

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type o f computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely afreet reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9716655

Copyright 1996 by Xiong, Huanxin Henry
All rights reserved.

UMI Microform 9716655
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

SCHEDULING AND DISCRETE EVENT CONTROL OF FLEXIBLE
MANUFACTURING SYSTEMS BASED ON PETRI NETS

by

Huanxin Henry Xiong

A flexible manufacturing system (FMS) is a computerized production system that can

simultaneously manufacture multiple types of products using various resources such as

robots and multi-purpose machines. The central problems associated with design of

flexible manufacturing systems are related to process planning, scheduling, coordination

control, and monitoring. Many methods exist for scheduling and control o f flexible

manufacturing systems, although very few methods have addressed the complexity of

whole FMS operations. This thesis presents a Petri net based method for deadlock-free

scheduling and discrete event control of flexible manufacturing systems. A significant

advantage of Petri net based methods is their powerful modeling capability. Petri nets can

explicitly and concisely model the concurrent and asynchronous activities, multi-layer

resource sharing, routing flexibility, limited buffers and precedence constraints in FMSs.

Petri nets can also provide an explicit way for considering deadlock situations in FMSs,

and thus facilitate significantly the design of a deadlock-free scheduling and control

system.

The contributions of this work are multifold. First, it develops a methodology for

discrete event controller synthesis for flexible manufacturing systems in a timed Petri net

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

framework. The resulting Petri nets have the desired qualitative properties of liveness,

boundedness (safeness), and reversibility, which imply freedom from deadlock, no capacity

overflow, and cyclic behavior, respectively. This precludes the costly mathematical

analysis for these properties and reduces on-line computation overhead to avoid

deadlocks. The performance and sensitivity of resulting Petri nets, thus corresponding

control systems, are evaluated. Second, it introduces a hybrid heuristic search algorithm

based on Petri nets for deadlock-free scheduling of flexible manufacturing systems. The

issues such as deadlock, routing flexibility, multiple lot size, limited buffer size and

material handling (loading/unloading) are explored. Third, it proposes a way to employ

fuzzy dispatching rules in a Petri net framework for multi-criterion scheduling. Finally, it

shows the effectiveness of the developed methods through several manufacturing system

examples compared with benchmark dispatching rules, integer programming and

Lagrangian relaxation approaches.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SCHEDULING AND DISCRETE EVENT CONTROL OF FLEXIBLE
MANUFACTURING SYSTEMS BASED ON PETRI NETS

by
Huanxin Henry Xiong

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering

October 1996

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Copyright 1996 by Huanxin Henry Xiong

ALL RIGHTS RESERVED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL PAGE

SCHEDULING AND DISCRETE EVENT CONTROL OF FLEXIBLE
MANUFACTURING SYSTEMS BASED ON PETRI NETS

Huanxin Henry Xiong

Dr. MengChu Zhou, Dissertation Advisor 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

 Dr. Reggie J Caudill, Dissertation Co-Advisor 	 Date
Professor of Industrial and Manufacturing Engineering, NUT

Fr. John Carpinelli, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering,
Computer and Information Science, NJIT

Dr. Nirwan Ansari, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Edwin Hou, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: 	Huanxin Henry Xiong

Degree: 	Doctor of Philosophy

Date: 	October 1996

Undergraduate and Graduate Education:

• Doctor of Philosophy in Electrical Engineering
New Jersey Institute of Technology, Newark, NJ, 1996

• Master of Science in Systems Engineering
Nanjing University of Science and Technology, Nanjing, P. R. China, 1988

• Bachelor of Science in Systems Engineering
Nanjing University of Science and Technology, Nanjing, P. R. China, 1985

Major: Electrical Engineering

Presentations and Publications:

H. H. Xiong, M. C. Zhou and R. J. Caudill, "Design of optimal sequence controller for a
flexible manufacturing system," to appear in Proceedings of 1996 IEEE Int. Conf
on Systems, Man, and Cybernetics, Beijing, China, Oct. 1996.

H. H. Xiong, M. C. Zhou and R. J. Caudill, "A hybrid heuristic search algorithm for
scheduling flexible manufacturing systems," in Proceedings of 1996 IEEE Int.
Conf on Robotics and Automation, Minneapolis, MN, pp. 2793-2797, Apr. 1996.

H. H. Xiong, M C. Thou and C. N. Manikopoulos, "Scheduling flexible manufacturing
systems based on timed Petri nets and fuzzy dispatching rules," in Proceedings of
1995 IEEE Symposium on Emerging Technologies and Factory Automation,
Paris, France, pp. 309-315, Oct. 1995.

iv

M. C. Zhou and H. H. Xiong, “Techniques in Petri net modeling and scheduling in
manufacturing systems,” Gordon and Breach International Series in Engineering,
Technology and Applied Science, Volume on Computer Aided and Integrated
Manufacturing Systems Techniques and Applications, to appear in 1997.

M. C. Zhou, H. Chiu and H. H. Xiong, “Petri net scheduling of FMS using branch and
bound method,” Proc. o f1995 IEEE Int. Conf. on Industrial Electronics, Control,
and Instrumentation, Orlando, FL, pp. 211-216, Nov. 199S.

M. C. Zhou, H. H. Xiong and C. N. Manikopoulos, “Performance models for
communication networks in manufacturing environment,” in Proceedings o f the
Fourth Int. Conf. on Computer Integrated Manufacturing and Automation
Technology, Troy, NY, pp. 417-422, Oct. 1994.

H. H. Xiong, M. C. Zhou and C. N. Manikopoulos, “Modeling and performance analysis
of medical service systems using Petri nets,” in Proceedings o f 1994 IEEE Int.
Conf. on Systems, Man, and Cybernetics, San Antonio, TX, pp. 2339-2342, Oct.
1994.

H. H. Xiong and M. C. Zhou, “Computer communication networks for automated
manufacturing,” in Proceedings o f1994 Int. Corf, on Electronics and Information
Technology, Beijing, China, pp. 178-183, Aug. 1994.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This dissertation is dedicated to
my parents

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENT

The author expresses his deep sense of gratitude to his adviser, Dr. MengChu Zhou, for

his invaluable guidance, friendship, and moral support throughout this research. Dr.

Zhou’s untiring help is sincerely appreciated.

Special thanks to his co-advisor Dr. Reggie Caudill for his encouragement,

mentorship, and suggestions. The author is grateful to Professors John Carpinelli, Nirwan

Ansari, and Edwin Hou for their suggestions and constructive comments. Their service as

committee members is appreciated. The author would also like to express his appreciation

to Dr. C. N. Manikopoulos for his help and encouragement.

The author’s appreciation and thanks go to his fellow graduate students at Laboratory

for Discrete Event Systems, Electrical and Computer Engineering Department. They are

Dr. Venkatesh Kurapati, Mr. Hua-Sheng Chiu and Mr. Xin Ren.

The author’s appreciation reaches out to his professor Zitong Huang at Nanjing

University of Science and Technology (NUST), Nanjing, P. R. China for his support and

encouragement in the period of his study and work at NUST.

Finally, the author wishes to express his sincere gratitude to his parents, wife, brothers

and lovely son for their moral support, understanding and love.

This research was supported by the New Jersey Commission on Science and

Technology via the Center for Manufacturing Systems at NJIT and the National Science

Foundation under Grant No. DMI-9410386.

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION... 1

1.1 Background and Motivation.. 1

1.2 Objectives.. 6

1.3 Organization... 7

2 LITERATURE REVIEW.. 9

2.1 Methodologies... 9

2.1.1 Mathematical Programming Methods... 9

2.1.2 Heuristics Dispatching and Knowledge-Based Methods.................. 11

2.1.3 Control Theoretic Methods.. 13

2.1.4 Petri Net Based Methods.. 14

2.2 Summary... 20

3 MODELING MANUFACTURING SYSTEMS WITH PETRI NETS 21

3.1 Concepts and Properties of Petri Nets.. 21

3.2 Petri Net Modeling... 27

3.2.1 Modeling Methods.. 27

3.2.2 Petri Net Modeling for Scheduling... 33

4 OPTIMIZATION OF DISCRETE EVENT CONTROLLER DESIGN 42

4.1 Introduction... 42

4.2 Design Method for Discrete Event Control.. 44

4.2.1 Description of Design Procedure.. 45

4.2.2 Petri Net Modeling... 47

4.2.3 Sequential Function Chart.. 49

4.3 Heuristic Algorithm for Optimization of Event Sequence.......................... 51

4.4 Illustration Through a Flexible Manufacturing System.............................. 54

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS
(Continued)

Chapter Page

4.5 Developments ofTheoretical Results.. 65

4.6 Performance Evaluation... 69

4.7 Sensitivity to Randomness... 75

4.8 Summary.. 79

5 A HYBRID HEURISTIC SEARCH ALGORITHM FOR
SCHEDULING FMS... 80

5.1 Introduction.. 80

5.2 Best First Search and Backtracking Search... 82

5.3 Hybrid Heuristic Search Algorithms.. 89

5.4 Scheduling an FMS with Routing Flexibility.. 99

5.5 Scheduling for a Semiconductor Test Facility... 111

5.5.1 System Description... 111

5.5.2 Scheduling Results using Petri Nets... 116

5.6 Summary.. 119

6 SCHEDULING FMS WITH MATERIAL HANDLING AND BUFFER
AVAILABILITY CONSIDERED... 120

6.1 Introduction... 120

6.2 System Description.. 121

6.3 Deadlock-prone and Deadlock-free Schedules.. 123

6.4 Multiple Lot Sizes and Finite Buffer Sizes... 127

6.5 Scheduling the Operations of Material Handling.. 130

7 MULTI-CRITERION SCHEDULING BASED ON PETRI NETS AND
FUZZY DISPATCHING RULES.. 134

7.1 Introduction.. 134

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS
(Continued)

Chapter Page

7.2 Fuzzy Dispatching Rules... 135

7.3 Scheduling using Timed Petri Nets and Fuzzy Dispatching Rules.............. 140

7.4 An Example... 142

7.5 Summary... 147

8 CONCLUSIONS.. 148

8.1 Contributions... 148

8.2 Further Research... 150

APPENDIX THE INPUT AND OUTPUT FUNCTIONS OF PETRI
NET MODEL OF EXAMPLE 5.4... 153

REFERENCES.. 156

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table Page

3.1 Interpretation of places and transitions in Figure 3.1.. 28

3.2 Job Requirements for Example 3.2... 33

3.3 Interpretation of places and transitions in Figure 3.4.. 37

4.1 Job Requirements o f Example 4.1.. 54

4.2 Job Requirements of Example 4.2... 70

4.3 The performance comparison of Example 4.2.. 74

5.1 Job Requirements for Example 5.1.. 87

5.2 Scheduling results for Example 5.1... 87

5.3 Scheduling results o f Example 5.2 for lot size (5, 5, 2, 2)............................... 94

5.4 Scheduling results of Example 5.2 for lot size (8, 8, 4, 4) 94

5.5 Scheduling results of Example 5.2 for lot size (10,10, 6, 6) 95

5.6 Job Requirements for Example 5.3.. 100

5.7 Operation times for Example 5.3... 101

5.8 The scheduling results of Example 5.3 using different methods....................... 107

5.9 The scheduling results of Example 5.3 for finite buffer capacity...................... 109

5.10 The number of each type of facility for wafer sort and final test of
Example 5.4... 113

5.11 Workcenters for wafer sort and final test of Example 5.4................................ 114

5.12 Job requirements o f Example 5.4... 115

5.13 The Scheduling results of Example 5 .4 ... 118

6.1 Job requirements of Example 6.1... 122

6.2 Operation and transportation times for Example 6.1....................................... 122

6.3 The scheduling results for several different lot sizes of Example 6.1................ 129

7.1 Job requirements o f Example 7.1... 143

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure Page

3.1 A Petri net model for a robot unloading parts in Example 3.1.......................... 28

3.2 Examples of Petri net models for (a) linear sequence,
(b) synchronization, (c) concurrency, and (d) mutual exclusion...................... 31

3.3 The Petri net model for sub-system of Job 1 in Example 3.2........................... 34

3.4 The Petri net model for sub-system o f Job 2 in Example 3.2........................... 35

3.5 The whole Petri net model for Example 3.2... 36

3.6 A partial portion of the reachability graph for the Petri net
model shown in Figure 3.5 of Example 3.2.. 39

3.7 Schedules represented by two different transition firing sequences
of Example 3.2... 40

3.8 The evolution of the system states for the transition firing sequence
12*4*1*6*3*1*8 which leads the system into a deadlock state in Example 3.2... 41

4.1 The sequence control structure... 45

4.2 A system comprising a robot and a machine... 48

4.3 The Petri net model for the system depicted in Figure 4.2............................... 48

4.4 Some basic design modules of SFC.. 50

4.5 The layout of a flexible manufacturing system in Example 4.1......................... 55

4.6 The operation sequences for Job 1 and Job 2... 58

4.7 The Petri net model for the entire system... 59

4.8 Petri net (Marked graph) model for coordination control in Example 4.1....... 61

4.9 The SFC models for local control o f Machine 1 (a), Machine 2 (b)
and Machine 3 (c) in Example 4.1.. 63

4.10 The SFC models for local control of Robots 1 (a), Robot 2 (b) and
Robot 3 (c) in Example 4.1.. 64

4.11 The Petri net model of sub-system of Job 1 in Example 4.2............................. 72

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES
(Continued)

Figure Page

4.12 The marked graph controller of Example 4.2.. 73

4.13 Sensitivity to processing time variations in Example 4.3................................... 78

5.1 The Petri net model of the sub-system of Job 1 in Example 5.1....................... 88

5.2 (a) Percentage of storage reduced versus percentage of optimality
lost for lot size (5, 5,2, 2) in Example 5.2.
(b) Percentage of computation time reduced versus percentage of
optimality lost for lot size (5, 5, 2, 2) in Example5.2....................................... 96

5.3 (a) Percentage of storage reduced versus percentage of optimality
lost for lot size (8, 8, 4,4) in Example 5.2.

(b) Percentage of computation time reduced versus percentage of
optimality lost for lot size (8, 8 ,4 ,4) in Example5.2....................................... 97

5.4 (a) Percentage of storage reduced versus percentage of optimality
lost for lot size (10, 10, 6, 6) in Example 5.2.

(b) Percentage o f computation time reduced versus percentage of
optimality lost for lot size (10, 10, 6,6) in Example 5.2.................................. 98

5.5 The Petri net model for sub-system Job 1 of Example 5.3................................ 102

5.6 The Petri net model for sub-system Job 2 of Example 5.3................................ 103

5.7 The Petri net model for sub-system Job 3 of Example 5.3................................ 104

5.8 The Petri net model for sub-system Job 4 of Example 5.3................................ 105

5.9 The comparison of makespan for the varying buffer capacity
in the lot size case (30,30,30,30) of Example 5.3.. 110

5.10 The Petri net model for sub-system Job 1 in Example 5.4................................ 116

6.1 An automated manufacturing system for Example 6.1...................................... 121

6.2 The Petri net model for the sub-system J1 under the assumptions
that the material handling action is ignored and unlimited buffer
space is available in Example 6.1... 123

6.3 The optimal schedule without considering material handling
and buffer availability in Example 6.1... 124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES
(Continued)

Figure Page

6.4 The Petri net model for the sub-system J1 under the assumption
of no intermediate storage is provided in Example 6.1.................................... 125

6.5 The initial state (a) and (b) deadlock state (b)
for no buffer case in Example 6.1... 126

6.6 The optimal deadlock-free schedule for no buffer case in Example 6.1............ 127

6.7 The Petri net model for the sub-system J1 with multiple lot sizes
and finite intermediate buffer sizes in Example 6.1.. 128

6.8 The scheduling results o f lot size (20, 20, 20, 20) for the
varying buffer size in Example 6.1.. 129

6.9 The Petri net model for the sub-system J1 with material handling
operations in Example 6.1... 132

6.10 The optimal deadlock-free schedule including the operations
of material handling in Example 6.1.. 133

7.1 The membership functions.. 140

7.2 The Petri net model for sub-system Job 1 in Example 7.1................................ 144

7.3 Average flowtime and lateness with each job size 1 (a), 5 (b) and 20 (c)........ 146

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

In this chapter, the background, motivation and objectives of this work are stated. The

organization of this dissertation is outlined.

1.1 Background and Motivation

A flexible manufacturing system (FMS) is a computerized production system that can

simultaneously manufacture multiple types of products using various resources such as

robots and multi-purpose machines. An FMS consists of a set o f computer numerically

controlled machine tools and supporting workstations connected by an automated material

handling system. It can be controlled by either a central computer or distributed

computers. In the latter case, one main computer serves as a supervisory one to

synchronize and coordinate the other computers, forming a hierarchical computer control

architecture (Zhou, DiCesare and Rudolph 1992). The key elements o f an FMS include (1)

automatically programmable machines, (2) automated tool delivery and change, (3)

automated material handling for transferring parts between machines and for

loading/unloading parts at machines, and (4) coordinated control (Askin and Standridge

1993).

In an FMS, many part types can be simultaneously loaded onto the system because

machines have tooling and processing information to work on multiple types of products.

While the flexibility in FMS offers an opportunity to meet customer demand for product

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

variety in a timely fashion and at low cost, its design and operation impose many

challenging problems on planning, scheduling, monitoring and control o f manufacturing

systems (Chaar et al. 1993).

The central problems associated with design of flexible manufacturing systems are

related to process planning, scheduling, coordination control, and monitoring.

Given a set o f production requirements and a physical system configuration,

scheduling deals with the allocation o f shared resources over time for manufacturing

products such that all the production constraints are satisfied, production cost is

minimized and productivity is maximized. The control decisions deal with the coordination

and execution of part flow and processing. The controller must be capable of keeping

track of system states such as the location of all parts, and the operational status of each

resource. Based on the current state and production plan, the controller supervises all the

individual system components.

Production scheduling problems are known to be very complex and are NP-hard for

general cases. Compared with a classical job shop system, the main characteristics of an

FMS include multi-layer resource-sharing, deadlock and routing flexibility. A flexible

manufacturing system consists of different kind of resources such as machines, robots,

transporters and buffers. The job processes share all machines and machines share

transportation systems, robots, tools and so on. The complex interaction of the multiple

resources and concurrent flow of multiple jobs in an FMS can lead to a deadlock situation

in which any part flow is inhibited. The occurrence of a deadlock can cripple the entire

system. This requires an explicit consideration of deadlock conditions in the scheduling

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

and control methods to prevent from or avoid the deadlock states in FMSs. Machine

routings specify the machines that are required for each operation o f a given job. In an

FMS, a job may have alternative routings. The routing flexibility results in benefits to the

system such as increasing the throughput and handling the machine breakdown situations,

while it increases the complexity of scheduling and control of FMSs. Other factors of FMS

operations include multi-criteria optimization objective and stochastic working

environment due to processing time variations, machine breakdowns and demand changes.

Many researchers are constantly seeking advanced and unifying methodologies for

modeling, performance evaluation, scheduling and control o f flexible manufacturing

systems. A review about these methodologies is presented in Chapter 2. One methodology

resulting from this effort is based on Petri nets and related graphical and mathematical

tools. This dissertation is dedicated to the investigation of Petri net based method for

deadlock-free scheduling and discrete event control of flexible manufacturing systems. The

motivation for the present work is described below:

• The concepts o f liveness, boundedness and reversibility o f Petri nets are central to

the function of a coordinating discrete-event controller. If a system is live, then all

events associated with that system can eventually occur. The liveness implies

deadlock-freeness. Boundedness or safeness guarantees a stable discrete

manufacturing process or no capacity overflow. Reversibility ensures a cyclic

manufacturing system with the ability to initialize from any reachable state and has

implications for error recovery in the manufacturing context. In the literature, there

are actually three kinds of approaches for avoiding deadlocks in an FMS. The first

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

approach addresses deadlock detection and recovery (Viswanadham, Narahari and

Johnson 1990, Wysk, Yang and Joshi 1994). In this approach, if a deadlock

results, the system detects and resolves it. It is obvious that using such a method

may be very costly since it may be expensive to detect and resolve deadlocks in a

fully automated system. The second approach emphasizes on-line deadlock

avoidance (Banaszak and Krogh 1990, Hsieh and Chang 1994, Xing, Hu and Chen

1995). Some deadlock avoidance policies are proposed to restrict requests for

resources when they will potentially lead to circular wait conditions. For example,

the easiest way is to allow only one job in the system at a time. Thus, the difficulty

behind this approach is how to develop a less restrictive policy which not only

avoids deadlocks but also allows the maximal use of resources. This kind of

approach also results in on-line computation overhead. The third approach

emphasizes on designing a controller which inherently guarantees the desirable

properties of liveness, boundedness, and reversibility. Our present research falls

into this category. Even though there are several studies in this aspect (Krogh and

Beck 1986, Koh and DiCesare 1991, Zhou, DiCesare and Desrochers 1992), for

the system with multi-layer resource-sharing and different product sets

manufactured concurrently, modeling of a Petri net controller with desirable

properties becomes extremely difficult based on these methods.

• Previous studies in scheduling and control of flexible manufacturing systems are

reviewed in Chapter 2. Even though many methods exist for scheduling of flexible

manufacturing systems, very few methods have addressed the complexity o f whole

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

FMS operations. Typical assumptions are still confined to the classical job shop

environments for most methods. Petri nets can explicitly and concisely model the

concurrent and asynchronous activities, multi-layer resource sharing, part contact

states (loading/unloading), routing flexibility, limited-size buffers and precedence

constraints in flexible manufacturing systems. Petri nets can also provide an

explicit way for considering deadlock situations in FMSs, and thus facilitate

deadlock-free scheduling o f flexible manufacturing systems. These modeling

capabilities o f Petri nets motivate us to investigate Petri net based methods for

scheduling of flexible manufacturing systems. Lee and DiCesare (1994) presented

a scheduling method using Petri nets and heuristic search. The proposed heuristic

functions do not guarantee to satisfy the admissible condition (Pearl 1984).

Moreover, no deadlock issues are discussed in their demonstrated examples

because they always put an intermediate place which serves as the role of a buffer

with unlimited capacity between two operations.

• Because of their simplicity, heuristic dispatching rules, such as SPT (Shortest

Processing Time), GDD (Earliest Due Date), S/RO (Slack per Remaining

Operation), and FCFS (First Come First Served) have been commonly used for

scheduling in practice (Montazeri and Wassenhove 1990). Each of these

dispatching rules aims at satisfying a single criterion. A rule that performs well

when one measure is used may not do well for another measure (Blackstone et al.

1982). There is a need to develop some simple combined rules to obtain a

compromise between the satisfaction of several criteria.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Objectives

The goal o f this dissertation is to develop a Petri net based method for deadlock-free

scheduling and discrete event control of flexible manufacturing systems. The specific

objectives are:

1. To present a review on the current methodologies for scheduling and control of

flexible manufacturing systems.

2. To present the definitions and properties o f Petri nets. The conventional methods

for Petri net modeling of manufacturing systems are given and illustrated through

examples.

3. To develop a methodology for discrete event controller synthesis for flexible

manufacturing systems in a timed Petri net framework. The method should

guarantee that the resulting Petri nets have the desired qualitative properties of

liveness, boundedness, and reversibility. The performances and sensitivities of

resulting Petri net controllers are evaluated.

4. To develop a hybrid heuristic search algorithm based on Petri nets for deadlock-

free scheduling of flexible manufacturing systems. The issues such as deadlock,

routing flexibility, multiple lot size, limited buffer size and material handling

(loading/unloading) are explored.

5. To propose a way to employ fuzzy dispatching rules in a Petri net framework for

multi-criterion scheduling.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

13 Organization

The next chapter presents a literature review o f methodologies for scheduling and control

of flexible manufacturing systems and suggests that the Petri net based methods have their

potential to make major contributions to FMS operation. Chapter 3 contains the

discussion of the fundamentals of Petri nets. The conventional methods for Petri net

modeling of manufacturing systems are given and illustrated through examples.

In Chapter 4, a methodology for synthesis o f Petri net based discrete event controller

is presented. The bottom-up method is used to modeling the system. Once the modeling is

done, the A* based heuristic search algorithm, which is combined with the execution of

the timed Petri nets, is proposed to search for an optimal event sequence to achieve

minimum-time discrete event control. Based on the obtained event-driven sequence, a

Petri net (marked graph) is synthesized for coordinating discrete event control. The

theoretical results which insure the desired qualitative properties o f liveness, boundedness

(safeness), and reversibility of resulting Petri net controller are obtained. The performance

and sensitivity of the resulting Petri net controller are evaluated and illustrated through

examples.

In Chapter 5, a hybrid heuristic search algorithm based on Petri nets for deadlock-free

scheduling of flexible manufacturing systems is presented. Two different hybrid strategies

are compared through examples. The issues such as deadlock, routing flexibility, multiple

lot size, limited buffer size are explored. The developed method is compared with

benchmark dispatching rules and depth-first search. A scheduling example for a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

semiconductor test facility solved by Chen (1994) using integer programming and

Lagrangian relaxation technique is adopted and solved based on our developed method.

In Chapter 6 , FMS scheduling with material handling (loading/unloading) and buffer

availability considered is presented. Deadlock arises from explicit recognition o f material

handling and buffer space resources. The inappropriate scheduling decisions may lead to a

deadlock state in which any part flow is inhibited and external intervention is required to

reestablish the product flow. To demonstrate the modeling capability of Petri nets, the

example is adopted from a recent paper presented by Ramaswamy and Joshi (1996), which

generates deadlock-free schedules using the mathematical programming techniques.

In Chapter 7, multi-criterion scheduling based on Petri nets is presented. The Petri net

model resolves conflicting transition firings using fuzzy dispatching rules which obtain a

compromise between the satisfaction of several criteria. The scheduling example is given

to illustrate the method.

Finally, Chapter 8 discusses the contributions and limitations of this research along

with suggestions for further research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

LITERATURE REVIEW

2.1 Methodologies

Many methods exist for scheduling and control o f flexible manufacturing systems,

although very few methods have addressed the complexity of whole FMS operations. The

general methods include mathematical programming method, heuristics dispatching and

knowledge-based method, control theoretic method and Petri net based method.

2.1.1 Mathematical Programming Methods

Much effort is focused on scheduling of manufacturing systems using mathematical

programming methods such as linear programming, integer programming and dynamic

programming.

Luh and Hoitomt (1993) presented a Lagrangian relaxation technique for scheduling

of manufacturing systems. Lagrangian relaxation is mathematical programming technique

for performing constrained optimization. Three kinds of problems are examined in their

research. The first kind considers scheduling single-operation jobs on identical machines.

The second one is concerned with scheduling multiple-operation jobs on identical

machines. The last one is a job shop problem, where multiple-operation jobs are scheduled

on multiple machine types. Lagrangian relaxation is used to decompose each of the

scheduling problems into job- or operation-level subproblems which are easier to solve

than the original problem. Numerical results show that the methods obtain near-optimal

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

schedules in a timely fashion. An improved Lagrangian relaxation technique is presented

by Czerwinski and Luh (1994) to make Lagrangian relaxation a viable approach to more

complicated problems.

Chen (1994) formulated semiconductor manufacturing test floor environments as

integer programming problems. Four scheduling models are proposed in his work. They

are (1) scheduling for IC sort and test facilities with nonpreemptive assumption; (2)

scheduling for IC sort and test facilities with preemption; (3) model 1 or 2 plus precedence

constraints and (4) model 3 plus due windows. The objective is to minimize the total

weighted tardiness or weighted quadratic tardiness and earliness of the schedule. The

Lagrangian relaxation approach is used to solve the problems and generate better

scheduling results compared with traditional heuristic dispatching rules.

Blazewicz et al. (1991) presented a dynamic programming approach for scheduling

tasks and vehicles in a flexible manufacturing system. In the first step, the production

schedule (i.e., the assignment of jobs to machines) is assumed to be known, and the

objective is to find a feasible schedule for vehicles. Then a composite schedule, i.e.,

simultaneous assignment o f vehicles and machines to jobs, is found. The considered

system assumes every machine in the system is capable of processing any of the required

machining operations.

Recently, Ramaswamy and Joshi (1996) applied integer programming techniques for

dead-lock free scheduling of automated manufacturing workstations. Besides the classic

constraints of precedence relations and processing times, they add one more constraint for

ensuring that a job leaves a machine only when it has found space on the next machine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

Although both material handling and buffer space are explicitly considered in generated

schedules, the proposed deadlock-free scheme is only applicable to problems with m

machines and Lm/2j buffers. Other characteristics o f FMS such as multiple lot sizes,

multiple buffers and routing flexibility are not explored in their work.

Basnet and Mize (1994) presented a critical review about the methodology for

scheduling and control of flexible manufacturing systems. As they point out, the main

problem with mathematical programming method is its formulation difficulties. The

models do not consider the full complexity o f general FMSs, such as shared resources,

concurrency, routing flexibility, multiple lot sizes and deadlock states.

2.1.2 Heuristics Dispatching and Knowledge-Based Methods

Because of its NP-hard characteristics, it is very difficult or impossible to find the optimal

solution for a sizable FMS scheduling problem. The dispatching rules, such as SPT

(Shortest Processing Time), EDD (Earliest Due Date), S/RO (Slack per Remaining

Operation) and FCFS (First Come First Served), are thus practically employed to

determine the priority of jobs for processing by machines in flexible manufacturing. The

flowtime, lateness, and tardiness have been used as measures o f the effectiveness of

dispatching rules. Discrete event simulation is proposed as a tool to evaluate the

performance o f different dispatching rules.

Montazeri and Wassenhove (1990) analyzed the performance of a number of

dispatching rules using a modular simulator to mimic the operation of a real-life FMS. Ishii

and Talavage (1994) used a mixed dispatching rule which can assign a different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

dispatching rule for each machine in contrast with the approach in which a single

dispatching rule is assigned for all machines. A search algorithm which selects an

appropriate mixed dispatching rule using predictions based on discrete event simulation is

developed. The effectiveness o f the mixed dispatching rule approach is tested for a

relatively simple FMS model. It should be tested using their more complex models before

being applied to real FMSs.

Wu and Wysk (1988, 1989) described a multi-pass expert control system (MPECS)

for FMS scheduling and control. The key elements of MPECS include an expert system to

generate potential scheduling alternatives based on real-time shop information and

scheduling knowledge, and a simulation model to evaluate alternative schedules based on

the system's performance. Various criteria for selecting heuristic dispatching rules are

stored in a knowledge-base. The major function of the simulation model is to evaluate

control polices by examining the effect of the dispatching rules on an on-line test base. A

series of simulation runs is carried out starting from the current state using each of the

candidate dispatching rules for a user defined simulation window. At the end of all

simulation passes, the best dispatching rule that results from the simulation is applied to

the physical manufacturing system. The experiment shows the performance of MPECS is

significantly better than the performance of the methods that use a single dispatching rule

all the time. But the performance greatly depends on the length of the simulation windows,

which is defined by the users.

Doulgeri et al. (1993) developed a knowledge-based scheduler for FMS which adopts

the hierarchical approach and utilizes simulation techniques. The knowledge-based

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

scheduler consists o f two basic modules, the knowledge-based FMS model and rule-based

decision making module. In the heart o f the knowledge-based FMS model are the static

FMS model which contains a frame representation of the FMS elemental components and

their time-independent attribute values and the dynamic FMS model which is object-

oriented event-driven simulation. The rule-based decision module performs the FMS

short-term production scheduling by interacting with the knowledge-based FMS model.

The scheduler adopts a hierarchical approach, where the upper level issues commands

concerning the multi-type introduction of new parts into the system and the lower level

makes decisions concerning the detailed movement of parts through the system resources.

The system is demonstrated in a flexible printed circuit board assembly system.

2.1.3 Control Theoretic Methods

Kimemia and Gershwin (1983) presented a multilevel hierarchical control scheme for the

computer control of flexible manufacturing systems. In their proposed closed-loop control

policy, parts are loaded into the system in such a way that the system is neither

overloaded, nor congested and the long-term production objective is met. The flow

control level determines the short-term production rates of each member of the part

family. Because of the time-varying demand and reliability of the workstations, it involves

a stochastic optimal control problem at this level. A part entering the FMS has one or

more machine routings. The routing control level determines the flow rate on each path

based on the arrival rate of the parts chosen by the flow control level. The lowest level of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

control is a scheduling algorithm that schedules times at which parts are dispatched to

maintain the flow rates chosen by the flow and route controllers.

Based on the hierarchical structure proposed by Kimemia and Gershwin (1983),

Custodio et al. (1994) presented a fuzzy controller for production scheduling and control.

The purpose of their controller is to get cumulative production to track cumulative

demand while keeping the work-in-process low. The new idea of their method is to allow

the use o f multiple criteria, each with an assigned fuzzy weight. This is advantageous since

the use of several different fuzzy criteria takes into account the influence of all variables.

In an FMS environment, it is important to decide when to introduce a part into the

system. Overloaded parts into the system may lead to congestion, thus resulting in longer

production times. On the other hand, too few parts in the system result in the under

utilization of equipment. The main concern of control theoretic based methods is the

release of the parts, but no detailed allocation of multiple resources such as machines,

robots, buffers and material handling systems is considered.

2.1.4 Petri Net Based Methods

Petri net theory has been applied for modeling, analysis, simulation, planning, scheduling,

and control of flexible manufacturing systems (Narahari and Viswanadham 1985, Hillion

and Proth 1989, Viswanadham et al. 1990, Banaszak and Krogh 1990, Zhou, DiCesare

and Desrochers 1992, Lee and DiCesare 1994). A Petri net comprises two types of

nodes, namely places and transitions. A place is represented by a circle and a transition by

a bar. Places and transitions are connected by arcs. In order to study dynamic behavior of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IS

the modeled system, each place contains a non-negative integer number o f tokens. At any

given time instance, the distribution of tokens on places, called Petri net marking, defines

the current state of the modeled system. A significant advantage of Petri net based

methods is its representation capability. Petri nets can explicitly and concisely model

concurrent and asynchronous activities, multi-layer resource sharing, routing flexibility,

limited buffers and precedence constraints in FMS. The changes of markings in the net

describe the dynamic behaviors of the system. In the methods mentioned above, very few

studies investigate deadlock problems in FMS scheduling and control because they are

difficult to formulate using either mathematical programming methods or control theoretic

methods. Petri nets provide an explicit way for considering deadlock situations in FMSs

such that a deadlock-free scheduling and control system can be designed.

A. Scheduling Method

Shih and Sekiguchi (1991) presented a timed Petri net and beam search method to

schedule an FMS. Beam search is an artificial intelligence technique for efficient searching

in decision trees. When a transition in a timed Petri net is enabled, if any of its input places

is a conflicted input place, the scheduling system calls for a beam search routine. The beam

search routine then constructs partial schedules within the beam-depth. Based on the

evaluation function, the quality of each partial schedule is evaluated and the best is

returned. The cycle is repeated until a complete schedule is obtained. This method based

on partial schedules does not guarantee global optimization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

Shen et al. (1992) presented a Petri net-based branch and bound method for

scheduling the activities o f a robot manipulator. To cope with the complexity of the

problem, they truncate the original Petri net into a number o f smaller size subnets. Once

the Petri net is truncated, the analysis is conducted on each subnet individually. However,

due to the existence of the dependency among the subnets, the combination of local

optimal schedules does not necessarily yield a global optimal or even near-optimal

schedule for the original system. Zhou, Chiu and Xiong (1995) also employed a Petri net

based branch and bound method to schedule flexible manufacturing systems. In their

method, instead of randomly selecting one decision candidate from candidate sets (enabled

transition sets in Perti net based models), they select the one based on heuristic

dispatching rules such as SPT. The generated schedule is transformed into a marked graph

for cycle time analysis.

Lee and DiCesare (1994) presented a scheduling method using Petri nets and heuristic

search. Once the Petri net model of the system is constructed, the scheduling algorithm

expands the reachability graph from the initial marking until the generated portion of the

reachability graph touches the final marking. Theoretically, an optimal schedule can be

obtained by generating the reachability graph and finding the optimal path from the initial

marking to the final one. But the entire reachability graph may be too large to generate

even for a simple Petri net due to exponential growth of the number of states. Thanks to

the proposed heuristic functions, only a portion of the reachability graph is generated.

Three kinds of heuristic functions are presented. The first one favors markings that are

deeper in the reachability graph. The second one favors a marking which has an operation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

ending soon. The last one is a combination of the first and the second ones. These three

heuristic functions do not guarantee the admissible condition (Pearl 1984), thus the

proposed heuristic search algorithm does not guarantee to terminate with an optimal

solution. No deadlock issues are discussed in their demonstrated examples because they

always put an intermediate place which serves the role o f a buffer with unlimited capacity

between two operations.

Hatono et al. (1991) employed the stochastic Petri nets to describe the uncertain

events of stochastic behaviors in FMS, such as failure of machine tools, repair time, and

processing time. They develop a rule base to resolve conflicts among the enabled

transitions. The proposed method cannot handle the routing flexibility and deadlock

situation.

B. Modeling and Discrete Event Control

For modeling and discrete event control of a flexible manufacturing system, Narahari and

Viswanadham (1985) presented a systematic bottom-up approach. They obtained their

Petri net model by constructing a sub-Petri net model for each machine operation and then

combining these subnets by the sharing of places. The analysis of resulting Petri net such

as p-invariants can be based on the analysis of subnets. To avoid the verification of a Petri

net’s safeness and liveness, Krogh and Back (1986) proposed another bottom-up

systematic approach by introducing modified Petri nets and decomposing a manufacturing

process into operations and resources. Their method leads to a safe and live Petri net

model by the union of elementary circuits along common paths. The method is not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

applicable to a bounded Petri net where a place with more than one token is used to model

buffers and machines with processing capacity exceeding 1.

Koh and DiCesare (1991) presented modular transformation methods for generalized

Petri nets by introducing and using the concept of a live and bounded circuit (LB-circuit).

An LB-circuit is a generalized version of a simple elementary circuit. Three transformation

theorems are presented. The first one shows that LB-circuits can be fused into a live and

bounded Petri net. The second one shows that two live and bounded Petri nets can be

fused along a common elementary path while preserving liveness and boundedness. The

last one shows that removing LB-circuits from the original net will not changing liveness

and boundedness. But the proposed modular transformation methods are not applicable

for synthesizing shared resources.

Zhou, DiCesare and Desrochers (1992) presented a hybrid synthesis methodology to

design a bounded, live and reversible Petri net controller. The method begins with an

initial net which captures important system interactions such as choice-synchronization.

This initial net should be bounded, live, and reversible. The second step is refining the

places and transitions in the net in a top-down manner to reach a level which includes

detailed operations of the system. The last step is adding the resources places based on

proposed parallel mutual exclusion (PME) or sequential mutual exclusion (SME)

structures. For the system with multi-layer resource-sharing and different products sets

manufactured concurrently, modeling of a Petri net with desirable properties becomes

extremely difficult based on this hybrid method.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

In contrast with Zhou's method which establishes the control policy in a static way to

prevent the deadlock state, another method is deadlock avoidance method in which the

possible deadlocks are avoided by proper operational control. Banaszak and Krogh (1990)

presented a deadlock avoidance algorithm based on Petri net model. The algorithm is a

feedback policy that uses the current states of the resources and the known operation

sequence for the active jobs to inhibit requests for resources when they will potentially

lead to circular wait conditions. The restrictive policy, however, is not a necessary

condition and is therefore overly restrictive in some cases. Multiple resource holding and

alternative routing are not considered in the proposed method.

Hsieh and Chang (1994) also presented a deadlock avoidance controller synthesis

method. First, a controlled production Petri net model is constructed based on the bottom-

up approach. This net is then decomposed into subnets to derive a necessary and sufficient

liveness condition for the net. A sufficient validity test procedure is employed to check

whether the execution of a control action is valid to maintain the liveness of the net.

Finally, this sufficient test procedure is combined with the given dispatching policy to

generate valid control actions for the FMS.

Venkatesh, Zhou and Caudill (1994) identified certain criteria to compare ladder logic

diagrams and Petri nets for sequence controller design through a discrete manufacturing

system and proposed a real time Petri nets for sequence control. They show the

advantages of Petri nets based control from aspects o f graphical complexity and

adaptability, response time, properties checking, dynamic state tracking and system

initialization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

2.2 Summary

We have reviewed some of previous work in scheduling and control o f flexible

manufacturing systems. Typical assumptions are still confined to the classical job shop

environments for most methods. There is a need for developing methods which allow the

consideration of various extensions to the classical job shop models such as multiple

resources sharing, multiple lot sizes, buffer availability, material handling, routing

flexibility and deadlock avoidance. Among all the methods, Petri net based methods show

the potential to make major contributions to FMS operation. Petri nets can be used as an

integrated tool for modeling, scheduling, control and performance analysis o f flexible

manufacturing systems. Petri nets can explicitly and concisely model the concurrent and

asynchronous activities, multi-layer resource sharing, part contact states

(loading/unloading), routing flexibility, limited buffers and precedence constraints in

flexible manufacturing systems. Petri nets can also provide an explicit way for considering

deadlock situations in FMSs, and thus facilitate the design of a deadlock-free scheduling

and control system. Therefore, we investigate the scheduling and control o f flexible

manufacturing systems based on Perti nets in this research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

MODELING MANUFACTURING SYSTEMS W ITH PETRI NETS

Petri nets were named after Carl A. Petri who created in 1962 a net-like mathematical tool

for the study of communication with automata. The further development made Petri nets

become a promising graphical and mathematical modeling tool applicable to many systems

that are characterized as being concurrent, asynchronous, distributed, parallel,

nondeterministic, and/or stochastic (Murata 1989). Petri nets have been used extensively

to model and analyze manufacturing systems. A recent overviews of applications of Petri

nets in manufacturing areas can be seen in [Zurawski and Zhou 1994] [David and Alla

1994], In this chapter, the fundamentals o f Petri nets and their modeling methods in

manufacturing systems are introduced to facilitate presentations of our research results.

For more detail, the reader is referred to [Peterson 1981], [Murata 1989], [Zhou and

DiCesare 1993], [Zurawski and Zhou 1994] and [David and Alla 1994],

3.1 Concepts and Properties of Petri Nets

A Petri net is defined as a bipartite directed graph containing places, transitions, and

directed arcs connecting places to transitions and transitions to places. Pictorially, places

are depicted by circles and transitions as bars or boxes. A place is an input place to a

transitions if there exists a directed arc connecting this place to the transition. A place is an

output place of a transition if there exists a directed arc connecting the transition to the

place. Places contain tokens pictured by black dots. Each place may potentially hold either

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

none or a positive number of tokens. At any given time instance, the distribution o f tokens

on places, called Petri net marking, defines the current state of the modeled system. Thus a

marked Petri net can be used to study dynamic behavior o f the modeled discrete event

systems.

Formally, a Petri net can be defined as PN = (P, T, I, O, A/0); where

• P = {pj, P2, —, pm), m > 0 is a finite set of places;

• T = {th 12, —, /„}, n > 0 with P^/T * 0 and Pr>T = 0 is a finite set o f transitions;

• I: PxT -> {0 , 1} is an input function or direct arcs from P to T;

• 0: PxT —> {0,1} is an output function or direct arcs from T to P;

• M: P —► {0,1,2,—} is a |P| dimensional vector with A/(p) being the token count of

place p. A/ 0 is an initial marking.

The behavior o f many systems can be described in terms of systems states and their

changes. In order to simulate the dynamic behavior of a system, a state or marking in a

Petri net is changed according to the following transition (firing) rules:

(1) A transition t is enabled if M(pi) £ I(put) for any p/eP.

(2) An enabled transition t can fire at marking Af, and its firing yields a new marking,

M(p) = M(p) + 0(p,f) - l(p,t), for arbitrary p from P.

The marking M is said to be reachable from Kf. Given PN and its initial marking Mo,

the reachability set is the set of all marking reachable from M0 through various sequences

of transition firings and is denoted by R(PN, A/0). Reachability set is a fundamental basis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

for studying the dynamic properties of a system. For a marking M e R(PN, M0), if no

transition is enabled in A/, than M is called a deadlock marking.

A pair o f a place p and a transition t is called a self-loop if p is both an input and

output place of t. A Petri net is said to be pure if it has no self-loops. A Petri net

containing self-loops can be made pure by adding dummy places and transitions. The

dynamic behavior o f pure Petri nets can also be represented by matrix equations. The

incidence matrix defines all interconnections between places and transitions in a Petri net.

For a pure Perti net with m places and n transitions, the incidence matrix C = 0 - Iisan /n

x n matrix o f integers. The entries of the incidence matrix are defined as follows: Cjj =

O(pj,tj) - 1(pi,tj), where CHpjJj) is equal to the number of arcs connecting transition tj to

its output place pj, and I(pj,tj) is equal to the number of arcs connecting transition tj to its

input place p\. When transitions tj fires, 0 (pj,tj) represents the number of tokens deposited

on its output place p\, I r e p r e s e n t s the number of tokens removed from its input

place Pi, Cjj represents the change in the number o f tokens in place pj. Transition tj is

enabled at a marking M if

I(pi,tj) < M(pj), / = 1, 2, ••, m.

The state equation for a Petri net represents a change in the distribution of tokens on

places as a result o f a transition firing. Since the yth column of the incidence matrix C

denotes the change of the marking as a result of a firing transition tj, the state equation is

defined as follows:

A/fc = A/fc-1 + Cufo k = 1, 2 , —

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

A/jf is an m x 1 column vector representing a marking immediately reachable from a

marking after firing transition tj. The control vector (kth firing vector) iq ̂is an n x

1 column of n - 1 0 ’s and one nonzero entry, a 1 in the /th position indicating that

transition tj fires at the kth firing.

Petri nets as mathematical tools possess a number of properties. Some of the

important properties are as follows.

A Petri net (PN, M0) is said to be K-bounded or simply bounded if the number of

tokens in each place does not exceed a finite number K for any marking reachable from

M0. A Petri net (PN, M0) is said to be safe if it is 1-bounded. For bounded Petri net, from

the initial marking Mo, there are a limited number of reachable markings which are

obtainable via various sequence of transition firing.

A Petri net (PN, M0) is said to be live if, no matter what marking has been reached

from A/q, it is possible to ultimately fire any transition of the net by progressing through

some further firing sequence. This means that a live Petri net guarantees deadlock-free

operation, no matter what firing sequence is chosen.

A Petri net (PN, A/0) is said to be reversible if, for each marking m in R(PN, M0), A/ 0 is

reachable from M Therefore, in a reversible net one can always get back to the initial

marking.

The boundedness, liveness, and reversibility o f Petri nets have their significance to

manufacturing systems. Boundedness or safeness implies the absence of capacity

overflows. Liveness implies the absence of deadlocks. This property guarantees that a

system can successfully produce without being deadlocked. Reversibility implies that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

cyclic behavior of a system and repetitive production in flexible manufacturing. It means

the system can be initialized from any reachable state.

Among subclasses of Petri nets, there is a choice-free or conflict-free net called the

marked graph. A marked graph is a PN (P, T, I, O, M0) such that V/> e P, t e T, l(p,t) £

1, O(p,t) £ l, and given anyp e P, |{ t e T : O(p,t) = 1}| = 1, and |{ / e T : I(p,f) = 1}| =

1.

The presence of the conflict structures (a structure involving a place having two, or

more output transitions) in a Petri net requires a conflict resolution mechanism to select

one transition to fire. Since this mechanism is, typically, based on a probabilistic function,

the net becomes stochastic. While in a marked graph, each place has exactly one input

transition and exactly one output transition, thus no conflict is possible. For this reason,

among models that can represent concurrent activities, marked graphs are the most

amenable to analysis.

In our research, we synthesize a marked graph as a discrete event controller based on

a derived optimal event sequence. The important properties of marked graphs are

presented in Chapter 4.

The ordinary Petri nets do not include any concept o f time and only describe the

logical structure of the modeled system. A timed Petri net enables a system to be described

whose functioning is time dependent. For example, a certain time may elapse between the

start and the end of an operation. If a mark in a certain place indicates that this operation

is in progress, a timed Petri net enables this time to be taken into account.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

Ramchandani (1973) first introduced Timed Petri nets (TPN's) by associating firing

times to the transitions o f ordinary Petri nets to study their steady-state behavior. Since

then many researchers have reported work on deterministic or stochastic TPN models. For

modeling of production systems, deterministic TPN is appropriate if the working time of a

machine to treat a part is constant, while if we should consider the situation of failure of

machine tools, stochastic TPN may be used because the duration of proper function

(between two breakdowns) of a machine is random. Except for associating firing times to

the transitions (T-timed), the timings can also be associated with the places (P-timed), or

both.

For a P-timed Petri net, a timing dj, possibly of zero value, is associated with each

place pj. When a token is deposited in place pj, this token must remain in this place at least

for a time dj. This token is said to be unavailable for this time. When the time dj has

elapsed, the token then becomes available. Only available tokens are considered for

enabling conditions. For a T-timed Petri net, a timing dj, possibly o f zero value, is

associated with each transition tj. When a transition tj fires, the tokens removed from its

input places to its output places are reserved for a time dj. After elapsing this time, the

reserved tokens become non-reserved tokens and can be considered for enabling

conditions.

In this research, we use deterministic P-timed Petri nets modeling FMS for scheduling.

The transitions in such nets can fire with a zero duration, which is consistent with the non

timed or ordinary definition of Petri nets. However it is always possible to transform a P-

timed Petri net to a T-timed one, and vice versa.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

The timed Petri nets, especially timed marked graphs, are very useful for performance

analysis o f modeled systems. The performance evaluation of marked graphs will be

discussed in Chapter 4.

3.2 Petri Net Modeling

We consider discrete-parts manufacturing systems in which individual parts are clearly

distinguishable. A manufacturing process is a set of activities which interact with a set of

resources. The product process plan specifies a sequence of operations for processing a

job by the system. The manufacturing system can manufacture multiple products o f the

same product type and can also concurrently manufacture products o f multiple types.

3.2.1 Modeling Methods

Generally in Petri net modeling, places represent conditions and transitions represents

events. In our approach for modeling manufacturing systems with Petri nets, a place

represents a resource status or an operation, a transition represents either start or

completion of an event or operation process, and the stop transition for one activity will

be the same as the start transition for the next activity. Token(s) in the resource place

indicates that the resource is available and no token indicates that it is not available. A

token in the operation place represents that the operation is being executed and no token

shows none being performed.

Example 3.1: Figure 3.1 shows a simple Perti net model. A robot unloads two kinds of

parts from two intermediate buffers to an output station. The robot unloads a part from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

either Buffer 1 or Buffer 2. As soon as the unloading is over, another part is made

available and the robot randomly unloads a part again. The interpretation of places and

transitions is shown in Table 3.1.

P5

PI

Figure 3.1 A Petri net model for a robot unloading parts in Example 3.1

Table 3.1: Interpretation of places and transitions in Figure 3.1

Places Transitions

p i : A part I on buffer for unloading

P2: A part 2 on buffer for unloading

P3: The part 1 being unloaded

P4: The part 2 being unloaded

P5: The robot ready to unload a part

tj: Unloading part 1 starts

t2 -' Unloading part 2 starts

t3 i Unloading part 1 ends

14: Unloading part 2 ends

In Figure 3.1, places p], P2 and ps model resource availability status. The marked

resource place indicates the representing resource is available, and unmarked indicates

unavailability. Places P3 and P4 model operations. Transitions tj and t2 represent the

starting of the operations. Transitions t3 and t4 represent the ending of the operations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

For this Petri net, P = {pi, P2 , P3 , P4, P5 }, T = {ti, t2, t3, 14}. The initial markingM q

= (1, 1, 0, 0, 1) T.

In the initial marking, both transitions tj and t2 are enabled. If t j fires, the marking M \

= (0, 1, 1, 0, 0) T is reached. If t2 fires, the marking M2 - (1, 0 , 0 , 1, 0) T is reached. At

either M i or M 2 , only one transition is enabled, t3 or t4 . Firing either of them leads the

net to its initial marking. This Petri net is safe, live, and reversible based on the definitions

of safeness, liveness, and reversibility.

A certain order of activities needs to be followed by each job in manufacturing

systems. For example, the activity sequence {operation 1, operation 2} should be followed

by each job. Therefore, for Petri net modeling, the first important issue is the modeling of

sequential activities for each job in the system.

The second modeling issue is synchronization. For example, Machine 1 will process

material piece 1 only when it is present. It will never finish the process operation if the

material is missing.

The third issue is modeling o f concurrence. By concurrence we mean that there are

parallel relationships among the concerned events. For example, two physical events 1)

Machine 1 processes the first operation of Job 1, 2) Machine 2 processes the second

operation of Job 2, are concurrent if both events may occur simultaneously. Two machines

can operate concurrently if both can process tasks at the same time. High concurrency

among system resources often implies high productivity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

The fourth modeling issue we are concerned with is conflict, when the sharing of

resources is encountered. In this case, if two or more jobs require one shared resource at

the same time, only one job can get the required resource.

The Petri net models must take the various issues as discussed above into

consideration. The usual approach is to create a Petri net model with which to analyze

critical properties o f interest. A more rigorous approach for Petri net modeling is to

synthesize a Petri net o f a system which has desirable properties such as boundedness and

deadlock freeness. Examples of Petri net models for linear sequence, synchronization,

concurrency, and mutual exclusion are shown in Figure 3.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

O—t-»0--»l-+0H

(a)

(b)

-* o —+ - o —
»Q- - »| - -»Q »

(c)

(d)

Figure 3.2 Examples of Petri net models for (a) linear sequence, (b) synchronization,
(c) concurrency, and (d) mutual exclusion

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

Previous research on the Petri net modeling methodology can be summarized into

three basic approaches: bottom-up (Agerwala and Choed-Amphai 1978), top-down

(Valette 1979) and hybrid (Zhou, DiCesare and Desrochers 1992). A review o f synthesis

techniques for Petri nets with applications to manufacturing systems can be seen in [Jeng

and DiCesare 1993],

In this research, the bottom-up method is used to synthesize the system for scheduling.

First, the system is partitioned into sub-systems according to the job types, then sub

models are constructed for each sub-system, and a complete net model for the entire

process is obtained by merging Petri nets of the sub-systems through the places

representing the shared resources. For each sub-system (job type), a Petri net is

constructed based on the following steps (Zhou and DiCesare 1993):

(1) Identify the operations and resources (machines/buffers) required;

(2) Order operations by the precedence relations if they exist;

(3) For each operation in order, create and label a place to represent its status, add a

transition (start activity) with an output arc(s) to the places, add a transition (stop

activity) with an input arc(s) from the places;

(4) For each kind of resources (machines/buffers), create and label a place. If an

operation place is a starting activity to require the resource(s), add input arc(s) from

that resource place to the starting transition of that operation. If an operation is the

ending one to use the resources, add output arc(s) from the ending transition to the

resource place(s);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

(S) Specify the initial marking, and associate the timings with the operation places.

3.2.2 Petri Net Modeling for Scheduling

Let us take an example to illustrate Petri net modeling for scheduling.

Example 3.2: An FMS has two machine M \, M2 and one robot R. There are two jobs

J \ and J2 which have two processes each. Table 3.2 shows the job requirements.

Table 3.2 Job Requirements for Example 3.2

Operations/Jobs A A

1 (M\R, 4) 0 *1,1)

2 (M2R, 1) 0*2,4)

The first operation of Job 1 can be carried out at Machine 1 and needs 4 unit time.

The second operation of Job 1 can be carried out at Machine 2 and needs 1 unit time. The

first operation of Job 2 can be carried out at Machine 1 and needs 1 unit time. The second

operation of Job 2 can be carried out at Machine 2 and needs 4 unit time. Both the first

and second operations of Job 1 need the robot for holding. The size o f the intermediate

buffer for each job is 1. Figure 3.3 shows the Petri net model of sub-system Job 1 and

Figure 3.4 shows the Petri net model of sub-system Job 2. The Petri net model for the

whole system is obtained by merging the places representing Machine 1 and Machine 2 in

two sub-models and shown in Figure 3.S. The interpretation of places and transitions is

shown in Table 3.3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

Job I available

Op 1

Robot availabli

Op 2

final product

tJ Machine 1 available

Buffer available

Machine 2 available

Figure 3.3 The Petri net model for sub-system o f Job 1 in Example 3.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

Job 2 available

operation 1

intermediate storage

operation 2

final product

tJ Machine 1 available

V Buffer available

P Machine 2 available

Figure 3.4 The Petri net model for sub-system of Job 2 in Example 3.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

P13

Pll P12PS 0

P14

P4

P6

*8

P10

Figure 3.5 The whole Petri net model for Example 3.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

Table 3.3: Interpretation of places and transitions in Figure 3.4

Places Transitions

Pi: Job 1 available tj: Operation 1 o f Job 1 starts

P2 '. Job 2 available t2 : Operation 1 of Job 2 starts

P3-' Operation 1 o f Job 1 13: Operation 1 of Job 1 finishes

P4 : Operation 1 o f Job 2 14: Operation 1 o f Job 2 finishes

P5 : Job 1 ready for the second t5 : Operation 2 o f Job 1 starts

operation tg: Operation 2 of Job 2 starts

pg: Job 2 ready for the second ty: Operation 2 of Job 1 finishes

operation tg: Operation 2 of Job 2 finishes

P7: Operation 2 of Job 1

pg: Operation 2 of Job 2

P9: Final product o f Job 1

Pio: Final product of Job 2

P12: Buffer of Job 1 available

P12-' Buffer o f Job 2 available

PI3 : Machine 1 available

PI4 : Machine 2 available

PI5 : Robot available

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The evolution o f the system can be completely tracked by the reachability graph o f the

Petri net. Figure 3.6 shows a partial portion of the reachability graph for the Petri net

model shown in Figure 3.S. In the reachability graph, both transition firing sequences of

t lt3t2t5t4t7t^t8 and t2t4t lt6t3t8tSt7 ffve a Pat^ from the initial marking to the final

marking. But they generate different performance of schedules. Figure 3.7(a) shows the

schedule generated from transition firing sequence tit3t2t5t4t7t£tg with a makespan of 9.

Figure 3.7(b) shows the schedule generated from transition firing sequence

t2t4t lt6t3t8t5t7 with a makespan of 6. The notation Oi.j.fc in Figure 3.7 represents the j-

th operation of the i-th job being performed at the k-th machine. Furthermore, if the lot

size of Job 1 is 2, i.e., there are two tokens in the place pi in the initial state, the transition

firing sequence t2t4titg t3tjtg leads the system into a deadlock state in which further part

flow is inhibited. Figure 3.8 shows the evolution of the system states in terms of changes

in the marking of the Petri net for the transition firing sequence t2t4t i t^t3t i tg which leads

the system into a deadlock state.

Therefore, the main purpose o f this dissertation is to investigate deadlock-free

scheduling and control of flexible manufacturing systems by using Petri nets as a modeling

framework.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

(Initial state)

(1 1000000001111 1)

(0 1 1 0 0 0 0 0 0 0 1 1 0 1 0)

(0 1 0 0 1 0 0 0 0 0 0 1 1 1 1)

*2
r

(0 0 0 1 1 0 0 0 0 0 0 1 0 1 1)

(0 0 0 1 0 0 1 0 0 0 1 1 0 0 0)

(0 0 0 0 0 1 1 0 0 0 1 0 1 0 0)

(0 0 0 0 0 1 0 0 1 0 1 0 1 1 1)

*6

(0 0 0 0 0 0 0 1 1 0 1 1 1 0 1)

(1 0 0 1 0 0 0 0 0 0 1 1 0 1 1)

(10 0 0 0 10 0 0 0 10 1 1 1)

tl

(00 1 0 0 1 0 0 0 0 1 0 0 10)

*6

(0 0 1 0 0 0 0 1 0 0 1 1 0 0 0)

*3

(0 0 0 0 1 0 0 1 0 0 0 1 1 0 1)

l8

(0 0 0 0 1 0 0 0 0 1 0 1 1 1 1)

(0 0 0 0 0 0 1 0 0 1 1 1 1 0 0)

(0 0 0 0 0 0 0 0 1 1 1 1 1 1)

(final state)

Figure 3.6 A partial portion of the reachability graph for the Petri net model shown in
Figure 3.5 of Example 3.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

Machine 1
Machine 2

makespan

(a) transition firing sequence t i t 3t2 t5t4t7t<>tg

0,.u(4) < W D
olA2(i) 0^(4)

9

Machine 1

Machine 2
makespan

(b) transition firing sequence t2t4 t j t6t3tgt$t7

Figure 3.7 Schedules represented by two different transition firing sequences of Example
3.2

Qu.,(i) Ou.,(4)
O2A2W 01A2(1)

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

(initial state)

(2 1 0 0 0 0 0 0 0 0 1 1 1 1 1)

*21 ►

(2 0 0 1 0 0 0 0 0 0 1 1 0 1 1)

*4
1 t

(2 0 0 0 0 1 0 0 0 0 1 0 1 1 1)

*1
1

(1 0 1 0 0 1 0 0 0 0 1 0 0 1 0)

*61 >

(1 0 1 0 0 0 0 1 0 0 1 1 0 0 0)

*3

(1 0 0 0 1 0 0 1 0 0 0 1 1 0 1)

n
(0 0 1 0 1 0 0 1 0 0 0 1 0 0 0)

*8

(0 0 1 0 1 0 0 0 0 1 0 1 0 1 0)

(deadlock state)

Figure 3.8 The evolution of the system states for the transition firing sequence
*2*411*6*3*1*8 which leads the system into a deadlock state in Example 3.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

OPTIMIZATION OF DISCRETE EVENT CONTROLLER DESIGN

4.1 Introduction

For discrete event control of FMSs, an optimal control problem is to find an input event

sequence that moves the system from a given initial state to a given final state while

minimizing certain performance indices. Various notions of optimal control have been

studied for discrete event systems (DESs). Passino and Antsaklis (1989) used valid

behavior model and allowable behavior to describe DESs and proposed a metric space

approach to heuristic search for an optimal solution. Lin and Ionescu (1992) considered

optimization of controller design for discrete event systems in a temporal logic framework.

Sengupta and Lafortune (1991) proposed graph-theoretic formulation of optimal discrete

event control problems for a class of DESs.

Petri net theory has been applied for scheduling and discrete event control of flexible

manufacturing systems. Petri nets can concisely model the concurrent and asynchronous

activities, resource sharing, and precedence constraints in FMSs. Venkatesh, Zhou and

Caudill (1994) identified certain criteria to compare ladder logic diagrams and Petri nets

for sequence controller design through a discrete manufacturing system and proposed a

real-time Petri net for sequence control. Zhou, DiCesare and Desrochers (1992) presented

a hybrid synthesis methodology to design a bounded, live and reversible Petri net

controller. But for the system with multi-layer resource-sharing and different product sets

manufactured concurrently, modeling of a Petri net with desirable properties becomes

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

extremely difficult based on this hybrid method. HUlion and Proth (1989) used timed

event-graphs, a special class o f timed Petri nets, for modeling and analyzing job-shop

systems. Sayat and Ladet (1993) employed colored Petri nets and Grafcet to describe

different levels o f production control to deal with different levels o f complexity presenting

at each level. Lee and DiCesare (1994) presented a Petri net-based heuristic scheduling

method for flexible manufacturing, although it does not guarantee to terminate with an

optimal solution.

The goal of this chapter is to formulate and solve the optimal discrete event controller

synthesis problem for a flexible manufacturing system in a timed Petri net framework. The

bottom-up method is used to model the system. Once the modeling is done, the A* based

heuristic search algorithm which is combined with the execution of the timed Petri net is

proposed to search for an optimal event sequence to achieve minimum-time discrete event

control. Based on the obtained event-driven sequence, we use two levels of specification

to design the optimal sequence controller for the presented FMS. The coordination control

level consists of synchronization and parallelism of different sub-systems and is specified

by decision-free Petri nets (marked graphs). The local control level consists of running

elementary sequences for sub-systems, which are specified by the Sequential Function

Charts (SFCs). The relation between two levels is realized by the logical conditions

associated with some transitions in the coordination model and local control models. The

specific objectives o f this chapter are:

1. To present a design method for the synthesis of a optimal discrete event controller.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

2. To introduce an A* based heuristic search algorithm for seeking the optimal event

sequence based on the reachability graph o f Petri nets.

3. To illustrate the design method through a flexible manufacturing system.

4. To develop theoretical results to insure the desired qualitative properties of

boundedness (safeness), liveness, and reversibility in the resulting Petri net

controller.

5. To evaluate the performance of the controller and make comparisons with the ones

driven by dispatching rules.

6 . To analyze the controller’s sensitivity to randomness.

4.2 Design Method for Discrete Event Control

Due to its complexity, the control of a flexible manufacturing system is commonly

decomposed into a hierarchy of decision levels, such as planning, scheduling, supervisory

control, and local control. The discussion in this chapter focuses on optimal sequence

control problem in FMSs at the levels of scheduling, supervisory and local control. The

optimal control problem is to find an input event sequence that moves the system from a

given initial state to a final state while minimizing certain performance indices. Based on

the optimal event sequence, a sequence controller is designed for optimization of system

performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.1 Description of a Design Procedure

Figure 4.1 shows a two-level functional structure of sequence control. It is assumed that a

host computer is responsible for coordination and synchronization o f different sub

systems, such as machines, robots and AGVs. The control sequence implemented at this

level is an optimal event sequence and can be specified by a decision-free Petri net

(marked graph). The local control level consists of running elementary sequences for sub

systems. The sequence of operations executed by a local controller is specified by a

sequential function chart (SFC) from which the controller program code, such as the relay

ladder logic program, can be directly derived and implemented into a Programmable

Logical Controller (PLC).

Optimal Event Sequence
Obtained Using Heuristic Search Based on Timed Petri Nets

Local Control
(SFC)

Local Control
(SFC)

Coordination Control
(Petri N et)

Figure 4.1 The sequence control structure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

The design procedure for optimal sequence controllers is proposed as follows:

Step I. Modeling o f an FMS using timed Petri nets. The synthesis of Petri net models

is based on a bottom-up approach which begins with the construction o f subnets for

component processes and proceeds to the final net by merging and/or linking all these

subnets. The concurrency, conflicts, resource-sharing, and sequential operations are

concisely represented in a Petri net model.

Step 2. Heuristic search of the reachability graph of a timed Petri net model for an

optimal or near-optimal event sequence. All feasible event sequences are incorporated in

the reachability graph o f the Petri net model resulted from Step I. The search for an

optimal event sequence is NP-complete. Therefore, the heuristic search methods are

employed to reduce computational effort.

Step 3. Synthesis o f a choice-free Petri net model (marked graph) for event-driven

coordination control based on the optimal event sequence. The event sequence obtained

from Step 2 optimally resolves the conflicts competing for shared resources among the

processes. As a result, the system behavior can be described by a marked graph in which

each place has exactly one input and one output transition. A marked graph is guaranteed

to be live if and only if every circuit contains at least one token. This greatly reduces the

analytical overhead for eliminating the deadlock states in the system. Therefore, compared

with existing Petri net or other methods (Banaszak and Krogh 1990, Narahari and

Viswanadham 1990, Zhou, DiCesare and Desrochers 1992, Wysk et al. 1994), real-time

control implementation of a marked graph can easily guarantee deadlock-free system

behavior. Moreover, there exist effective methods for performance analysis o f timed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

marked graphs (Ramamoorthy and Ho 1980, Hillion and Proth 1989) and performance

bounds when the operation times suffer for randomness.

Step 4. Specification o f local sequence controllers for each sub-system using sequential

function charts. SFC is an industrial standard for describing the control logic of

manufacturing devices (David and Alla 1992). It overcomes two drawbacks inherent in

Petri nets: nondeterministic evolution and infinite creation of tokens. In SFC, transition

firing is synchronous, and a step can only be active or inactive (binary state), as discussed

in more detail later.

Note that a marked graph is generated in Step 3. The present method admits only

sequential production processes, i.e., no routing flexibility.

4.2.2 Petri Net Modeling

For a given system, we construct its Petri net model based on the bottom-up method. A

system is partitioned according to the job types, then a sub-model is constructed for each

job type, and finally a complete net model for the entire system is obtained by merging

Petri nets of job types through the places representing the shared resources. When an FMS

consists of many machines and can deal with many types o f jobs, modeling of a Petri net

based on the above synthesis method cannot guarantee the liveness o f the model. Let us

illustrate it through a simple example which is depicted in Figure 4.2. The system consists

of a robot, a machine and a load/unload station at which raw parts are always available.

The robot loads a raw part from a loading station to machine, which carries out some

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

operations on the raw part. The finished part is unloaded by the robot from the machine to

the unloading station. The Petri net model is shown in Figure 4.3.

Load station

Wlllllll

m m

Unload station

Figure 4.2 A system comprising a robot and a machine

Machine

Raw parts available

Loading

Machine availableRobot available
Maching

Unloading

Final parts

Figure 4.3 The Petri net model for the system depicted in Figure 4.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

Suppose that the initial marking is (4,0,0,0,0 , 1,1), i.e., both the machine and robot are

available and there are four raw parts in the load station. Execute the following sequence

o f events starting with the initial state:

1) Robot carries a raw part from the load station;

2) Robot loads the part onto Machine and is released;

3) Machine starts operations on raw part;

4) Robot carries another raw part from the load station;

5) Machine finishes the operations on the first raw part and waits for Robot for

unloading.

At this instant, Machine requests Robot for unloading and Robot waits for Machine for

releasing the held parts. The marking is (2,1,1,0,0,0,0), which is a deadlock state. At this

state, no further actions can occur.

A firing sequence of the transitions from an initial marking to a final marking can be

obtained by searching for it over the reachability graph of the Petri net model if it exists.

The sequence is then used to synthesize a decision-free and deadlock-free Petri net model

for supervisory coordination control.

4.2.3 Sequential Function C hart

Sequential function chart or Grafcet (TEC, 1990, David and Alla 1992) was proposed to

describe the functioning of logic controllers and their specification, and accepted as an

international standard in 1990. Compared with Petri nets, SFC clearly represents inputs,

outputs and their relations, and is appropriate for specifying a local logic controller which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

consists o f running elementary sequences. A sequential function chart consists o f steps,

transitions, and arcs. A step represents a partial state of the system and may be active or

inactive. Actions are associated with the steps. The associated action is performed when

the step is active, and remains idle when the step is inactive. A transition separates two

successive steps, associated with a receptivity consisting o f a logic condition or an

external event, or an event and a condition. A transition is firable if and only if all the steps

preceding the transition are active and the receptivity o f the transition is true.

Figure 4.4 shows some basic design modules, sequential actions, synchronous actions

and asynchronous actions, for SFC.

□ CD d l

m

Sequential Actions Synchronous Actions Asynchronous Actions

Figure 4.4 Some basic design modules o f SFC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

4.3 Heuristic Algorithm for Optimization of Event Sequence

For discrete event systems, an optimal control problem is to find an input event sequence

that moves the system from a given initial state to a final state while optimizing a pre

defined performance index. Based on the obtained optimal event sequence, a sequence

controller can be designed.

An optimal event sequence is sought in a timed Petri net framework to achieve

minimum-tim e control. In the Petri net model of a system, firing of an enabled transition

changes the token distribution (marking). A sequence of firings results in a sequence o f

markings, and all possible behaviors of the system can be completely tracked by the

reachability graph of a net. The search space for the optimal event sequence is the

reachability graph o f the net, and the problem is to find a firing sequence of the transitions

in the Petri net model from the initial marking to the final one. A heuristic search algorithm

is developed by combining the Petri net execution and a best-first graph search algorithm

A* (Pearl 1984). The most important aspect of the algorithm is the elimination from

further consideration of some subsets o f markings which may exist in the entire

reachability graph. Thus the amount o f computation and the memory requirements are

reduced.

Algorithm 4.1:

1. Put the start node (initial marking) mQ on OPEN.

2. If OPEN is empty, exit with failure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

3. Remove from OPEN and place on CLOSED a marking m for which / i s the

minimum.

4. If m is a goal node (final marking), exit successfully with the solution

obtained by tracing back the pointers from m \o m 0 .

5. Otherwise find the enabled transitions at m, generate the successor markings for

each enabled transition, and attach to them pointers back to m.

6 . For every successor marking m’ of m.

(a) Calculate/ (mr).

(b) If m' was neither on OPEN nor on CLOSED, add it to OPEN. Assign the newly

computedf (m r) to marking m ’.

(c) If m' already resided on OPEN or CLOSED, compare the newly computed/(/»*)

with the value previously assigned to /»'. If the old value is lower, discard the

newly generated marking. If the new value is lower, substitute it for the old and

direct its pointer along the current path. If the matching marking m' resided on

CLOSED, move it back to OPEN.

7. Go to step 2.

The function/ (m) in Algorithm 4 .1 is the sum o f two terms g(m) and h (m).f (m) is an

estimate cost (makespan) from the initial marking to the final one along an optimal path

which goes through the marking m. The first term, g(m), is the cost of a firing sequence

from the initial marking to the current one. The second term, h(m) is an estimate cost of a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

firing sequence from current marking m to the final marking, called heuristic function. The

following heuristic function is used:

h{m) =max,{ % fjn), i = 1, 2 , N . }

where \$m) is the sum o f operation times of those remaining operations for all jobs which

are planned to be processed on the fth machine when the current system state is

represented by marking m. N is the total number of machines. The purpose of a heuristic

function is to guide the search process in the most profitable direction by suggesting which

transition to fire first.

For the above heuristic function, h{m) is a lower bound to all complete solutions

descending from the current marking, i.e.,

h(m) < h*(m), Vm

where h*(m) is the optimal cost o f paths going from the current marking m to the final

marking. Hence, the employed heuristic function Hjn) is admissible, which guarantees for

an optimal solution (Pearl 1984).

The list OPEN maintains markings that have been generated and had the heuristic

function applied to them. It chooses which marking to expand next based on the

combination of how good the marking itself looks as measured by h(m) and how good the

path to the marking is as measured by g(m). If the newly generated marking is already on

OPEN, it means a new firing sequence (path) to this marking from initial marking has been

found. The path is updated to yield the smallest cost whenever the new path has a cost

lower than the old path.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

The list CLOSED maintains markings that have already been examined. When a new

marking is generated, it is checked whether the marking has been generated before. If the

newly generated marking is on CLOSED and the new path has a cost lower than the old

path, this marking is put in OPEN for re-exploration.

At each step of the best-first search process, the most promising of the markings

generated so far is selected. The reachability graph grows from the initial marking until it

touches the final one. Because of the heuristic function, only portions of the reachability

graph are generated. The more informed a heuristic function is, the smaller the number of

generated markings is.

4.4 Illustration Through a Flexible M anufacturing System

Example 4.1: The design procedure presented in Section 4.2 is illustrated through an

FMS. The layout of a flexible manufacturing system is shown in Figure 4.5. It consists of

two entries, two exits, three machines, three robots, and a two AGV system. Two job

(product) types J\ and J i are to be carried out. The precedence relationships among the

operations and operational time of each operation on the assigned machine for each job

are shown in Table 4.1.

Table 4.1 Job Requirements of Example 4.1

Operation/Job Jy J i . . .

1 (A/,,5) (A/,,7)

2 (A/,,8) (A/,,3)

3 (M?,2) (A/,,9)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

A0V2

Figure 4.5 The layout o f a flexible manufacturing system in Example 4 .1

Entries: There are two entries, Entry 1 and Entry 2, for two types of raw materials

which are made into two different kinds of products J \ and respectively. Each raw

material piece is fixtured to a pallet so that it can be transferred using robots and the AGV

system. Both products J\ and J i have one pallet in the system and an unlimited source of

raw material is assumed.

Exits'. There are two exits, Exit 1 and Exit 2, for finished products Jy and J i

respectively.

Machines: The first operation of Jy is carried out at machine M\, the second and third

are carried out at machines M i and M3 respectively. The first operation of J i is carried out

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

at machine M3, the second and third are carried out at machines Mi and M2 respectively.

All the operations are assumed non-preemptive.

Robots'. Robot R i shared by M i and M2 can be used to load M i, to deliver raw

material of product from Entry 1, and unload M2 to send finished product J i fixtured to

pallet to AGV 2. Robot R i is used to load M3, to deliver raw material o f product J i from

Entry 2, and unload M3 to send finished product J\ fixtured to pallet to AGV 1. Robot /?3

is shared by M\, M2 and M3 to convey intermediate parts. It performs the following

functions: unloading M h loading M2, unloading M2, loading M3 for job type J\, and

unloading M3, loading M ^ unloading M h loading M2 for job type J2.

AGV System: Two AGVs have one pallet position each and are designed for the

delivery of final parts and the release of pallets in the system. From M3, AGV1 sends final

product J\ to Exit 1 and pallet back to Entry 1. FromM2, AGV2 sends final product ./2 to

Exit 2 and pallet back to Entry 2. Since they take different paths, collision is avoided and

both AGVs can work concurrently.

A. Petri Net Modeling

Based on the modeling method presented before, the Petri net models representing

operation sequences for sub-system Job J \ and J2 are shown in Figure 4.6. The complete

model for the entire automated manufacturing system is represented by merging the same

places representing the shared resources in the Petri net models for sub-system Job J\ and

J2 shown in Figure 4.7. Note that the following shared resource places p rl, p r2 and

p r3 appear twice respectively in Figure 4.7 to conserve the legibility.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

B. Heuristic search based on timed Petri nets

Using Algorithm 4.1 proposed in Section 4.3, we obtain the following optimal input event

sequences for cyclic production:

Machine 1: O peration I o f Job 1, Operation 2 of Job 2>;

Machine 2: O peration 2 of Job 1, Operation 3 of Job 2>;

Machine 3: O peration 1 o f Job 2, Operation 3 of Job 1>;

Robot 1: <Acquiring from Entry 1, Loading Machine 1, Unloading Machine 2,

Loading AGV 2>;

Robot 2: <Acquiring from Entry 2, Loading Machine 3, Unloading Machine 3,

Loading AGV 1>;

Robot 3: <Acquiring from Machine 1, Loading Machine 2, Acquiring from

Machine 3, Loading Machine 1, Acquiring from Machine 2, Loading

Machine 3, Acquiring from Machine 1, Loading Machine 2>.

The concurrency o f these events are explicitly handled in the Petri net formalism. Based on

the sequence control structure proposed in Section 4.2, two levels of specification,

coordination control level and local control level are used to specify the optimal sequence

controller.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

R aw material fo r R aw m alarial f i r
Ji f i d a n d a a h b t a n d o r > .
p a le ta v r ib b le p A t m U f c v J

R ia c q u n o g R n
and loading M i a r i M a | M) ^

A M e n a c i n g M i m a c in g A

A R ioalonfingM R,«ilaadmgM A
Y » d l o a d n g M i and loading M , y

M e n a c i n g M i m aching Q

v R n n io a d n g M R i unloading M . I .
/ 'an d loading M i and loading M i f e z

A M i m achine M m aching (j j)

i ■
Q R iun ioad ingM . R ,o n lo a d ii« M (

AGVI movww AOV21
h) a part and a part and

| rdeaaanga paflet rd eaa in g a p a le t

Figure 4.6 The operation sequences for Job 1 (left) and Job 2 (right)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

read;
Pu

Mi
ready

R i
ready ready

ready

R i
ready,

®Pri P»»(v

Figure 4.7 The Petri net model for the entire system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

C. Synthesis o f M arked Graph fo r Event-Driven Coordination Control

Based on the obtained optimal event sequence, a marked graph is synthesized for the case

of both products having one pallet in the system. Figure 4.8 shows the Petri net model for

coordination control which consists of synchronization and parallelism of different sub

systems. The presented Petri net is a marked graph in which each place has exactly one

input and one output transition. The marked graph model o f coordination control is

developed as follows:

(i) Model the cyclic manufacturing process for each job type, we obtain the

processing circuit P j f u P n t j ^ i f u P j f i ^ i A ^ i f i M i ^ n t ^ i o for Job type-A, and the

processing cfccuit p 2(/ 2Jp 2Jt2j>22t23p 23t2j>2f 2Sp2St2(p 2f 2# 27t2lp 20 for job *yPe Jl- 111 ^

processing circuit, a place represents an event and a transition represents either start or

completion of an event.

(ii) Model the sequencing of the part types for each machine according to the obtained

optimal input event sequence. Three command circuits are for three machines obtained.

The command circuit C u t j j P u t ,# ^ ^ ,^ ^ ^ f 2j>2J 2f u schedules the operations of

Machine 1 and corresponding loading and unloading operations performed by robots.

Similarly, the command circuit i f l^ 2f 2d>2f 2(p 2f 2-f2I for Machine 2 and the

command circuit c31t2]p 2,t2j>22t23c3^ I5p 1̂ Ij) 1̂ l yC3I for Machine 3 are constructed.

(iii) Associate Boolean conditions with transitions in the net, the logic condition o f a

transition can be all true logic 1 or the state of some specified steps of SFCs at the local

control level.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

cZ l
plO

e ll

111 p!4p!3p!2

X trU) (■13
c!2 c22

123 t28(21 (24

c31

p20

Figure 4.8 Petri net (Marked graph) model for coordination control in Example 4.1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

D. Specification o f Local Sequence Controllers

We use sequential function charts to specify local controllers. Figures 4.9(a), (b) and (c)

show the sequential function chart models for local control o f Machines /, 2 and 3,

respectively, figures 4.10(a), (b) and (c) show the models for local control o f Robots / , 2

and 3, respectively. The relation between two levels is realized by the logical conditions

associated with some transitions in the coordination model and local control models. The

Boolean variable X(i) is equal to 1 when and only when place (step) i is marked (active).

For example, firing of transition tn in Figure 4.8 marks place p n and makes X(pn) true.

This initiates local controller of Robot 1 in Figure 4.10 (a), which, in turn starts Robot 1

for picking up a part from Entry 1 and then loading Machine / . The event o f end of

loading Machine 1 makes step rl4 active. This makes the condition related with transition

*12 in coordination model true. Firing transition *12 marks place p n and X(pI2) becomes

true, which in turn makes Machine / process operation 1 o f Job 1 based on the local

controller of Machine / in Figure 4.9(a), and so on.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

mU m!5

(a)

XtU)

m23

(b)

ififei.

(C)

Figure 4.9 The SFC models for local control o f Machine 1 (a), Machine 2 (b) and
Machine 3 (c) in Example 4.1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

Xtpll) —I—

[fiKIHIg]
E a d M p n i *

(M Z H 3
EadLom Sng

rU

X(pll)

RSmT

11)-+-

H 3
End Acquinnc •

[^rHEl
End Looting

tU

5 .
-X(pZ7)

[CUwEW- I MBSft
EndlHondng

EH A fiY 1

EndLondng

(a)

—I— XQ>17)

r«Haafe I
— — End Uhkwfing

R Hifffo I
End Leading

(b)

XCplJ) —J— X(pl5)

3
End LMooding

\\s±&2 Vm f^ T H 3
End Loading - End Loading

0

UKaasJ

X(p25)

End Unloading

Mirim 7
End Laming

(C)
Figure 4.10 The SFC models for local control o f Robots 1 (a), Robot 2 (b), Robot 3 (c)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

4.5 Development of Theoretical Results

We consider a class of FMSs where each job in the system has a fixed production

sequence, i.e., no routing flexibility. The work-in-process o f each job is limited to 1. We

have proposed a synthesis methodology to construct a Petri net (marked graph) as a

coordinating discrete-event controller in Section 4.2. The method is demonstrated through

an FMS example in Section 4.4. This section presents the main theoretical results to insure

the desired qualitative properties of boundedness (safeness), liveness, and reversibility in

the resulting Petri net controller. These properties have their significant meanings in

manufacturing. Boundedness or safeness guarantees a stable discrete manufacturing

process and no capacity overflow. For instance, the boundedness of a place modeling a

buffer or queue insures that there will be no overflow, and the safeness of an operation

place guarantees that there is no attempt to request execution of an ongoing process

(Zhou and DiCesare 1993). Liveness implies a system free from deadlock. Reversibility

ensures a cyclic manufacturing system with the ability to initialize from any reachable state

and has implications for error recovery in the manufacturing context.

Definition 4.1: Given PN = (P, T, /, O, M0), a node is either a place in P or a transition

in T. An elementary path is a sequence o f nodes: x\X2 ..Jcn, n £ 1, such that there is an arc

from x/ to x,+/, where 1 £ / < n. if n > 1, x/ = xj implies that i - j , 1 < /, j < n. An

elementary circuit is a sequence of nodes: jqX2 ..-*n, n > L such that x/ = xj, where 1 < / <

j < n, implies that / = 1 and j = n.

Definition 4.2: An operation place path is an elementary path consisting of one place

and two transitions. The place in an operation path is called operation place. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

operation place in an operation path has an input transition called starting transition

representing the start o f an operation and an output transition called ending transition

representing the aid of an operation.

Definition 4.3: A processing circuit is an elementary circuit which models the cyclic

production of a job according to its precedence relations. The place representing the

availability o f a job is called job resource place. The token count in a processing circuit is

equal to 1 with an initial token deposited in the job resource place.

Definition 4.4: A command circuit is an elementary circuit which models the control

flow of a shared resource according to the derived sequencing of the jobs on that

resource. The token count in a command circuit is equal to 1 with an initial token

deposited in the place preceding the first operation place.

Given an FMS with m types of resources and n types o f jobs, there exist m command

circuits, denoted by C*, C2 , C™ and n processing circuits, denoted by />*, P2, ..., Pm.

Definition 4.5 [Murata 1989]: A marked graph is an ordinary Petri net (P, T, I, O)

such that V/> e P, / e T, l(p,t) <, 1, 0(p,t) <1, and given any p e P, |{ t e T : O(p,t) = 1 }|

= 1, and |{ f e T : l(p,t) = 1}| = 1.

Marked graphs are a subclass of Petri nets characterized by the fact that any place has

exactly one input and one output transition. A marked graph with initial marking M0 is

represented by (MG, M0).

The following four properties about marked graphs are known [Murata 1989].

Property 4.1: For a marked graph, the token count in an elementary circuit is invariant

under any firing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

By Property 4.1, If there are no tokens on an elementary circuit at the initial marking,

then this elementary circuit remains token-free. Thus, the transitions on this elementary

circuit will never be enabled.

Property 4.2: A marked graph (MG, M0) is live i f f Mo puts at least one token on each

elementary circuit in MG.

Property 4.3: A live marked graph is reversible.

Property 4.4: The maximum number o f tokens that a place can have in a marked graph

(MG, Mo) is equal to the minimum number of tokens placed by M0 on an elementary circuit

containing this place.

Theorem 4.1: Given m command circuits C*, C2, CP1 and n processing circuits P^,

p2, ..., Pm, suppose that a Petri net Z is obtained by merging these subnets along all

common operation place paths, then Z is a marked graph.

Proof : In all command and processing circuits, any place has exactly one input and one

output transition, any transition has exactly one input and one output place. By merging

these subnets along all common operation place paths, each starting common transition

has exactly two input and one output places, each ending common transition has exactly

one input and two output places. But for each place, it still has exactly one input and one

output transition. Therefore, the resulting Petri net Z is a marked graph.

Theorem 4.2: Given m command circuits C*, C ^ , CP1 and n processing circuits P^,

p l, ..., Pm. Suppose that a Petri net Z is obtained by merging these subnets along all

common operation place paths, then Z is safe, live and reversible.

Proof: From Theorem 4.1, the net Z is a marked graph.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

1) Safeness: For any place p in Z, it should be contained in a processing circuit or a

command circuit. According Property 4.1 and Definition 4.3-4, the token count in a

processing circuit or a command circuit is invariant for any marking reachable from the

initial marking Therefore according to Property 4.4, the maximum number of tokens that

place p can have is 1 for any marking reachable from the initial marking. This proves the

safeness o f Z.

2) Liveness: According to Property 4.2, to prove the liveness, we just need to show

that there exists at least one token on each elementary circuit in Z.

Suppose that the net consisting of processing circuits />!, P%,..., Pm only is denoted

by Z®. Then the command circuits C*, Cp, ..., O ’1 are merged to Z® one by one. When

command circuit C* l^A :<m is merged to Z*"A the resulting net is denoted by Z*.

First, when k = 0, the token count in each elementary circuit in ZP is one, the

conclusion is true. When k = 1, the elementary circuits in Z* consist of P^, P ^ ,..., Pm and

C1 , no other mixed circuits exist. The conclusion is true.

Second, suppose that, for n = k, the conclusion is true, i.e., each circuit in contains

at least one token. The following shows that the conclusion is true for n = A+l.

The newly added circuits which do not exist in Z* must be those circuits which contain

some places in C^. If it contains the marked place in C* that circuit has at least one token.

If it contains no marked place in C^, starting with the place pe C^, along the circuit,

assuming it has to come to a transition which is shared between and Z^. Starting from

that transition, it has to proceed to one of the marked places of Z .̂ This proves that any

circuit in Z*+^ contains at least one token.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

Therefore, Z is live.

3) Reversibility'. We have proved that Z is live, then Z is also reversible according to

Property 4.3.

4.6 PerTormance Evaluation

For timed marked graphs, there exists already the formula to find the system cycle time

(Ramamoorthy and Ho 1980, Hillion and Proth 1989). For a marked graph which has time

delays in its transition or place, the system cycle time C is given by

C * Max { T i/N j: i = 1,2,...,n } where

T; = Sum of the transition and place delays in circuit Yi>

N; = Total number of tokens in the places in circuit y,, and

n - Number of circuits in the marked graph.

There are three types of circuits in a marked graph which models the manufacturing

system. Processing circuits model the manufacturing process o f the sequence of each job.

Command circuits model the sequencing o f the jobs on the machines. If a circuit includes

nodes of both processing and command circuit, then such a circuit is called a mixed circuit

(Hillion and Proth 1989). Knowing the circuits and the time delays in transitions and/or

places, we can evaluate the system performance by the above formula. A linear

programming formula can also be used for performance evaluation (Morioka and Yamada

1991).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

We use an example to demonstrate the evaluation of the resulting controller’s

performance and sensitivity to randomness. To make a comparison with the control

system driven by heuristic dispatching rules, the following traditional job-shop system is

used as an example. This is because no commonly used dispatching rules can generate

effective and deadlock-free scheduling decisions for the systems with multi-layer resource-

sharing, such as one in Example 4.1.

Example 4.2: Let us consider an FMS with three machines, M \, M2 and A/3 . There

are four jobs, J \, J2 , J3 and J 4 which have three processes each. Table 4.2 shows the job

requirements.

Table 4.2 Job Requirements of Example 4.2

Operations/Jobs h . _ ^3___ j 4

1 (Mi ,4) (M2 ,1) (M3 ,3) _ (M2 ,3)

2 (M2 ,3) (Mi ,4) (M2 ,2) _ (M i 3)

3 (M3,2) . (¥ 3 .4 1 . . . m . (M ,,l)

Figure 4.11 shows the Petri net model for the sub-system Job 1. Similarly we can get

Petri net models for Job 2, Job 3, and Job 4. The complete Petri net model for the system

is obtained by merging these sub-models.

Using Algorithm 4.1, we obtain the following optimal input event sequences for each

machine:

Machine 1: <Operation 2 of Job 2, Operation 1 of Job 1, Operation 3 of Job 4,

Operation 3 of Job 3>;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

Machine 2: <Operation 1 of Job 2, Operation 1 of Job 4, Operation 2 o f Job 3,

Operation 2 of Job 1>;

Machine 3: <Operation 1 o f Job 3, Operation 2 o f Job 4, Operation 3 of Job 2,

Operation 3 of Job 1>.

These sequences consists of three command circuits in the discrete event controller

represented by a marked graph. A token in a command circuit represents the availability of

the machine to process a specific job. Since a machine is assumed to process only one job

at a time, there can be only one token in each command circuit. The sequences consisting

o f processing circuits are determined by the technological precedence of job requirements

as follows:

Job 1: <Waiting in the buffer, Processing in Machine 1, Waiting in the buffer,

Processing in Machine 2, Waiting in the buffer, Processing in Machine 3, Finishing the

job>;

Job 2: <Waiting in the buffer, Processing in Machine 2, Waiting in the buffer,

Processing in Machine 1, Waiting in the buffer, Processing in Machine 3, Finishing the

job>;

Job 3: <Waiting in the buffer, Processing in Machine 3, Waiting in the buffer,

Processing in Machine 2, Waiting in the buffer, Processing in Machine 1, Finishing the

job>;

Job 4: <Waiting in the buffer, Processing in Machine 2, Waiting in the buffer,

Processing in Machine 3, Waiting in the buffer, Processing in Machine 1, Finishing the

job>.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

The jobs in-process are represented by the tokens circulating in the processing circuits.

The marked graph for the discrete event control of FMS in Example 4.2 is shown in

Figure 4.12.

Machine 1 Available

Machine 2 Available

Job 1 Available

Machine 1 Processing

Buffer

Machine 2 Processing

Buffer

Machine 3 Available (p Machine 3 Processing

’ t

O
Final Products

Figure 4.11 The petri net model of the sub-system Job 1 in Example 4.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a.

a.

U 0

a.

a.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re

4.1
2

Th
e

ma
rk

ed

gra
ph

Co

nt
ro

lle
r

of
Ex

am
ple

4.

2

74

Based on the formula presented above, the cycle time of the marked graph shown in

Figure 4.12 is 12. The system throughput (production rate) is 4/12 (0.333).

To make a comparison, two benchmark dispatching rules are employed for scheduling

and control. One is SPT (Shortest Processing Time), which sequences jobs by the

imminent processing time and gives the priority to the job with the minimum processing

time in the input queue of an available machine. SPT is a widely used rule that has been

found to perform reasonably well on a number of performance measures in a variety of

manufacturing environments (Blackstone, et al. 1982, Askin and Standridge 1993).

Another one is LWKR (Least Work Remaining), which sequences jobs by the total

processing time of unfinished operations and gives the priority to the job with the smallest

total processing time in the input queue of an available machine. Varying the lot size for

each job from 10 to 100, we obtain the average production rate 0.313 for SPT and 0.311

for LWKR. The comparison result for production rates obtained from different methods is

shown in Table 4.3.

Table 4.3 The performance comparison of Example 4.2

Production Rate

LWKR SPT Marked Graph

0.311 0.313 0.333

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

4.7 Sensitivity to Randomness

The obtained marked graph is an inherently deadlock free discrete event controller. For

real-time control o f FMS, this greatly reduces the operational control burdens comparing

with other Petri net based deadlock avoidance controllers (Banaszak and Krogh 1990,

Narahari and Viswanadham 1990, Hsieh and Chang 1994). Although the marked graph

based controller provides valuable advantages in both aspects of real-time implementation

and throughput optimization, its performance greatly depends on the deterministic

conditions of functioning. It is clear that for practical implementation of the controller,

some randomness can happen such as processing time variations and machine breakdowns.

Because the marked graph controller is based on the event-driven philosophy instead of

the time-driven which specifies a list o f times at which certain activities are to occur, so it

is tolerable o f disturbances. But the system performance such as throughput will degrade

when disturbances exist.

With processing time variations, the delays associated with places or transitions are

stochastic, the notion of cycle time disappears. Various upper and lower bounds of the

average cycle time of a general stochastic marked graph are derived (Campos, Chiola and

Silva 1991, Baccelli and Liu 1992, Xie 1994).

For the marked graph controller obtained from our proposed design method, we have

the following performance evaluation results based on Xie’s work (1994).

Given mean values and standard deviations of the processing times, the upper and

lower bounds o f average cycle time are as follows:

JCD(A/b) ^ *(A/o) * *D(M)) + s /e/°z.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where k(A/q) represents the average cycle time of the marked graph for the given initial

marking A/q considering the randomness o f processing times. The lower bound 7tD(A/o) is

equal to the exact cycle time in the deterministic case and computed by using the mean

values of processing times as deterministic processing times. The upper bound consists o f

two terms, the first term is the cycle time of deterministic case vP(Mq), and the second

term is the addition o f standard deviations of processing times for all operations belong to

the operation set I. This upper bound converges to the exact average cycle time as the

standard deviations tend to zero. This shows a fact that the marked graph with less

uncertainty has smaller average cycle time. Thus for a fixed lot sizes, the makespan will

increase when the uncertainty of processing times increases. We use a simulation

experiment to illustrate this fact.

Example 4.3: For the system presented in Example 4.2, we consider the variations of

processing times. The mean values o f processing times are given as the deterministic

processing times in Example 4.2. The deviations from these mean values are generated as:

Percentage o f variations * mean value * random number,

where the random number is generated from a random variable with uniform distribution

defined on [-1, 1].

Varying the percentage of variation, we simulate the system for 2000 times in SUN

Sparc station. We make a comparison between the marked graph controller and the one

driven by the dispatching rule SPT. It should be noted that the employed marked graph is

the one we derived in Example 4.2 for the deterministic case, i.e. the sequencing of the

jobs on each machine is fixed even if there are variations of processing times. While when

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

the dispatching rule SPT is employed, the sequencing of the jobs on each machine is

changed due to variations of processing times. This is because the marked graph controller

generally is synthesized off-line and implemented on-line, while dispatching rules are often

used as on-line rules. For the fixed lot size (30, 30, 30, 30), the makespan versus the

percentage o f variations obtained from two methods is shown in Figure 4.13. Because of

uncertainty, the system performance will degrade for both cases. But the on-line

dispatching rule SPT is less sensitive to the variations of processing times than the marked

graph. This is because SPT rule adapts the sequencing of the jobs on each machine to the

variations of processing times, while the marked graph fixes the sequencing of the jobs on

each machine, which is derived in the deterministic case. But within about 34% of

variations, the marked graph still performs better than SPT rule for the testing lot size (30,

30, 30, 30).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

SPT ■X— UB

makespan

620
580
540
500
460
420
380j |
340T

0 10 6020 30 40 50
percentage of variation

Figure 4.13 Senstivity to processing time variations in Example 4.3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

4.8 Summary

This chapter starts with a bottom-up approach and search for the best performance

sequence of events and then synthesize the desirable Petri net controllers. The method

insures the desired qualitative properties of liveness, boundedness (safeness), and

reversibility in the resulting system, which imply freedom from deadlock, no capacity

overflow, and cyclic behavior, respectively. This precludes the costly mathematical

analysis for these properties and reduces on-line computation overhead to avoid

deadlocks. The performances and sensitivities o f resulting Petri nets, thus corresponding

control systems, are evaluated. Even though there are several studies in this aspect (Krogh

and Beck 1986, Koh and DiCesare 1991, Zhou, DiCesare and Desrochers 1992), for the

system with multi-layer resource-sharing and different products sets manufactured

concurrently, modeling of a Petri net controller with desirable properties becomes

extremely difficult based on their methods. Their methods focus on the logical behavior

only.

Future research will include investigation of stochastic Petri nets to describe stochastic

behavior, such as failures o f machine tools, repair time, variations of processing time. The

presented work is based on deterministic timed Petri nets and does not handle the

stochastic situations. The work on the evaluation of the sensitivity in this chapter is a good

start to this problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

A HYBRID HEURISTIC SEARCH ALGORITHM FOR SCHEDULING FMS

5.1 Introduction

Scheduling problems arise when multiple kinds o f part types are machined respectively by

multiple kinds of shared resources according to their technological precedence constraints.

We need to determine the optimal input sequence of jobs and resource usage for a given

job mix. Note that the required ordering of operations within each job must be preserved.

Production scheduling problems are very complex and have been proved to be NP-hard

problems (France 1982).

A new application area for production scheduling theory comes from flexible

manufacturing systems. An FMS can be defined as an integrated manufacturing system

consisting of automated material handling devices and numerically controlled machines

that can simultaneously process medium-sized volumes of a variety of part types.

Comparing with the classical job shop scheduling problem, the FMS scheduling problem

has the following new features (Leon, et al. 1994):

• General resource models: machines, buffer space and material handling equipment

must be included in a unified model.

• Part contact states: the loading, unloading and movement o f parts through the

manufacturing system must be scheduled.

• Deadlock states: deadlock arises from the explicit recognition of material handling

and buffer space resources. A deadlock-free schedule should be obtained.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

• Dynamic machine routing: machine routings specify the machines that are required

for each operation o f a given job. Routing flexibility in FMS makes machine

routing a dynamic decision process.

To cope with the complexity and flexibility of FMS, many researchers have proposed

various methods for its scheduling. Because of its NP-hard characteristics, it is very

difficult or impossible to find the optimal solution for a sizable FMS scheduling problem.

An efficient heuristic method is necessary to systematically work out a sub-optimal

solution. Current scheduling approaches such as mathematical programming models (Luh

and Hoitomt 1993, Sawik 1990) can seek effective solutions to well-formulated

optimization problems. They, however, have formulation difficulties in handling shared

resources, deadlock constraints and routing flexibility. Approaches such as queuing theory

(Berman and Maimon 1986, Jafari 1987) and simulation (Kim 1994, Wu and Wysk 1989)

cannot obtain an exact solution or the solution may be far from optimal.

Petri net theory has been applied for modeling, performance analysis and discrete

event control of flexible manufacturing systems. There are also some works on scheduling.

Shen et al. (1992) present a branch and bound search scheme based on Petri nets. The

presented algorithm need a great amount of computer memory, since the size o f the

reachability graph of a Petri net increases very fast with its size. Zhou, Chiu and Xiong

(1995) also employed a Petri net based branch and bound method to schedule flexible

manufacturing systems. In their method, instead of randomly selecting one decision

candidate from candidate sets (enabled transition sets in Perti net based models), they

select the one based on heuristic dispatching rules such as SPT. Lee and DiCesare (1994)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

present a Petri net-based heuristic scheduling method for flexible manufacturing, although

the heuristic functions given in that paper do not guarantee the admissibility, the condition

for an optimal solution (Pearl 1984). Deadlocks arising from limited buffer space

resources are not investigated in these previous works.

Petri nets can concisely model the dynamics of flexible manufacturing, multiple kinds

of resources (machines, robots, AGVs and buffer space) and constraints of systems in a

single unified model. The deadlock states are explicitly defined in the Petri net framework,

so no more equations are employed to describe deadlock avoidance constraints. The goal

of this chapter is to present a hybrid heuristic search algorithm based on Petri nets for

scheduling FMSs. The objectives o f this chapter are:

1. To introduce a backtracking (BT) search and make a comparison with the best-

first (BF) search through an example.

2. To propose a hybrid search scheme which combines the heuristic best-first search

and controlled backtracking search in a Petri net framework.

3. To present a comparison between two different hybrid strategies: BF-BT

combination and BT-BF combination.

4. To present an FMS scheduling case with routing flexibility.

5. To present a scheduling example for a semiconductor test facility.

5.2 Best First Search and Backtracking Search

An event-driven schedule is searched in a timed Petri nets (TPN) framework to achieve

minimum or near minimum makespan. This chapter employs deterministic timed Petri nets

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

by associating time delays with places. The transitions can be fired with a zero duration

which is consistent with the definition of non-timed Petri nets. In the Petri net model o f a

system, firing o f an enabled transition changes the token distribution (marking). A

sequence of firings results in a sequence of markings, and all possible behaviors o f the

system can be completely tracked by the reachability graph of the net. The search space

for the optimal event sequence is the reachability graph of the net, and the problem is to

find a firing sequence of the transitions in the Petri net model from the initial marking to

the final one.

We have presented an admissible heuristic algorithm based on best-first (BF) strategy

in Chapter 4. For completeness, we present it here again.

Algorithm 5.1 (Best-First):

1. Put the start node (initial marking) mQ on OPEN.

2. If OPEN is empty, exit with failure.

3. Remove from OPEN and place on CLOSED a marking m for which / i s minimum.

4. If marking m is a goal node (final marking), exit successfully with the solution

obtained by tracing back the pointers from marking m to marking m0 .

5. Otherwise find the enabled transitions of the marking m, generate the successor

markings for each enabled transition, and attach to them pointers back to m.

6 . For every successor marking m’ of marking m:

(a) Calculatef(in').

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

(b) If m' was neither on OPEN nor on CLOSED, add it to OPEN. Assign the newly

computed/ (m*) to marking m'.

(c) If m’ already resided on OPEN or CLOSED, compare the newly computed/ (mr)

with the value previously assigned to m'. If the old value is lower, discard the

newly generated marking. If the new value is lower, substitute it for the old and

direct its pointer along the current path. If the matching marking rri resided on

CLOSED, move it back to OPEN.

7. Go to step 2.

At each step of the best-first search process, we select the most promising of the

markings we have generated so far. This is done by applying an appropriate heuristic

function to each of them. We then expand the chosen marking by firing all enabled

transitions under this marking. If one of successor markings is a final marking, we can

quit. If not, all those new markings are added to the set o f markings generated so far.

Again the most promising marking is selected and the process continues.

Once the Petri net model of the system is constructed, given initial and final markings,

an optimal schedule can be obtained using the above algorithm. But for a sizable FMS

scheduling problem, it is very difficult or impossible to find the optimal solution in a

reasonable amount of time and memory space. This chapter develops a search algorithm

by combining the heuristic best-first strategy with the controlled backtracking strategy

based on the execution o f the Petri nets. The backtracking method applies the last-in-first-

out policy to node generation instead of node expansion. When a marking is first selected

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

for exploration, only one of its enabled transitions is chosen to fire, and thus only one of

its successor markings is generated. This newly generated marking is again submitted for

exploration. When the generated marking meets some stopping criterion, the search

process backtracks to the closest unexpanded marking which still has unfired enabled

transitions.

Algorithm 5.2 (Backtracking):

1. Put the start node (initial marking) mQ on OPEN.

2. If OPEN is empty, exit with failure.

3. Examine the topmost marking from OPEN and call it m.

4. If the depth of m is equal to the depth-bound or if all enabled transitions under

marking m have already been fired, remove m from OPEN and go to step 2;

otherwise continue.

5. Generate a new marking m’ by firing an enabled transition not previously fired

under marking m. Put m ' on top of OPEN and provide a pointer back to m.

6 . Mark m to indicate that the above transition has been fired.

7. If marking m ' is a goal node (final marking), exit successfully with the solution

obtained by tracing back the pointers from marking m ' to marking mQ.

8 . If m ' is a deadlock marking, remove it from OPEN.

9. Go to step 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Both Algorithm S.l (best-first) and Algorithm 5.2 (backtracking) allow recovery from

disappointing search avenues to reaccess previously suspended alternative markings. I f no

enabled transition is found for a marking, it means this marking represents a deadlock.

The search process will explore another marking on the list OPEN. If all the markings in

OPEN are exhausted, it means there is no path connecting the given initial and final

markings. The best-first search strategy examines, before each decision, the entire set of

available alternative markings, those newly generated as well as all those suspended in the

past. The backtracking search strategy is committed to maintaining in storage only a

single path containing the set of alternative markings leading to the current marking. It

proceeds forward heedlessly to find a feasible schedule without considering the

optimality. Since only the markings on the current firing sequence are stored, it requires

less memory.

Example 5.1: We use a scheduling example to compare the computation complexity

and optimality of Algorithm 5.1 and Algorithm 5.2. The problem is to schedule an FMS

with three machines, M \, A /j and A/3 . There are four jobs, J \, J2 , /} and J4 which have

three processes each. Table 5.1 shows the job requirements.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

Table 5.1 Job Requirements for Example 5.1

Operations/Jobs A _ J l A _ A

1 (A/],2) (A/3,4) (A/i.3) _ (A/2,3) .

2 (A/2,3) (A/l,2) (A/3,5)__ . (A/3,4) .

3 A ¥ 2 * L . . .(¥ 2 ,2) . _ __(A/2,3)__ £¥j ,3) „

Figure 5.1 shows the Petri net model for the sub-system Job 1. Similarly we can get

Petri net models for Job 2, Job 3, and Job 4. The complete Petri net model for the system

is obtained by merging these sub-models. Several different job sizes o f this example are

tested and makespans, numbers o f generated markings and CPU times are shown in Table

5.2.

Table 5.2 Scheduling results for Example 5.1

lot sizes makespan number of

markings

CPU time (sec)

(Sun SPARC 20)

A h A A BF BT BF BT BF BT

i 1 1 1 17 21 155 25 0.16 0.06

2 2 1 1 25 33 501 37 0.56 0.1

5 5 2 2 58 105 3437 85 14 0.16

8 8 4 4 100 198 9438 145 112 0.23

10 10 6 6 134 274 23092 193 720 0.38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

O
Job 1 Available

Machine 1 Available

Machine 2 Available

Machine 3 Available

Machine 1 Processing

Buffer

Machine 2 Processing

Buffer

Machine 3 Processing

Final Products

Figure 5.1 The petri net model of the sub-system Job 1 in Example 5.1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

From the Table 5.2, we see that Algorithm 5.1 find the optimal solutions at the

expense of computation complexity, while Algorithm 5.2 reduce the computation

complexity at the expense of optimality. For many practical FMS scheduling problems, it

is desired to get a good solution (even not optimal) in a reasonable amount o f time and

storage. This suggests that a combination of best-first search and backtracking search

should be implemented.

5.3 Hybrid Heuristic Search Algorithms

The need to combine BF and BT strategies is a result o f computational considerations. For

a sizable FMS scheduling problem, if we cannot afford the memory space and computation

time required by a pure BF strategy, we can employ a BF-BT combination that cuts down

the storage requirement and computation time at the expense of narrowing the evaluation

scope.

In the following Algorithm 5.3, the heuristic best-first search strategy is applied at the

top of reachability graph of the timed Petri net model and a backtracking search strategy

at the bottom. We begin with BF search until a depth-bound depQ is reached. Then BT

search is employed using the best present marking as a starting node. If it fails to find a

solution, we return to get the second best marking on OPEN as a new root for a BT

search, and so on.

Algorithm 5.3 (Hybrid BF-BT):

1. Put the start node (initial marking) mo on OPEN.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

2. IfOPEN is empty, exit with failure.

3. Remove from OPEN and place on CLOSED a marking m for w hich/is

minimum.

4. If marking m is a goal node (final marking), exit successfully with the

solution obtained by tracing back the pointers from marking m to marking mo ■

5. If the depth of marking m is greater than the depth-bound dep§, go to Step 9;

otherwise continue.

6 . Find the enabled transitions of the marking m, generate the successor

markings for each enabled transition, and attach to them pointers back to m.

7. For every successor marking m' of marking m.

(a) Calculate/ (mr).

(b) If m’ was neither on OPEN nor on CLOSED, add it to OPEN. Assign the newly

computed/ (m*) to marking m'.

(c) If m' already resided on OPEN or CLOSED, compare the newly computed/ (m*)

with the value previously assigned to m'. If the old value is lower, discard the

newly generated marking. If the new value is lower, substitute it for the old and

direct its pointer along the current path. If the matching marking m ' resided on

CLOSED, move it back to OPEN.

8 . Go to Step 2.

9. Take the marking m as the root node for BT search, put it on OPENO.

10. If OPENO is empty, go to Step 2.

11. Examine the topmost marking from OPENO and call it m\

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

12. If all enabled transitions of marking m' have been selected to fire, remove it from

OPENO and go to Step 10.

13. Generate a successor marking in" for one enabled transition not firing before,

calculate put m" on top of OPENO and provide a pointer back to m\

14. If marking m" is a goal node (final marking), exit successfully with the

solution obtained by tracing back the pointers from marking m" to the initial

marking mQ.

15. If m" is a deadlock marking, remove it from OPENO.

16. Go to Step 10.

An opposite approach is starting a backtracking search on the top of the reachability

graph followed by heuristic best-first ending. This strategy is implemented in Algorithm

S.4. We begin BT until a depth-bound depQ is reached. Then we employ the heuristic BF

search from the current marking until it returns the final marking. If the BF search foils to

find a solution, we return to backtracking and again use BF upon reaching the depth-

bound depQ

Algorithm 5.4 (Hybrid BT-BF)

1. Put the start node (initial marking) mQ on OPENO.

2. If OPENO is empty, exit with failure.

3. Examine the topmost marking from OPENO and call it m.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

4. If all enabled transitions under marking m have already been fired, remove m from

OPENO and go to step 2; otherwise continue.

5. If the depth of marking m is greater than the depth-bound depQ, go to Step 10;

otherwise continue.

6 . Generate a new marking m' by firing an enabled transition not previously fired

under marking m. Put m' on top of OPENO and provide a pointer back to m.

7. Mark m to indicate that the above transition has been fired.

8. If m' is a deadlock marking, remove it from OPENO.

9. Go to step 2.

10. Take the marking m from BT search as the start node m0 and put it on OPEN.

11. If OPEN is empty, back to Step 2 and return to backtracking search.

12. Remove from OPEN and place on CLOSED a marking m for w hich/is minimum.

13. If marking m is a goal node (final marking), exit successfully with the solution

obtained by tracing back the pointers from marking m to marking m0 .

14. Otherwise find the enabled transitions of the marking m, generate the successor

markings for each enabled transition, and attach to them pointers back to m.

15. For every successor marking m’ of marking m:

(a) Calculate/Cm1).

(b) If m’ was neither on OPEN nor on CLOSED, add it to OPEN. Assign the newly

computed/(/« ') to marking m'.

(c) If m' already resided on OPEN or CLOSED, compare the newly computed/(/»*)

with the value previously assigned to m '.If the old value is lower, discard the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

newly generated marking. If the new value is lower, substitute it for the old and

direct its pointer along the current path. If the matching marking m ' resided on

CLOSED, move it back to OPEN.

16. Go to step 2.

In both Algorithms 5.3 and 5.4, the heuristic function Mm) is a lower bound to all

complete solutions descending from the current marking. This is a guarantee for an

optimal solution if a pure BF strategy is applied. The backtracking strategy is controllable

through the depth-bound depQ, i.e., if one can afford the memory space required by a pure

BF strategy, only the pure BF search is employed, and so an optimal schedule is obtained.

Otherwise, a hybrid BF-BT or BT-BF combination can be implemented that cuts down the

storage requirement at the cost of narrowing the evaluation scope.

In the following example, we make a comparison between Algorithms 5.3 and 5.4. We

set the different depth bound to see the relations between the optimality and computation

complexity.

Example 5.2: Compare the schedule quality of Algorithm 5.3 and 5.4 based on the

FMS schedule problem presented in the example 5.1.

The three sets of lot size (5, 5, 2, 2), (8, 8, 4, 4) and (10, 10, 6 , 6) are tested. We

employ both Algorithms 5.3 and 5.4. The scheduling results of makespan, number of

generated markings and computation time are shown in Table 5.3, 5.4 and 5.5 for the lot

size (5, 5, 2, 2), (8, 8, 4, 4) and (10, 10, 6 , 6) respectively. The optimal makespans for

different cases obtained from pure BF search in Table 5.2 are also shown in these tables.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

Table 5.3 Scheduling results of Example 5.2 for lot size (5, 5, 2, 2)

Depth for

BF search

makespan number o f markings CPU time (sec)

(Sun SPARC 20)

Optimal

makespan

BF-BT BT-BF BF-BT BT-BF BF-BT BT-BF pureBF

20 94 88 571 248 0.65 0.38 58

40 85 80 1607 484 4 0.8 58

50 79 70 2132 1247 6 3.6 58

60 74 64 2775 1520 8 6.5 58

80 64 62 3308 1687 11 7 58

Table 5.4 Scheduling results of Example 5.2 for lot size (8 , 8 , 4, 4)

Depth for

BF search

makespan number o f markings CPU time (sec)

(Sun SPARC 20)

Optimal

makespan

BF-BT BT-BF BF-BT BT-BF BF-BT BT-BF pureBF

40 168 163 3888 585 24 1.4 100

60 154 140 5234 1590 38 7 100

80 140 121 7699 2873 49 18 100

100 127 112 8819 4545 90 36 100

120 108 104 9233 8045 104 76 100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

Table 5.5 Scheduling results o f Example 5.2 for lot size (10,10, 6 , 6)

Depth for

BF search

makespan number of markings CPU time (sec)

(Sun SPARC 20)

Optimal

makespan

BF-BT BT-BF BF-BT BT-BF BF-BT BT-BF pureBF

80 206 209 6281 1254 64 5 134

100 198 181 12341 2315 240 16 134

120 180 162 16602 8495 480 139 134

140 169 150 20155 11368 540 390 134

160 153 148 21797 18875 660 560 134

Both Algorithm 5.3 (BF-BT) and 5.4 (BT-BF) cut down the computation complexity

by narrowing the evaluation scope at the expense of losing the optimality. The relations of

computation complexity (number o f generated markings and computation time) reduced

versus optimality lost are shown in Figure 5.2, 5.3 and 5.4 for three different sets o f lot

size (5, 5,2, 2), (8, 8 , 4 ,4) and (10, 10, 6 , 6) respectively. In these figures, the percentage

o f optimality lost, which is the comparison of the makespan, is equal to

H ybrid-B F
BF

and the percentage of computation complexity reduced, which is the comparison of the

storage (number o f generated markings) or computation time, is equal to

B F -H y b rid , 1^

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

BF-BT BT-BF

100

8020 40 •00
Percentage of optimally lost

Figure 5.2(b) Percentage of storage reduced versus percentage of optimality lost for lot
size (5, 5, 2, 2) in Example S.2

BF-BT- BT-BF

20 80 800 40
Percentage of optimally lost

Figure 5.2(b) Percentage of computation time reduced versus percentage o f optimality
lost for lot size (5, 5, 2, 2) in Example 5.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

BF-BT—- • —-BT-BF 1

•020 000 40
Percentage of optima&y lost

Figure 53(a) Percentage of storage reduced versus percentage of optimality lost for lot
size (8 , 8 , 4 ,4) in Example 5.2

4 — BF-BT — • — BT-BF

100

0 20 00 8040
Percentage of optimally lost

Figure 53(b) Percentage of computation time reduced versus percentage o f optimality
lost for lot size (8, 8,4 , 4) in Example 5.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

BF-BT BT-BF

100

•0
Pw nihgi id
of storage
reduced

20
0

0 20 40 00
Percentage of opflflmetty lost

Figure 5.4(b) Percentage of storage reduced versus percentage of optimality lost for lot
size (10, 10,6 , 6) in Example 5.2

BF-BT- BT-BF

offline

100

•0

<0

40

20

0
20 40 000

Percentage of optima Ky lost

Figure 5.4(b) Percentage of computation time reduced versus percentage of optimality
lost for lot size (10, 10,6 , 6) in Example 5.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

From the testing results the following conclusions are drawn. The hybrid heuristic

search which employs the heuristic best-first search at the bottom of the Petri net

reachability graph (Algorithm S.4) performs much better than the one which employs the

heuristic best-first search at the top of the Petri net reachability graph (Algorithm S.3).

This is due to two reasons. One is that the performance of heuristic best-first search is at

its best when its guiding heuristic is more informed, and this usually happens at the bottom

of the search graph (Pear 1984). Thus BT-BF search greatly reduces the computation

complexity comparing with BF-BT search which employs the heuristic best-first search at

the top o f the search graph. Another reason is that there are fewer firing transitions for the

markings at the bottom of Petri net reachability graph than those at the top. This is

because at the late stages of a scheduling task, the reduced number of remaining

operations reduces the number of choices. Hence, the number of alternatives considered in

each decision for BT-BF search is less than the one for BF-BT search. However, the

important decisions with respect to the quality of a schedule may happen at the early

stages of the scheduling activity, this increases the likelihood of missing the critical

candidates for BT-BF search which employs backtracking search instead of best-first

search at the early stage.

5.4 Scheduling an FMS with Routing Flexibility

The order in which a job visits different machines is predetermined in the classical job shop

scheduling problem. Routing flexibility is a new feature o f FMS scheduling. In a flexible

manufacturing system, each operation of a job may be performed by any one of several

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

machines. Using the alternate routings in an FMS has the potential o f increasing

throughput rate by eliminating bottlenecks that block product flow, and prevent the whole

system dead because o f some machine breakdowns. However this added degree of

freedom in an FMS increases the complexity of scheduling. Here additional choices

associated with the technological constraints, in addition to the choices associated with

machines should be effectively resolved.

Example 5.3: We consider an FMS with three multipurpose machines M \, M 2 and

M3 . There are four jobs, J \, J% J3 and J4 . The first three jobs have three processes each

and the last one, J4 , has only two processes. Table S.6 shows the job requirements. The

operation tunes are shown in Table 5.7, where O Pj,^ represents the jth operation of the

ith job is performed by the kth machine.

Table 5.6 Job Requirements for Example 5.3

Operations/Jobs J l J3 Ja

1 M il Mo Mo M \!M o M i

2 Mo l M 3 M i/M3 M3 M5/M3

3 Mi M3 Mi/Mo/M? N/A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

Table 5.7 Operation times for Example S.3

Operation Time Operation Time Operation Time Operation Tune

O Pbi.i 10 OP?,i,? 5 OP?,1,1 4 O P i,i,i 11

OPbi,? 12 OP?,?,l _ 9 OP?,i,? 8 OP4,?,? 9

OPr,?,? 7 OP?,?,? 13 OP?,?,? 6 OP4,?,? 9

OPi ,?,? 10 OP?,1,1 8 OP?,?,i 6

0Pi,?,i 5 OP?,?,? _ 2

_ 0?2r2s3_. 7

We note that a job can be carried out more than one routing in Table 5.6. For instance,

the first process o f job J \ can be performed at either M \ or M j. The second process of job

J \ can be performed at either M j or M3, and the third process performed at M \ only. The

Petri net model o f each job type is shown in Figures 5.5-5.8 . The complete Petri net model

for the system can be obtained by merging the places representing the shared machines in

Figures 5.5-5.8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

Job 1 Available

Machine 2
Available

Machine 1
Available

Figure 5.5 The Petri net model for sub-system Job 1 of Example 5.3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

Job 2 Available

Machine 2
Available

Machine 1
Available/

Machine 3
Available

Figure 5.6 The Petri net model for sub-system Job 2 of Example S.3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

Job 3 Available

Machine 2
Available

Machine 3
Available

Machine 1
Available

Figure 5.7 The Petri net model for sub-system Job 3 of Example 5.3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

Job 4 Available

Machine 1
Available

Machine 3
Available

Machine 2
Available/

Figure 5.8 The Petri net model for sub-system Job 4 of Example 5.3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

The hybrid heuristic search algorithm S.4 (BT-BF) is used to solve the above problem

considering different lot sizes. In each case, the depth bound is set to the half o f the depth

of a reachability graph. The depth of reachability graph is computed by multiplying the

number of transitions in the Petri net model and the lot size. The hybrid BT-BF is

compared with the standard depth-first search and heuristic dispatching rules.

We employ the following benchmark dispatching rules.

0) A heuristic that chooses the fastest machine which can perform an operation if more

than one machine exits, and then the shortest processing time (SPT) rule is used to

sequence the operations among the parts waiting in the input buffer o f a machine.

(ii) A heuristic that chooses a machine whose input buffer currently has the shortest

queue, and then SPT rule is used to sequence the operations among the parts

waiting in the input buffer of a machine.

Several different lot sizes of Example 5.3 are tested using the hybrid heuristic BT-BF,

depth-first search and dispatching rules (i) and (ii). The results of the comparison are given

in Table 5.8. In all cases tested, the presented hybrid method generates schedules with the

shortest makespan. The depth-first search generates the worst results. The heuristic

dispatching methods perform worse than the hybrid search, but better than the depth-first

search. This is because the depth-first search explores its path using the totally uninformed

knowledge. The dispatching rules seek the solutions using the local heuristics, while the

hybrid method using the global information by ordering the decision candidates based on

the performance indices. The heuristic dispatching rule that chooses a machine whose

input buffer currently has the shortest queue performs better than the one that chooses the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fastest machine. This is expected because the heuristic that chooses a machine whose input

buffer currently has the shortest queue is a dynamic rule, while the heuristic that chooses

the fastest machine is a static one. Dynamic rules change priority indices with time and

queue characteristics, whereas static ones keep priority indices constant as jobs travel

through the plant.

Table 5.8 The scheduling results of Example 5.3 using different methods

Lot Size Makespan

Depth-First Dispatching(i) Dispatching(ii) Hybrid(BT-BF)

0 , 1,1,1) 49 46 37 34

(5,5,5,5)_ _ 313 204 161 152

(10,10,10,10) 713 399 311 296

(20 ,20 ,20 ,20) 1513 789 613 597

(30,30,30,30) 2313 1179 921 874

(40,40,40,40) 3113 1569 1223 1172

(50,50,50,50) 3913 1959 1525 1468

For the computation results shown in Table 5.8, it is supposed that the buffer size for

each machine is unlimited. Deadlock is completely avoided because large amounts of in-

process storage are provided. However, it will cause excessive work in-process and an

inefficient manufacturing system can result. Deadlock can arise from the explicit

recognition of buffer space resources. The presented hybrid method always generates a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

deadlock free schedule because of the explicit representation o f deadlock states in the

Petri net framework and backtracking capability in the search procedure. While deadlock

could happen when employing the dispatching rules for scheduling. It is because the

commonly used dispatching rules are “single pass” rules, namely, that once a decision is

made by applying a rule, it will not reconsider the alternative courses of action.

For the above example, let’s take the lot size case (30,30,30,30) and consider finite

buffer size for each machine. Varying the buffer size N, scheduling results are obtained by

applying the hybrid method and two dispatching methods, and shown in Table 5.9. From

the table, we can see that the minimum buffer capacity 10 is required to avoid deadlock

for the heuristic rule that chooses the fastest machine, and 8 for the heuristic rule that

chooses a machine whose input buffer currently has the shortest queue. Figure 5.9 shows

the comparison o f makespan by varying the buffer capacity for lot size case (30,30,30,30)

in Example 5.3. It not only shows that the hybrid method gives better performance of

makespan than two dispatching methods for all range of the buffer size, and also that the

makespan generated by the hybrid method constantly varies starting from a very small

buffer capacity. The performance of dispatching method that chooses a machine whose

input buffer currently has the shortest queue highly depends on the buffer size. The

makespan of generated schedules arrives its best and keeps constant after the buffer size

becomes 22, a very big number for lot size case (30,30,30,30).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

Table 5.9 The scheduling results o f Example 5.3 for finite buffer capacity

Buffer Size Makespan

Dispatching(i) Dispatching(ii) Hybrid(BT-BF)

2 deadlock deadlock 885

4 deadlock deadlock 883

6 deadlock deadlock 880

8 deadlock 1032 875

10 1189 1014 874

12 1179 981 874

14 1179 975 874

16 1179 963 874

18 1179 942 874

20 1179 930 874

22 1179 921 874

24 1179 921 874

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

dfcpslcMnqfl) — + — djspstcMngff —A— hybrid

1200 r

1100

mfctsptti 1000 • ■

000 -

•00
20 244 0 120

buffer sin

Figure 5.9 The comparison of makespan for the varying buffer capacity in the lot size case
(30,30,30,30) of Example 5.3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

5.5 Scheduling for a Semiconductor Test Facility

Semiconductor manufacturing is probably the most complicated manufacturing procedure

in today’s industry (Chen 1994). There are four main stages in a typical Integrated Circuit

(IC) manufacturing process: wafer fabrication, wafer sort, assembly cycle, and final test.

Production scheduling research in IC manufacturing has been conducted only in recent

years (Uzsoy et al. 1991, Uzsoy et al. 1992, Lee et al. 1992, Chen 1994). Chen (1994)

modeled the scheduling problem for IC sort and test facilities as an integer programming

problem and used the Lagrangian relaxation technique to solve it. In this section, we adopt

a scheduling example from [Chen 1994] to show Petri net’s applicability in this area.

5.5.1 System Description

The first stage of IC production is called wafer fabrication. In wafer fabrication, the

integrated circuits are manufactured on a silicon or gallium arsenide wafer using

photolithography, etching, diffusion, and ion implantation processes. In the next stage,

wafer sort, the individual circuits (dice) on a wafer are tested for functionality by means of

electrical probes. Dice that fail to meet specifications are marked with an ink dot. The

wafer then goes to assembly cycle, where the wafer is sawed; the defective dice are

discarded; the good dice are bounded to the lead frames; the wires are bounded and then

encapsulations are followed. After the assembly cycle, each IC ship is subjected to final

tests to determine whether or not it is operating at the required specifications.

Example 5.4: The presented scheduling example (adopted from [Chen 1994]) will

focus on the stages o f wafer sort and final test. Because these two stages share some

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

expensive facilities such as testers, many companies perform them on the same test floor.

Normally, a task for wafer sort requires a combination of a tester, prober, and some

hardware facilities while a task for final test requires a combination o f a tester, handler and

some other hardware facilities. In this example, there are four types o f tester, T l, T2, T3

and T4, two types o f prober, PI and P2, five types of handler, H I, H2, H3, H4 and H5,

and seven types o f hardware, H al, Ha2, Ha3, Ha4, HaS, Ha6 and Ha7. The resource

information is obtained from a real IC sort and test floor in San Jose, CA. Table 5. 10

shows the number of each type of resource. Table S. 11 shows the possible resource

combinations for wafer sort and final test. Each combination consists o f a workcenter and

looks as a single machine for scheduling. There are 30 jobs with a total o f 90 operations to

be scheduled. Table S. 12 shows the job requirements.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

Tabic 5.10 The number of each type o f facility for wafer sort and final test o f Example 5.4

Facility Quantity Facility Quantity

T1 8 H4 4

T2 4 H5 2

T3 4 Hal 4

T4 4 Ha2 3

PI 6 Ha3 4

P2 4 Ha4 4

HI 6 Ha5 3

H2 4 Ha6 2

H3 4 Ha7 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

Tabic 5.11 Workcenters for wafer sort and final test of Example 5.4

Workcenter Resource Combination

MSI Pl+Tl+Hal

MS2 Pl+T2+Hal

MS3 P2+T3+Ha2

MS4 P2+T4+Ha2

MT1 Hl+Tl+Ha3

MT2 Hl+T2+Ha3

MT3 Hl+T4+Hal

MT4 H2+Tl+Ha4

MT5 H2+T2+Ha5

MT6 H3+Tl+Ha5

MT7 H3+T2+Ha6

MT8 H3+T3+Ha6

MT9 H4+Tl+Ha7

MT10 H4+T2+Ha7

MT11 H4+T3+Ha3

MT12 H4+T4+Ha4

MT13 H5+Tl+Ha4

MT14 H5+T2+Ha7

MT15 H5+T3+Ha7

MT16 H5+T4+Ha2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table S.I2 Job requirements o f Example S.4

Job Operation Opr Time Job Operation Opr Time
1 MSI 4 16 MT4 3

MS2 3 MT3 4
MT9 2 MTl 6

2 MS3 5 17 MTl 2
MS2 2 MT5 4

MT10 4 MT4 3
3 MS4 6 18 MT5 3

MT8 3 MT4 4
MT15 2 MT3 2

4 MS2 1 19 MT9 3
MT16 2 MT8 4
MT14 3 MT6 6

5 MSI 2 20 MT7 4
MT10 3 MT2 3
MTU 2 MT4 2

6 MS2 4 21 MTS 2
MT7 7 MT6 4
MT13 2 MT9 2

7 MSI 3 22 MT4 3
MS2 2 MT7 5

MT12 5 MT6 1
8 MS2 5 23 MT2 2

MT8 3 MTl 3
MT10 4 MTS 7

9 MT2 I 24 MT3 4
MT1 2 MT4 2
MT3 4 MT6 5

10 MT1 3 25 MT6 1
MT3 2 MTl 4
MT2 6 MTS 1

11 MT4 3 26 MT10 3
MTl 3 MT13 4
MT5 1 MT7 3

12 MT2 7 27 MT15 2
MTl 2 MT16 3
MT3 6 MT9 5

13 MSI 3 28 MT12 4
MT4 2 MT8 2
MT8 9 MTS 4

14 MT2 2 29 MT8 4
MTl 3 MT9 2
MT4 5 MT2 7

15 MS2 5 30 MT13 2
MS3 4 MT11 6
MS4 I MT12 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

5.5.2 Scheduling Results Using Petri Nets

The Petri net model for sub-system job J l is shown in Figure 5.10. The complete Petri net

model for the whole system can be obtained by merging the shared resources (represented

by Petri net places) o f sub-systems from job Jl through job J30. Appendix lists C

statements which generate the input function and output function of the complete Petri net

model. The structure of graphical Petri net model is completely described by its input and

output functions.

©
Job 1 Available

MSI Available Operation 1

Buffer

Operation 2MS2 Available

C J Buffer

O OperationMT9 Available

Figure 5.10 The Petri net model for the sub-system Jl in Example 5.4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The hybrid algorithm 5.4 is used to solve the above problem. Because the lot size we

consider here is 1 for each job, the computation is not heavy. Thus we set the depth bound

to 0 to perform a pure best-first search. Table 5.13 shows the scheduling results in the

form of a transition firing sequence. The makespan o f the resulting schedule is 30. The

computation time for this schedule on a SUN Sparc 20 is 29 CPU sec. Chen (1994)

modeled this scheduling problem as an integer programming problem and used the

Lagrangian relaxation technique to solve it. The makespan of reported schedule is also 30,

and computation time on a SUN Sparc 5 is 483 CPU sec. Due to the different

computation platforms, the exact comparison of the computation is difficult to obtain. It is

believed that these two approaches are similarly efficient for this example.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

Table S.13 The scheduling results o f Example 5.4

Trans Filing
time

Trans Firing
time

Trans Firing
time

Trans Firing
time

Trans Firing
Time

Trans Firing
time

t29 0 t85 3 *32 6 *142 10 tl62 17 H67 23
128 0 t5I 3 *4 6 *176 11 *99 17 *153 23
t27 0 *48 3 tl74 7 *151 11 t90 17 *101 23
t26 0 *42 3 *115 7 *140 11 tl20 17 *131 23
t25 0 *72 3 tl 13 7 *64 11 t87 17 t45 24
t24 0 *6 3 tl43 7 *175 12 t77 17 *10 24
t23 0 t58 4 *136 7 *173 12 t3 17 t92 25
t22 0 *88 4 *109 7 *169 12 *33 18 tl22 25
t21 0 t78 4 *148 7 *141 12 *63 18 tl57 26
t20 0 *57 4 t91 7 *103 12 *5 18 H59 26
tl9 0 *53 4 *121 7 *133 12 tl68 19 H52 26
H8 0 t49 4 *66 7 *30 12 H50 19 t40 26
tl6 0 *81 4 *17 7 t9 12 *117 19 *70 26
tl4 0 t43 4 tl 19 8 *13 12 H47 19 *8 26
tl2 0 t79 4 tl49 8 *171 13 *67 19 *38 27
*2 0 *116 5 *108 8 *170 13 t93 20 tl61 27
tl 0 *102 5 *132 8 *138 13 H23 20 *95 27

t54 1 *83 5 *34 8 *178 14 tl56 21 tl25 27
t59 2 *44 5 to 8 *94 14 tl07 21 *75 27
*89 2 *31 5 *112 9 tl24 14 tl37 21 *100 28
t56 2 t74 5 *111 9 *37 14 *41 21 *130 28
*86 2 *61 5 *145 9 *60 14 tl29 21 *68 28
*52 2 *118 6 *104 9 *11 14 *71 21 *160 28
t50 2 *146 6 *134 9 *39 15 *15 21 *155 28
*80 2 *114 6 *96 9 *69 15 t97 22 *98 29
*46 2 *110 6 t73 9 *179 16 H27 22 tl05 29
t84 2 *106 6 *166 10 *154 16 *62 22 *135 29
*76 2 *144 6 *164 10 *126 16 *35 22 *128 29
*13 2 *82 6 *139 10 *172 17 *65 22 H58 30

‘S i - 3 -J 2 6 .- 6 t47 10 17 M i l . . 23 -U65-. 30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

5.6 Summary

This chapter investigates FMS scheduling in a Petri net framework. Timed Petri nets

provide an efficient method for representing concurrent activities, shared resources,

precedence constraints and routing flexibility in FMS. We use a hybrid heuristic algorithm

to search for an optimal or near-optimal deadlock-free schedule of an FMS in a Petri net

scheme. The searching scheme is controllable, i.e., if one can afford the memory space

required by a pure BF strategy, the pure BF search can be used to locate an optimal

schedule. Otherwise, the hybrid BF-BT or BT-BF combination can be implemented,

which can cut down the storage requirement at the cost o f a smaller evaluation scope.

The comparison of the presented hybrid method with depth-first search and commonly

used dispatching rules is presented through an FMS scheduling example with routing

flexibility. It shows that the performance of schedules generated by the presented hybrid

method is significantly better than ones generated by depth-first search and two

commonly used dispatching rules. Moreover, the hybrid method always generates a

deadlock free schedule over the range of buffer capacity, while deadlocks can not be

avoided until large amounts of in-process storage are provided for the dispatching

methods.

Further work will be conducted in developing more efficient heuristic functions for

Petri net based FMS scheduling problems, and setting different performance indices such

as minimization of tardiness. The robustness of the resulting systems will also be

investigated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

SCHEDULING FMS WITH MATERIAL HANDLING AND BUFFER
AVAILABILITY CONSIDERED

6.1 Introduction

Even though scheduling of flow-shops and job-shops has been extensively studied by

many researchers (Baker 1974, French 1982, Carlier and Pinson 1989, Dudek et al. 1992,

Van Laarhoven et al. 1992, Luh and Hoitomt 1993), most scheduling algorithms ignore

both material handling and limited buffer space constraints. These algorithms are

appropriate for manufacturing environments in which human intervention is significant and

the equipment used is manual or hard automation (Leon and Wu 1994). For scheduling of

automated manufacturing systems, explicit recognition should be given to auxiliary

resources such as material handling and buffer space. This will increase the scheduling

complexity because deadlock arises from explicit recognition of material handling and

buffer space resources. The inappropriate scheduling decisions may lead to a deadlock

state in which any part flow is inhibited and external intervention is required to reestablish

the product flow. The methods for deadlock prevention and on-line avoidance have been

investigated by some researchers (Banaszak and Krogh 1990, Viswanadham et al. 1990,

Wysk et al. 1991, Zhou and DiCesare 1992, Hsieh and Chang 1994). These methods

separate the deadlock control problem from the scheduling problem and ignore the

schedules of resource allocations.

The purpose of this chapter is to schedule and control an automated manufacturing

system considering both material handling and buffer space. To demonstrate the modeling

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

capability of Petri nets, the example is adopted from a recent paper presented by

Ramaswamy and Joshi (1996), which generates deadlock-free schedules using the

mathematical programming techniques.

6.2 System Description

Example 6.1 (Ramaswamy and Joshi 1996): An automated manufacturing system

illustrated in Figure 6.1 has 3 machines, one robot and one part load/unload station. The

robot is responsible for handling parts between machines, loading from the load station

and unloading to the unload station. There are four jobs as shown in Table 6 .1. The

operation and transporting times are given in Table 6.2, where O y ^ representing the jth

operation of the ith job being performed by the kth machine, Lj representing the loading of

the ith job from the load station, Uj representing the unloading of the ith job to the unload

station, and Ry representing the transporting the ith job for its jth operation.

Machine 1 Machine2

Robot Machine3

I 1
Load/unload station

Figure 6.1 An automated manufacturing system for Example 6 .1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

Table 6.1 Job requirements for Example 6.1

Operations/Jobs ^1 h J3 A

1 M x m 2 M i M 2

2 M2 M i m 2 m 2

3 M 2 M 2 M2 M i

Table 6.2 Operation and transporting times for Example 6.1

Operation Time Transport Time

° 1,1,1 40 Ll 5

0 1,2,2 100 r 1,2 3

°1,3,3 36 Rl,3 5

° 2 ,1,2 65 Ul 4

° 2 ,2,1 45 l 2 5

°2,3,3 98 r 2,2 3

°3,1,1 212 r 2,3 6

°3,2,2 73 U2 4

°3,3,3 32 l 3 6

°4,1,3 35 R3,2 7

°4,2,2 65 R3,3 4

°4,3,1 55 u 3 5

l 4 4

*4 ,2 3

*4,3 5

U4 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

(3 Deadlock-prone and Deadlock-free Schedules

For the above system, if we follow the traditional assumptions in which the material

handling action is ignored and unlimited intermediate storage is available, we can obtain an

optimal schedule for minimizing the makespan by employing Algorithm 4.1 in Chapter 4.

The Petri net sub-model for job J l is shown in Figure 6.2. Similarly we can get Petri net

sub-model for job J2, J3 and J4. The complete Petri net model for the system is obtained

by merging sub-models through shared resources. The Gantt chart of the resulting optimal

schedule is shown in Figure 6.3.

Job 1 Available

Machine 1 Available Machine 1 Processing

Unlimited Buffer

Machine 2 Available Machine 2 Processing

Unlimited Buffer

Machine 3 Available Machine 3 Processing

Final Products

Figure 6.2 The Petri net model for the sub-system Jl under the assumptions that the
material handling action is ignored and unlimited buffer space is available in Example 6.1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

M l

M2

M3

Jl J2
40 45

J3 J4
110 322 357

J2 Jl
45

J4
145 236

Is
J3

301 322 395

J4 J2 J3
145 181 236 334 395 427

Figure 6.3 The optimal schedule without considering material handling and buffer
availability in Example 6.1

In a practical manufacturing environment, the assumption of unlimited buffer space is

unrealistic. For an automated manufacturing cell like Example 6.1, the number of

intermediate storage slots is limited or even zero. Figure 6.4 shows the Petri net model for

sub-system job Jl under the assumption of no intermediate storage is provided. For the

schedule shown in Figure 6.3, it will lead into the deadlock state if no intermediate storage

is provided. So it is an infeasible schedule even though the constraints for precedence

relations and processing times are satisfied. The Petri net model for the intersection of job

Jl and J2 shown in Figure 6.5 can clearly illustrate this situation. Figure 6.5(a) represents

the initial state where all machines and jobs are available. According to the schedule

shown in Figure 6.3, at the time instant 0, both enabled transitions tl and t2 fire, which

represents job Jl starts its first operation on Machine 1 and J2 on Machine 2. Job Jl

finishes its first operation on Machine 1 at time instant 40 and then is waiting for its

second operation on Machine 2, while job J2 finishes its first operation on Machine 2 at

time instant 45 and is waiting for its second operation on Machine 1. This circulating

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

waiting situation leads into a deadlock state in which neither transition t3 nor t4 is firable

as shown in Figure 6.5(b).

Machine 1 Available

Machine 2 Available

Machine 3 Available

Job 1 Available

Machine 1 Processing

Machine 2 Processing

Machine 3 Processing

Final Product

Figure 6.4 The Petri net model for the sub-system Jl under the assumption of no
intermediate storage is provided in Example 6 .1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

(a)

o P2

t2

p4

t4

o p6

t6
' to p8

_j :— t8

0 plO

(b)

Figure 6.5 The initial state (a) and deadlock state (b) for no buffer case in Example 6.1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

Modeling the sub-system J2, J3 and J4 as Jl depicted in Figure 6.4 and merging the

sub-models, we can obtain an optimal deadlock-free schedule by employing the Algorithm

4.1 presented in Chapter 4. The resulting deadlock-free schedule is shown in Figure 6.6 in

the form of Gantt chart.

M l _J2 __ J4 Jl J3 _45 110 120 155 195 407

M2 T7, 14 Jl Jl45 55 120 195 295 407 480

M3 J4 n....... Jl J355 110 208 295 331 480 512

Figure 6.6 The optimal deadlock-free schedule for no buffer case in Example 6 .1

6.4 Multiple Lot Sizes and Finite Buffer Sizes

In the above section, we model and schedule the system when its buffer size is infinite and

when it is zero. Its job lot size for each job is 1. The Petri net models can explicitly and

easily characterize features such as multiple lot sizes and finite buffer sizes in a practical

manufacturing environment, while mathematical programming techniques have

formulation difficulties for these features. In this section, we model and schedule the

system of Example 6.1 for the cases of multiple lot sizes and finite buffer sizes which are

not explored in Ramaswamy and Joshi’s work (1996). In [Ramaswamy and Joshi 1996],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

the lot size o f each job is limited to 1, and the proposed deadlock-free scheme is only

applicable to problems with m machines and Lm/2j buffers.

Figure 6.7 shows the Petri net model for sub-system Jl. Similarly we can construct

models for J2, J3 and J4 and then merge them. The lot size is represented by the number

of tokens in the place representing the number of jobs available and the buffer size by the

number of tokens in the place representing the number of buffer spaces available. The

system with different scenarios of lot sizes and buffer sizes is conveniently and visually

modeled only by varying the available token of those corresponding places in the initial

marking. For example in Figure 6.7, the lot size for the job J l is 4 and the size of two

intermediate buffer is 2 .

Job 1 Available

Machine 1 Available

Machine 2 Available

Machine 1 Processing

Buffer Available

Machine 2 Processing

Buffer Available

Machine 3 Available (v Machine 3 Processing

Final Products

Figure 6.7 The Petri net model for the sub-system Jl with multiple lot sizes and finite
intermediate buffer sizes in Example 6 .1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

Table 6.3 shows scheduling results for several different lot sizes o f this example, and

the size of intermediate buffers is set to 2. Note that we even can set the size of some jobs

to zero without changing the Petri net model but the initial marking. Figure 6.8 shows

scheduling results for a fixed lot size (20, 20, 20, 20) with a varying buffer size. All

generated schedules are deadlock-free because of the use of the Petri net framework and

backtracking capability of developed algorithms.

Table 6.3 The scheduling results for several different lot sizes of Example 6.1

Lot Size Makespan

Jl J2 J3 J4

2 2 0 2 455

S 4 6 3 1942

10 10 10 10 3638

20 20 20 20 7171

7800
7700
7600
7600

,m te*P“ 7400
7300
7200
7100 ■

0

Figure 6.8 The scheduling results of lot size (20, 20, 20, 20) for the varying buffer
size in Example 6.1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 62
buffer mu

130

6.5 Scheduling the Operations of M aterial Handling

To schedule the operations of material handling, Figure 6.9 shows the Petri net model for

the sub-system Jl with the material handler, i.e., robot in this example, as a shared

resource. The Petri net model for the whole system is obtained by merging sub-models.

Using Algorithm 4.1, we obtain the following optimal deadlock-free event sequences for

each shared resource.

Machine 1: <Operation 2 of Job 2, Operation 3 of Job 4, Operation 1 of Job 1,

Operation 2 of Job 3>;

Machine 2: <Operation 1 of Job 2, Operation 2 o f Job 4, Operation 2 of Job 1,

Operation 2 of Job 3>;

Machine 3: <Operation 1 of Job 4, Operation 3 of Job 2, Operation 3 of Job 1,

Operation 3 of Job 3>;

Robot: <Transport Job 4 from load station to Machine 3, Transport Job 2 from load

station to Machine 2, Transport Job 2 from Machine 2 to Machine 1, Transport Job 4

from Machine 3 to Machine 2, Transport Job 2 from Machine 1 to Machine 3,

Transport Job 4 from Machine 2 to Machine 1, Transport Job 4 from Machine 1 to

unload station, Transport Job 1 from load station to Machine 1, Transport Job 1 from

Machine 1 to Machine 2, Transport Job 3 from load station to Machine 1, Transport

Job 2 from Machine 3 to unload station, Transport Job 1 from Machine 2 to Machine

3, Transport Job 1 from Machine 3 to unload station, Transport Job 3 from Machine 1

to Machine 2, Transport Job 3 from Machine 2 to Machine 3, Transport Job 3 from

Machine 3 to unload station>.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The optimal deadlock-free schedule is shown in Figure 6 .10 in the form o f Gantt chart

and the makespan is 560. By employing Algorithm 4.1, the computation time is 0.13 CPU

seconds to generate the schedule in Figure 6.6 when only buffer availablity is considered,

0.41 CPU seconds to generate the schedule in Figure 6.10 when both material handling

and buffer availablity are considered in SUN Sparc 20. In [Ramaswamy and Joshi 1996],

the CPU time is increased from 0.71 seconds to 67.0 seconds in IBM ES/3090-600S for

the above two schedules. It is clear that the use of Petri nets for optimal deadlock-free

scheduling results in a significantly small variation in computation. This is not the case for

mathematical programming case, however.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

Job 1 Available

Machine 1 Available

Processing

Machine 2 Availabli
Loadini

Processing

Machine 3 Available
Loading

Unloading

Final Product

Robot
Available

Figure 6.9 The Petri net model for the sub-system J1 with material handling operations in
Example 6.1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

M l J2 J4 J1
57 122 133 168 178 218 227

J3
439

M2 J 2_ J i . JL J i
9 54 62 128 221 321 446 519

M i J4 J2 JI J3
59 128 227 326 362 523 555

r e n r e J2 J4

54 59 122

J4

168

JI JI J3 FI H 13 13 f3
218 231 321 362 439 519 560

Figure 6.10 The optimal deadlock-free schedule including the operations of material
handling in Example 6 .1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER7

MULTI-CRITERION SCHEDULING BASED ON PETRI NETS AND FUZZY
DISPATCHING RULES

7.1 Introduction

Studies on multi-criterion scheduling are o f relatively recent origin. For simple structured

problems such as single-machine scheduling, branch-and-bound based algorithms are

reported to determine the optimal schedule with respect to a linear combination of two

scheduling objectives (Sen and Gupta 1983, Chen et al 1994). However, depending on the

size o f problem, it is difficult or impossible to derive an optimal schedule for a multi

criterion problem. Computer simulation using heuristic dispatching rules has been

commonly used for FMS scheduling (Montazeri and Wassenhove 1990). The dispatching

rules, such as SPT (Shortest Processing Time), EDD (Earliest Due Date), S/RO (Slack

per Remaining Operation), and FCFS (First Come First Served), are employed to resolve

conflicts between the jobs in the input queue o f available machine tools. These rules can be

classified as being static or dynamic, e.g., SPT and EDD (assuming processing times and

due dates are fixed) are static, while S/RO is dynamic. Each of these dispatching rules

aims at satisfying a single criterion. A rule that performs well when one measure is used

may not do well for another measure (Blackstone et al. 1982). Fuzzy logic based methods

are reported to deal with multicriteria decision-making problems (Watanabe, Tokumaru

and Nakajima 1992, Grabot and Geneste 1994, Custodio et al 1994). Considering the

linguistic characteristics o f criteria, Watanabe et al. (1992) employed fuzzy inference to

take both profit and slack criteria into account.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

The goal of this chapter is to propose a way to employ fuzzy dispatching rules in a

Petri net framework. It allows to obtain a compromise between the satisfaction of several

criteria. Petri nets can concisely model the concurrent and asynchronous activities, shared

resources, and precedence constraints in FMS. Associating the time with places or

transitions in a Petri net allows it to describe a system whose functioning is time-

dependent. Since each transition in a conflict set corresponds to each part type which

competes for an available resource for the next operation, the dispatching rules are

employed to select one of the enabled transitions to fire in each conflict set. Considering

the fact that no dispatching rule has been shown to generate good performance

simultaneously for several criteria, combination rules derived from fuzzy logic are used.

The specific objectives of this chapter are:

1. To derive fuzzy dispatching rules from elementary dispatching rules based on fuzzy

logic.

2. To present an algorithm for multi-criterion scheduling based on timed (place) Petri

nets. The Petri net model resolves conflicting transition firings using fuzzy

dispatching rules.

3. To illustrate the method through a scheduling example.

7.2 Fuzzy Dispatching Rules

Simulation research on the analysis of performance o f different dispatching rules has been

reported in the literature (Blackstone, Phillips and Hogg 1982, Montazeri and

Wassenhove 1990, Karsiti et al. 1992). These studies give very few general results, since

the performance of dispatching rules depends strongly on the criterion chosen and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

environment of manufacturing systems. Generally simple dispatching rules are separated

into three classes, rules involving processing time, rules involving due dates and rules

involving neither processing times nor due dates.

Rules involving processing time. Some of these are:

(a) Shortest processing time: Select the job with the shortest processing time at the

current operation.

(b) Least total remaining processing time: Select the job with the least total remaining

processing time.

(c) Most total remaining processing time: Select the job with the largest total

remaining processing time.

Rules involving due dates. Some of these are:

(a) Earliest due date: Select the job with the earliest due date.

(b) Slack time: Select the job with the lowest slack time.

(c) Slack per remaining operation: Select a job with the smallest ratio of slack to

operations remaining to be performed.

Rules involving neither processing times nor due dates. Some of these are:

(a) First come, first served: Select a job that has been in the machine’s queue the

longest.

(b) First in system, first served: Select a job that has bee on the shop floor the longest.

(c) Random: Select a job at random.

The purpose here is not to give an extensive performance evaluation of these

dispatching rules, which have been investigated in the literature mentioned above. We shall

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

focus our attention on some o f the most common rules to demonstrate the advantage of

combined rules for multi-criterion scheduling.

The researchers have proposed several ways to combine elementary dispatching rules

(Blackstone, Phillips and Hogg 1982). In this chapter, based on fuzzy logic, we derive a

fuzzy dispatching rule which can describe multiple-variety and the linguistic-form

characteristics o f the scheduling objectives in flexible manufacturing. We summarize some

concepts and methods of fuzzy set and fuzzy logic needed to present the results in this

thesis (Lee 1990, Klir and Folger 1991).

A crisp set assigns a value of either 1 or 0 to each individual in the universal set to

discriminate between members and nonmembers of the set. If the values assigned to the

elements of the universal set fall within a specified range and indicate the membership

grade of these elements in the set, we obtain a fuzzy set. A fuzzy set F in a universe of

discourse U is characterized by a membership Junction |xp which takes values in the

interval [0, 1], namely, \ijr. U —► [0, 1].

The use of fuzzy sets provides a basis for the manipulation of linguistic variables

which may be vague and imprecise. The values of a linguistic variable are defined in

linguistic terms. For example, if operation time is interpreted as a linguistic variable, then

its values could be defined in the term set [short, long, very long, ...}, while each term is

characterized by a fuzzy number. A fuzzy number is a convex and normalized fuzzy set

defined on real line R whose membership function is piecewise continuous.

The priority of job processing might often be characterized by a set o f linguistic

description rules based on expert knowledge. The rules are usually taken in the form of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

IF (a set o f conditions care satisfied) THEN (a set o f consequences can be inferred).

We consider a rule base that has two fuzzy rules as follows:

R j: i f x is A i andy isB j then z is C/,

R2 -‘ i f x is A 2 andy is B2 then z is C2 -

where x, y and z are linguistic variables representing the process state variables and the

output control variable, and A/, Bj and C/ are the linguistic values of the linguistic

variables x, y and z, i = 1, 2 respectively.

Now we have two crisp inputs x q and yg, the contribution of the first and second rules

to the consequence can be expressed using the firing strengths a / and with

* l = VA](xO)A VBl(yo\

a 2 = M &O) A

where "a " representing the minimum operation or the algebraic product.

Tsukamoto (1979) proposed a fuzzy reasoning method when the membership

functions of fuzzy sets A;, Bj and C/ are monotonous. Supposed that the result inferred

from the first rule is a / such that a / = and the result inferred from the second

rule is a 2 such that a 2 - W Z feih a consequent output is given by

aiZi + aiZi . . .Zt = (1)
ai + ari

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

Based on SPT (Shortest Processing Time) and S/RO (Slack per Remaining

Operation), two fuzzy dispatching rules for determining the priority of the jobs are

introduced as follows:

I f (imminent processing time is short) & (slack per remaining operation is short) then

(priority is high).

I f (imminent processing time is long) & (slack per remaining operation is long) then

(priority is low).

where job slack equals to the due date minus current time and remaining processing time.

The linguistic variables imminent processing time, slack per remaining operation and

priority are characterized by the membership functions of their corresponding value terms

which are shown in Figure 7.1 (a), (b) and (c) respectively.

Using the membership functions given in Figure 7.1, precise priority of a job in conflict

can be obtained through formula (1) for the given crisp imminent processing time and

slack per remaining operation of corresponding job, where we employ the algebraic

product as operation "a " for preserving the contribution of each input variable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

Membership de^te Membenhip degree Manberchip degree

Long Low

PriorityS/ROIPT

(a) (b) (c)

Figure 7.1 Membership functions

7.3 Scheduling Using Timed Petri Nets and Fuzzy Dispatching Rules

We use deterministic P-timed Petri nets modeling FMS for scheduling. In our modeling

process, a place represents a resource status or an operation, a transition represents either

start or completion of an event or operation process, and the stop transition for one

activity will be the same as the start transition for the next activity. Token(s) in the

resource place indicates that the resource is available and no token indicates that it is not

available. A token in the operation place represents that the operation is being executed

and no token shows none being performed.

In a P-timed Petri net, at any time t, the present marking m is the sum of the available

tokens and unavailable tokens, which represent the concurrency of operations associated

with the places. By keeping track of time for marked places, a transition is enabled for the

present marking only if it is enabled by the available tokens. For the scheme of functioning

at the maximal speed, a transition is fired as soon as it is enabled, and this firing has a zero

duration. Firing a transition is carried out by removing one available token from each input

place and depositing a token to each output place. The deposited token in place p j is

unavailable for time interval (t, t+<//), where t is the current time and d\ is the timing delay

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

associated with place p/. In our FMS modeling, this token unavailable interval corresponds

to the working duration of a machine processing a part. A structural conflict exists when

two or more transitions share the same place as an input, e.g., in the case of sharing of a

common resource in an FMS scheduling problem. An (effective) conflicting set IJm) is

defined as a set of enabled transitions for the marking m, if for every pair of transitions in

the set, firing of one transition disables another. Each transition in a conflicting set

corresponds to a start activity of a job type which competes for an available resource

(machine) for imminent operation. The dynamic priority obtained from the fuzzy

dispatching rules is used to select one of the enabled transitions to fire in each conflicting

set. Based on the execution scheme o f timed Petri nets functioning at the maximal speed,

we give the following scheduling algorithm for P-timed Petri nets modeling an FMS. The

schedules generated from the Petri nets functioning at maximal speed are nondelay

schedules. The nondelay schedules are ones such that a machine is never idle when its

queue is nonempty. In this chapter, the problems are confined to FMS with fixed routings.

In this case, every pair of conflicting sets r fm) and fym) are disjoint.

Algorithm 7.1:

Step I: Initialization of the marking. The time-ordered sequence only contains the

initial time / = 0. All the initial tokens are available and J - 0 . Go to Step 3.

Step 2: Consider the first time t o f the time-order sequence.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

Step 2.1: If the marking m is the final marking, then End. The schedule is a list o f

operation start times which are the firing instants of transitions representing the start

events o f corresponding operations. Otherwise,

Step 2.2: Add set J o f the tokens which become available at instant t to the set o f

tokens already available.

Step 3: Erase instant t from the time-ordered sequence.

Step 3.1: If the set o f enabled transitions is empty, go to Step 2. Otherwise,

Step 3.2: Determine the (effective) conflicting sets E j(m), r^ m), ..Tflm).

Step 3.3: For every conflicting set r fm) (r=l,2,.../), Using the fuzzy dispatching rules

determine the crisp firing priority (fuzzy reasoning, form ula (If) of each transition in

the set. The transition with the highest priority is selected to fire (if two or more, select

one at random).

Step 3.4: Fire all transitions selected in Step 3.3. Add, to the time-ordered sequence,

the instants where the tokens deposited become available. Go to Step 2.

7.4 An Example

Example 7.1: Consider a four-machine, four-job scheduling problem shown in Table 7.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

Table 7.1 Job Requirements o f Example 7.1

Job

Operation JI J2 J3 J4

1 (M l,5) (M2,8) (M2,3) (M l, 2)

2 (M2,3) (M4,6) (M4,6) (M3,2)

3 (M3,7) (M3,2) (M3,4) (M2,7)

4 (M 4,l) (Ml,5) (M l,4) (M4,3)

Due Date 35 35 35 35

In this example, we have four machines M l, M2, M3 and M4, four jobs JI, J2, J3 and

J4. The precedence relationships among the operations and working time of each

operation on the assigned machine for each job are shown in the table. For an FMS having

control over due dates, the due date information for each job is also indicated in the table.

The goal is to find a schedule that obtains a compromise between the satisfaction of

several criteria. Among them are minimizing average flaw time, the time required to

complete all jobs (makespan), average tardiness and maximum tardiness.

The bottom-up method is used to synthesize the system, i.e., the system is partitioned

into sub-systems according to the job types, then sub-models are constructed for each sub

systems, and a complete net model for the entire process is obtained by merging Petri nets

of the sub-systems through the places representing the shared machines. The Petri net sub

model for job JI is shown in Figure 7.2. Similarly we can get Petri net model for job J2, J3

and J4. The complete Perti net model for the system is obtained by merging Petri nets of

the job types JI, J2, J3 and J4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

Machine 1 Available

Machine 2 Available

Machine 4 Available

Job 1 Available

Machine 1 Processing

Buffer

Machine 2 Processing

Buffer

Machine 3 Available ^ 0 £) Machine 3 Processing

O

6
Buffer

Machine 4 Processing

’ r

Final product

Figure 7.2 The petri net model of the sub-system Job 1 in Example 7.1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

Based on the Petri nets models, SPT, S/RO and fuzzy dispatching rules are tested for

scheduling problem o f the above example. The used performance criteria are average

flowtime and average lateness. The lateness is the amount of time by which the completion

time of the job exceeds its due data, with a negative lateness indicating an early

completion. We use an absolute value of lateness for each job in computing the average

lateness in light o f the just-in-time concept. Figure 7.3 (a), (b) and (c) show the

performance results using different dispatching rules for each job size 1, 5 and 20

respectively, assuming each job has the same lot size in these four cases. The fuzzy

dispatching rules which combine SPT and S/RO based on fuzzy logic obtain a compromise

between the average flowtime and the average lateness.

7.4 Summary

Heuristic dispatching rules are often adopted to determine the priority o f jobs for

processing in flexible manufacturing. Fuzzy dispatching rules can represent the multiple-

variety and the linguistic-form characteristics of the scheduling objectives. This research

combines the Petri nets and heuristic dispatching rules into a unified scheme to explore the

modeling ability o f Petri nets and decision efficiency of dispatching rules. Compared with

the simulation model (Grabot et al. 1994), our model is easier to develop and can be

directly implemented into Petri net controllers.

However, the present research just demonstrates a direction, the simple fuzzy

dispatching rules should be developed into a more comprehensive fuzzy dispatching rule

base. But because of unavailability of expert knowledge, we do not explore it further.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

M ira g t
ffowtfm*

a v m g c

(a)

(b)

L I I ------
iw rig i average
flow time lateness

(C)

Figure 7.3 Average flowtime and lateness with each job size 1 (a), 5 (b) and 20 (c)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The above algorithm is implemented based on single pass priority dispatching rules, in

which, once a decision made by the operation o f the rule, it is implemented without

reconsideration of alternative courses of action. Hence it cannot prevent the deadlock

states. For the computation results shown in Figure 7.4, unlimited amounts o f in-process

storage are supposed. However, deadlock can arise from the explicit recognition of buffer

space resources, which we have demonstrated and resolved in Chapter 5. That is why we

develop deadlock-free scheduling algorithms in Chapters 4 and 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8

CONCLUSIONS

8.1 Contributions

A flexible manufacturing system (FMS) is a computerized production system that can

simultaneously manufacture multiple types o f products using various resources such as

robots and multi-purpose machines. The central problems associated with design of

flexible manufacturing systems are related to process planning, scheduling, coordination

control, and monitoring. This thesis presents a Petri net based method for deadlock-free

scheduling and discrete event control of flexible manufacturing systems. Petri nets are a

graphical and mathematical modeling tool applicable to many systems. Petri nets can

explicitly and concisely model the concurrent and asynchronous activities, multi-layer

resource sharing, routing flexibility, limited buffers and precedence constraints in FMS.

Using the concept of markings, the evolution o f the system can be completely tracked by

the reachability graph of the net. Associating the time with places or transitions in a Petri

net allows it to describe a system whose functioning is time-dependent. The problem of

FMS deadlock has been ignored by most research in scheduling and control based on

methods such as mathematical programming, heuristics dispatching and knowledge-based,

and control theoretic methods, while Petri nets can provide an explicit and convenient way

for considering deadlock situations in FMSs such that a deadlock-free scheduling and

control system can be designed. They are easier to represent and understand compared

with the algebraic equations and inequalities used in mathematical programming.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

The contributions of this work are multifold. First, it develops a methodology for

discrete event controller synthesis for a class of flexible manufacturing systems in a timed

Petri net framework. The resulting Petri nets have the desired qualitative properties of

liveness, boundedness (safeness), and reversibility, which imply freedom from deadlock,

no capacity overflow, and cyclic behavior respectively. This precludes the costly

mathematical analysis for these properties and reduces on-line computation overhead to

avoid deadlocks. The performances and sensitivities of resulting Petri nets are evaluated.

Even though there are several studies in this aspect (Krogh and Beck 1986, Koh and

DiCesare 1991, Zhou, DiCesare and Desrochers 1992), for the system with multi-layer

resource-sharing and different products sets manufactured concurrently, modeling of a

Petri net controller with desirable properties becomes extremely difficult based on their

methods. Their methods focus on the logical behavior only. The developed method starts

with a bottom-up approach and search for the best performance sequence of events and

then synthesize the desirable Petri net controllers.

Second, it introduces a hybrid heuristic search algorithm based on Petri nets for

deadlock-free scheduling of flexible manufacturing systems. The issues such as

deadlocking, routing flexibility, multiple lot sizes, limited buffer sizes and material

handling (loading/unloading) are explored. Even though Lee and DiCesare (1994)

presented a scheduling method using Petri nets and heuristic search, their proposed

heuristic functions do not guarantee to satisfy the admissible condition (Pearl 1984).

Moreover, no deadlock issues are discussed in their demonstrated examples because they

always put an intermediate place which serves as the role of a buffer with unlimited

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

capacity between two operations. Recently, Ramaswamy and Joshi (1996) applied integer

programming techniques for deadlock-free scheduling of automated manufacturing

workstations. Although both material handling and buffer space are explicitly considered

in their generated schedules, the proposed deadlock-free scheme is only applicable to

problems with m machines and Lm/2j buffers. Other characteristics of FMS such as

multiple lot sizes, multiple buffers and routing flexibility are not explored in their work.

Third, it proposes a way to employ fuzzy dispatching rules in a Petri net framework

for multi-criterion scheduling. Compared with the simulation model (Grabot et al. 1994),

our model is easier to develop and can be directly implemented into Petri net controllers.

Finally, it shows the effectiveness o f developed methods through examples compared

with benchmark dispatching rules, integer programming and Lagrangian relaxation

approaches.

8.2 Further Research

The present work has its limitations. These limitations can be overcome with further

research.

1. Given the limited degrees of freedom for part movement and staging, it is very

important to decide when to introduce a new part into the system. Many parts in

the system can lead to congestion, while few parts in the system result in under

utilization of equipment. Control theoretic based methods provide an effective way

to control the part release problem. The presented Petri net based method does not

provide the part release control scheme. This has to be addressed in many

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

manufacturing applications.

2. One of the major problems in simulating FMS is to describe stochastic behavior,

such as failures o f machine tools, repair time, variations of processing time. The

presented work is based on deterministic timed Petri nets and does not handle the

stochastic situations. The work on the evaluation o f the sensitivity in this thesis is a

good start to this problem.

3. The synthesized discrete event controller is a marked graph, which is not

applicable to systems containing routing flexibility, assembly and disassembly

processes.

4. Even though the employed heuristic function is admissible, a more effective

admissible heuristic function is desired to reduce the search effort. For hybrid

search schemes, instead o f employing BT on the top and BF on the bottom or vice

versa, a more effective way should be employing BT and BF interchangeably based

on the current state. This requires a comprehensive analysis of proposed schemes.

5. The research presented in Chapter 7 demonstrates a research direction which may

lead to many important contributions. The simple fiizzy dispatching rules should be

developed into a more comprehensive fuzzy dispatching rule base. Moreover, the

work should contain deadlock avoidance scheme.

6 . The number o f each type of resources is supposed to be 1. This is not the case in

some manufacturing systems. For example, a system may have two or more same

type machines. Colored Petri nets have their potential to model this kind of

systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. Even though we present an example for scheduling semiconductor manufacturing,

some unique features o f semiconductor lines are not explored. These features

include random entries o f parts, reentrant product flows and part disassembly.

8 . The FMS examples demonstrated in this work are still confined to the academic

research. A more practical FMS should be investigated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX

THE INPUT AND OUTPUT FUNCTIONS OF PETRI NET MODEL OF
EXAMPLE 5.4

This appendix contains C statements which generate the input function and output

function of the complete Petri net model o f Example 5.4

numPlaces = 230; /*number of places in the net*/
numTrans = 180; /*number of transitions in the net*/
numJobs = 30; /*number of jobs to be scheduled*/
numMachines = 20; /’ number of resources*/

/’ Initialize all entries o f input and output matrixes to 0*/
for (int i = 0; i < numPlaces; i+ +)

for (intj = 0; j < numTrans; j+ +)
{
inputArc[i][j] = 0;
outputArc[i](j] = 0;
}

/♦For arcs existing from places (not including resource places) to transitions, set
corresponding entries in the input matrix to 1*/
for (i = 0; i < numTrans; i+ +)

inputArc[i][i] = 1;

/♦For arcs existing from transitions to places (not including resource places), set
corresponding entries in the output matrix to 1*1
for (j = 0; j < numTrans; j+ +)

inputAic[j+numJobs][i] = 1;

/♦For the arcs connecting to and from shared resource places, set corresponding entries in
the input and output matrixes to 1*/

j = 0; /*For Job 1*/
inputArc[MSl][j] = 1; inputArc[MS2][j+60] = 1; inputArc[MT9][j+120] = 1;
outputArc[MSl][j+30] = 1; outputArc[MS2] [j+90] = 1; outputArc(MT9][j+150] = 1;
j * 1; /♦ForJob2*1
inputArc[MS3][j] = 1; inputArc[MS2][j+60] = 1; inputArc[MT10][j+120] = 1;
outputArc[MS3] [j+30] = 1; outputArc[MS2] [j+90] = 1; outputArc[MT10][j+150] = 1;
j = 2; /♦For Job 3*/
inputArc(MS4][j] = 1; inputArc[MT8][j+60] = 1; inputArc[MT15][j+120] = 1;
outputArc[MS4][j+30] = 1; outputArc[MT8] [j+90] = 1; outputArc[MT15][j+1501 = 1;
j = 3; /*For Job 4*/
inputArc[MS2][j] = 1; inputArc[MT 16][j+60] = 1; inputArc[MTl4][j+120] = 1;
outputArc[MS2] [j+30] = 1; outputArc[MT16][j+90] = 1; outputArc[MT14][j+150] = 1;
j = 4; /♦For Job 5*1
inputArc[MSl][j] = 1; inputArc[MT10][j+60] = 1; inputArc[M Tll][j+ 120J = 1;

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

outputArc[MSl][j+30] = 1; outputArc[MT10][j+90] = 1; outputArc[MTll][)+150] = 1;
j = 5; /*For Job 6*/
inputArc[MS2][j] = 1; inputArc[MT7][j+60] = 1; inpulArc[MT13][j+120] - 1;
OUtputArc[MS2][j+30] = 1; outputArc[MT7][j+90] = 1; outputArc[MT13][j+150] = 1;
j* 6 ; /*For Job 1*1
inputAxc[MSl][j] = 1; inputArc[MS2] [j+60] = 1; inputArc[MT12][j+120] = 1;
outputArcfMS 1] [j+30] = 1; outputArc[MS2] [j+90] = 1; outputArc[MT12][j+150] = 1;
j = 7; /*For Job 8*/
inputArc(MS2][j] = 1; inputArc[MT8][j+60] = 1; inpufArc[MTI0][j+I20] = 1;
oulputArc[MS2] [j+30] = 1; outputArc[MT8] [j+90] = 1; outputArc[MT10][j+150] = I;
j = 8; /*For Job 9*/
inputAic[MT2][j] = 1; inputArc[MTl][j+60] = 1; inputArc[MT3][j+120] = 1;
outputArc[MT2] [j+30] = 1; outputArc[MTl][j+90] = 1; outputArc[MT3][j+150] = 1;
j = 9; /*For Job 10*/
inputArc[MTl][j] = 1; inputArc[MT3][j+60] = 1; inputArc[MT2][j+120] = 1;
outputArc[MTl][j+30] = 1; outputArc[MT3][j+90] = 1; outputArc[MT2][j+150] = 1;
j = 10; /*For Job 11*/
inputArc[MT4][j] = 1; inputArc[MTl][j+60] = 1; inputArc[MT5][j+120] = 1;
outputArc[MT4] [j+30] = 1; outputArc[MTl][j+90] = 1; outputArc[MT5][j+150] = 1;
j= 11; /*For Job 12*/
inputArc[MT2][j] = 1; inputArc[MT 1][j+60] = 1; inputArc[MT3][j+120] = 1;
outputArc[MT2] [j+30] = 1; outputArc[MTl][j+90] = 1; outputArc[MT3][j+150] = 1;
j = 12; /♦For Job 13*/
inputArc[MSl][j] = 1; inputArc[MT4][j+60] = 1; inputArc[MT8][j+120] = 1;
OUtputAjc[MSl][j+30] = 1; outputAic[MT4][j+90] = 1; OutputArc[MT8][j+150] = 1;
j = 13; /*For Job 14*/
inputArc[MT2][j] = 1; inputArc[MTl][j+60] = 1; inputArc[MT4][j+120] = 1;
outputAic(MT2]Q+30] = 1; outputAic[MTl][j+90] = 1; outputArc[MT4][j+150] = 1;
j * 14; /*ForJiob 15*/
inputArc[MS2][j] = 1; inputArc(MS3] [j+60] = 1; inputArc[MS4][j+120] = 1;
outputArc[MS2] [j+30] = 1; outputArc[MS3] [j+90] = 1; outputArc[MS4][j+150] = 1;
j * 15; /*For Job 16*/
inputArc[MT4][j] = 1; inputArc[MT3][j+60] = 1; inputArc[MT l][j+ 120] = 1;
outputArc[MT4][j+30] = 1; outputArc[MT3][j+90] = 1; outputArc[MT 1] [j+150] = 1;
j * 16; /‘ For Job 17*/
inputArc[MTl][j] = 1; inputArc[MT5][j+60] = 1; inputArc[MT4][j+120] = 1;
outputArcfMT 1] [j+30] = 1; oulputArc[MT5] [j+90] = 1; outputArc[MT4][j+150] = 1;
j = 17; /*For Job 18*/
inputArc[MT5][j] = 1; inputArc[MT4][j+60] = 1; inputArc[MT3][j+l20] = 1;
oulpulArc[MT5][j+30] = 1; out|HitArc[MT4][j+90] = 1; ouQ)UtArc[MT3][j+150] = 1;
j = 18; /*For Job 19*/
inputArc[MT9][j] - 1; inpulArc[MT8] [j+60] = 1; inputArc[MT6][j+120] = 1;
output\rc[MT9] [j+30] = 20; outputArc[MT8] [j+90] = 1; outputArc[MT6][j+150] = 1;
j = 19; /*For Job 1*/
inputArc[MT7][j] = 1; inputArc[MT2][j+60] = 1; inputArc[MT4][j+120] = 1;
oulputArc[MT7] [j+30] = 1; outputArc[MT2][j+90] = 1; outputArc[MT4][j+150] = 1;
j = 20; /*For Job21*/
inputArc[MT5][j] = 1; inputArc[MT6][j+60] = 1; inputArc[MT9][j+120] = 1;
outputArc[MT5][j+30] = 1; outputArc[MT6][j+90] = 1; outputArc[MT9][j+150] = 1;
j = 21; /*For Job 22*/
inputArc[MT4][j] = 1; inputArc[MT7] [j+60] = 1; inputArc[MT6][j+120] = 1;
outputAic[MT4][j+30] = 1; outputArc[MT7][j+90] = 1; outputArc[MT6][j+150] = 1;
j = 22; /*For Job 23*/
inputArc[MT2][j] = 1; inputArc[MTl][j+60] = 1; inputArc[MT5][j+120] = 1;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

outputAic(MT2] [j+30] = 1; outputArc[MTl][j+90] = 1; oulputArc[MT5][j+150] = 1;
j *23; /*For Job 24*/
inputArc[MT3][j] = 1; inputArc[MT4][j+60] - 1; inputArc[MT6][j+l20] = 1;
outputArc[MT3][j+30] = 1; outputArc[MT4][j+90] = 1; outputArc[MT6] [j+150] = 1;
j *24; /*For Jiob25*/
inpulArc[MT6][j] = 1; inputArc(MTl]0+6O] = 1; inputArc[MT5][j+l20] = 1;
outputArc[MT6] [j+30] = 1; outputArc[MTlj[j+90] = 1; outputArc[MT5][j+150] = 1;
j = 25; /*For Job 26*/
U9UtAic{MT10][j] - 1; inputArc[MT13][j+60] = 1; inputAre[MT7]|j+120] = 1;
outputArc[MT10][j+30] - 1; outputArc[MT13][j+90] = 1; outputArc[MT7](j+150] = 1;
j = 26; /*For Job 27*/
inputArc[MT15][j] = 1; inputArc[MT16][j+60] = 1; inputArc[MT9][j+120] = 1;
outputArc(MT15][j+30] = 1; outputArc[MT16][j+90] = 1; outputArc[MT9] [j+150] = 1;
j = 27; /♦For Job 28*/
inputArc[MT12][j] = 1; inputArc[MT8] [j+60] = 1; inputArc(MT5][j+120] = 1;
outputAic[MT12][j+30]s 1; outputArc[MT81[j+90] = l; outputArc[MT5][j+150] = 1;
j = 28; /*For Job 29*/
inputArc[MT8][i]= 1; inputArc[MT9] [j+60] = 1; inputArc[MT2][j+120] = 1;
outputArc[MT8][j+30] = 1; outputArc[MT9] [j+90] = 1; outputArc[MT2][j+150] = 1;
j = 29; /*For Job 30*/
ioputArc[MT13]|j] = 1; inputArc[MTl l][j+60] - 1; inputAre[MT12][j+120] - 1;
outputArc[MT13][j+30] = 1; outputArc[MTll][j+90] = 1; outputArc[MT12][j+150] = 1;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

T. Agerwala and Y. Choed-Amphai, “A synthesis rule for concurrent systems,” in
Proceedings o f 15th Design Automation Cortf., Las Vegas, NV, pp. 305>311,
1978.

R. G. Askin and C. R. Standridge, Modeling and Analysis o f Manufacturing Systems,
John Wiley & Sons, Inc., NY, 1993.

F. Baccelli and Z. Liu, “Comparison properties of stochastic decision free Petri nets,”
IEEE Trans on Automatic Control, vol. 37, no. 12, pp. 1905-1920, 1992.

K. R. Baker, Introduction to Sequencing and Scheduling, John Wiley & Sons, New York,
1974.

C. Basnet and J. Mize, “Scheduling and control of flexible manufacturing systems: a
critical review,” Int. J. o f Computer Integrated Manufacturing, vol. 7, no. 6 , pp.
340-355,1994.

Z. Banaszak and B. Krogh, “Deadlock avoidance in flexible manufacturing systems with
concurrently competing process flows,” IEEE Trans, on Robotics and
Automation, vol. 6 , no. 6 , pp. 724-734, 1990.

O. Berman and O. Maimon, “Cooperation among flexible manufacturing systems,” IEEE
J. o f Robotics and Automation, vol. 2, no. 1, pp. 24-30, 1986.

J. H. Blackstone, D. T. Phillips and G. L. Hogg, “A state-of-the-art survey of dispatching
rules for manufacturing job shop operations,” Int. J. o f Production Research, vol.
20, no. 1, pp. 27-45, 1982.

J. Blazewicz, H. Eiselt, G. Finke, G. Laporte and J. Weglarz, “Scheduling tasks and
vehicles in a flexible manufacturing system,” Int. J. o f Flexible M anufacturing
Systems, 4, pp. 5-16, 1991.

J. Campos, G. Chiola, J. M. Colom and M. Silva, <cProperties and performance bounds for
timed marked graphs,” IEEE Trans, on Circuits and Systems, vol. 39, no.5, pp.
386-401,1992.

J. Carlier and E. Pinson, “An algorithm for solving the job-shop problem,” Management
Science, vol. 35, no. 2, pp. 164-176, 1989.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

J. K. Chaar, D. Teichroew and R. A. Volz, “Developing manufacturing control software:
a survey and critique,” Int. J. o f Flexible Manufacturing Systems, 5, pp. 53-58,
1993.

O. Cbaralambous and K. Hindi “A knowledge based job-shop scheduling system with
controlled backtracking,” Computer and Industrial Engineering, vol. 24, no. 3,
pp. 391-400, 1993.

T. R. Choi, Scheduling fo r IC Sort and Test Facilities via Lagrangian Relaxation, Ph.D.
Dissertation, University of Carlifornia at Davis, CA, 1994.

Q. Chen and J. Y. Luh, “Operational scheduling using truncated Petri net technique,” in
Proceedings o f IEEE Workshop on Emerging Technologies and Factory
Automation, Melbourne, Australia, pp. 230-235, Aug. 1992.

T. Chen, X. Qi and F. Tu, “A bicriteria scheduling problem with earliness and tardiness
penalties,” in Proceedings o f the 33nd Conf on Decision and Control, Lake
Buena Vista, FL, pp. 1577-1582, Dec. 1994.

H. Cho, T. K. Kumaran and R. A. Wysk, “Graph-theoretic deadlock detection and
resolution for flexible manufacturing systems,” IEEE Trans, on Robotics and
Automation, vol. 11, no. 3, pp. 413-421, 1995.

L. Custodio, J. Sentieiro and C. Bispo, “Production planning and scheduling using a fuzzy
decision system,” IEEE Trans, on Robotics and Automation, vol. 10, no. 2, pp.
160-168, 1994.

C. S. Czerwinslri and P. B. Luh, “Scheduling Products with bills of materials using an
improved Lagrangian relaxation technique,” IEEE Trans, on Robotics and
Automation, vol. 10, no. 2, pp. 99-111, 1994.

R. David and H. Alla, Petri Nets and Grafcet, Prentice Hall International (UK) Ltd, 1992.

R. David and H. Alla, “Petri nets for modeling of dynamic systems - a survey,”
Automatica, vol. 30, no. 2, pp. 175-202, 1994.

F. DiCesare and A. A Desrochers, “Modeling, control, and performance analysis of
automated manufacturing systems using Petri nets,” Control and Dynamic
Systems, C. T. Leondes (Ed.), vol. 47, pp. 121-172, Academic Press, MA, 1991.

Z. Doulgeri, G. D'alessandro and N. Magaletti “A hierarchical knowledge-based
scheduling and control for FMSs,” Int. J. o f Computer Integrated Manufacturing,
vol. 6, no. 3, pp. 191-200, 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

R. A. Dudek, S. S. Panwalkar and M. L. Smith, “The lessons of flowshop scheduling
research,” Operations Research, vol. 40, no. 1, pp.86-98, 1992.

0 . Dunlder, C. M. Mitchell, T. Govindaraj, and J. C. Ammons, “The effectiveness of
supervisory control strategies in scheduling flexible manufacturing systems,” IEEE
Trans, on Systems, Man, and Cybernetics, vol. 18, no. 2, pp. 223-237, 1988.

E. Falkenauer and S. Bouffouix, “A genetic algorithm for job shop,” in Proceedings o f
1991 IEEE Int. Conf. on Robotics and Automation, Sacramento, CA, pp. 824-
829, April, 1991.

L. Ferrarini, “An incremental approach to logic controller design with Petri nets,” IEEE
Trans, on Systems, Man, and Cybernetics, vol. 23, no. 3, pp. 461-473, 1992.

L. Ferrarini, M. Narduzzi and M. Tassan-Solet, “A new approach to modular liveness
analysis conceived for large logical controller’s design,” IEEE Trans, on Robotics
and Automation, vol. 10, no. 2, pp. 169-184,1994.

S. France, Sequencing and Scheduling: An Introduction to the Mathematics o f the Job-
Shop. New York: Wiley, NY, 1982.

P. Freedman, “Time, Petri Nets, and Robotics,” IEEE Trans, on Robotics and
Automation, vol. 7, no. 4, pp. 417-433, 1991.

B. Grabot and L. Geneste, “Dispatching rules in scheduling: a fuzzy approach,” Int. J. o f
Production Research, vol. 32, no. 4, pp. 903-915, 1994.

1. Hatono, K. Yamagata and H. Tamura, “Modeling and on-line scheduling of flexible
manufacturing systems using stochastic Petri nets,” IEEE Trans, on Software
Engineering, vol. 17, no. 2, pp. 126-132,1991.

H. P. Hillion and J. M. Proth, “Performance evaluation of job-shop systems using timed
event-graphs,” IEEE Trans, on Automatic Control, vol. 34, no. 1, pp. 3-9, 1989.

D. Y. Hsieh and S. C. Chang, “Dispatching-driven deadlock avoidance controller
synthesis for flexible manufacturing systems,” IEEE Trans, on Robotics and
Automation, vol. 10, no. 2, pp. 196-209, 1994.

IEC, Technical Committee 65: Industrial Process Measurement and Control,
Subcommittee 65A, Working Group 6 (1990). Part 3: Programming Languages,
March, 1990.

N. Ishii and J. Talavage, “A mixed dispatching rule approach in FMS scheduling,” Int. J.
o f Flexible Manufacturing Systems, vol. 6 , no. 1, pp. 69-87,1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

M. A. Jafari, “Performance modeling of a flexible manufacturing cell with two
workstations and a single material handling device,” in Proceedings o f 1987 IEEE
Int. Corf, on Robotics and Automation, pp. 866-871, 1987.

M. A. Jafari, “An architecture for a shop-floor controller using colored Petri nets,” Int. J.
o f Flexible Manufacturing Systems, vol. 4, no. 1, pp. 159-181,1992.

M. D. Jeng and F. DiCesare, “A review of synthesis techniques for Petri nets with
applications to automated manufacturing systems,” IEEE Trans, on Systems, Man,
and Cybernetics, vol. 23, no. 1, pp. 301-312, 1993.

M. N. Karsiti, J. B. Cruz and J. H. Mulligan, “Simulation studies o f multilevel dynamic job
shop scheduling using heuristic dispatching rules,” J. o f Manufacturing Systems,
vol. 11, no. 5, pp. 346-357,1992.

M. H. Kim and Y. D. Kim, “Simulation-based real-time scheduling in a flexible
manufacturing system,” J. o f Manufacturing Systems, vol. 13, no. 2, pp. 85-93,
1994.

J. Kimemia and S. Gershwin, “An algorithm for the computer control o f a flexible
manufacturing system,” IIE Transactions, vol. 15, no. 4, pp. 353-362, 1983.

G. J. Klir and T. A. Folger, Fuzzy Sets, Uncertainty, and Information, Prentice Hall, NJ,
1991.

I. Koh and F. DiCesare, “Modular transformation methods for generalized Petri nets and
their application to automated manufacturing systems,” IEEE Trans, on Systems,
Man, and Cybernetics, vol. 21, no. 6 , pp. 1512-1521, 1991.

B. H. Krogh and C. L. Beck, “Synthesis of place/transition nets for simulation and control
of manufactumg systems,” in Proceedings o f IFIP Symposium on Large Systems,
Zurich, pp. 1-6, Aug. 1986.

C. Y. Lee, R. Uzsoy and L. A. Martin-Vega, “Efficient algorithms for scheduling
semiconductor burn-in operations,” Operations Reserach, vol. 40, no. 4., pp. 764-
795, 1992.

D. Y. Lee and F. DiCesare, “Scheduling flexible manufacturing systems with the
consideration of setup times,” in Proceedings o f the 32nd Conference on Decision
and Control, San Antonio, TX, pp.3264-3269, Aug. 1993.

D. Y. Lee and F. DiCesare, “Scheduling FMS using Petri nets and heuristic search,” IEEE
Trans, on Robotics and Automation, vol. 10, no. 2, pp. 123-132, 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

D. Y. Lee and F. DiCesare, “Integrated scheduling o f flexible manufacturing systems
employing automated guided vehicles,” IEEE Trans, on Industrial Electronics,
vol. 41, no. 6 , pp. 602-610,1994.

C. Lee, “Fuzzy logic in control systems: fuzzy logic controller, part L H” IEEE Trans, on
Systems* Man, and Cybernetics, vol. 20, no. 2, pp. 404-435, 1990.

V. J. Leon and S. D. Wu, “Characteristics of computerized scheduling and control of
manufacturing systems,” Computer Control o f Flexible M anufacturing Systems,
S. Joshi and G. Smith (Ed.), Chapman & Hall, UK, pp.63-73, 1994.

J. J. Lesage and J. M. Roussel, “Hierarchical approach to grafcet using forcing order,”
RAIRO, Automatic Control Production Systems, vol. 27, no. 1, pp. 25-38, 1993.

F. L. Lewis, H. H. Huang and S. Jagannathan, “A system approach to discrete event
controller design for manufacturing systems control,” in Proceedings o f 1993
American Control C onf, San Francisco, CA pp- 1525-1531, 1993.

S. Li, T. Takamori and S. Tadokoro, “Scheduling and re-scheduling of AGVs for flexible
and agile manufacturing,” Petri Nets in Flexible and Agile Automation, M. C.
Zhou (Ed.), pp. 189-205, Kluwer Academic Publications, Boston, M A 1995.

J. Lin and D. Ionescu, “Optimization of controller design for discrete event systems in a
temporal logic framework,” in Proceedings o f the 1992 American Control
Conference, Chicago, IL, pp. 2819-2823, June 1992.

P. B. Luh and D. J. Hoitomt, “Scheduling of manufacturing systems using the Lagrangian
relaxation technique,” IEEE Trans, on Automatic Control, vol. 38, no. 7, 1993,
pp. 1066-1079,1993.

0 . Z. Maimon and S. B. Gershwin, “Dynamic scheduling and routing for flexible
manufacturing systems that have unreliable machines,” Operations Research, vol.
36, no. 2, pp. 279-292,1988.

M. Montazeri and L. N. Van Wassenhove, “Analysis of scheduling rules for an FMS,” Int.
J. o f Production Research, vol. 28, no. 4, pp. 785-802, 1990.

S. Morioka and T. Yamada, “Performance evaluation of marked graph by linear
programming,” Int. J. o f Systems Science, vol. 22, no. 9, pp. 1541-1552, 1991.

T. Murata, “Petri nets: properties, analysis and applications,” Proceedings o f The IEEE,
vol. 77, no. 4, pp. 541-579, 1989.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

T. Murata, N. Komoda, K. Matsumoto and K. Haruna, “A Petri Net-Based Controller for
Flexible and Maintainable Sequence Control and Its Applications in Factory
Automation,” IFEE Trans, on Industrial Electronics, vol. 33, no. 1, pp. 1-8,
1986.

Y. Narahari and N. Viswanadham, “A Petri net approach to the modeling and analysis o f
flexible manufacturing systems,” Ann. Operations Resaerch, vol. 3, pp. 449-472,
1985.

N. Nilsson, Principles o f Artificial Intelligence, Palo Alto, CA, 1980.

K. M. Passino and P. J. Antsaklis, “On the optimal control o f discrete event systems,” in
Proceedings o f the 28th Conf on Decision and Control, Tampa, Florida, pp.
2713-2718, Dec. 1989.

J. Pearl, Heuristics: Intelligent Search Strategies fo r Computer Problem Solving.
Reading, MA,: Addison-wesley, 1984.

J. L. Peterson, Petri Net Theory and Modeling o f Systems. Englewood Cliffs, NJ:
Prentice-Hall, 1981.

J. M. Proth and I. Minis, “Planning and scheduling based on Petri nets,” Petri Nets in
Flexible and Agile Automation, M. C. Zhou (Ed.), pp. 109-148, Kluwer Academic
Publications, Boston, MA, 1995.

C. V. Ramamoorthy and G. S. Ho, “Performance evaluation of asynchronous concurrent
systems using Petri nets,” IEEE Trans, on Software Engineering, vol. 6 , no. 5, pp.
440-449,1980.

S. E. Ramaswamy and S. B. Joshi, “Deadlock-free schedules for automated manufacturing
workstations,” IEEE Trans, on Robotics and Automation, vol. 12, no. 3, pp. 391-
400,1996.

C. Ramchandani, Analysis o f Asynchronous Concurrent Systems by Timed Petri Nets,
Ph.D. Disseration, MIT, MA, September 1973.

F. Rodammer and J. K. White, “A recent survey of production scheduling,” IEEE Trans,
on Systems, Man, and Cybernetics, vol. 18, no. 6 , pp. 841-851, 1988.

R. V. Rogers and K. P. White, “Algebraic, mathematical programming, and network
models of the deterministic job-shop scheduling problem,” IEEE Trans, on
Systems, Man, and Cybernetics, vol. 21, no. 3, pp. 693-697, 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

B. Sayat and P. Ladet, “Control specification of a production system using Grafcet and
Petri nets,” RAIRO, Automatic Control Production Systems, vol. 27, no. 1, pp.
53-64, 1993.

T. Sot and S. K. Gupta, “A branch-and-bound procedure to solve a bicriterion scheduling
problem,” HE Trans, vol. 15, no. 1, pp. 84-87,1983.

R. Sengupta and S. Lafortune, “Optimal control of a class o f discrete event systems,”
I FAC Symposium on Distributed Intelligence Systems, Arlington, VA, pp. 25-30,
Aug. 1991.

M. J. Shaw, “Knowledge-based scheduling in flexible manufacturing systems: An
integration of pattern-directed inference and heuristic search,” Int. J. o f
Production Research, vol. 26, no. 5, pp. 821-844, 1988.

L. Shea, Q. Chen and J. Luh, “Truncation of Petri net models for simplifying computation
of optimum scheduling problems,” Computers in Industry, 20, pp. 25-43, 1992.

H. Shih and T. Seldguchi, “A timed Petri net and beam search based on-line FMS
scheduling system with routing flexibility,” in Proceedings o f the 1991 IEEE Int.
Conf on Robotics and Automation, Sacramento, CA, pp. 2548-2553, April 1991.

T. Sun, C. Cheng and L. Fu, “A Petri net based approach to modeling and scheduling for
an FMS and a case Study,” IEEE Trans, on Industrial Electronics, vol. 41, no. 6 ,
pp. 593-601, 1994.

T. Sawik, “Modeling and scheduling of a flexible manufacturing system,” European J. o f
Operations Research, vol. 45, no. 1, pp. 177-190, 1990.

Y. Tsukamoto, “An approach to fuzzy reasoning method,” in Advances in Fuzzy Set
Theory and Applications, M. M. Gupata, R. K. Ragade, and R. R. Yager, Eds.,
Amsterdam: North-Holland, 1979.

R. Uzsoy, C. Y. Lee and L. A Martin-Vega, “A review of production planning and
scheduling models in the semiconductor industry part I: system characteristics,
performance evaluation and production planning,” IIE Trans, on Scheduling and
Logistics, vol. 24, no. 4, pp. 47-60, 1992.

R. Uzsoy, C. Y. Lee and L. A Mart in-Vega, “A review of production planning and
scheduling models in the semiconductor industry part II: shop-floor control,” IIE
Trans, on Scheduling and Logistics, vol. 26, no. 5, pp. 44-55, 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

R. Uzsoy, L. A. Martin-Vega, C. Y. Lee and P. A. Leonard, “Production scheduling
algorithms for a semiconductor test facility,” IEEE Trans, on Semiconductor
Manufacturing, vol. 4, pp. 271-280, 1991.

R. Valette, “Analysis of Petri nets by stepwise refinements,” J. o f Computation and
System Science, vol. 18, pp. 35*46,1979.

P. Van Laarhoven, H. Aarts and J. K. Lenstra, “Job-shop scheduling by simulated
annealing,” Operations Research, vol. 40, no. 1, pp. 113-125, 1992.

K. Venkatesh, M. C. Zhou and R. J. Caudill, R, “Comparing ladder logic diagrams and
Petri nets for sequence controller design through a discrete manufacturing
system,” IEEE Trans, on Industrial Electronics, vol. 41, no. 6 , pp. 611-619,
1994.

N. Viswanadham, Y. Narahari and T. Johnson, “Deadlock prevention and deadlock
avoidance in flexible manufacturing systems using Petri net models,” IEEE Trans,
on Robotics and Automation, vol. 6 , no. 6, pp. 713-723, 1990.

T. Watanabe, H. Tokumaru, Y. Nakajima and Y. Hashimoto, “Job-shop scheduling using
fuzzy inference to take profit into account,” in Proceedings o f Japan-U.SA.
Syposium on Flexible Automation, San Franciso, CA, pp. 423-427, July 1992.

R G. Willson and B. H. Krogh, ‘Tetri net tools for the specification and analysis of
discrete controllers,” IEEE Trans, on Software Engineering, vol. 16, no. 1, pp.
39-50, 1990.

S. Wu and R. A. Wysk, “Multi-pass expert control system • a control/scheduling structure
for flexible manufacturing cells,” J. o f Manufacturing Systems, 1, pp. 107-120,
1988.

S. Wu and R. A. Wysk, “An application of discrete-event simulation to on-line control and
scheduling in flexible manufacturing,” Int. J. O f Production Resaerch, 27, pp.
1603-1623, 1989.

R. A. Wysk, N. Yang and S. Joshi, “Resolution of deadlocks in flexible manufacturing
systems: avoidance and recovery approaches,” Journal o f Manufacturing Systems,
vol. 13, no. 2, pp. 128-138, 1994.

X. L. Xie, “Superposition properties and performance bounds o f stochastic timed-event
graphs,” IEEE Trans, on Automatic Control, vol. 39, no. 7, pp. 1376-1386,1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

K. Xing, B. Hu and H. Chen, “Deadlock avoidance policy for flexible manufacturing
systems,” Petri Nets in Flexible and Agile Automation, M. C. Zhou (Ed.)> pp.
239-263, Khiwer Academic Publications, Boston, MA, 1995.

H. H. Xiong and M C. Zhou, “Computer communication networks for automated
manufacturing,” in Proceedings o f1994 Int. Conf. on Electronics and Information
Technology, Beijing, China, pp. 178-183, Aug. 1994.

H. H. Xiong, M. C. Zhou and R. J. Caudill, “A hybrid heuristic search algorithm for
scheduling flexible manufacturing systems,” in Proceedings o f 1996 IEEE Int.
Conf. on Robotics and Automation, Minneapolis, MN, pp. 2793-2797, Apr. 1996.

H. H. Xiong, M. C. Zhou and R. J. Caudill, “Design of optimal sequence controller for a
flexible manufacturing system,” to appear in Proceedings o f 1996 IEEE Int. Conf.
on Systems, Man, and Cybernetics, Beijing, China, Oct. 1996.

H. H. Xiong, M C. Zhou and C. N. Manikopoulos, “Modeling and performance analysis
of medical service systems using Petri nets,” in Proceedings o f 1994 IEEE Int.
Conf. on Systems, Man, and Cybernetics, San Antonio, TX, pp. 2339-2342, Oct.
1994.

H. H. Xiong, M. C. Zhou and C. N. Manikopoulos, “Scheduling flexible manufacturing
systems based on timed Petri nets and fuzzy dispatching rules,” in Proceedings o f
1995 IEEE Symposium on Emerging Technologies and Factory Automation,
Paris, France, pp. 309-315, Oct. 1995.

D. Zhang, “Planning using timed Pr/T Nets,” in Proceedings o f Japan~U.S.A. Symp. on
Flexible Automation, San Francisco, CA, pp. 1179-1184, July 1992.

D. N. Zhou, V. Cherkassky, T. R. Baldwin and D. E. Olson, “A neural network approach
to job-shop scheduling,” IEEE Trans, on Neural Networks, vol. 2, no. 1, pp. 175-
179,1991.

M. C. Zhou, H. Chiu and H. H. Xiong, “Petri net scheduling of FMS using branch and
bound method,” Proc. o f1995 IEEE Int. Conf. on Industrial Electronics, Control,
and Instrumentation, Orlando, FL, pp. 211-216, Nov. 1995.

M. C. Zhou and F. DiCesare, “Adaptive design of Petri net controllers for error recovery
in automated manufacturing systems,” IEEE Trans, on Systems, Man, and
Cybernetics, vol. 19, no. 5, pp. 963-973, 1989.

M. C. Zhou and F. DiCesare, “Parallel and sequential mutual exclusions for Petri net
modeling o f manufacturing systems with shared resources,” IEEE Trans, on
Robotics and Automation, vol. 7, no. 4, pp. 515-527, 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

165

M. C. Zhou and F. DiCesare, Petri Net Synthesis fo r Discrete Event Control o f
Manufacturing Systems, Kluwer Academic Publications, Boston, MA, 1993.

M. C. Zhou, F. DiCesare and A. Desrochers, “A hybrid methodology for synthesis of Petri
nets for manufacturing systems,” IEEE Trans, on Robotics and Automation, vol.
8, no. 3, pp. 350-361,1992.

M. C. Zhou, F. DiCesare and D. Rudolph, “Design and implementation of a Petri net
supervisor for a flexible manufacturing systems,” Automation, vol. 28, no. 6, pp.
1999-2008, 1992.

M. C. Zhou, K. McDermott and P. A. Patel, “Petri net synthesis and analysis o f an FMS
cell,” IEEE Trans, on Systems, Man, and Cybernetics, vol. 23, no. 2, pp. 523-531,
1993.

M. C. Zhou, H. H. Xiong and C. N. Manikopoulos, “Performance models for
communication networks in manufacturing environment,” in Proceedings o f the
Fourth Int. Conf. on Computer Integrated Manufacturing and Automation
Technology, Troy, NY, pp. 417-422, Oct. 1994.

R. Zurawski, “Systematic construction of functional abstractions of Petri net models of
flexible manufacturing systems,” IEEE Trans, on Industrial Electronics, vol. 41,
no. 6, pp. 584-592, 1994.

R. Zurawski and M. C. Zhou, “Petri nets and industrial applications: a tutorial,” IEEE
Trans, on Industrial Electronics, vol. 41, no. 6, pp. 567-583, 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Literature Review
	Chapter 3 Modeling Manufacturing Systems With Petri Nets
	Chapter 4: Optimization of Discrete Event Controller Design
	Chapter 5: A Hybrid Heuristic Search Algorithm for Scheduling FMS
	Chapter 6: Scheduling FMS with Material Handling and Buffer Availability Considered
	Chapter 7: Multi-Criterion Scheduling Based on Petri Nets and Fuzzy Dispatching Rules
	Chapter 8: Conclusions
	Appendix: The Input and Output Functions of Petri Net Model of Example 5.4
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

