

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type o f computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back o f the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

UMI Number: 9635196

Copyright 1996 by Washington, David Waymon
All rights reserved.

UMI Microform 9635196
Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

DISCRETE ELEMENT MODELING OF DRY GRANULAR MATERIAL USING
A MASSIVELY PARALLEL SUPERCOMPUTER

by
David W. Washington

It is the state-of -the-art within Geotechnical Engineering to model soils as systems

of particles rather than using the traditional continuum approach. Simulating these

systems of particles for geotechnical boundary value problems results in systems which

are o f necessity large, motivating the application of massively parallel supercomputers.

This thesis pursues such an approach.

The following work describes numerical experiments using a Discrete Element

Method (DEM) paradigm for soils (Trubal) together with massively parallel computers

with Single Instruction Multiple Data (SIMD) architecture. The discrete element method

describes the behavior o f granular assemblies using the classical mechanics of discrete

bodies. The computational requirements of DEM algorithms introduce time complexities,

which mandate a compatible topology for massively parallel machines in order to

achieve optimal performance. This thesis demonstrates the compatibility of a Single

Instruction Multiple Data (SIMD) topology in performing discrete element simulations

for 3-d spherical dry granular media.

The serial algorithm, Trubal, was first modified to run with a parallel data

structure on a SIMD architecture. The modified version, known as Trubal for Parallel

Machines (TPM), is the data parallel version that was tested on the connection machines

(CM-2) and (CM-5), consisting o f 32,768 processors and 512 nodes, respectively. The

first version of TPM was tested on the CM-2 machine before its use was discontinued.

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

Because the architecture is synchronized at each instruction, elemental data movements

reduce the performance o f the machine’s overall resources and increase the latency of the

communication between processors. This issue is addressed within the design of the

algorithm so that the SIMD vector processing capability can adapt to a dynamic memory

data structure.

A second version of TPM was subsequently designed for the CM-5 machine using

a more efficient parallel data structure to improve the performance of the simulations.

TPM version 2.0 was able to obtain a speedup in performance by handling all possible

contacts within each processor, thereby creating a homogeneous data structure. The

overall efficiency is governed by the global communication which is a function o f the

speed o f the interconnection network within the architecture.

TPM’s improved performance is demonstrated using two different triaxial

simulations. One o f them involved a physical triaxial experiment with steel spheres

performed by Rowe (1962) and later simulated by Cundall (1979). The remodeling o f this

numerical simulation validated TPM version 2.0 overall performance where a nine-fold

speedup was obtained. TPM’s reproduction o f these results and its improved speedup

encourage further investigations using discrete models on parallel platforms.

This thesis substantiates the use of parallel computing as a technique for

geotechnical applications. It is further anticipated that developing and adapting

heterogeneous platforms to DEM models will make the application o f parallel computing

more attractive in geotechnical engineering.

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w ith o u t p e rm is s io n .

DISCRETE ELEMENT MODELING OF DRY GRANULAR MATERIAL USING
A MASSIVELY PARALLEL SUPERCOMPUTER

by
David W. Washington, P.E.

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor o f Philosophy

Department of Civil and Environmental Engineering

May 1996

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

Copyright© 1996 by David Washington

ALL RIGHTS RESERVED

R e p r o d u c e d with p e r m is s io n o f t h e co p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

APPROVAL PAGE

DISCRETE ELEMENT MODELING OF DRY GRANULAR MATERIAL USING
A MASSIVELY PARALLEL SUPERCOMPUTER

David W. Washington

Dr. Jay N. Meegoda, Dissertation Advisor 	 r Date
Associate Professor of Civil and Environmental Engineering, NJIT

Dr. Wiiaim Spillers, Committee Member 	 Date
Chairman and Professor of Civil and Environmental Engineering, NJIT

Dr. Dorairaja Raghu, Committee Member 	 Date
Professor of Civil and Environmental Engineering, NJIT

Dr. Mary Mary Eshaghian, Committee Member 	 Date
Assistant Professor of Computer and information Science, NJIT

Dr. Anthony Rosato, Committee Member 	 Date
Associate Professor of Mechanical Engineering, NJIT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIOGRAPHICAL SKETCH

Author: 	David Waymon Washington, P.E.

Degree: 	Doctor of Philosophy

Date: 	May 1996

Undergraduate and Graduate Education:

•Doctor of Philosophyin Civil
New Jersey Institute of Technology, Newark, N.J., 1996

•Master of Science in Civil Engineering,
Manhattan College, Riverdale, N.Y.,1988

•Bachelor of Science in Civil Engineering and Applied Mechanics,
Columbia University, New York, New York,1984

Major: 	Civil Engineering

Presentations and Publications:

N. Meegoda and D.Washington(1993) "Trubal for Massively Parallel Machines",
Proceedings of the Second International Conference on Micromechanics Of
Granular Media,Powders & Grain 93, Birmingham, UK, July 12-16,Poster
Presentation

Meegoda N.J.and Washington D.W.(1994),"Massively Parallel Computers for
Microscopic Modeling of Soils", Proceedings of the Eighth International
Conference on Computer Methods and Advances in Geomechanics, Morgantown,
West Virginia, May 22-24, pp.617-622

Washington D.W and Meegoda N.J(1996), "Micromechanical Simulation of Geotechnical
Problems using Massively Parallel Supercomputers", Proceedings of the Eleventh
ASCE Engineering Mechanics Conference, Fort Lauderdale, Florida, May 19-
22,to be presented

iv

This thesis is dedicated to
The Lord Jesus Christ who is the Author and Finisher of my Faith

v

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

ACKNOWLEDGMENT

This research could not have been done without the motivation and

encouragement from my advisor, D r . Jay Namunu Meegoda. He has placed so much

confidence in me and has allowed me to take on a great deal o f responsibility, which

inevitably led to my maturity in this field.

My committee has my warmest appreciation and deepest gratitude for assisting me

in various facets of my research. The hours that I spent with Prof. Spillers discussing

applied mechanics and other topics was phenomenal and very encouraging.

Prof. Eshaghian is my mentor for learning parallel computing and various

architectures. She exposed me to a great deal of information in a very short time.

Dr. Rosato was very supportive o f my work and gave me much insight in particle

technology. This research has led us both to England and France.

Dr. Raghu and I have had many wonderful moments as my instructor in

geotechnical engineering. He has always encouraged me to take a practical approach to

my work.

Ms. Sheridan Quarless, soon to be a Ph.D., has become a “household” name in my

academic pursuits. She has been my motivator from the first day I entered the doctoral

program, and has plowed the way for me in many of my endeavors.

Much appreciation and gratitude to Dr. Kane and the graduate studies office for

their support. Dr. Kane literally financed and sustained me through this program.

The international exchange program enabled me to spend many months in France,

and this collaboration led to many new relations with people in my field. Special thanks to

vi

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

Katie Byrne for coordinating my trips to France with Dr. Kane and introducing me to

Prof. Martin Raynaud of the Institut National Des Sciences Appliquees De Lyon,

Departement de Genie Civil,Villeurbanne, Lyon.

Prof. Raynaud had a leading role in my studies abroad as well as Dr. Bernard

Cambou from Ecole Centrale de Lyon o f Laboratoire de Tribologie et Dynamique des

Systemes Departement de Mecanique des Solides, Ecully, Lyon. This exchange brought

great insight to my work and developed many good relations abroad.

A lot o f motivation has come from my wife, Jackie, and daughter, Amy Joella.

My new bom daughter, Amy, made me realize that the Ph.D. is not the end o f the road,

but there are much more challenges ahead. My wife, who is also a doctoral candidate in

Microbiology and Molecular Genetics, has kept me focused in my academic pursuits, and

hopefully Amy will follow the path that we are paving.

I was fortunate to have my family and close friends support me through my

arduous studies. Their support meant very much to me.

vi 1

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION... 1

1.1 Modeling the Behavior of Soils.. 1

1.2 Overview of the Discrete Element M ethod...3

1.3 The Discrete Element Method’s Formulation... 5

1.4 Experimental Validation of the DEM Model..12

1.5 DEM and Other Modeling Techniques in Continuum Mechanics............................. 13

1.6 Parallel Computing Terminology Terminology... 16

1.7 Literature Survey..18

1.7.1 Ghaboussi Approach... 18

1.7.2 Kuriaoka’s Approach.. 19

1.7.3 Hustrulid’s Approach.. 19

1.7.4 O’Connor Approach..20

1.8 Research Program.. 20

2. TPM VERSION 1.0.. 22

2.1 Introduction.. 22

2.2 General Description of Trubal’s Algorithm... 23

2.2.1 Gen Routine.. 24

2.2.2 Cycle Routine...24

2.2.3 Motion Routine.. 24

viii

R e p r o d u c e d w ith p e r m is s io n of th e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

TABLE OF CONTENTS
(continued)

Chapter Page

2.2.4 Rebox R outine ... 25

2.2.5 Search R ou tine.. 26

2.2.6 Bbtest Routine.. 26

2.2.7 Ford Routine...27

2.3 CM-2 Architecture... 27

2.4 TPM Version 1.0...31

2.5 Advantages o f TPM’s Data Structure vs. T rubal... 38

2.6 Evaluation and Results of TPM Version 1.0... 39

2.7 Discussion and Other Modifications...42

2.8 The Last Modification of TPM 1.0.. 43

2.9 Conclusion.. 45

3. TPM VERSION 2.0... 46

3.1 Introduction..46

3.2 CM-5 Architecture... 47

3.3 TPM Version 2.0...52

3.4 Experimental Verification and Performance Evaluation..57

3.5 Conclusion.. 60

4. SIMULATIONS OF ROWE’S EXPERIMENT.. 61

4.1 Introduction.. 61

ix

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

TABLE OF CONTENTS
(continued)

Chapter Page

4.2 Rowe’s Physical Laboratory Test... 62

4.3 Cundall’s Numerical Simulation..63

4.4 TPM’s Simulation of Rowes Model...66

4.5 Discussion... 68

4.6 Conclusion.. 69

5. FUTURE RESEARCH AND CONCLUSION.. 71

5.1 Conclusion.. 71

5.2 Future Research ... 72

5.2.1 The MIMD Approach..73

5.2.2 Combining Control Systems..75

5.2.3 Heterogeneous Platform .. 76

5.3 Cray T3D and PVM ..78

5.4 Implementation o f the Proposed Heterogenous Platform.......................................79

APPENDIX TPM Version 2.0 (ROWE’S MODEL).. 81

REFERENCES ... 130

x

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

LIST OF TABLES

Table Page

2.1 CM-2 Resource usage viewed in PRISM.. 40

2.2 Comparison o f timing between CM-2 and Vax 8800..45

3.1 Comparison between the CM-2 and the CM-5...51

3.2 Declaration statements and psuedocode flow chart for TPM version 2.0....................54

3.3 Pseudocode for contact routine in TPM version 2.0...55

3.4 Pseudocode for globe routine in TPM version 2 .0 .. 56

4.1 Parameters o f material properties used in Cundall’s numerical simulation................. 64

4.2 Speedup chart for the 403 and 1672 sphere simulation... 68

5.1 Control System Optimization at Routine Level o f the CM-5..76

5.2 Control System Optimization at Routine Level o f a Heterogeneous Platform72

XI

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

LIST OF FIGURES

Figure Page

1.1 Cartesian coordinate system for spheres..7

1.2 a)Contact vectors between spheres and
b)Intemal moments and forces due to contacts..8

1.3 Schematic showing principle rheological elements of DEM (2D).................................12

1.4 a) Force vector plots obtained by De Josselin de Jong and Verruijt(1969) and
b) Program “BALL” numerical reproduction o f the 1969 experiment..........................13

2.1 Flow Chart for Trubal’s Algorithm..23

2.2 Spheres encompassed by cubes mapped within Boxes... 25

2.3 Data structure for Trubal’s one dimensional array...26

2.4 CM-2 A rchitecture...28

2.5 An array (64,64) layout over sixteen processor.. 29

2.6 The CM-2 parallel processing unit...30

2.7 Interconnect networks systems...31

2.8 Flow chart for TPM version 1.0... 32

2.9 Data structure for the arrays of TPM version 1 .0 ...33

2.10 An example o f two spheres within four boxes.. 34

2.11 TPM’s Box Array Initial Setup... 35

2.12 TPM’s Box Array after “Spread” command and “Forall” command is used.......... 36

2.13 One dimensional contact arrays for TPM 1.0.. 37

3.1 CM-5 Architecture.. 47

xii

R e p r o d u c e d with p e r m is s io n o f t h e co p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

LIST OF FIGURES

Figure Page

3.2 Vector unit functional architecture...48

3.3 Organization o f the Connection Machine (C M -5).. 49

3.4 Binary and Fat tree interconnection network for 15 node system50

3 .5 Flow chart for TPM version 2 .0 ...52

3.6 A comparison between Trubal and TPM o f a simulated triaxial test.......................... 59

4.1 Layers o f spheres used in physical test by Rowe(1962).. 63

4.2 Layers of spheres in the numerical test... 63

4.3 Exposed lengths for plane through large layer in x-y and x-z direction.........................65

4.4 Comparison between Rowe’s results and Cundall’s numerical results...........................66

4.5 Instability in TPM version 2.0 simulation due to improper damping............................ 67

4.6 Results presented by Rowe, Cundall, and TPM version 2.0.......................................67

4.7 Speedup plot for TPM algorithm simulating the 403 sphere Rowe model.................69

5.1 Clustering Schemes of Particles within Multiple Processors74

5.2 3D Torus Communication Network.. 78

5.3 TPM’s proposed heterogeneous algorithm using PVM ... 79

xiii

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

CHAPTER 1

INTRODUCTION

In order to understand the necessity o f using massively parallel supercomputers in

discrete element modeling for geotechnical applications, the development o f soil models

and numerical techniques is discussed in this chapter. The fundamentals o f the discrete

element method are also presented along with a discussion of how the discrete element

method fits into the scheme of available modeling techniques. Then, parallel computing

terms are defined so that the unfamiliar reader can follow the subsequent chapters

describing computer architecture. Finally, a literature search presents the history o f

parallel computing using discrete models.

1.1 Modelling the Behavior of Soils

It is the state-of-the-art in geotechnical engineering to model soils as a system of particles

rather than using the more traditional continuum approach. In the case o f this thesis, the

particle approach is driven by physical concerns over how particles really interact in a soil

mass. This approach allows contact friction between particles, for example, to be studied

in detail. Friction is, of course, a basic mechanism in the performance o f soil. The down­

side to this approach is that the particles used in this thesis are round and smooth while

soil particles typically possess neither property.

Soil modeling at the particle level has been studied for many years. For example,

Deresiewicz (1958) and Duffy (1959) pursued a micromechanic approach o f assemblies

with regular packing In this case, the constitutive relationship for a granular assembly

1

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

2

was derived considering particle interaction and structure o f the material. However, the

ability of particles to slip at contact surfaces was not included in their model. In the

absence o f computers, it was difficult, if not impossible to model sophisticated

configurations o f particles. That, o f course, is no longer the case.

The range o f particle models now used in mechanics is quite broad. Probably the

oldest model is the paricle-in-cell model developed in the 1950’s at the now defunct

Atomic Energy Commission. This model is actually a combination of a particle approach

and a continuum approach. At the other end of the spectrum are “atomic” models, such as

Molecular Dynamics (MD), which now include hundreds o f thousands o f particles. The

model used here lies somewhere in the middle and has been chosen for use in this thesis

because o f its practical applicability. That is, it is not as computationally demanding as the

“atomic” models and it has the potential o f explaining the frictional failure mechanism of

soil. The model being described incorporates micromechanics to define interparticle

behavior.

Micromechanics is the mechanics or the physical laws used to describe the

interactions between individual bodies. The micromechanical modeling o f soils used in

this thesis considers the intergranular effects that contribute to the overall behavior of the

soil assembly. This type of modeling coupled with a technique that applies it to granular

systems, has the potential to realistically describe global behavior. In this case, the

individual particles o f the global assembly are actually governed by force/displacement

law approximations. The necessity for modeling soil behavior ffom the granular

interaction level was recognized for many years before computer simulations o f these

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e r m is s io n .

micromechanical models originated. The traditional methods, such as the Mohr-Coulomb

theory, viewed soils as a continuum. However, Rowe (1962) stated that the dilatancy

and strength o f an assembly are dependent upon its angle o f friction between particle

surfaces, on the geometrical angle o f packing, and on the degree o f energy loss during

remoulding. He also showed that the Mohr-Coulomb criterion o f failure does not have

general application to a discontinuous assembly o f particles. Terzaghi (1920) stated that

Coulomb introduced a fundamental error by ignoring the fact that sand consists of

individual grains. Other researchers studied intergranular behavior from an experimental

perspective.

Research performed by Dantu (1957) and De Josselin de Jong et al. (1969)

presented pictures o f actual interparticle behavior using photoelastic discs. Under

polarized light the contact forces and the particle displacements were measured.

Observations o f the soil behavior from these type o f experiments, revealed the

rearrangement of soil particles to form internal structures to withstand the loads that were

being applied For exsmple columns o f particles aligned themselves in the direction of* the

load in order to withstand applied forces. The discrete element method was developed to

numerically describe this type of formation within the particle assembly.

1.2 Overview of the Discrete Element Method

Discrete Element Method (DEM) used in this thesis is an application of Cundall and

Strack (1979b) model. Cundall (1971) first applied his model to the stability of high,

fractured rock slopes. This method was further improved when a two-dimensional disc

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

4

assembly was used to simulate soil conditions (Cundall and Strack 1978). Later, three-

dimensional spheres were used (Cundall and Strack 1979a). Many other research efforts

have derived from Cundall’s work.

The 2nd International Conference on DEM (Williams and Mustoe, 1993) states,

the Discrete Element Method models a physical system as an assemblage o f distinct

bodies each having internal structure and specific geometry. At a basic level the

individual elements can simulate continuum stress and deformation states, while the

multiplicity o f bodies provide the degrees offreedom otherwise unavailable in methods

based solely on continuum assumptions. The continuum approach often overlooks

interparticle behavior and therefore the mode o f failure within the assembly has

questionable physical representation. One reason is that discontinuities are found in the

stress and the displacement fields in granular assemblies, which are difficult to describe in

a continuum formulation. These difficulties were resolved with global stress tensor

formulations in the discrete element method.

The DEM is based on a dynamic formulation, which describes a stati c equilibrium

in asymptotic sense after a number o f time-steps. Hence, it is able to model the quasi­

static case found within many geotechnical boundary value problems. Spheres are placed

in a computational cell having periodic boundaries. This boundary allows a sphere which

exits from one face of the cell to re-enter through the opposite face. Consequently, the

influence o f real walls is removed and the assembly o f spheres is effectively a

representative volume of material within a large system. Stresses and strains are applied

to the boundaries o f the assembly and then propagated through the medium until some

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

5

state o f equilibrium is reached. This method allows particles to form contacts and break

them at will. Each time-step cycle includes the application o f Newton's Second Law to

the centroid of each sphere followed by the application o f force-displacement laws

between each contact. By maintaining small time-steps, disturbances (that initiate at the

assembly boundaries) will not propagate further than a neighboring contact sphere during

a time-step. Accelerations and velocities o f each sphere calculated from Newton's

Second Law are assumed to be constant over the time-step, and the net forces and

moments acting on each sphere are updated from force-displacement laws applied at the

contacts o f neighboring spheres. The following section describes the mechanics involved

within the DEM model used in this thesis.

1.3 The Discrete Element Methods Formulation

The mechanics o f DEM for a dry spherical granular assembly is used to determine the

motion o f spheres, to perform force-displacement calculations at contacts, and finally to

sum the overall global stress tensors. As mentioned before, the time step is assumed to be

so small that the velocities and accelerations are assumed to remain constant during that

interval. The time step is computed from a single degree-of-freedom mass-spring model:

Atc = 2 *(mmin/kn),//2 (critical time step) (1.1)

At=Atc T R A C (time step used) (1.2)

where Atc equals the critical time step, m,™ is the minimum mass o f the spheres, k„ is the

normal stiffness, At is the time step used and FRAC is a fraction multiplied of the critical

time step which allows for a stable simulation. The time step used in this explicit

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w ith o u t p e rm is s io n .

6

numerical scheme is required to be some fraction o f the critical time step in order for the

system to remain stable (Cundall et al., 1978). The explicit finite-difference scheme

changes the assembly’s geometry by updating current translational and angular velocities

at the end o f each time-step. The finite difference scheme, used to integrate the system’s

equations of motion, uses the subscript N will be used to represent the beginning of the

current time step, N -l/2 will represent the results from a previous time step, and N+ 1/2

will denote the new result for the current time step.

The general form of the governing equation for each particle within the system can

be expressed dynamically by the relationship

ma+c v +lcx= F(t) (1.3)

where m, c, and k are respectively the particles’ mass, damping, and stiffness coefficients,

and a, v, and x are the particles’ acceleration, velocity, and displacement respectively. The

first part of equation 1.3 is represented by Newton's Second Law which can be written as

follows:

m,(ai)N=(Fi)N (1.4)

Ij(CXi)N=(Mi)N (1.5)

where i is the x, y, z components as shown in Figure 1.1. In expressions 1.4 and 1.5, m

and I represent the mass and moment o f inertia of the sphere for all spheres j, and Fj and

Mi are the net force and moment components, respectively at the beginning of the time-

step, tTfsJ.

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

7

Fz
Fx

Figure 1.1 Cartesian coordinate system for spheres

Since the accelerations a; and otj are constant over the interval tjsj.j/ 2 to *N+l/2 ’ t îen

the sphere velocities can be calculated from

(v0N +l/2=(Vi)N-l/2+[(Fi)NAt /m] (16)

((°i)N+1 /2=(C0ON-1 /2+[(^ 0 n At /!] 0 -7)

where Vj is the translational velocity and co; is the angular velocity (see Figure 1.2). The

coordinates of each sphere are calculated at the end o f the time step tjyj+i with the

relationship

(xi)N+1 ~(X<)N+((V')N+1 /2> At

(® i)N+1 =(®i)N+((“ i)N+1 /2)At

(1.8)

(1.9)

The contact forces are calculated using an incremental force-displacement law of

the form

(Fn)N+ 1 =(Fn)N +(AFn)N =(Fn)N + kn(An)N+] / 2 (contact normal forces) (MO)

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

8

(F S) n + i= (F s)n + (A Fs)n =(Fs)]sj + k s(As)jsj+]/2 (contact shear forces) (1 1 1)

where Fs and Fn are the normal and shear contact forces, kn and ks are the normal and

shear stiffness and An and As are the normal and shear displacements, respectively. The

normal and shear displacements are expressed using the Einstein summation convention as

(Ani)N+ 1 /2 =((vbi-vai>N+ 1 /2) At i=x,y,z (1.12)

(Asi)N+i/2=[((vbi-vai)N+i/2) x< ' (CdaiRa+C0biRb)N+1 /2lAt (113)

where (vjji-vai) is the relative velocity between two contacting particles a and A, e; and tj

are the normal and tangential unit vectors, and R, and Rb are the radiuses corresponding

to the particles a and b respectively.

Fn

►F

x
a) b)

Figure 1.2 a)Contact vectors between spheres and b)Contact internal moments and forces

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

9

The Coulomb-type friction law is used to account for particles that slip once a

threshold tangential force level is achieved. The friction expression for each contact is

written as

! (Fs) | max= | pF„ | +cohesion (114)

where |(Fs)|max , Fn, and p is the maximum shear force, the normal contact force and the

coefficient of friction, respectively. If the maximum critical shear force has been exceeded

by the actual shear force between the two particles, then the two particles slide and their

interparticle shear force is reduced as if (Fs)max<(Fs) then

(Fs)i=(Fs), *[(Fs)max/(Fs)] i=x,y,z (115)

At the end of the contact calculations in the time-step, the sphere forces Fj and

moments Mi for each sphere are computed by summing up all the contact components as

(Fi)LN*]= X ((FnJN+l^+(Fs)N+1 h) 0-16)
n = 1

(Mi)kN+i=rk X ((Fs')N +l) (1-17)
n = 1

where n^ refers to the contacts associated with the sphere k having the radius A . The

forces and moments found here are used to update the translational and angular velocities

in the next time-step, by integrating the equations o f motion of the system.

The damping that is considered is a global damping, which acts on the absolute

velocities and can be envisaged as dashpots which connect each sphere to a fixed frame of

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w ith o u t p e rm is s io n .

10

reference. The global damping coefficients are related to the mass and moment of inertia

o f each sphere through the coefficients of proportionality oc

Cn,= o c m (1 . 1 8)

q = cc I (1 - 1 9)

The coefficient o f proportionality is selected arbitrarily in order to maintain stability within

the system. Equations 1.4 and 1.5 can be modified to include the effect of damping as

m(ai)N=(Fi)N - c,„(vj) N i=x,y,z (1.20)

I(aON=(Mi)N - c,(co)N (1.2 1)

If the central difference scheme is used to integrate the above, whereby velocities

are evaluated halfway through the time step, then

(Vi) n = 1/2 [(Vi) N +1 /2 +(v0 N -l/2] (1-22)

(to;) n = 1/2 [(coi) n + i /2 +(co0 N -l/21 O -23)

(a ,) N = i - Y-i) \ ^V— - N 'w; (1 . 2 4)

(a ,) „ = (<i,l) (c,,) " " " (1.25)

This leads to the revised equations of motion in the form

n _ (V ') n . i / j t l - 1̂ A t / 2) + (F i) N A t / m , .
0 JV * 1 / 2 (l + o c A t / 2)

(fn \ = (^ ') n - i < ; (' ‘ ^ ^ 1 1 2) + (M ■) N A t / m
k l) N + 1 ' 2 (1 + oc At / 2)

If x is zero, w e will have the equation presented in 1.6 and 1.7 (see Fig 1.3).

(1.27)

R e p r o d u c e d w ith p e r m is s io n of t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e r m is s io n .

11

The global stress tensors are calculated for the overall stress behavior represented

by the average stress tensors,

a ij = y ~ ") a t + 1 e J + 5) jV + 1 / y) x * e ‘ G-28)
k = 1

where , V represents the total volume o f the assembly, x* is the sum of the two radii

forming the contact k, and z is the total number o f contacts in the assembly. For the

derivation o f equation 1.28, the reader is referred to Cundall et. al. (1982).

CundalPs algorithm, Trubal version 1.51 adopts these equations for the routines

Motion and Ford which are described in the next chapter. Trubal for Parallel Machines

(TPM), the modification o f Cundall's Trubal, also adopts these equations in the routines

Motion, Ford, and Globe. The fundamental mechanics o f DEM just presented are

validated in an actual experiment and are presented in order to give the unfamiliar reader a

feel of its physical applicability.

Cm

Cm

m a

kn

err

Cm vbx

mb

Cm ,__

Figure 1.3 Schematic showing principle rheological elements of DEM (2D)

R e p r o d u c e d with p e r m is s io n o f t h e co p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

12

1.4 Experimental Validation of the DEM Model

Producing physical results from numerical computations o f spherical bodies is difficult,

especially since fictitious values, such as damping are included without any physical

meaning. However, CundalPs program “Ball”, the 2-d version of Trubal, qualitatively

describes the microscopic effects for quasi-static problems on a global continuum level.

The result presented in this section is reported in Cundall and Strack (1978) in more

detail.

Program “Ball” was validated by simulating the test performed by de Josselin de

Jong and Verruijt (1969) on photoelastic discs. An assembly of discs were placed

between two plexiglass plates, that prevented the stack from buckling out o f plane. It

was loaded by an applied force perpendicular to four rigid beams encompassing it. When

viewed in circularly polarized light, the photoelastically sensitive discs displayed a pattern

o f isochromatics. From these patterns, one can deduce the forces that are transmitted

through the disc contact points. At each stage o f the test De Josselin de Jong and

Verruijt recorded the disc locations and contact forces. When the ratio between the

horizontal force and the vertical force was 0.39, the deformation o f the assembly

appeared as shown in Figure 1.4 a. The discs center locations and radii were obtained by

using a digitizer. The center coordinates o f the discs, marked by cross-hairs in the

original test, were located with reference to a grid in the background o f the photograph.

Similar results were obtained from a strain control simulation shown in Figure 1.4 b for

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

13

a) ratio Fh/Fv=0.39 b) ratio Fh/Fv=0.33

Figure 1.4 a) Force vector plots obtained by De Josselin de Jong and Verruijt (1969) and
b) Program “BALL” numerical reproduction o f the 1969 experiment

comparison at the ratio o f 0.33. The contact forces (branches) were observed between

particles within the assembly in each model and there was good agreement. Although

these results are good for the use of this model, there are other techniques that can be

applied also. The following section presents and compares some o f the other modelling

techniques

1.5 DEM and Other Modeling Techniques in Continuum Mechanics

Since continuum mechanics is the classical approach used to solve geotechnical boundary

value problems, a comparative study was done to highlight its relationship to the discrete

element method. The three modelling techniques selected for comparison in this section

are a Finite Element Method (FEM) model for granular systems, an explicit DEM

numerical scheme adopted for this thesis, and an implicit DEM scheme called the

Discontinuous Deformation Analysis (DDA). O f course, there are many other schemes

R e p r o d u c e d with p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

14

for solving granular systems, but these three techniques represent the diversity in

approaches.

For example, the FEM is used quite extensively to model almost every observed

behaviour that is found in soils. Rodriguez -Ortiz (1974) is noted by Cundall et al.

(1979c) to have the closest analysis to the DEM approach. In his approach, assemblies of

discs are represented by the finite element method. A stiffness matrix is constructed that

takes into account the geometrical arrangement o f the particles and the current stiffness at

each contact. Inverting the matrix allows incremental displacements to be computed from

the last known forces, with an iteration procedure being necessary to deal with slip at

contacts. Only one contact is allowed to slip at a time, and it is necessary to reform the

stiffness matrix when the contacts join or break. It is important to note that in this method

all particles interact with each other during each solution step.

With the implicit DEM, for example DDA, the block systems analysis can be

closely compared to the finite element method. The discrete blocks are similar to the

"elements" in the FEM, but the displacement compatibility condition between adjacent

elements in FEM is replaced in DDA by contact relationships between blocks which are

based on block kinematics and constitutive laws of discontinuities. The matrix produced

from these equations is similar to the FEM with a much more sparse and less banded

global coefficient matrix. The displacements and strains o f the blocks are used as basic

systems o f unknowns and the matrix equation is solved by using a direct equation solver.

The reader is referred to the paper o f Shi [1988] for more details on this implicit approach.

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

15

His work was described here to provide the reader with an examples of an implicit discrete

element analysis.

In contrast to the schemes just mentioned, the explicit DEM is a time-dependent

scheme, where each time step is chosen to be so small that during a single time step,

disturbances can not propagate from any particle beyond its immediate neighbor. The

resultant forces on any particle are determined exclusively by its interaction with the other

particles it contacts. This is the reason why the DEM can model the non-linear interaction

o f a large number o f particles without the need for iterative techniques.

A comparison between the explicit DEM and the implicit DEM reveals that the

explicit DEM absence of iterative techniques for non-linear behavior eliminates the

possibility of converging on a path that is not physically possible. Chang and Acheampong

(1993) points out that the advantage of the DEM approach compared with an implicit

algorithm is that it requires less computational effort and computer memory. CundalPs

model is known to be primarily dependent on artificial global damping to dissipate the

energy within the assembly for stable results, and it requires many small time steps to

reach a state o f equilibrium. The one drawback is particles tending to spin at high speeds

during the numerical simulation. Therefore, a high moment o f inertia is therefore

assigned to each particle to prevent this from happening.

On the other hand, since the implicit scheme doesn't require very small time steps

to arrive at a certain stress state, the number o f iterations that are required is much less

than the number o f time steps required by the DEM to achieve the same state. In Shi’s

DDA, the deformation energy is minimized within a block system to yield equilibrium

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

16

directly and therefore does not require small time steps. The blocks are treated as linear

elastic polygons. Since the block deformation and movement are determined by the

minimization o f energy, damping and a high moment o f inertia is not necessary to

achieve stable results. However, this numerical scheme requires that many cumbersome

simultaneous equations be solved per time-step. Before the implementations o f parallel

computing to DEM models can be discussed, a brief description of computer terminology

is provided in the next section.

1.6 Parallel Computing Terminology

Since this research is intended to have interdisciplinary appeal, basic computer science

terminology will be defined in this section. When the term “massively parallel computer”

is used, this signifies that hundreds to thousands o f processors are incorporated within a

network for a given application. If a machine consists o f less processors than just

mentioned, it is called a parallel machine. A massively parallel supercomputer is the

state-of-the-art technology and can be accessed through national supercomputing sites,

such as the Pittsburgh Supercomputing Center (PSC) and the National Center for

Supercomputing Applications (NCSA).

The two major types o f supercomputers found today are vector machines such as

the Cray YMP and the massively parallel machines such as the Cray T3D and CM-5.

Although vector processing is found in the Cray YMP, in the case o f functional pipelines,

the vector processing referred to in this paper is only related to the SIMD architecture. In

short, vector processing occurs when arithmetic or logical operations are applied to

R e p r o d u c e d with p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

17

multiple data as opposed to scalar processing which operates on one or a pair o f data.

The topology or layout o f any parallel machine will be described in terms o f its multiple

processor capability, its control network, and its interconnection network. These

classifications differentiate a parallel machine from a multiple processor serial machine.

The multiple processor capability can describe either many low performance

processors linked together in a homogeneous system, a smaller number high performance

processors linked together in a homogeneous system, or variable numbers o f different

processors linked together in a heterogeneous system. The first two cases will be

discussed in this research for the CM-2 and the CM-5, respectively. In a homogeneous

system, the same processors/nodes are used throughout the architecture, and in a

heterogeneous system, different processors/nodes are networked together. In general, the

memory is distributed or divided among the processors, so that communication links

between processors enable memory to be addressed. There are some parallel machines

with shared memory, in which case the same memory is accessed by all o f the processors.

Serial machines are an example of a shared memory system, although they may have more

than one processor. The basic element of a parallel machine is the processor with its

attached memory or the “node”. A node can be a processor or processors with various

functional capabilities. For example, a transputer node is a node that contains a

processor, memory, and communication links on a single chip, whereas a CM-5 node

(described later) consists of a RISC processor, 4 vector units, and its allocated memory.

The control network is defined as a single instruction multiple data machine

(SIMD) or a multiple instruction multiple data machine (MIMD). Although, these

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

18

architectures are described in detail later on, the major difference is that SIMD operates

synchronously on the entire set o f processors assigned to it for each instruction, and

M1MD operates independently on each processor at different times.

Finally, the interconnection network is the physical wiring of the processors’

connections to each other. Examples of this are the hypercube, binary tree, and 3D

Torus, which are some of the networks that will be described further. The communication

latency is a time measure of the communication overhead incurred between the

processors/nodes, and the memory latency is the time required for the processor to access

the memory.

1.7 L iterature Survey

1.7.1 Ghaboussi Approach

The operation o f massively parallel machines to model soil behavior has been proposed by

Jamshid Ghaboussi et al. (1993). Ghaboussi proposed that the connection machine (CM-

2) could be used to detect contacts between particles simultaneously (in parallel) with

neural networks. Unlike sequential programming, neural networks are trained. The

network then internally organizes itself to be able to detect the presented examples.

Before the network can become operational for a discrete element algorithm, it has to be

trained to detect contacts between particles. I f the neural network is properly trained, it

is able to give correct responses, or nearly correct responses when presented with partially

incomplete stimuli. Its ability to self-organize itself or adjust its weights makes it

possible for it to generalize certain conditions o f contacts. This is a good approach, but

detecting all o f the existing contacts is not guaranteed. In order to simulate behavior in

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

19

construction materials and soils, the arrangement or packing o f particles can be quite

complex, which means extensive training would be necessary to get close to the number of

contacts that exist.

1.7.2 Kuraoka’s Approach

Kuraoka (1994) modified Trubal and implemented it to the Intel iPSC/860 with 16

processors. In this case, an assembly of 2400 disc was simulated for the flow of sand in

an expendable pattern casting process. It did not exploit the full capabilities of a

massively parallel machine nor did it consider the three dimensional case, but the potential

use o f multiple processing machines was strongly supported in his work. His approach

was applied to a Multiple Instruction Multiple Data (MIMD) architecture, which allowed

individual processors to be assigned individual tasks. Although, this approach has

inherent bottlenecks such as load balancing each processor with equal work or time loss

due to synchronizing all o f the processors, the efficiency achieved proved to be a valuable

annrnarhr * ------

1.7.3 Hustrulid’s Approach

Hustrulid (1995) adapted a two-dimensional discrete element model to a 64 node T805

transputer from Alta Technology. In this study, 625 particles were used to simulate

particle flow on a MIMD architecture. Although, 64 nodes were available, only 32

nodes were applied to the problem due to the excessive communication overhead. From

this report, there appeared to be a small increase in speedup once 25 or more nodes were

applied to the problem.

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e r m is s io n .

2 0

1.7.4 O’Connor’s Approach

O’Connor (1995) developed a scheme known as the Discrete Function Representation

(DFR) which is used to model the surface geometry o f complex 3D objects. His scheme

o f contact detection was noted to yield speedups o f up to two orders o f magnitude when

the sequential application o f DFR was compared with another sequential technique. In

addition, a number o f MIMD machines were tested for their ability to a handle parallel

sorting algorithms and were used in simulations modeling spherical particles. Although a

possible application o f an SIMD architecture was mentioned, this architecture was not

tested in this study. Also the full capability o f a supercomputer was not exploited, but was

discussed as future research. This approach proved to be resourceful in modeling complex

figures for potentially large systems ranging into the thousands o f elements.

1.8 Research Program

This research studies the application of the discrete element method to a massively

parallel SIMD machine. (No significant advances are known to be reported for a 3-

dimensional discrete element model on this platform.) Since the majority of researchers

can benefit from adapting their codes to a less complicated SIMD architecture, two

modifications o f program Trubal 1.51 were developed. The first major development was

to adapt Trubal version 1.51 to the CM-2 machine, in order to exploit its entire

architecture. The second major development was then to adapt it to the CM-5, its

successor, for improved performance.

R e p r o d u c e d with p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

21

In this thesis. Chapter Two describes the approach used to develop the first

version o f TPM. The architecture of the CM-2 is explained in detail and the data

structure o f the Trubal 1.51 is presented to show the segments that were improved.

Chapter Three discusses the second version o f TPM that is applied to the CM-5, and

discusses how improved speeds were obtained. Chapter Four is dedicated to simulations

using the triaxial experiment performed by Rowe (1962). Chapter Five concludes with

other approaches that are being taken to extend this research to other platforms.

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

CHAPTER 2

TPM VERSION 1.0

This chapter describes the computer implementation o f the program Trubal to the

massively parallel architecture o f the CM-2. Trubal’s data structure is analyzed for its

inherent parallelism. In addition, the topology o f the CM-2 is studied in order to consider

the best implementation o f Trubal. As a result, the progressive development of the TPM

algorithm is described after repeated triaxial simulations are tested. Monitoring TPM’s

performance in each case led to various modifications, which are also presented in this

chapter as part o f TPM version 1.0. The final revision o f this algorithm became TPM

2.0 when it was ported to the CM-5, which is described in the subsequent chapter.

2.1 Introduction

The demand for simulating larger granular assemblies with shorter run-time, motivated

the adaptation o f a discrete model to the connection machine, CM-2, with 32,768

n r o c p c c n r c \z fp p c rn f ta anH W acf i in cT tn n f IQ Q l ' l n r n n n ? p H t h a t if*a r n n n p r t i n n m a r h i n pa v Wh/h# v * w. a < a v v a* aa m. a a. a i aawa a a a . ̂ aw«« y a / j a a/ ^ w ̂ v aa a a aaaa a a a* v w »a« ft va« aa v a a a a aaavft a ft ft ft v

(CM-2) was adapted to Trubal version 1.51, it could achieve a speedup of two orders of

magnitude by taking advantage of CM-2’s entire resource. However, there were a few

obstacles that did not allow this goal to be reached. First, the CM-2’s entire system

resources were not readily available. Second, the overhead in processor communication

would not allow the overall performance to reach two orders o f magnitude. Third, the

program development was retarded by the discontinuation o f this machine. Nevertheless,

the basic methodology that was pursued in developing an algorithm for the CM-2 is

22

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

2 3

described in this chapter. The evolution o f the CM-2 algorithms are noted as TPM 1.0

and the performance o f the last two revisions are evaluated. The first draft o f TPM 1.0

closely followed the data structure o f Trubal version 1.51 and with minor modifications,

adapted it to parallel programming. Before describing the TPM algorithm, an overview

o f Trubal’s version 1.51 is presented.

2.2 General Description of Trubal’s Algorithm

While there are many routines in the Trubal algorithm, there are six major routines

(Cycle, Motion, Rebox, Search, Bbtest and Ford), that perform all o f the basic

calculations required in each time-step. The operation o f the each routine is briefly

described here. Readers are referred to Cundall et. al. (1978) for more detail. Figure 2.1

shows the flow chart o f the routines involved in each time-step, including the Gen Routine

which generates particles for the simulations.

G E N R O U T I N E

Q____________
C Y C L E R O U T I N E

a
O T I O N R O U T I N E

0
R E B O X R O U T I N E

S E A R C H R O U T I N E

B B T E S T

a
F O R D R O U T I N E

a
O U T P U T

Figure 2.1 Flow chart for Trubal algorithm

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

2 4

2.2.1 Gen Routine

The Gen routine generates a number o f spheres randomly using a random generating

library found in most high level languages such as Fortran. Gen creates a random packing

o f spheres, by first considering a fixed free space and plotting points for the center of each

sphere at random. After each sphere is located, contact detection is necessary to insure

that there are no sphere overlaps. If a sphere is found overlapping another, it is deleted

and another random point is selected. This is necessary to insure that there are no internal

forces present prior to the packing of the entire assembly. When the requested number of

spheres is generated, the boundaries are moved so that particles can make contact. In

most cases, the boundaries are relaxed or expanded after the initial contraction in order to

achieve this point of equilibrium.

2.2.2 Cycle Routine

The cycle routine updates all the global variable parameters, such as the current size of the

boundaries and the global strain rates. It also resolves the global stresses and strains that

currently exist in the assembly. One o f its primary functions is to call the other

subroutines that are required for each time-step.

2.2.3 Motion Routine

The motion routine is responsible for updating particle velocities, angular velocities,

displacements and angular displacements, based on the current forces, moments, gravity

effects and boundary conditions. Global damping (as described in Section 1.3) is

implemented within this routine in order to provide stability to the entire system.

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

25

2.2.4 Rebox Routine

In order to reduce the number of contact checks between any two spheres, each sphere is

centered within an imaginary cube and the entire assembly is partitioned into a specified

number o f boxes. This allows the number o f contact checks to be confined within the

various boxes, as opposed to checking each sphere with every other sphere within the

assembly. The Rebox routine designates a memory address for each comer o f the cube

that encompasses a sphere (Fig 2.2). This address is checked by the Search routine and

added to a memory listing described in a later section. In order for the boxing system to

work efficiently, the size o f the boxes is predetermined to be greater than the diameter of

the largest sphere. It should be noted that contact detection is the most time intensive

component o f discrete element simulations, especially if the particles have complex

shapes. Therefore, contact detection is only performed when a particle has moved a

specified distance.

CU££
u

(b L
r x̂ 1

dPo i o

Figure 2.2 Spheres encompassed by cubes are mapped within boxes

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w ith o u t p e rm is s io n .

2 6

2.2.5 Search Routine

The search routine allocates memory within the one dimensional data structure o f Trubal

(see Fig 2.3). The system, referred to as “leap frog” or “link and list”, is a dynamic

memory manager used to sort spheres within boxes with neighboring pointer addresses.

Each sphere is listed along with a pointer, which denotes the memory location o f the next

sphere in the box . This system allows for systematic contact checking for each sphere

located within the region of the box. If a sphere moves out of the box, it is deleted from

the memory list and the memory space is reused for another sphere. The reader should

note that a detailed representation of Trubal’s data structure can be found in Cundall and

Strack (1978).

Ball
Data

 b r ­
o ther
Data

- V

Boxes
Box Entries and
Contacts

Free

Figure 2.3 Trubal’s data structure presented as a one dimensional array

2.2.6 Bbtest Routine

The BBTEST routine checks the distance between two spheres to determine whether the

two spheres are in contact. For a spherical object, this is done simply by summing the

radii together and subtracting it from the distances between the two centers. If a contact

is formed between the two spheres or they were within a certain tolerance apart, a contact

list is formed which is later analyzed in the Ford routine for possible internal particle

forces.

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

2 7

2.2.7 Ford Routine

The Ford routine computes the shear and normal forces between two overlapping particles

using their stiffness and relative angular and translational velocities (see Section 1.3). In

addition, the resultant forces and moments are calculated for each particle based on the

sum of its surrounding contacts with other particles. The global stress tensors are

summed over all o f the contacts existing within the assembly.

2.3 CM -2 Architecture

A parallel machine’s architecture can be classified by its multiple processing capabilities,

its control systems and its interconnection network. The CM-2’s multiple processing

capabilities attaches thousands o f low performance processors together to work as a high

performance homogenous architecture. The CM-2’s control system is a Single Instruction

Multiple Data Machine (SIMD) designed by the Thinking Machine Corporation. The

SIMD architecture implies that each line of the code is executed in each processor before

the next line can be read, therefore all operations are synchronized Its 32,768

processors are divided into four primary partitions, all o f which are controlled by a Unix-

based Sun front end machine. The primary partitions, referred to as “sequencers” , are not

all dedicated to the user, but are assigned to jobs according to the system manager (see

fig 2.4). Most commonly, one sequencer is timeshared while other sequencers run

dedicated batch jobs. The Fortran 90 and C language are compatible high level languages

used in operating parallel machines.

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

2 8

FRONT
END

(Sun 4/470)

SEQUENCER

1

SEQUENCER

2
SEQUENCER SEQUENCER

4

M M M M M
P P P P P
M M M M M
P P P P P

8K
PROCESSORS
PER SEQUENCER

e
32Kb MEMORY

Figure 2.4 CM-2 Architecture

Even though all of the processors within the partition are operating, the number of

processors that actually do useful calculations is dependent upon the layout of arrays used

within the code. For example, the layout of 16 processors could be written as in Figure

2.5. This figure shows that when an array is declared, the machine automatically chooses

the number and configuration o f the processors required (i.e. 4x4 processors).

Normally, the machine will select the smallest dimension for the configuration of

processors, in order to shorten the distance of interprocessor communication. For

example, “ 1x16” would not be selected since the greatest possible communication latency

would be the along the second axis,” l 6” . In Figure 2.5, the machine chose the 4x4

configuration for the best performance. In this system, the distributed memory allows

each processor to operate on the assigned data in its attached memory. Although, the

actual location of the processors and their memory remains unknown to the user, the

processors can be visualized, in this case, as a square arrangement, with four processors in

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

2 9

D e c l i r i t i o n S t i t e m e D t
r e a l a r r a y (6 4 , 6 4)
c m f S l a y o u t a r r a y (n e w s , n e w S)

P o s s i b l e L s y o a t d o c e b y m i c b i n e
A x i s 0 : 6 4 (4 p h y s i c a l x 1 6 s u b g r i d)
A x i s 1 : 6 4 (4 p h y s i c a l x 1 6 s u b g r i d)

1 6 x 1 6
e l e m e n t i

1 6 x 1 6
e Ic m c a l l

1 6 x 1 6
c l e m c a l l

1 6 x 1 6
c l e m e n t i

1 6 x 1 6 1 6 x 1 6 1 6 x 1 6 1 6 x 1 6
c l e m e n ts c l e m c n t s c l e m e a t s c l e m c a t s

1 6 x 1 6
c l e m c n ts

1 6 x 1 6
c l e m c n t s

1 6 x 1 6
e l c m c a t s

1 6 x 1 6
c l e m c n ts

1 6 x 1 6 1 6 x 1 6 1 6 x 1 6 1 6 x 1 6
c 1c m c n ts c l e m c a t s e l c m c a t s c Ic m c n t s

Figure 2.5 An array (64,64) layout over sixteen processor

each column and four in each row. The subgrid (as mentioned in Fig. 2.5) can be viewed

as a 16x16 grid of elements inside o f the memory of each processor. The “elements”

refer to the data within each of the assigned arrays. If the machine allocated the array as

described in the layout, then 256 elements o f the array would be placed within each o f

the 16 processors (see Fig. 2.5). In this example, only 1 Kilobyte (Kb) of memory was

required per processor; however the CM-2 allows for a maximum of 32Kbytes (256K

bits) of memory for each processor, which is a physical limitation to the problem size that

can be analyzed.

Finally, each o f the processors can communicate with any of the other processors

through the interconnection network. The hypercube network, denoted as a router in

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

3 0

Ulobal Bus j

from/to Front End
f — I----- .
ISequence

Memory l3us

Instruction Broadcast Dus

Router/ NEWS/Scanmng

Thousands,
of Proces
■with
memory

Figure 2.6 The CM-2 parallel processing unit

Figure 2.6, is the communication network used between the processors’ memories. It is a

very rapid interconnection network for data communication, because the diameter o f the

system is equal to its node degree. The diameter o f the system is the shortest path

between the two nodes that are the farthest apart, and the node degree is the number of

channels or connections going into each node. The hypercube is a “n-cube” system, with

an interconnection design that renders a relatively small diamcici. ru i exainpie, ngu ie

2.7a shows a 3-cube interconnection network, with three channels and eight nodes. In

this case, the number o f nodes, N = 2", so that the node degree, n, is equal to 3, therefore

the diameter is also equal to three. In the case o f the CM-2, each node is considered to

be an individual processor along with its associated memory, so the entire system

connected would require a 15-cube system for 32,768 (2 15) processors with a diameter of

fifteen.

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

31

N odes

a) Hypercube - 3 -cube network b) Fully Connected network

Figure 2.7 Interconnect networks systems

The fastest interconnection network possible, is the fully connected network

shown in Figure 2.7b, where the diameter o f the system is one and any arbitrary node can

communicate with any other node in one unit of time. However, this type o f network is

not practical for larger systems such as the CM-2, due to the number o f connections that

would have to be physically attached between every node. Considering the fact that the

CM-2 can not implement a fully connected network, the hypercube network appears to be

a feasible alternate for a relatively fast interconnect network.

As a result of the rapid growth in computer technology, the CM-2 machine is

currently not available at supercomputer sites such as Pittsburgh Supercomputer Center

(PSC) and the National Center for Supercomputing Applications (NCSA). Currently, the

Pentium-100s and above are higher performing chips than the CM-2 processors used in

this study. However, the parallelism o f the algorithm still remains the governing factor

as to whether the CM-2 can exceed the performance o f a “high-end” desk top computer.

2.4 Data S tructure of TPM Version 1.0

As mentioned earlier, the initial idea proposed by Meegoda and Washington (1993) for

TPM version 1.0 was based on two criteria. The first criterion was that if each particle

R e p r o d u c e d with p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

32

within the assembly was stored in its own processor along with the necessary data

pertaining to all the other particles, each processor could perform its particle operations

with its neighboring contacts. Hence, the latency o f interprocessor communication would

be reduced. The second criterion was that since dynamic memory (i.e. the dynamic

memory mentioned in Section 2.2.5) is unsuitable for SIMD machines, then it was

necessary to create a more static memory arrangement. Recall that the Search routine,

described in Section 2.2.5, was responsible for the dynamic memory management o f

Trubal, which has been replaced by a static memory arrangement in TPM ’s reboxing

routine. Therefore, Trubal’s “link and list” was removed from the algorithm and was

replaced with a large three dimensional array representing TPM’s rebox routine, described

later on in this section. The algorithm for TPM version 1.0 has the same flow chart as

Trubal 1.51, except that the search routine was eliminated (see Fig 2.8). The following

altered data structure o f the TPM algorithm is described for each of the major routines.

E'M t ti U T IH E 1

0 ______________
C Y C L E R O U T I N E

M O T I O N R O U T I N E

r
R E B O X R O U T I N E

11 ■

B B T E S T

0___________
F O R D R O U T I N E

0__________________
_____OUTPUT____________

Figure 2.8 Flow chart for TPM version 1.0

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w ith o u t p e rm is s io n .

33

First, the gen routine and the cycle routine are the same as in Trubal 1.51, except

that gen simultaneously produces random sphere locations for the entire assembly with a

random generating function. The motion routine uses a 2-D array, referred to as “sphere

array”, which places the information for each sphere into the memory o f each processor

as shown in Figure 2.9. By comparing Figure 2.9 to Figure 2.3 and Figure 2.5, the

evolution o f this scheme can be described. In Figure 2.3, all o f the information required

for Trubal 1.51 is stored within a one-dimensional array and it is accessed as shared

memory. In Figure 2.5, an example of the data layout within a two dimensional array

is shown, so that the parameters for each sphere in Figure 2.9 can be allocated within a

common memory space. One axis of the sphere array was assigned to each particle in the

assembly and the other axis was assigned to the various parameters pertaining to a

particular particle. Since the arrays determine the data storage for each processor based

on the array layout, a single array was used to store information pertaining to the sphere

parameters.

sphere #1

sphere #n

Figure 2.9 Data structure for the arrays o f TPM version 1.0

The rebox routine, as described in Section 2.1.4, was handled by a set of

processors that were assigned to a 3-D “box array”. One axis o f the array represented

2-D sphere Susy infoi ui&uOii foi c&ch processor

sphere
parameter
(x,y,z,...)

free space
for calculations
results

Other sphere
information

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e r m is s io n .

3 4

each particle within the assembly and another axis stored the box number for each of the

eight comers encompassing the particle (see Fig 2.2). The third axis o f the box array

is the number o f boxes in the assembly and it stores the sphere comers (refer to Figure

2.2) that map into that memory location relating to its box.

In order to perform this distribution o f data within the array, a number of CM

libraries were used. First, after the box number was calculated from the comers o f the

cube encompassing the sphere (see Cundali et. al. 1978), it produced repetitious box

numbers. To explain TPM’s reboxing scheme, a sample o f two spheres encompassed by a

cube is drawn within four boxes as noted in Figure 2.10. The 3-D boxing array would

originally appear as shown in Figure 2.11, where all box numbers would appear in box # 1.

F igure 2.10 An example o f two spheres within four boxes

A “spread” command is used to duplicate the box numbers for the eight comer points into

the third axis. This means that the numbers that appear in Box#l in Figure 2.11, would

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

35

appear the same way in the remaing boxes (i.e. Box #2, Box#3,& Box#4). At this point, a

“forall” command is used to select the box numbers that are residing in the correct

Sphere A

Sphere B j

corners of
cube

Figure 2.11 TPM’s Box Array Initial Setup

memory location, and to replace the correct box numbers with the correct sphere names

within each box. In the example presented in Figure 2.10, the sphere names are the

letters “A” and “B”, so that a distinction between boxes and spheres can be made;

however in the actual algorithm, the spheres are assigned numbers. A “firstloc” and

“where” command is then used to eliminate the duplicate sphere names that appear for the

same box. First, the “firstloc” commands flags the first location of the sphere number

within each box. Second, the “where” command places a dummy value wherever the flag

is false. At this stage, TPM’s box array appears as shown in Figure 2.12 without the

dummy variable for clarity. Finally, the “pack” command consolidates the box numbers

into a single column o f elements for each box. At this point, each box has a list of

R e p r o d u c e d with p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

3 6

spheres in which it can permutate all possible contacts. Then two arrays containing a list

o f all possible contacts is matched with the box list using a “forall” command and when

the list matches, it then transfers the contact pairs into the contact vector arrays. In this

1 2 3 4 5 6 7 8 comers o f cube

Figure 2.12 TPM ’s Box Array after “Spread” command and “Forall” command is used

example, the only permutation possible is between “A” and “B” , so in this case these

contacts would be found in box#l and box#3. The duplication o f the same contact found

here is eliminated as the algorithm flags all the contacts within a contact map. This map

contains one of every possible contact that can be permutated within the algorithm. Once

the contact map is flagged by the list of all possible contacts, its information is transfered

to the two one-dimensional arrays shown in Figure 2.9.

The bbtesl routine performs the same contact checking function as in Section

2.1.6, except that it is performed in parallel. The bbtest routine use the two single

dimensional contact arrays (see Figure 2.13), because the CM-2 requires a one

Box #4

Box #1

Sphere A

Sphere B

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

3 7

One Dimensional Contact Array “X ”

particle #A Other particle names

One Dimensional Contact Array “ Y ”

particle #B particle names that pair of f with array “X ”

Figure 2.13 One dimensional contact arrays for TPM 1.0

dimensional array as a vector or pointer, when it uses as an argument within another

array. In this case, two spheres in contact were stored in two arrays so that when lines

o f instruction were invoked for the contact checking as well as the force/displacement

calculations, only the information for each pair was used within the calculation.. In this

fashion, the entire contact check and force/displacement operations are executed in

parallel. The following example demonstrates how the difference in sphere center

distances could be calculated between all the contacting spheres within the assembly in

one line of instruction:

dist(:)=sphere(center, vector X(:))- sphere(center, vector Y(:))

where (:), implies all the elements within the array, dist is the distance between center of

spheres, vector #1 and #2 represents the contact arrays with a list o f spheres in possible

contact, center represents the coordinates o f the center o f a sphere, and the sphere array

is the global array with all of the various sphere information. The Trubal algorithm, on the

other hand, repeats this line for each contact within the assembly. Finally, the fo rd routine

uses the contacts that are flagged as overlapping, to perform the parallel

force/displacement operations that are described in Section 2.1.7.

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

3 8

2.5 Advantages of TPM’s Data Structure

The data structure described has many advantages for parallel processing. The sphere

array, box array, and contact array are constructed so that parallel operations could be

performed in the motioning o f the particles, mapping o f the particles and the detection of

contacts respectively. TPM’s motioning o f spheres took advantage o f parallelism, by

displacing all spheres based on their current velocities and boundary conditions

simultaneously, in contrast to TrubaPs individual operation for each sphere. In this case,

the two algorithms (Trubal and TPM) used the same lines o f instructions (with exception

to the names o f the array), but the CM-2 performed these lines for the entire assembly

without looping for each particle.

For example, in the original Trubal, the comer o f each cube encompassing the

spheres (8 points) was mapped into boxes, one at a time. This operation took several

lines o f instructions and two different routines. Recall that the rebox routine determined

the coordinates of each point of a cube encompassing a sphere, and the search routine

used a “link and list” system to store the point in the correct box location. However, in

this modification o f TPM, the several lines required for determining the coordinates were

performed for all o f the spheres simultaneously. Each comer point was located in the

correct box by a few CM library commands. In addition, the link and list was eliminated

in this version o f TPM, because the contact listings were stored in the contact arrays.

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

3 9

2.6 Evaluation of Results of TPM Version 1.0

A triaxial simulation containing one hundred and fifty spheres was performed using TPM

version 1.0 with the data structure denoted in Figure 2.9, and the results were compared

to the VAX 8800 performance o f the same simulation. The three dimensional simulation

qualitatively modeled the consolidation behavior o f a dry granular sample under cyclic

loading conditions. Initially, the sample was randomly generated and then compacted to a

state o f equilibrium. Two cycles o f loading were performed on the sample during the

simulation, and then it was strained to failure. Failure in this case, was defined at the

point where the strain continued to increase at the same level o f stress. Although, an

actual experiment was not performed, this fictitious simulation was used as a means of

comparison between the performance of a parallel algorithm (TPM) and a serial algorithm

(Trubal). Therefore, the input parameters were values that simply allowed for a stable

simulation. Because a complete simulation was not performed on the CM-2, the results

of this simulation are described in detail for TPM version 2.0, where an improved

performance was achieved.

A complete simulation of this triaxial experiment lasted for 20,000 cycles on the

VAX 8800 and it required twenty-five minutes to perform this task. However, after 200

cycles TPM version 1.0 had already used close to six minutes, which is only enough time

to form two contacts in the initial compaction o f the assembly. At that point, the

simulation was terminated based on the fact that 20,000 cycles was desired to complete

the simulation and it was assumed that TPM would require approximately 6 minutes per

200 cycles. Therefore, TPM’s performance was not comparable with the VAX 8800’s

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

4 0

time. Table 2.1 shows the results of the system resource usage as well as routines with the

highest time consumption.

The bottlenecks within the TPM algorithm became evident through the use o f the

CM debugging software, PRISM, which produces a performance evaluation as shown in

Table 2.1. The front end machine denoted as (FE) is able to operate simultaneously

Table 2.1 CM-2 Resource usage viewed in PRISM

T o t a l t i m e : 3 9 0 . 2 4 s e c
F E c p u (u s e r) 2 7 8 . 6 5 1 s
F E c p u (s y s t e m) 2 . 7 8 0 s
F E I / O 1 4 . 2 0 0 s C Y C L E 7 . 3 3 2 s
F E T o t a l 2 9 5 . 6 3 1 s M O T I O N 5. 3 5 5 s

R E B O X 1 8 1 .2 1 s
C M c p u (u s e r) 1 4 2 . 4 7 1 s B B T E S T 2 2 . 3 7 4 s
C M c p u (s y s t e m) 3 9 . 9 3 8 s F O R D 5 7 . 2 2 7 s
C o m m (S e n d / G e t) 1 2 0 . 4 0 4 s
C o m m (N E W S) 2 5 . 1 3 9 s
C o m m (R e d u c t i o n s) 1 8 . 3 93 s 1 5 0 p a r t i c l e s - 2 0 0 c y c l e s

C o m m (F E < > C M) 1 .3 92 s
C M n o t p r o f i l e d
C M I / O
C M T o t a l 3 4 7 .7 37 s

with the connection machine denoted as (CM). The CM, in this case, governed the time

that was required to complete these cycles, causing the “FE cpu user “ time to idle for a

longer period o f time. This is an inherent result o f the SIMD architecture which

synchronizes the system at each level of instruction. Therefore, only the times for the CM

need to be analyzed, based on its operation during each routine.

The rebox routine is clearly the most time-intensive, due to the fact that it is

responsible for the contact detection. As mentioned earlier, the information assigned to

the spheres in each processor is globally reduced to the arrays that map the spheres into

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

41

boxes. This is seen in the “Comm (Reductions)” time usage, but also sorting o f the

spheres into the correct boxes requires a great deal o f “Comm (Send/Get)” time, which is

indicative o f interprocessor communication. Even with the parallelism of the boxing

routine as described earlier, the amount o f sorting and consolidating o f data elements

between the processors was time-intensive for both processor communication as well as

cpu usage. Evidently, the sorting and consolidating o f the box information are best

performed using the local memory o f a processor, because the dynamic randomness of

particle movement caused data elements to be placed sporadically within processor

memory, loosing the advantage of parallelism.

The unpredicted behavior o f this type o f modeling, is reflected in the data flowing

into the fo rd routine. The ford routine selects the contacts that were formed randomly

and were globally reduced from larger arrays. These large arrays contained information

required for each sphere that was found in contact. Once the data elements are transferred

to their correct memory location, the parallel computation is then performed rather

r
V ju iw r v i j .

The bbtest routine, which checks the distances between spheres, requires

information from different processors within the sphere array (such as coordinates,

incremental displacements, etc.). As a result, the interprocessor communication time is

required for the contact vector array to point to the memory o f the data that is needed

and transfer this information to the processor that is performing that particular calculation.

Again, the randomness of the vector array information can increase the communication

time between the processors.

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

4 2

Regardless o f the various operations just mentioned, the “CM cpu (system)” time

consumption always requires time to perform its internal functions that are hidden from

the user. The system may require different internal algorithms to perform basic memory

management, library functions or network protocols for the processors’ communication.

The following example demonstrates that if data from one array is being used within a

computation with another array, the system will create a buffer to copy the information of

that array, before changing the data within that array.

A(:,:)=A(:,:)+B(:,:)

I f array A and B are not within the same processors, then interprocessor communications

protocols within the system will be required.

2.7 Discussion and Other Modifications

From studying the topology of any parallel architecture, it is understood that the best

performance can be obtained if all calculations are local within each processor. Since the

fastest access to dsts occurs !ocs!!y within sach processor's memory the speed of*the

interconnection network can not exceed this. O f course, the second fastest data access is

the communication between two neighboring processors/nodes that require just one unit

o f time. The development o f TPM version 1.0 took advantage of the local memory

speed, but failed to optimize its global communication, which led to a series of

bottlenecks.

Due to the large memory requirement for the array layouts, scaling to a larger

problem became inconceivable, therefore an attempt was made to allocate dynamic arrays

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

43

which would have had the advantage o f being created during the execution o f the

program and deleted when the array was unneeded. This modification, although very

practical, proved to be unfruitful as far as the time consumption on the system for

memory management. The CM-2 required additional libraries to construct and

deconstruct these dynamic arrays which inevitably defeated the overall purpose.

Once it was recognized that using a single array (i.e. sphere array) did not

guarantee that data would be entered into the desired processor, another modification

was made assigning each parameter to an array with the same size and dimensions. This

was the stipulation in the CM-2 architecture which guaranteed local memory between

arrays. This was the last modification that lead to a better performance and to the next

generation o f TPM on the CM-5.

2.8 The Last Modification o f TPM 1.0

TPM version 1.0 last modification included the use o f separate arrays for each parameter

o f the particles (to localize memory) and considered all possible contacts within the

assembly to eliminate the boxing routine. Hence, a better performance was achieved

using the same simulation. Because the CM-2 was discontinued during the application of

this data structure, the preliminary results for the simulation that was tested were used to

extrapolate the'time for a complete simulation. Meegoda and Washington (1994)

estimated that the CM-2 could perform up to five times faster than the VAX 8800 when

executed for a 20,000 cycle simulation. The complete simulation time for the CM-2 was

approximated to finish in five minutes from the data collected after 200 cycles of actual

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

44

run-time. This calculation was made assuming the work required by the system was the

same throughout the simulation and that it would take an average o f 3 seconds for every

200 cycles. Since 20,000 cycles were anticipated, that meant 300 seconds would be

needed to complete the simulation on the CM-2. Because the matching time for the VAX

8800 was noted at twenty-five minutes, it was believed that an improved speedup o f up

to five folds could be achieved.

Since the performance o f simulations are relatively architecture dependent, a

comparison between the CM-2 and the CM-5 results may not be valid. However, the

CM-5 results does suggest that there can be a slight variation o f time per 200 cycle.

When this same simulation was performed on the CM-5, the first 200 cycles took 2.5

seconds which was very close to the time just mentioned. However, the time increased to

3.7 seconds when the assembly reached its maximum consolidation with a coordination of

six (six contacts per particle). The time for 200 cycles increased again to 3.9 seconds ,

when the triaxial axial load was applied. Therefore, the CM-2 speedup should be noted

as an upper bound when one sequencer is used. Since the CM-2 machine was upgraded to

the CM-5, it was deemed that any further investigation o f TPM on the CM-2 would be

overshadowed by the advancement o f the CM-5 architecture. Table 2.2 summarizes the

results o f the VAX 8800 and the CM-2.

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w ith o u t p e rm is s io n .

4 5

Table 2.2 Comparison of Timing between CM-2 and VAX 8800

Machine Architecture Time Scale for 150 particles
(20,000 cycle simulation)

CM-2
(TPM)

with one global sphere array and boxing
routine

6 minutes per 200 cycles
estimated 10 hours for 20,000 cycles

CM -2
(TPM)

with separate arrays for each parameter
and all to all contact checking

3 seconds per 200 cycles
estimated Sminutes for 20,000 cycles

VAX 8800 (Trubal 1.51) 25 minutes for 20,000 cycles

2.9 Conclusion

In conclusion, TPM version 1.0 has a number o f parallel applications built into the

algorithm, but the bottlenecks due to incompatible array sizes, cause an excessive amount

o f communication protocols. Also, in the earlier modifications o f the TPM, the dynamic

behavior of the assembly demanded extra cpu-time for selecting random data from

different processors. Single Instruction Multiple Data machines perform best on data

structures with static memory structure, which means that data is not shifted from its

memory location and computations can be performed within local processor memory.

However, in the earlier stages of TPM’s development, excessive array reductions

slowed down the data communication considerably. Inevitably, TPM 1.0 evolved into a

workable algorithm introduced in the next chapter as TPM 2.0. TPM 1,0’s last

modification rendered a promising performance, although the results were not entirely

conclusive.

This early approach proved to be a landmark in current attempts to parallelize

discrete models on SIMD massively parallel supercomputers. The discontinuation o f this

machine had considerable effects on this research, however many of the ideas that are

currently being developed were a result o f this earlier project.

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

CHAPTER 3

TPM VERSION 2.0

This chapter describes the transition o f the TPM algorithm from the CM-2 machine to the

CM-5 machine. The CM-5 architecture advances are described and the exploitation o f the

system is discussed. TPM version 2.0 adaptation to the CM-5 is included with a

complete simulation o f a triaxial test, which is studied for accuracy and speedup.

3.1 Introduction

Since the architecture o f the Connection Machine (CM-5) replaced the CM-2 machines,

TPM version 2.0 was implemented to the CM-5, since 1) the CM-2 ceased to be available

for this research and 2) the upgraded CM-5 became available for porting the code. To

improve the performance o f TPM 1.0, two modifications were made as mentioned in the

last chapter. First, the boxing routine was removed entirely. This meant that the

number o f contact checks increased to the full size o f the assembly, squaring the problem

size. Secondly, a multiple number o f contacts were clustered into the same processor, by

using the same array size declarations and this was to eliminate the bottleneck of array

reduction found in TPM version 1.0. The new memory arrangement robustly handled all

o f the calculations and contact detection simultaneously. One further advantage is that

unlike all the other schemes, all particles were motioned, checked for contacts, and

calculated for interparticle forces within their own processor without the need for

interprocessor communication. However, this was not the case with the global

calculations that required communication extend to all the processors.

46

R e p r o d u c e d with p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

47

In this chapter, the architecture of the CM-5 is first described and compared to the

CM-2. Then the new TPM version 2.0 is discussed and it is shown how the squared

problem size, due to an all to all contact pairing within the algorithm, accelerated the

speed o f the simulation. Finally, a similar simulation to the one described in Chapter 2 is

rerun to validate the modifications to the algorithm.

3.2 CM-5 Architecture

The CM-5 architecture was the Thinking Machine Corporation’s last generation o f

massively parallel machines. This company, although still successful in marketing

literature and software for their existing machines, discontinued the manufacturing of

supercomputers due to bankruptcy at the end of 1994. However, many other companies,

such as Kendall Square Research (KSR), which manufactured very good high performance

supercomputers suffered the same fate. Since the termination o f these companies are not

uncommon, the quality and performance of the machine’s design should not be reflected,

but rather other factors, such as limited demand and poor marketing. In fact, the CM-5

1 s t Pa r t i t i on 2 n d P a r t i t i o n
256 256

p r o c e s s i n g p r o c e s s i n g
n o d e s n o d e s

E a c h n o d e
I Rise I

e c t o r
n itsc o m m o n

m e m o r y

Figure 3.1 CM-5 Architecture

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

48

was a great improvement over the CM-2 for a number of reasons, which can be seen

within the three basic components of the architecture (the multiple processing capability,

the control system, and the interconnection network).

The CM-5’s multiple processing capabilities were designed differently from those

o f the CM-2. In contrast to the 32,768 processors found in the CM-2, there are only 512

nodes in the CM-5 (see Figure 3.1). Recall that each node for the CM-2 consisted o f a

low performance processor attached to its own memory (Figure 2 .5). In the case o f the

CM-5, each node consists of a high performance RISC processor (performing at 5

Mflops/32Mhz) attached to four vector processors (performing at 128Mflops/16Mhz).

The RISC processor is able to perform all o f the operations that the front-end performed

for the CM-2, only in this case it controls a single node instead o f the entire machine.

The RISC processor’s performance can be comparable to an IBM workstation’s

performance since the Thinking Machine Corporation decided to use better performing

IBM microprocessors than the one used in the CM-2. The vector unit’s design shown in

Figure 3.2 is able to perform computations (with the Arithmetic Logic Unit), as well

M B u s

M B u s I n t e r f a c e

V e c t o r I n s t r u c t i o n
D e c o d e r

1 I M c m o r y
C o n t r o l l e rP i p e l i n e d

ALU
R e g i s t c r
F i l e

6 4 x 6 4 B i t s

M e m o r y

Figure 3.2 Vector unit functional architecture

R e p r o d u c e d w ith p e r m is s io n of t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

4 9

as receive instructions (with the Vector Instruction Decoder) and manage memory (with

the memory controller). Each vector unit is allocated 8Mb o f memory and is able to share

its memory with the other vector units within that node. This 32Mb of shared memory is

an important factor in reducing the latency' o f data communication. The vector units are

comparable with those o f the CM-2 processing node because they must receive

instructions before they can perform any calculations or memory management.

Secondly, the control system o f the CM-5 is more advanced than that o f the CM-

2. All of the CM-5 nodes are interconnected by three major networks: the data network,

the control network, and the diagnostic network (see Figure 3.3). The control network is

1 , 0
D I A G N O S T I C S N E T W O R K

p P P P P
M M M M

C O N T R O L N E T W O R K

D A T A N E T W O R K

p 1 p | p v \ l p l p l p l\^ c p IM c pP P P
Sd M M

M a n v p r o c e s s i n g n o d e s . C o n t r o l __m u n t i a n a w l a m s
e a c h w i t h i t s o w n m e m o r y p r o c e s s o r s . r

J I / O i n t e r l a c e s
a n d d e v i c e s

Figure 3.3 Organization o f the Connection Machine (CM-5)

A I / O

used for operations that involve all of the nodes at once, such as synchronization

operations and broadcasting (SIMD). The data network is responsible for bulk data

transfers where each item has a single source and destination. It is this feature of the data

network that enables the architecture to perform as a Multiple Instruction Multiple Data

(MIMD) machine. The diagnostic network is used by the system manager for

R e p r o d u c e d with p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

5 0

maintaining the system in case o f hardware failure or malfunction. The “control

processor” is another RISC microprocessor which is also referred to as the “partition

manager” . When an SIMD code is submitted to the control processor, it copies the

program into each node, and all o f the nodes synchronously perform each operation one

line at a time using the control network. When a MIMD code is submitted to the control

processor, each node gets an address and performs that part o f the code that is assigned to

its address. In this case, it uses the data network for its interprocessor communication.

The interconnection network o f this system is within the control network and the

data network. The control network and the data network are a binary tree and fat tree

interconnection network respectively. The diameter of the binary tree is D=2(h-1) where

h=log2[N +l] is the tree height and N is the number o f nodes. In Figure 3 .4, the tree

height, h, is four and the diameter, D, is six. For the CM-5 design with 512 nodes, the

tree height, h, is nine and the diameter o f the system, D, is sixteen. Recall that the

diameter o f the CM-2 was fifteen for the entire architecture, which makes the speeds of

a) Binary Tree b)Fat Tree

Figure 3.4 Binary and Fat tree interconnection network for 15 node system

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

51

the interconnect network between the two machines quite comparable. The fat tree in

comparison with the binary tree is designed to produce fewer bottlenecks in

communication as messages are sent to higher levels o f the tree. The binary tree will

inherently be slower, because there are less physical channel connections for data flowing

to the higher levels o f the tree. Therefore the MIMD global communication is preferred

over the SIMD global communication. Hence, in TPM version 2.0, the greatest time

consumption was detected in the global communication.

. A comparison between the CM-2 and the CM-5 architecture reviewed in this

thesis is given in Table 3.1. It is found that although the interconnection network has

comparable speeds, the CM-5’s hardware is more advanced. Since the CM-5 has a larger

amount o f shared memory within its node, less communication between processors is

expected.

Table 3,1 Comparison between the CM-2 and the CM-5

1 Attributes !

I
C M -2 CM -5 j

1
processor trademaik Wertek R ISC (IBM) I

o f processors 32 ,678 procs 5 1 2 nodes

memory capacity 1G byte 16Gbyte

interconnection network hybercube Bnary tree & Fat tree

cortrol system SIM D S IM D M M D

memory per processor/node 32 Kbytes/processor 32M 3ytes/node

Diameter o f interconnection
network

15 16

speed 5 .6 Gigaflops for
ertire svstem

128 M egaflops per node

_______________- __________

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w ith o u t p e rm is s io n .

52

3.3 TPM Version 2.0

TPM version 2.0 was based on Trubal version 1.51, but eliminated the rebox and search

routines. It also renamed the global communication portion of the fo rd routine as the

globe routine. As a result, the flow chart shown in figure 3.5 depicts all o f the routines

I I N P U T
I CYCLE lff lU T nr~E~3
I M O T I O N R O U T I N E "

C U N 1 A U 1
R O U T I N E

F O R D R O U T I N E

G L O B E R O U T IN E

O U T P U T

Figure 3.5 Flow chart for TPM version 2.0

that are involved in a cycle or time-step o f TPM version 2.0. The contact routine is the

equivalent o f bbtest, and the globe routine handles the global calculations required for the

forces and moments of each particle as well as the global stress tensors.

The idea used in TPM version 2.0, is to permutate every possible contact existing

within the assembly, without having to use do-loops or having to create a dynamic

memory arrangement within the algorithm. Therefore, within the square o f the problem

size,n, an nxn matrix will produce twice the number of contact possibilities in the lower

diagonal and the upper diagonal. The calculations required for the global stresses from the

contacts within the assembly use just one o f these diagonals, in order to avoid the

duplication o f contacts. However, the force and moment summations require the full row

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

53

or column of a matrix depending on whether the matrix or it’s transpose is calculated.

For example, if each array represents a sphere parameter for the matrix of the entire

assembly, and, for example, V represents the velocity and VT represent the transpose, so

then

' V 1 1 v 1 2 v 1 n ” V 1 1 V2 1 Vn 1
v 2 1 v 22 v 2 n and y T _ vl 2 V22 Vn 2
v 3 1 v 32 v 3 n vl 3 v23 Vn 3
Vn 1 v n 2 vn it V1 n v2n Vnn

(3.1)

where n represents the number of spheres in the assembly . V;j is the velocity for the ith

sphere and the j represents the velocity o f the jth sphere found in the corresponding

T Tlocation o f V jj . The motion routine computes equation 1.26 for both V and V . This

equation can now be written as follows,

[V] =

and,

[V] (1 - « A / / 2) + [F]A t / \m J

(1 + a A t 1 2)

\V T 1

V T - (1 - a A / / 2) + j V 7 A t I r t im

(1 + a A I / 2)

(3.2)

(3.3)

where F and m are the force and mass matrices for the entire assembly, and FT and mT are

the transposes o f those matrices respectively. Because the architecture is able to

broadcast scalar values intrinsically, they can be used within the equation without having

to be replicated in a matrix for parallel computation. Table 3.2, depicts how TPM version

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

5 4

2.0 implements the scheme of squaring the problem size to adapt to the CM-5. In the

table, Mtrans represents the transpose matrix o f the moment values found in M, and the

same is true for the force, F, velocity, V, and so forth.

Table 3.2 Declaration statements and psuedocode flow chart for TPM version 2.0.

c m f S l a y o u t M (n , n) , M t r a n s (n , n)
c m f S l a y o u t F (n , n) , F t r a n s (n , n)
c m f S l a y o u t V (n , n) , V t r a n s (n , n)
c m f S l a y o u t X (n , n) , X t r a n s (n , n)
c m f S l a y o u t (f o r a l l p a r a m e t e r s)

g e t a l l c o n t a c t p a i r p a r a m e t e r s i n c o r r e s p o n d i n g a r r a y l o c a t i o n s
f o r a l l n u m b e r s o f c y c l e s d o

m o t i o n e a c h s p h e r e u s i n g u p d a t e d c o o r d i n a t e s
c h e c k f o r c o n t a c t s b e t w e e n c o o r d i n a t e s o f A a n d B
C a l c u l a t e o v e r l a p p i n g c o n t a c t p a i r s f o r a l l f o r c e s a n d m o m e n t s
s u m u p a l l g l o b a l s t r e s s t e n s o r s a n d s u m f o r c e s / m o m e n t s

e n d d o
p r i n t o u t p u t
s t o p __

During the operation of the motion routine, extra computations are required for

the transpose o f each matrix, which increases the amount of work required for the

processors. Even extra memory is required to create the transpose matrices for these

calculations, which leads to an inefficiency within the algorithm. However since there is

no data dependency, all o f the operations are performed in parallel with a significant

speedup o f time.

The contact checking routine is able to check for contacts without boxing since the

matrices are already arranged in a permutation. Since all o f the parameter arrays have

the same array sizes, each corresponding pair o f spheres is computed by the same

processor within a shared memory. After the contacts are flagged within the matrix, there

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

55

is no further need to use transpose matrices. Now the matrices represent contact pair

values corresponding to its location within the matrix. Table 3.3 demonstrates how the

connection machine facilitates this operation using the where command with a logical

Table 3.3 Pseudocode for Contact Routine in TPM version 2.0

C O N T A C T R O U T I N E
check all coordinates for per i odi c space
distx = x - x ’
disty = y - y ’
d istz = z - z ’
d i s t =squareroot ((d i s t x) 2 + (d i s ty)2 + (d i s t z)2)
radius sum =rad + r a d '
whe re f d i s t - rad i us sum. I t .Q)contact= . TRUE,
retu rn

array. Assuming contact is a logical array size equal to the size o f the other parameter

arrays, all of the processors containing physical contacts will be flagged by an element of

contact. Parallel contact detection in TPM has a major advantage over other discrete

model algorithms, because it eliminates “link and lists” and various permutation

schemes.

The fo rd routine performs calculations for all o f the elements in the matrix,

regardless o f whether or not a physical contact exists. Since SIMD architecture

inherently requires that all processors assigned to the front end must perform each

instruction simultaneously, there are no idling processors. If a processor is not given any

data, it continues to perform the operation on padded data produced by the machine.

Therefore, erroneous results produced by non-contacting spheres are eliminated in the

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

56

globe routine by contact flagging. In order to make a proper performance evaluation, a

test was performed using a subset o f the matrix, calculating only the flagged elements in

the contact array. Instead of an accelerated time performance as anticipated, a slower

time was achieved. The architecture required extra time to eliminate the results that were

not flagged and replace them with padded elements to be ignored. However, when

another array was created to match the same number o f contacts that existed, the reduce

array size had a better performance. Hence, when an array is very large, more work is

required from each processor to select computations for certain data elements.

Although creating a smaller array from the number o f contacts improves computation

time, TPM version 1.0 proved that transferring data to a smaller array (global reduction)

causes a major bottleneck for algorithms requiring dynamic memory.

Table 3.4 Psuedocode for the Globe routine in TPM version 2.0

G L O B E R O U T I N E
Se t n o al l f la t 's fo r c o n t a c t s in u n n e r t r i 2 n° I e o f m a t r i x f u n c c n .■ o ~ * ” * " ” " I* I* w" O \ r '
Set up f lags for contacts us ing ent ire matr ix (contact)
Fl ag the d i agona l as false for both (contact) and (up c o n) matrix
g l oba l s t r e s s =sum(s t r e s s , upcon = . true.)
F o r c e (l , :) =s um(in t er p a r t i c l e force , contact=. true .)
M o m e n t (l , :) = s u m (i n t e r p a r t i c l e m o m e n t , contac t= . t rue)
Fo r c e p r i m e = S p r e a d (F o r c e (l , :) , d i m = 2)
M o m e n t p r i me = S p r e a d (M o m e n t (l , :) , d i m=2)
r e t u r n __

In the globe routine, global reduction and broadcasting uses the contact array to

select the correct results at the end of each time-step. Table 3.3 demonstrates the

advantage o f having a squared matrix data structure. When global stress tensors'

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

5 7

calculations are made, only the upper triangular portion of the matrix is needed to avoid

duplication of the stresses. The sum function is the intrinsic library function that uses the

flag (denoted as upcon in table 3.3) across the control network to globally reduce the

various contact stresses into the nine stress tensors for the global assembly. The sum

function is also able to use the flag (denoted as contact in table 3.3) for the entire matrix,

since each sphere is represented with regard to every other sphere by each row of the

matrix. Since the diagonal of the matrix represents the sphere in contact with itself, it is

automatically eliminated from all calculations. The spread function is a global broadcast

intrinsic library function that also uses the control network to regenerate the transpose of

the force and moment matrices required for the next time-step in the motion routine.

The globe routine is clearly the source for any bottlenecks in TPM version 2.0,

since it introduces global reduction and broadcasting among all of the processors and it

flags certain elements for computations. Speed is even further retarded by the time needed

to serially print out results that are layed out in parallel on the machine. The bottlenecks

as just described were found to be inherent bottlenecks of massively parallel machines with

unshared memory capacity. Some of the difficulties that were discovered in the two

versions o f TPM were a result of architecture design and are gradually being dealt with

by the manufacturers of these machines.

3.4 Experimental Verification and Performance Evaluation

The TPM algorithm was validated by simulating a triaxial test that had previously been

simulated in the original Trubal and TPM version 1.0. It should be noted that the data

R e p r o d u c e d with p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

5 8

structure in TPM was modified to obtain a more efficient performance on the CM-5

platform. In this case, a similar test was conducted with Trubal running on one o f the host

processors o f the CM-5, and with TPM operating on thirty-two nodes o f the same

machine. The objective o f this test was to see if a discrete element model could obtain a

speedup due to the new data structure and if it could be scaled up to a larger problem. A

triaxial simulation was conducted with the input parameters shown in Figure 3 . 6 . As

stated in the last chapter, these values were selected on an arbitrary basis with the premise

that the stability of the simulation would be achieved. The complete simulation involves

two stages.

The first stage involves generating random locations for one hundred and fifty

uniform spheres. Please note that once the locations were generated, they were stored

into an input file and the same coordinates for each o f the spheres were used in both TPM

and Trubal simulations. The assembly was allowed to compact under isotropic conditions

until the average particle had six different contacts. The stresses within the assembly

reached very high values at this stage of the simulation as noted in Figure 3 . 6 .

Afterwards, the assembly was relaxed by reducing all o f the boundary's strain rates to

zero. This allowed the assembly to dissipate the internal stresses as it approached a state

o f equilibrium and it also reduced the amount o f particle overlap as the particles

rearranged themselves to handle the stresses. It took 5200 cycles to reach a point of

equilibrium so that the compacted sample could then be used to simulate a triaxial test.

The second stage involved emulating the response curve o f a typical triaxial test.

Please note that each cycle represented one time step within the time integration o f the

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

59

DEM. The vertical stain rate was introduced at the boundary while the lateral strain rate

remained constant. The sample was vertically strained to failure at 10,600 cycles. In this

case, failure was depicted as a reduction in the stress that is needed to strain the sample.

Afterwards, the sample was unloaded (13,825 cycles) and then reloaded a second time

under the same stress conditions and a similar stress path history was obtained. The

simulation was stopped at 18,600 cycles after the sample had failed again. Figure 3.6

shows the stress vs. strain curve of the simulation (sigma 11 vs. strain 11), where the

toO.
Wco
UJ CC f—
CO

400 --

300

200 +

100

0

3600
cycles

0.1 0.2 0.3 0.4
STRAIN

Sample Compacted,
to six contacts/spheres

5200
cycles

18600
^ycles

10600
cycles

13825
cycles

Data Input:
150 particles
Radius -.08 mm
Shear stiffness -20KN/m
Normal stiffness -lOOKN/m

Actual Triaxial
iu i q u u i i

Figure 3.6 A comparison between TRUBAL and TPM of a simulated triaxial test

sample was strained in a vertical direction and the corresponding vertical stresses were

recorded. The two curves proved to be identical as expected, showing that the altered

data structure has no effect on the results. TPM performed this simulation two times

faster with a 32 node parallel data structure, than it did with Trubal’s serial algorithm on a

single processor o f the CM-5's RISC processor.

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

6 0

The performance evaluation o f TPM was based on the speedup.

Sp(N) = T*(N)/Tp(N) (3 . 4)

where T*(N) is the CPU time for the best serial version o f the algorithm running on a

single processor, Tp(N) is the CPU time taken by the parallel algorithm with p

processors, and N is the problem size or number o f elements.

The data structure that was used in this current version has a disadvantage o f not always

matching the problem size with the architecture memory configuration required for peak

performance. If the size of an array does not match the machine configuration, the next

largest size that matches the machine is created. When this happens on SIMD platforms,

extra processing power is used that is not needed. TPM’s overall communication was

retarded between processors due to this type o f problem. As a result, a lower efficiency

was obtained which means that without further modification, TPM is not scalable to a

larger problem. As shown in equation 3.5, the efficiency formula

is directly dependent upon the size o f the problem (N) and inversely dependent upon the

number o f processors (p).

3.5 Conclusion

Ep=Sp(N)/p (3.5)

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

CHAPTER 4

SIMULATIONS OF ROWE’S EXPERIMENT

In this chapter, the results from TPM version 2.0 simulations o f Rowe’s steel sphere

experiment are described. The first simulation was to 403 spheres which was identical to

that used by Cundall (1979a). The second was a complete simulation with spheres as

reported in Rowe (1962). Several indications validating the TPM algorithm are discussed.

4.1 Introduction

As stated before, the main thrust of this research is to develop an algorithm which can

simulate three-dimensional geotechnical problems significantly faster than the currently

available speed of computation. However, from the previous chapters, it is clear that a

dynamic memory model does not perform efficiently on a SIMD architecture. The

overhead in communication due to global reductions, broadcast and random sorting can

hinder the overall performance of each time-step, which is further retarded by the number

of time-steps required to complete the simulation. In this chapter, three advantages of

TPM converting a dynamic memory model to a static memory arrangement are discussed

using a simulated triaxial experiment. First, it will be shown that even when the size of

the assembly is increased by a factor of four, the TPM algorithm can maintain its

improved performance. Second, a speedup of nine fold was obtained when the entire

CM-5 architecture is exploited. Third, TPM’s sample size limitations can be shown to

accomodate well over a thousand particles.

61

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

6 2

Rowe’s (1962) triaxial test known as the “uniform spheres in face-centered cubic

packing” experiment was simulated with Trubal and TPM to validate the performance and

accuracy o f the TPM algorithm. In doing so, the global behavior o f a granular type

sample under triaxial loading was clearly effected by the particle arrangement in the

assembly. This was demonstrated simulating a triaxial test using an assembly o f 1/4 in.

diameter steel balls. Since the discrete element method is based on modeling the behavior

of discrete element bodies within an assembly, Rowe’s test was an ideal experiment for

Cundall’s program Trubal (Cundall et. al.,1979). In order to clearly validate the

usefulness of TPM version 2.0, a simulation o f Rowe’s model was performed using the

TPM algorithm and the same assembly size and parameters as Cundall. Since Cundall’s

assembly was smaller than Rowe’s, the full size assembly was also simulated by TPM in

order to test the accuracy of the results and the overall performance.

4.2 Rowe’s Physical Laboratory Test

The laboratory mode! used by Rowe consisted o f an octagonal shaped packing of “large”

and “small” layers (see fig 4.1). The 1,672 sphere sample consisted o f 13 large layers with

76 spheres in each row and 12 small layers with 57 spheres of each row placed alternately

on top o f one another. The large layers at the top and bottom o f the sample were in

contact with the axial loading that was applied to the sample. The rubber membrane

which encompassed the sample created the confining pressure.

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

63

Ur ge l a ye r s ma l l l aye r c r o s s - s ec t i on

Figure 4.1 Layers of spheres used in physical test by Rowe (1962)

4.3 Cundall’s Numerical Simulation

Cundall’s numerical sample o f this model was slightly smaller in size, because o f the

limitation o f the computer’s memory capacity at that time. Hence, the model’s large layer

was reduced from 76 spheres to 37 spheres and the small layer was reduced from 57

spheres to 24 spheres as illustrated in figure 4.2. In this case, seven large layers and six

small layers placed alternately on top o f one another with the cross-section as

l a r g e l a y e r s m a l l l a y e r c r o s s - s e c t i o n

Figure 4.2 Layers of spheres in the numerical test.

shown. Table 4.1 shows the parameters used in the Trubal simulation where the contact

stiffnesses were chosen so that the elastic deformations would be small compared to the

distortions arising from the slip between particles. The end platens used in the Rowe

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

6 4

model to apply the load were simulated, by fixing the velocity o f the top and bottom

boundary particles in the z-direction. During the compaction phase, the particle velocity is

set to zero so that the assembly can achieve a state o f equilibrium. The rubber membrane

is approximated to form of an ideal membrane (shown as dotted lines in figure 4.3) and

is assumed to stretch between the particles. Since the membrane is only in contact with

Table 4.1 Parameters o f material properties used in Cundall’s numerical simulation

D e n s i t y o f e a c h s p h e r e : 2 0 0 0
s h e a r c o n t a c t s t i f f n e s s : 1 .5 x 1 0 9
n o r m al c o n t a c t s t i f f n e s s : 1 .5 x 1 0 9
f r i c t i o n a n g l e : 7 d e g r e e s
c o h e s i o n : 0
r a d i u s o f e a c h s p h e r e 2 0
c o n f i n i n g p r e s s u r e (2) : 5 x 1 0 4

the boundary particles, the confining pressure is only applied individually to the particles

on the outer perimeter o f the larger layers. These forces are computed using the exposed

lengths Lx, Ly and Lz, defined in figure 4.3 and can be written as follows:

Fx=Lx *Lz*cj2 (4.1)

Fy=Ly*Lz*CT2.. (4.2)

where cr2 is defined as the confining pressure. None o f the forces in the z- direction were

considered for the boundary particles in the larger layer. It was noted that the fixed

forces on the boundary were only valid for small strains and displacements, since the

actual forces will vary as the geometry changes. In order to make a comparison to

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

6 5

L x = V 2 R
L z = 2^/2 R

S p h e r e r » d i u s = R

L y L x = 2 R L x = 2 R

L x
L y = 2 R L y = R

Figure 4.3 Exposed lengths for plane through large layer in x-y and x-z direction

Rowe’s results, the graph of the axial strain, e,, vs. the stress ratio, R, used in Rowe’s

paper was studied. The stress ratio is defined as follows:

O I f i (4.3)
a 2 A 2

where A is the area o f the octagonal shape formed by the assembly, Fi is the measured

platen force, and a 2 is the confining pressure on the boundary particles (a?= 5* 104). The

axial strain, e i , is defined as follows:

e , =---------— K------ IT — (4 4)1 A h

where 5 is the measured displacement at either boundary layer, and Ah is the distance

between the centers o f the top and bottom layers. The factor o f 2 appears due to the

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

6 6

movement o f the top and bottom layers. Figure 4.4 shows (Cundall et. al. 1979) Rowes

experimental test and Cundall’s numerical simulation. Rowe’s test was re-plotted in this

3 . 0 —.

cc
o

2 . 0 —m

uu

0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . OS 0 . 0 6 0 . 0 7 0 . 0 8 0 . 0 9

Figure 4.4 Comparison between Rowe’s results and Cundall’s numerical results

figure on an extended horizontal axis for clarity. Because the rubber membrane produced

a confining pressure, Cundall’s numerical results were improved when the rotations of

particles in contact with the membrane were fixed. Therefore, all o f the simulations

reported in this chapter restrict rotation when particles contact the membrane.

4.4 T PM ’s Simulation of the Rowe’s Model

A resimulation o f Cundall’s 403 sphere model was performed on the control processor of

the CM-5 and then TPM’s version 2.0 was tested for the same simulation on 32, 64, 128,

256, and 512 nodes respectively. Also, a number o f full scale model simulations o f 1672

spheres were tested on a different number o f nodes and the results o f this simulation

were compared with the results of the 403 sphere simulations. The input parameters for

TPM ’s algorithm were the same parameters used by Cundall. However, whenCundall’s

R e p r o d u c e d with p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

6 7

Rayleigh damping values o f ^ ,,=0 .05 and fmi„=0.5 for the fraction of critical damping

and the modal frequency respectively, were applied to TPM version 2.0 the simulation

3 .0

2 . 0

1 .0

0 0 1 0 0 2 0 0 40 0 0 3

A x i a l S t r a i n c ,

Figure 4.5 Instability in TPM version 2.0 simulation due to improper damping

became unstable as shown in figure 4.5. It was found by increasing the damping values to

one, for both A™,, and fmjn , stable results were achieved as shown in figure 4.6. In

Figure 4.6, results from the TPM algorithm, for both the 403 and 1672 particle simulation,

were superimposed onto the results of Figure 4.4, to show the agreement. Both Cundall

2 .0 - I

0.0 0.020.01 0.03

Axial Strain, e
0.04

Figure 4.6 Results presented by Rowe, Cundall, and TPM version 2.0

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

68

TPM results begin at a lower R value, because that is the equilibrium o f the assembly

before it is strained for the triaxial test.

4.5 Discussion

The speedup o f the simulation was calculated and plotted for the 403 and 1672 sphere

simulation in order to analyze the performance o f TPM. The 403 sphere simulation time

was recorded from the control processor, 32, 64, 128, 256, and 512 nodes. After the

speedups and efficiencies were calculated based on equation 3.1 and 3.2 respectively, the

speedups were plotted. Then the cpu times for the 1672 sphere simulation were

recorded, but due to the memory consumption, only the control processor, 256 nodes,

and the 512 nodes could perform this simulation. Table 4.2 shows the times from each

simulation along with their corresponding speedups and efficiencies.

Table 4.2 Speedup chart for the 403 and 1672 sphere simulation

control
processor

32 nodes 64 nodes 128 nodes 256 nodes 512 nodes

403 spheres
speedup 1 1.6 2.8 4.4 6.5 7.9
efficiency 100% 5% 4.4% 3.4% 2.5% 1.5%
cpu time 2.3 hrs 35 min 20min 12 min 8 min 7 min
1672 spheres
speedup 1 5 8.7
efficiency 100% 2.0% 1.7%
cpu time 5.4 hrs 67.1 min 37.1 min

Figure 4.7 shows the curves o f actual speedup of the Rowe simulation along with

the ideal speedup. The ideal speedup is based on the premise that the code is completely

R e p r o d u c e d with p e r m is s io n o f th e co p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

6 9

parallel and there are no overheads in communication processes. Since processors are

doing the same work, a speedup becomes a multiple o f the number o f processors used. In

the case o f TPM version 2.0, global communication was a major bottleneck within the

algorithm producing a lower efficiency as the number o f processors increased. Figure 4.7

shows the speedup curve for the 403 spheres simulation as noted in Table 4.2.

2 5 6

1
1 6
* i t N o d t i

2 5 6

Figure 4.7 Speedup plot for TPM algorithm simulating the 403 sphere Rowe model

4.6 Conclusion

In conclusion, three basic advantages were demonstrated in the results o f this chapter.

First, TPM can exploit a SIMD machine architecture with its static memory arrangement

and obtain a speedup of up to nine times for a 1672 particle simulation. With Rowe’s

model, the damping constants and equivalent confining pressures had to be increased and

reduced respectively, in order to achieve the correct results. Secondly, a drastic increase

in the problem size had a negligible effect on the speedup, instead o f decreasing the

speedup as expected. In the case presented, the problem size was increased by a factor of

four, however Table 4.2 shows small differences in the speedup between the two

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

problem sizes. Lastly, the size of assembly can exceed over a thousand particles, even

though TPM’s memory requirement restricts very large problem sizes. This restriction

was overcome during the 1672 particle simulation by repeatedly using arrays that were

the square o f the problem size (i.e. as in Table 3.2) for different parameters.

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

CHAPTER 5

FUTURE RESEARCH AND CONCLUSION

This chapter discusses the future o f parallel computing and its application to geotechnicai

engineering problems. As computer technology develops, parallel computing is beginning

to play a role o f increasing significance. This implies that the inherent parallelism within

the discrete element model should become o f increasing importance to the geotechnicai

engineering profession. This chapter first summarizes the findings of earlier chapters and

then later describes the implication of this work with regard to future heterogeneous

platforms.

5.1 Conclusion

This thesis first algorithm (TPM version 1.0) exploited the architecture o f the CM-2 as a

parallel supercomputing application to geotechnicai engineering problems. In this version,

Trubal version 1.51 was modified by eliminating the “link and list “ memory management,

replacing it with a parallel data structure that treated each particle separately within each

processor. At first, this version did not achieve a speedup due to problems with global

sorting and broadcasting of data. TPM version 2.0 on the other hand, achieved a

significant speedup by creating a static memory data structure throughout the algorithm.

The faster TPM version 2.0 assigns each processor a multiple number of

contacts with each sphere paired with every other sphere in the assembly and each pair

kept within the same processor. As a result o f this static memory arrangement, the

assembly size that was needed was the square o f the simulated model assembly. The extra

71

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

7 2

memory that was required then placed limitations on the size of the problem that could be

simulated.

Three basic advantages were obtained from the results presented in this thesis.

First, TPM can exploit a SIMD machine architecture with its static memory arrangement

and obtain a speedup o f up to nine times for a 1672 particle simulation. Secondly, a

drastic increase in the problem size does not decrease the overall speedup as expected. In

the case presented, when the problem size was increased by a factor o f four, only a small

difference in the speedup was noted between the two problem sizes. Lastly, the size o f

assembly can exceed a thousand particles, even though TPM’s memory requirement

restricts very large problem sizes from being simulated. This restriction was overcome

during the 1672 particle simulation by repeatedly using arrays that were the square o f the

problem size for different parameters. As a result, memory consumption is reduced and a

simulation using over a thousand spheres can be handled effectively with this technique.

Excessive global communications found in the global operations appeared to be

the inherent weakness of TPM version 2 0, however it is able to handle rapid data parallel

contact detection which is found to be most time intensive in discrete models. Therefore,

the contact detection portion o f the algorithm is favorable for a proposed heterogeneous

platform which is currently being tested.

5.2 Future Research

As previously mentioned, the three basic components that were considered for parallel

systems were the multiple processing capabilities, the interconnection network, and the

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e r m is s io n .

7 3

control systems. Up to this point, only the simplest type o f control system (SHVED) was

considered, with a homogeneous system o f processors. SIMD inherent ability to handle

data parallel operations for discrete models has been demonstrated, however its inherent

weakness was found in global operations.

The other control system is the MIMD architecture which is slightly more

complicated but has some distinctive advantages for a discrete model. Its inherent

strength is its handling o f dynamic communication between processors. However, scaling

up this dynamic communication for larger problems can increase the cost o f the

communication overhead. Of course, SEVED does not have this type of problem.

Separating these two control systems within an architecture does not necessarily lead to

the best performance in larger discrete models. For this reason, heterogeneous platforms

should be noted as a possible configuration for handling a dynamic data structure that can

cause constraints within SIMD and MIMD topologies. In this case, a heterogeneous

platform is suggested only for large systems where communication between various

platforms is negligible. Since SIMD has already been reviewed in detail, some aspects of

MIMD should be highlighted to motivate the discussion of heterogenous platforms.

5.2.1 The M IM D Approach

A MIMD architecture implies that processors are able to handle computations

independently o f each other. This is not the case with SIMD architectures or conventional

serial machines. For this reason, programing a MIMD machine is slightly more

complicated than programming a SIMD machine. If the algorithm is not correctly

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

74

synchronized by the programmer, processors can hang up waiting for messages that are

not there. In addition, the complexity o f programming the algorithm increases in

proportion to the size o f the problem. For this reason, scaling the problem size o f an

MIMD machine to include more processors is difficult to program. For example,

Kurioaka’s (1994) and Hustrihild (1995) considered dividing the discrete element model

geometrically. The basic idea of this approach is to divide the assembly space into

regions. However, in this scheme each processor is assigned the computations within

each region and the regions are defined differently (see Figure 5.1). There are two

common drawbacks to this MIMD approach.

3 1 P 2 P 3 P 4 P 5 P 6

c o l u m n r e g i o n

Figure 5.1 Clustering schemes of particles within multiple processors

First is the sporadic migration of particles and the formation o f contacts across the

regions which increase the overhead communication. Second is the load balancing of

processors due to these same migration o f particles and the deformation of the assembly

space. In order to load balance the processors, each processor must be given the same

workload otherwise poor efficiency is created within the algorithm. Both Kurioka and

Hustrihild chose column shape regions to minimize these two problems because l)a one

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

7 5

dimensional arrangement o f columns simplifies the interprocessor communication between

shared boundaries and 2) in some cases the load balancing among processors

favors columns due to gravity effects. As a result, the performance of these algorithms is

governed by the interprocessor communication and the load balancing. The proposed

research takes advantage o f this time by combining the platforms o f SIMD and MIMD.

5.2.2 Combining Control Systems

One approach that is currently being undertaken can complement the methods that have

just been presented. By considering data dependencies at the routine level and even at

the variable level, the control systems of various architectures can be optimized. In this

approach, the problem is analyzed by grouping particles as in the previous section, as well

as studying each routine for its need for shared memory. This approach was tested on the

CM-5 which functions as a MIMD and SIMD control system as described in section 3.2.

TPM version 2.0 was modified to perform independently on each o f the CM-5 nodes and

each node represented a column shaped region as described in Figure 5.1. Recall that the

SIMD control system of the CM-5 functions by using the control processor as the front

end and the nodes as processing elements receiving the same instruction. However, in this

application, data parallel operations are able to be performed by using the RISC processor

within each node as a front end and the four vector units as processing elements. For this

reason, TPM version 2.0 data parallel calculations were applied to each node as a SIMD

operation. The MIMD control system was applied to any routine requiring global

communication between the column regions or nodes as described in Table 5.1. Note that

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

7 6

the contact detection required two separate routines. The majority of the contact

detection was handled locally within the nodes or regions, however migrating particles and

particles which overlap the regions required global communication to detect neighboring

contacts. The complexity of handling the data structure o f this combined control system

has not yet been resolved. The development o f such an algorithm has produced

numerous bugs that are difficult to locate for large assemblies.

Table 5.1 Control system optimization at routine level for the CM-5

ROUTINE FUNCTION CONTROL
SYSTEM

MOTIONING PARTICLES MIMD

CONTACT DETECTION
(LOCAL)

SIMD

CONTACT DETECTION
(GLOBAL)

MIMD

INTERPARTICLE
CALCULATIONS

MIMD

GLOBAL STRESS
CALCULATIONS

MIMD

5.2.3 Heterogeneous Platform

The approach described in Section 5.2.2 is not limited to one architecture and is also being

pursued on a heterogeneous platform so that each task is optimized on the architecture

best suited for it. This approach is designed for discrete models with particles ranging

into the thousands for each column region. As mentioned in Section 5.2.1, any MIMD

machine can handle a problem within its memory limitations, without the aide o f an SIMD

control system. The idea proposed here is that while the MIMD control systems are

R e p r o d u c e d w ith p e r m is s io n of t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e r m is s io n .

7 7

handling the communication between regions, the SIMD control systems can be detecting

contacts within the region. It is believed that the speed required for both operations to be

performed simultaneously will be comparable.

Because an assembly size is being designed to exceed the memory capacity of a

CM-5 node, a parallel virtual machine (PVM) is being tested. This virtual machine

consists of the CM-5, the Cray T3D, and a SUN workstation acting as a front end. In

this scheme, the CM-5 is performing the SIMD operations o f the algorithm using TPM

version 2.0, while the Cray T3D performs the MIMD operations o f the algorithm and the

interconnection network between the two is performed by Oak Ridge National

Laboratory’s (ORNL) PVM version 3.3. Based on the assumption that MIMD is better

suited for global communication and SIMD is better suited for contact detection of

bodies/elements, this algorithm is being proposed as shown in Table 5.2. In this case, the

contact detection which consumes most o f the cpu-time is being optimized by using the

CM-5’s SIMD control system. The Cray T3D and PVM architectures are described

briefly in the following section.

Table 5.2 Control System Optimization at Routine Level of a Heterogeneous Platform

ROUTINE FUNCTION ARCHITECTURE PROCESSOR CONTROL
SYSTEM

MOTIONING
PARTICLES

CRAY T3D DEC ALPHA MIMD

CONTACT DETECTION
(LOCAL)

CM-5 RISC SIMD

CONTACT DETECTION
(GLOBAL)

CRAY T3D DEC ALPHA MIMD

INTERPARTICLE
CALCULATIONS

CRAY T3D DEC ALPHA SIMD

GLOBAL STRESS
CALCULATIONS

CRAY T3D DEC ALPHA MIMD

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

78

5.3 Cray T3D and PVM

The Cray T3D being tested has a MIMD control system with 512 DEC alpha nodes

multiple processing capability and a 3D Torus for its interconnection network. Each

DEC Alpha runs at 150 Mhz and is attached to 64 Mbytes per processor. The 3D Torus,

which allows for a communication rate of 300Mbytes per second, has a relatively high

bandwidth between processors compared to those machines previously listed (see Fig

5.2).

processing
node

Figure 5.2 3D Torus Communication Network

PVM can scale to a larger problem by networking many machines together. It

allows a heterogeneous collection of unix computers to be linked together under a master

host. PVM, a product o f a collaborative venture between DOE and several universities

(Geist et al., 1994), can use a regular workstation containing the source file as a master

host. By installing the basic PVM software on various platforms, the master host (SUN

workstation) operates all of its slave host as a single high-performance parallel machine.

At this level, many massively parallel systems (such as the Cray T3D and the CM-5) can

be supported on this system. The routines within the host program allow for the initiation

and termination o f tasks across the network as well as communication and synchronization

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w ith o u t p e rm is s io n .

7 9

between tasks. The communication constructs include those for sending and receiving

data structures as well as high-level primitives such as broadcast, barrier synchronization,

and global sums. The level o f this application is feasible, only if the size of the proposed

model simulation is very large, because then the communication overhead time will

become less significant in the overall performance.

5.4 Implementation of the Proposed Heterogeneous Platform

The Sun Sparc Workstation is the slowest machine so it is designated as the host o f the

virtual system. It is required to start or spawn the Cray T3D and the CM-5 programs, as

well as terminate them (see Fig 5.3). The workstation also retrieves results that are

necessary for printing, thereby reducing the overhead in the other architectures that would

have performed this operation. Since the Cray T3D interconnection network is very fast,

T3D

Sunsparc spawns
Cray T3D and
CM-5 program

r
CM-5

T3D updates particle locations ana i
sends particle data for each region [

T3D updates tracks migrating particles|
across regions and performs contact
detection and interparticle calculations)
for particle overlapping regions

CM-5 performs parallel
contact detection and
interparticle calculations
as in TPM version 2.0

T3D receives results to perform global calculations fortime-step

| Sunsparc stores results and prints out dataj

jSunsparc terminates CM-5 and T3D algorithm!

Figure 5.3 TPM’s proposed heterogeneous algorithm using PVM

R e p r o d u c e d with p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

80

it is selected for tracking migrating particle as well as calculating particle contacts that

overlap their regions. Because TPM version 2.0 handles contact detection rapidly in

parallel, it is being adapted to the CM-5 algorithm and also performs the interparticle

calculations. All information is returned to the Cray T3D so that global stresses can be

computed. It should be noted that the communication speed between the Cray T3D and

CM-5 is governed by the internet, which is relatively slower than the interconnection

network of these architectures. Therefore, the problem selected should be of

proportionate size to balance out the latency required for global and local communication

required for each region.

By developing an algorithm of this type, geotechnicai problems can be solved for

large systems. Also, other platforms can be incorporated to this scheme to meet the

computational demands that are required.

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

APPENDIX

TPM VERSION 2.0 (ROWE’S MODEL)

81

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

8 2

C Include file - Trbcom.inc for TPM version 2.0
*

* SETUP/NEXT
*

LOGICAL LOGFLG,ERROR,GMVFLG,hisflg,hertz,twod
integer, parameter ::cor=403
integer, parameter ::pos=cor
double precision, array(3):: xmax

integer nerr
integer i j,k,l

integer lunr,lunw,MODE,nfob
integer NVARB,NTYPM,NTYPS,NBOX
real OVLAP,PI,DEGRAD
real ALPHA, BETA, iff, fob
real GAIN.SERVEM
character*4 hed

* GEN VARIABLES
*

integer geno,nreq,n
integer skips
real eax
integer ml a, m2a

integer NBALL,NTOT,NCYC
logical genflag

* real, array(3,5)::random

* CON VARIALBLES
*

integer memory
real, array(cor,3)::con
real, array(cor,2)::conl
real, array(cor)::rrr
real, array(cor)::shft
logical, array(pos,pos)::mas,masI,mas2

SPHERE VARIABLES

real, array(pos,pos): six
real, array(pos,pos): sly
real, array(pos,pos): slz
real. array (pos,pos): s2x
real. array(pos,pos): s2y
real, array(pos,pos): s2z
real, array(pos,pos): vlx
real, array(pos,pos): vly
real, array(pos,pos): viz
real. array(pos,pos): v2x
real. array(pos,pos): v2y
real. array(pos,pos): v2z
real, array (pos,pos): tvlx

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w ith o u t p e rm is s io n .

83

real, array(pos,pos)::tvly
real, array(pos,pos)::tvlz
real. array(pos,pos)::tv2x
real, array(pos,pos)::tv2y
real, array(pos,pos)::tv2z
real, array(pos,pos)::rdl
real, array(pos,pos)::rd2
real, array(pos,pos)::xlx
real, array(pos,pos)::xly
real, array(pos,pos)::xlz
real, array(pos,pos): :x2x
real, array(pos,pos)::x2y
real, array(pos,pos)::x2z
real, array(pos,pos)::xdlx
real, array(pos,pos)::xdly
real, array(pos,pos)::xdlz
real, array(pos,pos)::xd2x
real, array(pos,pos)::xd2y
real, array(pos,pos)::xd2z

real, array(pos,pos)::tlx
real, array(pos,pos)::tly
real, array(pos,pos):.tlz
real, array(pos,pos)::t2x
real, array(pos,pos)::l2y
real, array(pos,pos)::t2z

real, array(pos,pos)::tdlx
real, array(pos,pos)::tdly
real, array(pos,pos)::tdlz
real, array(pos,pos)::td2x
real, array(pos,pos)::td2y
real, array(pos,pos)::td2z

real, array(pos,pos)::flx
real, array(pos,pos)::fly
real, array(pos,pos)::flz
real, anay(pos,pos)::f2x
real, array(pos,pos)::f2y
real, array(pos,pos)::f2z

real, array(pos,pos)::mlx
real, array(pos,pos)::mly
real, array(pos,pos)::mlz
real, array(pos,pos)::m2x
real, array(pos,pos)::m2y
real, array(pos,pos)::m2z

real, array(pos,pos)::xxx
real, array(pos,pos)::xyy
real, array(pos,pos)::xzz
real, array(pos,pos)::xsx
real, array(pos,pos)::xsy
real, array(pos,pos)::xsz
real, array(pos,pos)::rdf
real, array(pos,pos)::dif

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

84

* MOTION VARIABLES
*

real cnl,cn2,gtl,gt2,gt3,tm,tmi
real kkn

real, array(pos,pos)::dtlx
real, array(pos,pos)::dtly
real, array(pos,pos)::dtlz
real, array(pos,pos)::dt2x
real, array(pos,pos)::dt2y
real, array(pos,pos)::dt2z
real, array(pos,pos)::xtlx
real, array(pos,pos)::xtly
real, array(pos,pos)::xtlz
real, array(pos,pos)::xt2x
real, array(pos,pos)::xl2y
real, array(pos,pos)::xt2z

*
* CONTACT CHECKING VARIABLES
*

integer rmax
real xmb

* FORD VARIABLES

real, array(pos,pos):: sax
real, array(pos,pos):: sny
real, array(pos,pos):: snz

real, array(pos,pos):: fhl
real, array(pos,pos):: udm

real, array(pos,pos):: fmx
real, array(pos,pos):: fmy
real, array(pos,pos):: fmz

real, array(pos,pos):: mx
real, array(pos,pos):: my
real, array(pos,pos):: mz

real, array(pos,pos):: fxx
real, array(pos,pos):: rtx

real, array(pos,pos):: tpx
real, array (pos.pos):: tpy
real, array(pos.pos):: tpz

real, array(pos,pos):: frx
real, array(pos,pos):: fry
real, array(pos,pos):: frz

real, array(pos,pos):: fsx

R e p r o d u c e d with p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

85

real, array (pos.pos):: fsy
real, array(pos,pos):: fsz

real, array(pos,pos):: tl 1
real, array(pos,pos):: tl2
real, array(pos,pos):: tl3
real. array(pos,pos):: t21
real, array(pos,pos):: t22
real, array(pos,pos):: t23
real, array(pos,pos):: O l
real, array(pos,pos):: 0 2
real, array(pos,pos):: 0 3

integer, array (cor) ::ityps
integer, array(3)::NX

integer port,x,y,o,nxy
integer mct,ct,np,bn
integer mp,ctt,tcm,vc

* logical, array(maxpos)::fixed

real, array(3)::WINDL,WINDU
*
* BBTEST ARRAYS
*

double precision xshear

* INITP ARRAYS
*

real TDEL,FRAC,AKSS,AKNN,AMUU,C0HH,AKS1
real, array(5)::AMASS,AMOI.DENS
real, array(5)::shear,poiss,r
real, array(5,5)::AKN.AKS.ccn,ccs,AMU.COH
real, array(3,3)::EDGRID,EDUSER,SSAMPL,EDSERV

* CYCLE VARIABLES
*

real AT2
integer ncont,nmm,crf,num 1

* real, array(maxpos)::iac
* logical, array(6,maxpos)::SKIP
* logical, array(6)::skip

real, array(3): :DEL,GRAV

* PRINT VARIABLES
*

real volb,volg.fhav
real ovlrat,coord,templ
real, arrav(cor):: svolb

real, array(pos,pos):: sddl,sdd2
real, array(pos,pos):: ddl.dd2

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

* RUNSERV
*

integer nserv
real, array(10)::SRWAL
integer, array(10)::ICDSRV

*
* ROWE VARIABLES
*

log ica l, am y(pos,p os)::w alp ,layp ,tw alp ,tlayp
real, array(pos,pos)::fl lx
real, array(pos,pos)::fl ly
real, array(pos,pos)::f22x
real, arTay(pos,pos)::f22y

*
*
* COMMON SECTION
*
*

***** SETUP COMMON

COMMON /WIDTH/XMAX

***** GEN COMMON

* common /gencom/ gapmin,genllag,rbtest
common /mot/ cnl,cn2,gtl,gt2,gt3,tm,tmi,

kkn
common/trccc/trc,trm,ier,trc I ,trm 1 ,eax
common/ numm/nmm
common/jjf/jj

COMMON /TRBCOM/
A hertz,NERR,ERROR,lunr,lunw.lunh,

NVARB.NTYPM.NTYPS, num 1.
A OVLAP,PI,TOL,RMAX,
A TDEL.FRAC, ALPHA,BET A.degrad,

NBALL,NTOT,NCYC,CRF,
A NCONT,SLIDE,LOGFLG,hisflg,twod,
A MODE,GMVFLG,xshear,GAlN,SERVEM,NSERV

COMMON/PCOM1/
A akss,akn n ,am u u,coh h ,aksl,rad i,g t

COMMON /PCOM/
A AMASS,AMOI,DENS,AKN,AKS,
A shear,poiss,ccn,ccs,

AMU,COH,NX,WINDL,WINDU,
A EDGRID,eduser,SSAMPL,edserv,del

COMMON /SRV/ ICDSRV,SRWAL
common /htzfrd/ ccnh.ccsh

COMMON/need/m 1 a,nreq,nbox
COMMON/generate/nreqd.nityp.nitypm

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

8 7

COMMON/parallel/R,con,
A GRAV

common /stasav/ xcen,rot,xmsav
common /trbl/ hed(20)

*
* SPHERE VARIABLES
*

common/sphh/ slx,sly,slz,s2x,s2y,s2z,
. v 1 x,v ly,v 1 z,v2x,v2y,v2z,tv 1 x,tvly,tv 1 z,
. tv2x,tv2y,tv2z,rdl,rd2,xlx,xly,xlz,
. x2x,x2y,x2z,xdlx,xdly,xdlz,xd2x,xd2y,
. xd2z,t 1 x,t ly ,t 1 z,t2x,t2y,t2z,fl x,fly,
. flz,f2x,f2y,f2z,mlx,mly,mlz,m2x,m2y,m2z,
. xxx,xyy,xzz,xsx,rdf,dif,nT,fllx,flly,
. f22x,f22y
common/mott/dt 1 x,dt 1 y.dt 1 z,dt2x,dt2y ,dl2z,
. xtlx,xtly,xtlz,xt2x,xt2y,xt2z
common/fdd/ snx,sny,snz,fn 1 ,fxx,fmx,t 11,
. 112,113,121,122,123.13 l,t32,t:3,frx,fiy,frz,
. tpx,tpy,tpz
common/conn/mas,mas 1 ,walp,layp,twalp,tla>p

* *

*

* CMLAYOUT
*
* *

*
* Setup/Next arrays
*

cmfSlayout DEL(:news),WINDL(:news)
cmfSlayout WINDU(:news),NX(:news)
cmfSlayout xmax(:news)

*

* GEN VARIABLES
*

‘ cmfSlayout random(:news,:news)
♦cmfSlayout nreqd(: news),nityp(:news),nitypmf: news)

*

* rebox arrays
*

CMFS LAYOUT con(:news,:news)
cmfS layout mas(:news,:news)
cmfS layout masl(:news,:news)
cmfS layout mas2(:news,:news)
*cmfS layout SPH(:serial,:block=4:pdesc=112,:block=l:pdesc=12, &
*cmfS :block=l:pdesc=3)
*cmfS layout fixed(:news)
cmfS layout ITYPS(:news)

cmfSlayout AMOI(:news),DENS(:news)
cmfSlayout R(:ncws),AMASS(:news)

R e p r o d u c e d with p e r m is s io n o f t h e co p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

cmfSlayout shear(:news),poiss(:news)
cmfSlayout ccn(:serial,:news),ccs(:serial,:news)
cmfSlayout EDGRID(:serial, mews), EDUSER(:serial, mews)
cmfSlayout AKN(:serial,:news),AKS(:serial,:news)
cmfSlayout AMU(:serial,:news),COH(:serial,:news)

* cycle arrays

♦cmfSlayout iac(:news)

♦ cmfSlayout SKIP(:serial,:news)
♦ cmfSlayout skip(:news)
*
♦ motion arrays
*
cmfSlayout GRAV(:news)
*
♦ FORD VARIABLES
*

cmfSlayout SSAMPL(:serial,:news)

*
♦ Periodic Boundary
*
cmfSlayout svolb{:news)

♦ for hertz
♦ RUNSERV VARIABLES
♦
cmfSlayout EDSERV(:serial,:news)
cmlSlayout ICDSRV(:news),SRWAL(:news)
*

* C D U C D C \ / A D T A W E C
t j k 1 »■ • 4 U \ l / >■-<>■■ - U

*

cmfS layout six(:news,:news)
cmfS layout sly(:news,:ncws)
cmfS layout slz(:news,:news)
cmfS layout s2x(:news,:news)
cmlS layout s2y(:news,:news)
cmfS layout s2z(:news,:news)
cmfS layout vlx(:news,:news)
cmfS layout vly(:news,:news)
cmfS layout vlz(:news,:news)
cmfS layout v2x(:news,:news)
cmfS layout v2y(:news,:news)
cmfS layout v2z(:news,:news)
cmfS layout tvlx(:news,:news)
cmfS layout tvly(:news,:news)
cmfS layout tv lz(:news,:news)
cmfS layout tv2x(:news,:news)
cmfS layout tv2y(:news,:news)
cmfS layout tv2z(:news,:news)
cmfS layout rd 1 (:news,mews)

R e p r o d u c e d with p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

8 9

cmf$ layout rd2(:news,:news)
cmfS layout xlx(:news,:news)
cmfS layout xly(:news,:news)
cmfS layout xlz(:news,:news)
cmfS layout x2x(:news,:news)
cmfS layout x2y(:news,:news)
cmfS layout x2z(:news,:news)
cmf$ layout xdlx(:news,:news)
cmfS layout xdly(:news,:news)
cmfS layout xdlz(:news,:news)
cmf$ layout xd2x(:news,:news)
cmfS layout xd2y(:news,:news)
cmfS layout xd2z(:news,:news)
cmfS layout tlx(:news,:news)
cmf$ layout tly(:news,:news)
cmfS layout tlz(:news,:news)
cmi$ layout t2x(:news,:news)
cmf$ layout t2y(:news,:news)
cmi$ layout t2z(:news,:news)
cmfS layout tdlx(:news,:news)
cmfS layout tdly(:news,:news)
cmf$ layout tdlz(:news,:news)
cmfS layout td2x(:news,:news)
cmfS layout td2y(:news,:news)
cml$ layout td2z(:news,:news)
cmfS layout flx(:news,:news)
cmfS layout fly(:news,:news)
cmfS layout flz(:news,:news)
cmfS layout f2x(:news,:news)
cmiS layout f2y(:news,:news)
cmfS layout f2z(:news,:news)
cmf$ layout mlx(:news,:news)
cmf$ layout mly(:news,:news)
o m f f I m l A n f m I n n n r r • n o « i i r \i d ^ u u t u n z . \ . u w n !) , . u v n l) ;

cmf$ layout m2x(:news,:news)
cmlS layout m2y(:news,:news)
cmfS layout m2z(:news,:news)
cmf$ layout xxx(:news,:news)
cmfS layout xyy(:news,:ncws)
cmf$ layout xzz(:news,:news)
cmf$ layout xsx(:news,:news)
cmfS layout xsy(:news,:news)
cmfS layout xsz(:news,:news)
cmfS layout rdf(:news,:news)
cmfS layout dif(:news,:news)

*
* MOTION PARTITION
*
cmfS layout dtlx(:news,:news)
cmfS layout dtly(:news,:news)
cmfS layout dtlz(: news,: news)
cmfS layout dt2x(:news,:news)
cmfS layout dt2y(:news,:news)

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

9 0

cmfS layout dt2z(:news,:news)
cmfS layout xtlx(:news,:news)
cmfS layout xtly(:news,:news)
cmfS layout xtlz(:nevvs,:news)
cmfS layout xt2x(:news,:news)
cmfS layout xt2y(:news,:news)
cmf$ layout xt2z(:news,:news)
*

* FD MEMORY PARTITION
*
cmfS layout snx(:news,:news)
cmfS layout sny(:news,:news)
cmfS layout snz(:news,:news)

cmfS layout fhl(:news,:news)
cmfS layout udm(:news,:news)

cmfS layout fmx(:news,:news)
cmfS layout fmy(:news,:news)
cmfS layout fmz(:news,:news)

cmf$ layout mx(:news,:news)
cmfS layout my(:news,:news)
cmf$ layout mz(:news,:news)

cmfS layout fxx(:news,:news)
cmfS layout rtx(:news,:news)

cmf$ layout tpx(:news,:news)
cml$ layout tpy(:news,:news)
cmfS layout tpz(:news,:news)

cmfS layout frx(:news,:news)
cmf$ layout fry(: news, mews)
cmfS layout frz(:news,:news)

cmfS layout fsx(:news.:news)
cmlS layout fsy(: news, mews)
cmfS layout fsz(:news,:news)

cmfS layout tl l(:news,:news)
cmfS layout tl2(:news,:news)
cmf$ layout tl3(:news,:news)
cmfS layout t21(:news,:news)
cmf$ layout t22(:news,:news)
cmf$ layout t23(:news,:news)
cmfS layout t31(:news, mews)
cmfS layout t32(:news,:news)
cml$ layout t33(:news,:news)

R e p r o d u c e d with p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

91

Program TPM version 2.0
c
c Started by Peter Cundall in 1979(trubal), and modified by
c David W. Washington in 1993(Tmbal for Parallel Machines)
c Model of spheres in periodic space for 64-bit processor,
c

logical supout
character^ word
include 'tpm.inc'
include 'matcom.inc'
COMMON /PROCOM/SUPOUT
LUNR=2
LUNW=3
LOGFLG = TRUE,
open (lunr,file='tpm.dat',status='oId')
open (4,file='thg.dat',status='old')
open (8,file='thgl.dat\status='old')
open (9,file='thg2.dat',status-old')
open (lunw,file='tpm.out\status='old')
open (6,file='tpm.tes',status='old')

5 CALL SETUP
IF (NOT. ERROR) GOTO 10

GOTO 5
10 CALL NEXT

if(error)print*,'we got problems'
END

SUBROUTINE SETUP
C
C TO START NEW PROBLEM, OR DO A RESTART
C

save
INCLUDE 'tpm.inc'
include 7usr/include/cm/CMF_defs.h'
LOGICAL REST,supout
character* 1 icom.icoml
character*4 prompt
INCLUDE 'matcom.inc'
common /procom/ supout
DIMENSION W(3),ICOM(13),ICOM 1 (5)
DATA ICOM /’S',T,'A',' '.'RVE'.'S',' ','S',T,'0',' \iterm/
DATA 1COM1 /'L','0','G',' '.iterm/
DATA PROMPT /’trt»'/
REST=.FALSE.
call cmf_describe_array(x 1 x)

C-----------------CONSTANTS----------------------------------
mla = 0
eax = 0
nmm=0
geno = 1
nityp = 0
nitypm = 0
nreqd = 0
nreq = 0

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

9 2

TOL =3.5
OVLAP = -10.0
NVARB = 40
NTYPM = 5
NTYPS = 5
PI = 4.0*ATAN(1.0)
DEGRAD= PI/180.0

----------------INITIALISE ARRAYS AND VARIABLES •

* SPHERE VARIABLES
*

slx=0.0
sly=0.0
slz=O.0
s2x=0.0
s2y=0.0
s2z=0.0
vlx=0.0
vly=0.0
vlz=0.0
v2x=0.0
v2y=0.0
v2z=0.0
tvlx=0.0
tvly=0.0
tvlz=0.0
tv2x=0.0
tv2y=0.0
tv2z=0.0
rd 1=0.0
rd2=0.0
xlx=0.0
xly=0.0
xlz=0.0
x2x=0.0
x2y=0.0
x2z=0.0
xdlx=0.0
xdly=0.0
xdlz=0.0
xd2x=0.0
xd2y=0.0
xd2z=0.0
tlx=0.0
tly=0.0
tlz=0.0
t2x=0.0
t2y=0.0
t2z=0.0
tdlx=0.0
tdly=0.0
tdlz=0.0
td2x=0.0
td2y=0.0

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

93

td2z=0.0
flx=0.0
fly=O.D
nz=o.o
f2x=0.0
f2y=0.0
f2z=0.0
mlx=0.0
mly=0.0
mlz=0.0
m2x=0.0
m2y=0.0
m2z=0.0
xxx=0.0
xyy=O.0
xzz=0.0
xsx=0.0
xsy=0.0
xsz=0.0
rdf=50.0
dif=0.0

*

♦ MOTION PARTITION
*

dtlx=0.0
dtly=0.0
dtlz=0.0
dt2x=0.0
dt2y=0.0
dt2z=0.0
xtlx=0.0
xtly=0.0
xtlz=0.0
xt2x=0.0
xt2y=0.0
xl2z=0.0

* FD MEMORY PARTITION

snx=O.0
sny=0.0
snz=0.0
fnl=0.0

con=0.0

R =0.0
AMASS = 0.0
AMOl =0.0
shear = 0.0
poiss = 0.0
DENS =0.0

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

9 4

AKN =0.0
AKS =0.0
AMU = 0.0
COH = 0.0
ccn = 0.0
ccs = 0.0
TDEL =0.0
FRAC =0.05
ALPHA = 0.0
BETA =0.0
GRAV =0.0
NBALL = 0
NTOT = 0
NERR = 0
ERROR = .FALSE,
mas 1=false.
GENFLAG =.FALSE.
twod = .false,
hertz = .false.
GMVFLG = .FALSE.
EDGRID = 0.0
eduser = 0.0
SSAMPL = 0.0
edserv = 0.0
xshear = 0.0
GAIN =0.0
SERVSO = 0.0
SERVEM = 0.0
supout = .false.

C------------------READ PARAMETERS, ETC----------------------
38 WRITE(lunw,613)

IF (.NOT. LOGFLG) write(lunw,700) PROMPT
READ (lunr,500) LINE
CALL TIDY
CALL MATCH (ICOM, 1 .JUMP)
IF ((.NOT.MISS) .AND. (.NOT.BAD)) GOTO 45
WRITE(lunw,601)
GOTO 38

45 IF (JUMP .EQ. 2) GOTO 200
IF (JUMP .EQ.3) STOP
DO 50 1=1,3
W(I)=RVAR(I+1)
NPBAD = I
IF(W(I).LE.0.0) GOTO 1010

50 CONTINUE
CALL MATCH (ICOM 1,8.JUMP)
IF (.NOT. BAD) LOGFLG = .TRUE.
MISS = .FALSE.
IF(LOGFLG) WRITE(lunw,600)
EF(LOGFLG) WRITE(lunw,610)
NBOX=IVAR(5)
NBALLM=IVAR(6)
NW ALLM=I VAR(7)
IF (MISS) GOTO 1010

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

95

NPBAD = 4
IF(NBOX.LE.O) GOTO 1010
IF(LOGFLG) WRITE (Iunw,603)
IF(LOGFLG) WRITE (lunw,604) NBOX,(W(I),I=l,3)
EF(LOGFLG) WRITE (lumv,605) NBALLM.NWALLM
DDD=(W(1)*W(2)*W(3)/FLOAT(NBOX))**(1.0/3.0)
DEL(l) = DDD
DEL(2) = DDD
DEL(3) = DDD
NBOX=l
DO 55 1=1,3
NX(I)=W (I)/DDD+0.5
NBOX=NBOX*NX(I)

55 XMAX(I)=FLOAT(NX(I))*DDD
IF(LOGFLG) WRITE (lunw,606)
IF(LOGFLG) WRITE (iunw,604) NBOX,(XMAX(I),I=l,3)
IF(LOGFLG) WRITE (lunw,607) (NX(I),I=1,3),DDD
WINDL=0.0
WINDU=XMAX
WRITE(Iunw,614)
IF (.NOT. LOGFLG) write(lunw,700) PROMPT
READ (Iunr,502) HED
IF (LOGFLG) WRITE(lunw,611) HED

C
GOTO 300

C------------------RESTART RUN----------------------
200 CONTINUE

IF (ERROR) GOTO 1000
REST = .TRUE.

300 CONTINUE
340 EF(REST) GOTO 400

sph=0.0
400 CONTINUE
1000 CONTINUE

RETURN
1010 NERR = 2

ERROR = .TRUE.
RETURN

500 FORMAT(80A1)
502 FORMAT(20A4)
503 FORMAT(I3)
600 FORMAT(30X,'PROGRAM TPM for 3D'

/30X,'----------------------------- '/)
601 FORMAT(30X,’*** FIRST COMMAND MUST BE START OR RESTART ***’)
602 FORMAT(30X,'*** BAD, OR OMITTED PARAMETERS ***')
603 FORMAT(28X,'REQUESTED PARAMETERS:')
604 FORMAT(30X,'BOXES ',15/

30X,'WIDTH ',F7.1/
30X,'HEIGHT ',F7.1/
30X,THICKNESS ’.F7.1)

605 FORMAT(30X,'MAX. PARTICLES ',15/
30X,'MAX. WALLS '.15/)

606 FORMAT(28X,'PARAMETERS USED:')
607 FORMAT(30X,'NX(1) ',15/

R e p r o d u c e d with p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

9 6

30X,*NX(2) ’,15/
S O X ^ t f) ',15/
30X,'BOX DIMENSION \F7.3 f)

608 FORMAT(30X,*THIS IS A RESTART RUN’)
610 FORMAT(/30X,THIS IS A START RUN'/)
611 FORMAT(/30X,HEADING: \20A4)
613 FORMATC START OR RESTART?)
614 FORMATC HEADING?)
615 FORMATC FILENAME?)
616 FORMATC >\5A4)
700 format (lx,a4)

END
SUBROUTINE NEXT

C
C TO INTERPRET COMMAND LINES (3-D PROGRAM)
C

save
INCLUDE 'tpm.inc1
INCLUDE 'matcom.inc'
INCLUDE 7usr/include/cm/CMF_defs.h'
INCLUDE '/usr/include/cm/cmssl-cmf.h'
character* 1 icom,icoml,icom2
character*4 prompt
DIMENSION ICOM(165),ICOM 1 (8),icom2(5),ivp(6)
DATA ICOM
. /’L','0','G1,' 7C 7Y 7C 7 7 P 7 L 7 0 7 '.
. 'C'/R'.'E',' ',rN7E7W 7 7I7S7E 7
. 'R'.'S'.'E',' ','G,,'R,,,r,' 7 S ',T 7 0 7
. 'W’,T,'N7 ',T ,'Y 7P7 7G 7 R 7 A 7 ',
. 'F,T,'X7 7S7H 7E 7 7N 7 0 7 R 7
. 'D'.'E'.'N','
. 'R'.'A'.'D',' '.’F/R'.T,' '/C'/O'/H','
. 'S'/E'.’L',' '.'D'CA'^',' 7 F /R 7 A 7 ',
. 'R’CE'/M',' 7G7E7N',' '.'P'.'R’.T.'
. ’L'.'O'.'C',' 7Z7E7R',' ','R','E','S','

>07078',",
. 'F,'M','M',' ’.V.'M '.’U',’ 7S7A 7V 7 '.
. ’G’/A '.T ,'',
. 'H’,T,'S7 7H 7E7R7 7 2 7 -7 D 7 ',
. 'F ,'R 707 7 W 7 A 7 L 7 ',
. 'M70',T>7 7 B 7 0 7 N 7 '.'P'.'R'.'O','',

>R. -07W ’,' ',iterm/
DATA ICOM1
. /’O'.'N',' '/O'.'F.'F,' *,iterm/
data icom2 /'A','L','L',' ',iterm/

C
DATA PROMPT /’trb>7
IAL=1
nrec=0

C----------------- READ NEXT LINE--------------------
5 IF (ERROR) GOTO 1000
6 IF (.NOT. LOGFLG) write(lumv,1501) PROMPT

READ(lunr,1500) LINE
7 IF(LOGFLG) WRITE(lunw,1601) LINE

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

9 7

GOTO 20
15 WRJTE(Iunw, 1603)

GOTO 5
C

20 CALL TIDY
CALL MATCH (ICOM, 1,JUMP)
IF (MISS) GOTO 5
IF (.NOT. BAD) GOTO 25
NERR = 1
ERROR = TRUE.
GOTO 1000

C
25 GOTO (40 , 60, 80,100,

120,140,160,180,
200,220,240,260,
280,300,320,340,
360,380,400,420,
440,460,480,500,
520,540,560,580,
600,620,640,660,
680,700,720,740,
630,750,760,770,
780,800,820), JUMP

C----------------- LOG FLAG----------------------
40 CALL MATCH (ICOM 1,2,JUMP)

IF (MISS) GOTO 1010
IF (BAD) GOTO 1020
GOTO (42,44), JUMP

42 LOGFLG = .TRUE.
GOTO 5

44 LOGFLG = .FALSE.
GOTO 5

C----------------- CYCLE THROUGH MOTION & FORD------------
60 NCYC=IVAR(2)

CALL INITP
IF (ERROR) GOTO 1000
CALL CYCLE
WRITE (lunw,1612) NTOT

* IF(NTOT.EQ.600)SEC=.TRUE.
* IF(NTOT.EQ.800)SEC=.FALSE.

GOTO 5
C-----------------DO A PLOT----------------------------------

80 CALLAPLOT
GOTO 5

C----------------- CREATE A NEW BALL------------------------
100 GOTO 5

C-----------------NEW PROBLEM---------------------
120 CALL SETUP

GOTO 5
C-----------------SET MEMORY DIRECTLY-------------

140 GOTO 5
160 GOTO 5

C----------------Grid strain-ratcs------------------------

R e p r o d u c e d with p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

9 8

180 RV1 = RVAR(2)
RV2 = RVAR(3)
RV3 = RVAR(4)
RV4 = RVAR(5)
RV5 = RVAR(6)
RV6 = RVAR(7)
IF (MISS) GOTO 1010
eduser(l,l) = RVl
eduser(2,2) = RV2
eduser(3,3) = RV3
eduser(l,2) = RV4

c**** see below *****
ccc eduser(2,3) = RV5
ccc eduser(3,1) = RV6

GMVFLG = .FALSE.
EF (RV1 .NE. 0.0 .OR. RV2 ,NE. 0.0) GMVFLG = .TRUE.
IF (RV3 .NE. 0.0 .OR. RV4 .NE. 0.0) GMVFLG = .TRUE.
IF (RV5 .NE. 0.0 .OR. RV6 .NE. 0.0) GMVFLG = .TRUE,

c***** note: only E12 allowed at present ******
ccc eduser(2,1) = eduser(1,2)
ccc eduser(3,2) = eduser(2,3)
ccc eduser(l,3) = eduser(3,l)

GOTO 5

200 CONTINUE

NRECO
GOTO 1000

C-----------------CHANGE WINDOW-------------------------
220 WINDL(1)=RVAR(2)

WINDU(1)=RVAR(3)
WINDL(2)=RVAR(4)
WINDU(2)=RVAR(5)
WINDL(3)=RVAR(6)
WINDU(3)=RVAR(7)
GOTO 5

C--
240 GOTO 15

C-----------------GRAVITY------------------------------------
260 DO 262 1=1,3
262 GRAV(I)=RVAR(I+1)

IF (MISS) GOTO 1010
GOTO 5

C-----------------SET OR RESET FIX BITS---------------------
280 GOTO 5

C-----------------SHEAR STIFFNESS---------------------------
300 ITYP1=IVAR(3)

ITYP2=IVAR(4)
IF (MISS) GOTO 1010
AKSOTYP1 ,ITYP2)=RVAR(2)
AKS(ITYP2,ITYP2)=RVAR(2)
AKSS=RVAR(2)
GOTO 5

C-----------------NORMAL STIFFNESS-------------------------

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

9 9

3201TYP1=TVAR(3)
ITYP2=IVAR(4)
IF (MISS) GOTO 1010
AKNflTYP 1 ,ITYP2)=RVAR(2)
AKNN=RVAR(2)
GOTO 5

C---------------- DENSITY-----------------------------------
340 ITYP=IVAR(3)

IF (MISS) GOTO 1010
ddd = rvar(2)
DENS(ITYP)=ddd
GOTO 5

C---------------- RADIUS-------------------------------------
360 ITYP=IVAR(3)

IF (MISS) GOTO 1010
RV2 = RVAR(2)
IF (2.0*RV2 .LT. AMIN1(DEL(1),DEL(2),DEL(3))) GOTO 362

NERR = 9
ERROR = .TRUE.
GOTO 1000

362 R(ITYP) = RV2
GOTO 5

C-----------------COEFFICIENT OF FRICTION------------------
380 ITYP1=IVAR(3)

ITYP2=IVAR(4)
AMU(ITYP1,ITYP2)=RVAR(2)
AMU(ITYP2,ITYP2)=RVAR(2)
AMUU=RVAR(2)
GOTO 5

C----------------- COHESION----------------------------------
400 ITYP1=IVAR(3)

ITYP2=IVAR(4)
COH(ITYP 1 ,ITYP2)=RVAR(2)
COH(ITYP2,rrYP2)=RVAR(2)
COHH=RVAR(2)
GOTO 5

C----------------- SELECT PLOT OPTIONS----------------------
420 GOTO 5

C----------------- DAMPING CONSTANTS-------------------------
440 RV2 = RVAR(3)

RV1 = RVAR(2)
IF (MISS) GOTO 1010
ALPHA = 2.0 * PI * RV2 * RV1
BETA = RV1 / (2.0 * PI * RV2)
IF(IVAR(4).EQ.0) GOTO 445
ALPHAO.O
WRITE(lunw, 1608)

445 IF(IVAR(5).EQ.0) GOTO 5
BETA=0.0
WRITE(lunw, 1609)
GOTO 5

C-----------------FRACTION OF CRITICAL TIME-STEP-----------
460 FRAC=RVAR(2)

IF (MISS) GOTO 1010

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

GOTO 5
C-----------------REMOTE COMMAND INPUT------------------

480 NREC=1
GOTO 5

C---------------- AUTOMATIC PARTICLE GENERATION------------
C (GENERATE COMMAND)

500 CALL test 1
GOTO 5

C---------------- PRINTOUT-----------------------------------
520 CALL PRINT

GOTO 5
C-----------------LOCAL COMMAND INPUT-------------------

540 NREC=0
GOTO 5

C---------------- SET BALL VELOCITIES TO ZERO---------------
560 GOTO 5

C----------------- RESET RADIUS VECTOR----------------------
580 GOTO 5

C-----------------COMMAND ITERATION-----------------
600 GOTO 5

C----------------FORCE MULTIPLIER--------------------
620 GOTO 5

C—SET ANGULAR VELOCITIES OF ALL BALLS TO BE ZERO-
630 GOTO 5

C-----------------VELOCITY MULTIPLIER-----------------
640 GOTO 5

C-----------------SAVE PROBLEM---------------------
660 GOTO 5

C-----------------servo gain ----------------
680 RV1 = RVAR(2)

RV2 = RVAR(3)
IF (MISS) GOTO 1010
GAIN = RV1
SERVEM = RV2
GOTO 5

c-----------------history command —
700 goto 5

c-----------------set Hertz contact parameters —
720 hertz = .true,

ityp = ivar(4)
shear(ityp) = rvar(2)
poiss(ityp) = rvar(3)
goto 5

c-----------------2-d MODE - -
740 twod = .true,

goto 5
c----------- ;— WALL command —

750 goto 5
c-----------------MODE (servo control) —

760 iv = ivar(2)
if (miss) goto 1010
if (bad) goto 1020
mode = iv

R e p r o d u c e d with p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

101

goto 5
c-----------------BOND command —

770 goto 5
c---------------- PROBE command —

780 goto 5
C----------------ROWE command ---------

800 call rowe
goto 5

C--------- HOLD Z VELOCITY ZERO FOR ROWE—
820 NUM=0.0

NUM=RVAR(2)
forall(i=l :37)vlx(i,l)=-num
forall(i=366:403)vlx(i,l)=num
v 1 x=spread(v 1 x(:, 1),dim=2,ncopies=cor)
v2x=spread(v 1 x(:, 1),dim= 1 ,ncopies=cor)
GOTO 5

c
1000 CONTINUE

RETURN
C— missing parameter —
1010 NERR = 2

ERROR = .TRUE.
GOTO 1000

C— bad parameter —
1020 NERR = 3

ERROR = TRUE.
GOTO 1000

C— memory overflow —
1030 NERR = 4

ERROR = .TRUE.
GOTO 1000

1500 FORMAT(80A1)
1501 format (lx,a4)
1601 FORMATC >\80A1)
1603 FORMATC COMMAND NOT AVAILABLE')
1604 FORMAT(30X,'*** NO MORE MEMORY FOR NEW PARTICLES ♦**')
1607 FORMAT(30X,'*** ADDRESS OUT OF RANGE ***’)
1608 FORMAT(30X,'MASS DAMPING TERM SET TO ZERO')
1609 FORMAT(30X,'STIFFNESS DAMPING TERM SET TO ZERO')
1612 FORMAT(30X,'CURRENT CYCLE COUNT =\I6)
1613 FORMAT(I3)
1615 FORMAT(30X,'MUST SPECIFY EDIT FREQUENCY FIRST')

END
subroutine gen
return
end
block data ranset
logical iflag
common /ran/ iflag,iold
data iflag /.false./
end

SUBROUTINE INITP
C

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

1 0 2

C TO PERFORM CERTAIN OPERATIONS PRIOR TO CYCLING
C

save
INCLUDE 'tpm.inc'
INCLUDE 7usr/include/cm/CMF_defs.h'
INCLUDE 7usr/include/cm/cmssl-cmf.h’
logical supout
common /procom/ supout
data akl3,ak23 /0.3333333,0.6666667/

C
AMIN=1.0E20
DO 10 I=1,NTYPS
IF(R(I).LE.O.O) GOTO 10
IF(DENS(I).LE.0.0) GOTO 10
AMASS(I)=4.0*PI*DENS(I)*(R(I)**3)/3.0
AMOI(1)=0.4*AMASS(I)*R(I)**2
AMIN=AMIN 1 (AMASS(I), AMIN)

10 CONTINUE
RMAX=25
IF(AMIN.LT. 1.0E15) GOTO 20

15 NERR=5
ERROR = .TRUE.
GOTO 1000

20 AKMAX=0.0
DO 30 I=1,NTYPM
DO 30 J=1,NTYPM

30 AKMAX=AMAX 1 (akn(i j),AKS(I,J),AKMAX)
IF(AKMAX.LE.O.O) GOTO 15
TDEL=FRAC*2.0*SQRT(AM1N/AKMAX)
if (.not. supout) WRITE(lunw,601) TDEL
if (.not.supout) write(7,*) tdel

C— keep boxes clean —
IF (NBALL .EQ. 0) GOTO 100
genflag=.true.
genflag=.false.

c set up gather/scatter routines for globe

c— apply user strain-rate —
100 forall(j=l:3.i=l:3)edgrid(ij) = eduser(ij)

c— set up Hertz parameters —
if (hertz) then

do 140 i = l,ntyps
do 130 j = l,ntyps

if (r(i).gt.O.O .and. r(j).gt.0.0) then
c— note: we take elas prop of ball 1 for both

rbar = 2.0 * r(i) * r(j) / (r(i) + r(j))
ccn(i j) = 2.0*sqrt(2.0*rbar)*shear(i) /

(3.0 * (1.0 - poiss(i)))
ccs(i j) = 2.0 * shear(i)**ak23

* (3.0*(1.0-poiss(i))*rbar)**akl3
/ (2.0 - poiss(i))

endif
130 continue
140 continue

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

o
n

o

103

endif

1000 RETURN
601 FORMAT(30X,TIME-STEP = \1P,E12.4)

END

SUBROUTINE CYCLE

TO CYCLE THROUGH MAIN CALCULATION LOOP

save
INCLUDE 'tpm.inc'
include '/usr/include/cm/CMF defs.h'
parameter (nsvar=10)
double precision dxs
LOGICAL SKIP,SERVO
include 'matcom.inc'
common /iccom/ icont

C
IF(NCYC.EQ.O) GOTO 1000

c— initialise strain accumulators —
* eax = 0.0

erad = 0.0
evol = 0.0

C------------------check command line for servo parameters-----
nserv = 0
icdsrv = 0
srwal = 0.0
CALL SETSRV(SERVO)
IF(ERROR) GOTO 1000
gtl=GRAV(l)*TDEL
gt2=GRAV(2)*TDEL
gt3=GRAV(3)*TDEL
AT2=ALPHA*TDEL/2.0
cnl=1.0-AT2
cn2= 1,0/(1.0+AT2)

C
call cm_timer_clear(l)
call cm timer start(l)
DO 200 N=1,NCYC
NTOT=NTOT+l

C------------------update periodic space-----------------
IF (servo .or. GMVFLG) then

c*** note: only good for diagonal terms *****
XMAX(l) = XMAX(l) + EDGRID(1,1) * TDEL * xmax(l)
XMAX(2) = XMAX(2) + EDGRID(2,2) * TDEL * xmax(2)
XMAX(3) = XMAX(3) + EDGRID(3,3) * TDEL * xmax(3)
DEL(l) = XMAX(l) / float(NX(l))
DEL(2) = XMAX(2) / float(NX(2))
DEL(3) = XMAX(3) / float(NX(3))

c— (1-2) shear —
xshear = xshear + (edgrid(I,2)

+xshear * (edgrid(l,l)- edgrid(2,2))) * tdel
endif

R e p r o d u c e d w ith p e r m is s io n of t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e r m is s io n .

104

C------------------ SCAN ALL BALLS---------------------------
* IF(NBALL) 55,55,20
* 20 ITYPS=SPH(typ,:,:)

tm=TDEL/AMASS(1)
tmi=TDEL/AMOI(l)
INDX=1

* IAC=sph(31,:)
* DO 30 J=l,6
* SKIP(J)=IAND(IAC,1NDX).NE.0
* 30 INDX=INDX*2
* skip.eq.false

SSAMPL = 0.0
nnun=0

* NCONT = 0
SLIDE = 0.0
CALL MOTION
CALL CHECK2
IF (NMM .NE. 0) SLIDE = SLIDE / FLQAT(NMM)

C----------------- SERVO CONTROL-------------------
60 IF (SERVO) CALL RUNSRV

c— write out strain and stress —
c— let 1 direction be "axial" —

eax = eax + edgrid(1,1) * tdel
erad = erad + 0.5 * (edgrid(2,2) + edgrid(3,3)) * tdel
evoi = evol + (edgrid(l,l)+edgrid(2,2)+edgrid(3,3)) * tdel
samvol = xmax(l) * xmax(2) * xmax(3)
si 1 = ssampl(l,l) / samvol
s22 = ssampl(2,2) / samvol
s33 = ssampl(3,3) / samvol
write(6,*)ntoLeax,sl 1
CALL PLAT

C
IF(ERROR) GOTO 1000

200 CONTINUE
call cm_timer_stop(l)
call cm_timer_print(l)

1000 RETURN
1010 NERR = 2

ERROR = .TRUE.
RETURN

1020 NERR = 3
ERROR = TRUE.
RETURN

1030 nerr = 13
error = .true,
return

2000 format (2i 10)
END

SUBROUTINE MOTION
C
C LAW OF MOTION (2- and 3-D)
C

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

105

save
INCLUDE 'tpm.inc'
DATA XRES.THRES /l .0,0.01/

* AMASS(I)=4.0*PI*DENS(I)*(R(I)**3)/3.0
* AMOI(I)=0.4*AMASS(I)*R(I)**2
* tm=TDEL/AMASS(l)
* tmi=TDEL/AMOI(1)

tl 1=0.0
tl2=0.0
t21=0.0
t22=0.0
0 1 = 0.0
02 = 0.0
tl l=4.0*PI*1000*(rdl**3)/3.0
tl2=4.0*PI*1000*(rd2**3)/3.0
t21=TDEL/tll
t22=TDEL/tl2
t31=TDEL/(0.4*tll*rdl**2)
O2=TDEL/(0.4*tl2'»rd2**2)

c 3-D calculation

c
C— Linear motion —

where(.not.layp)
v 1 x=(v 1 x*cn 1+fl x*l21 +gt 1)*cn2
vly=(vly*cnl+fly*t21+gtl)*cn2
v 1 z=(v 1 z*cn 1+fl z*t21 +gt 1)’l'cn2
endwhere
where(.not.tlayp)
v2x=(v2x*cnl+12x*t22+gtl)*cn2
v2y=(v2y *cn 1 +f2y *t22+gt 1)*cn2
v2z=(v2z’,'cn 1 +f2z*t22+gt 1)+cn2

endwhere

dtlx = vlx
dtly = vly
dtlz = v iz
dt2x = v2x
dt2y = v2y
dt2z = v2z

C (add in grid motion)
dtlx =dtlx + edgrid(l.l) * (xlx + xdlx)
. +edgrid(I,2) * (xly+ xdly)
. +edgrid(l,3) * (xlz+xdlz)

dtly = dtly + edgrid(2,l) * (xlx+xdlx)

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w ith o u t p e rm is s io n .

1 06

. + edgrid(2,2) * (xly+ xdly)

. + edgrid(2,3) * (x lz +xdlz)

dtlz = dtlz + edgrid(3,l) * (xlx +xdlx)
. + edgrid(3,2) * (xly+ xdly)
. + edgrid(3,3) * (xlz+ xdlz)

dt2x =dt2x + edgrid(l.l) * (x2x + xd2x)
. +edgrid(l,2) * (x2y+ xd2y)
. +edgrid(l,3) * (x2z +xd2z)

dt2y = dt2y + edgrid(2,l) * (x2x+xd2x)
. + edgrid(2,2) * (x2y+ xd2y)
. + edgrid(2,3) * (x2z +xd2z)

dt2z = dt2z + edgrid(3,l) * (x2x +xd2x)
. + edgrid(3,2) * (x2y+ xd2y)
. + edgrid(3,3) * (x2z+ xd2z)

xdlx = xdlx + dtlx TDEL
xdly = xdly + dtly TDEL
xdlz = xdlz + dtlz TDEL

xd2x = xd2x + dt2x *TDEL
xd2y = xd2y + dt2y *TDEL
xd2z = xd2z + dt2z *TDEL

where(ABS(xdlx).GE.XRES)
xlx = x lx + xdlx
xdlx =0.0

endwhere
where(ABS(xdly).GE.XRES)

x ly = x ly + xdly
xdly =0.0

endwhere
where(ABS(xdlz).GE.XRES)

x lz = x lz + xdlz
xdlz =0.0

endwhere
where(ABS(xd2x).GE.XRES)

x2x = x2x + xd2x
xd2x =0.0

endwhere
where(ABS(xd2y).GE.XRES)

x2y = x2y + xd2y
xd2y =0.0

endwhere
where(ABS(xd2z).GE.XRES)

x2z = x2z + xd2z
xd2z =0.0

endwhere

C (periodic space)
x tlx = x lx + xdlx

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

107

xtly = x ly + xdly
x t lz = x lz + xdlz
xt2x = x2x + xd2x
xt2y = x2y + xd2y
xt2z = x2z + xd2z

where(xtlx .LT. 0.0)
x Ix = xlx + XMAX(l)

endwhere
where(xtly .LT. 0.0)

x ly = xly + XMAX(2)
endwhere
where(xtlz .LT. 0.0)

x lz = x lz + XMAX(3)
endwhere
whcre(xtlx.GE.XMAX(l))

x lx = x lx - XMAX(l)
endwhere
where(xtly.GE.XMAX(2))

x ly = xly - XMAX(2)
endwhere
where(xtlz.GE.XMAX(3))

x lz = x lz - XMAX(3)
endwhere

where(xt2x .LT. 0.0)
x2x = x2x + XMAX(l)

endwhere
where(xt2y .LT. 0.0)

x2y = x2y + XMAX(2)
endwhere
where(xt2z .LT. 0.0)

x2z = x2z + XMAX(3)
endwhere
where(xt2x.GE.XMAX(l))

x2x = x2x - XMAX(l)
endwhere
where(xt2y.GE.XMAX(2))

x2y = x2y - XMAX(2)
endwhere
where(xt2z.GE.XMAX(3))

x2z = x2z - XMAX(3)
endwhere

C— spins —
* IF(SKIP(I+3)) GOTO 115

where(.not.walp)
100 tvlx =(tvlx *cn l+m ix *t31)*cn2

tvly =(tvly *cnl+ mly *t31)*cn2
tv lz =(tv lz *cnl+ m lz *t31)*cn2

endwhere
where(.not.twalp)
tv2x =(tv2x *cnl+ m2x *t32)*cn2
tv2y =(tv2y *cnl+ m2y *t32)*cn2
tv2z =(tv2z *cnl+ m2z *t32)*cn2

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

108

endwhere
td lx = tdlx + tvlx *TDEL
tdly = tdly + tvly *TDEL
td lz = tdlz + tv lz *TDEL

td2x = td2x + tv2x *TDEL
td2y = td2y + tv2y *TDEL
td2z = td2z + tv2z *TDEL

where(tdlx .GE.THRES.or.- tdlx .GE.THRES)
tlx = tlx + tdlx
tdlx =0.0

endwhere
where(tdly .GE.THRES.or.- tdly .GE.THRES)

tly = tly + tdly
tdly =0.0

endwhere
where(tdlz .GE.THRES.or.- tdlz .GE.THRES)

t lz = tlz + tdlz
tdlz =0.0

endwhere

where(td2x .GE.THRES.or.- td2x .GE.THRES)
t2x = t2x + td2x
td2x =0.0

endwhere
where(td2y .GE.THRES.or.- td2y .GE.THRES)

t2y = t2y + td2y
td2y =0.0

endwhere
where(td2z .GE.THRES.or.- td2z .GE.THRES)

t2z = t2z + td2z
td2z =0.0

endwhere
C— reset force sums and moment sums —

flx= fl lx
fly= fl ly
flz=0.0
12x=f22x
f2y=f22y
f2z=0.0

m ix =0.0
mly = 0.0
m lz = 0.0
m2x = 0.0
m2y =0.0
m2z = 0.0

200 RETURN
END

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

1 0 9

SUBROUTINE BBTEST
return
end

SUBROUTINE CHECK2
C
C TO TEST FOR CONTACT BETWEEN BALLS
C

save
INCLUDE 'tpm.inc'
include '/usr/include/cm/CMFdefs.h'

w e do ch eck s for all contacts

* *

slx=0.0
sly=0.0
slz=0.0
s2x=0.0
s2y=0.0
s2z=0.0
xxx =0.0
xyy=0.0
xzz=0.0
xsx=0.0
xsy=0.0
xsz=0.0
rdf=50.0
dif=0.0

six = x ix + xaix
sly = x ly + xdly
slz = x lz + xdlz

s2x = x2x + xd2x
s2y - x2y + xd2y
s2z = x2z + xd2z

C
c ----------------- BALL-TO-BALL CONTACT-------------- -------

xxx = s ix -s2x
xyy = sly -s2y
xzz = s lz -s2z
xsx = xxx
xsy = xyy
xsz = xzz

xmb = xmax(l)
WHERE (ABS(xxx) gt. RMAX)

xsx = SIGN(xmb, xxx)
xsx = xxx - xsx

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

o
n

n

1 1 0

ENDWHERE
xmb = xmax(2)
WHERE (ABS(xyy) gt. RMAX)

xsy = SIGN(xmb, xyy)
xsy = xyy - xsy
xsx = xxx - dmod(xshear,xmax(2))* xsy

ENDWHERE
xmb = xmax(l)
WHERE(ABS(xsx).gt.RMAX)

xsx = xxx - sign(xmb, xsx)
ENDWHERE
xmb = xmax(3)
WHERE (ABS(xzz) .gt. RMAX)

xsz = SIGN(xmb, xzz)
xsz = xzz - xsz

ENDWHERE
xxx =xsx
xyy =xsy
xzz =xsz
xsx = xsx * xsx
xsy = xsy * xsy
xsz = xsz * xsz
xsx= xsx+ xsy+ xsz
dif=SQRT(xsx)

where(rdl.ne.O.O)
rdf = dif-rdl-rd2

endwhere
nmm=(count(rdf.le.0.0)-cor)/2
if(nmm.eq.O)goto 200

call ford
call globe

200 return
end

SUBROUTINE FORD

TO TEST FOR CONTACT BETWEEN BALLS

save
INCLUDE 'tpm.inc'
include '/usr/include/cm/CMFdefs.h'

* initializing global constants

kkn=AKNN *TDEL
AKS1 = AKSS*TDEL

*

* removes shear and normal forces in broken contacts
*

udm=0.0
fmx=0.0

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

Ill

ftny=0.0
fmz=0.0
mx=0.0
my=0.0
mz=0.0
fxx=0.0
rtx=0.0
tpx=0.0
tpy=0.0
tpz=0.0
frx=0.0
fiy=0.0
firz=0.0
fsx=0.0
fsy=0.0
fsz=0.0
tl 1=0.0
112= 0.0
tl3=0.0
t21=0.0
t22=0.0
t23=0.0
t31=0.0
t3 2=0.0
t33=0.0

where(rdf.gt.O.O)
snx=0.0
sny=0.0
snz=0.0
fn 1=0.0

endwhere

fmx = v lx - v2x
fmy = vly -v2y
fmz = v lz -v 2 z

*

*
* Begin Calculations for FORD
*
* *

♦

C (allow for grid motion)

fmx= fmx+edgrid(1,1)* xxx
fmx= fmx+edgrid(l,2)* xyy
fmx= finx+edgrid(l,3)* xzz

ftny= fmy+edgrid(2,l)* xxx
fmy= fmy+edgrid(2,2)* xyy
fmy= fmy+edgrid(2,3)* xzz

R e p r o d u c e d with p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

1 1 2

fmz= fmz+edgrid(3,l)* xxx
fmz= fmz+edgrid(3,2)* xyy
fmz= fmz+edgrid(3,3)* xzz

c
c— end o f regular linear contact section —
C

udm =0.0

rax = xxx / dif
my = xyy / dif
mz = xzz / dif

udm = fmx * mx+fmy * my+fmz * mz
C

tpx = udm * mx
tpy = udm * my
tpz = udm * mz

frx = fmx - tpx
fry = fmy - tpy
frz = fmz - tpz

C
fsx= xyy*frz-xzz*fry
fsy= xzz*frx-xxx*frz
fsz= xxx*fry-xyy*frx

c we are now dealing with the shear forces

tl l=tdel/xsx
t21=snx
t22=sny
t23=snz

fsx = fsx * tl 1
fsy = fsy * tl 1
fsz = fsz * t i l

t31 = snx
t32 = sny
t33 = snz

do 10 n=l,2
snx = fsy* t23- fsz* t22
sny = fsz* t21- fsx* t23
snz = fsx* t22- fsy* t21

snx = snx+131
sny = sny+132
snz = snz+133

t21 =0.5*(t31 + snx)
t22 =0.5*(t32 + sny)

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

113

t23 =0.5*(t33 + snz)
10 continue

C we are dealing with angular velocities now

t21 =rdl* tvlx+rd2*tv2x
t22 =rdl* tvly+rd2*tv2y
t23 =rdl* tvlz+rd2*tv2z

t31 = t22* m z-t23* my
t32= t23* mx-121* mz
0 3 = t21* my-t22* mx

C—NORMAL FORCE—
fill = fhl-udm*kkn

where(fnl.LT.0.0)
snx=0.0
sny=0.0
snz=0.0
fnl=0.0
rdf=50.0

endwhere

nmm=(count(rdf.le.0.0)-cor)/2

C—SHEAR FORCE—
fmx= 0.0
t31 = frx - t3I
t32 = fry - t32
0 3 = frz - 0 3
snx = snx - 1 3 1 * AKS1
sny =sny - t32 * AKS1
snz = snz - 0 3 * AKS1
fmx = snx*snx+sny*sny+snz*snz
fmx = (fmx)**0.5

C—CHECK FOR SLIP—
fxx =0.0
fxx = AMUU * fill + COHH

where(fxx ,eq. 0.0)
snx =0.0
sny=0.0
snz=0.0

endwhere
where(fmx .GT. fxx .and. fmx.eq.0.0)

rtx =0.0
endwhere
where(fmx .GT. fxx .and. fmx ne.0.0)

rtx= fxx / fmx
endwhere
where(fmx .GT. fxx)

R e p r o d u c e d with p e r m is s io n o f t h e co p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

n
n

n

1 1 4

snx = snx * rtx
sny = sny * rtx
snz = snz * rtx

endwhere
C—RESOLVE FORCES TO GLOBAL DIRECTIONS—

m lx= sny* mz- snz* my
mly= snz* mx- snx* mz
m lz= snx* my- sny* mx

fix = fill* mx+ snx
fly = fill* my+ sny
f lz = fill* mz+ snz

fsx = fix * (rdl+rd2)
fsy = fly * (rdl+rd2)
fsz = f lz * (rdl+rd2)

C (save stress tensor)

tl l=-(fsx* mx)
tl2=-(fsx* my)
tl3=-(fsx* mz)

t21=-(fsy* mx)
t22=-(fsy* my)
t23=-(fsy* mz)

t31=-(fsz* mx)
t32=-(fsz* my)
t33=-(fsz* mz)

200 return
end

SUBROUTINE GLOBE

TO TEST FOR CONTACT BETWEEN BALLS

save
INCLUDE 'tpm.inc'
include 7usr/include/cm/CMF_defs.h'
INCLUDE '/usr/include/cm/cmssl-cmf.h'

slide=count(fxx.eq.0.0.and.rdf.le.0.0)
slide=slide+count(fmx.GT.fxx.and.rdf.le.O.O)
slide=slide/2
shft=0
mas=.false.
mas2=.false.
where(rdf.le.0.0)mas=.true.
where(rdf.le.0.0)mas2=.true.
forall(i=l:corj=l:cor,i.ge.j)mas(ij)=.false.

R e p r o d u c e d with p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

1 15

forall(i=l:corj=l:cor,i.eq.j)mas2(ij)=.false.

Global Stress Tensors

c sum up the stress stress tensor

ssampl(1,1)=sum(t 11 ,mask=mas)
ssampl(1,2)=sum(t 12,mask=mas)
ssampl(l,3)=sum(tl3,mask=mas)
ssampl(2,1)=sum(t21, mask=mas)
ssampl(2,2)=sum(t22,mask=mas)
ssampl(2,3)=sum(t23,mask=mas)
ssampl(3,1)=sum(t31 ,mask=mas)
ssampl(3,2)=sum(t32,mask=mas)
ssampl(3,3)=sum(t3 3, mask=mas)

* CALL CMF_SCAN_ADD(fl x, fl x. 0, 2, cntfupward,
* & cmf_inclusive, CMF_none, mas2)
* CALL CMF_SCAN_ADD(fly, fly, 0, 2, cmfupward,
* & cmfjnclusive, CMFnone, mas2)
* CALL CMF_SCAN_ADD(n z, n z, 0, 2, cmfjipward,
* & cmfjnclusive, CMF none, mas2)

fl x(:, l)=sum(fl x,dim=2,mask=mas2)
fly(:, l)=sum(fly,dim=2,mask=mas2)
fl z(:, 1)=sum(fl z,dim=2, mask=mas2)

flx=spread(fl x(:, 1),dim=2,ncopies=cor)
fl y=spread(fl y(:,l),dim=2, ncopies=cor)
fiz=spread(fiz(:,i),dim=2,ncopies=cor)
f2x=spread(fl x(:, 1),dim= 1 ,ncopies=cor)
12y=spread(fl y (:, 1),di m= 1, ncopies=cor)
f2z=spread(f 1 z(:, 1),dim= 1, ncopies=cor)

mlx=rdl*mlx
mly=rdl*mly
mlz=rdl'!'mlz

* CALL CMF_SCAN_ADD(mix, mix, 0, 2, cmf_upward,
* & cmf inclusive, CMF_none, mas2)
* CALL CMF_SCAN_ADD(mly, mly, 0, 2, cmfjipward,
* & cmf inclusive, CMF none, mas2)
* CALL CMF_SCAN_ADD(mlz, mlz, 0, 2, cmf upward,
* & cmf inclusive, CMF none, mas2)
* mas2=lastloc(mas2,dim=2)

m lx(:, 1)=sum(m 1 x,dim=2,mask=mas2)
m ly(:, l)=sum(m ly,dim=2,mask=mas2)

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

1 1 6

m 1 z(:, 1)=sum(m 1 z,dim=2,mask=mas2)
m 1 x=spread(m lx(:,l),dim=2, ncopies=cor)
m ly=spread(m ly(:, 1),dim=2,ncopies=cor)
mlz=spread(mlz(:,l),dim=2,ncopies=cor)
m2x=spread(m 1 x(:, 1),dim= 1 ,ncopies=cor)
m2y=sprcad(m ly(:, 1),dim= 1 ,ncopies=cor)
m2z=spread(m 1 z(:, 1),dim= 1 ,ncopies=cor)
MEMORY = CMF_AVAILABLE_MEMORY()

200 continue
RETURN
END

SUBROUTINE PRINT
C GENERAL PRINT ROUTINE ... 3-D PROGRAM
C

save
INCLUDE 'matcom.inc'
INCLUDE 'tpm.inc'
include '/usr/include/cm/CMF_defs.h'
LOGICAL SFLG, ALLFLG, GAPFLG
character* 1 icom,icoml
DIMENSION ICOM(57),ICOM 1 (9),iiFIX(6)
DATA ICOM
. /’MVA7P7 '/E'.'N'.T,' 7C707N7

'B7A7L7 \T7Y7P7 7L707A7
'G7R7I7 7A7N7D7 7S',T7R7
'I* 'N1 'F 1 * *p* 'A' *R'11 'C* ’H’ T 11

7B707N7 ',iterm /
data icoml fAVLVL',1 '/G'/A'.'P'.’ '.iterm/

c
NARG = 2

1 CALL MATCH (ICOM.NARG.JUMP)
IF (.NOT. MISS) GOTO 5
IF(NARG.NE. 1) GO TO 1010
WRITE(lunw, 1600)
GOTO 1010

5 IF (.NOT. BAD) GOTO 20
NERR = 3
ERROR = .TRUE.
GOTO 1010

20 GOTO (100,120,140,160.
180,200,220,1000,
240,260,280,300,
320,340),JUMP

C
C-----------------MEMORY M AP----------------------

100 GOTO 1000
C-----------------PRINTOUT OF ENTRIES--------------

120 continue
130 continue
132 continue

GOTO 1000
C-----------------PRINTOUT OF CONTACTS-----------

140 if(nmm.eq.0)goto 1000

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

117

WRll E(lunw, 1608)
do 150 i=l,cor
do 150j=l,cor

if(mas(ij))then
WRITE(lunw, 1609)i j,sn\(i j),

. sny(i j),snz(i j),fn 1 (i j),rdf(i j)
endif

150 continue
GOTO 1000

C----------------- PARTICLE PRINTOUT-------------------------
160 ffi=0.0

fob=0.0
nfob=0
do 175 i=l,pos

ffi=sqit((flx(i, 1))**2+(fly(i, 1))**2
. +(flz(i,l))**2)

fob=fob+fff
nfob=nfob+l

175 continue
if(nfob.gt.0)then
fob=fob/float(nfob)
write(lunw, 1620)fob,nfob

endif

c WRITE(lunw, 1604)
c d o l70 i= l,p os
c W RlTE(lunw,1605)i,slx(i,l),sly(i,l),slz(i,l),
c . v lx(i,l),vly(i,l),v lz(i,l),tlx(i,l)+ td lx(i,l),
c . tly(i,l)+tdly(i,l).tlz(i,l)+tdlz(i,l)
c 170 continue
c 172 WRITEflunw, 1606)
c do 175 i=l,pos
c WRITE(lunw, 1607)i,flx(i, 1),fly(i, 1),fl z(i, 1),
c . m lx(i,l),m ly(i,l),m lz(i,l),n ,rdl(i,l)
c 175 continue

180 GOTO 1000
C-----------------LOADS ON PLATTENS---------------------

200 GOTO 1000
C--------------current grid s ize ------------------

220 WRITE (lunw,1613) (XMAX(I), 1=1,3), (EDGRID(I,I), 1=1,3),
edgrid(l,2)

write (lunw,1621) xshear
write(7,*) (xmax(i),i=l,3)

GOTO 1000
C---------------- measured stress tensor-------------

240 WRITE (lunw, 1614)
VOL = XMAX(l) * XMAX(2) * XMAX(3)
DO 245 1= 1,3

51 = SSAMPL(I,1) / VOL
52 = SSAMPL(I,2) / VOL
53 = SSAMPL(I,3) / VOL

WRITE (lunw, 1615) SI, S2, S3
writc(7,*) sl,s2,s3

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

1 18

245 CONTINUE
cc if (twod) then

sO = (ssampl(l,l)+ssampl(2,2)+ssampl(3,3)) / (3.0*vol)
SSft = ft 5 * (c c a tp n l(l ,1) + Sr-Rnr)p'(2,2)) / VOl

if (ssO ,eq. 0.0) goto 1000
ssl2 = 0.5 * (ssampl(l,2) + ssampl(2,l))
sdev = sqrt(0.25*(ssampl(2,2)-ssampl(l,l))**2

+ssl2**2)/v o l
thet = atan2 (ssl2 , 0.5*(ssampl(2,2)-ssampl(1,1)))
thet = thet / degrad
write (lunw, 1622) sO,ssO,sdev,thet

cc endif
GOTO 1000

C----------------- general information---------------
260 IF (COR ,EQ. 0) GOTO 1000

C (compute total ball volume)
SVOLB = 0.0
VOLB = 0.0
TEMPI = 4.0 * PI / 3.0

* ITYPS = sph(25,:)
* RAD = R(ITYPS)

SVOLB = TEMPI * nr** 3
VOLB = sum(SVOLB,dim=l)
VOLG = XMAX(l) * XMAX(2) * XMAX(3)

C (scan contacts to find overlap volume)
if(nmm.eq.0)goto 265
VOLOV = 0.0
fnav =0.0
DD1 =0.0
DD2 = 0.0
SDD1 =0.0
SDD2 = 0.0
where(mas)
SDD1 = (xsx + rdl*rdl-rd2*rd2) / (2.0 * dif)
SDD2 = (xsx + rd2*rd2-rdl*rdl) / (2.0 * dif)

DD1 = rdl - SDD1
DD2 = rd2 - SDD2

SDD1 = PI * (DD1*DD1 * (rdl- DD1 / 3.0)
. +DD2*DD2 * (rd2- DD2 / 3 .0))
endwhere
VOLOV=sum(SDD 1 ,mask=mas)
fnav =SUM(fnl,mask=mas)

C
265 if(nmm.eq.0)then

fnav = 0.0
volov = 0.0

endif
POROS = (VOLG - VOLB + VOLOV) / VOLG
OVLRAT = VOLOV / VOLG
COORD = 2.0 * FLOAT(NMM) / FLOAT(COR)
RCONS = FLOAT(NMM) ♦ (3.0 - 2.0 * SLIDE) / (6.0 * COR)
if (nmm .gt. 0) fnav = fnav / float(nmm)

R e p r o d u c e d w ith p e r m is s io n of t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e r m is s io n .

1 19

WRITE (lunw. 1618) POROS, NMM, COORD, RCONS, SLIDE, OVLRAT,
fnav

write(7,*) poros*volg
GOTO 1000

C------------------stress-partitions-----------------
280 GOTO 1000

C------------------contact histogram-----------------
300 goto 1000

c----------------- w alls------------------------------
320 goto 1000

c----------------- bond-------------------------------
340 goto 1000

c—
1000 WRITE(lunw, 1610)

NARG = NARG + 1
IF (NARG .LE. 40) GOTO 1

1010 RETURN
C
1600 FORMAT(30X,TRINT WHAT ?')
1601 FORMAT(30X,'PRINTOUT OF ENTRIES, BY BOX

/ r — -BOX ENTRIES'
r NUMBER ADDRESS')

1604 FORMAT(30X,'DATA ON PARTICLES ...'/' ADDRESS',4X,
. 'U(1)',5X,'U(2)',
. 5X,'U(3)',4X,'UDOT(l)',4X,'UDOT(2)',4X,'UDOT(3)',
. IX,' THETA(l)',
.' THETA(2) THETA(3)')

1605 FORMAT(lX,I6,3F9.3,lP,3El 1.3,0P,3F9.3)
1606 FORMAT^ ADDRESS',3X,'FSUM(1)',4X,'FSUM(2)',4X,'FSUM(3)',

. 4X,MSUM(1)',4X,'MSUM(2)',4X,'MSUM(3)',' STYPE MTYPE’)
1607 FORMAT(lX,I6,6El 1.3,16,F5.2)
1608 FORMAT(30X,'CONTACT DATA BALL1 BALL2)'

. ,6X,'FS(1)',6X,TS(2)',6X,TS(3)’,9X,’FN'

. ,6X,'XC(1)',6X,'XC(2)\6X,'XC(3)\6X,'GAP')
1609 FORMAT(lX,3X,216,lP,5E11.3)
1610 FORMAT(' ’)
1611 FORMAT(30X,'MEMORY MAP

.' M l =’.16,' MIA =',16,' M2 =',16,' M2 A ='.16.

.' M3 -.16,' M3A =',16,' M4 =',16,' M5 =',I6/)
1612 FORMAT(lX,3(lP,2El 1.3.2X))
1613 FORMAT (' Current grid size -'.1P.3E13.5/' Rates 1P.4E11.3)
1614 FORMAT (' Measured stress tensor...’)
1615 FORMAT (IX,1P.3E11.3)
1616 FORMAT (1X,I3,18,216,' ERROR - ZM is zero')
1617 FORMAT (' (overlap is larger than tolerance)')
1618 FORMAT

. (' Porosity Contacts Coord-num Cons-rat Sliding',

. 2x,'Ovlap-rat',5x,'av. Fn*

. / 1X.F11.3,111.3F11.3.F11.4, Ip, e l 1.3)
1619 FORMAT (1X.I3,18,216, IP,2E11.3)
1620 format (' average fob, num:',lp,ell.3,i6)
1621 format (' 1 -2 shear strain = ', 1 p,e 11.3)
1622 format (' sig-0 sum/2 s-dcv theta'

/lx ,lp ,3ell.3 ,0p ,fl0 .3)

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

120

1630 format (lx ,lp ,3el 1.3)
END

SUBROUTINE SETSRV(SERVO)
save
INCLUDE 'tpm.inc'
parameter (nsvar=10)
LOGICAL SERVO
character* 1 icom
include 'matcom.inc'
DIMENSION ICOM(30)
DATA ICOM /'S','07 \'S',T,'M’,'S727 7S','3','37

i r i i j t » t t g i t j i • | • i i i g j * 2 i ' 2 ' » •

•R VOTt / ' ,
item /

SERVO = FALSE.
NSERV = 0
NPAR = 3

5 CALL MATCH(ICOM,NPAR,JUMP)
EF(MISS) GOTO 8
IF(BAD) GOTO 1020

if (nserv+1 .gt. nsvar) then
nerr= 12
error = .true.

endif
NSERV = NSERV + 1
1CDSRV(NSERV) = JUMP
SRWAL(NSERV) = RVAR(NPAR+1)

IF(MISS) GOTO 1010
if (jump .eq.4) srwal(nserv) = cos (2.0 * srwal(nserv)

* degrad)
SERVO = TRUE.
NPAR = NPAR+2
GOTO 5

1010 SERVO = .FALSE.
NERR = 2
ERROR = TRUE.
RETURN

1020 NERR = 3
ERROR = .TRUE.
RETURN

8 MISS = .FALSE.
RETURN
END
SUBROUTINE RUNSRV
save
logical velflg
parameter (nsvar=10)
include 'matcom.inc'
INCLUDE 'tpm.inc'
dimension detr(3,3),etr(3,3)

c— flag to request direct velocity control —
velflg = mode .eq. 1

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w ith o u t p e rm is s io n .

no
n

no
n

n
o

n

121

do 5 j = 1,3
do 4 i = 1,3

detr (i j) = 0.0
4 continue
5 continue

samvol = xmax(l) * xmax(2) * xmax(3)
DO 100 1=1,NSERV
GOTCK 10,20,30,40,50,60,70), ICDSRV(I)

SERVO CONTROL FOR MEAN STRESS

10 SOMES = (SSAMPL(1,1) + SSAMPL(2,2) + SSAMPL(3,3)> /
(3.0 * samvol)

S0REQ=SRWAL(I)
DED = (GAIN * (S0REQ - SOMES)) / 3.0
if (velflg) then

if (abs(ded) .gt. servem) ded = sign(servem,ded)
edgrid(l.l) = ded
edgrid(2,2) = ded
edgrid(3,3) = ded
eduser(l,l) = ded
eduser(2,2) = ded
eduser(3,3) = ded

else
detr(l,l) = detr(l,l) + DED
detr(2,2) = detr(2,2) + DED
detr(3,3) = detr(3.3) + DED

endif
GOTO 100

SERVO CONTROL FOR (SI l+S22)/2

20 S12MES = (SSAMPL(1.1)+SSAMPL(2,2)) /
(2.0 * samvol)

S12REQ = SRW AL(l)
DED 12 = 0 .5 * GAIN * (S12REQ - S12MES)
detr(l,l) = detr(l,l) + DED12
detr(2,2) = detr(2,2) + DED 12
GOTO 100

SERVO CONTROL FOR S33

30 continue
DED = GAIN * (srwal(i) - ssampl(3,3)/samvol)
if (velflg) then

if (abs(ded) gt. servem) ded = sign(servem,ded)
edgrid(3,3) = ded
eduser(3,3) = ded

else
detr(3,3) = detr(3,3) + DED

endif
goto 100

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

o
o

122

c servo control for ring-shear simulation (keeps constant angle of p.s.)
c

40 S33MES = SSAMPL(3,3) / samvol
S33REQ = 0.5 * (ssampl(l,l)+ssampl(2,2)

+(ssampl(1,1)-ssampl(2,2)) * SRW AL(1)) / samvol
DED33 = GAIN * (S33REQ - S33MES)
detr(3,3) = detr(3,3) + DED33
goto 100

control for si 1
c

50 continue
DED = GAIN * (srwal(i) - ssampl(1,1)/samvol)
if (velflg) then

if (abs(ded) .gt. servem) ded = sign(servem,ded)
edgrid(l,l) = ded
eduser(l.l) = ded

else
detr(l,l) = detr(l.l) + DED

endif
goto 100

c
c control for s22
c

60 continue
DED = GAIN * (srwal(i) - ssampl(2,2)/samvol)
if (velflg) then

if (abs(ded) .gt. servem) ded = sign(servem.ded)
edgrid(2,2) = ded
eduser(2,2) = ded

else
detr(2,2) = detr(2,2) + DED

endif
goto 100

c
c
c control for rotation of pr. axes: deviator is kept at given value;
c applied strain-rate is normal to stress vector, with magnitude
c of max. strain rate and sign taken from given deviator,
c

70 continue
s lim = ssampl(l.l) / samvol
s22m = ssampl(2,2) / samvol
s33m = ssampl(3,3) / samvol
sO = (s llm + s22m + s33m)/3.0
sl2m = 0.5 * (ssampl(l,2) + ssampl(2,l)) / samvol
sdev = sqrt(0.25*(s22m-sl lm)**2 + sl2m*sl2m)
sn = sl2m / sdev
cs = 0 .5 * (s22m -slim)/sd ev
if (velflg) then

udrl = gain * (abs(srwal(i)) - sdev)
udc = sign (servem.srwal(i))
bb = gain * (s22m - s33m)

c*** temp ***

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

123

udv = gain * (-1.38e-5 - sO)
£ * • * « * * * * * « • *

aa = udrl * cs - udc * sn
edgrid(l, 1) = (udv - 2.0*aa - bb) / 2.0
edgrid(2,2) = (udv + 2.0*aa - bb) / 2.0
edgrid(3,3) = bb
edgrid(l,2) = 2.0 * (udrl * sn + udc * cs)
eduser(1,1) = edgrid(1,1)
eduser(2,2) = edgrid(2,2)
eduser(3,3) = edgrid(3,3)
eduser(1,2) = edgrid(1,2)

else
edx = 0.5 * (edserv(2,2) - edserv(l.l))
edy =edserv(l,2)

c— resolve strainrates into circum. component —
edc = edy * cs - edx * sn

c— increment for circum. adjsutment —
dec = sign(0.1 * servem.srvval(i)) - edc

c— resolve back —
dex = -dec * sn
dey = dec * cs
detr(l,2) = detr(l,2) + dey
detr(2,2) = detr(2,2) + dex
delr(l.l) = detr(1,1) - dex

c— increments for radial adjustments —
ded = gain * (abs(srwal(i)) - sdev)
detr(l,2) = detr(l,2) + ded * sn
detr(2,2) = detr(2,2) + ded * cs
detr(l,l) = detr(l,l) - ded * cs

c— servo to keep 33-stress = 22-stress, for ring shear device —
ded = gain * (s22m - s33m)
detr(3,3) = detr(3,3) + ded

endif
goto 100

c
100 CONTINUE

if (velflg) return
c
c test for strain-rate limit
c and add in to user-given strain rate
c

do 200 j = 1,3
do 150 i= 1,3

edserv(i j) = edserv(i j) + detr(ij)
if (abs(edserv(i j)) .gt. servem) then

edserv(i j) = sign(servem, edserv(i j))
endif
edgrid(i j) = eduser(i j) + edserv(i j)

150 continue
200 continue

c—
RETURN
END

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

1 2 4

subroutine tidy
C
C TO ELIMINATE BLANKS, ETC. FROM INPUT
C LINE AND MAKE INDEX TO LOCATION OF PARAMETERS
C

save
logical sep
include 'matcom.inc'
BAD=.FALSE.
NCHAR = 0
L l= l
L2=l
NPAR=0
DO 5 1=1,40

5 LPNT(I)=0
GOTO 20

C—NOW WITHIN A STRING -
10 IF(SEP(LINE(L2))) GOTO 30
15 LINE(L 1)=LINE(L2)

L1=L1+1
L2=L2+1
IF(L2.LE.80) GOTO 10
GOTO 50

C—NOW IN A G A P -
20 IF(.NOT.SEP(LINE(L2))) GOTO 40
30 L2=L2+1

IF(L2.LE.80) GOTO 20
GOTO 50

C—START OF A STRING—
C—FIRST CHECK FOR TERMINATOR

40 IF((LINE(L2).EQ.'*') .OR. (LINE(L2).EQ.';')) GOTO 50
NPAR=NPAR+1
LPNT (NP AR)=L 1
GOTO 15

50 LPNT (NP AR+1)=L 1
RETURN
END
LOGICAL FUNCTION SEP(C)

C
C RETURNS .TRUE. IF C IS A SEPARATOR
C

save
CHARACTER* 1 C, CSEP(6)
DATA CSEP r

C
ic = ichar(c)
if ((ic.ge.97) .and. (ic.le. 122)) c = char(ic-32)
DO 101=1,6

IF(C.EQ.CSEP(I)) THEN
SEP = .TRUE.
RETURN

END IF
10 CONTINUE

SEP=.FALSE.

R e p r o d u c e d with p e r m is s io n o f t h e co p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

n
n

o
n

o
o

o
o

n
n

o
o

n
n

n

125

RETURN
END
SUBROUTINE MATCH (NTAB,NPAR, JUMP)

TO MATCH INPUT STRING TO KEYWORD IN TABLE

INPUT: NTAB TABLE OF KEYWORDS IN CHARACTER* 1 FORMAT, SEPARATED
BY BLANKS AND TERMINATED WITH ITERM. ALL KEYWORDS
MUST CONSIST OF AT LEAST 2 CHARACTERS, UNLESS
THEY REALLY ARE SINGLE-LETTER COMMANDS.

NPAR PARAMETER NO. IN INPUT LINE (STORED IN ARRAY LINE()
WHICH IS ALSO IN CHARACTER* 1 FORMAT)

OUTPUT: JUMP DISPATCH NUMBER CORRESPONDING
TO POSITION OF KEYWORD IN NTAB.

BAD .TRUE. FOR MISSING PARAMETER OR STRING NOT FOUND
MISS .TRUE. FOR MISSING PARAMETER

save
CHARACTER* 1 IBLK, NTAB(l), NTI
include 'matcom.inc'
DATA IBLK/” /

NPBAD = NPAR - 1
L 1 =LPNT (NPAR)
L2=LPNT(NPAR+1)-1
IF (L2.LT.0) THEN

JUMP=1
MISS = .TRUE.
BAD = .TRUE.
RETURN

ENDIF
1=0
NT=0

40 NT=NT+i
IF(NTAB(I+2).EQ.IBLK.AND.L2.GT.L1) GOTO 80
DO 50 L=L1,L2
1= 1+1
NTI=NTAB(I)
IF(NTI.NE.LINE(L)) GOTO 70

50 CONTINUE
60 JUMP=NT

BAD=.FALSE.
MISS = .FALSE.
RETURN

65 IF (L.EQ.L1) THEN
JUMP = 2
MISS = .FALSE.
BAD = .TRUE.
RETURN

ENDIF
GOTO 60

70 IF(NTI.EQ.IBLK.OR.NTI.EQ.ITERM) GOTO 65
80 1=1+1

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

1 2 6

NTI=NTAB(I)
IF(NTI.EQ.IBLK) GOTO 40
IF(Nn.NE.ITERM) GOTO 80

JUMP = 2
MISS = .FALSE.
BAD=.TRUE.
RETURN

END
SUBROUTINE VAR(NPAR)

C
C COMMON ROUTINE FOR IVAR & RVAR
C

save
CHARACTER* 1 IBUF(20), IBL
CHARACTER*20 BUF
include 'matcom.inc'
COMMON /CVAR/ BUF
DATA IBL r '/

C
NPBAD = NPAR - 1
NP=NPAR
DO 10 1=1,20

10 IBUF(I)=IBL
LL=LPNT(NP)
NUM=LPNT(NP+1)-LL
NUM=MIN0(NUM,20)
IF (NUM.LE.0) THEN

MISS=.TRUE.
WRITE (BUF, 100) IBUF
RETURN

ENDIF
DO 20 L=1,NUM

N1=20-NUM+L
IBUF(N 1)=LINE(LL)

20 LL=LL+1
WRITE (BUF, 100) IBUF
MISS = .FALSE.
RETURN

100 FORMAT (20A1)
END
FUNCTION IVAR(NPAR)

C
C TO RETURN INTEGER VALUE OF PARAMETER NPAR
C MISS IS SET .TRUE. IF MISSING
C BAD IS SET .TRUE. IF FORMAT BAD
C

save
CHARACTERS BUF
include 'matcom.inc'
COMMON /CVAR/ BUF

C
IF (BAD) GOTO 100
CALL VAR (NPAR)
READ (BUF,2QO,ERR=IOO) IV

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

1 2 7

IVAR=IV
RETURN

100 BAD = .TRUE.
IVAR=0
RETURN

200 FORMAT(I20)
END
FUNCTION RVAR(NPAR)

C
C TO RETURN REAL VALUE OF PARAMETER NPAR
C MISS IS SET .TRUE. IF MISSING
C BAD IS SET .TRUE. IF FORMAT BAD
C

save
CHARACTERS BUF
include 'matcom.inc'
COMMON /CVAR/ BUF

C
IF (BAD) GOTO 100
CALL VAR(NPAR)
READ (BUF,200,ERR= 100) RV
RVAR=RV
RETURN

100 BAD = .TRUE.
RVAR=0.0
RETURN

200 FORMAT(F20.0)
END

subroutine testl
c test is used to generate selected Particles
c

save
INCLUDE 'tpm.inc'
GENFLAG=.TRUE.
nreq = 403
nball=403
do 5 i=l,nreq
read(4,1605)con(i. 1),con(i,2),con(i,3)
read(8,*)walp(i, l),layp(i,2)
read(9,*)con 1 (i, 1),con 1 (i,2)

5 continue
* con(1,1)=82
* con(1,2)= 105
* con(1,3)=100
* con(2,1)=100
* con(2,2)= 100
* con(2,3)= 100
* con(3,1)=118
* con(3,2)=95
* con(3,3)= 100
* con(typ,:,:)=l
* con(mat,:,:)=l
* rrr(l :3)= 15

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

1 28

rrr(l:50)=15
rrr(51:150)= 10

*

* Loading the x coordinates
*

do 10 i=l,cor
do 10 j=l,cor
xlx(ij)=con(i,l)
x2x(ij)=con(j,l)

10 continue
*

* Loading the y coordinates
*

do 20 i=l,cor
do 20 j=l,cor
xly(ij)=con(i,2)
x2y(ij)=con(j,2)

20 continue
*

* Loading the z coordinates
*

do 30 i=l,cor
do 30 j=l,cor
xlz(ij)=con(i,3)
x2z(ij)=con(j,3)

30 continue
*
* Loading the radius
*

do 40 i=l,cor
do 40 j=l,cor
rdl(ij)=rrr(i)
rd2(ij)=rrr(j)

40 continue
*

* Loading the fx coordinates
*

do 50 i=l,cor
do 50 j=l,cor
f l lx(ij)=conl(i,l)
f22x(ij)=conl(j,l)

50 continue
*
* Loading the fy coordinates
*

do 60 i=l,cor
do 60 j=l,cor
flly(ij)=conl(i,2)
f22y(ij)=conl(j,2)

60 continue
*

* Loading the mas! coordinates
*

walp=spread(walp(:.l),dim=2,ncopies=cor)

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

1 2 9

twalp=spread(walp(:, 1),dim= 1 ,ncopies=cor)
layp=spread(layp(:, l),dim=2,ncopies=cor)
tlayp=spread(Iayp(:, l),dim=2,ncopies=cor)
forall(i= 1 :cor j = 1 :cor,i.eq.j)walp(i j)=.false.
forall(i= 1 :corj=1 :cor,i.eq.j)layp(i j)=.false.
foralI(i=1 :cor j = 1 :cor,i ,eq.j)twalp(i j)=.false.
forall(i=l:corj=l:cor,i.eq.j)tlayp(ij)=.false.

* forall(i=I:nreq)ityps(i)=sph(typ,i>l)
* forall(i=l:nreq)sph(rdd,i,:)=r(ityps(i))

write (lunw, 1610) nball
genflag=.false,
return

1610 format(lx,j3,' particles have been generated in 0 tries')
1605 FORMAT* 1X,6X,3F9.3)

1607 FORMAT(1X,6X,66X,2F6.0)
end

SUBROUTINE PLAT
C TO CREATE THE GRAPH OF OUTPUT
C

save
include 'matcom.inc'
include 'libcom.inc'
real ROWC,DISPL,HGHT
DIMENSION FM(3),FP(3)

C------------------LOADS ON PLATTENS-------------------
if(ntot.le.600)goto300
FM=0.0
FP=0.0
where(vlx.lt.O.O)

fin(1)=sum(fl x(1, :),dim=2,mask=walp)/2
where(vly.lt.0.0)

fm(2)=sum(fly(I, :),dim=2.mask=walp)/2
where(vlz.lt.O.O)

fm(3)=sum(fl z(1,:),dim=2, mask=walp)/2

where(vlx.gt.0.0)
fp(1)=sum(fl x(1,:),dim=2, mask=walp)/2

where(vly.gt.0,0)
fp*2)=sum(fly(1 ,:),dim=2,mask=walp)/2

where(vlz.gt.0.0)
fp*3)=sum(fl z(1,:),di m=2, mask=walp)/2

ROWC=FM(3)/(4.48E4*5E4)
displ=-2*(25-slz(l,:))
DHGHT=ABS(s 1 z(1, :)-s 1 z(366,:))
STRAINS=DISPL/DHGHT
WRITE(6,*)STRAINS,ROWC,NTOT

300 RETURN
1612 F0RMAT(1X,3(1P,2E11.3,2X))

END

R e p r o d u c e d with p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

REFERENCES

Almasi, George S. and Gottlieb, A.(1994).Highly Parallel Computing,The
Benjamin/Cummings Publishing Company, Inc.,second edition,New York

Amdahl,G.M (1967) “Validity o f Single-Processor Approach to Acheiving Large-Scale
Computing Capability”, Proc. AFIPS Conf, pp. 483-485, Reston, VA.

Bathurst, Richard John (1985),”A Study of Stress and Anisotropy in Idealized Granular
Assemblies” .PhD dissertation, Civil Engineering, Queen's University at Kingston,
Ontario, Canada

C.S. Chang, A. Misra and S.S. Sundaram(1990),"Micromechanical modelling o f cemented
sands under low amplitude oscillations", J.Geotechnique 40, No.2,251-263

Chang C.S and Acheampong K.B.(1993) /'Accuracy and Stability for Static Analysis
Using Dynamic Formulation in Discrete Element Methods," Proceedings o f the
2nd International Conference on Discrete Element Methods(DILM), pp . 3 79-
3 89,MIT,Boston,MA

Chen , Y.C.(1986) “Experimental Determination o f Fabric for Granular Material”, Ph.D.
thesis, Civil Engineering , Cornell University,Ithaca, New York

Cundall P. A. and Strack O.D.L(1978), “The Distinct Element Method As A Tool For
Research In Granular Media” , Report to the National Science Foundation
Concerning NSF Grant ENG76-20711, Part I

—(1979a), “The Distinct Element Method As A Tool For Research In Granular Media”,
Report to the National Science Foundation Concerning NSF Grant_ENG76-20711,
Part II

—(1979b). "A Discrete Numerical Model for Granular Assemblies", J.Geotechnique, vol.
29 , pp. 47-65

—(1979c). “The Development of Constitutive Laws for Soils Using the Distinct Element
Method”,, Proc. 3rd Int. Conf. on Numerical Methods in Geomechanics., Aachen,
vol.l, Balkema, Rotterdam, pp.289-317

Cundall, P.A.(1971), “A Computer Model for Simulating Progressive, large scale
Movements in Block Rock Systems”, Proc. Int. Symp. on Rock Fracture, Nancy,
France, II-8

130

R e p r o d u c e d w ith p e r m is s io n of t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e r m is s io n .

131

Cundall P.A.,Drescher A.& Strack O .D.L.(l982),’’Numerical experiments on granular
assemblies; Measurements and observations” JUTAM conference on Deformation
and Failure o f Granular MaterialsfDelfi/A\ig.3\-Sept3, pp.355-370

Cundall, P.A., and Hart, R.D.(1990), “Numerical Modeling o f Discontinua”, Itasca
Consulting Group, Inc., Minneapolis, Minnesota

Dantu, P. (1957) “Contribution a l’etude mechanique et geometrique des milieux
pulverulents”,. Proc. 4th Int. Conf. SoilMech. Foundation Eng., London l,144fF

De Josselin de Jong, G. & Verruijt, A.(1969),"Etude photo-elastique d'un empilement de
disques.", Cahiers du Groupe Francois de Rheologie II, No. 1, 73-86

Deresiewcz, H. (1958) .’’Stress-strain relations for a simple model o f a granular medium.”
J. Appl. Mech., Trans. ASME, 25(3), 402-406.

Drescher A. and De Josselin de Jong, G.(1972), “Photoelastic Verification O f a
Mechanical Model For the Flow O f a Granular Material”, J.Mech.Phys. Solids,
Vol.20, pp 337-351

Duffy, J. (1959).”A differential stress-strain relation for the hexagonal close packed
array.”, J.Appl. Mech., Tram. ASME, pp. 88-94.

Ghaboussi, J., Basole, M. & Ranjithan, S.(1993)"Three Dimensional Discrete Element
Analysis on Massively Parallel Computers",Proceedings o f the Second
International Conference on Discrete Element Methods, Massachusetts Institute
o f Technology, Boston, MA, March 18-19

Geist, A. , Beguelin, A., ct. e ! (1994). PVK*f* Parallel VirtualK'fachiue - A Users' Guide
and Tutorial fo r Networked Parallel Computing, The MIT Press Cambridge,
Mass., London .England

Gili, J.A, and Alonso, E.E.(1988),’’Discontinuous numerical model for partially saturated
soils at low saturation”, Proceed. 6th Int. Conf. on Numerical Methods in
Geomechanics. Swoboda (ed.). Balkema Rotterdam, pp. 365-372

Gili, J.A(1988), “Modelo Microestructural para medios granulares no saturados”,Tesis
Doctoral. Univ. Politec. deCatalunja., Spain, 621 pag, Julio

Hadj Ounis and Goodarz Ahmadi(1989), "Motions o f Small Rigid Spheres in Simulated
Random Velocity Field",Journal o f Engineering Mechanics, Vol. 115, No. 10,
October

Heermann D.W. and Burkitt A N.(1990). Parallel Algorithms in Computational Science
Number 24 in Springer Series on Informational Sciences.Springer-Verlag,N.Y.

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e r m is s io n .

132

Hustrihild, Andrew 1.(1995), “Parallel Implementation of the Discrete Element
Method”,Colorado School o f Mines, March 8th, Internet Online (http:\\
ppl. mines, col orado. edu: 80/dempaper/dempaper. html)

Hwang, Kai (1993)^4chanced Computer Architecture -.Parallelism,Scalability,
Programmability,McGraw-Hill Inc., N.Y.

Jenkins, James T.(1988), “Volume Change in Small Strain Axisymmetric Deformations of
a Granular Material”, Micromechanics o f Granular Materials, Elsevier Science
Publishers B .V ., Amsterdam

Krawietz, A. (1982) “Some features o f the gross behavior o f granular media derived from
micromechanics”,/£/7’/4M Conference on Deformation and Failure o f Granular
MaterialsfDeAfi/ Aug.31-Sept. 3

Kuraoka, Senro(1994),’’Anisotropic Stiffness and Circulation Flow of Sand: Application
for the Expendable Pattern Casting”, Ph.D. Thesis, Civil and Environmental
Engineering,University o f Wisconsin-Madison, Wisconsin

MeegodaN.J.and Washington D.W.(1994),’’Massively parallel computers for microscopic
modeling o f soils”, Proceedings o f the Eighth International Conference on
Computer Methods and Advances in Geomechanics, Morgantown, West Virginia,
May 22-24, pp.617-622

Mindlin, R.D.(1949),"Compliance of Elastic Bodies in Contact ,"J.Appl. Mech. ASME,
vol.71, pp.A259-268

Ng. T.T.(1989),’’Numerical Simulation o f Granular Soil under Monotonic and Cyclic
Loading.a Particulate Mechanics Approach”, Ph.D. thesis. Civs! Engineering,
Renesselaer Polytechnic Institute

Oda, M. and Konoshi, J.(1974),’’Microscopic deformation mechanism o f granular material
in simple shear”,Soils and Foundations, Japanese Society o f Soil Mechanics and
Foundation Engineering, 14, No. 4, 25-38

Ratnaweera, P.(1992) “The Influence of Chemical Contaminants on Shear Strength and
Stress-Strain Behavior o f Clay Soils”, PhD dissertation, Civil Engineering, New
Jersey Institute o f Technology,Newark, N.J.

Rodriguez-Ortiz, J.M(1974)., “Estudio del Comportamiento de medios granulares
heterogeneos mediante modelos discontinous analogicos y matematicos”.PhD
thesis, Universidad Politecnica de Madrid.,Spain

Rowe, P.W.(1962), “The stress dilatancy relation for static equilibrium of an assembly of
particles in contact”, Proceeding o f the Royal Society, 269, No. 1339, 500-527

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w ith o u t p e rm is s io n .

133

Shi, G .(l988),’’Discontinuous deformation analysis- a new numerical model for the statics
and dynamics of block systems”,Ph.D thesis, Univ. o f California, Berkeley,Ca.

Terzaghi, K.(1920),’’Old earth-pressure theories and new test results”, Engineering News-
Record,%5,no.14.(I960 Reprinted in From theory to practice in soil mechanics.:
J.Wiley and Sons., N.Y)

Thorton, C., and Barnes, D.J. (1986),"Computer Simulated Deformation o f Compact
Granular Assemblies,"*/. Acta Mechanica, vol. 64, pp. 45-61

Ting, J.M.et. al(1989),"Discrete Numerical Model for Soil Mechanics," J.Geotech. Eng.,
vol 115, no. 3, pp.379-398

Walton, Otis R(1992), Numerical Simulation O f Inelastic, Frictional Particle-Particle
Interactions,P&rt\cu\ate Two-Phase Flow,M.C. Roco(Eds),Butterworth-
Heinemann,Chapter 25

Walton, Otis. R and Braun, Robert L.(1986),"Viscosity, Granular-Temperature, and
Stress Calculations For Shearing Assemblies of Inelastic, Frictional Disks", Journal
o f Rheology, John Wiley & Sons, Inc.,N.Y. 30(5), 949-980

Washington D.W and M eegodaN.J(1996),’’Micromechanical Simulation of Geotechnical
Problems using Massively Parallel Supercomputers”, Proceedings o f the Eleventh
ASCE Engineering Mechanics Conference, Fort Lauderdale, Florida, May 19-
22,to be presented

Washington D.W.& Meegoda N.J.(1996),’’DEM Simulation of Geotechnical Problems
using Massively Parallel Supercomputers”, submitted to Journal o f ASCE
Geotechnical Engineering

William, J. & Mustoe, G. (1993) “Preface” proceedings o f the Second International
Conference on Discrete Element Methods, Massachusetts Institute of Technology,
Boston, MA, March 18-19

R e p r o d u c e d w ith p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i te d w i th o u t p e rm is s io n .

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment (1 of 2)
	Acknowledgment (2 of 2)

	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: TPM Version 1.0
	Chapter 3: TPM Version 2.0
	Chapter 4: Simulations of Rowe's Experiment
	Chapter 5: Future Research and Conclusion
	Appendix: TPM Version 2.0 (Rowe's Model)
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

