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ABSTRACT

LOCAL STRESSES ON LATERAL PIPE-NOZZLE
WITH 45° DEGREE ANGLE INTERSECTION

by
James Jin  Xu

This dissertation presents a comprehensive study of local stresses, due to internal 

pressure around a pipe-nozzle with 45 degree angle intersection. The resulting circumferential 

and longitudinal stresses on the pipe around the pipe-nozzle region are normalized as local 

stress factors and plotted as function of beta, p, (the radius o f the nozzle/the radius of the 

pipe) and gamma, y, (the radius of the pipe/the thickness o f  the pipe) through the finite 

element method. The range o f beta, p, is from 0.1, to 1.0, and gamma, y, from 10 to 300. 

Comprehensive studies were made for the boundary parameters, such as a p ( pipe length / 

pipe mean radius ) and a„ ( nozzle length / nozzle mean radius), the optimized numbers of 

nodes around the pipe-nozzle juncture and total elements o f the model. To justify a wide 

range of application of the 45° degree pipe-nozzle angles, extensive studies and a set of plots 

are provided to show that local stress factors vary with the pipe-nozzle intersection angle, 

from 90° to 30°.

An approximate theoretical analysis, which is based on thin-shell theory together with 

stress multipliers for the peak stresses at the both inside and outside crotch points, has derived 

to compare the data from 3D finite element models.

This study concludes that the maximum local stress is in the circumferential direction 

and occurs at the inside crotch point. The 45° intersecting angle yields relatively less local
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stresses when the pipe-nozzle intersecting angle other than 90° must be used for operational 

purposes. The local pressure stresses in the pipe-nozzle juncture are mostly in tension except 

on the inside surface of pipe in longitudinal direction. For certain combinations o f P and y, 

however, the longitudinal stress at point C (see Figure 2) on the outside surface of pipe may 

be compressive also.

Twelve (12) plots o f local pressure stress factors are provided in this thesis allows 

design engineers o f pressure vessel to compute local stress on both the outside and the inside 

shell o f  pipe when the pipe-nozzle intersecting angle is 45°. A numerical example is given.
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NOMENCLATURES 

a p = pipe length/pipe mean radius 

a n = nozzle length/nozzle mean radius 

P = nozzle radius/pipe mean radius 

Pg = see equation (6),

Pp = see equation (25)

Pa = see equation (29)

Y = pipe mean radius/pipe thickness 

e^ , 8 ^ =  circumferential strain 

v = Poisson's ratio

0 ^, am = meridional membbrane stress 

a bp» abn = meridional bending stress 

°cp> 0cn = circumferential membrane stress

0 = angle between pipe and nozzle on the symmetric plan alone the pipe axis 

a = shell radius 

E = Young's modules 

D = see equation (5)

Dp = see equation (24)

D„ = see equation (28)

h = shell thickness

Kr= radial nozzle stress factor

Knr= non - radial nozzle stress factor

xv
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NOMENCLATURES
(Continued)

Lp = length of pipe 

Ln = length of nozzle

Mo = bending moments at the edge of shell, lb-in./in.

M,,, = shell bending moments, lb-in./in.

= shell moment resultants, lb-in./in.

Nx= meridional direct stress resultants, lb/in..

Hfrp, N^n= circumferential direct stress resultants, lb/in.

circumferential direct stress resultants, Ib/in. 

p = internal pressure

Q0 = shear force at the edge of pipe, lb/in.

Qxp>Q*n = transverse shear stress resultants, lb/in

Rp = pipe mean radius

R„ = nozzle mean radius

tp = pipe thickness

t„ = nozzle thickness

u = displacement in x direction

v = displacement in c{) direction

w = displacement in r direction

dWp/dXp, dwJdXn = rotations

Xp, x„ = coordinates along shell meridians for pipe and nozzle respectively

xvi
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NOMENCLATURES
(Continued)

x, 4>, r = coordinates for general cylindrical shell 

X, Y, Z = globe coordinates for 3D modelling 

Z = intensity of load 

Subscripts

p = pipe, main shell 

n = nozzle, branch

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1

INTRODUCTION

Pipe tees and lateral connections are essential components in process and power 

generation facilities for functional purposes. The lateral tee or nozzle makes an elliptical 

opening in the pipe or vessel which cause the higher stress concentration than the standard 

90° nozzle. The high local stresses at the juncture of these connections cause major safety 

concerns especially in nuclear power design.

The commonly used laterals have the intersection angles o f 30°, 45°, and 60°, 

respectively. Although considerable investigations have been available on nozzle junctions 

and branches under internal pressure and other external loadings by experimental, 

analytical and numerical methods, they are limited to the 90° intersection. The 

fundamental difficulty in the analysis o f pipe-nozzle is that they are not axisymmetric and 

the curve of intersection is a nongeodesic curve. This thesis investigates the effect o f these 

lateral connection variations in angle 0 on the local stresses due to internal pressure, and it 

also presents a comprehensive data o f local stress factors for the 45° pipe-nozzle 

connection, shown in Figure 1. In the figure, points A and B are designated as outside and 

inside crotch points, respectively.

Using ALGOR finite element analysis package, the pipe-nozzle juncture is simulated 

by using a full pipe-nozzle model. To ensure proper convergence o f the numerical results 

on the local stresses, comprehensive studies are made to optimize the models with 96

i
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nodes on the pipe-nozzle junction, and the values for the geometry parameter are 10.0 for 

a p (pipe length /  pipe mean radius) and 5.0 for a n (nozzle length / nozzle mean radius). 

These values ensure that boundary conditions at the end of the pipe and nozzle will not 

effect the accuracy of the numerical results. Assuming that the membrane pressure stresses 

in the pipe and the nozzle are identical, the nozzle thickness is proportional to the pipe 

thickness by a factor beta, P, i.e. t„ = Ptp.

To provide a comprehensive range o f local stress results for design engineers and 

stress analysts, this thesis presents twelve plots o f  local stress factors for both the 

circumferential and longitudinal stresses at points A, B, and C, respectively, as shown in 

Figure 2, of which six plots are for the stresses on the outside surface of pipe and the 

remaining six are for the inside surface. In these plots, the geometrical parameter P 

(nozzle mean radius / pipe mean radius) range from 0.1 to 1.0 with an increment o f 0.1 

and the y (pipe mean radius / pipe thickness) range from 10 to 300 in ten random selected 

intervals. The local stress factors are defined by normalizing the resulting local stresses by 

the applied internal pressure value.
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CHAPTER 2

LITERATURE SURVEY

There exist many theoretical analyses, experimental data and finite element analysis on the 

local stresses o f the pipe-nozzle intersection since the 1950s. However, they are either 

mainly concerned about the pipe-nozzle intersection with 90 degree angle or have various 

limitations which can only be applied to certain special cases.

K.R. Wichman, A.G. Hopper and J.L. Mershon [1] published WRC Bulletin No. 107 

in 1965. It suggested a method to calculate the local stresses of spherical and cylindrical 

shells with a nozzle due to external loading. The theory o f this bulletin is based on a study 

by Bijlaard published in 1955 [2]. His work is based on the thin-shell theory and double 

Fourier series solutions. The latest revision of Bulletin No. 107 was published in March 

1979. Due to the mathematical limitation of Bijlaard's work, Bulletin No. 107 can only 

apply to problems of lug or a solid trunnion at 90° intersection angle with the vessel. It 

does not recommend any specific method in analyzing an actual nozzle connection to a 

pressure vessel, either cylindrical or spherical. The induced normal stresses were reported 

as membrane and bending stress factors in biaxial directions. The shear stresses due to 

external shear forces and torsional moments are obtained through approximated formulas. 

Finally, stresses from various nozzle loads are summed in their respective directions before 

the principal stresses and stress intensity are calculated.

5
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Mirza and Gupgupoglu [3] [4] in 1988 introduced a 17-node doubly curved shell finite 

element model to simulate the case of longitudinal moments applied at discrete points 

around the circumference of the vessel. The results from the finite element method were in 

agreement with WRC 107 [1], but were not applicable to pipe-nozzle other than 90° 

intersection.

J.L. Mershon et al. published the WRC Bulletin No. 297 in August 1984 [5]. It is a 

supplement to WRC 107 and is specifically applicable to round nozzles on cylindrical 

vessels. This bulletin was based on Professor Steele's theoretical work [6] for larger y 

(radius/thickness) values than what is provided in WRC 107 [1], Steele's theoretical work 

considers an opening on the shell together with restraining effect o f nozzle wall. The P 

values are limited to 0.5.

Sadd and Avent [7] in 1982 studied a trunnion pipe anchor by the finite element 

method. The model is analyzed for the case of internal pressure and various end moment 

loadings. With Georgia Tech ICES STRUDL finite element package, a quadrilateral 

element with six degrees o f freedom at each of the four comer nodes was utilized. The a p 

value is taken as 8.0 for their models. Data are provided for a beta, P, (trunnion mean 

radius/pipe mean radius) range from 0.5 to 1.0 and gamma, y, (pipe radius/pipe 

thickness) range from 5 to 20.

Tabone and Mallett [8] in 1987 established a finite element model o f a nozzle in a 

cylindrical shell subjected to internal pressure, and out-of-plane moment. This model used 

ANSYS 3-D finite elements and the analysis considered the elastic behavior at small
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displacements. Two elements along the thickness direction of the nozzle and vessel were 

employed in this study. It resulted in an estimation of limited loads based on extrapolation 

of the load-versus-inverse-displacement curves. An expression is given for the effect o f the 

combined loadings for a case in which the internal pressure reduces the moment capability 

of the nozzle by approximately 35 percent.

H. Sun, B.C. Sun and H. Herman [9] [10] in 1991 published comprehensive results of 

studies on local pipe stresses using the finite element method. These papers reported a 

series bending and membrane stress factors for local circumferential and longitudinal 

stresses on the pipe region of the pipe-nozzle intersection due to all six external loading 

components.

J. Ha, B.C. Sun and B. Koplik [11] in 1994 presented a comprehensive study of local 

stresses around a pipe-nozzle due to internal pressure using the finite element method. In 

this paper, the local pressure stresses for both the pipe and nozzle around the pipe-nozzle 

juncture are normalized into pressure stress factors which are then plotted as functions of 

geometrical parameters, P and y . The ranges o f these stress factors cover p from 0.1 to 

1.0, y from 10 to 300. To ensure proper convergence, the optimized numbers is 8 for a p, 

4 for a n, respectively. Their model contains 96 nodes around the pipe-nozzle juncture, 

and 3000 -  4000 elements for the full model. For accuracy and faster convergence, ten 

separate finite element models were established, one for each P value.

From above literature survey, it is obvious that in the past decades few studies were 

available on the local stresses around pipe-nozzle with 45 degree angle. The theoretical
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8
analysis o f  local stresses around pipe-nozzle intersection involve tremendous mathematical 

difficulties due to the absence of axial symmetry. Instead of an ordinary differential 

equation for the pipe-nozzle stress field, partial differential equations with various 

non-symmetrical terms are needed for the pipe-nozzle geometry which led to extreme 

difficulties in obtaining the exact equilibrium equations o f force and moment at the 

juncture o f  the pipe-nozzle. The approximate solution are restricted to a fairly small range 

o f the intersection curvatures since the mid-surfaces o f  the pipe-nozzle intersection is 

generally not a geodesic curve. There exists neither analytical nor experimental data for 

pressure vessel designer to analyze the stresses on pipe-nozzle with 45 degree angle with 

neither external loading, nor internal pressure. A comprehensive database to calculate 

these local stresses are needed by industry.
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CHAPTER 3

THEORETICAL ANALYSIS

Analytical methods for local stresses around the pipe-nozzle under internal pressure 

involve tremendous mathematical difficulties caused by the absence of axial symmetry and 

non-geodesic curve on either the pipe or the nozzle. Several researchers have achieved 

some approximate solutions for certain locations on the juncture of pipe-nozzle based on 

certain special geometrical configurations and assumptions [12] [13] [14] [15] [16], The 

linear stress distribution through the thickness o f the pipe-nozzle intersection and the 

continuity conditions o f axial membrane stress, circumferential strain, rotation of normal, 

and bending moment at the intersection of pipe-nozzle connection, are commonly assumed 

in most o f the approximated theoretical solutions. However, their studies are limited by 

the location and special geometry configuration and most o f them only discussed the 90° 

pipe-nozzle intersection.

3.1 General Thin-shell Theory

In terms of the components of displacement and their partial derivatives, the basic thin 

shell theory equation was established by Timoshenko [17][18] for a radial loading per unit 

surface. Let the components of displacement be u, v, and w respectively in the direction of 

x, <f>, and r (see Figure 3 a). The equilibrium equations are as following:

9
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d 2u 1 — v d 2u 1 + v d 2v v dw
<zx2 + 2 a 2 d $ 2 2 a dxdtft a dx ( 1)

1 + v d 2u 1 d 2v 1 — v d 2v 1 dm
2 dxd(f> a d<f>2 2 dx2 a d<f>

(2)

du 1 dv w
v —  + — — -  — 

dx a dtp a

_ ap( 1 - v 2)
Eh

h_
12

d*w  2 d*w  d 4w 
a . .-■ + — _ , _. v  +

dx4 a d x 2d<f)2 a 3d<f>

(3)

3.2 Cylindrical Shell with Axial Symmetric Loadings

When a cylindrical shell is loaded symmetrically with respect to its axis and the thickness 

of shell is constant, a fourth order differential equation is obtained [17][18]:

where

Eh3
°  ~ 12(1 — v 2) (5)
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/? * -  Eh -  3 (1~ y2)  ( aP  g ~~ A 2 n  ~ 2 r 2  ̂ 'g 4a D  a h

For a long circular pipe submitted to the action of bending moment M 0 and shearing forces 

Qo, both uniformly distributed along the edge x  = 0 shown in Figure 3 b, the expression for 

w is given by solving equation (4) in the case there is no pressure Z distributed over the 

surface of the shell:

e ~ *w = -[/? gM 0(sin  ft gx  -  cos fi g.t) -  O 0 cos 0  f x] (7)
2 0 t *D 

At the load end, x  = 0

(W)X=0 = ~ 1 R 3 r\ { P gM 0 + Qq)2 P  o ~  o / (g)

(9)

3.3 Approximated Solution for 45° Lateral Tee or Nozzle

An approximate method for the elastic stresses at the crotch o f a branch pipe connection 

under internal pressure is developed based on thin-shell theory together with stress
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(a) C oordinate for g en era l  
c y l in d r ic a l  sh e l l . (b) Edge load ings

/
Q

B B,

(c) P r e se n ta t iv e  c y l in d e r  panels

Figure 3: General cylindrical shell configuration
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(a). F o r c e s  at  p o i n t  A

Qxp
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(b). Forces a t  p o in t  B

Figure 5: Edge loading on cylinder strip 
due to internal pressure
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

multipliers for the peak stress at the crotch point. Lind [19] developed an overall 

equilibrium equation for a tee branch connection with 90° degree angle. Lind's equation 

represents a balance o f forces across the mid-plane of the structure. In the case o f pipe- 

nozzle with 45° degree intersection, referring to Figure 4, the area to balance the tensile 

forces along the shell is modified in this study.

The tensile forces on the cross section CnB^BBpCpJK o f  the structure are set equal to 

the resultant force o f the pressure acting on area CJBJBBpCpJKD. If it is assumed that 

both the main shell and the branch are long and that stress along KJ is the nominal hoop 

stress, then the pressure times area, ECpJK, is balanced by the tensile force along CpJK. 

Then, this requires that the tensile force on CnB^BBpCp balance the pressure times area 

CnBnBBpCpED, which includes sub-areas Q .B ^D  ( R̂ - Ln ), BBpCpDp (Rp-Lp), DBDpE 

( Rp • R„ • cos 45°) and D„BD ( R„- RJ2  ). The force balance equation then becomes

f  R : '
N 4dx = p| R pLp +RnLn + R pRnyfl

\
0 1 )

Expressions for the edge shearing forces and QOT acting on the cylindrical panels 

BBpMpLp and BBnMnLn at the junction point B (Figure 3c) are derived by Updike [ 20 ] to 

be

L c  N *dx = Q*pRp+PRPLP
( 12)

l ^ ^  = QmRn+PRnLn (13 )
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e , , « ,  + q „ r . -  p < . - f - + V2)^  (14)

The rotation o f the shell normal and the circumferential strain of each o f the strips

meeting at point B of Figure 5 are matched by satisfying the equations due to the

continuity conditions

dyvp dvj"

dx- (15)

Equilibrium of a shell element at the junction point B of the strips is satisfied by means of 

the equations:

= A (17)

V2 ( w „ - e „ ) / 2 = e *  (18)

= <19>

where the edge loads and O^are shown in Figure 5. Equations (18)

and (19), are solved for and Nm  yield the expressions
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If the derivatives in the circumferential direction o f stress and the deformation variable 

are neglected and stresses due to ovaling deformation are ignored, the equation governing 

the stresses in the cylindrical strip BBp reduce to those o f a complete circular cylindrical 

shell o f radius, Rp, subjected to axisymmetric loading. In terms o f the internal pressure, p, 

and the edge loads, and of Figure 5, the flexibility relations for semi-infinite

cylindrical shell are determined by equations (9) and (10) as

Likewise, the governing equations for nozzle B„B reduce to equations for finite 

cylindrical shell o f  radius R„ subjected to axisymmetric loading. With section BBnCnDn as a 

plane of symmetry the flexibility relations in terms of the internal pressure, p, and the edge

dwp /dxp = M xp/ 0 pDp -  / 2PplDp (22)

(23)

where

Dp = Etp /12(1- v") 

p ;  = X \ - v 2) t R ; t ; (25)

(24)
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loads, Om  and Nm  of Figure 5, the flexibility relations for semi-infinite cylindrical 

shell are determined by equations (9) and (10) as

d w,  U x ,  =  M m I f l . D .  - O ' ,  i p ; - D ,  (26)

* *  =  Q, I W . r, -M„nfs;-D,R,+pR, /  a .  -  v a t „  /  a ,  (2 7 )

where

Dn = E r j  1 2 ( 1 - V2)
(28)

P  n* = 3(1 — v 2) / R-ltl (29)

Equations (20) and (21) is used to eliminate and from equations (23) and (27). 

Equations (20) and (24) are then used to eliminate dwp dxp and dwri <±cn from equation 

(20). Therefore, , Qm  , and  may be obtained from the reduced equations 

(14), (15), (16), and (17).

Equations for meridional and circumferential direction stresses are

<?a = N x / t  (30)
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and

crc = N t I t -  Ee  ̂ + vcr# (31)

The meridional bending stresses is obtained from

a „=6Mz / r  (32)

while the circumferential bending stresses due to local bending are obtained by multiplying 

the meridional stresses by Poisson's ratio.

The stresses at point A may be obtained by the same method as for point B except that 

the equation (14) is substituted by

Q x p R ,  + Qx n R n = P (33)

From equations (14) and (33), one can observe the local stresses at the inside crotch point 

B, are larger than those at outside crotch point A. Based on this approximate mathematic 

method, the local stresses at crotch points A and B on the pipe-nozzle junction have been 

computed for several case. The approximate solutions in a range of p from 0.6 to 0.8 and 

Y larger than 100 are close to the results from the 3-D finite element models in this thesis 

with 5% to 30% difference (see numerical example in Chapter 7).
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CHAPTER 4

THREE DIMENSIONAL FINITE ELEMENT MODEL

4.1 General

The finite element method for stress analysis fully utilizes the advantages of computer 

capacity in performing speedy and reliable calculations for a wide range of engineering 

design problem. This is particularly true when the problem is difficult to solve by a 

traditional mathematic model or when the geometrical model is too complex. In the study 

of the problem of the pipe-nozzle connection, a gamma, y, value ( the ratio of radius to 

the thickness o f pipe ) o f 10 is often considered as a lower bound for the applicability o f 

thin shell theory. Since pipe is considered as a thin shell for most cases, the numerical 

analysis in this study is based on the quadrilateral thin shell element models.

3D finite element models are generated by a well developed finite element analysis 

package, ALGOR [21] [22], with each specific P value. The pipe-nozzle system here is 

modeled by using plate/shell elements based on 3-node and 4-nodes. Material properties, 

such as Young's Modulus, Poisson's ratio, thermal expansion and density, are assigned to 

the elements. The models are constructed of elements by locating points (nodes) using 

coordinates in the global coordinate system. The elements are defined by a way in which 

the nodes are connected. Each node has six potential degrees o f freedom. This means that 

a given node may displace in three translational degrees of freedom, and also in three 

rotational degrees o f freedom. The translation refers to the movement of a node along the

20
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X, Y, or Z axes ( or any combination of the three), while rotation refers to the movement 

o f a node about the X, Y, or Z axes (or any combination). Boundary conditions are set by 

restricting various degrees o f freedom.

The Algor system will solve the following equations.

Static Stress Analysis

{F}=[K]{D} 

where: {F} = force vector

[K] = stiffness matrix

(D) = the displacement vector (stresses are back-calculated from this

vector)

Model Analysis

[ K ] x { D ) = [ M ] x [ D ] x  [W]2

where: [D] = displacement matrix (mode shapes)

[W ]^  diagonal matrix containing eigenvalues 

[M] = mass matrix
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For the analysis, the following assumptions are made:

1). The material is assumed to be homogeneous and isotropic.

2). The resulting stresses are within the proportional limit of the material and obeys 

Hook's law.

3). The influences o f self-weight are neglected.

4). There are no transitions, fillets, or reinforcing pad at the junction.

5). In the pipe-nozzle model, the boundary conditions in each case does not significantly 

effect the results o f the computation since the parameters a p(pipe length /  pipe mean 

radius) is assigned as large as 10.0 and a n(nozzle length / nozzle mean radius) is 

assigned as large as 5.0.

For the convergence requirement o f the finite element method, several models with 

different number of element, node number around the intersection, geometric parameters, 

and boundary condition have been studied.

To simulate the true pipe-nozzle geometiy, fixll finite element models (see Appendix F 

for figures) are employed with a symmetric plan (X-Z plan) . The number o f element is 

approximately 4000 to 5000 for the whole finite element models (see Table 4.1), which is 

required to develop large number o f elements and generate sufficient meshes to provide 

sufficient convergence to the stress results.
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Table 4.1: The number o f nodes and elements in 3D models
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p number of nodes number  of elements

0.1 10796 5520

0.2 9298 4750

0.3 8592 4386

0.4 9484 4884

0.5 8472 4286

0.6 10540 5384

0.7 9752 5028

0.8 8886 4554

0.9 8784 4484

1.0 10044 5122
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4.2 Convergence Studies

The convergence of the finite element models have been carefully studied which included 

the following factors:

1). The numbers o f the elements for the 3-D finite element models.

2). The numbers o f the node points at the juncture o f pipe-nozzle.

3). The optimum values of a p ( pipe length/pipe mean radius).

4). The optimum values of a n ( nozzle length/nozzle mean radius).

5). Boundary conditions.

To ensure the accuracy of the finite element model, several samples have been tested, 

such as the cases of closed end cylinder and small hole on the plate, which completely 

match the available results from theoretical analysis [17] [18] [23],

24
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4.2.1 The Number o f Elements for the Finite Element Models

The more the number o f nodes and elements has, the more accuracy of the results for the 

finite element model is, but the more running time will be required. Table 4.2 indicates 

that, for model No.3, the stress results for a 4286 elements model has 0.134% in 

difference of the results from a 6122 elements model (model #5) but the running time is 

reduced almost 37.5%. Therefore, the optimum number o f  elements for the models in this 

work is between 4000 ~  5500.

Table 4.2: Comparison of models with different element numbers

Model No. o f  Element Max. Stress, psi Im prov., % Run Time, min
No. 1 2422 78313 90
No. 2 3634 83076 4.53 160
No.3 4286 83687 0.73 200
No. 4 5384 83792 0.125 260
No. 5 6122 83799 0.01 320

The data in Table 4.2 are based on a model with P = 0.5 and v = 50 under internal 

pressure of 100 psi.
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4.2.2 The Number of the Node Points at the Juncture of Pipe-nozzle

Previous researchers [11] [24] have shown as the number o f node points on the pipe- 

nozzle junction increase to 96 the stresses converged asymptotically when the pipe-nozzle 

intersected with 90 degree angle. For the 45 degree pipe-nozzle junction, the studies show 

that the same value is obtained, which is shown in Figures A1 through A12 in Appendix A 

when a typical model is employed with P = 0.5, y = 50 and the number o f node range 

from 72 to 112.

4.2.3 The Optimum Values of a p and a n

The boundary parameters, a p and a n, should be large enough to obtain a converged 

solution of various stresses. Previous researchers [11] [24] have shown the values o f a p 

and a n are 8 and 4, respectively. These were done for stresses due to internal pressure 

when the pipe-nozzle intersected with 90 degree angle. For the 45 degree pipe-nozzle 

juncture, the previous values of a p and a n may not be sufficient since there exists only one 

symmetric plan. Figures B1 to B12 in Appendix B show the percentage of improvement 

with next larger a p to the previous a p, and Figures C l to C12 in Appendix C show the 

percentage of improvement with larger a nto the previous a n. It is evident that a p= 10 

and a n = 5 are the optimum values that the boundary conditions would not have any 

significant effect on the solution of the stresses at the pipe-nozzle junction due to internal 

pressure.
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4.2.4 Boundary Conditions

In the real pipe-nozzle system, both pipe and nozzle are considered as closed end system 

which means the local pressure stresses at the pipe-nozzle juncture are superimposed with 

the membrane pressure stresses. Meanwhile, in order to prevent the thermal expansion 

stresses from occuring, the vessel and nozzle are usually modelled with simply supported.

Table 4.3 shows the comparison of data from this study with Ha's data [11], which 

does not have longitudinal membrane stress contribution since his model is assumed with 

clamped boundary conditions on the ends o f pipe and nozzle, and his pipe-nozzle model is 

not closed, one can see that the stress factors for both models vary about 9 to 15% at the 

critical point A or B where the local stresses are mainly caused by the local circumferential 

stress. The affect to point C or D is from -1.5 to 52%. However, it is believed that the 

models used in this studies with simply supported boundary condition and closed ends 

should more closely simulated the real application in engineering.

From the 3D finite element models used in this study, the stresses away from the 

intersection area approach to PRJT in circumferential direction and approach to PP'2 T in 

logitudinal direction when the closed ends are simply supported. This indicate the real 

situation that the local stresses are no longer affect the stress field at the location away 

from the nozzle area.
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Table 4.3: Comparison of local stress factors from different boundary conditions

Pressure stress factors Data from this 
work

Ha's stress* 
factors

Pecentage
different

%

Longitudinal stress factor at Ay 328 386 15.8

Longitudinal stress factor at Al -256 -284 9.8

Circumferential stress factor at Ay 438 517 15.2

Circumferential stress factor at Al 218 255 14.5

Longitudinal stress factor at Ca -42.8 -90.4 52.6

Longitudinal stress factor at CL -34.3 -40.2 14.6

Circumferential stress factor at Cy 59.1 75.5 21.7

Circumferential stress factor at CL i o -68.9 -1.5
*open ends with clamped boundary conditions.

In the Table 4.3, the models in both work have the same geomatric parameters with 

P = 0.5, y = 50, and the intersecting angle is 90° degree.
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4.3 Normalization Studies

Normalization studies have verified the validity o f using P( R„/Rp) and y (Rp/tp ) as the 

geometric parameters under internal pressure. Several cases of normalization studies have 

been made as discussed in the following:

1). Two models with the same geometric parameters, i.e. (3, y, but under different internal 

pressure has been studied. Parameters for these two models are listed in Table 4.4. The local 

stresses and stress factors from those models are listed in Table 4.5, which has shown that the 

normalized of pressure stress factor by a randomly selected applied internal pressure is valid.

Table 4.4: Geometric parameters and dimensions o f models for normalization study one

Parameters Model #1 Model #2

P 100 psi 125 psi

“ p
10 10

“ a 5 5

P 0.4 0.4

Y 50 50

Lp 100 in 100 in

Rp 10 in 10 in

*p 0.2 0.2

La 20 in 20 in

Rn 4 in 4 in

t. 0.08 0.08 in

29
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Table 4.5: Local stress comparison of models for normalization study one

Model No. Model #1 Mdel #2

Stress, psi Stress*
factors

stress, psi Stress*
factors

Longitudinal stress at Ay 45,508 455.08 56,885 455.08

Longitudinal stress at A^ -29,256 -292.56 -36,570 -292.56

Circumferential stress at Ay 50,157 501.57 62,696 501.57

Circumferential stress at A^ 28,307 283.07 35,384 283.07

Longitudinal stress at By 53,248 532.48 66,560 532.48

Longitudinal stress at BL -41,009 -410.09 -51,261 -410.09

Circumferential stress at Bu 79,241 792.41 99,051 792.41

Circumferential stress at BL 42,800 428.00 53,500 428.00

Longitudinal stress at Cy -3,393 -33.93 -4,242 -33.93

Longitudinal stress at CL -12,746 -127.46 -15,933 -127.46

Circumferential stress at Cv 6,279 62.79 7,848 62.79

Circumferential stress at CL -9,452 -94.52 -11,815 -94.52

* Stress factor is local stress normalized by the applied internal pressure for each case.
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2). Table 4.7 shows that the local stresses from two models of different size but with the same 

geometric parameters, such as P, y, a p and a n and under the same internal pressure. This 

verifies the validity o f using (3, y, a p and a n as geometric parameters for this study. The 

parameters and dimensions for two test models are listed in Table 4.6

Table 4.6: Geometric parameters and dimensions o f models for normalization study two

Parameters Model #1 Model #2

P 100 psi 100 psi

« p
10 10

® n 5 5

P 0.4 0.4

Y 50 50

LP 100 in 200 in

Rp 10 in 20 in

*p 0.2 0.4

L„ 20 in 40 in

R„ 4 in 8 in

0.08 0.16 in
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Table 4.7: Local stress comparison of models for normalization study two

Model No. Model #1, psi Mdel #2, psi

Longitudinal stress at Â r 45,508 45,508

Longitudinal stress at \ -29,256 -29,256

Circumferential stress at Au 50,157 50,157

Circumferential stress at A^ 28,307 28,307

Longitudinal stress at Bc 53,248 53,248

Longitudinal stress at BL -41,009 -41,009

Circumferential stress at BLt 79,241 79,241

Circumferential stress at BL 42,800 42,800

Longitudinal stress at Cu -3,393 -3,393

Longitudinal stress at CL -12,746 -12,746

Circumferential stress at CLr 6,279 6,279

Circumferential stress at CL -9,452 -9,452
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CHAPTER 5

STUDY ON THE EFFECT OF PIPE-NOZZLE
INTERSECTING ANGLES

This thesis has studied the local stresses around the pipe-nozzle junction, due to an internal 

pressure when the angle of intersection varies from 90° to 30° by using a typical model with 

P value of 0.5 and y value o f 50 under internal pressure, p, of 100 psi. When the angle o f 

intersection is at 90°, it is a typical pipe-nozzle, which many literature exist both in theoretical 

and numerical approaches [1], [10], [11], [20], [25], [26], etc. However, few results exist in 

literature for a pipe with lateral connection. Among all the lateral nozzle (tee), the 45° of 

intersection is the most popular one in industrial applications. Local stress studies for these 

lateral nozzle are very rare or non-existent due to the difficulties in mathematical modelling 

o f the actual geometries.

This study selects the angle of intersection varying from 90°, 75°, 60°, 45°, 38°, 34° 

to 30°. Local stresses under this study are both the circumferential and longitudinal stress on 

both the outside and inside surfaces of the pipe-noozle juncture. Figure 2 shows these stress 

points, Ay BLt, B^ etc around the pipe-nozzle juncture. The local stress factors are 

defined by normalizing these resulting local stresses with the internal pressure. These local 

stress factors are then plotted as function o f the intersection angles as shown in Figure D 1 to 

through D 12 in Appendix D.

From these figures, one notes that the 90° intersection exhibits the most favorable 

local stresses. These stresses increase as the angle of intersection decreases from 90° and

3 3
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become more severe when the angle of intersection is less than 45°. The inside crotch point 

has the worst stresses and the local stresses in circumferential direction are generally higher 

than that in the longitudinal direction. For an intersection angle other than 90°, the inside 

crotch point, point B, would have higher stress than the opposite side, point A. Points A and 

B would have the same local stresses if the intersection is orthogonal. The points C and D 

always yield symmetric local pressure stresses due to symmetry with the pipe axis. From the 

above, conclusions are drawn to justify why the 45° lateral is the most popular one as far as 

the local stresses are concerned.

Some analytical and experimental investigations o f the stress distribution around non- 

radial holes in flat plates [27] [28], which may be considered as a pipe with very large radius, 

have shown that the maximum stresses occur in the vessel on the major axis of the elliptical 

opening close to the nozzle [29] [30], and are greater with nozzles o f increased non-radiality, 

which is the same conclusion from the plots in Appendix D. According to the ASME Boiler 

and Pressure Vessel Code [31], the stress concentration factors for non-radial nozzle in 

spherical and cylindrical vessels can be approximately related to that for the same radial 

nozzle by following relation:

K . = K,. [ 1 + ( tan 0 j*4 ] (34)

where

Kjj. = non-radial nozzle stress concentration factor

K, = radial nozzle stress concentration factor

0 = angle the axis o f the nozzle makes with the normal to the vessel wall
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From equation (34), the stress concentration factor goes up sharply with the angle of 

non-radiality. As indicated, this equation is especially applicable at the acute internal lip and 

external crotch where it has been found that the maximum stress occurs and fatigue failure 

originates, which agrees with the results from the 3-D finite element models in this study. One 

can get the same conclusion from Figure 6 to Figure 9. The stress concentration factors 

increase with the intersection angle changing from 90° to smaller angles, and goes up sharply 

when the angle is less than 45°. The plots o f pressure stress factors at point B close to the 

plots o f the equation. The pressure stress factors at point A have less value than point B, and 

those at the point C have much less values than those at point A and B on both the outside 

and the inside surfaces of the pipe in both longitudinal and circumferential directions. 

Therefore, the crotch point B is the critical design point due to internal pressure.

In Figure 6 ~ 9, the left Y axis shows the local stress factors due to internal pressure, 

which is the ratio of local pressure stress to applied internal pressure; the right Y axis shows 

the stress concentration factors, which is the ratio of local pressure stress to membrane stress 

away from nozzle area in the same direction.

For longitudinal direction:

Stress concentration factors = local stress / (pRp / 2tp).

For circumferential direction:

Stress concentration factors = local stress / (pRp / tp).
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CHAPTER 6

THE LOCAL STRESSES 
ON THE PIPE NEAR THE PIPE - NOZZLE JUNCTURE

To study the local stresses in the area near the nozzle, a typical model is employed with a p 

= 10, an= 5, Lp = 200 in., nozzle radius, R„ = 10 in ., the pipe radius Rp = 20 in. and the pipe 

thickness is 0.4 in. which yield P = 0.5, y = 50. The local stress factors are plotted as function 

of x which is the distance from the center of nozzle. Since the nozzle and pipe intersect with 

45 °, the distance from point A or B is 1.414R,, which is not equal to the radius o f the nozzle. 

From the plots from Figure G1 to Figure G8 in Appendix G, the stress factors from point A 

or B decrease fast within a range of the half of the distance between the point A or B to the 

center of the nozzle. The local stresses approach to the membrane stress value when x 

approximetly reach to the twice of the distance from point A or B to the center o f nozzle, 

which agrees wuth the theory of reinfored opennings for the design of reinforcement in the 

nozzle area as suggested by Harvey [23].

40
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CHAPTER 7

NUMERICAL EXAMPLES

For the local pressure stresses around pipe-nozzle with 45° degree intersection, one can 

obtain the data from twelve plots o f stress factors in Appendix E.

Example: An 50.25 in. outside diameter, with 0.25 in. thickness, pipe is intersected 

by a 35.125 in. nozzle with 0.175 in. thickness. The internal pressure is 100 psi. In this 

example, the mean radius of the pipe, Rp = 25 in., the mean radius of nozzle is R„ = 17.5 in.. 

Assume any other nozzles, trunnion, or pipe bend is at least 250 in. away from this nozzle

Table 7.1: Geometric parameters and dimensions o f the sample model

a p = Pipe length / Pipe mean radius 10

a n = nozzle length / nozzle mean radius 5

P = Nozzle radius / Pipe mean radius 0.7

y = Pipe radius /  Pipe thickness 100

Lp= Pipe length > 250 in

Rp= Pipe mean radius 25 in.

L„= Nozzle length >176 in.

R„ = nozzle mean radius 17.5 in.

tp = Pipe thickness 0.25 in.

t„= nozzle thickness 0.175 in.
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and the nozzle has a minimum length of 176 in. The detail information is listed in Table 7.1. 

The results are listed in Table 7.2.

Table 7.2: Local stresses from Appendix E for numerical example

Data point Stress
factor

Stress, psi From figure

Longitudinal stress at Ay 867.72 86772 El

Longitudinal stress at -640.25 -64025 E2

Circumferential stress at Ay 946.20 94620 E3

Circumferential stress at \ 499.43 49943 E4

Longitudinal stress at Bu 1706.36 170636 E5

Longitudinal stress at BL -1363.34 -136334 E6

Circumferential stress at By 2473.91 247391* E7

Circumferential stress at BL 1418.72 141872 E8

Longitudinal stress at CLr -138.20 -13820 E9

Longitudinal stress at CL -413.04 -41304 E10

Circumferential stress at Cv 179.62 17962 E ll

Circumferential stress at CL -209.55 -20955 E12

* maximum local pressure stress
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In this example, the circumferential membrane stress under internal pressure away from the 

pipe-nozzle area is

pR  100x50 
= T = “ 025“  = 20000^

which is 13.35 times less than the maximum local stress located at the inside crotch point B.

When the elastic modulus is different from 30 x 106 psi, new local pressure stress may 

be obtained by multiplying the ratio o f new modulus to 30 x 106 psi to the factor.

Table 7.3 listed the comparison of data from 3D finite element model with 

approximate mathematic solution. Since the approximate mathematic solution have more than 

20% off the results from this method are for reference only.

Table 7.3: Comparison of data from 3D finite element model with approximate solution 
for numerical example with P = 0.7, y = 100

Data point
Approximate 
math, solution

3D FEA
Model Difference

Longitudinal stress at Bu 184000 170636 8.3%

Longitudinal stress at Bu -145800 -136334 7%

Circumferential stress at Bu 187200 247391 24.5%

Circumferential stress at BL 98010 140872 29%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 8

CONCLUSIONS

8.1 Conclusions on Lateral Connections 
with Various Intersecting Angles

From the studies of the effect o f the intersection angle, the dimensionless stress factors (local

stress/applied internal pressure) have been plotted as a function of angle 6 for the stresses at

all critical points. Results from Figure D1 to D12 of Appendix D show that:

1). When 0 = 90°, the local pressure stresses at points A and B are identical and the same 

for points C and D due to symmetry. The stress factors for this case exhibit the most 

favorable value when compared with other angle of intersection.

2). The local pressure stresses increase when the angle o f intersection decrease from 90°, and 

the increasing of stresses become more severe when the angle of intersection is smaller than 

45° degree.

3). When the angle of intersection is less than 90°, the maximum stress occurs at inside crotch 

point, B, the circumferential stresses on the outside surface are most critical.

8.2 Conclusions on 45° Lateral Connection

From the plots of stress factors for pipe-nozzle connection with 45° degree (Figure E l to E12 

of Appendix E), one conclude that:

1). The increase of the parameter, y, ( Rp/tp) makes the local pressure stress higher. It is 

known from WRC Bulletin No. 107 [1] that when y increases, the local bending stress

44
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decreases while the membrane stress increases. One may conclude that the membrane 

component gives major contribution of the local pressure stresses when the shell is very thin.

2). The highest local pressure stress occurs at the inside crotch point, B, on the outside 

surface o f the pipe in circumferential direction. The stresses increase when p increases. 

Therefore, the point B will be the critical stress point due to internal pressure.

3). At point A, the highest local stress appears to be around 0.4 o f P, i. e., occuring when the 

nozzle diameter is about 40% o f the pipe diameter

4) The local pressure stresses can be many times higher than the circumferential membrane 

stress. It is 4.5 to 39.6 times higher on outside surface at point B ( see Figure G1 to G8 in 

Appendix G ). Therefore, these results provide significant data base for pressure vessel 

design.

5). The stress at point C, on the transverse plane of the pipe-nozzle intersection, have less 

value than the points A and B, no matter it is in longitudinal or circumferential direction.

6). The circumferential stresses at points A and B are always in tension. In the longitudinal 

direction, these stresses are in tension on the outside surface and in compression on the inside 

surface.

7). At point C, the local stresses on the inside surface are under compression in both 

longitudinal and circumferential directions, while on the outside surface o f the pipe, the 

stresses in the circumferential direction are always in tension, but the longitudinal stresses may 

change from tension to compression when y  and P increase, which is shown in Figure E9b 

in Appendix E.
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8). The approximate mathematic solution is close to the data from finite element method in 

a range o f P from 0.6 ~ 0.8 and y larger than 100 with difference of 5% to 30%, which 

verified the validity o f the data from 3D finite element models.

Since the finite element method is capable o f simulating the real geometry of the pipe- 

nozzle configuration, and meanwhile the convergence of the results are closely monitored 

through node points, geometric parameters and boundary conditions, the results from the 

finite element method should be very useful and reliable.
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FIGURES FOR NODE POINT STUDY
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Figure FI: A full 3D finite element model
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Figure F2: A full 3D pipe-nozzle model with 45 degree angle
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Figure F3: The boundary conditions on the nozzle end
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a. At the simple supported end 
(free in X direction)

b. At the clamped end

Figure F4: The boundary conditions on the pipe end
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number of nodes = 8472 
number of elements = 4286 

96 node point on the pipe-nozzle juncture

Figure F6: Pipe-nozzle juncture with (3 = 0.5
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number of nodes = 8784 
number o f elements = 4484 

96 node point on the pipe-nozzle juncture

Figure F7: Pipe-nozzle juncture with p = 0.9
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(isometric view)

z s

(side view)
96 node point at the pipe-nozzle juncture

Figure F8: Pipe-nozzle juncture with P = 1.0
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96 node point on the pipe-nozzle juncture ( top view)

Figure F9: Pipe-nozzle juncture with 30° degree intersection
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