

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

SIMPLE FAST VECTOR QUANTIZATION OF THE LINE
SPECTRAL FREQUENCIES

by
Jin Zhou

Speech coding has been of interest to communication specialists for

years. A number of technologies for describing and transmitting the speech

spectral envelope have been studied. Among them, the Vector Quantization

(VQ) of Line Spectral Frequencies (LSF) is receiving more attention because

of its good rate-distortion performance. Typically, about 30 bits are assigned

to code 10-dimensional LSF vectors with a resulting spectral distortion of less

than ldB. However, 30-bit full-search VQ is totally impractical in terms of

both computational complexity and memory space. Various standard sub-

optimal, low-complexity VQ techniques have been used for coding the LSF's

in the literature. The most commonly used method is the split VQ, where the

10-dimensional LSF vector is typically partitioned into three sub-vectors of

sizes 3, 3 and 4. Each sub-vector is then independently coded. This method

reduces the complexity and required memory space significantly. However,

the price paid is a compromise in performance. Reduced performance is

inherent in most low-complexity VQ systems.

In this thesis we propose a simple fast-search VQ of the LSF's to be

used on top of the split VQ (i.e., in each of the sub-vector domains). The main

trait of the proposed method is that no suboptimal codebooks are used and

there is no further reduction in performance. In each sub-vector domain, a

full-size optimally trained codebook, typically of size 1024, is searched using

a fast-search algorithm. The result of this search is identical to that of a full

search, yet, only about 25% of full-search complexity is needed.

SIMPLE FAST VECTOR QUANTIZATION
OF THE LINE SPECTRAL FREQUENCIES

by
Jin Zhou

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

May 1996

APPROVAL PAGE

SIMPLE FAST VECTOR QUANTIZATION
OF THE LINE SPECTRAL FREQUENCIES

Jin Zhou

tr. Ali N. Akansu, Thesis Advisor 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Yair Shoham, Co-Advisor 	 Date
Member of Technical Staff, Bell Laboratory, Lucent Technologies
Murray Hill, NJ

Dr. Nirwan Ansari, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: 	Jin Zhou

Degree: 	 Master of Science

Date: 	 May 1996

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1996

• Bachelor of Science in Electrical Engineering,
Shanghai University of Technology, Shanghai, P. R. China, 1990

Major: 	 Electrical Engineering

Publications:

Jin Zhou, Yair Shoham and Ali Akansu,
"Simple and fast vector quantization of the linear spectral frequencies,"
The Fourth International Conference on Spoken Language Processing
(ICSLP'96), Philadelphia, PA, October, 1996.

iv

ACKNOWLEDGMENT

I would like to express my deepest appreciation to Dr. Ali Akansu, who

not only served as my advisor, but also constantly gave me support,

encouragement, and reassurance. Special thanks is given to Dr. Yair

Shoham for providing valuable and countless resources, insight, and

intuition when I worked at the Lucent Technologies last summer. My sincere

appreciation is also extended to Dr. Nirwan Ansari for his advice and interest

as a committee member.

Many of my fellow graduate students in the Center for

Communications and Signal Processing Research are deserving of recognition

for their support. I also wish to thank Lisa Fitton for her proof-reading of

this manuscript.

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

1.1 Voice Generation and Mathematical Model 	 1

1.2 Speech Coding 	 3

1.2.1 Linear Prediction Coding (LPC) 	 4

1.2.2 Line Spectral Frequency (LSF) 	 5

2 QUANTIZATION 	 7

2.1 Scalar Quantization 	 7

2.1.1 The Uniform Quantizer 	 8

2.1.2 The Nonuniform Quantizer 	 8

2.1.3 SQ of LSF 	 9

2.2 Vector Quantization 	 11

2.2.1 Split VQ 	 16

2.2.2 Classified VQ 	 18

2.3 Problem to Deal With 	 19

3 CLASSIFIED VQ ON A SPLIT BASIS 	 21

4 VQ-BASED CLASSIFIER WITH CLASS CODEBOOK 	 26

4.1 Definition 	 26

4.2 Simulation Results 	 30

5 VQ BASED CLASSIFIER WITHOUT CLASS CODEBOOK 	35

5.1 Definition 	 35

5.2 Simulation Results 	 36

6 SQ-BASED CLASSIFIER OF LSF 	 40

vi

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

6.1 SQ-Based Classifier of LSF 	 40

6.2 SQ-Based Classifier of Difference 	 44

6.2.1 Definition 	 44

6.2.2 Simulation Results 	 45

7 SORTED CODEBOOK VQ 	 49

7.1 Definition 	 49

7.2 Simulation Results 	 52

8 CONCLUSION 	 56

REFERENCES 	 58

vii

LIST OF TABLES

Table 	 Page

4.1 Performance of VQ-Based Classifier, N=16 	 31

4.2 Performance of VQ-Based Classifier, N=32 	 32

4.3 Performance of VQ-Based Classifier, N=64 	 32

5.1 Performance of VQ-Based Classifier Without Class Codebook, N=16 	36

5.2 Performance of VQ-Based Classifier Without Class Codebook, N=32 	37

5.3 Performance of VQ-Based Classifier Without Class Codebook, N=64 	38

6.1 Performance of SQ-Based Classifier, N=16 	 45

6.2 Performance of SQ-Based Classifier, N=32 	 46

6.3 Performance of SQ-Based Classifier, N=64 	 47

7.1 Performance of Sorted Codebook VQ, N=16 	 52

7.2 Performance of Sorted Codebook VQ, N=32 	 53

7.3 Performance of Sorted Codebook VQ, N=64 	 54

8.1 Comparison of Four Schemes 	 56

viii

LIST OF FIGURES

Figure 	 Page

1.1 Schematized Diagram of the Vocal Apparatus 	 2

1.2 Source-System Model of Speech Production 	 3

2.1 Compandor Model of Uniform Quantization 	 9

2.2 (a) Histogram of LSF (b) Histograms of LSF Differences 	 10

2.3 A Vector Quantizer as the Cascade of an Encoder and a Decoder 	12

2.4 A Regular Vector Quantizer 	 13

2.5 Nearest Neighbor Encoder with a Codebook ROM 	 14

2.6 Classified VQ 	 19

3.1 Classified VQ-Based on Split Basis 	 24

4.1 VQ-Based Classifier 	 28

4.2 Codebook Structure of VQ-Based Classifier 	 29

4.3 VQ-Based Classifier Histogram of Code Vector (N=16) 	 31

4.4 VQ-Based Classifier SD vs. Num. of Class 	 33

4.5 VQ-Based Classifier SD vs. Complexity 	 33

5.1 VQ-Based Classifier Without Class Codebook SD vs. Num. of Class 	39

5.2 VQ-Based Classifier Without Class Codebook SD vs. Complexity 	39

6.1 SQ-Based Classifier on Each Component 	 42

6.2 SQ-Based Classifier on Difference 	 44

6.3 SQ-Based Classifier Histogram of Code Vector 	 46

6.4 SQ-Based Classifier SD vs. Num. of Class 	 47

6.5 SQ-Based Classifier SD vs. Complexity 	 48

7.1 Boundary of Sorted Codebook VQ 	 51

ix

LIST OF FIGURES
(Continued)

Figure 	 Page

7.2 Sorted Codebook VQ SD vs. Num. of Class 	 55

7.3 Sorted Codebook VQ SD vs. Complexity 	 55

8.1 Spectral Distortion vs. Complexity 	 57

CHAPTER 1

INTRODUCTION

1.1 Voice Generation and Mathematical Model

Voice is one of the most important factors in communication between human

beings. A sequence of voices composes speech signals. As the fundamental of

the speech process, it is essential to understand the mechanism of speech

production.

It is helpful to abstract the important features of the physical system

in a manner that leads to a realistic yet tractable mathematical model.

Figure 1.1 shows such a schematic diagram of the human vocal system. For

completeness, the diagram includes the sub-glottal system, composed of the

lungs, bronchi and trachea. This sub-glottal system serves as a source of

energy for the production of speech. Speech is simply the acoustic wave that

is radiated from this system when air is expelled from the lungs and the

resulting flow of air is perturbed by constriction somewhere in the vocal

tract.

Speech sounds can be classified into three classes: voiced, fricative (or

unvoiced), and plosive sounds, according to their mode of excitation.

The vocal tract and nasal tract are shown in Figure 1.1 as tubes of a

nonuniform cross-sectional area. As sound generated by sub-glottal system

propagates down these tubes, the frequency spectrum is shaped by the

frequency selectivity of the tube. Different sounds are formed by varying the

shape of the vocal tract. Thus, the spectral properties of the speech signal

vary with time as the vocal tract shape varies.

1

2

Figure 1.1 Schematized Diagram of the Vocal
Apparatus

Based on the features of the acoustic theory of speech production, there

are many detailed models for sound generation, propagation, and radiation.

These models can in principle be solved with suitable values of excitation and

vocal tract parameters to compute an output speech waveform. Indeed, it can

be argued effectively that this may be the best approach to the synthesis of

natural sounding synthetic speech. However, for many purposes such detail

is impractical or unnecessary. In such cases, the acoustic theory points the

way to a simplified approach of modeling speech signals. Figure 1.2 shows a

general block diagram, representative of numerous models that have been

used as the basis for speech processing. These models all have in common

that excitation features are separated from the vocal tract and radiation

features. The vocal tract and radiation effects are accounted for by the time-

varying linear system. Its purpose is to model the resonance effects. The

excitation generator creates a signal that is either a train of (glottal) pulses,

3

or randomly varying (noise). The parameters of the source and system are

chosen so that the resulting output has desired speech-like properties.

Figure 1.2 Source-System Model of Speech
Production

1.2 Speech Coding

One of the earliest and most important applications of speech processing was

speech coding, invented by Homer Dudley in the 1930's. After sampling the

analog speech signal into s digital signal, a digital speech coder represents a

discrete-time speech signal by a sequence of numbers in binary format.

Thus, a finite number of bits (binary information units) per second is

transmitted, which represents the speech signal. The receiver regenerates a

replica of the speech signal from the bit sequence.

The purpose of speech coding is to reduce the bandwidth required to

transmit the speech signal. In spite of the increased bandwidth provided by

satellite, microwave, and optical communications system, the need to

conserve bandwidth remains in many situations. The possibility of extremely

sophisticated encryption of the speech signal is sufficient motivation for the

use of digital transmission in many applications. Today, as wireless

telephone has entered our society, both in social and business life, a need has

arisen for these systems that digitize speech at as low a bit rate as possible,

consistent with low terminal cost.

4

In the process of coding the speech signal to a finite resolution,

distortion will be introduced. The objective in speech coding is to code the

speech signal with as few bits per second as possible while maintaining an

acceptable level of perceived distortion. Major breakthroughs in speech

coding research in the 80s, notably the invention of the code excited linear

prediction (CELP) coder, are the basis for current digital wireless telephony.

The prevailing type of speech coder today is based on a source-filter

model, introduced in Chapter 1.1. In other words, speech production is

modeled by an excitation signal fed through a digital filter. The excitation

signal and the filter are coded separately. In this thesis, we are only

concerned with the filter coding, which is spectral envelop coding. As a

crucial factor for the perceived speech quality, this coding must be carefully

performed.

1.2.1 Linear Prediction Coding (LPC)

The filter models the spectral envelope of the speech signal and is usually

given as an all-pole filter obtained from linear prediction analysis. The

optimal mth-order linear predictor is represented by an inverse filter:

The order in of the filter is 10 in most CELP applications. To encode, the

parameters {a01 ,a01 , .,a0m} are quantized to {a, ,a2,...,am}, introducing a

filter

Such a speech coding technique is called linear predictive coding

(LPC), and the {ai}s are LPC parameters. Due to the quasi-stationary

5

character of the speech signal, the LPC filter is updated regularly on a frame

basis, with a typical frame length of 20 ms. Thus, for each speech frame, a

description of the LPC filter must be communicated to the receiver. The

process of coding the LPC filter at a finite number of bits per frame is known

as LPC coding, LPC spectrum coding, or LPC quantization.

Although the linear prediction analysis gives a simple filter model, in

speech coding the LPC parameters are known to be inappropriate for

quantization because of two important reasons. One is that the LPC

parameters are too dynamic to be used efficiently in speech coding. The

other is that the roots of the LPC analysis filter are located inside the unit

circle of the z-plane. After speech coding, the roots may be out of the unit

circle, which results in an instability problem.

1.2.2 Line Spectral Frequency (LSF)

Different sets of parameters representing the same spectral information,

such as reflection coefficients and log area ratios, etc., were thus proposed for

quantization in order to alleviate the above-mentioned problems. LSP is one

such representation. It was first introduced by Itakura in 1975 [1] as line

spectral representation (LSR), and later developed into the line spectrum pair

(LSP). In 1984, Soong and Juang of Bell Laboratories published a more

detailed paper concerning LSP properties [2].

For a given LPC polynomial as Equation (1-1), we can construct two

artificial (mn+1)th-order polynomials by setting the (m+1)-th reflection

coefficient, km+1 , to be +1 or -1. These two cases correspond, respectively, to

an entirely closed or an entirely open end at the last section of an acoustic

6

tube of m+1 piecewise-uniform sections. Let P(z) be the symmetric

polynomial (km+1= 1) and Q(z) be the antisymmetric polynomial (k m+1= -1):

It is obvious that

It has been proved that the LSP polynomials, P(z) and Q(z), have the

following interesting properties: (1) all zeros of LSP polynomials are on the

unit circle, (2) zeros ofP(z) and Q(z) are interlaced, (3) the minimum phase

property of A0m(z) can be easily preserved if the first two properties are

intact after quantization -- all zeros of A m (z) are inside the unit circle.

Line spectral frequency (LSF) parameters, {ωi :i= 1,2,..., m}, are the

roots of 1'(z) and 0(z) in 0 < ω < π . Odd LSFs are the roots of P(e-jω) and

even LSFs are the roots of Q(e-jω) . the LSFs have the fundamental property

> 	, i=2,...,m, to guarantee the stability of the LPC analysis filter. The

smaller dynamic range of LSFs (0 - 7r) is also a good start for quantization.

Generally, LSF parameters have both a well-behaved dynamic range

and a filter stability preservation property, and can be used to encode LPC

spectral information even more efficiently than many other parameters.

CHAPTER 2

QUANTIZATION OF LSF

Various quantization techniques have been developed for LSFs during the

last decade, including many scalar quantization (SQ) and vector quantization

(VQ) methods.

Quantization is the heart of analog-to-digital conversion. In its

simplest form, a quantizer observes a single number and selects the nearest

approximating value from a predetermined finite set of allowed numerical

values.

2.1 Scalar Quantization

Scalar quantization is a one-dimensional quantization. An N-point scalar

quantizer Q can be defined as a mapping Q: R → C, where R is the real line

and

is the output set or codebook with size |C| = N. The output values, yi , are

sometimes referred to as the output level. 	For 	an 	input, 	the

corresponding output is the value rounded to the nearest yi .

Every quantizer can be viewed as the combined effect of two successive

operations (mappings), an encoder, E, and a decoder, D. The encoder is a

mapping E: 1? → 1, where I = {1,2,3, .. .N} , and the decoder is the mapping D:

I → C . Thus if 0(x) = yi, then E(x) = i and DO = yi . With the definitions,

we have Q(x) = D(E(x)). 	In the context of a waveform communication

7

8

system, the encoder transmits the index I of the selected level, y, , chosen to

represent an input sample, and not the value y, itself. The decoder can be

implemented by a table-lookup procedure, where the table or codebook

contains the output set, which can be stored with extremely high precision.

A sequence of reproduction values obtained in this manner provides an

approximation to the original sequence of samples and hence, using a

suitable interpolating filter, an approximation to the original waveform can

be reconstructed.

2.1.1 The Uniform Quantizer

The most common of all scalar quantizers is the uniform quantizer,

sometimes called a "linear" quantizer because its staircase input-output

response lies along a straight line (with unit slope).

A uniform quantizer is a regular quantizer in which the boundary

points are equally spaced and the output levels for cells are the midpoints of

the quantization interval.

2.1.2 The Nonuniform Quantizer

A general model for a nonuniform quantizer with a finite number of levels is

shown in Figure 2.1. The input x is first transformed with a memoryless

monotonic nonlinearity G (compressor) to produce output y = G(x), then it is

quantized with a uniform quantizer producing y, and finally it is

transformed with the inverse nonlinearity 	(expandor). The final

(nonlinearly) quantized output is 2 = G-1(y).

9

For a nonuniform quantizer, the step size, A 1 ≡ x — xi-1, varies from

one cell to another of the partition.

G 	 G-1

Figure 2.1 Compandor Model of Uniform
Quantization

There are two major advantages to using nonuniform spacing of

quantization levels. First, it is possible to significantly increase the dynamic

range that can be accommodated for a given number of bits of resolution by

using a suitably chosen nonuniform quantizer. Second, it is possible to

design a quantizer tailored to the specific input statistics so that a

considerably superior SNR is attained for a given resolution and given input

pdf when the levels are allowed to be nonuniformly spaced.

2.1.3 SQ of LSF

An efficient SQ of LSF was found by Soong and Juang in 1984 112]. Instead of

the LSF itself, they noticed the nonuniform statistical distributions and

spectral sensitivities of adjacent LSF differences. Based upon these two

nonuniform properties, a novel, globally optimal scalar quantizer is designed

for each differential LSF.

The distributions of the LSFs are plotted in Figure 2.2(a) in histogram

form. The LSFs, f 's, in the figures have been normalized. It is clear from

10

the figure that the distribution range varies from one LSF histogram to

another. To reduce this variability and the associated spectral sensitivity

Soong and Juang have proposed a differential coding scheme in which,

instead of the absolute values of the LSFs, the differences between adjacent

LSFs are encoded. The motivation for using a differential scheme is that the

LSF differences are observed to be less divergent than the absolute

frequencies themselves. Histograms of the LSF differences are plotted in

Figure 2.2(b) to illustrate this point. A reduced dynamic range of the

differential parameters is apparent by comparing Figure 2.2(a) with

Figure 2.2(b).

Figure 2.2 (a) Histograms of LSF
(b) Histograms of LSF Differences

11

The quantization performance is usually measured by the log spectral

distortion S, which is defined as

and a commonly accepted level for reproducing perceptually transparent

spectral information is less than 1dB. The SQ method achieves a 1dB

average log spectral distortion at 32 bits/frame.

2.2 Vector Quantization

Vector quantization (VQ) is a generalization of scalar quantization to the

quantization of a vector, an ordered set of real numbers. While scalar

quantization is used primarily for analog-to-digital conversion, VQ is used

with sophisticated digital signal processing, where in most cases the input

signal already has some form of digital representation and the desired output

is a compressed version of the original signal.

A vector quantizer Q of dimension h and size N is a mapping from a

vector in k-dimensional Euclidean space, RA. , into a finite set, C, containing

N output or reproduction points called code vectors or codewords. Thus,

where codebook C = {y,,y2 ,...,yN} and yi ϵ Rk for each i EJ ≡ {1,2,..., N} .

Associated with every N point vector quantizer is a partition of RA into N

regions or cells, Ri for i E J .

A vector quantizer can be decomposed into two component operations,

the vector encoder and the vector decoder. The encoder E is the mapping from

12

Rk to the index set J, and the decoder D maps the index set J into the

reproduction set C. Thus,

A given partition of the space into cells fully determines how the encoder will

assign an index to a given input vector. On the other hand, a given codebook

fully determines how the decoder will generate a decoded output vector from

a given index. The overall operation of VQ can be regarded as the cascade or

composition of two operations:

Figure 2.3 illustrates how the cascade of an encoder and decoder defines a

quantizer.

Figure 2.3 A Vector Quantizer as the Cascade of an
Encoder and a Decoder

In a digital speech communication system, the encoder of a vector

quantizer performs the task of selecting (implicitly or explicitly) an

appropriately matching code vector y, to approximate, or in some sense to

describe or represent, an input vector x. The index I of the selected code

vector is transmitted (as a binary word) to the receiver, where the decoder

13

performs a table-lookup procedure and generates the reproduction y„ the

quantized approximation of the original input vector.

Figure 2.4 shows an intuitional two-dimensional case of a vector

quantizer operation geometrically. This quantizer, whose bounded cells are

polygons, assigns any input point in the plane to one of a particular set of N

points or locations in the plane.

Figure 2.4 A Regular Vector Quantizer

In fact, the term "vector quantizer" is commonly assumed to be

synonymous with "nearest neighbor vector quantizer," which, having the

feature that the partition is completely determined by the codebook and a

distortion measure.

Suppose that d(x,y) is a distortion measure on the input/output vector

space, the ubiquitous squared error distortion measure defined by the

squared Euclidean distance between the two vectors:

14

In speech coding, it has already been proved that input-dependent

weightings are useful and often only slightly more complicated. This makes

the distortion measure become:

A nearest neighbor vector quantizer is defined as one whose partition cells

are given by

In other words, with a nearest neighbor encoder, each cell 1?, consists

of all points x that have less distortion when reproduced with code vector y,

than with any other code vector. The encoder process is illustrated in

Figure 2.5, where c(.,.) represents the functional operation.

Figure 2.5 Nearest Neighbor Encoder with a
Codebook ROM

There is no better way to quantize a single vector than to use VQ with

a codebook that is optimal for the probability distribution describing the

random vector. VQ considers the entire set of LSF parameters as an entity

15

and allows for direct minimization of quantization distortion. Because of

this, the vector quantizers result in smaller quantization distortion than the

scalar quantizers at any given bit rate. The demand for higher performance

at lower bit rates has shifted the focus of coding and transmitting the LSF's

to the use of more powerful, yet more complex, vector quantization (VQ)

techniques. Typically, about 30 bits are assigned to code 10-dimensional LSF

vectors with a resulting spectral distortion of less than 1dB.

However, the directly use of 30-bit full-search VQ is totally impractical

in terms of both computational complexity and memory space. Such a vector

quantizer has the following problems. First, a large codebook requires a

prohibitively large amount of training data (a set of observations/samples of

the signal to be quantized) and the training process can take too much

computation time. Second, the storage and computational requirements for

vector quantization encoding will be prohibitively high. Unconstrained VQ is

severely limited to rather modest vector dimensions and codebook sizes for

practical problems.

Various standard sub-optimal low-complexity vector quantizer has to

be used for getting transparent quantization of LSF information. These

techniques have been developed to apply various constraints to the structure

of the VQ codebook and yield a correspondingly altered encoding algorithm

and design technique. To reduce the cost of VQ, two general approaches have

been used in the past. First, storage can be reduced by combining several

smaller codebooks. Best known among these are the multi-stage VQ and the

split VQ [3] which exemplify schemes where the overall quantization is

divided into smaller tasks or the codebook is organized so that it can be

16

handled. Second, to reduce computational complexity, various structured

codebook VQ methods have been developed, such as classified VQ [4]. These

methods generally compromise the performance achievable with

unconstrained VQ, but often provide a very useful and favorable trade-off

between performance and complexity.

Design of VQ codebooks in an application such as quantization of

speech parameters is usually accomplished by an iterative training

algorithm. A training database of representative source vectors is compiled

and the codebook is optimized for this database with a suitable distortion

measure. The most widely used algorithm is the LBG algorithm, which is

beyond the scope of this thesis.

In this chapter, the most popular constrained VQ method, namely split

VQ, is introduced. This scheme is an example of the so-called Produce Code

VQ, where the overall codebook is built as a Cartesian product of several

smaller codebooks. A synthesis function generates the overall reconstruction

vector from a set of vectors from the smaller codebooks. Then classified VQ is

introduced.

2.2.1 Split VQ

Paliwal and Atal presented their split VQ scheme, obtaining an average

spectral distance of 1dB at 24bits/frame in 1991 [3]. This work and the good

results reported has spurred researchers within this area. Today this work is

often used as a benchmark for comparing other results.

In split VQ, the LSF vector is split into a number of parts and each

part is quantized separately using vector quantization.

17

As a scalar quantization is described by

is a selector function.

The split VQ can be described as

where the overall quantization problem is partitioned into p parts or splits,

simply concatenates vectors from the individual codebooks. The split VQ

enables us to design and handle the individual codebooks in parallel. We

have the possibility of exploiting dependence between components considered

by the same quantizer but not dependencies between components

represented in different codebooks.

When first introduced, split VQ was used in LPC quantization. We

know that the split vector quantizer reduces the complexity at the cost of

degraded performance. Thus there is a trade-off in complexity and

performance, which determines the number of parts to be made for split

vector quantization. Usually 10th-order LPC parameter vector is divided

into two parts. Typically for a 10th-dimensional LSF, the vector is

18

partitioned into three sub-vectors containing the first 3, second 3, and last 4

LSFs, respectively. Each sub-vector is then independently coded.

2.2.2 Classified VQ

Ramamurthi and Gersho introduced classified VQ in 1986 [4]. At that time,

this technique was used in image processing to detect the edges out of the

regular pixels.

Classified VQ (CVQ) is based on an heuristic characteristic that the

designer adopts to identify the mode of the particular input vector. Thus

instead of a test codebook, an arbitrary classifier may be used to select a

particular subset of the codebook to be searched. Varying size subsets is

allowed and we can partition the codebook into unequal-sized small

codebooks, called classes. Figure 2.6 illustrates this scheme. The classifier

generates an index, an integer from 1 to m, which identifies the class Ci to

search for a nearest neighbor. The codeword consists of the index i. which

specifies the in codebooks to be selected.

Many possibilities exist for the choice of a classifier. It can be a simple

VQ encoder that identifies the in regions of the input space where the current

input vector lies. In this case, CVQ is very similar to a two-stage VQ, where

the second stage nodes may each have different codebook sizes. The

classifier in a CVQ encoder can extract one or more features from the input

vector, such as the mean (average amplitude of the samples), the energy

(sum of the squares of the samples), the range (difference between maximum

and minimum amplitudes of the components), and other statistics.

19

Figure 2.6 Classified VQ

The particular physical meaning of the vector may lead to many other

features. As first introduced in image processing, in a two-dimensional set of

pixels representing an image block, an edge detector, can be used to identify

the presence or absence of edges (or high detail) and the direction and

location of edges if present. For a vector that represents a block of

consecutive speech samples, the zero-crossing count (number of sign changes

in proceeding from the first to the last sample) can be a useful feature. Once

such features are identified, the task remains to decide how many distinct

modes should be used. A scalar or vector classifier must be chosen or

designed to provide a complete classification operation. The classifier can be

designed either heuristically or using the LBG with a training set of features

that are extracted from a training set of input vectors.

2.3 Problem to Deal With

In this study, we try to find an optimal low-complexity, low-memory vector

quantization for a 10th-order LP model.

20

Split VQ is considered as a good development of low-complexity, low-

memory spectrum quantization. However, unstructured full-search VQ of

the LSF sub-vectors is still too complex for many applications.

The problem addressed in this thesis is the reduction of the LSF split

VQ complexity without a compromise in performance. The fast VQ methods

proposed here are applied to each sub-vector independently and achieve the

same level of performance at about 25% of the full-search split VQ

complexity. The proposed method is based on classified VQ (CVQ).

CHAPTER 3

CLASSIFIED VQ ON A SPLIT BASIS

Codebook designing is beyond the scope of this thesis. All the work is based

on a codebook designed by Dr. Yair Shoham, of Lucent Technologies

(formerly AT&T Bell Laboratories). 	Some necessary background is

introduced here.

A training set of size 200,000 is used to generate a codebook, and the

quantization performance is measured by a test file of size 20,000 in term of

the spectral distortion.

The entire 10th-order LSF vector in each frame is divided into 3 sub-

vectors which contain 3-, 3-, and 4-dimensions respectively. Each sub-vector

is then independently coded using 10-bit. These codebooks are designed to

minimize the weighted squared error between the training set and code

vectors:

where i1 and i2 are the head and end of each sub-vector, respectively, xi's are

the training set, y, 's are the code vector, and iv, 's are weights.

Adding weights is a simple but useful modification of the squared error

distortion that allows a different emphasis to be given to different vector

components. Regularly, the weights are inversely proportional to the

distances between adjacent vector components, so the code vector is more

sensitive to closer pairs. Two codebooks using different weights are designed

21

22

and their quantization performances are compared. The first weight is

defined as

and

The codebook designed by this weight gives a full-search spectral distortion

of 0.767dB on the test file.

The second weight is defined as

where x0 = 0, x11 = π are not real LSF parameters. This weight gives the test

file a lower spectral distortion of 0.757dB, and is taken for the later use.

Compared with coding large amount of LSFs, the design of the

codebook is only a one-time job. Especially with the development of today's

computer technology, the design complexity is not a primary issue in

practice. Meanwhile as the requirement on speech communication increases,

LPC filter coding, which needs to be updated each 20 ms, involves greater

calculation. The anxious to process speech signals at higher speed becomes

more and more imperative. This thesis attempts to reduce the search

complexity by applying a simple fast classifier.

The new search scheme consists of two stages. The first-stage is a

simple classification. The input vector if determined to belong to a certain

23

class out of a predetermined number of classes. Each class is represented by

a small set of code vectors, which is a segment (Ci in Figure 2.6) in the

optimal codebook. The union of all sets (classes) form the optimal codebook

and the sets may overlap.

Second-stage is a small range full-search VQ in those classes. Once the

class is determined, a full-search is conducted over the set of that class and

possibly over a few neighboring sets. The set to be searched is small, yet, the

optimal code vector (the one selected by a full-search) is included (and

selected) with extremely high probability.

Note that CVQ requires about the same or even slightly more memory

space since the fully optimal main codebook is used. The index output of the

second-stage search is then sent in a binary form to the receiver side.

For easy access and search, each sub-vector codebook needs to be

rearranged. After a classifier is chosen, the code vectors are classified. Those

belonging to the same class are gathered, and given the same class index.

The numbers of the code vectors in each class are saved, and referred to as an

index table, so that in the later second-stage full-search one can tell the

boundary between classes. Figure 3.1 illustrates the process to classify a

codebook.

Usually the first-stage classification is a simple quantization, either a

scalar quantization or a simple vector quantization.

It is obvious that the search complexity decreases when class number

increases. But this does not mean the codebook may be partitioned into as

many subsets as possible. In a small subset-size situation, usually more

candidates are necessary for an optimal result. Meanwhile, small size

24

classes bring more boundary standards to storing and it increases storage

cost. There is a trade-off between the class size and number of candidate.

Figure 3.1 Classified VQ Based on Split Basis

An expected classifier should have these characteristics: (1) fast,

(2) small search range, (3) limited class candidate.

The design of a VQ classifier includes 3 steps: (1) find a fast classifier,

(2) partition the codebook into classes, (3) rearrange the codebook for easy

access to classes.

Usually, as a cost of this search scheme, either the quantization

performance is sub-optimal or more memory is involved.

The following chapters describe the proposed classifiers and CVQ

systems. The systems are characterized by complexity, memory and

performance. The complexity unit is the effort required to computer a

weighted distance per dimension, which for VQ is w x (x - y)2, and for SQ is

||x-y|| . So the complexity of a k-dimensional VQ of size N is k x N . The

memory is given in terms of computer words. The performance is measured

25

by average spectral distortion in dB. Another performance figure is the

number of miss-quantized vectors, namely, different from the ones obtained

by full-search VQ. In this thesis, we assume a 3, 3, 4 split of the 10-

dimensional LSF vector and a codebook of 1024 code vectors for each LSF

sub-vector, so the full-search complexity is 1024 x (3 +3 + 4) = 10240 .

Extensions can obviously be made for different dimensions and sizes.

In the following description we refer to codebooks on three levels. We

have a codebook for the entire constrained VQ scheme, which we refer to as

the main codebook. The smaller codebooks that are designed and handled in

the structurally constrained VQ, namely all three sub-vector codebooks, are

referred to as the individual codebooks. After classify all the smallest

codebooks are called classes.

Although the various-sized classes are allowed, it is highly

recommended to partition the codebook into equal-sized classes. For an

unknown input vector, the possibility that it lies in different subsets of the

input space is equal. In certain candidate situations, even distribution

between classes gives each input vector an equal search range, which means

not only equal opportunity to find a code vector, but also average complexity

regardless of which class it belongs to. This brings a better overall

quantization performance.

CHAPTER 4

VQ-BASED CLASSIFIER WITH CLASS CODEBOOK

4.1 Definition

In vector quantization, each code vector is a representative of its nearest

vectors. The VQ-based classifier is an extension of this idea--it finds the

representative of the nearest code vectors. These new representative, called

class vectors, are designed by the same algorithm, from the same training set,

as the individual codebook but they use fewer bits. For example, 4, 5, and 6

bits for each sub-vector have 16, 32, and 64 codes, respectively. These codes

constitute a small VQ codebook--a class codebook. As mentioned in

Chapter 2.2, if the full-search vector quantization 0, is a mapping from k -

dimensional Euclidean space, le , into an N output individual codebook C,

as

where C, ≡ {y, 	•,yN } and yi ϵ Rk for each i = {1,2,••.,N}, then the first-

stage vector quantization 02 is a mapping from Rk into class codebook C2 as

where C2 ≡ {y', 2 ,• • •,y'„} and y'j ϵ Rk for each j = {1,2,• • •, M} , M < N . While

the full-search vector quantizer assigns any input vector to one of a

particular set of N outputs, the first-stage of VQ-based classifier assigns any

input vector to one of a particular set of M outputs, larger than the previous

26

27

one. The class codebook is smaller than the individual codebook but it is also

more representative.

After the classifier is chosen, all the code vectors yis go through a VQ

filter and compared to each class vector yj' . Suppose that d(yi,yj') is a

distortion measure on the code vector/class vector space, defined as

A nearest neighbor VQ finds the y' index I, where

all j ϵ{1,M]. The precise distance d(yi,yj') should be defined as

As a roughly classifier, however, it does not matter whether the weights are

used or not. To be simple, the weights are omitted in the first-stage

quantization.

After classification, each code vector is given a particular class index

Ii. Those code vectors having the same class index, say 3, are nearest to the

same class vector y3 ', and are placed side by side in the new codebook. The

order of the class vectors decides the order of the class; namely, the first class

having all the code vectors nearest to first class vector. With N class vectors

the individual codebook is partitioned into N classes. While in full-search

VQ code vectors are centroids of their nearest training vectors, in this first-

stage VQ these class vectors are centroids of their nearest code vectors. As in

28

Figure 4.1, a two-dimensional case is illustrated. The dots represent code

vectors in an individual codebook, the xs represent class vectors.

After classifying and rearranging the codebook, the number of code

vectors in each class must be stored as an index table. Later, when we find

the nearest in classes to an input, the table may lead to the starting and

ending search positions in the individual codebook. Both the class codebook

and the index table need to be saved. The new codebook is:

codebook = index table + class codebook + main codebook

and its structure is illustrated in Figure 4.2. For N classes case, the added

memory (index table and class codebook) is 3x N+10x N=13x N words.

Figure 4.1 VQ-Based Classifier

29

In quantization, an input vector x goes through the first-stage

classifier, compares to each class vector and finds the in nearest class indices

with m minimum d(x,yj') defined as

The index table may indicate the starting and ending positions of

these classes. The next step is a full-search VQ among the code vectors in

these classes.

Figure 4.2 Codebook Structure of VQ-Based
Classifier

The new search complexity for N class, m candidates is roughly

Obviously, if the individual codebook is partitioned into more classed, the

complexity for a search in one candidate must be lower. But meanwhile,

because of fewer code vectors to choose from, the quantization performance

becomes worse. The simulation test attempts to find the best compromise

between the small class size, fewer candidates, and better quantization

performance.

30

Because the class vectors are designed by the same algorithm as the

individual codebook, it is clear that each class should contain roughly an

equal number of code vectors, which is a premise for a good classifier.

The disadvantage of this scheme is that for each different class size,

new class codebooks need to be designed. Correspondingly, the codebook

needs to be classified and rearranged. Although it is a one-time job, more

flexibility is desired. The memory cost of this scheme includes an index table

and class codebooks, both which increase when a smaller class size is taken.

4.2 Simulation Results

We partition each individual codebook into 16-, 32-, and 64-class. The

number of candidates are taken from 1 and added until the spectral

distortion is as good as the full-search result 0.757dB. The new quantization

result is compared to the full-search quantization result. Figure 4.3 is the

histogram of code vectors between classes (ii =16), which shows an almost

even distribution.

31

Figure 4.3 VQ-Based Classifier Histogram of Code
Vector (N=16)

Table 4.1 Performance of VQ-Based Classifier, N=16

Num. of

Class

Num. of

Candidate

SD

(dB)

Miss-coded

(/20,000)

Complex

(Max.)

Memory

(word)

16

1

2

3

4

5

6

0.865

0.777

0.762

0.758

0.758

0.757

9453

2579

623

130

39

8

1038

1815

2524

3204

3907

4583

10448

32

Table 4.2 Performance of VQ-Based Classifier, N=32

Num. of Num. of SD Miss-coded Complex Memory

Classes Candidate (dB) (/20,000) (Max.) (word)

1 0.867 10746 767

2 0.784 3873 1196

3 0.765 1170 1580

32 4 0.759 309 1978 10656

5 0.758 98 2340

6 0.757 28 2710

Table 4.3 Performance of VQ-Based Classifier, N=64

Num. of

Classes

Num. of

Candidate

SD

(dB)

Miss-coded

(/20,000)

Complex

(Max.)

Memory

(word)

64

1

2

3

4

5

6

7

0.887

0.796

0.770

0.762

0.759

0.758

0.757

12506

5519

2082

732

269

101

34

876

1077

1272

1466

1669

1853

2047

11072

Figure 4.4 illustrates all the simulation results together, for better

comparison.

33

Figure 4.4 VQ-Based Classifier SD vs. Number of
Class

Figure 4.5 VQ-Based Classifier SD vs. Complexity

34

In Figure 4.4, a different color indicates a different number of

candidates. 	In a VQ-based classifier, for a certain class size, the

performances get better when more candidates are taken. For a certain

number of candidates, the performances gets better when the individual

codebook is partitioned into fewer classes--equivalent to a large class size.

Both of the changes enlarge the search range and improve the performance.

At the same time, the complexity is increased.

In Figure 4.5, the change of complexity versus spectral distortion is

shown clearly. Overall, the complexity increases while the spectral

distortion decreases. But this change is not linear. The point with least

complexity and least spectral distortion is found in the 6-candidate, 64-class

case, which should be the best compromise. The simulation results fit our

expectations.

CHAPTER 5

VQ-BASED CLASSIFIER WITHOUT CLASS CODEBOOK

5.1 Definition

After the previous simulation test, the memory cost of the VQ-based classifier

should be noticed. In the full-search VQ

codebook = main codebook.

In the VQ-based classifier with class codebook

codebook = index table + class codebook + main codebook.

The previous simulation shows that a 64-class case involves lower complexity

than the 32-class case in order to get the optimal quantization. But the 64-

class case needs twice the storage for both the class codebook and the index

table. To avoid the extra storage for the class codebook, this scheme uses the

existing code vector in the optimal codebook nearest to the class vector to

replace the class vector itself. Namely, after designing of the class codebook,

the optimal codebook is partitioned into N sets (classes) defined by N centroid

vectors that are members of the optimal codebook. The codebook is

rearranged such that a centroid and all its nearest neighbors occupy a

contiguous segment of the codebook. An index table is used for pointing to

centroids. The classifier uses this table to find m nearest centroid candidates

to an input sub-vector. The corresponding sets are then searched for the

final code vector.

Obviously, these replacements effects the overall performance. It is

predictable that with same number of class and candidates, the VQ-based

35

36

classifier without class codebook has higher spectral distortion than that

with class codebook.

The complexity of this scheme is same as the previous one, and the

added memory (index table) is 3 x N words. The benefit of this scheme is

that for any class size the only extra storage is the index table and

codebook = index table + main codebook.

5.2 Simulation Results

Tables 5.1, 5.2, and 5.3 show the performance in the same way as Chapter 4

does. Figure 5.1 and Figure 5.2 give a better overview of the comparison.

Table 5.1 Performance of VQ-Based Classifier Without Class
Codebook, N=16

Num. of

Class

Num. of

Candidate

SD

(dB)

Miss-coded

(/20,000)

Complex

(Max.)

Memory

(word)

16

1

2

3

4

5

6

0.889

0.785

0.764

0.759

0.758

0.757

10400

3273

877

205

55

16

1038

1815

2524

3224

3907

4601

10288

Table 5.2 Performance of VQ-Based Classifier Without Class
Codebook, N=32

Num. of Num. of SD Miss-coded Complex Memory

Class Candidate (dB) (/20,000) (Max.) (word)

1 0.917 12230 767

2 0.800 5109 1181

3 0.770 1911 1580

32 4 0.762 740 1978 10336

5 0.760 312 2340

6 0.758 161 2723

7 0.758 76 3075

8 0.757 33 3452

37

Table 5.3 Performance of VQ-Based Classifier Without Class
Codebook, N=64

Num. of

Class

Num. of

Candidate

SD

(dB)

Miss-coded

(/20,000)

Complex

(Max.)

Memory

(word)

64

1

2

3

4

5

6

7

8

9

10

0.953

0.821

0.782

0.768

0.762

0.760

0.758

0.758

0.758

0.757

14237

7450

3453

1610

730

341

153

70

39

20

868

1074

1274

1467

1666

1852

2064

2254

2418

2610

10432

38

39

Figure 5.1 VQ-Based Classifier Without Class
Codebook SD vs. Number of Class

Figure 5.2 VQ-Based Classifier Without Class
Codebook SD vs. Complexity

CHAPTER 6

SQ-BASED CLASSIFIER OF LSF

Although the VQ-based classifier achieves optimal performance with lower

complexity than the full-search does, it's first-stage classifier is a vector

quantization and contributes considerable complexity while the number of

class increases and more class vectors exist. Scalar quantization attempts to

replace vector quantization as first-stage quantization for fast classification.

6.1 SQ-Based Classifier of LSF

As mentioned before, one of the benefits of using LSF to represent an LPC

character is its small dynamic range(0- π). Therefore a scalar quantizer is

first used directly on the LSF components.

First, the dynamic range of each code vector component/dimension is

divided into regions in such a manner that the distribution between regions

is as even as possible, and each region is given a region index. Then, for a k -

dimensional individual codebook, code vectors are sorted by new indices,

which are the combinations of all their component's region indices.

Given a k -dimensional N output individual codebook

40

41

where C. 's, for i =1,2,• • •k , are one-dimensional targets, and scalar

quantization is used on them, respectively. There are k new codebooks ci 's

with mi output levels:

Notice that 171 's could vary from one dimension to the other, so dimensions

can be partitioned into a different number of regions.

The indexing of the output values is chosen so that

For an input code vector, the k scalar quantization give k indices I1 to

k , and the encoding index is the combination of them, namely

where 1110 = 1. The individual codebooks are then rearranged according to

these indices.

The advantage of this method lies in the simple first-stage scalar

quantizations whose complexities are negligible. This advantage is evident

when uniform quantizations are used.

To classify a three-dimensional VQ, one need minimize the distance

To uniformly classify a three-dimensional SQ, there are 3 simple multiples:

42

where yi0 s and A, s are starting points and steps.

The class index is:

Going through 3 or 4 scalar quantizers simultaneously, the encode searching

is restricted in a range much smaller than the whole codebook. The storage

cost of this scheme is the scalar quantization codebooks c, s. This cost can be

reduced by using uniform scalar quantization, so for each dimension only the

starting point and step need to be saved. So

codebook = index table + 10 * (step + starting point) + main codebook

Figure 6.1 SQ-Based Classifier on Each Component

This scheme quantizers a k-dimensional input with k random

variables, each quantized by a scalar quantizer. Figure 6.1 shows the two-

43

dimensional resulting vector quantizer corresponding to a particular choice of

scalar quantization for each variable. It is evident that the VQ defined by

separately quantizing the components of a vector must always result in

quantization cells that are rectangular. In contrast, a more general vector

quantizer is freed from these geometrical restrictions and can have arbitrary

cell shapes. In higher dimensions the same idea is clearly applicable. Thus,

in three dimensions, scalar quantization of the three components of a vector

always results in cells that have rectangular, box-like shapes, where each

face is a plane parallel to one of the coordinate axes. On the other hand,

regular quantizers in three dimensions will have polyhedral cells. Extending

this idea to k dimensions, it is clear that scalar quantization of the

components of a vector always generates a very restricted class of vector

quantizers, where the faces are (k-1)-dimensional hyperplanes--each parallel

to a coordinate axis in the k-dimensional space. The inherent superiority of

VQ is thereby evident simply because of the greater structural freedom it

allows in quantization of a vector. It is very hard to have an equal or an

almost equal number of code vectors between classes. Another disadvantage

is that one needs to search more than one candidate for optimal quantization,

because for each dimension, there are two possible closest candidates. So for

three-dimensional sub-vector there are 8 candidates and there are 16 for

four-dimensional case. The consequence is sub-optimal quantization

performance with low complexity.

44

6.2 SQ-Based Classifier of Difference

6.2.1 Definition

Studying of Figure 6.1, a new classifier based on the differences between

adjacent LSFs is attempted. Because the LSF differences are observed to be

less divergent than the absolute frequencies themselves, this method is

expected to give a better performance than the first one. For a three-

dimensional individual codebook with code vector [X,, X2 , X3]. the scalar

quantization is taken on [X1,∆X1,∆X2], where

Figure 6.2 SQ-Based Classifier on Difference

45

Figure 6.2 illustrates a two-dimensional case of this classifier. As one

may find from this figure, there is some improvement, but the codewords are

still hard to be placed evenly between classes, which is proved in the

simulation test. Meanwhile the problem of more candidates still exists.

By using uniform scalar quantization, the complexity of first-stage is

negligible. The complexity of this scheme is roughly 10 x1024x ni and added

memory includes the index table, the start value and the steps. If one

dimension is divided to two classes, instead of start value and steps, only one

middle boundary needs to be stored.

6.2.2 Simulation Results

Figure 6.3 is the histogram of code vectors between classes (N=16).

Tables 6.1, 6.2, and 6.3 show the performance of 16-, 32-, and 64-class cases,

respectively. Figures 6.4 and 6.5 illustrate the comparison for different

number of class.

Table 6.1 Performance of SQ-Based Classifier, N=16

Num. of Num. of SD Miss-coded Complex Memory

Classes Candidate (dB) (/20,000) (Max.) (word)

1 0.840 9443 1256

2 0.800 5654 2079

3 0.781 3417 3089

16 4 0.767 1407 3905 10300

5 0.767 1407 4912

8/8/16 0.759 360 8619

Figure 6.3 SQ-Based Classifier Histogram of Code
Vector

Table 6.2 Performance of SQ-Based Classifier, N=32

Num. of

Class

Num. of

Candidate

SD

(dB)

Miss-coded

(/20,000)

Complex

(Max.)

Memory

(word)

32

1

2

3

4

5

8/8/16

0.886

0.819

0.784

0.771

0.771

0.767

12007

7915

3934

2140

2140

1584

741

1367

1996

2345

1940

5250

10351

46

-17

Table 6.3 Performance of SQ-Based Classifier, N=64

Num. of

Class

Num. of

Candidate

SD

(dB)

Miss-coded

(/20,000)

Complex

(Max.)

Memory

(word)

64

1

2

3

4

5

8/8/16

0.961

0.862

0.802

0.780

0.780

0.774

13736

10535

6267

3308

3308

2327

528

953

1277

1438

1762

3119

10450

Figure 6.4 SQ-Based Classifier SD vs. Number of
Class

48

Figure 6.5 SQ-Based Classifier SD vs. Complexity

CHAPTER 7

SORTED CODEBOOK VQ

After performing all the above tests, we find that although scalar

quantization itself supplies low complexity, using it on the individual

components of LSFs doesn't give good results. Vector quantization gives an

overview to the sub-vectors, so it has lower spectral distortion, but as a price,

the complexity is higher. An effort has been made to combine the benefits

and get rid of the shortages of both methods. The new classifier should not

only give an overview, but it is also very simple. To be simple, the classify

parameter should be fit for scalar quantization--a one-dimensional

component. For an overview, it should contain all the information the code

vector has. That means that we should use one number to represent the

character of each code vector. A mean of the code vectors meets these

requirements. It is an approximation to the gain of the code vector. The gain

is the root mean-square value of the vector components and serves as a

normalizing scale factor. It is defined as

Obviously, the mean requires much lower complexity as square calculation.

7.1 Definition

Given a h-dimensional target vector [X1,X2,•••, Xk I and a codebook C of size

N, we define a sorting parameter s, =g(X1,X2,•••,Xk), which is a scalar by

definition, where g(•) is a suitable function, chosen in such a way that

49

50

neighboring target vectors give neighboring values of s,. Then the indices of

the codebook are sorted in ascending order of the sorting parameter for each

code vector, according to the vector S=[s1,s2,•-•,sN} with s,

In this case, the chosen sorting parameter s, is simply the sum of the

components in each sub-vector. The codebook is geometrically partitioned

into classes by parallel hyperplanes as illustrated in Figure 7.1 for a two-

dimensional case.

To accomplish this, the codebook is rearranged in an order of

increasing code vector means and then divided into N equal-sized sets. N

means of the 1st vector in each set are held in a class codebook.

Unlike the previous schemes, once this is done, no change in the

codebook structure is necessary. The even distribution of code vectors

between classes is not a problem anymore. For the individual codebook

partition into N classes, every
1024

code vectors are in same class. If 1024 is

not divisible by 	then each class except the last one has

vectors, where [is an integer calculation. The last class has the rest of the

code vectors. The first code vector mean in each class is stored as the class

codebooks.

To code the target vector, the classifier extracts the mean of the input

vector and performs scalar quantization using the class codebook. Assume si

is the result of scalar quantization, with 1 	The index of si is called

the central index. In the next step, the target vector is vector quantized

using an extensive local search in the neighborhood of the central index. For

51

example, only the code vectors with indices within the range of i-p+1 to

i+p may be searched, where p is an offset value. The offset value for the

final codebook search is varied by the number of class.

Figure 7.1 Boundary of Sorted Codebook VQ

Except the simple first-stage classification by scalar quantization, this

scheme can assign each class exactly the same number of code vectors, which

not only guarantees better average performance, but it also has the benefit

that no index table is necessary. The new codebook structure is

codebook = class codebook + main codebook,

and the added memory is 3 x N words. The complexity of this scheme is

3 x log(N)+ 10 x1024 x m, where the first and second terms are for the classifier

and the quantizer, respectively.

52

7.2 Simulation Results

Like the previous schemes, this test simulates 16-, 32-, and 64-class and

different candidate conditions, respectively. Tables 7.1-7.3 present the

results and Figures 7.2 - 7.3 illustrate the comparison between those tests.

No histogram figures are shown because of the exactly even distribution.

Table 7.1 Performance of Sorted Codebook VQ, N=16

Num. of

Class

Num. of

Candidate

SD

(dB)

Miss-coded

(/20,000)

Complex

(average)

Memory

(word)

16

1

2

3

4

5

0.903

0.773

0.759

0.758

0.757

12549

2387

372

73

21

652

1292

1932

2572

3212

10288

Table 7.2 Performance of Sorted Codebook VQ, N=32

Num. of Num. of SD Miss-coded Complex Memory

Class Candidate (dB) (/20,000) (average) (word)

1 1.113 17301 335

2 0.863 9456 655

3 0.793 4230 975

4 0.769 1702 1295

32 5 0.761 661 1615 10336

6 0.759 227 1935

7 0.758 100 2255

8 0.758 65 2575

9 0.757 31 2895

53

54

Table 7.3 Performance of Sorted Codebook VQ, N=64

Num. of Num. of SD Miss-coded Complex Memory

Class Candidate (dB) (/20,000) (average) (word)

1 1.505 19364 178

2 1.102 16616 338

3 0.939 12686 498

4 0.857 8593 658

5 0.816 5897 818

6 0.791 3795 978

7 0.777 2551 1138

64 8 0.768 1560 1298 10432

9 0.763 991 1458

10 0.760 554 1618

11 0.759 367 1778

12 0.759 203 1938

13 0.758 138 2098

14 0.758 92 2258

15 0.758 79 2418

16 0.758 53 2578

17 0.757 39 2738

For optimal results, the sorted codebook VQ uses only a 26% search

complexity as the full-search VQ and the storage cost is increased only 1.8%.

55

Figure 7.2 Sorted Codebook VQ SD vs. Number of
Class

Figure 7.3 Sorted Codebook VQ SD vs. Complexity

CHAPTER 8

CONCLUSION

In this thesis we have designed different classifiers based on split vector

quantization. Employing the classifier to the VQ codebook reconstructs the

codebook and gathers the code vectors with the same characters together,

making the coding search efficient and simple. Quantization performance

results demonstrate that optimal performance, the same as with

unconstrained VQ, can be obtained from most of these methods. The major

benefit of these classifications is that considerable complexity can be saved

for vector quantization while maintaining comparable performance.

Table 8.1 Comparison of Four Schemes

Schemes SD

(dB)

Miss-coded

(/20,000)

Complex

(Average)

Memory

(word)

VQ with Class Codebook 0.757 34 2047 11072

VQ without Class Codebook 0.757 20 2610 10432

SQ of Differences 0.759 360 8619 10300

Sorted Codebook VQ 0.757 39 2738 10432

Table 8.1 summarizes the performance of all the CVQ systems tested.

It is shown that an average distortion of a full-search VQ can be achieved by

low-complexity CVQ at only about 25% of the full-search complexity and with

a very small miss-coding count. This is accomplished by the VQ and the

sorted codebook VQ classifier. Figure 8.1 shows the distortion versus

56

57

complexity curves for the tested systems. The use of these schemes for low-

complexity speech coding depends on the best trade-off for the application in

mind.

Figure 8.1 Spectral Distortion vs. Complexity

REFERENCES

1. F. Itakura, "Linear spectrum representation of linear predictive
coefficients of speech signals," J. Acoust. Soc. Amer., vol. 57, suppl. no.
1, pp. 35, 1975

2. F. K. Soong and B. H. Juang, "Line Spectrum Pair (LSP) and speech
data compression," ICASSP, pp. 1.10.1, 1984.

3. K. K. Paliwal and B. S. Atal, "Efficient vector quantization of LPC
parameters at 24 bits/frame," IEEE Transactions on Speech and Audio
Processing, pp. 3-7, Jan., 1993.

4. B. Ramamurthi and A. Gersho, "Classified vector quantization of
images," IEEE Transactions on Communications, pp.1105-1109, Nov.,
1986.

5. F. K. Soong and B. H. Juang, "Optimal quantization of LSP
parameters", IEEE Transactions on Speech and Audio Processing, pp.
15-19, Jan., 1993.

6. A. Gersho and R. M. Gray, Vector Quantization and Signal
Compression, Kluwer Academic Publishers, Norwell, MA, 1991.

7. J. D. Markel and A. H. Gray, Jr., Linear Prediction of Speech, Springer-
Verlag, Berlin, Heidelberg, New York, 1976.

8. L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals,
Prentice-Hall, Englewood Cliffs, NJ, 1978.

9. R. Hagen, On Robust LPC-spectrum Coding and Vector Quantization,
Chalmers University of Technology, Goteborg, Sweden, 1995.

10. H. R. Sadegh Mohammadi and W. H. Holmes, "Low cost vector
quantization methods for spectral coding in low rate speech coders,"
ICASSP, pp.720-723, 1995.

11. H. R. Sadegh Mohammadi and W. H. Holmes, "Application of sorted
codebook vector quantization to spectral coding of speech," Globecom,
pp.1595-1598, 1995.

58

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Approval Page
	Biographical Sketch
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Quantization of LSF
	Chapter 3: Classified VQ on a Split Basis
	Chapter 4: VQ-Based Classifies With Class Codebook
	Chapter 5: VQ-Based Classifier Without Class Codebook
	Chapter 6: SQ-Based Classifier of LSF
	Chapter 7: Sorted Codebook VQ
	Chapter 8: Conclusion
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

