molecules and ions can inhibit the enzymatic 

activity. In the presence of competitive inhibitor, the Michaelis-Menten equation is 

replaced by
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in which [I] is the concentration o f inhibitor and Ki is the dissociation constant o f the 

enzyme-inhibitor complex.

The master culture o f mixed anaerobes was taken from an anaerobic digester at 

Bergen County Wastewater Treatment Plant, in Little Ferry New Jersey and acclimated to 

a defined synthetic wastewater, as shown in Table 3. This defined media provided 

sufficient amounts o f nitrogen and phosphate for organisms metabolism. The necessary 

mineral materials were also provided to insure anaerobes' growth. The acclimation system 

consisted of a four-liter flask reactor and gas collection devices as depicted in Figure 3. 

Gas produced was measured using a wet tip gas meter. The reactor was maintained at 35 

°C by a constant-temperature waterbath or a temperature-controlled chamber. The pH 

was controlled in neutral condition by the addition o f sodium bicarbonate as a buffer. 

Hydraulic Residence Time and Sludge Retention Time o f anaerobic system were sustained 

at 20 days in this study.

After a period o f microbial acclimation to cellulose as the sole carbon source, 

Biochemical Methane Potential (BMP) and Serum-Bottle Technique were used to test the 

anaerobes' activeness and substrate toxicity for all experiments (Owen et al. 1979). The 

BMP assay was conducted by introducing 80 ml o f deoxygenated defined media, as shown 

in Table 3, into a 125 ml serum bottle and the bottle was sealed with butyl rubber septum 

stopper and aluminum seal to prevent further oxygen contamination. Then 20 ml o f 

anaerobic sludge ffom the master culture was injected into the deoxygenated and negative 

pressure serum bottle with air-tight syringe. After 1 hour o f  equilibration in a 35 °C
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Table 3 Composition o f Defined Media

Ingredient Cone, mg/1 Ingredient Cone, mg/1

N utrients M inerals

k h 2p o 4 500 CaCl2 150

Na2S 0 4 150 MgCl2.6H20 200

NHjCl 530 FeCl2.4H20 20

MnCl2.4H20 0.50

Buffer H 3 B O 3 0.25

N aH C03 3000 ZnCl2 0.25

CuCl2 0.15

Na2M o04.2H20 0.05

CoC12.6H20 2.50

NiCI2.6H20 0.25

waterbath, gas volume was "zeroed" to ambient pressure by a pre-lubricated syringe and 

the bottle was ready for further testing.

Currently, there is no "standard" analytical method for the measurement of 

nitrocellulose in soil, compost, and sludge. An indirect method is used to extract 

nitrocellulose from soil, compost, and sludge. It hydrolyzes the nitro-groups in 

nitrocellulose, separates nitrate or nitrite, and measures the liberated nitrite 

colorimetrically. The disadvantage o f this method is that the nitrogen content or degree 

o f substitution (D.S.) o f the nitrocellulose must be known. It converts the nitrite
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measurements to nitrocellulose concentrations. Incomplete separation o f  nitrate/nitrite 

ions coextracted from the residue leads to over-estimation o f nitrocellulose, and 

incomplete extraction and/or hydrolysis o f the nitrocellulose causes a low bias to the 

nitrocellulose estimations. Additionally, this method provides no information about the 

condition o f nitrocellulose. Griest (1993) proposed a size exclusion chromatography 

(SEC)-base method to analyze nitrocellulose in soil, compost, or sludge. The method has 

the potential o f providing both quantitative (e.g. concentration o f nitrocellulose) and 

qualitative (e.g. molecular weight distribution, functional groups) information. This 

method is still under investigation and has some technical difficulties to overcome. 

Because o f the reasons mentioned above, indirect parameters, such as biogas production 

and volatile organic acids contained in solution, were used to evaluate the biodegradability 

o f nitrocellulose by anaerobic microorganisms in this study.

The concentration of volatile organic acids were measured by the distillation 

method in accordance with Standard Methods (Method 504 B). The sample was first 

filtered and 100 ml o f filtrate was distilled with 5 ml o f concentrated sulfuric acid and 100 

ml o f deionized water. Exact 150 ml of distillate was then titrated with 0.1 N standard 

sodium hydroxide solution. Volatile organic acids were expressed as mg volatile acids as 

acetic acid per liter. This technique can recover acids containing up to six carbon atoms.

The biogas produced in the anaerobic reactor was collected in a gas collection 

tube. The retaining solution contained saturated sodium chloride and five percent of 

sulfuric acid to prevent the biogas from dissolving in the solution. The volume o f  gas 

produced was measured as the volume of liquid displaced. The gas produced in the BMP
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test was determined by the pressure change in the bottle with a 35 ml pre-lubricated 

syringe equipped with a 20-gauge needle (Owen et al. 1979). The compositions o f biogas 

were analyzed by Gow-Mac Series 55OP Gas Chromatograph equipped with Thermal 

Conductivity Detector, CTR1 Alltech Column, using helium as the carrier gas.

The amounts o f nitrate and nitrite from biotransformation o f nitrocellulose were 

measured by EPA method B-1011 (EPA Test Method 300.0) using single column Ion 

Chromatograph (Water Series 600E controller and pump, 715 WISP sample injector, and 

UV detector set at 214 pm wavelength ). Sample was filtered through 0.22 p  filter disk 

paper, C l8, and Hg-Ag pretreatment cartridges to remove organics and chloride ion. One 

hundred pL o f pretreated sample was injected into IC for analysis. The concentration of 

ammonia was analyzed following Standard Methods-Nesslerization method (Method 417). 

An Orion 407A pH meter was used to measure the pH.

4.2 Acid Hydrolysis

4.2.1 Hydrochloric Acid Hydrolysis of Nitrocellulose

Acid hydrolysis o f cellulosic materials has been studied for many years. The degradation 

o f  cellulosic materials to sugar seems, at first, to be a hydrolytic cleavage o f the glucosidic 

bonds. However, cellulosic materials behave fundamentally different from other 

carbohydrates in hydrolysis. The glucosidic bonds are cleaved relatively easily, but the 

crystalline structure is far more resistant to heterogeneous hydrolysis by dilute acids than 

similar, but non-crystalline, carbohydrates. Over a hundred years ago, it was found that 

highly concentrated hydrochloric acid is a very effective hydrolytic agent. A considerable



32

amount o f experimentation has been performed to study the kinetics o f acid hydrolysis of 

pure cellulose substrates. In a cellulose study, researchers depicted the acid hydrolysis of 

cellulose as a pseudo-first-order sequential process (Saeman, 1945). The reactions can be 

described by the following equation.

ki k2
Cellulose -------- » Glucose -------- > Decomposed Products

Hydrolysis of cellulosic materials and its product, glucose, play a central role in the 

conversion o f renewable resources to foods, fuel, and chemical feedstocks. Cheap glucose 

would not only find demand in the food sweetener market but could serve as a substrate 

for the production of fuel, alcohol, and protein. There are many organisms that can grow 

on glucose compared with other substrates. Also, with glucose substrates there should be 

less problem with undesirable or toxic residues.

Little experiment has been performed on acid hydrolysis o f nitrocellulose. Also 

because o f their similar chemical structure, acid hydrolysis would seem to be an attractive 

treatment process for nitrocellulose. However, there is a drawback in this process. Since 

large amount o f concentrated hydrochloric acid is used in this process, economically, it is 

not practical. Therefore, recovery the acid and conversion o f the glucose to useful final 

products will be the critical factors for implementing this process economically. Several 

technologies have been studied and developed to recover the concentrated acid from 

hydrolysis process. Some o f them have been proved to be successful. The research 

conducted by Goldstein and Easter (1992) showed potentially large saving in recovery 

costs by electrodialysis. Since fermentation of glucose and acid recovery have been



33

proved to be feasible, the experiments along these lines were not conducted in this 

investigation.

Chemical reaction rates generally increase with increase temperature. In general, 

variations in reaction rate as a function o f temperature can be represented by the Arrhenius 

equation,

k = Af(e'E*'RT) E q .(4 )

or In k = In Af-Ea/RT Eq. (5)

where k = the rate constant; time'1

Af = Arrhenius frequency factor;

Ea = activation energy; Kcal/mole 

R = universal gas constant; 1.987 g-cal /  g-mole-°K, and 

T = absolute temperature, °K 

The energy o f activation determines that fraction o f the total number o f molecules which 

can be sufficiently activated at a given temperature that will react; therefore the magnitude 

o f  activated energy is a direct determination o f the rate o f particular chemical reaction. 

The study o f chemical hydrolysis involves the effect o f retention time, reaction 

temperature, substrate/acid ratio and the concentration o f hydrochloric acid.

In this experimental study, 0.4 gram nitrocellulose was placed in glass tubes with 

various amounts o f concentrated hydrochloric acid (about 38%) with predetermined 

acid/solid ratios. These tubes were put into a water bath controlled at a designated 

temperature. Tubes were then removed from the water bath at various intervals, 

quenched in ice water, and analyzed for glucose content.
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The concentrations of glucose were determined using a Sigma glucose diagnosis 

kit (enzymatic-colorimetric) with spectrophotometer at wavelength 425 pm. A standard 

glucose solution o f  1,000 mg/1 was also used as standard to calibrate the measurements. 

Small molecular weight organic acids were measured by a HPLC (Water 6000A solvent 

delivery system, Water 410 Differential Refractometer equipped with Refractive Index 

Detector and carbohydrate column and Varian 4270 Integrator). Organic acids were 

identified by comparing them with standard organic acids in terms o f  retention time for 

each peak. Nitrite, nitrate, and ammonia were determined essentially the same methods 

used in anaerobic treatment process.

4.2.2 Approach to Estimate the Kinetic Constants of Acid Hydrolysis

A considerable amount o f study has been done on the kinetics o f acid hydrolysis o f pure 

cellulose substrates. In a cellulose study, the researchers depicted the acid hydrolysis 

process o f cellulose as a pseudo-first-order sequential process (Saeman, 1945 and Fagan 

et al, 1971). These theories and models were adapted and compared in this study. Since 

nitrocellulose concentration is not easy to measure directly, the concentration o f glucose 

was used to develop this kinetic model, the Method of Residuals were employed to 

estimate the reaction rate constant. The reactions and rate constants can be described by 

the following equations:

ki
Nitrocellulose (Cx) ■» Glucose (C i)  > Decomposed Products (C0)

dCx/dt = -k.Cx Eq. (6)

dCj/dt = + k,Cx - k2Ci Eq. (7)
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dCo/dt = + k2C, Eq. (8)

where k, = rate constant o f nitrocellulose hydrolyzed to glucose

k2 = rate constant o f glucose degraded to decomposed products 

In these equations, Cx = concentration o f nitrocellulose (M), Ci = concentration of 

glucose (M), and C0 = concentration o f decomposed glucose products (M); k, and k2 are 

the rate constants for each individual reaction (time'1).

The hydrolysis o f nitrocellulose follows a first-order rate equation, hence,

cx = cVklt- Eci(9)
To find the dependence of Ci on time, Eq. (7) can be solved by using the integrating factor 

method. First write Eq. (7) as:

dCi/dt + k2C, = k,C°xe-klt 

and multiply both sides by e k2t, the integrating factor, the following expression is 

obtained:

(dCi/dt + k2C,)ek2t = k,C°xe-klte k2t- E<1 ( 10)

Next notice that

dC,ek2t/dt = ( dC,/dt + k2C,)ek2t. Eq. (11)

Comparing Eqs. (10) and (11)

dC,ek2t/dt = kjC°xe <k2-kl)t 

which can be integrated to yield

C ,ek2t = kjC°xe (k2' k0‘ / (k2-k,) + Constant
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The constant can be determined by the boundary conditions. Set Ci = 0 at t = 0; then the
o

constant equals to -k,C J  (k2-kj), and the integrated equation becomes:

C, = k,C°x (e-k,t- e 'k2t) /  (kj-k,) Eq. (12)

0 0
For the initial conditions C i = 0 and C 0 = 0, the mass balance relationship is 

C x = Cx +Ci + Co. Eq. (13)

Substituting Eqs. (9) and (12) into Eq. (13) and rearranging this equation

Co = C°x + C°x (k2e-k ,t-k ,e-k2t) /  (k.-kj). Eq. (14)

Clearly, Eqs. (12) and (14) are inapplicable in the special case la  = ki. The concentration

o f glucose is a function o f time and the smaller rate constant, la, can be estimated from a 

semi-logarithmic plot o f Ci at later times when Cx is negligible. This plot is extrapolated 

back to t = 0. This line is described by the equation [from Eq (12)],

ext 0
In C, = In [k,C x / (k,-k2)] - k2t. Eq. (15)

Combining Eqs. (15) and (12),

ext 0
In (C, - C,) = In [kjC x / (k,-k2)] - k,t Eq. (16)

Graphically, Eq. (16) represents the logarithm o f the differences between the experimental

ext
Cj values at early times and values extrapolated from late times (C} ). The plots o f Eqs. 

(15) and (16) should have the same intercepts and their slopes yield estimates o f the rate 

constants. Figure 4 shows this technique.
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CHAPTER 5

ANAEROBIC TREATMENT PROCESS

The biodegradation of nitrocellulose in anaerobic batch reactors with and without 

supplemental carbon sources or inducers, such as cellulose, cellobiose, and lactose and, 

two-stage anaerobic system were investigated in this study. The concept o f staged-feed 

was also conducted to investigate the possibility o f biodegradation enhancement of 

nitrocellulose.

5.1 Effect of Various Enzymatic Inducers

The important concept to test the use o f inducer compounds to maintain activity over long 

periods without the presence of the target compound was pointed out by Grady (1985 and 

1986). Babcock and Stenstrom (1993) suggested that an ideal inducer compound would 

maintain the degradation kinetics and growth characteristics o f an enrichment culture 

without the presence of the enrichment substrate. Sometime, degradative enzyme can be 

substrate specific. But often it is quiet nonspecific and can be induced by compounds of 

similar structure or degradation products. This studies try to use this concept to induce 

the enzyme which can degrade nitrocellulose from different inducers with similar structure 

or degradation products from target compound.

Three types o f enzymatic inducers, namely, cellulose, lactose, and cellobiose, were 

used in this study. The concentrations o f enzymatic inducer were all fixed at 1,000 mg/1 

and inducer/nitrocellulose ratio was maintained at 10/1. Ten sets o f tests were conducted 

at the same time. Blank one (B-Media) contained only defined media. The data from this 

blank would give the information of gas production from media itself. Blank two
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(B-Culture) contained biomass and defined media. This blank indicates the biodegradation 

from biomass and media. Three sets of serum bottles were used in experiment, each 

bottle contains one o f the following inducers, i.e., cellulose (C), lactose (L), and cellobiose 

(CB), respectively. The experiments were conducted in triplicate. These were used as the 

control groups to evaluate the biogas produced from the bottles containing inducers and 

nitrocellulose together. Two sets o f bottles containing nitrocellulose only, one set had 

100 mg/1 o f NC (NCI) and another set had 1,000 mg/1 (NC2). They were also in 

triplicate. These would provide information on the biodegradation o f nitrocellulose 

without the usage o f inducers. These were used for comparison study. Three other 

bottles containing nitrocellulose and inducers. They are cellulose and nitrocellulose 

(C-NC), lactose and nitrocellulose (L-NC), and cellobiose and nitrocellulose (CB-NC), 

respectively. The inducer/NC ratio is fixed at 10/1 in this study.

The results are shown in Figure 5. There were some gases produced in all bottles 

except in two blanks. It is shown in Figure 5 that there is about 2 days o f lag period for 

lactose and cellobiose, and 3 days for cellulose. Lactose had the highest volume (about 40 

ml) o f gas production and cellulose had the lowest volume (30 ml). Cellobiose produced 

less biogas than that from lactose. By comparison the gas produced in bottles with 

inducers alone and with these had both nitrocellulose and inducers, it can be observed that 

bottles had inducers alone had more gas produced than these with inducer and 

nitrocellulose. With the addition o f nitrocellulose, lactose and cellobiose were less 

affected than cellulose. This study shows that nitrocellulose would affect the
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biodegradation o f inducers and decrease the gas production. Among all three inducers, 

cellulose produced least amount of gas. The measured gas productions from this study 

are compared to the stoichiometric calculated gas production (SGP). The stoichiometric 

gas production from the utilization o f nitrocellulose and cellulose was calculated by using 

McCarty’s approach by assuming that N 0 3' was the main nitrogen source in the medium 

(McCarty, 1972 and 1969, Duran et al., 1993). The balanced equations for the anaerobic 

breakdown o f each o f these substrates are given below;

C 12H 14O22N 6 (Nitrocellulose):

C 12H 14O22N6 + 6 .4 2 H2O —> O.3 2 C5H7O2N + 5 .5 CH4 + 3 .3 2 CO2 +5 .6 8 NO3 +HCO3 + 1.68HT* 

CH20  (Cellulose):

0.25CH2O + 0.0089NO3' + O.OtWH* O.OO8 9 C5H7O2N + 0.094CH4 + 0.11 2CO2 + 0.035H2O 

Results are shown in Table 4. It is seen in this table that cellobiose has the highest 

conversion ratio, 57 %, and nitrocellulose has only 5 % o f conversion in this study.

Table 4 Comparison o f Net Gas Production and SGP 
(Effect o f Various Enzymatic Inducers Test I)

Desciption M easured Gas Volume SGP Ratio, %
Cellulose 30.5 6 8 . 0 44.9

C + NC 2 2 . 6 72.0 31.4

Lactose 38.9 72.0 54.0

L + NC 36.0 76.0 47.4

Cellobiose 38.5 6 8 . 0 56.6

CB + NC 34.9 72.0 48.5

NC-1 1.7 4.0 42.5

NC-2 2 . 0 39.5 5.1

u n it : mL
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After three more months o f acclimation, the same experiment was conducted again 

and results are shown in Figures 6. This results are very similar to the previous 

experiment. Lactose and cellobiose had almost the same amount o f biogas production. 

However, the addition o f nitrocellulose did not affect the biogas production that much, in 

the presence o f these two inducers. Cellulose still produced least amount o f biogas among 

three inducers. The addition o f  nitrocellulose still affected the biogas production in bottles 

containing cellulose solution. For bottles containing nitrocellulose only, the samples had 

also produced less than 7 ml biogas, that is only a little higher than the blank samples.

From the comparison o f gas production as an indicator o f biotransformation which 

is shown in Table 5, results are similar to that o f Table 4, expect the conversion of 

cellulose which was dropped from 45 % to 23%, and the conversion o f nitrocellulose 

increased from 5 % to 6 %. Table 5 also shows that nitrocellulose inhibited cellulose 

degradation in the second test. The percentage gas production reduced from 31.4% to 

13.6%.

Table 5 Comparison o f Net Gas Production and SGP 
(Effect of Various Enzymatic Inducers Test II)

Desciption M easured Gas Volume SGP Ratio, %
Cellulose 15.7 68.0 23.1

C + NC 9.8 72.0 13.6

Lactose 37.9 72.0 52.4

L + NC 39.9 76.0 52.5

Cellobiose 38.3 68.0 56.3

C B + N C 39.5 72.0 54.9

NC 5.3 39.5 6.1

u n it : mL
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5.2 Effect of Inducer/Nitrocellulose Ratios

In order to understand the effect o f biodegradation caused by different inducer/ 

nitrocellulose ratios, pre-determined inducer/nitrocellulose ratios were tested. Results are 

shown from Figures 7 to 9.

In the lactose/nitrocellulose study, the concentration o f lactose was fixed at 1,000 

mg/L and the amounts o f nitrocellulose were changed by the pre-determined inducer/ 

nitrocellulose ratios. Eight sets o f tests were performed. The L/NC ratios were 10/0, 

10/1, 5/1, 2/1, 1/1, 1/2, 1/5, and 1/10 as shown in Figure 7. It can be seen in Figure 7 that 

the lower the lactose/nitrocellulose ratio, the less biogas would accumulate. After 35 days 

o f operation, only these two with ratios of 1/5 and 1/10 had less than 40 ml o f biogas 

accumulation. The biogas produced for other ratios ranged from 40 to 45 ml. The bottle 

contained with lactose alone still produced more gas than all other bottles in the first 20 

days. However these with L/NC ratios of 10/1, 5/1, and 2/1 produced approximately the 

same amount o f gas with control groups after 35 days. Table 6 show that the amount of 

gas produced were in the range o f 31 to 42 milliliter, when the L/NC ratio changed from 

10/1 to 1/10 and lactose concentration was remained constant.

Results o f comparison of gas production and ratios o f conversion are shown in 

Table 6. The conversion ratios dropped from about 60% to 7% as L/NC ratios changed 

from 10/0 to 1/10. However, microorganisms were still alive and used lactose as 

substrate.

For the cellobiose/nitrocellulose study, six sets o f CB/NC ratios, 20/1, 10/1, 5/1, 

1/1, 1/5, and 1/10, were used in this study. The concentration o f cellobiose was fixed at



45

E 50
Q)
|  40  
o
>  30

JS 10

25
Time, Day

ra Blank -&  L
• e - 1/1

10/1 -V- 5/1 
1/2 -A -1/5 - x - 1/10

2/1

Figure 7 Effect of Various Lactose/Nitrocellulose Ratios in Batch Study
(Lactose Concentration = 1,000 mg/L)



46

E 120

F 100

80

60

40

20

0

0 5 10 15 20 25 30
Time, Day

B la n k -s -C B  20/1 ^ 1 0 / 1  5/1
-©- 1/1 -A-1/5 A- 1/10 -x- NC

Figure 8 Effect of Various Cellobiose/Nitrocellulose Ratios in Batch Study
(Cellobiose Concentration = 2,000 mg/L)



47

d  120

£ 100

80

60

40

20

0

0 10 15 20 25 305
Time, Day

-m- Blank -&  C ^  10/1 ^ 5 / 1  -m-1/1 o 1/5 NC

Figure 9 Effect o f Various Cellulose/Nitrocellulose Ratios in Batch Study
(Cellulose Concentration = 2,000 mg/L)



48

Table 6 Comparison of Net Gas Production and SGP
(Effect of Various L/NC Ratios)

Desciption M easured Gas Volume SGP Ratio, %

Lactose 42.6 72.0 59.2

L/NC =10/1 41.7 76.0 54.9

L/NC = 5/1 42.0 78.0 52.5

L/NC = 2/1 42.4 92.0 44.2

L/NC = 1/1 37.4 112.0 32.4

L/NC = 1/2 38.1 152.0 24.4

L/NC = 1/5 31.5 272.0 11.4

L/NC = 1/10 31.5 472.0 6.3

unit : mL

2,000 mg/L and the amounts of nitrocellulose were varied by following the designated 

inducer/ nitrocellulose ratios. Two sets o f blank and control group were carried for 

comparison study and another set of bottle containing nitrocellulose alone was also used in 

this study. Figure 8 shows that the biogas production remained the same ( about 100 ml) 

when the CB/NC ratios were higher than 1/1. However, when CB/NC ratio was 5/1 the 

produced biogas was only one milliliter more than the control group, but that is within the 

error range. The bottles containing only nitrocellulose produced less biogas than blank. It 

indicates no nitrocellulose consumption.

Table 7 shows the information of net gas production and SGP ( amount of gas 

measured from test - amount of gas produced from blank). CB/NC ratios o f 20/1 and 

10/1 have the highest conversion ratio, about 55% . CB/NC = 1/10 almost had no
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Table 7 Comparison of Net Gas Production and SGP
(Effect of Various CB/NC Ratios)

Desciption M easured Gas Volume SGP Ratio, %

Cellobiose 81.6 136.0 60.0

CB/NC =20/1 77.7 140.0 55.5

CB/NC = 10/1 79.7 144.0 55.3

CB/NC = 5/1 82.6 176.0 46.9

CB/NC = 1/1 81.7 216.0 37.8

CB/NC = 1/5 15.4 531.0 2.9

CB/NC = 1/10 0.5 926.0 0.05

NC - 80.0 -

u n it: mL

conversion. When CB/NC ratio equals to 1/5, the concentration o f volatile organic acids 

was only about 50 mg/L as acetic acid as compared to 500 mg/L in C/NC study. It seems 

that microorganisms were inhibited to utilize cellobiose as substrate at high nitrocellulose 

concentration in microbial hydrolysis. It is seen in Figure 5 that lactose is easier to be 

used by microorganisms as a substrate than cellobiose and cellulose because o f  its simple 

structure. By acclimation, microorganisms can utilize complicate compounds such as 

cellobiose and cellulose, which can be seen in Table 7. This table shows that at an 

inducer/nitrocellulose ratio o f 10/1, more gas was produced in cellobiose/nitrocellulose 

(79.7 ml) than lactose/nitrocellulose (41.7ml).

In the cellulose/nitrocellulose study, four sets o f C/NC ratios, 10/1, 5/1, 1/1, and 

1/5, were used in this study. The concentration o f cellulose was kept at 2,000 mg/L and
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the amount o f nitrocellulose were changed at pre-determined C/NC ratios. Two sets of 

blank and control group were employed to collect the basic information and another set of 

bottle containing nitrocellulose was also utilized in this study. Figure 9 shows a similar 

result as these in the cellobiose study. These with ratios o f 10/1, 5/1, and 1/1 had more 

gas production, but none is more than the control group. The only difference was that 

when the C/NC ratios were lower than 1/1, more biogas was produced in cellobiose 

study, approximately 2 ml in the case o f inducer/nitrocellulose = 1 /5 . C/NC ratios higher 

than 1/1 had the same amount o f gas produced, approximate 110 ml.

Table 8 shows the comparison between net gas production and SGP. The ratios 

are more than 70 % with C/NC ratios higher than 1/1. But none produces more gas than 

control bottle. However, higher concentrations o f volatile organic acids, 300 to 550 mg/L 

as acetic acid, were found in the bottles with C/NC ratio 1/5. Even for the bottles 

containing only nitrocellulose, the concentration o f volatile organic acids was found to be 

about 300 mg/L as acetic acid. This shows that some microbial enzymatic hydrolysis did 

occur during this test. But volatile organic acids could not be utilized by methane-forming 

bacteria and converted to biogas.

In the inducer/NC tests, a light green-yellow color appeared in the solution 

containing nitrocellulose, especially in the bottles with low inducer/NC ratios (1/5 and 

1/10). Denitration and enzymatic hydrolysis o f nitrocellulose might occur in these bottles. 

The residual sludge o f these bottles were dried and extracted by tetrahydrohuran over 

night. The weight difference o f sludge between before and after extraction was used to 

study the nitrocellulose removal efficiency. The results are shown in Table 9. It is seen in
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Table 8 Comparison of Net Gas Production and SGP
(Effect of Various C/NC Ratios)

Desciption M easured Gas Volume SGP Ratio, %

Cellulose 107.5 136.0 79.0

C/NC =10/1 107.1 140.0 74.4

C/NC = 5/1 107.7 156.0 70.9

C/NC = 1/1 101.1 216.0 46.8

C/NC = 1/5 17.7 536.0 3.5

NC - 80.0 -

u n it: mL

Table 9 Nitrocellulos Removal Efficiency in Inducer/NC Study 
(by solvent extraction method)

Description Reduced W eight Original Weight Removal Efficiency

L/NC=l/5 339.5 1000 66%

CB/NC=l/5 212.6 1000 79%

C/NC=l/5 391.5 1000 61 %

NC 116.6 200 4 2 %

C/NC=1/1-10D 30.1 200 85 %

C/NC=1/1-15D 23.9 200 88%

NC-10D 163.7 200 18%

NC-15D 130 200 35%

u n it: mg
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this table that the bottles containing nitrocellulose only had about 40 %  nitrocellulose 

removal and bottles with inducer/NC ratio 1/5 had higher than 60 % removal. This result 

indicates that nitrocellulose could be converted to other intermediate compounds. But the 

numbers o f these removal efficiency in Table 9 may be overestimated due to the 

incomplete separation o f nitrocellulose and anaerobic sludge by using the extraction of 

organic solvent that was mentioned in Chapter 4, section 4.1.

5.3 Two-Stage Batch Study

Anaerobic treatment o f waste can be put into three steps, namely hydrolysis, acidogenesis, 

and methanogenesis. Microorganisms use extracellulose enzyme to break down large 

molecules in hydrolysis, convert complex organic compounds into organic acids in 

acidogenesis, and produce methane from acids in methanogenesis. Usually, acidogenesis 

and methanogenesis are taken place in one single reactor and the growth conditions must 

be kept in good balance for both microorganisms (acid formers and methane formers) to 

survive.

Some researchers suggested that a two-phase anaerobic processes, one for the acid 

formation and the other for the methane formation, can enhance the degradation of 

organic substances. It is especially true when the hydrolysis or the organic matter is 

overall rate limiting process. Since the biodegradation of nitrocellulose was not successful 

in the previous studies and the biodegradation was limited by hydrolysis step, a set o f 

experiment by using two-stage anaerobic system was conducted for further study.

To simulate the two-stage anaerobic system, the defined media was controlled at 

pH = 6.0 to maintain the optimal growth condition for acidogenesis. Then, after two or



four days the system was brought back to neutral condition by adding sodium hydroxide 

to optimize methanogenesis. Two and four days o f acidogenesis periods were used in this 

study as mentioned above. Two blanks, culture blank (B-C) and media blank (B-M), were 

used to provide the information about the biogas produced not from target compounds. 

For each testing acidogenesis period, three sets o f tests were conducted. One was 

provided with 2,000 mg/1 cellulose only (C-2D and C-4D), one had cellulose/NC ratio o f 

one to one and both had a concentration o f 2,000 mg/1 (1/1-2D and 1/1-4D), and the last 

one with 2,000 mg/1 nitrocellulose only (NC-2D and NC-4D). Under normal condition, 

gas should be produced in the methanogenesis stage. However, it was observed in this 

study, some gas already be produced in the fourth day. It was also found in the study, as 

shown in Figure 10, that the gas produced in four-day acidogenesis was much more than 

these for two-day's. There were not much difference of biogas accumulation for two days 

or four days acidogenesis from the media contained cellulose alone or cellulose and 

nitrocellulose. However, the production of gas for bottles containing both cellulose and 

nitrocellulose was not increased, either. Comparing to the earlier cellulose/nitrocellulose 

study, gases produced for each condition from two-stage study were much less than single 

phase study. This could be due to the low pH in the first stage. The low pH will inhibit 

the growth o f methanogensis bacteria and also affect the gas production.

Table 10 shows the comparison between net gas production and SGP. There was 

no improvement on the use of two-stage anaerobic system, even some reduction o f gas 

production was observed. However, the conversion of nitrocellulose only in four-day 

acidogenesis period was enhanced from 6 % to 12.5 %. In order to obtain more
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Table 10 Comparison of Net Gas Production and SGP
(Results of Two-Stage Anaerobic System at pH = 6.0)

Desciption M easured Gas Volume SGP R atio, %

Cellulose-2D 59.4 136.0 43.9

C/NC-2D 56.0 216.0 25.9

NC-2D - 80.0 -

Cellulose-4D 74.6 136.0 54.9

C/NC-4D 74.7 216.0 34.6

NC-4D 10.0 80.0 12.5

u n it: mL

information on two-stage anaerobic system, another run was conducted in more acidic 

condition and longer acidogenesis period.

This test was conducted by controlled the mixed liquor at pH = 5.0 to favor the 

growth o f acidogenesis bacteria. Five, ten, and fifteen days o f acidogenesis periods were 

used in this study. The concentrations o f cellulose and nitrocellulose were 1,000 mg/L. 

Results o f this study are shown in Figure 11. Comparing to Figure 10, biogas productions 

in this experiment were less than the previous one. This indicates that the methane 

forming bacteria may be inhibited under acidic condition for long exposure time. 

However, the test also shows higher concentration o f volatile organic acids (about 550 

mg/L as acetic acid) in the solution. Table 11 shows the conversion between net gas 

production and SGP ratio are much smaller than previous one. This indicates that
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Table 11 Comparison of Net Gas Production and SGP
(Results of Two-Stage Anaerobic System at pH = 5.0)

Desciption M easured Gas Volume SGP Ratio, %

C-5D 65.5 136.0 48.2

C/NC-5D 41.2 216.0 19.1

NC-5D 2.0 80.0 2.5

C-10D 48.8 136.0 35.9

C/NC-10D 25.3 216.0 11.7

NC-10D 1.2 80.0 1.5

C-15D 33.3 136.0 24.5

C/NC-15D 29.5 216.0 13.7

NC-15D 1.8 80.0 2.3

u n it: mL

acidogenesis can be enhanced at lower pH, however, methanogenesis is affected by the 

low pH. A proper controlled pH and growth environment would be required.

An interesting phenomenon was observed. Three months after the above 

experiment was conducted, more gas was produced in the serum bottles (about 70 to 90 

ml), o f which the two-stage anaerobic degradation tests was performed. Then, the 

microorganisms were transferred to other BMP bottles for further experiment. One 

bottles contained 2,000 mg/L o f cellulose and another 2,000 mg/1 o f NC. In two other 

bottles, concentration o f cellulose was fixed at 2,000 mg/L and concentrations of 

nitrocellulose were varied by changing C/NC ratio. The results are shown in Figure 12. 

Some differences can be seen by comparing Figures 9 and 12. More gas was produced in
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nitrocellulose in this experiment (25 ml vs. 8 ml). Inhibitions o f biodegradation of 

cellulose caused by addition of nitrocellulose were still observed at both Cellulose/ 

Nitrocellulose ratios o f 1/1 and 1/5. Although this test shows some biogas generation 

when nitrocellulose was used as the solo carbon source, the amount, however, is only 1/4 

that o f the cellulose. Some small molecular weight organic acids were detected and large 

amount o f ethanol was presented in the solutions by HPLC analysis. Nitrite and nitrate 

were also detected by Ion Chromotograph in solutions. Table 12 shows the results of 

difference between SGP calculation values and net gas productions from this study. This 

table shows that the conversion of nitrocellulose to gas was about 34.4 % SGP value 

without any co-substrate. This is better than single stage system. However, after 

transferring the residual sludge to another set o f reactor, more gas production was not 

observed. This test shows that under certain conditions, microorganisms are able to utilize 

nitrocellulose as carbon source.

Table 12 Comparison o f Net Gas Production and SGP
(Biodegradation of Nitrocellulose and Cellulose)

Desciption M easured Gas Volume SGP Ratio N irate, mg/1

Cellulose 98.7 136.0 72.6 -

C/N C= 1/1 64.0 216.0 29.6 24.7

C/NC = 1/5 47.7 536.0 14.2 64.3

Nitrocellulose 27.5 80.0 34.4 98.2

u n it: mL
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5.4 Effect of pH on Biodegradation

The effect o f pH on the biosystem was investigated in this part o f the study. Five different 

initial pH values, 6.0, 6.5, 7.0, 7.5, and 8.0, respectively, were used during this part o f the 

study. Two different Cellulose/Nitrocellulose ratios (1/J and 5/1 by weighted) and two 

control units ( Nitrocellulose only and Cellulose only) were also used in this study. Biogas 

production, extractable nitrocellulose concentration, nitrate, and nitrite produced were 

monitored to evaluate the performance o f biodegradation. The results are shown in 

Figures 13 to 17 and Tables 13 to 17.

According to the gas production data, the lower the pH (6.0) the more biogas was 

produced, except at pH = 7.0 and Cellulose/Nitrocellulose = 1/1. The bottles with pH 

higher than 7.0 produced only 1/3 or less biogas than these with pH lower than 7.0. It is 

interesting to note that by comparing gas production with the percentage o f nitrocellulose 

removals in this experiment, it can be seen that the higher the pH the higher removal 

efficiency. At pH=7.5 and C/NC=1/1 the highest nitrocellulose removal efficiency of 

48.91% was observed. In this experiment, nitrocellulose was degraded into the 

intermediate products which could not be identified at this time, rather than biogas. Based 

upon the mass balance o f nitrogen and the amount o f nitrate and nitrite measured by ion 

chromotograph shown in Tables 13 to 17, the recovery amount o f nitrogen was much less 

than that theoretical calculated value based on nitrogen content o f  13.5% in the 

nitrocellulose. This indicates that some nitrate groups in nitrocellulose either escaped as 

nitrogen gas or was still attached/bound to the intermediate compounds.
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Table 13 Results o f Biodegradation at pH = 8.0
(Effect o f Various pH on Biodegradation)

Description Gas Volume, mL NC Removal, % N itrate, mg/L

C only 50.7 - -

NC only 2.6 46.49 69.41

C /N O S /l 54.1 32.63 NA

C/NC=1/1 43.4 42.23 73.86

Table 14 Results o f Biodegradation at pH = 7.5

(Effect o f Various pH on Biodegradation)

Description Gas Volume, mL NC Removal, % N itrate, mg/L

C only 37.3 - -

NC only 3.9 41.46 110.49

C/NC=5/1 27.4 37.97 NA

C/NC=1/1 28.4 48.91 28.06

Table 15 Results o f Biodegradation at pH = 7.0
(Effect o f Various pH on Biodegradation)

Description Gas Volume, mL NC Removal, % N itrate, mg/L

C only 54.6 - -

NC only 8.4 35.54 34.66

C/NC=5/1 57.1 14.96 NA

C/NC=1/1 172.6 24.19 12.25
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Table 16 Results o f Biodegradation at pH = 6.5
(Effect o f Various pH on Biodegradation)

Description Gas Volume, mL NC Removal, % N itrate, ing/L

C only 170.5 - -

NC only 15.8 29.22 32.72

C/NC=5/1 172.7 5.00 NA

C/NC=1/1 166.0 25.13 93.00

Table 17 Results o f Biodegradation at pH = 6.0

(Effect o f Various pH on Biodegradation)

Description Gas Volume, mL NC Removal, % N itrate, mg/L

C only 194.3 - -

NC only 20.8 23.22 38.58

C/NC=5/1 182.8 -12.26 NA

C/NC=1/1 185.4 17.29 NA
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5.5 Sequencing Batch Study

A four-liter flask was used as the bioreactor with a gas collection device. Two sets of 

identical biosystem were compared. One reactor was first fed with 10 grams o f  cellulose 

only and the second reactor was introduced with 10 grams o f cellulose and 2 grams of 

nitrocellulose. After gas productions from both reactors were ceased, mixing was 

stopped. After the sludge settled, the supernatant was withdrawn from the reactor. 

Additional substrates were added to the systems and another cycle o f treatment was 

started. The results o f gas production in sequencing batch reactor study is shown in 

Figure 18.

In the first cycle o f sequencing batch studies, M -l was fed with 10 grams of 

cellulose and 2 grams o f nitrocellulose and M-2 was fed with 10 grams o f  cellulose. In the 

first cycle, the gas production rate (slope o f the curve) o f M -l was lower than that of M- 

2. This means that the addition of nitrocellulose did affect the gas production. In the 

second cycle, M -l was fed with 10 grams o f cellulose alone and M-2 was fed with 10 

grams o f cellulose and 2 grams of nitrocellulose. In the second cycle, M-2 showed gas 

production inhibition, but not for M -l. If nitrocellulose was not hydrolyzed in first cycle, 

it should have settled and been retained in the M -l reactor. The Cellulose/Nitrocellulose 

ratio in the second cycle was the same as in the first cycle for M -l reactor so it should 

have exhibited the same inhibition as in the first cycle. But from Figure 18, it can be seen 

that the inhibition did not occur. This indicates that the nitrocellulose could have been 

converted to a different compound, however, this compound was not able to further 

decomposed and utilized by the methane-forming bacteria.
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5.6 Stage-Feed Anaerobic Study

Two single-stage stage-feed anaerobic reactors (S-l and S-2) and two identical two-stage 

stage-feed reactors (T-l and T-2) were used in this part o f the tests. Another reactor (H- 

1) using horse manure to substitute microorganisms was also studied. The system's 

hydraulic retention time was controlled at 20 days. Sludge retention time was sustained at 

about 70 days and pH was controlled at neutral condition by adding sodium bicarbonate as 

buffer. Cellulose feeding rate was kept at 6 g/L.day and nitrocellulose feeding rate was 

maintained at 0.6 g/L.day. The results from the stage-feed system are shown in Figures 19 

to 21.

It was found in the stage-feed study that the two-stage system produced, 

sometimes, more gas than single-stage system. For two-stage system, the addition of 

nitrocellulose did not affect the gas production. In the single-stage systems, the two 

reactors, fed with cellulose and nitrocellulose, produced almost same amount o f gas as the 

reactor fed with cellulose alone, which was used as the control. Nitrate was found in the 

effluent and small amount o f nitrite was also detected. The results show denitration and 

hydrolysis occurred during this test.

Figure 20 shows the daily gas production in the two-stage stage-feed system. It 

can be seen from this figure that the rate of biodegradation was not at a steady state 

condition, especially for T-l system. The microbial activities fluctuated. Most o f  the 

time, the microorganisms remained in an inactive condition. However, after a period of 

time (10 to 15 days), there is a peak coming out. The consumption of a large amount of 

substrate and production o f tremendous amount o f gas occurred in a very short period of
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time. The concentration o f volatile acid in T-l was high (greater than 3,000 mg/1). 

Nitrate and nitrite were also found in the effluent. This shows that microorganisms were 

still alive and nitrocellulose was converted to simpler compounds and biogas.

Figure 21 shows the performance o f the single-stage stage-feed system. It can be 

seen from this figure that the gas production for all three reactors was approximately the 

same. The using o f horse manure to degrade nitrocellulose is also shown in this figure. It 

is seen that this reactor did not perform better than the reactors with anaerobic digester 

microorganisms. The volatile acids produced were in the range o f 80 to 200 mg/1, and 

nitrate and nitrite were also found in the effluent. The system is more stable than the two- 

stage system, however, the nitrocellulose conversion was lower based on the gas 

production.

After the experiment, the mixed liquor in the reactors that should contained 

microorganisms and nitrocellulose was removed from the reactor. It was found that none 

o f the nitrocellulose particles was present in the sludge.

5.7 Nitrocellulose Inhibition Study

In the inhibition study, nitrocellulose was fixed at 1,500 mg/L for each serum bottle and 

the concentrations of substrate (cellulose) varied from 500 to 2,500 mg/L. The biogas 

produced from test serum bottles were used as the rate o f reaction. The results o f this 

study are shown in Figures 22 and 23. The concentrations o f substrate [S] and rates of 

reaction [V] o f anaerobic system with or without the addition o f  nitrocellulose are shown 

in Table 18. The plot o f 1/V versus 1/S is shown in Figure 24. The two straight lines
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almost intercept at 1/V axis. It indicates that the inhibition caused by addition of 

nitrocellulose behaves like competitive inhibition. For the competitive inhibition, the 

inhibitory effect can be overcome at higher substrate concentrations. In this study, at 

higher concentration o f cellulose, nitrocellulose did not affect the gas production . The 

kinetic and inhibition constants derived from modified Michaelis-Menten equation are 

shown in Table 19.

Table 18 Results o f Inhibtion Study o f Nitrocellulose

S, x 10"3 moie V, day-1 V’, d a y 1
2.78 1.3672 1.3216

5.56 2.8393 2.7454

8.33 4.2633 4.2098

11.11 5.7337 5.8310

13.89 7.5305 7.4565

Table 19 Kinetic Constants in Inhibition Study

C onstant x lO’3

13.93 M/day

K m 136.01 M

K m‘ 94.84 M

Ki 17.32 M
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At the end of this experiment, the samples in each serum bottle were centrifuged 

and filtered through a 0.45 pm membrane filter to remove the suspended solids. The 

Soluble Chemical Oxygen Demand (SCOD) was then determined for the filtrate. The 

results o f SCOD are shown in Table 20. Comparing the gas production between the 

samples which contained cellulose and those with or without the presence o f 

nitrocellulose, it can be seen that the same amount o f gas production was observed for 

various concentrations o f cellulose. However, at higher cellulose concentration (CNC-25, 

2500 mg/L), the test bottles with cellulose and nitrocellulose had higher SCOD. This 

indicates that more soluble organic source was released in the test bottles with cellulose 

and nitrocellulose. This may be caused by the dissociation o f nitrocellulose in the 

biological system. However, the soluble organic source did not further convert to 

methane and carbon dioxide.

Table 20 Results o f Soluble Chemical Oxygen Demand (SCOD) in Inhibition Study

Sample pH Gas, ml SCOD, mg/1 Sample pH Gas, ml SCOD, mg/1

B lank 7.67 2.5 65.3 ±8 .5 NC 7.61 4.1 53.6 ± 7 .7

C-25 7.00 153.8 53.6 ± 7 .7 CNC-25 7.04 152.3 114.1 ± 24 .4

C-20 6.98 118.6 60.2 ± 17.8 CNC-20 7.01 118.6 39.8 ±  16.4

C-15 7.10 85.4 71.2 ± 6 .0 CNC-15 7.11 83.4 65.3 ± 3 .4

C-10 7.19 55.9 52.1 ±4.3 CNC-10 7.27 54.0 57.2 ±  1.5

C-5 7.33 26.8 45.0 ± 1 .5 CNC-5 7.35 25.5 81.2 ±  8.8
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5.8 Effects of pH and Cellulose Particle Size on NC Biodegradation

Cellulose with three different particle sizes, Sigma 20 ( average 20 pm), Sigma 50 

(average 50 pm), and Sigma 100, were used in this part o f the study. Five different pH 

values, 4.5, 5.0, 6.0, 7.0, and 8.0, were used before seeding to study pH effect. Gas 

production and SCOD were employed as monitoring parameters for biological system. 

The results of gas production are shown in Figures 25 to 32. The data o f SCOD and pH 

changes are presented in Table 21. Results o f this study show that the optimal final pH for 

gas production ranged from 6.4 to 6.3. Type 20 and 50 celluloses with nitrocellulose 

produced higher SCOD than those with cellulose only. This indicates that nitrocellulose 

may be co-degraded by anaerobes with these two types o f cellulose.

5.9 Effectiveness of Biodegradation

From all the studies conducted, it is obvious that the measurement o f gas production is not 

a good indicator for nitrocellulose degradation. For high inducer/NC ratio, high gas 

production or high conversion ratios can be observed as in Tables 6 to 9. However, once 

the ratio drops, it is difficult to tell if nitrocellulose change or not.

Low gas production does not mean substrate was not changed. It only means the 

final gas product was not formed. This is especially true for nitrocellulose. It has been 

observed over and over again in the batch study, stage-feed study, and sequential batch 

study that intermediate compounds such as organic acids and nitrates were detected. 

Unfortunately, some other intermediate compounds were not able to be identified.

Another interesting observation was found after the data collection stage. During 

the data analysis period, two reactors were kept in the temperature control chamber with
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Table 21 Soluble Chemical Oxygen Demand in Effects of Cellulose Particle Size Study

In itial pH 8.0 7.0 6.0 5.0 4.5

Blank

Final pH 7.59 7.10 6.58 6.51 6.50

G as, ml 5.2 6.4 7.0 7.1 7.3

SCOD, mg/1 136 + 3 96 + 19 107 + 30 122 + 2 126 + 6

C-100

Final pH 6.88 6.83 6.40 6.35 6.31

G as, ml 113.3 115.6 129.4 126.0 119.3

SCOD, mg/1 207 + 6 3 2 1 + 7 369 + 2 432 + 3 419 + 2

C-50

Fianl pH 6.87 6.76 6.35 6.38 6.33

Gas, ml 119.9 119.7 133.5 132.5 130.8

SCOD, mg/1 179 + 2 274 + 3 282 + 2 333 + 13 289 + 3

C-20

Final pH 6.85 6.67 6.33 6.29 6.26

G as, ml 120.2 121.8 132.3 128.5 129

SCOD, mg/1 218+  18 276 + 2 352 + 4 322 + 2 280+  13

CNC-100

Final pH 6.88 6.77 6.35 6.31 5.84

Gas, ml 110.6 108.5 122.4 117.4 67.8

SCOD, mg/1 234 ± 3 294 + 2 379 ± 8 375 + 3 1076 + 42

CNC-50

Final pH 6.88 6.77 6.34 6.31 6.31

Gas, ml 116.3 118.0 129.7 120.2 129.0

SCOD, mg/1 231 + 12 370+ 11 389 ± 2 507 + 2 354 + 6

CNC-20

Final pH 6.97 6.83 6.35 6.24 6.21

Gas, ml 116.7 119.5 138.8 116.2 117.4

SCOD, mg/1 225 + 6 264 + 2 307 + 6 538 + 3 542+  16

NC

Final pH 7.59 7.11 6.57 6.47 6.49

Gas, ml 5.8 7.3 6.7 6.7 7.3

SOCD, mg/1 103 + 21 114 + 3 128 + 9 121 + 7 128 + 3



no additional substrate addition. After four months, gas production was not increased. 

The reactors were emptied and it was found that all nitrocellulose and most bacteria 

disappeared. This is a further evidence that nitrocellulose can be degraded biologically. 

Therefore, a system with anaerobic digestion with addition o f enzyme inducer will be 

useful to desentilize nitrocellulose.



CHAPTER 6

HYDROCHLORIC ACID HYDROLYSIS OF NITROCELLULOSE

In the previous study on hydrolysis o f nitrocellulose using diluted acid, it was found that 

better hydrolysis can be only obtained at higher temperatures and pressures (Hsieh and 

Tai, 1994). From previous study, results show that from single stage hydrolysis process 

yielded about 75% glucose conversion and from two stage hydrolysis process converted 

about 78% o f nitrocellulose to glucose at 70 °C. From this study show that the single 

stage hydrolysis is as good as the two stage hydrolysis. However, extremely care must be 

taken to avoid glucose destruction. Therefore, this part o f the study was focused on using 

concentrated hydrochloric acid at intermediate temperature and ambient pressure to 

hydrolyze waste nitrocellulose in single stage. In this study, 0.4 gram o f nitrocellulose and 

various amount o f concentrated hydrochloric acid (with a concentration o f about 38%) 

were added to the media tubes with predetermined acid/solid ratios. These tubes were put 

into a water bath controlled at designated temperatures (50 to 90 degree Celsius). Tubes 

were then removed from the water bath at various intervals, quenched in ice water, and 

analyzed for glucose contents.

6.1 Effect of Reaction Temperatures

Five different temperatures, 50, 60, 70, 80, and 90 degree Celsius, were used to evaluate 

the temperature effect on nitrocellulose hydrolysis. During the experiment, it was found 

that the hydrolysis reaction was so slow at 50 °C, it was impractical to calculate the
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activated energy at this temperature, therefore, it was removed from analysis. A typical 

result o f nitrocellulose hydrolysis at four testing temperatures with a acid/solid (A/S) ratio 

o f  6 ml/ 0.4 gram is shown in Figure 33. Figure 33 shows that hydrolysis reaction does 

follow Arrhenius equation, which indicates the higher temperature the faster the reaction. 

This figure also shows that at 90 °C, it took about 9 minutes to convert nitrocellulose to 

the maximally produce glucose. But at 60 °C, approximately 63 minutes were needed to 

reach the maximum glucose level for the same A/S ratio.

It is also shown in Figure 33 that although different time o f periods were required

to reach the maximum production at different reaction temperatures, the maximum

glucose production from nitrocellulose hydrolysis was almost the same as long as the A/S 

ratio remained the same. In this case, 0.9 mmole glucose. This experiment indicates that 

the maximum amount o f glucose that can be produced from acid hydrolysis o f 

nitrocellulose is controlled more by the A/S ratio rather than temperature. The 

temperature only affects the rate o f hydrolysis reaction.

Four different temperature, 90, 80, 70, and 60 degree Celsius, and six Acid/Solid

ratios, 2 ml/0.4 g, 4 ml/0.4 g, 6 ml 0.4 g, 8 ml /0.4 g, 10 ml 0.4 g, and 12 ml /0.4 g were

used in the kinetics study. The method to estimate the rate constants for acid hydrolysis 

has been mentioned previously. The rate constants for acid hydrolysis o f nitrocellulose at 

different temperatures and A/S ratios are listed in Tables 22 and 23. Based on Arrhenius 

Equation (Eq. 3), there is a linear relationship between the natural logarithm o f rate 

constants and the reciprocal o f reaction temperature in °K. Therefore, the plots o f In K 

verse 1/T were used to calculate the activated energy and Arrhenium frequency factor.
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Table 22 Rate Constants of Nitrocellulose Hydrolysis (Ki) at Various Temperatures

Tem p, °C K-2* K-4* K-6* K-8* K-10* K-12*

90 0.74439 0.79586 0.84082 0.88874 0.91456 0.93951

80 0.39593 0.42746 0.44677 0.47495 0.48554 0.49537

70 0.22962 0.24766 0.26509 0.27411 0.28367 0.28959

60 0.10874 0.11642 0.12287 0.12796 0.12951 0.13573

* number represents the amount of acid(ml) in A/S ratio

Table 23 Rate Constants o f Glucose Degradation (K2)at Various Temperatures

Temp, °C K-2* K-4* K-6* K-8* K-10* K-12*

90 0.08409 0.08765 0.09261 0.09466 0.09613 0.09716

80 0.04035 0.04184 0.04304 0.04471 0.04577 0.04679

70 0.02647 0.02798 0.02874 0.02953 0.03018 0.03089

60 0.01617 0.01723 0.01885 0.01831 0.02089 0.01881

* number represents the amount of acid(ml) in A/S ratio



Results are shown in Figures 34 and 35. Both figures show that each line in the plot o f In 

K verse 1/T has similar slope, which means the amount o f activated energy required for 

each part o f the reaction is also similar. Therefore, an average value of the slopes o f these 

lines (six different A/S ratios) is calculated and this average value used represent the 

activation energy o f acid hydrolysis. Base on this result, the activation energies required 

to hydrolyze nitrocellulose to glucose and then decomposed glucose to small molecular 

weight organic acids are 15,233 Kcal/mole and 12,568 Kcal/mole, respectively. Arrhenius 

frequency factor for these two reactions are 1.2650 x 109 and 2.8475 x 106’, respectively. 

The rate constants can be expressed by Arrhenium equation as follows:

K] = 1.2650 x 109 exp(- 15,233 /RT), and 

K2= 2.8475 xlO6 exp(- 12,568 /RT) 

where Ki = rate constant of hydrolysis o f nitrocellulose, min'1

K2 = rate constant of degradation o f glucose, min'1 

Another set o f experiments was conducted at ambient temperature (about 20 °C) 

for a period of 5 days. From this study, it was found that hydrolysis did occur at room 

temperature and atmospheric pressure with concentrated hydrochloric acid. But the 

hydrolysis reaction was much slower than at intermediate temperatures. It took about 5 

days to completely dissolve the nitrocellulose and convert it to glucose. However, the 

quantity o f glucose formed was much lower than the value obtained at intermediate 

temperature. It was thought that the rate o f nitrocellulose hydrolysis and glucose 

degradation should be o f the same order of magnitude at ambient temperatures, unlike 

what observed at higher temperatures, where the rate o f nitrocellulose hydrolysis was
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much faster than glucose degradation. During this experiment, all the glucose produced 

from nitrocellulose hydrolysis was degraded into small molecular weight organic acids at 

almost the same rate.

Another study using diluted hydrochloric acid at room temperature was also 

conducted but the reaction rate for acid hydrolysis was too slow to be observed within a 

reasonable reaction time. This study shows that o f the two most important factors 

affecting acid hydrolysis, acid concentration and temperature, acid concentration has more 

influence.

6.2 Effect of Acid/Solid Ratio on Acid Hydrolysis

The effect o f Acid/Solid ratios on acid hydrolysis was investigated in this part o f study. 

Six different hydrochloric acid (ml) / nitrocellulose (g) ratios, 2/0.4, 4/0.4, 6/0.4, 8/0.4, 

10/0.4, and 12/0.4, were studied The experiments were used to evaluate the performance 

of hydrolysis and glucose degradation. The data which generated in this study, including 

glucose production in mmole, glucose concentration in mM, and glucose yield in % verse 

reaction time, are shown in Appendices A to C.

Saeman (1945) has shown that cellulose hydrolysis and glucose degradation can be 

modeled as first-order reactions. Figure 36 shows that the plot o f natural logarithm o f 

glucose concentration verse reaction time curve was very similar to what Saeman 

observed in his work. Nitrocellulose hydrolysis can, therefore, be modeled as a first-order 

reaction. All results showed a similar pattern for the hydrolysis study. The glucose 

production first increased, reached a maximum value, then slowly decreased. As 

previously indicated, the maximum concentration of glucose produced depends on
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reaction temperature and A/S ratio. For the curve obtained (Figure 36), in the first stage, 

where the glucose production increases, can be called the stage o f nitrocellulose 

hydrolysis; and the second stage, where the glucose concentration decreases, can be called 

glucose degradation.

This study tried to determine the relation between rate of nitrocellulose hydrolysis 

and Acid/Solid Ratio. Plots of rate constants verse A/S ratios were conducted at different 

scales. It was found that the only plot that could express these two parameters with a 

linear relationship was the plot o f natural logarithm o f rate constants for nitrocellulose 

hydrolysis and glucose degradation verse natural logarithm o f Acid/Solid ratios. These 

plots are shown in Figures 37 and 38. These two figures show that even though each test 

was conducted at different temperatures each plot had a similar slope. The average slope 

o f nitrocellulose hydrolysis is 0.1286 ± 0.0052 and the average slope o f  glucose 

degradation is 0.084 ±  0.0008. The results indicate that the more hydrochloric acid added 

to the reaction the faster the nitrocellulose would degrade, and the less glucose would 

remain in solution. It also indicates that acid/solid ratio will affect the reaction rate of 

nitrocellulose hydrolysis more than glucose degradation.

6.3 Effect of Acid Concentration

Different hydrochloric acid concentrations (38, 30.4, 25.3, 21.7, and 19 %) were reacted 

with 0.4 gram nitrocellulose at 80 and 90 degree Celsius. The experimental procedure 

was similar to the approach for the study of the effect o f Acid/Solid ratio study. A natural 

logarithm plot o f rate constant verse acid concentration (%) was employed to evaluate the 

effect o f acid concentration on hydrolysis of nitrocellulose and glucose degradation. The
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results are shown in Figures 39 and 40. A linear relationship is shown to exist between the 

natural logarithm o f rate constant and acid concentration for both nitrocellulose hydrolysis 

and glucose degradation. The slope o f In Ki verse In A is 1.8183 ± 0.0103 and the slope 

o f In K2 verse In A is 0.5436 ± 0.0093. This test shows that the higher the acid 

concentration, the faster the reaction. The results also indicate that acid concentration 

affects the reaction rate o f hydrolysis process more than that o f glucose degradation.

By combining all the parameters studied together, the reaction o f nitrocellulose 

hydrolysis and glucose degradation can be expressed as a function o f acid concentration, 

acid/solid ratio, and temperature. The complete reaction o f nitrocellulose hydrolysis and 

glucose degradation can be expressed by the following kinetic models :

K, = 1.0841±0.0729 x 106 (A)1-81831*0 0103 (A/S)0' 1286t00052 exp (-15,233±89/RT)

K2 = 5.5082±0.2901 x  10s (A)05436*00093 (a /S)00844i0°°08 exp (-12,568±319/RT) 

where Kj = rate constant o f hydrolysis o f nitrocellulose, min'1

K2 = rate constant o f degradation o f glucose, min'1 

A = Acid Concentration, %

(A/S) = Acid/Solid Ratio, ml/g

T = Absolute Temperature, °K, and

R = Universal Gas Constant, 1,987 g-cal/(g-mole)(°K)

This equation shows that higher acid concentration, acid/solid ratio, and/or temperature 

will have faster reaction for both hydrolysis and degradation reaction. However, these 

two equations also indicate that the three parameters have more stronger effect on 

nitrocellulose hydrolysis than on glucose degradation.
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6.4 Glucose Conversion

Glucose is the dominant end product for acid hydrolysis o f cellulosic materials. The 

glucose produced at various acid/solid ratios were determined. Glucose Yield, Y, is 

defined as :

Y = Total Glucose Produced joo%

Total Potential Glucose

The total potential glucose is a theoretical value which is obtained by calculation 

based on a nitrogen content in nitrocellulose of 13.5 %.

Experiments at several temperatures were performed and the results were similar. 

The glucose yields during nitrocellulose hydrolysis with different A/S ratios in 90 °C is 

shown in Figure 41. The glucose yield for each tested A/S ratios at other temperatures are 

shown in Appendix C. Figure 41 shows that the glucose yield from nitrocellulose 

hydrolysis is affected by A/S ratios. The higher A/S ratios the stronger the acid to 

hydrolyze nitrocellulose to glucose and the higher the glucose yield. It has mentioned 

earlier that the reaction temperature does not affect the glucose yield that much but it does 

influence the rate o f the reaction. The maximum glucose yields decreased from 85 percent 

for an A/S ratio of 12/0.4 to 38 percent for an A/S ratio o f 2/0.4. This confirms the 

observation stated earlier that the glucose yield is related to both reaction rate o f 

nitrocellulose hydrolysis and the glucose degradation. The higher the nitrocellulose 

hydrolysis rate, the more glucose remained in the solution.

Other than glucose, citric and formic acids constituted a major part o f organic 

acids from the hydrolysis process o f nitrocellulose by using High Performance Liquid
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Chromotograph (HPLC) analysis. Small amounts o f oxalic, malic, pyruvic, succinic, 

glycolic, and adipic acids were also detected in the hydrolyzate.

6.5 Change of Acid Concentration During Acid Hydrolysis

The acid concentration was measured by titration with sodium hydroxide. The test 

monitored the hydrogen ion change during hydrolysis process. The change o f  acid 

concentration in the aqueous phase is shown in Figure 42. It shows that there is an initial 

decrease o f acid concentration followed by an increase o f concentration to its original 

value and then a further gradual increase. If a small amount o f substrate (higher A/S 

ratios) were used in the test, the pH drop was small and the acid returned to its original 

concentration and stopped at that value. However, when a large amount o f substrate 

(lower A/S ratios) were used, the final acid concentration would be higher than the 

original concentration as it is shown in Figure 42. The decrease o f acid concentration 

during the early stage might be due to the adsorption o f acid on solids and the increase of 

concentration during the later stage could be due to the desorption o f hydrogen ions 

resulting from the decreasing solids content. This observation was also reported in Ullal's 

(1984) work.

6.6 Nitrogen Balance

In order to determine the change o f nitrogen forms during acid hydrolysis, 0.4 gram of 

nitrocellulose with different amounts of hydrochloric acid was put into media tubes and 

sealed with a teflon liner air tight cap. These tubes were then put into a water bath 

controlled at 60 and 80 degree Celsius. Tubes were removed from the water bath at
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various intervals and quenched in ice water, and 10 ml o f 10 N sodium hydroxide solution 

was injected into tubes. The tubes were shaken and the contents were analyzed for nitrate 

and nitrite content by Ion Chromatography. During the process o f hydrolysis, first a light 

yellow color was observed in the tube, and then it turned to reddish brown , at same time 

nitrocellulose disappeared gradually, finally all solids were gone and the color had changed 

to brown or dark brown. The nitrogen dioxide is the only reddish brown gas among all 

different nitrogenous gases. The gas produced in hydrolysis could be the nitrogen dioxide. 

In order to confirm this, sodium hydroxide solution was injected into tube to react with 

nitrogen dioxide. When caustic solution was injected into tube, the reddish brown color 

disappeared. Nitrogen dioxide reacts with hydroxide ion to form nitrate and nitrite. 

Nitrogen dioxide also can react with water to form nitrous and nitric acids. The reactions 

can be expressed as the following equations:

2N 02 + 2 OH' —> N O / + N 0 2' + H20  

2N 02 + H20  -4  H N 02 + H N 03 

All nitrogen balance calculation o f tested nitrocellulose were based on a nitrogen 

content o f approximately 13.5 %. The nitrogen recovery results are presented from 

Figures 43 to 44. From the results o f the nitrogen recovery study, it was found that no 

consistent pattern could be obtained. Generally, the concentration o f nitrite increased 

slowly. However, the concentration o f nitrate increased to a peak concentration, although 

some tests showed a concentration drop before the peak concentration. After that the 

nitrate concentration was either dropped or remained the same in solution. At 60 °C, the 

maximum nitrogen recovery was about 85% at A/S ratio = 10 ml / 0.4 g, and about 50%
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nitrogen recovery was obtained at 80 °C and A/S ratio = 4 ml / 0.4 g. This experiment 

indicates that more nitrogen can be recovered at lower reaction temperature and higher 

A/S ratio based on the measurement o f nitrate and nitrite by ion chromatograph in caustic 

solution.

Most o f  the nitrogen recovery in this experiment was measured in the nitrate form 

and only small amount o f nitrite was detected. This could be due to the unstable nature of 

nitrite. Ammonia was also detected from the solution, but comparing to the concentration 

o f nitrate and nitrite, ammonia was negligible. When the supply o f oxygen is limited part 

o f the nitric oxide is converted to nitrogen trioxide and the rest o f nitric oxide can also 

react with nitrogen dioxide to form nitrogen trioxide.

4NO + 0 2 -> 2N20 3 

NO + N 0 2 <-> N20 3

This could be the reason why only 85% of nitrogen was recovered in the form o f nitrate 

and nitrite. The nitrogen that was not found in the solution might have escapes from tube 

during the injection o f caustic solution. Another explanation may be due to the H N 03 

produced from hydrolysis of nitrocellulose that was further reduced to NO, N20 , and N2. 

In this situation, nitrogen can not be detected in either nitrate or nitrite from Ion 

Chromatograph analysis.



CHAPTER 7

PROPOSED NITROCELLULOSE TREATMENT METHOD

This study has shown that biodegradation o f nitrocellulose is not an economically and 

technically attractive alternative. The study also showed that it is possible to break down 

nitrocellulose through acid hydrolysis. However, the use o f acid hydrolysis has one 

drawback, the expense o f the strong acid. Fortunately, the recovery o f acid is an existing 

technology (Goldstein and Easter, 1992), which can be used for this treatment method. 

Therefore, a schematic flow diagram as shown in Figure 45 is recommended for treatment 

o f nitrocellulose. The nitrocellulose is first treated with strong acid and broken down to 

glucose by acid hydrolysis. Electrodialysis can be used to recover the acid. The glucose 

produced during hydrolysis will be converted to ethanol or other useful products by 

fermentation after neutralization. Again, the utilization o f fermentation for glucose has 

been widely used in industry, and it can be adapted without problems. More discussion 

about this technology are presented below.

7.1 Acid Separation and Recovery

7.1.1 Hydrochloric Acid Stripper and Absorption

The hydrolyzate solution leaving the reactor still contains all the hydrochloric acid 

originally added to the reactor. The acid must be separated from the sugars, not only to 

permit fermentation, but also to reduce processing costs by recovering and recycling the 

hydrochloric acid. The volatility o f hydrochloric acid gas allows it to be stripped from the 

hydrolyzate at reduced pressure. With pure water, this product can be carried all the way

114
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to the azeotrope at 20.2% hydrochloric acid. However, the hydrochloric acid also binds 

to the sugars in hydrolyzate as well as water, leading to a reduction in hydrochloric acid 

volatility and an upward shift in the azeotropic composition in addition to that which 

occurs at the reduced pressure. However, hydrochloric acid volatility can be compensated 

by increasing the temperature in the stripper, but it cannot exceed the temperature limit 

adopted for the reactor. Higher temperatures would also cause degradation o f  the sugars. 

In stripping process, 78% of the original acid can be stripped as a 48.6% solution 

(Goldstein, 1992).

The hydrochloric acid stripped from the hydrolyzate would be recycled. Most of 

the acid recovered by the electrodialysis unit would enter an absorption system, as an 

approximately 20% hydrochloric acid solution. The remaining hydrochloric acid gas 

would be compressed sufficiently to bring the concentration o f the solution that leaves the 

absorber, up to 45% before being reintroduced into the reactor while maintaining this 

concentration at the moderate temperature in the reactor.

7.1.2 Electrodialysis

Hydrochloric acid and water form a maximum boiling azeotrope and breaking this barrier 

can be difficult and costly. During World War II, the Germans operated concentrated 

wood hydrolysis plants and their experiences in hydrochloric acid recovery have been 

reported. The methods they used include combinations o f atmospheric, vacuum, and 

extractive distillation, as well as evaporation using a mineral oil or steam as a heat transfer 

medium. Spray drying by direct contact with a stream o f hot air has also been tried.
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Nguyen et al. (1981) designed a two-stage system where the first recovery stage utilizes 

vacuum distillation and the final stage extractive distillation with calcium chloride. Forster 

et al. obtained a US. patent in 1980 for an organic solvent extraction technique. This 

technique covers the C5-C9 alcohols including the primary, secondary, and tertiary 

isomers. The first recovery step involves removing hydrochloric acid from the hydrolyzate 

by continuous, countercurrent extraction. In the second stage, hydrochloric acid is 

recovered by distillation.

Hydrochloric acid recovery from wood hydrolyzates can also be accomplished by 

electrodialysis using synthetic polymer membranes. An electrodialysis cell is constructed 

from an electrolytic cell by placing a cathodic membrane adjacent to the cathode and an 

anodic membrane next to the anode. When an applied electromotive force causes 

hydrogen ions to migrate toward the cathode and chloride ions to the anode, the interior 

compartment solution loses hydrochloric acid while the external compartment solutions 

gain hydrochloric acid. The applied electromotive force causes the migration o f ionic 

components, while the concentration difference creates transport by diffusion and osmosis. 

Both the osmotic and the electromotive process transports hydrochloric acid against its 

concentration gradient.

Urano et al. (1984) investigated the acidic wastewater which is released from the 

iron and steel industry and demonstrated the acids (sulfuric and hydrochloric acids) can be 

efficiently concentrated by electrodialysis. An apparatus for the electrodialysis used in this 

study is shown in Figure 46, and the properties o f ion-exchange membranes o f Selemion 

CMV and AAV (Asahi Glass Co. Ltd.) are shown in Table 24.
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Table 24 Properties of Ion-Exchange Membranes (Urano et al., 1984)

Anion-Exchange

M em brane

Cation-Exchange

M em brane

Commercial name Selemion AAV Selemion CMV

Thickness, cm 1.3 x 10-2 1.3 x 10-2

Ion-exchange capacity, 

equiv/g-dry membrane

7.7 x 10-4 2.0 x 10-3

Transport number > 0.90 for Cl- >0.91 for H+

Weight o f dry membrane, 

g/cm2-membrane

1.3 x IQ-2 1.4 x 10-2

More than 40% current efficiencies was reported by Huang and Juang (1986) in 

sulfuric acid-glucose-xylose mixture from dilute sulfuric acid hydrolysis by electrodialysis 

process. The ion-exchange membranes, Selemion CMV and Selemion AMV, used in this 

study were manufactured by Asahi Glass Co. o f Japan. They are homogeneous 

membranes, and their properties are listed in Table 25.

Goldstein's works (1989 and 1992) showed the technical feasibility o f using 

membrane technology to separate hydrochloric acid from sugars in cellulose hydrolyzates. 

Two membrane systems were chosen for their ability to withstand exposure to 20% 

hydrochloric acid and 60% sulfuric acid in this study. The membraned stack was procured 

from Ionics Co. containing 20 type 103-QZL-386 anion-exchange membranes and 20 type 

61-CZL-386 cation-exchange membrane. The properties of membranes are listed in Table 

26. They indicated that the permeability o f disaccharides was less than 1% o f the acids
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Table 25 Specifications of Ion-Exchange Membranes ( Huang and Juang, 1986)

Selemion CMV Selemion AMV

Type high acidic ion-exchange 
membrane

high basic ion-exchange 

membrane

Base material Tevilon cloth (PVC) Tevilon cloth (PVC)

Thickness, mm 0.12-0.15 0.11-0.14

Effective electrical 
resistance, QJcm2

190-230 280-320

Transport number 0,91-0.93 0.94-0.96

Burst strength, kg/cm2 6-8 4-7

Table 26 Properties o f Ion-Exchange Membrane (Goldstein et al, 1989)

A nion-transfer membrane C ation-transfer

m em brane
Commercial name 103-QZL-386 61-CZL-386

Reinforcing fabric Modacrylic Modacrylic

Weight, mg/cm2 15.3 14.0

Thickness, mm 0.63 0.6

Burst strength, kg/cm2 10.8 8.0

Capacity,
meq/dry gram resin

2.1 2.7
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permeability and acid flux in diffusion dialysis was only 6% of acid flux at optimum 

current density in electrodialysis. Ideally, the separation o f hydrochloric acid from the 

sugar in the hydrolyzates by electrodialysis should provide a maximum yield o f recovered 

acid at maximum concentration with minimum power consumption using minimum 

membrane area. Their experimental results made it obvious that these conditions cannot 

be met simultaneously. At the highest current efficiencies and, thus, the minimum 

membrane area, the final acid concentration in the concentration was too low. At the 

highest final acid concentrations, the percentage o f acid transferred fell off, and power 

consumption and membrane area were high. As hydrochloric acid passed through the 

membranes, water was also transferred by osmotic forces. As the volume o f acid and 

water transferred to the recovery stream increased, the volume of the hydrolyzate stream 

decreased. The sugars were retained in the hydrolyzate at concentrations up to 60%. The 

hydrochloric acid concentration of the hydrolyzate at the end of electrodialysis was about 

3%, based on acid and water alone. This acid can be neutralized with base before 

fermentation.

7.2 Ethanol Fermentation and Purification

The microbial conversion o f agricultural substrates into ethanol is an ancient practice that 

certainly predates the science of microbiology, the chemistry of the distillation process, 

and the engineering o f ethanol fermentation plants. Pasteur's research with French wines 

in the 1860s defined the basic concepts o f the fermentation process and commercial 

interests in beer, wine, and hard liquor production promoted continual advances in the 

understanding o f the biochemistry of ethanol fermentation.
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7.2.1 Effect of Microorganisms

When microorganisms are grown on sugars in the presence o f oxygen, they obtain cellular 

material and energy by oxidizing these organic compounds. As a result o f  this oxidation, 

carbon dioxide and water are produced as metabolic waste products. The excess electrons 

from the oxidation o f sugars are carried by an electron transport system to oxygen, the 

final electron acceptor, and water is formed. Certain microorganisms are able to grow on 

sugars in the absence o f oxygen, utilizing sugars as electron acceptors instead o f oxygen. 

During this anaerobic growth, sugars are oxidized and excess electrons are transferred to 

organic acceptor molecules and ethanol is produced as a waste product o f the 

fermentation process instead o f water. Microorganisms responsible for ethanol production 

are facultative, i.e. they can grow with or without oxygen. If  air is allowed to enter the 

fermentation process in sufficient quantities, then microbial metabolism will switch from 

an anaerobic, ethanol-producing process, to the more efficient aerobic process (Krebs 

cycle), and no further ethanol will be produced. The previously produced ethanol may 

actually be utilized (glycolytic pathway) and oxidized to carbon dioxide and cell material. 

Thus, microbes produce ethanol when growth conditions do not support oxidative 

metabolic process, thereby requiring these facultative microorganisms to employ a less 

efficient pathway which produces ethanol as a metabolic waste product.

Although numerous microorganisms are capable of producing ethanol, not all are 

suitable for industrial processes. Also, no one culture is ideal for efficient conversion or 

high attenuation of all substrates. Yeast cultures, (in particular Saccharomyces sp.) have 

been most extensively examined. Various species o f Saccharomyces are used for ethanol
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production processes because they are very efficient in converting sugars into ethanol and 

are not as strongly inhibited by high ethanol concentrations as are other microbes. 

Theoretically, one mole o f glucose can produce two moles o f ethanol (511 Kg o f ethanol 

from 1000 Kg o f glucose). The yeast ethanolic fermentation is the most efficient pathway 

for ethanol production, but it is not the only pathway leading to ethanol accumulation. 

The other pathways and involved microorganisms are listed in Table 27. Recently, 

bacterial cultures o f Bacillus and Clostridium species have been explored for high- 

temperature ethanol fermentation processes. Bacillus and Clostridium are able to grow as 

thermophilic microorganisms and may therefore reduce the cost o f the fermentation and 

distillation processes. However, the yield o f ethanol by bacterial cultures is not as high as 

in yeast fermentations.

Conventional ethanol fermentations are usually conducted as batch processes 

where the reactor is charged with substrate, the microbial inoculum is added, and the 

process allowed to run to completion, about 4-10 days (Munnecke, 1981). The 

fermentation tank can be mechanically agitated by impellers to decrease diffusion 

limitations, or the natural agitation created by escaping carbon dioxide may be sufficient. 

In batch processes, the sugar is added batchwise at decreasing intervals to the growing 

culture, or continuously at an increasing rate as the microbial population expands. After 

the fermentation is complete, the cells are removed before distillation. The same type of 

fermenter used in batch processes can also be used with slight modification for 

continuous-flow operation. Here, the sugar and nutrient medium are continuously added 

to the reactor, and the effluent, which contains ethanol and cell material is continuously 

treated for cell separation and product recovery. Since the concentration of sugar in the



Table 27 Anaerobic Metabolism of Pyruvate (Brandt, 1981)

Type o f ferm entation End products M icroorganisms

Ethanolic Ethanol 

Carbon dioxide

Yeast

Zymomonas

Mixed acid Lactic, Formic, and 

Acetic acids 

Carbon dioxide 

Hydrogen 

Ethanol

Clostridium and many 

enteric bacteria

Butanediol As in mixed acid plus 

2,3-butanediol

Bacillus and other bacteria

Acetone/butanol Acetic acid 

Butyric acid 

Ethanol and Butanol 

Acetone 

Isopropanol 

Carbon dioxide 

Hydrogen

Clostridium

Homolactic Lactic acid Lactobacillus

Streptococcus
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fermenter remains close to zero, there is no direct problem of high sugar concentrations 

adversely affecting cellular growth or ethanol production. The rate o f sugar addition has 

to be regulated so that inhibitory levels o f ethanol do not occur and cause decreased 

growth rate. The continuous fermenter for best efficiency should be operated near, but 

below, the maximal cellular growth rates. The processes for both batch and continuous 

fermentation o f ethanol are shown in Figure 47.

A modification o f the continuous fermentation process involves conducting the 

fermentation under a vacuum. Operating under vacuum, ethanol can be continuously 

removed from the broth as it is produced and its inhibitory effects on cell growth are 

reduced. This modification allows for higher rates o f ethanol production per liter of 

fermentation broth and creates a condensate containing a higher ethanol concentration for 

better distillation efficiency. Since ethanol production is not dependent on cellular growth, 

nongrowing cells can be immobilized in gels and placed into continuous-flow reactor. By 

maintaining nongrowth conditions, glucose conversion to ethanol can reach to above 95%. 

Another advantage o f this process is that high cell densities are maintained, even higher 

than with cell recycling methods, and it does not require costly continual cell 

centrifugation and recycling. The efficiency o f ethanol production by immobilized cells on 

a gram dry weight basis is reported to range upward from 80% in comparison to the 

productivity o f free cell suspensions.

7.2.2 E thanol Recovery

Ethanol recovery has been traditionally accomplished by distillation. A train o f towers 

operating in series is employed, each accomplishing one or two separation o f the ethanol



126

C arbon Dioxide

C arbon Dioxide 
Scrubber

From Grain 
Preparation

(Cleaning) (Filling) Beer Well

Yeast
Preparation

Batch Fermentation Processe

N utnents

C arbon Dioxide

W ater

C arbon Dioxide 
Scrubber

Return to £  
Ferm enters

(Standing By)

Yeast
Preparation

Continuous Fermentation Process

Figure 47 Processes for Batch and Continuous Fermentation of Ethanol (Brandt, 1981)



from components o f the fermentation broth. The first tower (so called stillage separation) 

is designed to strip all ethanol from the broth and to increase the ethanol concentration in 

the overhead. The solids in the broth will be removed from bottom of the stream. The 

distillation sequence after the beer still will vary with the type o f ethanol product. Potable 

ethanol requires refining to the specifications for the product in which it is used. Industrial 

ethanol requires removal o f impurities, including fusel oils, which are byproducts o f  the 

fermentation. In addition, anhydrous industrial ethanol requires that an entrainer be added 

to break the water-ethanol azeotrope in a separate tower. The ethanol and entrainer are 

then separated in another tower. The processes for distillation o f various ethanol products 

are shown in Figure 48 (Brandt, 1981). Anhydrous industrial ethanol requires at least four 

distillations in a standard design. To produce 99.5% fuel ethanol from the fermentation 

broth, a conventional distillation process consumes a great deal o f energy. New 

concentration and dehydration technologies were studied at the Research Association for 

Petroleum Alternatives Development (RAPAD) program such as heat pump distillation, 

azeotropic distillation, supercritical fluid extraction and per-vaporization methods 

(Miyakawa, 1986).



Water Removal System 
Used for
Anhydrous Products

Mash Separation 
System Used for 
All Products

Ethanol Purification 
System Used for 
Industrial Products

H A [h a HA /K

\ /

Fermentation 
Broth from 
Ferm enters

HA

Steam

Steam

Steam

Ste&i i

Stillage 
to Drying 
o r Direct 
Feeding \K 

A nhydrous 
Ethanol Fuel 
for Industrial

Heads By* 
Product

\K
Oil
By-Product

Direct Route to
A nhydrous Fuel Ethanol \ j /

Industrial Ethanol 
(190 Proof)

'■v 

By-Products 
o f  Fuel 
Ethanol

Beer Still Extracting Rectifying Impurities
Tower Tower Tower

Anhydrous Solvent 
Tower Stripper

Figure 48 Processes for Distillation of Various Ethanol Products (Brandt, 1981)



CHAPTER 8

CONCLUSIONS AND RECOM M ENDATIONS

This investigation has demonstrated the potential for utilization o f acid hydrolysis and

anaerobic digestion to treat munitions-grade nitrocellulose. Based on experimental

results, the following conclusions and recommendations are made :

8.1 Anaerobic Treatm ent Process

1. The study showed that biodegradation of nitrocellulose through conventional 

anaerobic digestion is difficult, if it is the sole carbon source in the wastewater.

2. Experiments showed that nitrocellulose degradative enzyme could be induced by any 

o f the three inducers added, i.e. lactose, cellobiose, and cellulose. Although gas 

production was low in the study, formation o f the intermediate compounds, such as 

volatile organic acids indicate that partial biodegradation o f nitrocellulose was 

achieved.

3. The experiment indicated that two-stage anaerobic system was not an effective 

enhancement for the decomposition o f nitrocellulose. The stage-feed system has 

better conversion.

4. Nitrocellulose adversely affects the biodegradation o f cellulose and decreases the gas 

production at inducer/nitrocellulose ratios lower than 1/1.

5. The experiments showed that nitrate was released from nitrocellulose by the hydrolysis 

o f the nitrocellulose nitrate ester group which could be enhanced by the anaerobic 

microorganisms.
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6. It can be concluded from this study that higher gas production was observed with a 

decrease in particle size distribution o f the cellulose substrate. With the addition of 

Type 20 and Type 50 cellulose, a 48.9% o f nitrocellulose conversion could be 

obtained.

7. Competitive inhibition was observed in the anaerobic biodegradation o f nitrocellulose. 

The inhibitory effect can be overcome at higher cellulose concentrations. The kinetics 

and inhibition constants of nitrocellulose on cellulose biodegradation are listed as 

follows:

Vmax =13.93 mM/day,

Km = 136.01 mM,

Km' = 94.84 mM, and 

K i= 17.32 mM.

8. Since nitrocellulose can be converted to intermediate compounds and not the final gas 

product within the reasonable operation time. The development o f analytical method 

to analyze nitrocellulose and the intermediate compounds are necessary.

8.2 Hydrochloric Acid Hydrolysis of Nitrocellulose

1. Acid hydrolysis at moderate temperatures showed good promise for treatment of 

nitrocellulose. Over 60 percent of the nitrocellulose was converted to glucose in the 

hydrolysis process under optimal conditions.

2. Acid hydrolysis o f nitrocellulose was related to acid concentration, the ratio o f  acid to 

nitrocellulose, temperature and time. At 90 °C, the hydrolysis reaction needed only 

about 9 minutes to reach maximum glucose yield (about 85%). The hydrolysis



reaction took approximately 63 minutes to reach maximum glucose yield at 60 °C. 

Temperature only affected the rate of reaction, it did not influence the maximum 

glucose yield.

From the kinetic study o f nitrocellulose hydrolysis and glucose degradation, the 

reaction rates were found to be in the following equations, respectively :

K i=  1.0841 x 106 A18183 (A/S)0 1286 exp(-15,233/RT)

K2= 5.5082 x 105 A0 5436 (A/S)00844 exp(-12,568/RT)

It was found that nitrogen was released as NO and N 0 2 during the hydrolysis process. 

However the undesirable NO and N 0 2 can be easily converted into nitrate and nitrite 

by passing them through a caustic solution scrubber.

Other than glucose, citric and formic acids constituted a major part o f organic acids 

from the hydrolysis process. Small amounts of oxalic, malic, pyruvic, succinic, 

glycollic, and adipic acids were also detected in the hydrolyzate.

Treatment o f nitrocellulose with an acid hydrolysis process, followed by a hydrochloric 

acid recovery system and an ethanol fermentation system is proposed to convert 

nitrocellulose waste into useful end products.



APPENDIX A

GLUCOSE PRODUCTION IN NITROCELLULOSE HYDROLYSIS 
AT VARIOUS TEM PERATURES

In this appendix, data o f glucose production that generated from acid hydrolysis of 

nitrocellulose at various temperature were presented in the unit o f mmole.
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APPENDIX B

GLU COSE CONCENTRATION IN NITROCELLULOSE HYDROLYSIS 
AT VARIOUS TEMPERATURES

In this appendix, data o f glucose concentration that generated from acid hydrolysis o f 

nitrocellulose at various temperatures were presented in the unit o f mM.
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APPENDIX C

GLUCOSE CONVERSION IN NITROCELLULOSE HYDROLYSIS 
AT VARIOUS TEM PERATURES

In this appendix, data o f glucose conversion that generated from acid hydrolysis of 

nitrocellulose at various temperatures were presented in the unit o f %.
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