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ABSTRACT 

SIMPLE FAST VECTOR QUANTIZATION OF THE LINE 
SPECTRAL FREQUENCIES 

by 
Jin Zhou 

Speech coding has been of interest to communication specialists for 

years. A number of technologies for describing and transmitting the speech 

spectral envelope have been studied. Among them, the Vector Quantization 

(VQ) of Line Spectral Frequencies (LSF) is receiving more attention because 

of its good rate-distortion performance. Typically, about 30 bits are assigned 

to code 10-dimensional LSF vectors with a resulting spectral distortion of less 

than ldB. However, 30-bit full-search VQ is totally impractical in terms of 

both computational complexity and memory space. Various standard sub-

optimal, low-complexity VQ techniques have been used for coding the LSF's 

in the literature. The most commonly used method is the split VQ, where the 

10-dimensional LSF vector is typically partitioned into three sub-vectors of 

sizes 3, 3 and 4. Each sub-vector is then independently coded. This method 

reduces the complexity and required memory space significantly. However, 

the price paid is a compromise in performance. Reduced performance is 

inherent in most low-complexity VQ systems. 

In this thesis we propose a simple fast-search VQ of the LSF's to be 

used on top of the split VQ (i.e., in each of the sub-vector domains). The main 

trait of the proposed method is that no suboptimal codebooks are used and 

there is no further reduction in performance. In each sub-vector domain, a 



full-size optimally trained codebook, typically of size 1024, is searched using 

a fast-search algorithm. The result of this search is identical to that of a full 

search, yet, only about 25% of full-search complexity is needed. 
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CHAPTER 1 

INTRODUCTION 

1.1 Voice Generation and Mathematical Model 

Voice is one of the most important factors in communication between human 

beings. A sequence of voices composes speech signals. As the fundamental of 

the speech process, it is essential to understand the mechanism of speech 

production. 

It is helpful to abstract the important features of the physical system 

in a manner that leads to a realistic yet tractable mathematical model. 

Figure 1.1 shows such a schematic diagram of the human vocal system. For 

completeness, the diagram includes the sub-glottal system, composed of the 

lungs, bronchi and trachea. This sub-glottal system serves as a source of 

energy for the production of speech. Speech is simply the acoustic wave that 

is radiated from this system when air is expelled from the lungs and the 

resulting flow of air is perturbed by constriction somewhere in the vocal 

tract. 

Speech sounds can be classified into three classes: voiced, fricative (or 

unvoiced), and plosive sounds, according to their mode of excitation. 

The vocal tract and nasal tract are shown in Figure 1.1 as tubes of a 

nonuniform cross-sectional area. As sound generated by sub-glottal system 

propagates down these tubes, the frequency spectrum is shaped by the 

frequency selectivity of the tube. Different sounds are formed by varying the 

shape of the vocal tract. Thus, the spectral properties of the speech signal 

vary with time as the vocal tract shape varies. 

1 
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Figure 1.1 Schematized Diagram of the Vocal 
Apparatus 

Based on the features of the acoustic theory of speech production, there 

are many detailed models for sound generation, propagation, and radiation. 

These models can in principle be solved with suitable values of excitation and 

vocal tract parameters to compute an output speech waveform. Indeed, it can 

be argued effectively that this may be the best approach to the synthesis of 

natural sounding synthetic speech. However, for many purposes such detail 

is impractical or unnecessary. In such cases, the acoustic theory points the 

way to a simplified approach of modeling speech signals. Figure 1.2 shows a 

general block diagram, representative of numerous models that have been 

used as the basis for speech processing. These models all have in common 

that excitation features are separated from the vocal tract and radiation 

features. The vocal tract and radiation effects are accounted for by the time-

varying linear system. Its purpose is to model the resonance effects. The 

excitation generator creates a signal that is either a train of (glottal) pulses, 
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or randomly varying (noise). The parameters of the source and system are 

chosen so that the resulting output has desired speech-like properties. 

Figure 1.2 Source-System Model of Speech 
Production 

1.2 Speech Coding 

One of the earliest and most important applications of speech processing was 

speech coding, invented by Homer Dudley in the 1930's. After sampling the 

analog speech signal into s digital signal, a digital speech coder represents a 

discrete-time speech signal by a sequence of numbers in binary format. 

Thus, a finite number of bits (binary information units) per second is 

transmitted, which represents the speech signal. The receiver regenerates a 

replica of the speech signal from the bit sequence. 

The purpose of speech coding is to reduce the bandwidth required to 

transmit the speech signal. In spite of the increased bandwidth provided by 

satellite, microwave, and optical communications system, the need to 

conserve bandwidth remains in many situations. The possibility of extremely 

sophisticated encryption of the speech signal is sufficient motivation for the 

use of digital transmission in many applications. Today, as wireless 

telephone has entered our society, both in social and business life, a need has 

arisen for these systems that digitize speech at as low a bit rate as possible, 

consistent with low terminal cost. 
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In the process of coding the speech signal to a finite resolution, 

distortion will be introduced. The objective in speech coding is to code the 

speech signal with as few bits per second as possible while maintaining an 

acceptable level of perceived distortion. Major breakthroughs in speech 

coding research in the 80s, notably the invention of the code excited linear 

prediction (CELP) coder, are the basis for current digital wireless telephony. 

The prevailing type of speech coder today is based on a source-filter 

model, introduced in Chapter 1.1. In other words, speech production is 

modeled by an excitation signal fed through a digital filter. The excitation 

signal and the filter are coded separately. In this thesis, we are only 

concerned with the filter coding, which is spectral envelop coding. As a 

crucial factor for the perceived speech quality, this coding must be carefully 

performed. 

1.2.1 Linear Prediction Coding (LPC) 

The filter models the spectral envelope of the speech signal and is usually 

given as an all-pole filter obtained from linear prediction analysis. The 

optimal mth-order linear predictor is represented by an inverse filter: 

The order in of the filter is 10 in most CELP applications. To encode, the 

parameters {a01  ,a01 , .,a0m} are quantized to {a, ,a2,...,am}, introducing a 

filter 

Such a speech coding technique is called linear predictive coding 

(LPC), and the {ai}s are LPC parameters. Due to the quasi-stationary 
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character of the speech signal, the LPC filter is updated regularly on a frame 

basis, with a typical frame length of 20 ms. Thus, for each speech frame, a 

description of the LPC filter must be communicated to the receiver. The 

process of coding the LPC filter at a finite number of bits per frame is known 

as LPC coding, LPC spectrum coding, or LPC quantization. 

Although the linear prediction analysis gives a simple filter model, in 

speech coding the LPC parameters are known to be inappropriate for 

quantization because of two important reasons. One is that the LPC 

parameters are too dynamic to be used efficiently in speech coding. The 

other is that the roots of the LPC analysis filter are located inside the unit 

circle of the z-plane. After speech coding, the roots may be out of the unit 

circle, which results in an instability problem. 

1.2.2 Line Spectral Frequency (LSF) 

Different sets of parameters representing the same spectral information, 

such as reflection coefficients and log area ratios, etc., were thus proposed for 

quantization in order to alleviate the above-mentioned problems. LSP is one 

such representation. It was first introduced by Itakura in 1975 [1] as line 

spectral representation (LSR), and later developed into the line spectrum pair 

(LSP). In 1984, Soong and Juang of Bell Laboratories published a more 

detailed paper concerning LSP properties [2]. 

For a given LPC polynomial as Equation (1-1), we can construct two 

artificial (mn+1)th-order polynomials by setting the (m+1)-th reflection 

coefficient, km+1 , to be +1 or -1. These two cases correspond, respectively, to 

an entirely closed or an entirely open end at the last section of an acoustic 
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tube of m+1 piecewise-uniform sections. Let P(z) be the symmetric 

polynomial (km+1= 1) and Q(z) be the antisymmetric polynomial (k m+1= -1): 

It is obvious that 

It has been proved that the LSP polynomials, P(z) and Q(z), have the 

following interesting properties: (1) all zeros of LSP polynomials are on the 

unit circle, (2) zeros ofP(z) and Q(z) are interlaced, (3) the minimum phase 

property of A0m(z) can be easily preserved if the first two properties are 

intact after quantization -- all zeros of A m (z) are inside the unit circle. 

Line spectral frequency (LSF) parameters, {ωi  :i= 1,2,..., m}, are the 

roots of 1'(z) and 0(z) in 0 < ω  < π  . Odd LSFs are the roots of P(e-jω) and 

even LSFs are the roots of Q(e-jω) . the LSFs have the fundamental property 

> 	, i=2,...,m, to guarantee the stability of the LPC analysis filter. The 

smaller dynamic range of LSFs (0 - 7r) is also a good start for quantization. 

Generally, LSF parameters have both a well-behaved dynamic range 

and a filter stability preservation property, and can be used to encode LPC 

spectral information even more efficiently than many other parameters. 



CHAPTER 2 

QUANTIZATION OF LSF 

Various quantization techniques have been developed for LSFs during the 

last decade, including many scalar quantization (SQ) and vector quantization 

(VQ) methods. 

Quantization is the heart of analog-to-digital conversion. In its 

simplest form, a quantizer observes a single number and selects the nearest 

approximating value from a predetermined finite set of allowed numerical 

values. 

2.1 Scalar Quantization 

Scalar quantization is a one-dimensional quantization. An N-point scalar 

quantizer Q can be defined as a mapping Q: R → C, where R is the real line 

and 

is the output set or codebook with size |C| = N. The output values, yi  , are 

sometimes referred to as the output level. 	For 	an 	input, 	the 

corresponding output is the value rounded to the nearest yi  . 

Every quantizer can be viewed as the combined effect of two successive 

operations (mappings), an encoder, E, and a decoder, D. The encoder is a 

mapping E: 1? → 1, where I = {1,2,3, .. .N} , and the decoder is the mapping D: 

I → C . Thus if 0(x) = yi,  then E(x) = i and DO = yi  . With the definitions, 

we have Q(x) = D(E(x)). 	In the context of a waveform communication 

7 
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system, the encoder transmits the index I of the selected level, y, , chosen to 

represent an input sample, and not the value y, itself. The decoder can be 

implemented by a table-lookup procedure, where the table or codebook 

contains the output set, which can be stored with extremely high precision. 

A sequence of reproduction values obtained in this manner provides an 

approximation to the original sequence of samples and hence, using a 

suitable interpolating filter, an approximation to the original waveform can 

be reconstructed. 

2.1.1 The Uniform Quantizer 

The most common of all scalar quantizers is the uniform quantizer, 

sometimes called a "linear" quantizer because its staircase input-output 

response lies along a straight line (with unit slope). 

A uniform quantizer is a regular quantizer in which the boundary 

points are equally spaced and the output levels for cells are the midpoints of 

the quantization interval. 

2.1.2 The Nonuniform Quantizer 

A general model for a nonuniform quantizer with a finite number of levels is 

shown in Figure 2.1. The input x is first transformed with a memoryless 

monotonic nonlinearity G (compressor) to produce output y = G(x), then it is 

quantized with a uniform quantizer producing y, and finally it is 

transformed with the inverse nonlinearity 	(expandor). The final 

(nonlinearly) quantized output is 2 = G-1(y). 
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For a nonuniform quantizer, the step size, A 1  ≡ x — xi-1, varies from 

one cell to another of the partition. 

G 	 G-1  

Figure 2.1 Compandor Model of Uniform 
Quantization 

There are two major advantages to using nonuniform spacing of 

quantization levels. First, it is possible to significantly increase the dynamic 

range that can be accommodated for a given number of bits of resolution by 

using a suitably chosen nonuniform quantizer. Second, it is possible to 

design a quantizer tailored to the specific input statistics so that a 

considerably superior SNR is attained for a given resolution and given input 

pdf when the levels are allowed to be nonuniformly spaced. 

2.1.3 SQ of LSF 

An efficient SQ of LSF was found by Soong and Juang in 1984 112]. Instead of 

the LSF itself, they noticed the nonuniform statistical distributions and 

spectral sensitivities of adjacent LSF differences. Based upon these two 

nonuniform properties, a novel, globally optimal scalar quantizer is designed 

for each differential LSF. 

The distributions of the LSFs are plotted in Figure 2.2(a) in histogram 

form. The LSFs, f 's, in the figures have been normalized. It is clear from 
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the figure that the distribution range varies from one LSF histogram to 

another. To reduce this variability and the associated spectral sensitivity 

Soong and Juang have proposed a differential coding scheme in which, 

instead of the absolute values of the LSFs, the differences between adjacent 

LSFs are encoded. The motivation for using a differential scheme is that the 

LSF differences are observed to be less divergent than the absolute 

frequencies themselves. Histograms of the LSF differences are plotted in 

Figure 2.2(b) to illustrate this point. A reduced dynamic range of the 

differential parameters is apparent by comparing Figure 2.2(a) with 

Figure 2.2(b). 

Figure 2.2 (a) Histograms of LSF 
(b) Histograms of LSF Differences 
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The quantization performance is usually measured by the log spectral 

distortion S, which is defined as 

and a commonly accepted level for reproducing perceptually transparent 

spectral information is less than 1dB. The SQ method achieves a 1dB 

average log spectral distortion at 32 bits/frame. 

2.2 Vector Quantization 

Vector quantization (VQ) is a generalization of scalar quantization to the 

quantization of a vector, an ordered set of real numbers. While scalar 

quantization is used primarily for analog-to-digital conversion, VQ is used 

with sophisticated digital signal processing, where in most cases the input 

signal already has some form of digital representation and the desired output 

is a compressed version of the original signal. 

A vector quantizer Q of dimension h and size N is a mapping from a 

vector in k-dimensional Euclidean space, RA.  , into a finite set, C, containing 

N output or reproduction points called code vectors or codewords. Thus, 

where codebook C = {y,,y2 ,...,yN} and yi ϵ  Rk  for each i EJ ≡ {1,2,..., N} . 

Associated with every N point vector quantizer is a partition of RA  into N 

regions or cells, Ri  for i E J . 

A vector quantizer can be decomposed into two component operations, 

the vector encoder and the vector decoder. The encoder E is the mapping from 
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Rk  to the index set J, and the decoder D maps the index set J into the 

reproduction set C. Thus, 

A given partition of the space into cells fully determines how the encoder will 

assign an index to a given input vector. On the other hand, a given codebook 

fully determines how the decoder will generate a decoded output vector from 

a given index. The overall operation of VQ can be regarded as the cascade or 

composition of two operations: 

Figure 2.3 illustrates how the cascade of an encoder and decoder defines a 

quantizer. 

Figure 2.3 A Vector Quantizer as the Cascade of an 
Encoder and a Decoder 

In a digital speech communication system, the encoder of a vector 

quantizer performs the task of selecting (implicitly or explicitly) an 

appropriately matching code vector y, to approximate, or in some sense to 

describe or represent, an input vector x. The index I of the selected code 

vector is transmitted (as a binary word) to the receiver, where the decoder 
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performs a table-lookup procedure and generates the reproduction y„ the 

quantized approximation of the original input vector. 

Figure 2.4 shows an intuitional two-dimensional case of a vector 

quantizer operation geometrically. This quantizer, whose bounded cells are 

polygons, assigns any input point in the plane to one of a particular set of N 

points or locations in the plane. 

Figure 2.4 A Regular Vector Quantizer 

In fact, the term "vector quantizer" is commonly assumed to be 

synonymous with "nearest neighbor vector quantizer," which, having the 

feature that the partition is completely determined by the codebook and a 

distortion measure. 

Suppose that d(x,y) is a distortion measure on the input/output vector 

space, the ubiquitous squared error distortion measure defined by the 

squared Euclidean distance between the two vectors: 
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In speech coding, it has already been proved that input-dependent 

weightings are useful and often only slightly more complicated. This makes 

the distortion measure become: 

A nearest neighbor vector quantizer is defined as one whose partition cells 

are given by 

In other words, with a nearest neighbor encoder, each cell 1?, consists 

of all points x that have less distortion when reproduced with code vector y, 

than with any other code vector. The encoder process is illustrated in 

Figure 2.5, where c(.,.) represents the functional operation. 

Figure 2.5 Nearest Neighbor Encoder with a 
Codebook ROM 

There is no better way to quantize a single vector than to use VQ with 

a codebook that is optimal for the probability distribution describing the 

random vector. VQ considers the entire set of LSF parameters as an entity 



15 

and allows for direct minimization of quantization distortion. Because of 

this, the vector quantizers result in smaller quantization distortion than the 

scalar quantizers at any given bit rate. The demand for higher performance 

at lower bit rates has shifted the focus of coding and transmitting the LSF's 

to the use of more powerful, yet more complex, vector quantization (VQ) 

techniques. Typically, about 30 bits are assigned to code 10-dimensional LSF 

vectors with a resulting spectral distortion of less than 1dB. 

However, the directly use of 30-bit full-search VQ is totally impractical 

in terms of both computational complexity and memory space. Such a vector 

quantizer has the following problems. First, a large codebook requires a 

prohibitively large amount of training data (a set of observations/samples of 

the signal to be quantized) and the training process can take too much 

computation time. Second, the storage and computational requirements for 

vector quantization encoding will be prohibitively high. Unconstrained VQ is 

severely limited to rather modest vector dimensions and codebook sizes for 

practical problems. 

Various standard sub-optimal low-complexity vector quantizer has to 

be used for getting transparent quantization of LSF information. These 

techniques have been developed to apply various constraints to the structure 

of the VQ codebook and yield a correspondingly altered encoding algorithm 

and design technique. To reduce the cost of VQ, two general approaches have 

been used in the past. First, storage can be reduced by combining several 

smaller codebooks. Best known among these are the multi-stage VQ and the 

split VQ [3] which exemplify schemes where the overall quantization is 

divided into smaller tasks or the codebook is organized so that it can be 
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handled. Second, to reduce computational complexity, various structured 

codebook VQ methods have been developed, such as classified VQ [4]. These 

methods generally compromise the performance achievable with 

unconstrained VQ, but often provide a very useful and favorable trade-off 

between performance and complexity. 

Design of VQ codebooks in an application such as quantization of 

speech parameters is usually accomplished by an iterative training 

algorithm. A training database of representative source vectors is compiled 

and the codebook is optimized for this database with a suitable distortion 

measure. The most widely used algorithm is the LBG algorithm, which is 

beyond the scope of this thesis. 

In this chapter, the most popular constrained VQ method, namely split 

VQ, is introduced. This scheme is an example of the so-called Produce Code 

VQ, where the overall codebook is built as a Cartesian product of several 

smaller codebooks. A synthesis function generates the overall reconstruction 

vector from a set of vectors from the smaller codebooks. Then classified VQ is 

introduced. 

2.2.1 Split VQ 

Paliwal and Atal presented their split VQ scheme, obtaining an average 

spectral distance of 1dB at 24bits/frame in 1991 [3]. This work and the good 

results reported has spurred researchers within this area. Today this work is 

often used as a benchmark for comparing other results. 

In split VQ, the LSF vector is split into a number of parts and each 

part is quantized separately using vector quantization. 
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As a scalar quantization is described by 

is a selector function. 

The split VQ can be described as 

where the overall quantization problem is partitioned into p parts or splits, 

simply concatenates vectors from the individual codebooks. The split VQ 

enables us to design and handle the individual codebooks in parallel. We 

have the possibility of exploiting dependence between components considered 

by the same quantizer but not dependencies between components 

represented in different codebooks. 

When first introduced, split VQ was used in LPC quantization. We 

know that the split vector quantizer reduces the complexity at the cost of 

degraded performance. Thus there is a trade-off in complexity and 

performance, which determines the number of parts to be made for split 

vector quantization. Usually 10th-order LPC parameter vector is divided 

into two parts. Typically for a 10th-dimensional LSF, the vector is 
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partitioned into three sub-vectors containing the first 3, second 3, and last 4 

LSFs, respectively. Each sub-vector is then independently coded. 

2.2.2 Classified VQ 

Ramamurthi and Gersho introduced classified VQ in 1986 [4]. At that time, 

this technique was used in image processing to detect the edges out of the 

regular pixels. 

Classified VQ (CVQ) is based on an heuristic characteristic that the 

designer adopts to identify the mode of the particular input vector. Thus 

instead of a test codebook, an arbitrary classifier may be used to select a 

particular subset of the codebook to be searched. Varying size subsets is 

allowed and we can partition the codebook into unequal-sized small 

codebooks, called classes. Figure 2.6 illustrates this scheme. The classifier 

generates an index, an integer from 1 to m, which identifies the class Ci to 

search for a nearest neighbor. The codeword consists of the index i. which 

specifies the in codebooks to be selected. 

Many possibilities exist for the choice of a classifier. It can be a simple 

VQ encoder that identifies the in regions of the input space where the current 

input vector lies. In this case, CVQ is very similar to a two-stage VQ, where 

the second stage nodes may each have different codebook sizes. The 

classifier in a CVQ encoder can extract one or more features from the input 

vector, such as the mean (average amplitude of the samples), the energy 

(sum of the squares of the samples), the range (difference between maximum 

and minimum amplitudes of the components), and other statistics. 
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Figure 2.6 Classified VQ 

The particular physical meaning of the vector may lead to many other 

features. As first introduced in image processing, in a two-dimensional set of 

pixels representing an image block, an edge detector, can be used to identify 

the presence or absence of edges (or high detail) and the direction and 

location of edges if present. For a vector that represents a block of 

consecutive speech samples, the zero-crossing count (number of sign changes 

in proceeding from the first to the last sample) can be a useful feature. Once 

such features are identified, the task remains to decide how many distinct 

modes should be used. A scalar or vector classifier must be chosen or 

designed to provide a complete classification operation. The classifier can be 

designed either heuristically or using the LBG with a training set of features 

that are extracted from a training set of input vectors. 

2.3 Problem to Deal With 

In this study, we try to find an optimal low-complexity, low-memory vector 

quantization for a 10th-order LP model. 
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Split VQ is considered as a good development of low-complexity, low-

memory spectrum quantization. However, unstructured full-search VQ of 

the LSF sub-vectors is still too complex for many applications. 

The problem addressed in this thesis is the reduction of the LSF split 

VQ complexity without a compromise in performance. The fast VQ methods 

proposed here are applied to each sub-vector independently and achieve the 

same level of performance at about 25% of the full-search split VQ 

complexity. The proposed method is based on classified VQ (CVQ). 



CHAPTER 3 

CLASSIFIED VQ ON A SPLIT BASIS 

Codebook designing is beyond the scope of this thesis. All the work is based 

on a codebook designed by Dr. Yair Shoham, of Lucent Technologies 

(formerly AT&T Bell Laboratories). 	Some necessary background is 

introduced here. 

A training set of size 200,000 is used to generate a codebook, and the 

quantization performance is measured by a test file of size 20,000 in term of 

the spectral distortion. 

The entire 10th-order LSF vector in each frame is divided into 3 sub-

vectors which contain 3-, 3-, and 4-dimensions respectively. Each sub-vector 

is then independently coded using 10-bit. These codebooks are designed to 

minimize the weighted squared error between the training set and code 

vectors: 

where i1 and i2 are the head and end of each sub-vector, respectively, xi's are 

the training set, y, 's are the code vector, and iv, 's are weights. 

Adding weights is a simple but useful modification of the squared error 

distortion that allows a different emphasis to be given to different vector 

components. Regularly, the weights are inversely proportional to the 

distances between adjacent vector components, so the code vector is more 

sensitive to closer pairs. Two codebooks using different weights are designed 

21 



22 

and their quantization performances are compared. The first weight is 

defined as 

and 

The codebook designed by this weight gives a full-search spectral distortion 

of 0.767dB on the test file. 

The second weight is defined as 

where x0  = 0, x11 = π are not real LSF parameters. This weight gives the test 

file a lower spectral distortion of 0.757dB, and is taken for the later use. 

Compared with coding large amount of LSFs, the design of the 

codebook is only a one-time job. Especially with the development of today's 

computer technology, the design complexity is not a primary issue in 

practice. Meanwhile as the requirement on speech communication increases, 

LPC filter coding, which needs to be updated each 20 ms, involves greater 

calculation. The anxious to process speech signals at higher speed becomes 

more and more imperative. This thesis attempts to reduce the search 

complexity by applying a simple fast classifier. 

The new search scheme consists of two stages. The first-stage is a 

simple classification. The input vector if determined to belong to a certain 
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class out of a predetermined number of classes. Each class is represented by 

a small set of code vectors, which is a segment (Ci  in Figure 2.6) in the 

optimal codebook. The union of all sets (classes) form the optimal codebook 

and the sets may overlap. 

Second-stage is a small range full-search VQ in those classes. Once the 

class is determined, a full-search is conducted over the set of that class and 

possibly over a few neighboring sets. The set to be searched is small, yet, the 

optimal code vector (the one selected by a full-search) is included (and 

selected) with extremely high probability. 

Note that CVQ requires about the same or even slightly more memory 

space since the fully optimal main codebook is used. The index output of the 

second-stage search is then sent in a binary form to the receiver side. 

For easy access and search, each sub-vector codebook needs to be 

rearranged. After a classifier is chosen, the code vectors are classified. Those 

belonging to the same class are gathered, and given the same class index. 

The numbers of the code vectors in each class are saved, and referred to as an 

index table, so that in the later second-stage full-search one can tell the 

boundary between classes. Figure 3.1 illustrates the process to classify a 

codebook. 

Usually the first-stage classification is a simple quantization, either a 

scalar quantization or a simple vector quantization. 

It is obvious that the search complexity decreases when class number 

increases. But this does not mean the codebook may be partitioned into as 

many subsets as possible. In a small subset-size situation, usually more 

candidates are necessary for an optimal result. Meanwhile, small size 
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classes bring more boundary standards to storing and it increases storage 

cost. There is a trade-off between the class size and number of candidate. 

Figure 3.1 Classified VQ Based on Split Basis 

An expected classifier should have these characteristics: (1) fast, 

(2) small search range, (3) limited class candidate. 

The design of a VQ classifier includes 3 steps: (1) find a fast classifier, 

(2) partition the codebook into classes, (3) rearrange the codebook for easy 

access to classes. 

Usually, as a cost of this search scheme, either the quantization 

performance is sub-optimal or more memory is involved. 

The following chapters describe the proposed classifiers and CVQ 

systems. The systems are characterized by complexity, memory and 

performance. The complexity unit is the effort required to computer a 

weighted distance per dimension, which for VQ is w x (x - y)2, and for SQ is 

||x-y|| . So the complexity of a k-dimensional VQ of size N is k x N . The 

memory is given in terms of computer words. The performance is measured 
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by average spectral distortion in dB. Another performance figure is the 

number of miss-quantized vectors, namely, different from the ones obtained 

by full-search VQ. In this thesis, we assume a 3, 3, 4 split of the 10-

dimensional LSF vector and a codebook of 1024 code vectors for each LSF 

sub-vector, so the full-search complexity is 1024 x (3 +3 + 4) = 10240 . 

Extensions can obviously be made for different dimensions and sizes. 

In the following description we refer to codebooks on three levels. We 

have a codebook for the entire constrained VQ scheme, which we refer to as 

the main codebook. The smaller codebooks that are designed and handled in 

the structurally constrained VQ, namely all three sub-vector codebooks, are 

referred to as the individual codebooks. After classify all the smallest 

codebooks are called classes. 

Although the various-sized classes are allowed, it is highly 

recommended to partition the codebook into equal-sized classes. For an 

unknown input vector, the possibility that it lies in different subsets of the 

input space is equal. In certain candidate situations, even distribution 

between classes gives each input vector an equal search range, which means 

not only equal opportunity to find a code vector, but also average complexity 

regardless of which class it belongs to. This brings a better overall 

quantization performance. 



CHAPTER 4 

VQ-BASED CLASSIFIER WITH CLASS CODEBOOK 

4.1 Definition 

In vector quantization, each code vector is a representative of its nearest 

vectors. The VQ-based classifier is an extension of this idea--it finds the 

representative of the nearest code vectors. These new representative, called 

class vectors, are designed by the same algorithm, from the same training set, 

as the individual codebook but they use fewer bits. For example, 4, 5, and 6 

bits for each sub-vector have 16, 32, and 64 codes, respectively. These codes 

constitute a small VQ codebook--a class codebook. As mentioned in 

Chapter 2.2, if the full-search vector quantization 0, is a mapping from k - 

dimensional Euclidean space, le , into an N output individual codebook C, 

as 

where C, ≡ {y, 	•,yN } and yi ϵ  Rk  for each i = {1,2,••.,N}, then the first- 

stage vector quantization 02  is a mapping from Rk  into class codebook C2  as 

where C2 ≡ {y', 2 ,• • •,y'„} and y'j  ϵ  Rk  for each j = {1,2,• • •, M} , M < N . While 

the full-search vector quantizer assigns any input vector to one of a 

particular set of N outputs, the first-stage of VQ-based classifier assigns any 

input vector to one of a particular set of M outputs, larger than the previous 
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one. The class codebook is smaller than the individual codebook but it is also 

more representative. 

After the classifier is chosen, all the code vectors yis go through a VQ 

filter and compared to each class vector yj' . Suppose that d(yi,yj') is a 

distortion measure on the code vector/class vector space, defined as 

A nearest neighbor VQ finds the y' index I, where 

all j ϵ{1,M]. The precise distance d(yi,yj') should be defined as 

As a roughly classifier, however, it does not matter whether the weights are 

used or not. To be simple, the weights are omitted in the first-stage 

quantization. 

After classification, each code vector is given a particular class index 

Ii. Those code vectors having the same class index, say 3, are nearest to the 

same class vector y3 ', and are placed side by side in the new codebook. The 

order of the class vectors decides the order of the class; namely, the first class 

having all the code vectors nearest to first class vector. With N class vectors 

the individual codebook is partitioned into N classes. While in full-search 

VQ code vectors are centroids of their nearest training vectors, in this first-

stage VQ these class vectors are centroids of their nearest code vectors. As in 
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Figure 4.1, a two-dimensional case is illustrated. The dots represent code 

vectors in an individual codebook, the xs represent class vectors. 

After classifying and rearranging the codebook, the number of code 

vectors in each class must be stored as an index table. Later, when we find 

the nearest in classes to an input, the table may lead to the starting and 

ending search positions in the individual codebook. Both the class codebook 

and the index table need to be saved. The new codebook is: 

codebook = index table + class codebook + main codebook 

and its structure is illustrated in Figure 4.2. For N classes case, the added 

memory (index table and class codebook) is 3x N+10x N=13x N words. 

Figure 4.1 VQ-Based Classifier 
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In quantization, an input vector x goes through the first-stage 

classifier, compares to each class vector and finds the in nearest class indices 

with m minimum d(x,yj') defined as 

The index table may indicate the starting and ending positions of 

these classes. The next step is a full-search VQ among the code vectors in 

these classes. 

Figure 4.2 Codebook Structure of VQ-Based 
Classifier 

The new search complexity for N class, m candidates is roughly 

Obviously, if the individual codebook is partitioned into more classed, the 

complexity for a search in one candidate must be lower. But meanwhile, 

because of fewer code vectors to choose from, the quantization performance 

becomes worse. The simulation test attempts to find the best compromise 

between the small class size, fewer candidates, and better quantization 

performance. 
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Because the class vectors are designed by the same algorithm as the 

individual codebook, it is clear that each class should contain roughly an 

equal number of code vectors, which is a premise for a good classifier. 

The disadvantage of this scheme is that for each different class size, 

new class codebooks need to be designed. Correspondingly, the codebook 

needs to be classified and rearranged. Although it is a one-time job, more 

flexibility is desired. The memory cost of this scheme includes an index table 

and class codebooks, both which increase when a smaller class size is taken. 

4.2 Simulation Results 

We partition each individual codebook into 16-, 32-, and 64-class. The 

number of candidates are taken from 1 and added until the spectral 

distortion is as good as the full-search result 0.757dB. The new quantization 

result is compared to the full-search quantization result. Figure 4.3 is the 

histogram of code vectors between classes (ii =16), which shows an almost 

even distribution. 
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Figure 4.3 VQ-Based Classifier Histogram of Code 
Vector (N=16) 

Table 4.1 Performance of VQ-Based Classifier, N=16 

Num. of 

Class 

Num. of 

Candidate 

SD 

(dB) 

Miss-coded 

(/20,000) 

Complex 

(Max.) 

Memory 

(word) 

16 

1 

2 

3 

4 

5 

6 

0.865 

0.777 

0.762 

0.758 

0.758 

0.757 

9453 

2579 

623 

130 

39 

8 

1038 

1815 

2524 

3204 

3907 

4583 

10448 
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Table 4.2 Performance of VQ-Based Classifier, N=32 

Num. of Num. of SD Miss-coded Complex Memory 

Classes Candidate (dB) (/20,000) (Max.) (word) 

1 0.867 10746 767 

2 0.784 3873 1196 

3 0.765 1170 1580 

32 4 0.759 309 1978 10656 

5 0.758 98 2340 

6 0.757 28 2710 

Table 4.3 Performance of VQ-Based Classifier, N=64 

Num. of 

Classes 

Num. of 

Candidate 

SD 

(dB) 

Miss-coded 

(/20,000) 

Complex 

(Max.) 

Memory 

(word) 

64 

1 

2 

3 

4 

5 

6 

7 

0.887 

0.796 

0.770 

0.762 

0.759 

0.758 

0.757 

12506 

5519 

2082 

732 

269 

101 

34 

876 

1077 

1272 

1466 

1669 

1853 

2047 

11072 

Figure 4.4 illustrates all the simulation results together, for better 

comparison. 
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Figure 4.4 VQ-Based Classifier SD vs. Number of 
Class 

Figure 4.5 VQ-Based Classifier SD vs. Complexity 
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In Figure 4.4, a different color indicates a different number of 

candidates. 	In a VQ-based classifier, for a certain class size, the 

performances get better when more candidates are taken. For a certain 

number of candidates, the performances gets better when the individual 

codebook is partitioned into fewer classes--equivalent to a large class size. 

Both of the changes enlarge the search range and improve the performance. 

At the same time, the complexity is increased. 

In Figure 4.5, the change of complexity versus spectral distortion is 

shown clearly. Overall, the complexity increases while the spectral 

distortion decreases. But this change is not linear. The point with least 

complexity and least spectral distortion is found in the 6-candidate, 64-class 

case, which should be the best compromise. The simulation results fit our 

expectations. 



CHAPTER 5 

VQ-BASED CLASSIFIER WITHOUT CLASS CODEBOOK 

5.1 Definition 

After the previous simulation test, the memory cost of the VQ-based classifier 

should be noticed. In the full-search VQ 

codebook = main codebook. 

In the VQ-based classifier with class codebook 

codebook = index table + class codebook + main codebook. 

The previous simulation shows that a 64-class case involves lower complexity 

than the 32-class case in order to get the optimal quantization. But the 64-

class case needs twice the storage for both the class codebook and the index 

table. To avoid the extra storage for the class codebook, this scheme uses the 

existing code vector in the optimal codebook nearest to the class vector to 

replace the class vector itself. Namely, after designing of the class codebook, 

the optimal codebook is partitioned into N sets (classes) defined by N centroid 

vectors that are members of the optimal codebook. The codebook is 

rearranged such that a centroid and all its nearest neighbors occupy a 

contiguous segment of the codebook. An index table is used for pointing to 

centroids. The classifier uses this table to find m nearest centroid candidates 

to an input sub-vector. The corresponding sets are then searched for the 

final code vector. 

Obviously, these replacements effects the overall performance. It is 

predictable that with same number of class and candidates, the VQ-based 
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classifier without class codebook has higher spectral distortion than that 

with class codebook. 

The complexity of this scheme is same as the previous one, and the 

added memory (index table) is 3 x N words. The benefit of this scheme is 

that for any class size the only extra storage is the index table and 

codebook = index table + main codebook. 

5.2 Simulation Results 

Tables 5.1, 5.2, and 5.3 show the performance in the same way as Chapter 4 

does. Figure 5.1 and Figure 5.2 give a better overview of the comparison. 

Table 5.1 Performance of VQ-Based Classifier Without Class 
Codebook, N=16 

Num. of 

Class 

Num. of 

Candidate 

SD 

(dB) 

Miss-coded 

(/20,000) 

Complex 

(Max.) 

Memory 

(word) 

16 

1 

2 

3 

4 

5 

6 

0.889 

0.785 

0.764 

0.759 

0.758 

0.757 

10400 

3273 

877 

205 

55 

16 

1038 

1815 

2524 

3224 

3907 

4601 

10288 



Table 5.2 Performance of VQ-Based Classifier Without Class 
Codebook, N=32 

Num. of Num. of SD Miss-coded Complex Memory 

Class Candidate (dB) (/20,000) (Max.) (word) 

1 0.917 12230 767 

2 0.800 5109 1181 

3 0.770 1911 1580 

32 4 0.762 740 1978 10336 

5 0.760 312 2340 

6 0.758 161 2723 

7 0.758 76 3075 

8 0.757 33 3452 
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Table 5.3 Performance of VQ-Based Classifier Without Class 
Codebook, N=64 

Num. of 

Class 

Num. of 

Candidate 

SD 

(dB) 

Miss-coded 

(/20,000) 

Complex 

(Max.) 

Memory 

(word) 

64 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0.953 

0.821 

0.782 

0.768 

0.762 

0.760 

0.758 

0.758 

0.758 

0.757 

14237 

7450 

3453 

1610 

730 

341 

153 

70 

39 

20 

868 

1074 

1274 

1467 

1666 

1852 

2064 

2254 

2418 

2610 

10432 
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Figure 5.1 VQ-Based Classifier Without Class 
Codebook SD vs. Number of Class 

Figure 5.2 VQ-Based Classifier Without Class 
Codebook SD vs. Complexity 



CHAPTER 6 

SQ-BASED CLASSIFIER OF LSF 

Although the VQ-based classifier achieves optimal performance with lower 

complexity than the full-search does, it's first-stage classifier is a vector 

quantization and contributes considerable complexity while the number of 

class increases and more class vectors exist. Scalar quantization attempts to 

replace vector quantization as first-stage quantization for fast classification. 

6.1 SQ-Based Classifier of LSF 

As mentioned before, one of the benefits of using LSF to represent an LPC 

character is its small dynamic range(0- π). Therefore a scalar quantizer is 

first used directly on the LSF components. 

First, the dynamic range of each code vector component/dimension is 

divided into regions in such a manner that the distribution between regions 

is as even as possible, and each region is given a region index. Then, for a k - 

dimensional individual codebook, code vectors are sorted by new indices, 

which are the combinations of all their component's region indices. 

Given a k -dimensional N output individual codebook 
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where C. 's, for i =1,2,• • •k , are one-dimensional targets, and scalar 

quantization is used on them, respectively. There are k new codebooks ci 's 

with mi  output levels: 

Notice that 171 's could vary from one dimension to the other, so dimensions 

can be partitioned into a different number of regions. 

The indexing of the output values is chosen so that 

For an input code vector, the k scalar quantization give k indices I1  to 

k  , and the encoding index is the combination of them, namely 

where 1110  = 1. The individual codebooks are then rearranged according to 

these indices. 

The advantage of this method lies in the simple first-stage scalar 

quantizations whose complexities are negligible. This advantage is evident 

when uniform quantizations are used. 

To classify a three-dimensional VQ, one need minimize the distance 

To uniformly classify a three-dimensional SQ, there are 3 simple multiples: 
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where yi0 s and A, s are starting points and steps. 

The class index is: 

Going through 3 or 4 scalar quantizers simultaneously, the encode searching 

is restricted in a range much smaller than the whole codebook. The storage 

cost of this scheme is the scalar quantization codebooks c, s. This cost can be 

reduced by using uniform scalar quantization, so for each dimension only the 

starting point and step need to be saved. So 

codebook = index table + 10 * (step + starting point) + main codebook 

Figure 6.1 SQ-Based Classifier on Each Component 

This scheme quantizers a k-dimensional input with k random 

variables, each quantized by a scalar quantizer. Figure 6.1 shows the two- 
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dimensional resulting vector quantizer corresponding to a particular choice of 

scalar quantization for each variable. It is evident that the VQ defined by 

separately quantizing the components of a vector must always result in 

quantization cells that are rectangular. In contrast, a more general vector 

quantizer is freed from these geometrical restrictions and can have arbitrary 

cell shapes. In higher dimensions the same idea is clearly applicable. Thus, 

in three dimensions, scalar quantization of the three components of a vector 

always results in cells that have rectangular, box-like shapes, where each 

face is a plane parallel to one of the coordinate axes. On the other hand, 

regular quantizers in three dimensions will have polyhedral cells. Extending 

this idea to k dimensions, it is clear that scalar quantization of the 

components of a vector always generates a very restricted class of vector 

quantizers, where the faces are (k-1)-dimensional hyperplanes--each parallel 

to a coordinate axis in the k-dimensional space. The inherent superiority of 

VQ is thereby evident simply because of the greater structural freedom it 

allows in quantization of a vector. It is very hard to have an equal or an 

almost equal number of code vectors between classes. Another disadvantage 

is that one needs to search more than one candidate for optimal quantization, 

because for each dimension, there are two possible closest candidates. So for 

three-dimensional sub-vector there are 8 candidates and there are 16 for 

four-dimensional case. The consequence is sub-optimal quantization 

performance with low complexity. 
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6.2 SQ-Based Classifier of Difference 

6.2.1 Definition 

Studying of Figure 6.1, a new classifier based on the differences between 

adjacent LSFs is attempted. Because the LSF differences are observed to be 

less divergent than the absolute frequencies themselves, this method is 

expected to give a better performance than the first one. For a three-

dimensional individual codebook with code vector [X,, X2 , X3]. the scalar 

quantization is taken on [X1,∆X1,∆X2], where 

Figure 6.2 SQ-Based Classifier on Difference 
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Figure 6.2 illustrates a two-dimensional case of this classifier. As one 

may find from this figure, there is some improvement, but the codewords are 

still hard to be placed evenly between classes, which is proved in the 

simulation test. Meanwhile the problem of more candidates still exists. 

By using uniform scalar quantization, the complexity of first-stage is 

negligible. The complexity of this scheme is roughly 10 x1024x ni and added 

memory includes the index table, the start value and the steps. If one 

dimension is divided to two classes, instead of start value and steps, only one 

middle boundary needs to be stored. 

6.2.2 Simulation Results 

Figure 6.3 is the histogram of code vectors between classes (N=16). 

Tables 6.1, 6.2, and 6.3 show the performance of 16-, 32-, and 64-class cases, 

respectively. Figures 6.4 and 6.5 illustrate the comparison for different 

number of class. 

Table 6.1 Performance of SQ-Based Classifier, N=16 

Num. of Num. of SD Miss-coded Complex Memory 

Classes Candidate (dB) (/20,000) (Max.) (word) 

1 0.840 9443 1256 

2 0.800 5654 2079 

3 0.781 3417 3089 

16 4 0.767 1407 3905 10300 

5 0.767 1407 4912 

8/8/16 0.759 360 8619 



Figure 6.3 SQ-Based Classifier Histogram of Code 
Vector 

Table 6.2 Performance of SQ-Based Classifier, N=32 

Num. of 

Class 

Num. of 

Candidate 

SD 

(dB) 

Miss-coded 

(/20,000) 

Complex 

(Max.) 

Memory 

(word) 

32 

1 

2 

3 

4 

5 

8/8/16 

0.886 

0.819 

0.784 

0.771 

0.771 

0.767 

12007 

7915 

3934 

2140 

2140 

1584 

741 

1367 

1996 

2345 

1940 

5250 

10351 
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Table 6.3 Performance of SQ-Based Classifier, N=64 

Num. of 

Class 

Num. of 

Candidate 

SD 

(dB) 

Miss-coded 

(/20,000) 

Complex 

(Max.) 

Memory 

(word) 

64 

1 

2 

3 

4 

5 

8/8/16 

0.961 

0.862 

0.802 

0.780 

0.780 

0.774 

13736 

10535 

6267 

3308 

3308 

2327 

528 

953 

1277 

1438 

1762 

3119 

10450 

Figure 6.4 SQ-Based Classifier SD vs. Number of 
Class 
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Figure 6.5 SQ-Based Classifier SD vs. Complexity 



CHAPTER 7 

SORTED CODEBOOK VQ 

After performing all the above tests, we find that although scalar 

quantization itself supplies low complexity, using it on the individual 

components of LSFs doesn't give good results. Vector quantization gives an 

overview to the sub-vectors, so it has lower spectral distortion, but as a price, 

the complexity is higher. An effort has been made to combine the benefits 

and get rid of the shortages of both methods. The new classifier should not 

only give an overview, but it is also very simple. To be simple, the classify 

parameter should be fit for scalar quantization--a one-dimensional 

component. For an overview, it should contain all the information the code 

vector has. That means that we should use one number to represent the 

character of each code vector. A mean of the code vectors meets these 

requirements. It is an approximation to the gain of the code vector. The gain 

is the root mean-square value of the vector components and serves as a 

normalizing scale factor. It is defined as 

Obviously, the mean requires much lower complexity as square calculation. 

7.1 Definition 

Given a h-dimensional target vector [X1,X2,•••, Xk  I and a codebook C of size 

N, we define a sorting parameter s, =g(X1,X2,•••,Xk ), which is a scalar by 

definition, where g(•) is a suitable function, chosen in such a way that 
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neighboring target vectors give neighboring values of s,. Then the indices of 

the codebook are sorted in ascending order of the sorting parameter for each 

code vector, according to the vector S=[s1,s2,•-•,sN} with s, 

In this case, the chosen sorting parameter s, is simply the sum of the 

components in each sub-vector. The codebook is geometrically partitioned 

into classes by parallel hyperplanes as illustrated in Figure 7.1 for a two-

dimensional case. 

To accomplish this, the codebook is rearranged in an order of 

increasing code vector means and then divided into N equal-sized sets. N 

means of the 1st vector in each set are held in a class codebook. 

Unlike the previous schemes, once this is done, no change in the 

codebook structure is necessary. The even distribution of code vectors 

between classes is not a problem anymore. For the individual codebook 

partition into N classes, every 
1024

code vectors are in same class. If 1024 is 

not divisible by 	then each class except the last one has 

vectors, where [ is an integer calculation. The last class has the rest of the 

code vectors. The first code vector mean in each class is stored as the class 

codebooks. 

To code the target vector, the classifier extracts the mean of the input 

vector and performs scalar quantization using the class codebook. Assume si 

is the result of scalar quantization, with 1 	The index of si is called 

the central index. In the next step, the target vector is vector quantized 

using an extensive local search in the neighborhood of the central index. For 
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example, only the code vectors with indices within the range of i-p+1 to 

i+p may be searched, where p is an offset value. The offset value for the 

final codebook search is varied by the number of class. 

Figure 7.1 Boundary of Sorted Codebook VQ 

Except the simple first-stage classification by scalar quantization, this 

scheme can assign each class exactly the same number of code vectors, which 

not only guarantees better average performance, but it also has the benefit 

that no index table is necessary. The new codebook structure is 

codebook = class codebook + main codebook, 

and the added memory is 3 x N words. The complexity of this scheme is 

3 x log(N)+  10 x1024 x m, where the first and second terms are for the classifier 

and the quantizer, respectively. 
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7.2 Simulation Results 

Like the previous schemes, this test simulates 16-, 32-, and 64-class and 

different candidate conditions, respectively. Tables 7.1-7.3 present the 

results and Figures 7.2 - 7.3 illustrate the comparison between those tests. 

No histogram figures are shown because of the exactly even distribution. 

Table 7.1 Performance of Sorted Codebook VQ, N=16 

Num. of 

Class 

Num. of 

Candidate 

SD 

(dB) 

Miss-coded 

(/20,000) 

Complex 

(average) 

Memory 

(word) 

16 

1 

2 

3 

4 

5 

0.903 

0.773 

0.759 

0.758 

0.757 

12549 

2387 

372 

73 

21 

652 

1292 

1932 

2572 

3212 

10288 



Table 7.2 Performance of Sorted Codebook VQ, N=32 

Num. of Num. of SD Miss-coded Complex Memory 

Class Candidate (dB) (/20,000) (average) (word) 

1 1.113 17301 335 

2 0.863 9456 655 

3 0.793 4230 975 

4 0.769 1702 1295 

32 5 0.761 661 1615 10336 

6 0.759 227 1935 

7 0.758 100 2255 

8 0.758 65 2575 

9 0.757 31 2895 
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Table 7.3 Performance of Sorted Codebook VQ, N=64 

Num. of Num. of SD Miss-coded Complex Memory 

Class Candidate (dB) (/20,000) (average) (word) 

1 1.505 19364 178 

2 1.102 16616 338 

3 0.939 12686 498 

4 0.857 8593 658 

5 0.816 5897 818 

6 0.791 3795 978 

7 0.777 2551 1138 

64 8 0.768 1560 1298 10432 

9 0.763 991 1458 

10 0.760 554 1618 

11 0.759 367 1778 

12 0.759 203 1938 

13 0.758 138 2098 

14 0.758 92 2258 

15 0.758 79 2418 

16 0.758 53 2578 

17 0.757 39 2738 

For optimal results, the sorted codebook VQ uses only a 26% search 

complexity as the full-search VQ and the storage cost is increased only 1.8%. 
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Figure 7.2 Sorted Codebook VQ SD vs. Number of 
Class 

Figure 7.3 Sorted Codebook VQ SD vs. Complexity 



CHAPTER 8 

CONCLUSION 

In this thesis we have designed different classifiers based on split vector 

quantization. Employing the classifier to the VQ codebook reconstructs the 

codebook and gathers the code vectors with the same characters together, 

making the coding search efficient and simple. Quantization performance 

results demonstrate that optimal performance, the same as with 

unconstrained VQ, can be obtained from most of these methods. The major 

benefit of these classifications is that considerable complexity can be saved 

for vector quantization while maintaining comparable performance. 

Table 8.1 Comparison of Four Schemes 

Schemes SD 

(dB) 

Miss-coded 

(/20,000) 

Complex 

(Average) 

Memory 

(word) 

VQ with Class Codebook 0.757 34 2047 11072 

VQ without Class Codebook 0.757 20 2610 10432 

SQ of Differences 0.759 360 8619 10300 

Sorted Codebook VQ 0.757 39 2738 10432 

Table 8.1 summarizes the performance of all the CVQ systems tested. 

It is shown that an average distortion of a full-search VQ can be achieved by 

low-complexity CVQ at only about 25% of the full-search complexity and with 

a very small miss-coding count. This is accomplished by the VQ and the 

sorted codebook VQ classifier. Figure 8.1 shows the distortion versus 
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complexity curves for the tested systems. The use of these schemes for low-

complexity speech coding depends on the best trade-off for the application in 

mind. 

Figure 8.1 Spectral Distortion vs. Complexity 
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