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A BSTR A C T

ON OPTIM AL D ESIG N  A N D  APPLICATIO NS  
OF LIN EA R  TRANSFO RM S  

by 
M ehm et V. Tazebay

Linear transforms are encountered in many fields of applied science and 

engineering. In the past, conventional block transforms provided acceptable answers 

to different practical problems. But now, under increasing competitive pressures, 

with the growing reservoir of theory and a corresponding development of computing 

facilities, a real demand has been created for methods that systematically improve 

performance. As a result the past two decades have seen the explosive growth of a 

class of linear transform theory known as multiresolution signal decomposition. The 

goal of this work is to design and apply these advanced signal processing techniques 

to several different problems.

The optimal design of subband filter banks is considered first. Several design 

examples are presented for M-band filter banks. Conventional design approaches 

are found to present problems when the number of constraints increases. A novel 

optimization method is proposed using a step-by-step design of a hierarchical 

subband tree. This method is shown to possess performance improvements in 

applications such as subband image coding. The subband tree structuring is then 

discussed and generalized algorithms are presented. Next, the attention is focused 

on the interference excision problem in direct sequence spread spectrum (DSSS) 

communications. The analytical and experimental performance of the DSS.S receiver 

employing excision are presented. Different excision techniques are evaluated and 

ranked along with the proposed adaptive subband transform-based exciser. The 

robustness of the considered methods is investigated for either time-localized or



frequency-localized interferers. A domain switchable excision algorithm is also 

presented. Finally, some of the ideas associated with the interference excision 

problem are utilized in the spectral shaping of a particular biological signal, namely 

heart rate variability. The improvements for the spectral shaping process are 

shown for time-frequency analysis. In general, this dissertation demonstrates the 

proliferation of new tools for digital signal processing.



ON O PTIM AL D ESIG N  A N D  APPLICATIO NS  
OF LIN EA R  TRANSFO RM S

by
M ehm et V. Tazebay

A Dissertation  
Subm itted to the Faculty of 

N ew  Jersey Institu te of Technology 
Partial Fulfillm ent of the R equirem ents for the Degree of 

D octor of Philosophy

D epartm ent o f E lectrical and Com puter Engineering

January 1996



Copyright ©  1996 by Mehmet V. Tazebay 

ALL RIGHTS RESERVED



APPROVAL PAGE 

ON OPTIMAL DESIGN AND APPLICATIONS 
OF LINEAR TRANSFORMS 

Mehmet V. Tazebay 

 
Dr. Ali N. Akansu, Dissertation Advisor 	 Date 
Associate Professor of Electrical and Computer Engineering, MIT 

Dr. Yeheskel Bar-Ness, Committee Member 	 Date 
Distinguished Professor of Electrical and Computer Engineering, NJIT 

Dr. Richard A. Haddad, Committee Member 	 Date 
Professor of Electrical and Computer Engineering, MIT 

Dr. Committee Member 
Assistant Professor of Computer and Information Science, NAT 

Dr. Stanley Reisman, Committee Member 	 Date 
Professor of Electrical and Computer Engineering, NJIT 

1)r. loran Si veski, Committee Member 	 Date 
Assistant Professor of Electrical and Computer Engineering, MIT 



BIOGRAPHICAL SKETCH 

Author: 	Mehmet V. Tazebay 

Degree: 	Doctor of Philosophy 

Date: 	 .January 1996 

Undergraduate and Graduate Education: 

• Doctor of Philosophy, 
New Jersey Institute of Technology, 
Newark, NJ, 1996 

• Master of Science in Biomedical Engineering, 
Bogazici University, Istanbul, Turkey, 1992. 

• Bachelor of Science in Electronics and Communications Engineering, 
Istanbul Technical University, Istanbul, Turkey, 1989 

Major: Electrical Engineering 

Presentations and Publications: 

[1] Mehmet V. Tazebay, and Ali N. Akansu, "Progressive Optimization in Subband 
Trees," in the Proceedings of SPIE's Visual Communications and Image 
Processing-94, Vol. 3, pp. 1100-1111, September 25-29, 1994, Chicago, IL. 

[2] Mehmet V. Tazebay, arid Ali N. Akansu, "Progressive Optimality in Hierarchical 
Filter Banks," in the Proceedings of IEEE International Conference on Image 
Processing, Vol. 1, pp. 825-829, November 13-16, 1994, Austin, TX. 

[3] Mehmet V. Tazebay, Ali N. Akansu and Matthew Sherman, "A Novel Adaptive 
Time-Frequency Excision Technique for Direct Sequence Spread Spectrum 
Communications," in the Proceedings of IEEE International Symposium on 
Time-Frequency and Time-Scale Analysis, Vol. 1, pp. 492-495, October 25-28, 
1994, Philadelphia, PA. 

[4] Mehmet V. Tazebay, and Ali N. Akansu, "Progressive Optimization of Time-
Frequency Localization in Subband Trees," in the Proceedings of IEEE Inter-
national Symposium on Time-Frequency and Time-Scale Analysis, Vol. 1, pp. 
128-131, October 25-28, 1994, Philadelphia, PA. 

iv 



[5] Mehmet V. Tazebay, and Ali N. Akansu, “A Smart Time-Frequency Exciser for
DSSS Communications,” in the Proceedings of IEEE International Conference 
on Acoustics, Speech and Signal Processing, Vol. 2, pp. 1209-1212, May 8-12, 
1995, Detroit, Michigan.

[6] Michael Meyer, Mehmet V. Tazebay, and Ali N. Akansu, “A Sliding and Variable
Window-Based Multitone Excision for Digital Audio Broadcasting,” in the 
Proceedings of IEEE International Symposium on Circuits and Systems, Vol 
2, pp. 1464-1467, April 29 - May 3, 1995.

[7] Mehmet V. Tazebay, Rindala Saliba. and Stanley Reisman, “Adaptive Time-
Frequency Analysis of Autonomic Nervous System,” in the Proceedings of 
IEEE International Conference in Engineering in Medicine and Biology Society 
, September 19-23, 1995, Montreal, Canada..

[8] Mehmet V. Tazebay, and Ali N. Akansu, “A Comparative Performance Study
of Excisers in Spread Spectrum Communications,” in the Proceedings of IEEE 
Global Telecommunications Conference, November 13-17, 1995, Singapore.

[9] Mehmet V. Tazebay and Ali N. Akansu, “Adaptive subband transforms in time-
frequency excisers for DSSS communications systems ,” in IEEE Transactions on 
Signal Processing, Vol. 43, No. 11, pp. 2776-2782, November 1995.

[10] Ali N. Akansu and Mehmet V. Tazebay “Orthogonal Transmultiplexer: A 
Multiuser Communications Platform from FDMA to CDMA,” an invited paper 
to be presented at the Europian Signal Processing Conference (EUSIPCO), 
Trieste, Italy, 1996.

v



his work is dedicated to 
Tazebay family



ACK NO W LEDG M ENT

First of all, I would like to express my sincere gratitude to my advisor, Professor 

Ali N. Akansu for his continuous support and enthusiasm. He patiently guided me 

through the problems we encountered, always insisting on the clear presentation of 

ideas. It is a privilege to work with him.

Many thanks are also due to Professor Stanley Reisinan for his support during 

my Ph.D. program. Chapter 6 is a result of our continuing collaboration. I would like 

to thank to Professor Richard A. Haddad for participating in my committee despite 

his extremely busy schedule, accepting the invitation while still with Polytechnic 

University. (Recently, he joined the NJIT community). I would also like to thank 

to Professor Zoran Siveski for his fruitful conversations and readily available help. I 

wish to express my appreciation to Professor Yeheskel Bar-Ness and Professor Dennis 

Karvelas for serving on my committee.

I have cherished the company of Zeynep Toros, who has encouraged and 

supported me on many occasions. Thanks are due to Dr. Adil Benyassine who 

is still a very good friend although he graduated last year. I appreciate my warm 

friendship with Murat Berin. We had nice chats all along. It was a great pleasure to 

work with Michael Meyer during his stay in the USA. 1 would also like to acknowledge 

the members of the Center for Communications and Signal Processing Research: 

Luay Al-Nadi, Ambalavanar Arulambalam, Muzaffer Kanaan, Xueming Lin, Chris 

Peckham, Shahid Rana, Nadir Sezgin, Amit Shah, Zhiqiang Xu, Jin Zhou and many 

others. Thanks to all of you.

I am greatly indebted to Lisa Fitton, not only for reading the manuscript but 

also for being an understanding and caring friend. I would like to thank Brenda 

Walker from the ECE department and Brian White from Computing Services for 

their continuous help through bureaucratic and technical matters.



On the personal side, I would like to thank Guner and Sennet Tazebay, my 

mother and father, for making this all possible through their immeasurable love, 

encouragement and support for years. Finally, I am especially thankful to my wife, 

Aysu Selin, for her love and patience. Her support and encouragement have made 

many difficult things easier and joyful.



TABLE OF C O N TEN TS

Chapter Page

1 IN T R O D U C T IO N .......................................................................................................  1

2 MATHEMATICAL PRELIM IN ARIES.................................................................. 4

2.1 Review of Discrete-Time Signal P ro c e ss in g .................................................  4

2.2 Linear Expansion of Discrete-time S ignals ....................................................  5

2.3 Multirate Filter Banks ......................................................................................  7

2.3.1 Decimation S t a g e ................................................................................... 8

2.3.2 Interpolation S t a g e ................................................................................  9

2.3.3 Multirate Iden ti t ie s ................................................................................  11

2.3.4 Perfect Reconstruction Systems and Paraunitary Filter Banks . 12

3 DESIGN OF FILTER BANKS AND PROGRESSIVE OPTIMALITY . . .  18

3.1 Optimal Filter Bank D esign ..............................................................................  18

3.1.1 Measures of O p t im a li ty ........................................................................  20

3.2 Optimal Design of Two-band Filter B a n k .................................................... 26

3.3 M-Band Filter Bank D esign..............................................................................  31

3.4 Tree-Structured Filter B a n k s ...........................................................................  47

3.5 Progressive O p t im a l i ty ......................................................................................  51

3.6 A Note on Wavelets ............................................................................................ 65

3.7 Remarks on Image C od ing .................................................................................  66

4 ADAPTIVE FILTER B A N K S .................................................................................  69

4.1 Best Basis Functions S election .........................................................................  69

4.2 Adaptive Subband Tree-Structuring A lg o r i th m .........................................  71

4.3 Energy Compaction-Based Tree-Structuring ..............................................  77

4.4 Adaptation of the Tree Structure and Its Significance..............................  79

4.5 Transition B a n d w id th s ......................................................................................  84

ix



TABLE OF CO N TEN TS
(continued)

C hapter Page

4.6 A Flexible Tiling of the Time-Frequency P l a n e .......................................  85

5 INTERFERENCE EXCISION IN DSSS COMMUNICATIONS SYSTEMS 89

5.1 Interference Exciser-Based DSSS System M o d e l .......................................  90

5.2 Narrowband Interference Excision Problem in DSSS Communications 92

5.3 Linear Predictive Filtering-Based Excision..................................................  93

5.3.1 Performance Analysis of a Linear Prediction Exciser-Based
DSSS Receiver.....................................................................................  96

5.3.2 SNIR Improvement of an Exciser-based DSSS Receiver.............  97

5.4 Transform Domain-Based Excis ion ...............................................................  98

5.4.1 Fixed Transform-Based Excisers ........................................................  98

5.4.2 Uniform M-Band Filter Bank Case ................................................  100

5.4.3 Adaptive Subband Transform-Based Excision .............................. 101

5.4.4 Analysis of Adaptive Filter Bank-Based Interference Exciser . 102

5.4.5 Performance Analysis of a Transform Domain Exciser-Based
DSSS Receiver.....................................................................................  106

5.5 Cosine-Modulated Binomial-Gaussian Filter-Based E x c is io n ...............  108

5.6 Adaptive Time-Frequency Domain Exciser ...............................................  110

5.6.1 Motivation and Description of ATF A lgorithm .............................  110

5.6.2 Performance of ATF under Time-Localized Wide-band Gaussian
Interference..........................................................................................  112

5.7 Performance Evaluation of Interference Excision T echniques ...............  112

6 TIME-FREQUENCY ANALYSIS OF BIOLOGICAL SIGNALS................... 124

6.1 Heart Rate V ariability ......................................................................................  125

6.2 Linkages of IIRV with Autonomic Nervous System and Respiration . . 127

x



TABLE OF CO NTENTS
(continued)

Chapter Page

6.3 Data Collection ..................................................................................................  127

6.4 Power Spectral Analysis and STFT of H R V ............................................ 129

6.5 Adaptive Time-Frequency Analysis of HRV using Respiration Reference 130

7 CONCLUSIONS ..........................................................................................................  138

APPENDIX A SUBBAND IMAGE CODING TEST RESULTS....................  140

APPENDIX B DERIVATIONS FOR TH E MEAN AND THE VARIANCE
VALUES OF THE DECISION VARIA BLE................................................. 146

REFERENCES ..................................................................................................................  155



LIST OF TABLES

Table Page

3.1 Number of degrees of freedom for the given structure along with Plt-
constraints and number of p a ram e te rs ..........................................................  31

3.2 32-Tap, linear phase four-band PR-QMF filter bank solution for minimum
time-frequency localization (the first 16-taps are shown)........................... 46

3.3 Time and frequency localizations of hierarchical filter banks displayed in
Figures 3.24, 3.25, 3.26 and 3.27.......................................................................  64



LIST OF FIGURES

Figure Page

2.1 Uniform M-band analysis/synthesis filter bank..................................................  8

2.2 The decimation operation: an anti-aliasing filter and the down-sampler. . 8

2.3 (a) Filtered signal at fast clock rate, (b) signal spectrum occupying |  of
full band at fast clock rate, /.,, (c) down-sampled signal at slow clock 
rate, (d) spectrum of signal down-sampled by 4........................................... 9

2.4 The interpolation operation: the up-sampler and anti-imaging filter. . . .  10

2.5 (a) Input x(n)  in the time domain, (b) input A'(eJW) in the frequency
domain, (c) up-sampled signal y(n)  in the time domain for M  — 4, (d) 
up-sampled signal Y(e^w) in the frequency domain for M — 4................  10

2.6 Down-sampler and up-sampler c a sc a d e d ...........................................................  11

2.7 Down-sampler and up-sampler cascade operation: (a) input x{n)  in the
time domain, (b) input X(e^w) in the frequency domain, (c) output 
v(n)  in the time domain, (d) output V ( e ^ )  in the frequency domain. . 12

2.8 Equivalent structures.................................................................................................  13

2.9 (a) 2-band filter bank (b) overlapping magnitude functions for analysis
filters.........................................................................................................................  14

3.1 The time-frequency localizations of possible regular unitary two-band
QMFs for the 4-tap case along with some of the PR-QMFs known in 
the literature........................................................................................................... 19

3.2 The time-frequency localizations of possible regular unitary two-band
QMFs for the 6-tap case, along with some of the PR-QMFs known in
the literature........................................................................................................... 20

3.3 The time-frequency localizations of possible regular unitary two-band
QMFs for the 8-tap case, along with some of the PR-QMFs known in
the literature........................................................................................................... 21

3.4 Two-band, 8-tap optimal PR-QMF solutions for the maximum energy
compaction criterion: (a) time functions, (b) magnitude responses. . . . 32

3.5 Two-band, 8-tap optimal PR-QMF solutions for the minimum stop-band
energy criterion: (a) time functions, (b) magnitude responses................. 33

x i i i



LIST OF FIGURES
(continued)

Figure Page

3.6 Two-band, 8-ta.p optimal PR-QMF solutions for the minimumstop-band
energy criterion: (a) time functions, (b) magnitude responses................. 34

3.7 Two-band, 8-ta,p optimal PR-QMF solutions for the minimum time local
ization criterion: (a) time functions, (b) magnitude responses................. 35

3.8 Two-band, 8-tap optima] PR-QMF solutions for the minimum frequency
localization criterion: (a) time functions, (b) magnitude responses. . . .  36

3.9 Two-band, 8-tap optimal PR-QMF solutions for the minimum joint time-
frequency localization criterion: (a) time functions, (b) magnitude 
responses..................................................................................................................  3'i

3.10 (a) Maximally decimated uniform M-band PR-QMF filter bank (b)
Generic magnitude response for analysis filters............................................  39

3.11 Magnitude responses for analysis filters of a generic three-band filter bank. 43

3.12 Magnitude response of the 15-tap analysis filters of a three-band PR-
QMF bank with minimum stop-band energy................................................. 44

3.13 Magnitude square response of the 32-tap analysis filters of a four-band
PR-QMF bank with minimum time-frequency localization....................... 46

3.14 Transform coding gain of different length four-band PR-QMF banks. . . .  47

3.15 (a) Three-stage decimation, (b) its equivalent.................................................. 48

3.16 Magnitude square functions of (a) 16-tap low-pass prototype llo(z),  up-
sampled versions (b) II0(z2), (c) JJ0(z‘l), and (d) the equivalent filter 
H{z)  obtained by multistage decimation........................................................ 49

3.17 (b) Four-band two-level binary analysis/synthesis tree structure, ( b)
four-band single-level equivalent analysis filter bank..................................  50

3.18 (a) Three-stage dyadic subband tree decomposition, and its (b) idealized
spectral split............................................................................................................ 52

3.19 Three-stage synthesis dyadic filter bank............................................................  53

3.20 Schematic of optimal direct M-band design problem.....................................  54

3.21 Eight-band regular tree and its ideal frequency decomposition..................  55

X I V



LIST OF FIG URES
(continued)

Figure Page

3.22 Progressive optimization schematic of M-band hierarchical structure. . . .  57

3.23 Flow diagram of progressive optimality algorithm..........................................  59

3.24 Time and frequency functions of the product subband filters in a 2-
level, four-band hierarchical filter bank using an 8-tap Binomial QMF- 
Wavelet filter bank [4] repetitively at any node of the tree.......................  60

3.25 Time and frequency functions of the product subband filters in a 2-level,
four-banc! hierarchical filter bank using a 4-tap Binomial QMF-Wavelet 
filter bank [4] at the first stage, a 16-tap version at the low, and a 4-tap 
version at the high-pass node of the second stage........................................ 61

3.26 The frequency functions of a (a) 6-tap optimal two-band PR-QMF
(optimality is based on the minimization of the joint time-frequency 
spread), (b) 12-tap product subband filters of progressively optimal 
four-band PR-QMF (optimality is based on the progressive optimization 
of the product filters with the minimization of the joint time-frequency
spread)......................................................................................................................  62

3.27 The frequency functions of a (a) 6-tap optimal two-band PR-QMF
(optimality is based on the energy compaction measure), (b) 12-tap 
product subband filters of progressively optimal four-band PR-QMF 
(optimality is based on the progressive optimization of the product 
filters with the energy compaction measure).................................................  63

3.28 10-band 2-D Image codec rate-distortion performance for different filter
combinations...........................................................................................................  67

3.29 64-band 2-D Image codec rate-distortion performance for different filter
combinations...........................................................................................................  68

3.30 Performance comparison of 10-band dyadic and 64-band regular subbcind
codec for same filter combinations..................................................................  68

4.1 Cascaded paraunitary systems..............................................................................  71

4.2 An irregular tree structure (a) its ideal spectral decomposition, (b) tree
structure for (a).....................................................................................................  72

4.3 Six-band irregular hierarchical subband decomposition (a) actual imple
mentation, (b) tree diagram for (a).................................................................. 73

x v



LIST OF FIG URES
(continued)

Figure Page

4.4 Equivalent structure lor Figure 4.3....................................................................... 75

4.5 A simple example lor the energy compaction-based TSA algorithm  78

4.6 Adaptively generated seven-band irregular tree structure for threshold —
1.7, (a) tree diagram, (b) magnitude square functions of analysis filters 
and input signal (sinusoidal +  noise)............................................................... 80

4.7 Subspectra at point A.............................................................................................. 81

4.8 Subspectra at point B .............................................................................................. 82

4.9 Subspectra at point, C .............................................................................................. 82

4.10 Subspectra at point D.............................................................................................. 83

4.11 Adaptively generated five-band irregular tree structure for threshold, =
2.5, (a) tree diagram, (b) magnitude square functions of analysis filters 
and input signal (sinusoidal +  noise)............................................................... 83

4.12 The low-pass branch of /-stage tree structure...................................................  84

4.13 The T F  diagrams of an arbitrary segment of infinite duration signal x(n),
(a) without any transformation, (b) with fixed N xN  block transform 
such as D FT or DCT, and (c) with N x N  ideal spectrogram...................  86

4.14 Three stage dyadic subband tree-structured filter bank (a) tree diagram,
(b) T F  diagram for (a)......................................................................................... 87

4.15 Three stage irregular subband tree-structured filter bank (a) tree*
diagram, (b) T F  diagram for (a)....................................................................... 87

5.1 Block diagram of a DSSS communication system...........................................  90

5.2 The principal steps in DSSS coders/decoders.................................................. 91

5.3 Transversal linear prediction filter.......................................................................  95

5.4 Block diagram of the transform domain-based exciser................................... 99

5.5 Frequency responses of progressively optimized hierarchical 64-band
product filters [0 , 7r]............................................................................................. 101

5.6 Generalized filter bank-based interference exciser...........................................  104

x v i



LIST OF FIGURES
(continued)

Figure Page

5.7 Cosine modulated adaptive Binomial-Gaussian frequency exciser.............. 109

5.8 The flow diagram of the proposed adaptive time-frequency exciser
algorithm.................................................................................................................. I l l

5.9 Bit error rate curves for time localized wideband Gaussian jammer case
( 10% duty cycle, SIR =  —20d B ) ......................................................................  115

5.10 Adaptively structured 7-band unequal bandwidth filter bank.....................  115

5.11 Experimental bit error rate curves for sinusoidal jammer, SIR =  —20dB,
tone frequency — 1.92 rad ................................................................................... 116

5.12 Analytical bit error rate curves for sinusoidal jammer, SIR =  —20dB,
tone frequency =  1.92 rad ................................................................................... 116

5.13 Analytical and simulation BER performance of the ATE-based exciser
for sinusoidal interference (SIR=-20dB, u> =  1.765/W)..............................  117

5.14 Analytical and simulation BER performance of the 128-point FET-based
exciser for sinusoidal interference (SIR.=-20dB, oj =  1.765ra d ) ................  117

5.15 Analytical and simulation BER performance of the 63-point KLT-based
exciser for sinusoidal interference (SIR=-20dB, u  =  1.7657-ad)................ 118

5.16 Analytical and simulation BER performance of the 64-band filter bank-
based exciser for sinusoidal interference (SIR=-20dB, u> - 1.7657-ad). . 118

5.17 Analytical and simulation BER performance of the 5lh order LPEF-based
exciser for sinusoidal interference (SIR=-20dB, u> — 1.7657-ad)................ 119

5.18 Adaptive filter bank structure for narrowband Gaussian jammer case
(center frequency =  | r a d ,  SIR =  — 20d.B, SNR - 0(IB) ...........................  119

5.19 Bit error rate curves for frequency localized narrowband Gaussian jammer
case (center frequency =  | r a d ,  SIR =  —20d B ) ............................................ 120

5.20 Bit error rate curves of adaptive subband transform-based exciser for
different frequency tone jammers (SIR - —20dB,  uq =  0.52 367-ad, uq>
=  1.7657-ad, u>3 =  1.927-ad)................................................................................ 120

5.21 Bit error rate curves of cosine modulated Binomial-Gaussian window-
based exciser for different frequency tone jammers (SIR =  — 2QdB, uq 
=  0 .52367-ad, — 1.7657-ad, 073 =  1.927-ad)................................................  121

x v i i



LIST OF FIG URES
(continued)

Figure Page

5.22 Bit error rate curves of 63-point KLT exciser for different frequency tone
jammers (SIR =  —20dB,  uq =  0 .52367-ad, u>2 =  1.7657-ad, u>3 =  1.92?-ad) 121

5.23 Bit error rate curves of 64-band regular filter bank exciser for different
frequency tone jammers (SIR =  —20dB,  uq =  0.5236rad, u>2 =
1.7657-ad, u>3 =  1.927-a d ) .....................................................................................  122

5.24 Bit error rate curves of 128-point DFT exciser for different frequency tone
jammers (SIR =  —20dB,  uq =  0.52 367-ad, u>2 =  1.7657-ad, u>3 =  1.927-ad) 122

5.25 Bit error rate curves of 128-point DCT exciser for different frequency
tone jammers (SIR =  —20dB,  uq =  0.5236rad, u>2 =  1.7657-ad, u>3 =
1.927-ad)..................................................................................................................  123

5.26 Bit error rate curves of linear prediction filter-based exciser for different
frequency tone jammers (SIR =  —20d/?, uq =  0.52367-ad, u>2 =  
1.765?-ad, u>3 =  1.92?-ad).....................................................................................  123

6.1 The computational steps of the HRV signal: (a) electrocardiographic
signal, (b) R-wave detection, (c) interbeat interval, (d) HR.V signal 
(interpolated IB I)..................................................................................................  126

6.2 (a) The HRV and (b) respiration signals for subject N0719.........................  128

6.3 The power spectral density function of HRV (Subject: N0719)..................  129

6.4 T F  representation of the HRV, employing the STFT with a rectangular
window (length=I50 and overlapping amount=32) (Subject: N0719). . 131

6.5 The generic block diagram of adaptive time-frequency analysis.................. 132

6.6 T F  representation of the HRV without adaptive analysis (length=150
and overlapping amount=32) (Subject: G0719)...........................................  134

6.7 TF representation of the HRV with adaptive analysis (Iength=150 and
overlapping amount=32) (Subject: G0719)...................................................  135

6.8 T F  representation of the HRV without adaptive analysis (length=150
and overlapping amount=32) (Subject: R0719)...........................................  136

6.9 TF representation of the HRV with adaptive analysis (length=150 and
overlapping amount=32) (Subject: R0719).................................................... 137



LIST OF FIGURES
(continued)

Figure Page

A.l Perceptual performance comparison of 10-band dyadic and 64-band 
regular 2-D subband image codecs for given filter combination (bit 
rate =  0.2bits/pixel).............................................................................................  140

A.2 Perceptual performance comparison of 10-band dyadic and 64-band 
regular 2-D subband image codecs for given filter combination (bit 
rate - 0.5bits/pixel).............................................................................................  141

A.3 Perceptual performance comparison of 10-band dyadic and 64-band 
regular 2-D subband image codecs for given filter combination (bit 
rate =  1 b it/pixel)..................................................................................................  142

A.4 Perceptual performance comparison of 10-band dyadic and 64-band 
regular 2-D subband image codecs for given filter combination (bit 
rate =  0.2bits/pixel).............................................................................................  143

A.5 Perceptual performance comparison of 10-band dyadic and 64-band 
regular 2-D subband image codecs for given filter combination (bit 
rate =  0.5bits/pixel).............................................................................................  144

A.6 Perceptual performance comparison of 10-band dyadic and 64-band 
regular 2-D subband image codecs for given filter combination (bit 
rate =  lb its /p ixel) ................................................................................................  145

x i x



C H A PT E R  1 

IN T R O D U C T IO N

The construction of bases for the linear expansion of signals has been extensively 

studied in the signal processing field. The linear expansion of signals aims to 

obtain better representations. Unitary transforms are often used for this purpose, 

as evidenced by the widespread applications of the discrete Fourier transform and 

the discrete cosine transform, among others. Unitary transforms have a number of 

desirable properties such as energy conservation, underlying orthogonality, stability 

and a well developed theory based on linear algebra. Computationally efficient imple

mentations of these transforms have been reported in the literature. The evolution of 

multirate digital signal processing has the tools for a better understanding of discrete 

signals processed at different resolut ions. The multirate filter banks still continue to 

evolve in its new extensions, design procedures, and applications. Multirate filter 

banks are the primary consideration of this study.

Multirate filter banks aim to decompose signals into their subband components. 

Here, linear, time-invariant, usually finite-impulse response filters are employed. The 

first perfect reconstruction filter banks were derived for two-bancl systems by Smith 

and Barnwell [43][44]. The M-band solutions immediately followed this initial design 

[53][52][57][56]. Daubechies established the link between discrete-time perfect recon

struction filter banks and wavelets [11]. She basically has shown that these two 

theories merge in the limit. The linkages and distinctions of discrete-time multirate 

filter banks and continuous-time wavelets are well understood in the engineering 

community [4][2].

The intent of this dissertation is to demonstrate the potential benefits of 

multirate filter banks. A new method is presented on optimal design of perfect 

reconstruction filter banks. Adaptive filter banks are investigated and applied to

1
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the spread spectrum communication scenarios. The performance improvements and 

their theoretical justification are highlighted. The hierarchical subband decompo

sition of a predefined signal for its feature extraction is questioned. We also extend 

this philosophy to the problem of how to extract relevant features of a particular 

biological signal. The improvements can be drastic if the problem at hand can be 

simplified, unified, and better understood. In fact, understanding the multiresolution 

signal decomposition is the primary objective of this dissertation aiming to explore 

and apply the existing theories and develop new insights.

O utline and Contribution of D issertation

Chapter 2 develops the background material required for the rest of the thesis. 

Discrete-time and multirate signal processing are briefly reviewed. We also cover 

the key structures for perfect reconstruction analysis/synthesis systems. Chapter 3 

explores the optimal design of two-band and M-band filter banks. Several optimality 

criteria are presented along with design examples. The key results of M-band 

filter bank design theory are extended to a new design methodology. We present 

a new method for the optimal design of M-band hierarchical filters and show the 

resulting performance improvements in subband image coding. In chapter 4, we 

discuss the adaptive subband transforms. The idea of an optimal subband tree 

structuring concept is revisited and algorithms for this purpose are improved. In 

chapter 5 we look at the interference excision problem in direct sequence spread 

spectrum communication systems. In this chapter we propose the application of 

adaptive subband transforms to the interference rejection problem, along with other 

conventional techniques. The important features of jamming signals, such as time or 

frequency localization properties, are assessed by pre-processing of the received signal 

either in the time domain or in the frequency domain. The practical solutions to 

the transform domain interference excision are also discussed. We derive analytical



performance measures for an exciscr-based DSSS receiver and compare the analytical 

performance results with the computer simulation results. The robustness of different 

competing excision techniques is also examined in this chapter. Chapter 6 moves to 

a totally different application area of time-frequency analysis. The major motivation 

here is to improve time-frequency representations of non-stationary biological signals 

by utilizing the decomposition tools developed earlier in the dissertation. It is shown 

that the fundamental concepts proposed are also still valid for this case. A signal- 

adaptive analysis method is presented. We show in this dissertation that it is possible 

to improve the performance of time-frequency representation techniques with the 

proper treatm ent of the signal at hand in most of the cases considered.



C H A P T E R  2 

M A T H E M A T IC A L  P R E L I M I N A R I E S

In order to establish a common ground, we shall review the basic material of multires

olution signal processing [4][55][L7].

The mathematical notation and terminology for later chapters are also 

explained in this chapter. The details of fundamentals will not be repeated since 

they are extensively provided in the above references.

2.1 R e v ie w  of D is c re te -T im e  Signal P ro c e ss in g  

A discrete-time signal is often described as x(n)  where n £ Z  (time index). The 

signal x(n)  is an ordered sequence of numbers that frequently results from sampling 

a continuous-time signal x(t).  We will particularly consider linear, causal and time- 

invariant systems throughout this work [37]. The output of such a system corre

sponding to an input x(n)  is defined by the convolution sum as

V(n ) =  k ) = *(«)*/*(«), (2.1)
fc

where h(n)  is the impulse response of the discrete-time system. The two-sided Z-  

transform of x(n)  is defined by [37]

CO

X( z )  =  £  x{n) z~”. (2.2)
71=  — OO

The set of values for which the sum converges is known as the region of convergence. 

The one-sided Z-transform is of primary interest for the causal systems considered 

in this work. The discrete-time Fourier transform (DTFT) of x(n)  is defined as

OO

X ( e n  = £  x ( n ) e - ^ \  (2.3)
n = —oo

and the inverse transform is given by

4
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*(")  = ^  J \ x ( e ^ ) c j- n. (2.4)

The D TFT is invertible whenever it is convergent. The discrete Fourier transform is 

obtained from D TFT by sampling the latter at N  equally spaced points on the unit 

circle of the Z-domain as:

X ( k )  = X ( c n  . (2.5)

For finite-length signals the DFT is defined as [37]

N - l
X ( k )  =  ^ 2  x(n)e~^ N . (2.6)

n = 0

Based on these definitions, Eq.(2.1) can be rewritten in the Z-dornain as

Y( z )  =  I Hz ) X( z ) ,  (2.7)

and in the frequency domain as

Y( e j“) = X{e]UJ). (2.8)

According to Parseval’s theorem,

00  1 r 2ir

Y2 h(n)9' {n)  =  —  /  I I ( ) G*(eJU' )f/u>. (2.9)
27T J o

2.2 Linear Expansion of D iscrete-tim e Signals

The linear expansion of discrete-time signals is the core of research problems dealt 

with in this dissertation. The choice of basis functions emphasized in this work are 

required to have two main properties, namely: (i) completeness and (ii) orthonor

mality. This section and the following sections will revisit different linear expansion 

techniques given in the literature.

In conventional block-transform processing, the signal is divided into independent
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blocks of A-samples. In a vector-matrix representation, let any arbitrary AMength 

signal block be denoted as

— [;,;o i #i 5 • • • i ;*’yv-i]i 

and the corresponding spectral (transform) vector be

V T  =  [ >h  , V l , • • •  , X/at-i]-

( 2 . 1 0 )

( 2 . 1 1 )

The rows of a real unitary transform matrix A are called the basis functions and are 

denoted as am (0 <  m  <  N  — 1). The forward and inverse transforms are expressed

as

y =  A x  =

« 0 0 «0 1 ( l O ( N - l ) •i'o

f l i o «1 1 a q / v - i ) . r ,

_ « ( N - 1)0 a { N - 1)1 1 .

( 2 . 1 2 )

and

x = A ~ ly = A r y , (2.13)

where A -1 =  A 7 . Any unitary N x N  transform matrix will satisfy the above 

equations. 'Phis naturally highlights a considerable freedom in the choice of basis 

functions. It should be recognized that the applications might impose additional 

constraints on basis selection.

The conventional block transforms provide a fixed tiling of the time-frequency 

plane. Each basis function in the transform matrix is represented by a time-frequency 

tile. The size of the transform is the limiting factor on the resolution and number 

of discrete tiles. Hence, a discrete-time orthogonal transform projects a finite length 

signal onto its time-frequency tiles. The tile shapes and sizes may be uniform 

or arbitrary. If the tiling is done input dependant then the proper analysis tool 

is obtained over the fixed transforms. The construction of such schemes will be 

discussed in Chapter 4.



In signal compression application of transforms, the input signal is transformed 

into spectral coefficients which arc then quantized, encoded and transmitted. The 

receiver performs the inverse operations for signal reconstruction. If the input signal 

is highly correlated, a valuable orthogonal transformation is expected to provide 

perfectly decorrelated or less correlated transform coefficients. Then, the quanti

zation becomes quite efficient [26].

The discrete cosine transform (DCT) and DPT have been extensively studied 

and used in many 1-D and 2-D signal processing applications. Computationally, 

efficient implementations of these transforms exist. The Karhunen-Loeve transform 

(KLT) is an optimal method for perfectly decorrelating the coefficients of a stationary 

random process. Hence, it is a signal-dependent transform. The KLT is not used in 

practice, since the calculation of the transform matrix can be extremely complicated. 

The decorrelating properties of unitary block transforms have been utilized in speech, 

video compression, and many other signal processing and communications problems.

2.3 M ultirate Filter Banks

The multirate filter bank is another popular method for projecting an input signal 

onto its basis functions. It decomposes the input signal into its individual subband 

spectra using a bank of analysis filters {H0(z) , H\{z)  , . . .  , / /  a/-i (•?))• Figure 2.1 

displays a maximally decimated (critically sampled) M-band multirate filter bank. 

Each subband filter occupies n / M  of full bandwidth. In other words, the full band 

signal is band-limited to a slower sampling rate. Naturally, this redundancy can be 

eliminated by down-sampling the sequence by the same rate [ ” 55]. One in 

every M  samples is retained by the downsampler of rate M . For the time-being we 

do not discuss subband coding but instead we will focus on the decimated outputs. 

T1 lese decimated outputs can be considered as the subband transform coefficients. 

Reconstruction of the signal is achieved by the up-sampling of the decimated subband

10
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Coder

VM Coder

AMCoder

Synthesis FiltersA nalysis Filters

F ig u re  2.1 Uniform M-band analysis/synthesis filter bank.

x(n)
h{n)

v(n) I y{n)
V M A  >

M

F ig u re  2.2 The decimation operation: an anti-aliasing filter and the down-sampler.

signals and filtering by the synthesis filters (G'c)(;?) , G\{z)  , . . .  , Gm - \ { z )). Then, 

these interpolated outputs are summed together as the reconstructed signal.

2.3.1 D e c im a t io n  S tag e

A deciinator generally consists of an anti-aliasing filter {//.(?v)} followed by a down- 

sampler of rate M , as shown in Figure 2.2. Assuming the use of an FIR. filter, the 

signal at the output of the filter is given by

v (n ) =  h(n) * x(n)  =  ^P/i(&).r(?? — A:), (2.14)
k
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2M 2jr

Figure 2.3 (a) Filtered signal at Fast clock rate, (b) signal spectrum occupying £ 
of full band at fast clock rate, f a, (c) down-sampled signal at slow clock rate, (d) 
spectrum of signal down-sampled by 4.

and the down-sampled signal is

y{n) — v(Mn) .  (2.15)

Figures 2.3(a)-(d) illustrate the time and frequency domain effects of a down- 

sampling operation at the Nyquist rate. Decimation can thus be described as

y(n)  =  ^Th(k)x ( i i M — k). (2.16)
k

It is also easily shown that [4][55]

i M -1
Y(z)  =  TT V ( z l/MW h), W  = e~i2*'M (2.17)

‘ ‘ k=0

I A/_1
or Y(c»*)  =  T7 E  (2.18)

JVJ k=0

2.3.2 Interpolation Stage

An interpolator consists of an up-sampler with the rate of AJ followed by a proper
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F ig u re  2.4 The interpolation operation: the up-sampler and anti-imaging filter.

o 2 3 n

(b)
//(»)

3M n

F ig u re  2.5 (a) Input x(n)  in the time domain, (b) input X (eJUJ) in the frequency 
domain, (c) up-sampled signal y(n)  in the time domain for M  =  4, (d) up-sampled 
signal V’(cJUJ) in the frequency domain for M  = A.

anti-imaging filter g(n),  as shown in Figure 2.4. The up-sampler inserts (M -  1) zeros 

between the sample values and re-iudexes the time scale. The operator is defined by

The up-sampling operation stretches the signal in the time domain while 

compressing it in the frequency domain. Figures 2.5(a)-(d) illustrate the time and 

frequency domain effects of the up-sampling operation. Then, the output signal z(n)
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X  (n)
M

y(n)
li \ M

v ( n )

f s I, > 
M f S

F ig u re  2.6 Down-sampler and up-sampler cascaded

is obtained by convolving y(n)  with the interpolation (anti-imaging) filter g(n)  as

*(” ) =  ~  Mk) ,  (2.20)
k

and essentially with

Y{z)  =  X { s M) , Y{eJ“) =  X { e JujM). (2.2J)

2 .3 .3  M u l t i r a t e  I d e n t i t i e s

(a) Down-sampler/Up-sampler Cascaded: If we position the down-sampler and the 

up-sampler back-to-back as shown in Figure 2.6, the following relationship is obtained 

as

x(n) n =  0, ±A/, ± 2 M , ...
v (? i )  = ( 2 .2 2 )0 otherwise.

In this structure, down-sampling retains every M lh sample while up-sampling 

compresses y(n)  in frequency and inserts (M — 1) zeros between its sample values in 

the time domain. In the transform domain,

I M - l

V ( - )  =  77 E  M M " )
1U k=0

or V { e J UJ )

, M - l

M

(2.23)

(2.24)
k=0

where W  = c~i~M, It is observed that V/ (eJU') is simply the sum of M  replicas of 

X ( e Ju') spaced by apart. Figure 2.7 displays the effects of a down-sampler/up- 

sampler cascade in the frequency domain. In particular, Figure 2.7(d) illustrates
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M 2M0 ii

X(c>“

2tt
(b)

v(n

O M ‘ « H  L»>-
i 2M0 M n 27T

F ig u re  2 .7  Down-sampler and up-sampler cascade operation: (a) input x(n)  in the 
time domain, (b) input X ( e ^ )  in the frequency domain, (c) output v(n)  in the time 
domain, (d) output F (eJ“ ) in the frequency domain.

both aliasing and imaging effects.

(b) Equivalent Structures: The equivalences of two multirate operator combinations 

given in Figure 2.8 are straightforward. Transfer functions can be moved across 

samplers and they become very useful for polyphase representation of multirate 

systems [4].

2 .3.4  P e r f e c t  R e c o n s t ru c t io n  S y s te m s  a n d  P a r a u n i t a r y  F i l t e r  B a n k s

In this section we will briefly discuss perfect reconstruction systems where the signal 

at the output of the system is a perfect replica of the input. Most of the material 

presented concerns the perfect reconstruction property. Its illustration is particularly 

simple for the case of a two-band filter bank (Figure 2.9). The input signal x(n.) is
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G { zG(~-3*

F ig u re  2.8 Equivalent, structures.

first filtered by two filters Jlo(z) and IIi(z),  typically lowpass and high-pass filters, 

respectively. Each subband signal [;('„,(/;)] is therefore limited to a bandwidth of 

approximately 7t/2. Therefore, they can be down-sampled by a factor of 2. At

this point we exclude any processing after the analysis. The subband signals yo(n)

and yi{n)  are independently passed through a 2-fold up-sampler. The up-sampler 

output signals v 0[n) and V \ ( n )  are then passed through the synthesis filters [F»'0(~) , 

Gi{z)\  and summed together to yield the output signal x(n).  If the system is perfect

reconstruction (PR), then it satisfies the property x{n.) =  cx(n — n0), where c is a

constant and rtu is a proper integer delay. From Figure 2.9,

M(~~) =  I M z ) X ( z )

AM-') =  l h ( z ) X( z ) .  (2.25)

The outputs of the down-samplers (from Eq.(2.17), M=2) are

Yo{z) =  ^[A'o(s1/2) +  A M - ^ 1/2)]

*i(s) =  i[A ',(*1/2) +  A M - z 1/2)]. (2 .26)

Note tha t the second terms in Eq.(2.26) represent aliasing. These equations can be 

written in a matrix form as:

' Yo( zY 1 ' / / o ( ~ 1/2) H o ( - z ' /2Y ' X ( z ' t ' )

. Y ( z ) .
— 2 J h ( z G i ) I -h i - z ' / * )
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*(71.) i’(7i

(a)

7T
•> 7r UJ
(b)

F ig u re  2.9 (a) 2-band filter bank (b) overlapping magnitude functions for analysis 
filters.
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After the up-sampling the subband signals are expressed as

v i M  =  =  i[.v„<*) +  * „ (- .- )]

and the reconstructed signal is obtained as

A'(*) =  Gu(z)Vu(z) + Chi z j V, ^ ) .  

Rearranging Eq.(2.29), we have

X{ z )  = \ [ l H z ) G , { z )  + lh{z )Ch{z) \X{z)

+ l- [ H0{ - z ) G 0{ z ) ^  l h { - z ) G l{ z ) \ X{ - z ) .  (2.30)

This relationship can be rewritten in a matrix form as 

X( z )  = l- [ G 0{z) G ^ z ) )
-Iio(z) J M - z Y ' X{z)  ■

(2.31)

H/ict1)

where H,,ic(~) is called the alias component (AC) matrix [4][55].

In many signal processing applications, FIR filters are desirable in the filter 

bank structure. In practice, the choice of FIR filters causes a degree of aliasing. 

Even though aliasing can be eliminated by the proper design (or choice) of Gq(z ) 

and G’i(z) severe amplitude and phase distortion might still prevent perfect recon

struction [10]. It was first shown by Smith and Barnwell that all the three distortions, 

namely aliasing, amplitude and phase can be eliminated and a two-band perfect 

reconstruction (PR) quadrature mirror filter (QMF) can be obtained [43]. We can 

rewrite Eq.(2.30) as

X( z )  =  l \ z ) X ( z )  + S ( z ) X ( - z )  (2.32)

where T(z)  is the transfer or distortion function and S'(.z) is the aliasing function. 

Therefore, in order to have a perfect reconstruction system we must (a) eliminate
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aliasing, and (b) avoid magnitude and phase distortion. Next, we shall elaborate this 

statement further.

(a) A lias C ancellation

We can obtain an alias-free two-band filter bank if and only if

S(z) =  / /0( - z ) G u(z) +  / / 1( - z ) G 1(z) =  0. (2.33)

The analysis and synthesis filters are chosen such that Eq.(2.33) is forced to zero.

Given H q{z ) and Hi(z) ,  we can choose

G0(z) = J / , ( - z ) ,  G ^ z )  = - H o ( - z )  (2.34)

Even though the analysis filters create aliasing components, the synthesis filters are 

chosen in such a way that the alias components are cancelled. Obviously, this choice 

still does not guarantee a perfect reconstruction system.

(b) M agnitude and Phase D istortions

Being constrained by Eq.(2.33), the two-band filter bank is alias-free. Then, from 

Ec,.(2.32),

X ( z )  = T( z ) X( z ) ,  (2.35)

where T( z )  is called the transfer (or distortion) function. On the unit circle,

X ( e jw) =  T(eju,)X(ejw), (2.36)

and the system suffers from magnitude and a phase distortion if T(z)  ^  cz~"° , (n0 

is an integer). In other words, if T( z )  is not all-pass, amplitude distortion occurs 

and similarly if T( z )  is not linear phase then phase distortion occurs.

A filter bank system satisfies perfect reconstruction if and only if all these

distortions are cancelled, and then

A V " )  =  cz~n°X{z) ,  (2.37)
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for all X(z). Therefore, from Eq.(2.31), we have the unique PR. choice for synthesis 

filters as
■<?«,(*)] _  2z ~no [ " > ( - - )  1

Gi  (z)  _ d e t [ HAC(z)]  ’ ^"'38^

where dc.t.\R .\c(z )\ =  Ha{z) I l \ (  — z)  — I1q( —z ) U \ ( z ). For this case, the only possi

bility for PR is to find analysis filters which have

det [HAC(z)} c e R. (2.39)

In special cases, PR filter banks possess lossless or a paraunitary condition. A 

causal transfer matrix with the property of

H H  =  M l  {M e Z ) (2.40)

is called paraunitary if all of its entries are stable. The paraunitary property is a. 

sufficient condition for an orthonormal (PR) filter bank but it is obviously not a 

necessary condition. Paraunitary filter banks have been extensively studied in [54]. 

This property is a natural extension of PR-QMF banks. 'Phis property is a natural 

extension of PR-QM F banks. A consequence of a paraunitary transfer matrix is that 

the system is power complementary, meaning that

M - l

lh(z)I-Ik( z - ' )  = M,
A-=0

or equivalently,
M  - I

T .
k=0

JUMI2 =  M Vox

(2.41)

(2.42)



C H A PTER  3

D E SIG N  OF FILTER B A N K S A N D  PRO G RESSIVE O PTIM ALITY

In this chapter we address the optimal design of finite impulse response (FIR) filter 

banks. The optimal choice of filter coefficients in the filter bank design is the ultimate 

question with underlying applications. Our aim is to obtain the best filter coefficients 

so that a certain objective criterion is met. Next, we shall discuss the optimal filter 

bank design criteria. In the following sections, we will present two-band and M-band 

design concepts that have been well matured in the literature [4][55] and give our 

design example. Finally, we shall introduce the concept of progressive optimization, 

where M-band design becomes particularly less complicated than direct M-band 

design.

3.1 Optim al Filter Bank Design

Filter banks are widely used in image compression, high-fidelity audio compression, 

adaptive filtering, frequency-time multiplexing, and communications. The choice 

of filter coefficients is dictated by the objectives of the specific application. The 

desired objectives of a design are normally minimized or maximized as appropriate, 

while certain constraints have to be simultaneously satisfied. The nature of the 

optimization in this design problem is non-linear and, as we shall see, there are 

an infinite number of solutions in the solution space. In the optimization step the 

number of degrees of freedom (D)  is the key factor and defined for an M-band PR- 

QMF filter bank as:
M

D =  T , N k - C P n - L ,  (3.1)
k=i

where

Nk =  number of parameters for k th dimension,

18
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M  =  dimensionality of the system (number of different filters),

Cpr  =  number of PR constraints,

L  =  number of degrees of freedom lost by additional specifications imposed 

on system system design.

In a general case, we can visualize each filter solution existing on one surface of an 

M-dimensional hyper-cube. Each filter is assumed to have N-tap FIR coefficients. 

The problem is to find an optimal set of filters such that an objective design criterion 

is met. Usually, there are certain symmetry and mirror image properties imposed 

on the filter bank structure. Therefore, the dimensionality of the system and 

is structure-dependent and is reduced from maximum M-dimension and Y,k A\. 

parameters. We shall better clarify this statement during the design examples in 

the following sections. Underdetermined PR systems, with D > 0, are necessary 

for optimization; otherwise, a range of solutions do not exist. Most of the PR-QMF 

banks possess the property of being an underdetermined system. Figures 3.1,

2 .0 -

£ 1 .4 -

•  Possible 4^ao unitary PH-QMF
solutions m tns desireo region of the 
tims-fnsQutncy localization oians 

B 4-tso Binomial QMF-waveiet Uttar 
A 4-tap multfpliansss filter

t . O -

0.2 0.3 0 .4 0 .5 0.6
Tima localization

Figure 3.1 The time-frequency localizations of possible regular unitary two-band 
QMFs for the 4-tap case along with some of the PR-QMFs known in the literature.

3.2, and 3.3 display some of the possible 4-, G- and 8-tap filter bank with desirable



20

1 . 5 -

,, •  Posimta 6-tap unitary PR-QMF
solutions in tna dasired region ot tna

1 . 4 - tima-lreouancy localization plana
at 6-tap Binomial Q M F-w tvaltt ttttar
A 6-tao multillartaaa fiftar

!  1 . 3 - _ □  6-lao mostregular w avalat flltar
0  6-tao optimal frequaney locallzad PR filtar

1

S ’ ■ I l k '  '  ••
I
a  i . i -u.

W h . -Sm , m , * *

1 . 0 - ' •I'

‘ ‘ o *
0 . 9 -

0 .2  0 .4  0 .6  0 .8  1 .0  1 .2  1.4
Tims tocsszaaon

F ig u re  3.2 The time-frequency localizations of possible regular unitary two-band 
QMFs for the 6-tap case, along with some of the PR-QMFs known in the literature.

time-frequency properties for compression applications. Each point in these figures 

represents a PR-QMF solution and its associated time and frequency localizations.

This section emphasizes certain subsets of the solution space which meet the 

requirements of the selected design criteria. We will discuss a few measures of 

practical significance in the optimal design of PR-QMF banks. The optimality 

criterion might be based on a single design measure or a set of measures [8]. We 

will briefly review several known optimality measures in the next section [4][1]. A 

two-band PR-QMF will serve as the common ground for defining and emphasizing 

the significance of these design measures.

3 .1 .1  M e a su re s  o f  O p t im a l i ty

Stopband M inim ization (Passband Maximization)

PR-QM F banks are expected to have non-overlapping pass-bands. In practice, in
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the pass-band region of analysis filter / / / ( - ) ,  all other analysis filters have their stop

bands leakages. An objective function for stopband minimization for a two-band 

PR-QM F bank is naturally defined as

cf>s = r  \H0( e n \ 2 + I 1”' |#i(<
J  f + t  Jo

j * \ \ 2 (3.2)

where e is some non-ideal transition bandwidth factor. Similarly, for the general case 

of an M-band PR-QMF bank,

M-i r
i*  =  £  /  M ( o i 2. (3 .3)

1= q ^ s t o p —band

An objective function for pass-band maximization for a two-band PR-QMF is 

similarly defined as

7+e
4  = P  ' |H o (C “') |2 + [ '  |H , ( e " ) |2.

Jo Jl -1

For the general case of an M-band PR-QMF bank.

( 3 . 4 )
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* p = £  I  .«* W e ju)\2-
I m  ^  nnstst — hnrt.il

M - l

(3.5)

In PR-QMF bank structures, minimization of <fra is thus a complementary 

condition to the maximization of <f>p. Since paraunitary systems require the analysis 

filters to be power complementary, sufficiently small stop-band responses force having 

pass-band responses \Hi(eJW)\ very close to unity. If one objective function is 

optimized then the goodness of the other is simultaneously assumed.

Energy Com paction

The energy compaction measure or gain of transform coding over PCM is a desired 

performance criterion for signal compression techniques. This measure is derived 

from the rate-distortion theory and its complete derivation can be found in Ref. 

[26]. Basically, it compares the mean square reconstruction error of for different 

signal coding schemes with that of pulse code modulation (PCM). It is assumed that 

each signal is used in conjunction with pdf-optimized quantizers, and optimal bit 

allocation is performed [26]. The energy compaction measure for an M-band unitary 

transform is written by

where R xx is the covariance matrix of a zero-mean input. For the two-band case,

(3.6)

This is immediately recognized as the ratio of the arithmetic mean of the energies, 

{ c r y } ,  in each subband to their geometric mean. The output energy of a prototype 

low-pass filter h[ = [ h0 , h\ , . . .  , /i/v-i] <-an be expressed in a matrix form as

(3.7)

let o f ,  crfi be the variances of low-pass and high-pass outputs, respectively. For a
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paraunitary transformation, it is easily shown that

^  = \ W l +  o h )- (3-8)

The energy compaction measure of a two-band PR-QMF bank is thus expressed as

r  LM  + ° h )  .

TC W W *  W I W '  { }

The energy compaction measure shapes the frequency responses of the filter responses 

for the given input spectrum. It is widely used in evaluating the performance of block 

and subband transforms [4].

A liasing Energy

The paraunitary or lossless signal decomposition techniques completely cancel the 

aliasing from analysis through synthesis stages. In practice, however, the quanti

zation or discarding of some of the subbands prevents perfect alias cancellation, and 

non-cancellcd aliasing signal components might exist in the reconstructed signal. The 

impact of non-cancelled aliasing has been observed in some applications [50][31].

The aliasing energy components at the reconstructed low-pass filter output, in 

Figure 2.9, is expressed as [4][3]:

a *LA = \  F \2s^ eji" +w])\H^ iu+,r))\2̂  (3-i °)

where S ^ e ^ )  is the power spectral density (PSD) function of the input signal. The 

time domain version of Eq.(3.10) is given by [4]

° I a =  ) > W ] / U A ) ,  (3.11)
k

where Rxx is the auto-correlation sequence of the input and p(n)  is the autocor

relation sequence of the filter h{n),  defined as

p(ii) — h(n)  * h( —n).  (3.12)
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The optimal solution based on this measure minimizes the aliasing energy 

component of the low-pass branch. This measure hence complements the energy 

compaction measure. In the latter approach, the filter spectrum has consid

erable flatness but the spill-over of the subband energies is not directly controlled. 

Therefore, the aliasing energy measure carefully monitors the aliasing component of 

the output energy. The non-aliasing energy ratio (NER) was also proposed in Ref. 

[3] as a result of this measure.

Zero-M ean Band-Pass and High-Pass Filters

Many signal sources have a significant spectral component at zero frequency. 

Therefore, an efficient transform technique must be able to represent, the DC 

component within only one basis function. The zero-mean constraint for the band

pass and high-pass analysis filters ([/?, , h2 , . . .  , A a  / — j  ]) of an M-band PR-QMF 

bank is expressed as

E /'«(") =  0 > i = 1 , M - l ,  (3.J3)
n

Therefore, the high-pass filter of a two-band PR-QMF satisfy the requirement:

E M » )  =  o.
11

This requirement implies that there must be at least one zero of the low-pass 

prototype quadrature filter IIo(eJU') at u> =  tt.

U ncorrelated Subband Coefficients

The cross-correlation of subband signals is used as an optimization measure of 

filter prototypes. Optimal decorrelation is important if the subband signals are 

processed as independent signals. The Karhunen-Loeve transform is an optimal 

block transform with perfectly uncorrelated transform coefficients for the given 

input statistics. The KLT achieves a diagonal auto-correlation matrix (assuming a 

zero-mean). The cross-correlation of the two-subband signals :ru(n), .r,(n) in Figure
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2.9 is defined as

E[x0(n)x, (n)\  = R UI (0) =  E E /l( 0 ( - l ) ' f i ( n - / ) ] / ? , x(n), Vn. (3.14)
n  I

In Eq.(3.14), snbband signals are considered at the same time index. In the general 

case, the cross-correlations I l m { k )  of the subband signals in different time lags, 

(A; =  0 , 1 ,  . . .  , N) ,  are constrained to be zero. Usually, there is more than one filter 

solution that satisfies the perfect decorrelation condition, R l h {9) =  0 [8]. The one 

tha t optimizes the objective function under this constraint is the desired solution. 

T im e and Frequency Localizations

The time-frequency localization property of signal decomposition techniques is 

another important consideration. While bandwidth compression of the signals 

requires kernels with good localization in frequency, signal domain features demand a 

high degree of freedom in the time domain. The trade-off between time and frequency 

localization is bounded by the uncertainty principle [20]. Let h(n)  <-> JI(?J“) be a 

discrete-time Fourier transform pair:

00 1 /’7T
/ / ( e JW) =  E  h{n) e ' jnuJ^ f { n )  = —  II{eJU/)eJHUJdw. (3.15)

n=—co 27r J~*

By Parseval’s theorem, the energy is

00 I fir
E =  E  l* (» ) |2 =  5 -  /  l « ( C " ) P C .

The time and frequency centers (means) are defined as [20]

n = • | r E 7?'l/' ( n )|2> (d.lO)
— OO

*  =  27 e  (3-17)

Then, the spreads of the function in time and frequency are written as [20]



26

£ - 0 0

a !

For band-pass functions with frequency peaks centered at ±w, the frequency measure 

iu Eq.(3.17) is not suitable. In this case, we are concerned about the spread around 

Co. Therefore, we define frequency spread on [0,7r] rather than [—7T, 7r]. In this case, 

we take [20]

^*uo\U{e^)\>cLo  
i / ; | / / ( e ^ ) | 2 f/ce ’*  = i r* \ Tri7iu,\Cn '\ . (3-20)

, 2 _
±f*\ l [(e>“)\*du;

where n  and a\  remain unchanged. The time and frequency centers and spreads 

defined above can be used as the design criteria. The joint time-frequency localization 

of a discrete-time function is expressed as

J l =  (3.22)

and it is usually minimized in most of the applications [46].

3.2 O ptim al D esign of Two-band Filter Bank

We have laid out the foundations of optimal PR filter bank design. We will proceed 

with a detailed treatment of a generic two-band PR-QMF filter bank, which was 

briefly discussed in section 2.3.5. The output of the two-band filter bank in Figure

2.9 was obtained as
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X( z )  = T( z ) X( z )  + S ( z ) X ( - z ) ,

where T(z)  and S'(z) are transfer (distortion) and aliasing functions, respectively. 

We recall from Eq.(2.3l),

5(^) =  H0( - z ) G 0(z) + H i ( - z ) G 1(z),

T(z)  = H0(z)G0{z) + H ^ G ^ z ) .

Again, note that in order to achieve perfect reconstruction, the following conditions 

are required to he satisfied as

b'(z) =  0 , Vs (3.23)

T[z)  =  c s - no , Vs , (3.24)

where c (c £ II) and n0 (n0 £ Z)  are constants. Eq.(3.24) eliminates the aliasing 

and Eq.(3.24) guarantees a distortionless transfer function. We choose

G0(z) =  // ,(-■ ;) ,  G x{z) = - H o ( - z ) ,  (3.25)

which will perfectly cancel aliasing. Additionally, if we let analysis filters be related 

as [43] [4]

/-/,(-) = s - ( /v- , )/70( - s - 1), (3.26)

where N  is the length of the FIR filter. Then, T(z)  becomes

T( z )  =  i  z - l N- " [ HQ(z)Ho{z- ' )  + Ho{ - z ) l l 0[ - z - ' ) ] .  (3.27)

For this arrangement of the filters, we get perfect reconstruction if and only if

Q i ( z ) =  H i { z ) H i { z ~ { ) +  H i { - z ) l l i ( - z ~ [ ) =  constant, (z =  0, 1) (3.28)
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=  JRi{z) +  R{(—z) — constant (3.29)

where Ri{z)  is the spectral density function of analysis filter I'Ii(z) , (?' =  0,1) and

can be written as

( N - 1)

R ^  + R i i - z )  =  £  [ Mn) z - "  + Pi( n ) ( - z ) - n}
n —- ( N  — I)

( N - l )

=  E  ft(«)[i + ( - i ) r
n = - ( N -  1)

( N - l )
= 2 £  /);(2?i)z- (2n+1) , (3.30)

n= —(yv — 1)

where

Pi{2n) = E  h-i(k)hi[k +  2n) , {i =  0,1). (3.31)
k

Eq.(3.31) implies that autocorrelation of />.,(») has all but one of its even-indexed 

terms equal to zero. Hence, these are the PR constraints as

E  ki(k)hi(k + 2n) = 6(n) , (3.32)
k

with the normalization

( N - l )

E  IM*)|2 = 1. (3.03)
k=0

Essentially, N  has to be a multiple of 2 for PR. The cross-correlation of ho(n) and 

h i (n ) has all even-indexed terms equal to zero:

E  ko(k)hi{k +  2n)  =  0. (3.34)
k

It is also possible to write Eq.(3.32) and (3.34) in the matrix form. First, we define 

the low-pass filter vector as
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Al  =  [ M o )  M i )  .............. M ^ - i )  ••• ]•

The vector ho and its translations by multiples of two form the following analysis 

transformation matrix:

” M 0 )  M l )  M 2 )  ••• h o { N - l )  0 0 0 . . .

0 0 M O )  ••• h o { N - : i )  h0( N  — 2) h0(N -  1) 0 . . .H 0 =

for a paraunitary two-band PR-QMF filter bank we note the following:

1

(3.35)

H 0Hq =  - I  and Hho =
0

(3.30)

where I  is the identity matrix. Similarly, we can write H i  as the matrix with impulse 

responses //.)(/? +  2k).  Next, observe that

H uH f  =  0 (3.37)

H 0Ho +  H / H ’f  =  I.

The following is a summary of the above veetor-matrix equations:

(i) The projection of h0 onto H () has a single non-zero element as a requirement 

of shift orthogonality.

(ii) Eq.(3.38) points out the projection of cross terms between /i0 and h\,  which 

necessarily are zero.

(iii) Eq.(3.38) implies that with choices of Eq.(3.25) and (3.26), we obtain not 

only perfect reconstruction but also a paraunitary system.

Such solutions were first shown by Smith and Barnwell [43]. A prototype / / q(~)
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that, satisfies Eq.(3.32) with above properties results in a two-band PR-QMF bank 

structure with the corresponding four impulse responses:

ho(n) <— ► lfo(z)

/M(n) =  ( - 1  )tN- ' - n'h0( N - l - n )  <— » H x(z) =  z~lN~ " H 0{ - 3 ~ 1)

9 o{n) = ho(N -  1 -  n) «— > G0(z) =  H x( - z )

9\{n ) =  ( ~ l ) " M n ) <— ► G x{z) =  Ha{ - z ) .  (3.39)

D esign Exam ples

The design of a two-band, N-tap PR-QMF bank is a relatively easy problem 

compared to an M-band (M > 2) PR-QMF bank design. Now, as a generic 

structure, we will consider the following impulse responses for N-tap analysis filters 

of a two-band PR-QMF bank:

' / / o ' m h( 1) A(2 ) . l i (N — 1) '

. / / 1. - h { N - l ) h (N  - 2 ) - k { N  -  3) . . /r(0 ) _

where N is a multiple of 2 . The dimensionality of a two-band PR-QMF bank is one 

in this case since H\,  Go, G\ can all be generated from the low-pass prototype /:/0, 

as pointed out in Eq.(3.39). Therefore, the number of PR constraints (without the 

unitary condition) for this structure with N = 21\ is given by

C p r  =  ——  1 =  A' — 1 , ( A ' 6  Z) ,  (3-41)

and the zero-mean condition for the high-pass filter (Ylk{~ l) fc+1/io(A:) =  0 ) implies

another constraint as L = — J. The unitary condition can always be skipped

since the filters can always be normalized after the optimization without loosing 

generality. Hence, we have

’ Ah =  N  = 2* K
< Cpn — y  — 1 =  A — 1 ».

L =  1v /
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T a b le  3.1 Number of degrees of freedom for the given structure along with PR- 
constraints and number of parameters

Filter Length (N) Ah C p r D
2 2 0 1
4 4 1 2
6 6 2 3
10 10 4 5

100 100 49 50
1000 1000 499 500

We can explicitly define the number of degrees of freedom for this structure as

D =  7V| — Cpn — L — A. (3.42)

'fable 3.1 displays the number of degrees of freedom for different length two-band

PR-QMFs. Clearly, D  is a linear function of filter length. Usually, moderate values 

of D  are desired. If D is a small value, then a good solution may not be feasible 

for the given objective criterion. On the other hand, if D is very large, then within 

practical optimization techniques, the local optimum solutions are more likely to be 

reached instead of a global optimum. Also, note that for N  =  2 we obtain the trivial 

solution for a two-band filter bank (e.g. /Y0 =  l~y g- and Il\ =  l~J^' ). Figures 

3.4(a.)-(b) display the time and frequency (magnitude response) functions of 8-tap

PR-QMF solutions for the optimal energy compaction measure. Similarly, another

8-tap solution is given in Figure 3.5 for a stop-hand minimized two-band PR-QMF. 

In Figure 3.6, the aliasing energy minimization is considered. Figures 3.7 and 3.8 

display time- and frequency-localized 8-tap solutions, respectively. Finally, we give 

the joint time-frequency localized 8-tap solution in Figure 3.9.

3.3 M -Band Filter Bank Design

The M-band filter bank with M  equal bandwidth parallel filters tries to achieve
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uniform spectral decomposition. Figure 3.10 shows a, maximally decimated M-band 

filter bank and the generic magnitude responses. The system is a cascade of M- 

band analysis and synthesis stages. Each of the filters is equally spaced in frequency

and has a tt/ M  bandwidth. The two-band PR-QMF bank [M  =  2) is a special

reconstruction conditions is an extension of two-band filter bank analysis and hence 

we shall proceed with the same methodology.

In Figure 3.10(a), the input signal is decomposed into M  subband signals 

k = 0 , J , . . . ,  M  — 1) by the analysis filters. Since the filtered signals have 

an approximately 7r /M  bandwidth, they are down-sampled by M  to obtain y/t(n). 

After analysis filters, each subband signal is given by

and the decimated signals after down-sampling are

i A7 —1

w * )  =  M  £  H i { S ' , M W k ) X ( z x' M W k ) ,  (3.44)
k=0

where / =  0 , 1, . . . , M  — 1 and W  — . The decimated signals can be written

as

case of the M-band filter bank. The generalization of alias cancellation and perfect

X,(z)  = Hi( z )X(z ) (3.43)

V r { z )  =  [VQ(z) Vx{z) . . .  Vm-i (c )] , (3.45)

and the aliasing component matrix for the M-band case is

( 3 .46 )

J I 0{ z W M~l) l I \ ( z W M~l ) . . .

The aliasing component vector for the input signal is given by
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F ig u re  3.10 (a) Maximally decimated uniform M-band PR-QMF filter bank (b) 
Generic magnitude response for analysis filters.
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& ( * )  = [* (* )  X ( * W )  . . .  X m - \ ( z W m ~x) ] . (3.47)

Then, the decimated signals have the following form:

W -'l  =  j f n l c b ' , U)X.AcW-  (3.-18)

The output of the up-samplers are therefore,

A /-1

}-,(*) =  Vi(zM) =  E  H i ( z W k) X ( z W k), (3.49)
k= 0

so that the output signal is

M - 1 j M - 1 M - \

* (* )  =  E  G,(S)VK2) =  77  E  x ( - w k ) E  H i ( z W k)G,(z)
1=0 k= 0 /=0

M - 1

=  E  n (^ )X (zV F fc), (3.50)
k = 0

where

i  A-J-1

7M*) =  77 E  Af/(2M/A')6'f(e). (3.51)
M l=o

The following vector notations will help to establish a vector-matrix form. The vector 

of synthesis filters is

G J (z) =  [ G0(z) G\{z)  . . .  6 'm_ ,(c ) ] ,

and the equivalent filters’ vector is

r r (z) =  [ Tq(z) T\(z) . . .  7 ’M _ , ( s ) ] .  ( 3 . 5 3 )

Therefore, from Eq.(3.51), we notice that

T(z) = H AC(z)Q{z),  (3.54)
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where T(z)  includes the branch filter {Hk(z)Gk{z)}  as well as its ( M  — 1) uniformly 

shifted versions. The presence of shifted versions is clearly due to the down- 

sampling/up-sampling coupling; namely, aliasing. Hence, the output can now be 

written as

A 'M  =  r ( ~ ’ )A,,c(-*)

=  - ^ G 7' ( = ) H ' ' c ( z ) A , c ( i

Clearly, in order to have alias cancellation

' M T 0(z)

(3.55)

T =
0

0

(3.56)

where Tq(z ) is the transfer function of the system. Given that Eq.(3.56) is satisfied, 

if T0(z) is all-pass and it is linear-phase such that 7’()(~) =  cz~k° (c ^  0), then the 

system is free from aliasing, amplitude and phase distortion. Essentially, with the 

above conditions, we have an M-band filter bank with perfect reconstruction.

It was shown in [4][55] that in order to have a paraunitary M-band filter bank 

made up of FIR filters with N-coefficients, the necessary and sufficient condition is

1
M

H a c ( z ) H a c { z )  =  I, (3.57)

where I l Ac{z)  =  H ^ c , ( 2_1), and the subscripted asterisk implies conjugation of the 

coefficients in the matrix. This condition also ensures the power complementary 

property of analysis filters, which is to say

E  I'M6'" =  1. (3.58)

In [4], it is shown that the necessary and sufficient PR conditions for an FIR parau

nitary filter bank with real-valued filter coefficients are as follows:
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$i j (z)  = <— ► ptl(n) =  hi{-n)hj {n) .  (3.59)

Thru,

Pij(Mn) = ^ 2  hi(k)hj(k  +  Mn )  -  S(i -  j)S(n).  (3.60)
fc

In case of i =  j ,  we notice that T u =  //,■ (~— 1)/T(~) is the transfer function of an 

M th band filter and also Hi(z )  is a spectral factor of $,-,(-). Hence, Eq.(3.60) implies 

orthogonality, shift-orthogonality and normalization as

(1) J 2 ll' (k )lld k + M n ) = 0, n ^ O ,  (3.61)
k

(2) J 2  hi(k)hj(k + Mn)  =  0 , i ^ j ,  (3.62)
k

(3) E I M O I 2 =  I. (3.63)
k

Within this framework, we aim to rank the methodologies of the filter bank design 

problem. The complexity of the design problem increases significantly and within 

practical limitations, one may not succeed in obtaining the desired solutions. So 

essent ially, we will restrict our focus on paraunitary M-band systems with symmetries 

that help to reduce the complexity within the practical limits for moderate values

ol M ( M < 150). Obviously, beyond M  > 150, there is not much help either from

theory or from existing technological tools.

D esign Exam ples

In this section, we present the results of applying the discussed M-band design results 

in two cases. The first is a three-band PR-QMF with special symmetry, which will 

be explored next. The second is a linear-phase four-band PR-QMF solution.

(a) Three-Band Case:

The purpose of this example is to show PR-QMFs with an odd number of bands. In 

the general case, it is possible to have a linear-phase M-band solution for M  > 2.
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F ig u re  3.11 Magnitude responses for analysis filters of a generic three-band filter 
bank.

In some cases such as A1 =  3, however, additional features such as linear phase 

related symmetry impose more constraints. It was shown in Ref. [35] that if a filter 

bank has an odd number of bands M,  PR is only possible if (A/ +  l ) /2  bands have 

symmetric impulse responses and (M  — l ) /2  bands have anti-symmetric impulse 

responses. Then, the frequency response \ I I is taken as [55]:

(3.64)

Indeed, Figure 3.11 shows magnitude responses for analysis filters of a generic three- 

band filter bank. It is clear that a bandpass filter can be chosen to be self-symmetric 

with respect to which immediately turns out to be [55]

Ih{z )  =  f ( z 2),

where / ( . )  is a real-valued FIR function. This is not the best symmetry solution, 

but it provides a solution under certain objective criteria. As a consequence of PR
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F ig u re  3.12 Magnitude response of the J 5-tap analysis filters of a three-band PR- 
QMF bank with minimum stop-band energy.

conditions, one can show the filter lengths yields to be multiples of M (which is 3 in 

this case). Utilizing Eq.(3.64) as I l2{z) = H0(—z) , 111(^) =  f { z 2), and with PR 

constraints,

( N - l )

y~) h i ( k ) h i ( k  +  3n) =  8 ( n )  
k=o 

( N - l )  

y :  h i ( k ) h j ( k  +  3n )  = 0 
k=o

and clearly, zero-mean band-pass and high-pass filters bring l.wo more additional 

constraints. Figure 3.12 displays a three-band PR-QMF solution for N — 15. The 

filters are optimized for minimum stop-band energy. 'The synthesis filters of this 

example are simple time reversal of analysis filters. This choice, however, necessitates 

the synthesis filters having the same magnitude response as expected.

(a) F o u r -B a n d  Case:

In this example, we have chosen to impose linear phase and quadrature mirror
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properties on the filter coefficients. Also, each analysis filter has a corresponding 

synthesis filter with a time-reversal relationship. The quadrature mirror and linear 

phase properties significantly reduce the number of variables and PR  constraints. 

The set of analysis filters’ coefficients will serve as the starting point for this example:

' Ho " M O) M i )  •• • M * § * ) M ^ )  • • M i ) M o )  '

H\ M O) M i )  •• • M ^ ) M * ^ )  ■ • M i ) M O)

112 MO) - M i ) • - M ^ 1 ) M ^ ¥ )  • • M i ) - M o )

J l * . . MO) - M U M ^ ¥ )  • • M O - M o ) .

Eq.(3.66) also shows that H2(s) and / / 3(~) have a zero-mean. The dimen

sionality for this case is two, and hence the total number of parameters to be 

optimized is TV. Table 3.2 shows the 32-tap linear phase four-band PR-QM F filter 

bank solution for minimum time-frequency localization. The magnitude responses 

are given in Figure 3.13, respectively. The transform coding gain of a four-band 

PR-QMF bank for different filter lengths is shown in Figure 3.14. The input source 

is assumed to be the A R ( l )  model. As the filter length increases, it is possible to 

obtain an improvement, but as seen in the figure, the gradient of the gain is marginal. 

This fact has been previously observed in image coding experiments.

The exact nature of the constraint reduction is tightly related to the filter inter

relations as well as phase properties. Indeed, general filter banks may be designed 

without paraunitary condition. Paraunitary filter banks, however, ensures useful 

properties along with the perfect reconstruction property. Another design approach 

uses so called cosine modulated filter banks [55], In this case, the set of analysis 

and synthesis filters are all obtained from cosine modulations of a low-pass PR-QMF 

prototype. Although this is a practical approach for large TW, it significantly restricts 

the possible solutions.
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T a b le  3.2 32-Tap, linear phase four-band PR-QMF filter bank solution for minimum 
time-frequency localization (the first 16-taps are shown).

Index H0(z) Ih ( z ) lh{ z ) lh ( z )
1 0.00478209 -0.00011715 -0.00011715 0.00478209
2 0.00011715 -0.00478209 0.00478209 -0.00011715
3 -0.00979620 0.00023988 0.00023988 -0.00979620
4 0.00023988 -0.00979620 0.00979620 -0.00023988
5 -0.02014862 -0.01048618 -0.01048618 -0.02014862
6 0.01048618 0.02014862 -0.02014862 -0.01048618
7 0.03398200 0.02166044 0.02166044 0.03398200
8 0.02166044 0.03398200 -0.03398200 -0.02166044
9 0.02154426 0.04543506 0.04543506 0.02154426
10 -0.04543506 -0.02154426 0.02154426 0.04543506
11 -0.09479339 -0.07508820 -0.07508820 -0.09479339
12 -0.07508820 -0.09479339 0.09479339 0.07508820
13 0.01966555 -0.20568533 -0.20568533 0.01966555
14 0.20568533 -0.01966555 0.01966555 -0.20568533
15 0.39975398 0.52734459 0.52734459 0.39975398
16 0.52734459 0.39975398 -0.39975398 -0.52734459

0.8

■§ 0.6

0 .4

0.2

0 .5 2 .5
frequency

F ig u re  3 .13 Magnitude square response of the 32-tap analysis filters of a four-band 
PR-QM F bank with minimum time-frequency localization.
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F ig u re  3 .14 Transform coding gain of different length four-band PR-QMF banks.

3.4 T r e e - S t r u c tu r e d  F i l t e r  B an k s

Non-uniform filter banks decompose a given spectrum into sub-spectra of different 

bandwidths. In some applications, it is necessary to use such filter banks. Direct 

design of an M-band non-uniform bandwidth PR-QMF design raises difficult practical 

problems. On the other hand, non-uniform filter banks can be easily obtained by 

tree-structures. The two-band filter bank is the building block of tree-structured 

filter banks, although recently it was noticed that three-band may be also incor

porated in order to achieve the desired spectral decomposition [49], Simply, M-band 

is obtained by cascading two-band or three-band filter banks appropriately. Thus the 

product filters will be obtained by proceeding on the decimation stage of a subband 

free structure. Suppose we have the following decimation branch and its equivalent 

structure, as shown in Figure 3.15(a)-(b).The equivalent filter is easily obtained as

H{z) = Hu{z)H0(z2)UQ{z‘i). (3.67)
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11 (=)

F ig u re  3.15 (a) Three-stage decimation, (b) its equivalent.

It is clear from Eq.(3.67) that by successively feeding a prototype low-pass filter 

with its up-sampled version (stretched in frequency), we obtain narrower frequency 

responses. To demonstrate this operation, the magnitude square responses of a 16- 

tap low-pass filter (J]0{z)) of a two-band PR-QMF bank and its up-sampled versions 

are displayed in Figure 3.16.

The binary tree structure is shown in Figure 3.17(a). Here a signal is split 

into two subbands, and after down-sampling, each subband is again split, into two 

band and down-sampled {?/o(») , 2/i(n) , 2/2 (»'»■) , ?/:i(")}- Clearly, the total structure 

is developed from nested two-band PR-QMFs. Suppose the filters { l f 0(z),  G0(~), 

/ / t (~~), G ,(*)}, { I l ‘ (z),  G>(z), / / / (* ) ,  G[{z)} and { / /" (* ) ,  C " (z ) ,  (;['( = )}

satisfy PR  conditions independently and so the overall structure can be also said to 

be PR as well. Figure 3.17(b) shows the equivalent four-band structure. Each filter 

in Figure 3.17(b) is realized as the product filter. Since there is no solution for the 

two-band linear phase PR-QMF, the M-band linear phase configuration can not be 

realized by nested two-band PR-QMFs.
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F ig u r e  3 .16  Magnitude square functions of (a) 16-tap low-pass prototype IIq(z ), up
sampled versions (b) IIu(z2), (c) l l 0(z‘l), and (d) the equivalent filter H{z)  obtained 
by multistage decimation.



50

l i , - y2

H '

t2

yoM £ 2 -_G^_

Mill

/ / £ - t 2

:V3(nj

Analysi^-

12 - G[

Q—|42 H G q

0 —
x(n)

42 -

42 - G

Synl.licsrs-

2 - G

(a)

(b)

F ig u re  3 .17 (b) Four-band two-level binary analysis/synthesis tree structure, ( b) 
four-band single-level equivalent analysis Filter bank.
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The dyadic  or oc!,ave-tree decomposition is obtained by successively decom

posing just the low-pass signal in the tree structure. The three-level dyadic analysis 

filter bank and its ideal oct,a.ve-band split are displayed in Figure 3.18(a)-(b). We see 

that the input signal has a rate of / ,  and the output signals have rates of f s/ 2 , f s /4  

, f s/ S  8, consecutively. As we move towards lower frequencies, the band widths 

of filters (similarly subbands) decrease in factors of two. Naturally, the frequency 

resolution of the lower frequency subband increases while higher frequency subbands 

preserve their time resolution. Thus, we can say that at any particular level, the low 

frequency component is the coarse approximation, and the high frequency term may 

be considered the detai l  at that resolution. Dyadic filter banks have been widely 

used in subband image and audio coding applications. If the four transfer functions 

{ H 0(z) ,  H\ { z ) ,  G q( z ), G'i (c)} form a two-band PR-QMF bank, then the entire dyadic 

tree is PR if all the subbands have the same delay. The corresponding synthesis 

dyadic filter bank is shown in Figure 3.19.

Another type of tree structure is an irregular tree. In this case, a non-uniform 

decomposition is obtained. Any subband in a particular stage is split further 

if decomposition is justified. The irregular tree is the fundamental block of our 

discussion in Chapter 4. Therefore, we shall treat it in detail in the next chapter.

3.5 Progressive O ptim ality

In the M-band (M  > 2) design framework, certain symmetries and mirror image 

properties may simplify particularly the non-linear optimization problem. In the 

general case, there are an infinite number of solutions in the problem. One major 

drawback arises from the richness of this situation— the convergence of the solution 

to the global optimum. Now, we will try to exploit this point for different design 

examples.
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F ig u re  3.18 (a) Three-stage dyadic subband tree decomposition, and its (b) 
idealized spectral split.



53

Lit x ( n

LLJt

— G 0 ( z )

F ig u re  3.19 Three-stage synthesis dyadic, filter bank.

Consider the direct M-band design problem displayed as a block diagram 

in Figure 3 .2 0 . The goal is to optimize the M-band solutions {Si, S2, . . . ,  S'av) 

constrained to C_, {Ci,  C2 , ■.., Ci}  with maximization (or minimization) of a certain 

optimality criterion (O). The vector X_ is an initial guess. For large values of M , the 

number of PR  constraints become very large, even though paraunitary structures are 

utilized. Essentially, this condition will impose significant difficulties on the design. 

For M  >  150 , the direct design is very difficult within the existing optimization 

tool-boxes. Another practical design approach uses cosine-modulated M-band filter 

banks [55]. In this case, a PR-QMF low-pass prototype is designed first and the 

rest of the (M  — 1) filters are obtained by the cosine modulation of that prototype. 

Although this is a practical solution to the problem, it may not yield robust solutions 

in all applications, because the solutions of M  filters are simply restricted by a single 

prototype function.

On the other hand, an M-band subband decomposition can also be achieved 

by hierarchical filter banks. These structures try to achieve the spectral split in a 

repetitive fashion. In other words, the signal spectrum is split into its subspectra in
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F ig u re  3 .20 Schematic of optimal direct M-band design problem.

several stages of the hierarchy by using the same prototype filter bank. Figure 3.21 

displays an eight-band regular subband tree using the same two-band PR-QMF in 

three steps of the hierarchy. The main problem here is that even though the prototype 

two-band PR-QMF is optimal, the product filters are not necessarily optimal. This 

can be shown with the following example. Figure 3.17(a) displays a two-stage, four- 

band, regular hierarchical subband structure. The two-band filter banks that are 

used in the different stages of the tree, even at each node of the same tree level, can 

be different for the most general case. All of the two-band filter banks employed in 

the tree are assured to be PR-QMF in order to satisfy the unitary property of the 

hierarchical structure.

The equivalent subband product filters for the regular tree displayed in Figure 

3.17 can be easily found as

//,(*) =  / /0(2)//0V ) ,

l h ( z )  = I U z ) H [ ( z %

l h ( z )  =  / A ( z ) t f o V ) ,

l-U(z) = H i ( z )H[ l (z2). (3.68)
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Figure 3.21 Eight-band regular tree and its ideal frequency decomposition.

Whenever t,he same prototype filter bank [fl^’\ z )  I l \p\ z ) ]  is used in all of the nodes, 

say,

f //„(*) =  / / '( . - )  =  //„" =  n ^ ( z ) )

\  //,(-’ ) =  « , '(* )  =  n i ‘ = w!">W ) ’

then the conventional hierarchical subband tree structure is obtained. Now, the 

product filters become

H[ ( z )  =  N ^ ( z ) H ^ ( z %

H'2{z ) = l l ^ \ z ) H (p)[z%

I l ^ z )  = l l \p\ z ) I l {p\ z %

II',(z) =  l l \p\ z ) H [ p\ z 2). (3.69)

Obviously, the product functions in Eqs.(3.68) and in Eq.(3.69) are not necessarily 

equivalent; thus,

11 i ( z ) ± t t \ ( z ) ,  i, =  1,2,3,4. (3.70)

In the general case, an M-band filter bank may be obtained from hierarchical subband 

trees.
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We have pointed out the difficulties with optimal M-band design; namely, (i) 

the direct structure M-band design (Figure 3.10) is too complicated for large values 

of M, (ii) cosine-modulated filter bank design is restricted with a single prototype. 

In a hierarchical M-Band filter bank (Figure 3.21) repetition of an optimal two-band 

PR-QMF does not yield optimal product filters. Now, we like to solve the optimal M- 

band filter bank design problem from the standpoint that optimal design criteria are 

still carefully monitored while the number of bands are increased without increasing 

the complexity of the design significantly. Indeed, we shall proceed with the very well 

known Gcasar’s strategy, “divide and c o n q u e r which we call progressive optimality.

R e m a r k  1: The product subband filters in Eq.(3.68) are the special four-band 

PR-QMF solutions with the factorization properties. They provide the hierarchical 

as well as the direct split, of the spectrum.

R e m a r k  2: The time and frequency properties of the product filters, Jli{z), i =  

1,2,3, 4, along with the first level filters, Uu(z) and / / 1 (~), are important. Therefore, 

the intermediary filters of the second stage can be manipulated (since there are an 

infinite number of solutions) in order to achieve the desired time and frequency 

domain characteristics of the product filters. Thus, this observation naturally yields 

to the concept of progressive optimization in hierarchical M-band filter banks.

From the previous discussions it is essential we state that any M-band factor- 

izable filter bank can be optimally designed step by step or progressively in a hierar

chical tree structure. In each stage and branch, different filters are customized in 

order to achieve the desired optimality. Figure 3.22 displays the schematic of the 

progressive design procedure. For generalization, it is assumed that for a particular 

stage all the branches use a K-band structure, thus in this case M — K L. For the 

i ' h stage, the solutions from the previous stages { 1 ,2 , . . . , ( /  — 1)} are utilized. The 

optimal solution is searched for the overall objective function O,, which is a function
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Figure 3.22 Progressive optimization schematic of M-band hierarchical structure, 

of all previous filters and the actual filters. Hence,

1 1 1 1 2  5 • • • i ' b  1 1\ ,  • • . ,  1 ,  & i2 1 • * • z 1 1 i *b 1 2 1 ■ ■ • i I A  i • • • i

• • • i “S i l  i  ^ i 2 i  ■ • • i ^*il\ ) i  ( * ^ • ^ 1 )

where / ( . )  is usually a nonlinear function and {.Y| , 2 i2, ■ ■ ■, -V,•} are independent

initial conditions for different stages. The final product filters [Ho(z) , • ■ •, Um-i(z)]  

are functions of branch filters Si j (s)  , (i =  1 , K\-j — l , . . , / \ ) .  For example, the 

low-pass of the M-band equivalent can be written as [4]

JJ0(z) = S l l ( z )S2l(z ,<) . . .  S u l : ^ )  (3.72)

Thus, the optimization algorithm is displayed in Figure 3.23. Hence, the progres

sively optimal design of the M-band (L-stage) filter bank can be summarized as:

begin

initialize  

while ( k  <  L )  

se t
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{P R  C onstraints, k th s ta g e  initial conditions,  additional con stra in ts}  

O p tim ize  ( k th) s t a g e  filters with respect  t o  Of.

k =  k  +  1

end

G enerate  product filters

end

Now, let us consider the two-stage four-band filter bank given in Figure 3.17. 

For this example, the progressive design procedure is as follows:

(i) First, an optimal two-band PR-QMF solution for the first stage is searched 

based on the design criteria.

(ii) Then, an intermediary two-band PR-QMF solution that optimizes the product 

subband filters is searched. Therefore, the product subband filters of Eq.(3.69) 

are tuned to satisfy the desired criteria of optimality, e.g. energy compaction, 

frequency localization, joint time-frequency localization, etc. [46][45].

Figures 3.24 and 3.25 display the time and frequency functions of two different hierar

chical filter bank scenarios. Table 3.3 provides the time and frequency localizations 

of the product subband filters of those hierarchical filter banks. Figures 3.24-3.25 

and Table 3.3 imply the richness of possible product function solutions with different, 

time-frequency properties. Figures 3.26 and 3.27 display the frequency functions of 

the optimal two- and progressively optimal four-band product subband filters. The 

optimalities in these examples are based on joint time-frequency localization and 

energy compaction. In these figures, the optimal first stage two-band 6-tap PR- 

QMFs are designed. Then, in the second stage, two-band 4-tap PR-QMF solutions 

are searched in order to achieve the optimal 12-tap product subband filters based on 

the design criteria.
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F ig u re  3.23 Flow diagram of progressive optimality algorithm.
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F ig u re  3.24 Time and frequency functions of the product subband filters in a 2- 
level, four-band hierarchical filter bank using an 8-tap Binomial QMF-Wavelet filter 
bank [4] repetitively at any node of the tree.
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F ig u re  3 .25 Time and frequency functions of the product subband filters in a 2- 
level, four-band hierarchical filter bank using a 4-tap Binomial QMF-Wavelet filter 
bank [4] at the first stage, a 16-tap version at the low, and a 4-tap version at the 
high-pass node of the second stage.
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F ig u re  3 .26  The frequency functions of a (a) 6-tap optimal two-band PR-QMF 
(optimality is based on the minimization of the joint time-frequency spread), (b) 12- 
tap  product subband filters of progressively optimal four-band PR-QMF (optimality 
is based on the progressive optimization of the product filters with the minimization 
of the joint time-frequency spread).
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(b)

F ig u re  3 .27  The frequency functions of a (a) 6-tap optimal two-band PR-QMF 
(optimality is based on the energy compaction measure), (b) 12-tap product subband 
filters of progressively optimal four-band PR-QMF (optimality is based on the 
progressive optimization of the product filters with the energy compaction measure).
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T ab le  3 .3  T ime and frequency localizations of hierarchical filter banks displayed in 
Figures 3.24, 3.25, 3.26 and 3.27.

u> n x  a n

B-QMF Hierarchical 0 4.05 0.2526 2.7201 0.6886
four-band Tree 1.23 12.88 0.1222 3.8269 0.4676
(22 tap product 1.91 16.28 0.1222 2.7757 0.3392

filters) 7T 8.80 0.2526 2.2622 0.5714

Hierarchical 4-Band Tree: 0 4.5535 0.2857 9.8246 2.8072
4-tap B-QMF at the first 1.31 27.1486 0.1447 10.1603 1.4712
stage, 16-tap B-QMF at 1.88 6.3267 0.1718 1.7254 0.2964

the low and 4-tap B-QMF 7T 3.9722 0.3697 1.4089 0.5210
at the high-pass nodes 

of the second stage

Progressively optimized 0 1.8695 0.3562 1.1751 0.4186
four-banc! tree, 12-tap 1.20 5.8878 0.1623 1.6811 0.2730

product filters (optimality 1.94 8.8042 0.1623 1.6811 0.2730
is based on minimization 7T 5.4382 0.3562 1.1751 0.4186
of joint time-frequency 

spread of the filters)

P rogressi vely opt i m i zed 0 2.5664 0.2910 1.5319 0.4458
four-band tree, 12-tap 1.21 5.6715 0.1385 2.2932 0.3177

product filters (optimality 1.93 7.9264 0.1385 1.9780 0.2740
is based on the energy 7T 5.8354 0.2910 1.3592 0.3955
compaction measure)

The design of irregular spectral decomposition tools, irregular in the frequency 

bandwidths as well as in the time domain properties, can be monitored level-by- 

level in the subband tree. This approach allows the designer to tune the time and 

frequency properties of the transform basis to the constraints of the application at 

hand. The intermediary filters of a given node in the subband tree define the time and 

frequency properties of the corresponding product subband functions. The repetitive 

use of an optimal filter bank does not yield the optimal product subband functions 

in a hierarchical structure.
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3.6 A N ote on W avelets

The continuous and discrete wavelet transforms are defined on a continuous time 

variable. An infinite stage discrete-time dyadic subband tree is the analytical tool to 

design a band-pass analog wavelet and its complementary low-pass scaling function. 

Therefore, the two-band perfect reconstruction quadrature mirror filter bank plays 

a vital role in the theory of compactly supported orthonormal wavelet transforms. 

The fundamental wavelet and scaling equations lead to the infinite, product frequency 

domain relations as [11][4]:

f l0{cJuj/'2k),  (3.73)
k-2

oo
4>(fi) = U l M e :̂ 2k),  (3.74)

*=i

where 4'(SI) and 4>(J7) are Fourier transforms of the wavelet and scaling functions. 

These frequcncy-domain equations show that continuous-time wavelet and scaling 

functions are obtained by the infinite products of the Fourier transforms of the 

discrete-time interscale coefficients lio(u) and h\ (n), with normalized frequencies uj — 

Q. This is a very important property of multiresolution analysis theory, which allows 

us to design continuous-time functions by designing discrete-time functions. The 

dyadic subband tree can serve as the fast wavelet transform algorithm if the transform 

process is properly initialized. The proper initialization step is the projection of 

the analog signal onto the scaling space at the full resolution. The sampled data

is assumed as the scaling coefficients of wavelet transform theory in most appli

cations reported in the literature. Therefore, they are doing exactly what a discrete

time filter bank does. The wavelet transform on discrete-time signals implies an 

imperfect representation and is theoretically incomplete. Additionally, from our 

previous discussion, two-band filter banks used in the different stages of the tree, 

even at each node of the same tree level, can be different for the most general
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subband transform case. The infinite resolution products of the discrete-time inter

scale coefficient sequences of the wavelet and scaling bases merge with the analog 

wavelet and scaling functions in the Fourier domain, as given in Eqs.(3.73) and (3.74). 

In reality, all of the analog wavelet and scaling functions displayed by the researchers 

in the literature are generated by using only 10-15 terms, rather than the infinite 

resolution required in Eqs.(3.73) and (3.74). Therefore, the practical merits of the 

optimal wavelet designs based on a prototype two- or M-band optimal discrete-time 

filter bank need to be seriously questioned. Cohen and Sere also pointed out this 

concept from a wavelet point of view [J],

3.7 Remarks on Image Coding

The dyadic ten-band and hierarchical 04-band, separable 2-D subband transforms 

are employed to test the practical impact of using different filter banks in different 

levels of the hierarchical structures. The available bits are optimally allocated among 

the subbands based on their variances. Then, uniform quantizers are employed in the 

generic subband image codec algorithm. The image coding performance of several 

hierarchical filter bank scenarios are tested. Figures 3.28 and 3.29 display the rate- 

distortion curves of different 10-band and 64-band 2-D subband codecs for the test 

images, LENA and BUlLDlNGAlso, Figure 3.30 compares 10-ba.nd and 64-band 

subband image codecs under the same conditions. The 10-band dyadic tree performs 

as well as 64-band full tree but with significantly reduced complexity. These figures 

also indicate different filters employed in the considered hierarchical subband coding 

experiments. The first index implies the filter used in the first level of the subband 

tree and the others follow similarly. The known PR-QMF families in the literature 

are used in these experiments. It is observed from the figures that the different image 

coding performances are obtained with different subband filter banks. This result is 

due to different time-frequency properties of the product subband functions of filter
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banks employed in the coding experiments. Marginal performance improvements 

are possible by using different filter bank cells in different levels. In Appendix A, 

perceptual image coding performance examples are shown for different bit rates. 

More experimental studies to find the best possible filter bank configurations for 

certain image families are topics of future research. Future studies should also focus 

on the subjective coding performance of the subband transform bases.

10-B A N D  IMAGE CODEC

40

38

3 4

30

FILTER COMBINATIONS

: 1 6 - ta p  U n c ./8 -tap  m u lt./6 -tap  mult.

 : 8 - ta p  U n c ./8 -tap  U n c ./8 -tap  Unc.

: 1 6 - ta p  U n c ./1 6 -tap  U n c ./1 6 -tap  Unc.
24

0.2 0 .4 0.6 0.8 1 1.2 1 .4 1.6 1.8
BIT RATE

F ig u re  3.28 10-banc! 2-D Image codec rate-distortion performance for different filter 
combinations.
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64-BAND IMAGE CODEC

DC 32

FILTER COMBINATIONS

: 1 6 -la p  U nc./8-tap  m ult./6-tap  mult.

—  : 8 - ta p  U nc./8 -tap  U no78-tap  Uno.

. -  : 1 6 -ta p  U nc./16-tap  U no ./16-tap  Uno.

0.40.2 0.6 0.8 1.2 1.41 1.6 1.8
BIT RATE

F ig u re  3 .29 64-hand 2-D Image codec rate-distortion performance for different, filter 
combinations.

40

36

34

DC 32

30

28

: 10-BAND IMAGE CODEC

24 : 64-BAND IMAGE CODEC

22
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

BIT RATE

F ig u re  3 .30 Performance comparison of 10-band dyadic and 64-band regular 
subband codec for same filter combinations
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A D A PT IV E  FILTER B A N K S

In the previous chapter we have given a thorough examination of M-band filter bank 

design along with some design examples. So far we dealt with stationary structures 

in the sense that the filters in the filter bank are fixed so that the tree structure 

itself is fixed. We can easily extend this to the concept of adaptive analysis-synthesis 

systems. The adaptiveness is not conventional weight iteration or updating but 

instead adapting the filter bank to the particular signal at hand. This terminology 

has been frequently used in multiresolution signal processing community [9][22] and 

it should not mislead the reader to the very well known definition of adaptive signal 

processing. Given proper adaptation rules, we shall see in examples that we do not 

have the convergence problem in a conventional sense. The two key points in the 

adaptive filter bank concept are: (i) that the orthogonality and perfect reconstruction 

are maintained while changing the adapting or changing the filter bank structure, 

and (ii) that an adaptation algorithm keeps track of changes in the input signal.

Recently, other researchers provided new results on the subject of time-varying 

filter banks [34], which are different from the perspective here. The tree-structuring 

algorithm discussed in this chapter was first mentioned in an earlier study [5].

4.1 B est Basis Functions Selection

The basis functions for the linear expansion of signals are usually chosen from infinite 

possible solutions. So generally speaking, it is always desirable to have a set of basis 

functions by which we represent a given input signal y(k)  by

M
y(k ) = (4.1)

(=i

w h e r e  t h e  s e t  { ( f ) }  i s  c h o s e n  o p t i m a l l y  b a s e d  o n  a n  o b j e c t i v e  c r i t e r i o n .  F o r  e x a m p l e ,

69
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if the objective is decorrelation of transform coefficients then the KLT is optimal in 

a statistical sense. In other words, the design or selection of KLT basis functions 

with decorrelation criteria is optimal [4].

A natural question that arises in connection with basis selection is how to choose 

the objective or optimality criteria. The decomposition of a signal usually reveals 

transform domain properties. The emphasis of different properties essentially yields 

different optimality criteria. Now, we can define the best basis selection problem. 

The projection of a signal in R N onto a set of basis functions with the optimization 

of a certain objective criterion is called the best, basis selection problem.

In some cases, it is possible to analyze the input signal or predict its features. If 

this advantage is utilized in basis design, drastic improvements over fixed transforms 

are naturally expected. On the other hand, The 1)FT and DCT have standard 

features which may apply very well to certain classes of signals [1], In recent years, 

multirate filter banks naturally evolve for a better understanding of time-frequency 

behaviour of discrete-time signals. M-band filter banks usually provide better time- 

frequency representation with the price of longer duration basis functions. We have 

seen in the previous chapter, however, that optimal M-band design is not an easy task 

if M is a considerably large number (A/ > 128). Adaptive (on the fly) optimization 

of M-band filter banks, in particular, is almost an impossible task. This fact leads 

us to suboptimal but more practical and efficient solutions. For example, if a certain 

degree of frequency localization is present in the particular signal at hand, then we 

will show that a tree-structured M-band solution that is properly tailored to the 

input signal exists. Hence, here we will consider the best basis selection problem as 

the best tree-structured filter bank selection for the input signal. Although this is a 

suboptimal solution, we shall see in the following chapters that it will bring significant 

improvement over the fixed transforms. Considering the price paid for additional 

computational burden, adaptive transformation algorithms necessarily provide a set
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H d d Hj.+ i (z)

F ig u re  4.1 Cascaded paraunitary systems.

of orthonormal basis functions that represent, the given signal better than the fixed 

transforms do. The key for achieving adaptive transforms is then tailoring the basis 

functions (subband filters) for the given input signal.

4.2 A d a p t iv e  S u b b a n d  T re e -S t ru c tu r in g  A lg o r i th m

In Chapter 3 we briefly discussed regular binary and dyadic subband tree structures. 

We mentioned that a tree-structured filter bank is a practical tool for obtaining an 

M-band filter bank. In this section we investigate adaptive filter banks that allow 

us to change the tree structure while preserving the paraunitary property. Suppose

we have the cascaded paraunitary system displayed in Figure 4.1 Given that each

block in F igured.! is paraunitary such that

H ,H , =  M I,  (4.2)

where H  is the conjugate transpose of H. Then, the cascaded system is said to be 

paraunitary, as

( . . .  H L. lH LH L+i . . . ) ( . . .  . . . )  =  CI,

or, equivalently,

I I  H,H, -  CI, (4.3)
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x(n)

71 (0JL
3

J i
2

( a )  ( b )

F ig u r e  4.2 An irregular tree structure (a.) its ideal spectral decomposition, (b) tree 
structure for (a).

where I  is the identity matrix. Essentially, a hierarchical filter bank 

structure is paraunitary if and only if each branch of the hierarchy is paraunitary. If 

this is so then that structure can be said to be instantaneously paraunitary and it 

sufficiently satisfies the PR.

Besides full-band and dyadic trees, irregular tree structures bring flexibility to 

the signal decomposition problem. Figure 4.2 displays one possible example for the 

eight-band structure. One other important issue here is the delay synchronization 

between different branch filters. Clearly, different brand) filters may have different 

durations. Unless a full-band tree is used, delay synchronization must be provided, 

otherwise PR  can not be satisfied.

The discussion so far has been concerned with tree-structured subband 

transforms and their orthogonality properties. Now, we shall present how the 

adaptation of the subband tree structure is performed. First of all, it is essential 

tha t we have a decision rule for interacting decisions during adaptively growing the 

tree structure. At a particular node, a node metric iiik(i,j)  is calculated for the i th
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(i,i)

(0 ,0 ) (4 ,0 )

(3 ,0 )

( 1,0 ) ( 2 , 1 )

( 2 ,0 )

idle

i die

t die

( i , )

F ig u re  4.3 Six-band irregular hierarchical subband decomposition (a) actual imple
mentation, (b) tree diagram Cor (a).

stage, j lk node and k is the running index for k different M-band filter bank schemes. 

In general, two-band decomposition is not the only possibility in tree-structuring. 

In fact, utilization of “only” the two-band solution is restricting the decomposition 

problem significantly. At any node under consideration, the decision rule must 

perform two different decisions:

(1) continue or terminate further splitting of that particular node,

(II) if decision (I) is justified for further splitting then choose M-band splitting.

These rules are evaluated for every decomposition possibility. The first node is called 

the root] similarly the particular node under consideration is called the active node. 

If a splitting decision is made for an active node then the children nodes are born and
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the active node becomes the parent, node. During tree growing, if any active node is 

terminated from further splitting, it becomes an idle. node.

Now, in order to have a better understanding, we shall discuss the following 

example shown in Figure 4.3 before we present the generic adaptive tree-structuring 

algorithm. Figure 4.3(a) displays the hierarchical decimation stages; the corre

sponding free diagram is shown in 4.3(b). In this example, a two-band low-pass/high- 

pass prototype analysis PR-QMF banks [A/(2),/l/,(s)] and/or a three-band low- 

pass / band-pass/ high-pass analysis PR-QMF banks [C'i(z),Cb[z),Cil(z)] are utilized 

in each generated stage. We notice that the effect of cascade of decimation stages 

yield similar stop-band attenuation as discussed in section 3.4. At point A, node 

(0 ,0) is the root and active node. The node metrics 7712(0 , 0) (for two-band PR-QM F) 

and 7773(0,0) (for three-band PR-QMF) are calculated first. According to decision 

rule (I), ifanyofthese  metrics exceed a certain threshold then rule (II) is evaluated by 

comparing ?7?.2(0,0) and 777,3(0 , 0). Evidently, the root node (0,0) becomes the parent, 

node for nodes (1,0) and (1,1). In the first stage, further splitting for node (1,1) is 

not justified, so it becomes idle. On the other hand, the active node (1,0) proceeds 

with three-band splitting as decision rules (I) and (II) suggest. In second stage, 

nodes (2 ,0) and (2,1) are idle while node (2,2) is active and two-band splitting is 

performed. This process continues until all nodes become idle. The nodes at points 

A , B , C and D  are active nodes during adaptation. Thus, the idle nodes represent, 

the final product filters as:

Eo(z) = A h[z)

E 1(z) = Ai(z)Ci(z2)

E 2(z ) =  A,(z)Cb{z2)

E ,(z)  = A M C ^ A t i z 0) (4.4)

E,(z)  =  A ^ m z ^ A ^ A ^ ' 2)
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E<{z)

F ig u re  4 .4 Equivalent structure for Figure 4.3.

E s(z) = Ai{z)Ch(z2)Ah{za)Ah{zVi).

The equivalent structure is shown in Figure 4.4. The corresponding synthesis tree 

and its equivalent can be easily obtained as time reversal of analysis filters. It is 

worthwhile to mention that the tree not only grows through one node but may also 

grow through different nodes. Clearly, the example tree structure is generated for a 

particular input signal. If the input signal varies over time, so does the tree structure. 

The generic adaptive tree-structuring algorithm (TSA) can be given as follows:

Begin

initialize (i,j) =  ( 0 ,0 )  

se t  {a ct iv e  n o d e s}  =  root
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calcu la te  for {act ive  n odes}

while ( { a c t iv e  n od es}  ^  NULL)

while ( [any o f  n i k { i , j ) ]  >  Threshold  ) 

for all ac t ive  nodes  at i th s ta g e

c h o o s e  th e  largest n i h ( i , j )  for i th s tage ,  j lh point act ive  node,  

proceed with M-band subband d ecom p osit ion  (M children n o d e s  are 

born).

rem ove ( i , j )  from {act ive  n o d e s}  and label it as parent node,  

for all children nodes o f  parent n ode (z, j )  

calcu la te  i n k ( i ' , j ' )  for children nodes  

if ( [any o f  >  Thresh o ld)  then

add ( i ' , j ') to  {act ive  n odes}  

else

label as idle

end

end

end

end

end

The TSA starts from the root and proceeds towards the leaves of the tree while 

checking the node metrics. The adaptive process can utilize any M-band prototype 

filter bank. The node metrics are calculated in all active nodes and in their children 

nodes. These metrics are evaluated as to whether the node becomes idle for further 

splitting or active for expansion. In case of activity, the current node becomes
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the parent node in the following step. If all active nodes become idle, then tree- 

structuring is terminated and the corresponding product filters are generated.

4.3 Energy C om paction-Based Tree-Structuring

An adaptive tree structuring algorithm, by utilizing an energy compaction measure as 

a node metric, can effectively track the variations of frequency-localized input signals. 

The concept of tree structuring based on the energy compaction measure was first 

mentioned in [Akansu and Liu]. Thus, the energy compaction measure quantifies the 

unevenness of the given signal spectrum. The 'PSA analyzes the energy distribution 

of the subband spectrum at each node of the tree with the assumption of ideal filters 

used. A subband node is further decomposed if and only if the energy compaction 

at this node exceeds a predefined threshold.

Now, we will present a simple example for energy compaction-based TSA 

utilizing two-band and three-band prototype PR-QMFs. The TSA simulta

neously considers two-banc! and three-band PR-QMFs in order to handle transition 

frequencies such as | ,  | ,  or The input signal or any subband in the tree 

is decomposed into its sub-projections employing two- or three-band orthogonal 

subspaces if the decomposition criterion is met. Figure 4.5 displays a special case of 

TSA for narrowband signal identification [50], In this example, only one active node 

is searched at a particular stage. The TSA, however, evaluates every possible node 

in the tree for general case.

In the most general case, the different nodes of the tree in a particular stage 

are independent from each other. Tliis advantage can be used especially for parallel 

growing the tree. Since each path starting from the root node employs PR-QMFs, 

the nested paths of the overall subband tree will also be PR. This natural conclusion 

implies practically implementable tree structuring algorithms by parallel structuring.

The flowchart shown in Figure 4.5 can be outlined as follows:
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F ig u re  4 .5 A simple example lor the energy compaction-based TSA algorithm.

Begin

Initialize {(i,j) =  root}

while {all nodes are not idle —► (spectral flatness does not exist,)}

•  Measure the power spectral density, Pxx(uj), of the received signal.

•  Calculate subband variances ct221 and a?lh for the two-band split 

assuming ideal brick-wall filters.

•  Calculate

•  Calculate subband variances a'2u, a 2b and <j?ih for the three-band split.

•  Calculate rn^(i,j).

If <  T  and <  7', then

spectral evenness exists. Stop tree structuring,
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else if ni 2 { i , j ) >  tlien

proceed with the two-band split 

else

proceed with the three-band split

end

('heck the subband variances.

Set ( i j ) .

end

end

4.4 A daptation o f the Tree Structure and Its Significance

In order to expand the brandies in the tree, it is essential to calculate the node 

metrics in each active node. Usually, the node metrics are compared to heuristic 

thresholds. The different applications require different thresholds (maybe different, 

metrics as well) and unfortunately, there are not any dosed-from solutions for the 

general case. Hence, if the metric is chosen as energy compaction then energy- 

local ization or spectral evenness may fall under this category. This is because the 

energy compaction measure indirectly considers those situations. If a flat input 

spectrum is considered, then any M-band subband decomposition will yield

??U.(0,0) =  1, VA: (4.5)

which is a lower bound for the energy compaction measure-based metric. On the 

other hand, if an uneven spectrum is considered, we usually have m^.(.,.) > >  1 for 

some k.  Therefore, the adaptation of the tree is tightly related to node metrics and 

thresholds. The following example considers a composite signal of white Gaussian 

noise and a sinusoidal signal as
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idle idle

idle

idle

idle idle idle

7-band  PR-QMF {Energy com paction-based TSA (T-1 7]J

: sinusoidal + noise

O.B

0.6

0.4

0.2

0.5 2.5

(a) (b)

F ig u re  4.6 Adaptively generated seven-band irregular tree structure for threshold  = 
1.7, (a) tree diagram, (b) magnitude square functions of analysis filters and input 
signal (sinusoidal -f noise).

s(k) = Asin(ujk) + n n,(k),

where u> =  and SNR is 20clB. Here, the objective is to localize the sinusoidal signal

in a minimum bandwidth subband. The frequency of sinusoidal signal is chosen such 

that only two-band or three-band PR-QMFs are inadequate but both prototypes 

must be utilized. The energy compaction measure is used as the node metric in this 

example. The heuristic threshold is chosen as T  — 1.7. In this case, TSA generates 

the tree structure displayed in Figure 4.6(a). If FIR prototype filters are used, then 

the normalized magnitude square functions of seven-band PR-QMF analysis filters 

are shown in Figure 4.6(b), along with signal (sinusoidal -f- noise). Figures 4.7, 4.8, 

4.9, and 4.10 display the normalized magnitude functions of subband signals at points 

A, B, C, and I) respectively. The TSA stops at the fourth stage and the sinusoidal 

signal is localized at point D, as shown in Figures 4.6(b) and 4.10. Although the 

main peak is successfully captured, there is some obvious spill-over from point D
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Figure 4.7 Subspectra. at point A.

to adjacent subbands. If the threshold is chosen as T  = 2.5, however, then we will 

have a different tree structure, shown in Figure T i l .  In this case, TSA stops after 

five-band decomposition, because any further decomposition is not justified. In other 

words, node metrics at the third stage are smaller than threshold so further splitting 

is not performed. This structure localizes almost all the energy of the sinusoidal 

signal at point C, but, in fact, it also covers some unaffected spectra which we call 

processing distortion. The trade-off between spillover and processing distortion are 

fine tuning elements in different applications.

So far we have considered the energy compaction measure as a valuable node 

metric for adaptation of TSA. Nevertheless, there may be some other measures more 

usable in other applications.
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F ig u re  4.11 Adaptively generated five-band irregular tree structure for threshold = 
2.5, (a) tree diagram, (b) magnitude square functions of analysis filters and input 
signal (sinusoidal -f noise).
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F ig u re  4.12 The low-pass branch of /-stage tree structure.

4.5 T ra n s i t io n  B a n d w id th s

The previous section showed a discrete-time algorithm for the computation of 

adaptive filter banks. Indeed, a generic adaptive tree-structuring algorithm was 

presented. In fact, the tree growing operation (as in cascade) is much more 

effective using M-band schemes (three-band, four-band, ... , M-band PR-QMF

solutions where M  is reasonably small) instead of repeating only two-band PR-QMF 

solutions. As far as finite duration PR-QMF banks are concerned, the aliasing 

effects are eliminated as a necessary condition of PR. But in some cases, some of 

the subbands may be discarded, then clearly perfect alias cancellation can not be 

provided. Evidently, transition bandwidths or overlappings of subband filter banks 

become critical. Increasing duration of FIR PR-QMFs yield sharper filters with the 

price of increased complexity.

In tree-structuring, as we have shown, the product filters are obtained from 

cascaded decimation stages. Essentially, very long duration filters may yield unprac

tically long duration filters. For example, consider an N-tap two-band Pll-QMF only 

in the low branch of an /-stage tree-structure, shown in Figure 4.12. For simplicity, 

only a two-band prototype H q ( z )  is considered in this figure.

T he equivalent Ith stage branch filter is given by

/ / ( : )  =  n  'M -’2'"), (4.0)
7(1 = 0
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and it lias a total length of

N t = 2 ' (N - \ ) - ( N  - 2 ) .  (4.7)

Essentially, we notice that

N t ~  2' ( / V - l )  , l » l .  (4.8)

Eqs.4.7 or 4.8 demonstrates the high complexity if one wants to use long duration 

prototype FIR PR-QMFs repetitively. The energy spillover or overlappings, however, 

can he overcome by using a very sharp filter in the first couple of stages and then using 

short duration filters afterwards. Thus, we obtain good transition bandwidths in the 

first stages but may yield relatively worse stop-band attenuations in the product 

filters. This, though, is a viable approach if aliasing is critical in the first stages of 

the tree.

4.6 A Flexible T iling of the Tim e-Frequency Plane

The time and frequency properties of discrete-time signals can be jointly explored 

with the aid of time-frequency (TF) representations. In these representations, the 

signal is projected on a plane with respect to bases that are functions of both 

frequency and time. The resulting plots are called TF diagrams.

The T F  representation of signals using a short-time Fourier transform (STFT) 

and the construction of spectrograms has been widely used in speech applications 

[26], The time properties may be more visible for certain signals, but, on the contrary, 

frequency properties may be dominant for some other signals. 'The joint T F  repre

sentations take advantage of both domain-properties.

Figure 4.13 shows various orthonormal bases in 64-dimensional transform space. 

The vertical axis represents discrete-frcquency and the horizontal axis represents 

discrete-time. Now, consider an arbitrary segment of N samples from an arbitrary
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F ig u re  4 .13 The T F  diagrams of an arbitrary segment of infinite duration signal 
x(n), (a) without any transformation, (b) with fixed N x N  block transform such as 
DPT or DCT, and (c) with N x N  ideal spectrogram.

signal x(n).  We can represent this segment {X_N ) on the T F  plane without any trans

formation, as shown in Figure 4.13(a). Such a representation does not provide any 

frequency information, but it has a perfect time representation. On the other hand, 

the block transforms, such as DFT or DCT, provide frequency-domain representation 

without time information (Figure 4.13(b)). Assuming an ideal N x N  partition of the 

TF plane, we obtain N 2 T F  cells on the diagram (Figure 4.13(c)). Such a partitioning 

is a sensible choice when time and frequency resolutions are equally important. This, 

however, is not always the case. As we emphasized in Chapter 3, different sets of 

linear basis functions have different time-frequency properties, so they correspond to 

different tilings of the time-frequency plane.

In general, arbitrary tiling of the time-frequency plane is possible with unequal 

bandwidth (with different time duration) transforms such as a tree-structured filter 

bank system. For example, Figures 4.14 and 4.15 show examples of a three-stage 

dyadic tree and irregular tree by their tree diagrams and T F  diagrams respectively.

999999999 ^99999999
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F ig u re  4.14 Three stage dyadic subband tree-structured filter bank (a) tree diagram, 
(b) T F  diagram for (a).

F ig u re  4.15 Three stage irregular subband tree-structured filter bank (a) tree 
diagram, (b) T F  diagram for (a).
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It, should be noted that the localization of the energy of a basis function to the 

area covered by one of the tiles is only approximate. In reality, there is a considerable 

amount of overlapping energy in between the basis functions. Furthermore, the tiles 

are shaded based on the energy level of subband components of an input signal. The 

concept of adaptive subband tree structuring or flexible time-frequency tiling is to 

split whichever nodes of the subband tree make sense for the given input signal. 

Essentially, this approach offers more flexibility over fixed transforms.



C H A PT E R  5

IN T E R FE R E N C E  EXCISION IN  DSSS COM M UNICATIO NS  
SYSTEM S

Spread spectrum techniques have been successfully employed in many communi

cation scenarios. These techniques bring desired features, such as code division 

multiple-access, protection against jamming, low probability of intercept, and inter

ference rejection, to communication systems. Among different spreading techniques, 

the direct sequence spread spectrum (DSSS) or pseudo-noise (PN) modulation 

system is considered in this study. DSSS modulation techniques produce a trans

mitted frequency spectrum that is much wider than the information bandwidth. 

The spreading is done by translating the data  bits to a wide bandwidth spreading 

sequence. This spreading sequence is generated by linear feedback shift registers 

and is called a pseudonoise (PN) sequence [15][58][40]. This sequence is known by 

the transm itter and the friendly receiver. An increase in the length of the spreading 

sequence implies an increase in the bandwidth of the transmitted signal. In practice, 

transmission bandwidth and system complexity limit the length of the PN code. 

The increase in bandwidth provides interference suppression, cocle-division multiple- 

access, energy density reduction, and good time resolution in digital communications 

systems [36],

The interference rejection capability of DSSS systems is, however, limited. Both 

deliberate and unintentional narrowband interference (jamming) can be rejected up 

to a certain jamming margin. It has been shown that the interference immunity of 

a DSSS receiver can be further improved by suppressing or excising the interference 

before the demodulation operation [24][28][25][18],

89
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Figure 5.1 Block diagram of a DSSS communication system.

5.1 Interference Exciser-Based DSSS System  M odel

Tlie DSSS transmitter, shown in Figure 5.1, spreads the incoming data  bit stream 

di, (db £ { —1, 1} , V/>) and, therefore, its spectrum by multiplying it with the

spreading sequence c ( c,- € {—1,1} , for i = l , . . / \  ). The information-bearing 

signal is corrupted by additive white Gaussian noise (AWGN) 214 and an intentional 

interference or a jamming signal j_h in the communication channel. Therefore, the 

received signal 77, (a. row vector) can be written as

Lb =  dbC + j_h + lib (5.1)

where db is the information bit (equiprobable +1), and \/~P is the signal power at 

the receiver input. The data bit stream db has a bit-to-bit duration of 'l\i seconds. 

The PN spreading code has a chipping rate of Tc seconds, where Tc. Hence, the

length of the PN code can be obtained as L = Without any interfering signal 7 , 

the transmitted DSSS signal has a flat spectrum. The receiver correlates the signal 

with a properly synchronized version of the spreading sequence c. The lcngth-K PN 

spreading code has the energy, cc '  = c2(i) =  L where c ' is the transpose of the

code vector c. The decision variable is, therefore, obtained as
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F ig u re  5.2 The principal steps in DSSS coders/decoders

Ui -  U Q 1 = dbcc1 +  i hc'  +  n^c '  (5.2)

=  Ldb +  jjj c'  + H), c'.

Ecp5.2 indicates that the despreading operation recovers the desired signal while 

spreading the interference, as shown in Figure 5.2. The bandwidth expansion in a 

DSSS system is translated into a processing gain as a power improvement (actor
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caused by signal mapping or spreading and, it can be expressed as [15]

In a jamming environment, it is usual to define a jamming margin, which determines 

the performance limitation of a DSSS system [15][36]. In decibels, it is given by

erable system loss. An intentional interference above the jamming margin signifi

cantly degrades the system performance if any excision technique is not used prior 

to the PN correlator. In fact, if the interference power is much greater than the 

system’s jamming margin, the DSSS receiver fails to operate.

The performance of a DSSS receiver in the presence of frequency-localized inter

ference can be improved by using various types of interference rejection schemes 

[2-1][33][32][28]. In this section, two different classes are considered. The first is 

based on parametric linear prediction using minimum mean square error criteria and 

the second one is based on non-parametric transform domain processing.

The first class is the parametric modeling and estimation of the interference 

by means of a linear prediction filter [24][28]. Such a filter forms a linear prediction 

ol the received signal based on previous samples. Since the DSSS signal and white 

Gaussian process have a flat spectra, they cannot be predicted accurately from their 

past values. The interfering signal, being narrowband, however, can be predicted 

accurately. The stationarity and narrow-bandwidth assumptions of the interference 

are crucial to the performance of this parametric excision technique. Otherwise, the

j a m m i n g (5.4)

where is the minimum acceptable receiver output SNR and Laua is consid-

5.2 Narrowband Interference Excision Problem  in DSSS
Com m unications
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performance will degrade significantly [29],

An entirely different approach to the excision problem is transform-domain 

processing [33][32]. The discrete Fourier transform (l)FT) has been the most popular 

transform-domain method used for narrowband interference excision [12][39][id]. 

The DFT, however, suffers from its fixed frequency resolution and poor side-lobe 

attenuation. More recently, subband transforms were proposed with improved 

frequency localization and side-lobe attenuation [27][30]. The optimal Karhunen- 

Loeve transform (KLT) is optimal in the class of block transforms. Adaptive 

subband transforms were also used in an adaptive time-frequency (ATF) exciser 

with excellent frequency localization and very robust, performance [49].

The performance of different excision techniques has been examined by 

analytical evaluations and computer simulations. The probability of error is the 

performance measure considered in this study.

5.3 Linear Predictive F iltering-B ased Excision

The received signal is assumed as the output of an all-pole filter driven by a white 

noise process in this excision technique. Linear prediction is used to estimate the 

coefficients of the all-pole source model. The estimated model coefficients specify an 

appropriate noise whitening filter which is of an all-zero type. The received signal 

is passed through this all-zero transversal filter in order to suppress the undesired 

narrow-band interference.

Considering the received signal in Eq.(5.1), the narrowband interference j (k)  

can be predicted by a linear predictor using N  previous samples of r(k)  as

N

j ( k ) = ]C  hmV(k ~  (5-5 )
m=l
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where {bm} are the linear prediction coefficients. The narrowband interference { j (k)}  

can be predicted by minimizing the mean square error between r(k)  and j ( k )  as

£ ( N)  =  £ [ M * ) | 2] =  £ [ | r ( A : ) - ; ( * ) |2]

=  E M 1' ) -  ]C  bmT( k ~  m )l2]- (5-6 )
m — 1

The resulting prediction error signal

N
eN(k) = X} hmr { k  — m )  (5.7)

7 / 1 =  1

approximates a white noise process. The coefficients of the prediction error filter 

(LPEF), Figure 5.3, are related to the prediction coefficients as

ho — f i h7n — l)in , in. — 1 ,2 ,. . ,  /V.

The minimization of Eq.(5.6) with respect to prediction error filter coefficients yields 

Yule-Walker equations, which can be solved efficiently by using the Levinson-Durbin 

algorithm [21]. The linear-prediction-based interference exciser output in Figure 5.3 

can be written as
A /  — 1

eyv(fc) =  5Z h { m) r ( k  — in),  (5.8)
7/ 1 = 0

where M  — N  +  1 is the length of the excision filter (Figure 5.3). Eq.(5.8) can be 

written as

A /  — 1

CN{k)  =  Y l  h(rn)[c(k -  m )  + j ( k -  in) +  i i{k -  7»,)]
7 ) 1 = 0

M  — l A 7 - 1  M  - 1

— X ] h[m)c. (k — rn) +  ̂ 2  h{rn) j (k -  m )  +  X] h ( m) n ( k  — m)
7/1 = 0  7/1 = 0  7/1 =  0

= c0(k)  +  i0{k) +  n 0(k).  (5.9)

The excised signal {eyv(^ )} is then fed to the PN correlator and yields the decision 

variable £ at the output of the summer as
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r ( k  -  N )ik -  2 )

/ ) ( ( ) ) h( 2) /;.(iV -  1) M/v)

F ig u re  5.3 Transversal linear prediction filter.

£ =  X > n (A0c(A0  =  E [ c o ( f c )  + i0(fc) + n 0(fc)]c(fc)
A-=l A—l

=  X > 0(A,-)c(A’) +  ' t i o ( k ) c ( k )  +  X > 0(A:)c(A-)A.-1 k= 1 fc=l
= 6 + 6  +  6 -  (5.io)

The PN sequence is a pseudo-random signal known by both the transmitter 

and the receiver. The interference {j{k)}  is assumed to be a wide-sense stationary 

stochastic process with a. zero mean and covariance sequence {/fj}. The channel 

noise {n(&)} is assumed to be a wide-sense, stationary, white Gaussian process with 

a, zero mean and covariance sequence {Iln} . It. is assumed that all three random 

variables {6 )6216} *n Eq.(5.10) are independent and uncorrelated.
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5.3.1 Perform ance A nalysis of a Linear Prediction Exciser-Based DSSS  
R eceiver

The signal-to-noise-and-inteiTeronce power ratio (SNIR) at the output of the summer 

in Fig. 5.3 is a theoretically tractable performance measure for the narrowband 

interference exciser case [24]. The total power of the decision variable can be written 

as

£[£2] -  E 2[£] +  oar[£], (5.11)

where ?iar[(] is the variance of the decision variable. It is shown that the mean value 

of the decision variable, thus, corresponds to the desired signal term. The total 

variance of the decision variable is the sum of the variances due to the thermal noise, 

the remaining interference, and self-noise created by the excised PN code. The SNIR 

is calculated oidy for one bit period. The SNIR at the input of the slicer is defined 

as [24]

( S N I R ) .  ^  (5.12)
w/,r[£]

The mean value of the decision variable £ is derived as (see Appendix B)

£■[£] — ^ [ £ 1  +  £2  +  £3 ] — ^'[£1] +  ^’[£2] +  ^'[£3]
M-l

= h{Q)L -  (•Tb'S)?n=l
Since {c(fc)} , {j[k)},  and {n(k)}  are assumed to be uncorrelated processes, 

the variance of the decision variable is found as (see Appendix B):

ear[£] =  ?;ar[6 +  £2 +  £3] =  I'M'lfi] +  l’®'fe] + M ,,[6]
A 7 -1 A/ - 1  A /  - 1

=  1 J 2  l}2(m ) +  E  !i{rn)h(p) {R:l(p -  rn) +  -  m)}
in  — 1 m = U  p= l )

1 L  L  A / - 1 A 7 - 1

J 2  J 2  ^2 l i (m) l i ( p ) {RJ( k - m - l  + p) + a l 8 ( k - n i , - l  + p)}
k = 1 i =i  m = 0  p = 0

(¥W
( 5 . 14 )
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where of, is the variance of white Gaussian noise.

Since £,’[£] and iw[£] have been determined, the S N I R a at the output of 

the summer can be calculated from Eq.(5.12) as

This analytical BER calculation will be compared with the experimental 

performance results of linear prediction exciser based DSSS receiver in Sec. 5.7.

5.3.2 SN IR  Im provem ent of an Exciser-based DSSS R eceiver

The theoretical SNIR improvement of a DSSS receiver resulting from the use of an 

interference exciser can be quantified by comparing the SNIRs with and without 

an exciser cases [24]. We denote signal-to-noise-and-interference ratio without the 

interference excision as S N I l l wo. In this case, the mean value and the variance of 

the decision variable are found as (assuming that <4 =  +1)

[ k ( 0 ) L -  Y
T T l = l

M  — \ A/ — 1

L Y  h2(™) + L Y ,  -  m ) +  a 'n^(P - rn)}msO j)=0

“lH  H Y h(m )h{p){Rj{k -  rn -  I + p) + ^ ( k  -  m  -  I + p)}
k =  1 1=1 m = 0  p = 0

(l?k)
(5.15)

Finally, the bit error rate (BER) performance of the linear prediction exciser 

based DSSS receiver is expressed as [28][25]

(5.16)

where

(5.17)

varia = L ^  + a V - j Y  Y ~ 0 + <#(* " OJ,

( 5 . 1 8 )

J k-1 i=i 
( i / f c )
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=  £ ' ^ - 0 . (5.19)
l j k = i  1=1

{W)  

Therefore,

F 2\f'\ I 2
S N I  R wo =  =       . (5.20)

"” 'K1 L w + ^ - i i ;  i m - D
k = 1 ( = 1

( # f c )

As a result, the S N I R  improvement factor S/, from Eqs.(5.15) and (5.20), is 

expressed as

-  -  »

5.4 Transform D om ain-Based Excision

in the transform-domain excision, the frequency spectrum of the received signal is 

examined, and the narrowband interference is located. Then, the tin desired spectral 

components of the received signal are excised prior to the correlator. The frequency 

spectrum of the received signal might be assessed by using different transform 

techniques. Mx M block transform and M-band filter bank are widely used decompo

sition tools to map the received signal to the spectral domain (forward transform or 

analysis). The excision operation is a spectral modification of the received signal such 

that some of the transform coefficients are nulled in order to excise the narrowband 

interference. Then, the inverse transform (synthesis) is performed on the excised 

coefficient vector. The resulting excised signal is the input to the correlator.

5.4.1 F ixed  Transform-Based Excisers

The most common block transform, DPT, deeorrelates any input signal with a. 

circulant correlation matrix. The discrete cosine transform (DCT) approximates 

the optimal KLT for highly correlated signals. Considering the fact that only the
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Figure 5.4 Block diagram of the transform domain-based exciser.

interference component of the received signal might have high correlation, the DFT 

and the DCT are expected to perform well. A generic fixed transform domain-based 

exciser is displayed in Fig. 5.4. In this figure, A is the forward transform matrix , 

E  is the excision and B  is the inverse transform matrices, respectively. The excision

matrix E  is a diagonal matrix which has ones for the transform bins that are not

excised and zeros for the excised transform bins. There are two linear transform 

families considered in this thesis..

(a) Block Transform: The excised signal based on a block transform can be written 

as

p B E A r ,  (5.22)

where r is the received input, vector.

An M-point transform matrix is utilized in the DFT and DCT exciser-based 

DSSS receivers. In the I\LT exciser-based DSSS receiver case, the optimal basis for 

the given input statistics is obtained via the cigenanalysis as [26]

R $  =  $ A ,  (5.23)

where R  =  F [n :r ] is the input covariance matrix. The diagonal matrix A has the 

eigenvalues of R . The matrix $  consists of the eigenvectors of R. In this scheme, 

eigenfunctions with higher coefficient values contain the narrowband interference.
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5.4.2 U niform  M -Band Filter Bank Case

An M-band analysis/synthesis filter bank is considered in this case, see Fig. 5.6. 

Each analysis filter (and synthesis filter) has approximately ir /M bandwidth and 

A -tap duration. The synthesis filters are equivalent to the time reversals of the 

analysis filters [4][55]. The M-band filter banks naturally provide a better frequency 

resolution than the block transforms since they utilize longer duration basis functions. 

The following matrix notation is used for the terms in Fig. 5.6

r : received signal vector [Txl]

H, : convolution matrix for the i lh analysis filter [(N + L — J)xT].

E; : excision matrix for the i lh branch operation [(N  +  L — l ) x ( N  +  L — 1)]. 

G; : convolution matrix for the i lh synthesis filter [(2{TV — 1} +  L)x (N + L — 1)]. 

T; : truncation matrix for the i lh subband vector [Lx(2{N — 1} +  L)\. 

y_. : the i tk subband vector [/>x 1 ].

The i th subband output of Fig. 5.6 can be easily written in the matrix form as

y. =  T , G ; E,- H,- r. (5.24)

The excised signal is therefore obtained by the sum of all branch outputs of the filter 

bank as

H =  T j Gi Ei Hi r +  T -2 G 2 E '2 H 2 r +  • • • +  T m G m E m Ha/ r
M M

=  .G .E . - H . r  =  £ > , r ,  (5.25)
i=i i=i

where S,- =  T, G,- E f H , . Tl le analysis/synthesis filter bank is assumed to be of 

perfect reconstruction [4][55]. Therefore, whenever all Ei are identity matrices, no 

excision is performed, y = r.
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F ig u re  5.5 Frequency responses of progressively optimized hierarchical 64-band 
product, filters [0 , 7r].

The shortcomings of fixed block transforms and filter banks are twofold: 

fixed time-frequency resolution and a high-level of interband spectral leakage. A 

narrowband interference falling into one of the transform bins or subbands can 

be efficiently suppressed. The spectral variations of the interference between the 

transform bins (or subbands), however, cause a dynamic contamination in the 

desired signal (Fig. 5.5). In order to suppress this kind of jammer, more transform 

bins have to be removed, causing more loss of the desired signal energy [18].

5 .4.3  A d a p t iv e  S u b b a n d  T ra n s fo rm -B a se d  E xcis ion

An Mx M  block transform and an M-band filter bank achieve a fixed and uniform 

spectral resolution. In fixed transform-based excisers, the location of the interference 

spectrum and side-lobe attenuations of the basis functions are critical on the system 

performance. An adaptive subband transform tracks the variations of the input
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spectrum and minimizes the interband spectral leakage. This naturally reduces the 

undesired effects of the exciser on the desired signal spectrum. Hence, it improves 

the system performance.

An adaptive subband transform basis can be generated by using a simple 

subband tree structuring algorithm (TSA), as explained in chapter 4 [5][49]. For a 

given input spectrum, TSA recommends the best subband tree, regular or irregular, 

consisting of 2-band and/or 3-band prototype filter bank cells. The TSA considers 

both 2-band and 3-band PR-QMFs in order to handle the frequency regions around 

| ,  | ,  or y - The input spectrum or any subspectrum in the tree is hierarchically 

decomposed into its constituent orthogonal projections employing the generic two- or 

three-band subspaces. Therefore, the best subband tree for the given input spectrum 

is generated in order to localize the undesired interference.

Idle TSA algorithm analyzes the spectra at each node of the tree, with the 

assumption of ideal decomposition filters, and either justifies any further decom

position on the tree. For a given DSSS signal with narrowband interference, TSA 

hierarchically defines a subband tree with the best energy compaction and a minimum 

number of subbands using the given prototype 2- and 3-band basis functions. By 

fine partitioning of the spectrum, a superior frequency resolution is obtained. The 

interband spectral leakage is minimized in the range of narrowband interference by 

utilizing the frequency-localized filters and avoiding unnecessary splits.

5.4.4 A nalysis of Adaptive Filter Bank-Based Interference Exciser

A filter bank-based exciser is displayed in Figure 5.6. {/7i(eJU')} and are

the discrete-time Fourier transform of the analysis {A,(//)} and synthesis {</,(/;)} 

filter functions, respectively. The {£,} coefficients represent the excision weights. 

If particular subbands are excised, then corresponding bins are multiplied by zero, 

otherwise by one. The input-output relationship of the analysis/synthesis filter bank
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can easily be traced. The i th branch output, in Fig. 5.6 is written as

v;-(e^) =  Ei IJi (eJW) (7t- (eJU' ) /? ( eJU' ), (5.26)

where R(c-1w) discrete-time Fourier transform of input signal r{k).  The excision 

coefficient Ei is defined in the frequency domain as

Ei
1 , 1 <  i < i,
0 , *, <  i < iv . (5.27)

. 1 , iP < i <  i-M

where bins i\ < i < ip are assumed to be excised. The exciser output is therefore 

expressed as

M M
Y { e n  = Y . Y i { e n  =  ' £ E i H i { e n O i { e n R ( e n  (5.28)i=l i=l

The equivalent filter for the i lh branch can be defined as

T,((Jn  = E , U i ( c n ( u ( < ^ ) -  (5.29)

Hence, the output spectrum is expressed as

M
Y(e j u ) = Hi (eJw)G'i (e7'u' ) /?.(cJul). (5.30)

1 =  1

The signal power at the output of the exciser is calculated as

1
(Aw) =

j rn M
= (5.31)

1 = 1  

i'2 • " '*7» J

where Aiu is the total excision bandwidth. It is a function of the number of excised 

bins or subbands {zi, *2, • • • , ip}.

A similar result can also be obtained in the time domain. The i lh branch output 

is expressed as
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F ig u re  5.6 Generalized filter bank-based interference exciser.
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f/i{k) -  [ei{k) * hi{k) * (ji(k)}* r(k)  (5 .32)

where * represents a convolution operation. The excision weights {e,-(A:)} are 

similarly defined as,

Ci(k) =
S(k) , 1 <  / <  ?’]
0 , i i < i <  iP (5 .33)
S(k) , ip < i < M

The equivalent filter of the i 1 branch is defined as

yv-i
l i{k)  =  e f k )  * hi(k)  * (Ji(k) =  e f k )  * h t{m)g,{k  -  rn) (5 .34)

m=0

li(k) is a (2N — l)-ta.p linear phase FIR filter since fji(k) is the time reversed version 

of hi(k) [4][55], For the excised bins

c.i{k) — 0 — ► li{k) =  0 f o r  i =  ‘

The i ih branch output signal (with c-i(k) = 6(k)) is

2N-2
y f k )  = t i ( k ) * r ( k )  = ^  l ,(l)r(k -  I)

l=o
2N - 2  N -1

=  Y ,  I). (5.35)
1=0 7/1=0

With the assumption of p branches are excised in Figure 5.C, the output signal 

can be expressed as

M 2N-2
m  = E E w - i ) .  (5 .36)

v=i /=o

The transient effects of these FIR filtering operations should be noticed in the 

time domain. We assume that a (2N  — l)-tap FIR filter generates an A1-tap delay 

for an L-tap input. Therefore, the excised output signal vector will look like

y =  [d\ d'2 ••• (In -i }JN j/N+i • • • Vn +l- i  (1n +l d/v+i+i ••• d-^N-2)+/J7 (5.37)



where {r/,} are I,he transient. Hence,

y  =  [?//v f /N + 1 • • • v n + l - i ] 1 =  [y\  2 /2

is the desired output vector after the delay adjustment, with respect to the input, 

r = [7 *1  r2 and the filters used. Similar to Eq.(5.31), the excised output

power can be expressed as a function of the excision bandwidth,

L N + L - 1

=  Y ^ y 2(k) = y 2{k)
k=  1 k = N
N + L - 1 M  2 N - 2  N - 1

=  £  { £  £  £ M m ) r ; , ( / -  ?/7)r(A: - /)}2 (5.38)
k = N  ,= | 1=0 7 » = 0

I'^'l .'2. '.'p)

The output signal power is related to the excision bandwidth. Therefore, Eqs.(5.31) 

and (5.38) are equivalent.

5.4.5 Perform ance A nalysis of a Transform Dom ain Exciser-Based DSSS  
Receiver

We extend the performance analysis given in Sec. 5.3.1 to the case of transform 

domain exciser-based DSSS receiver in this section. The decision variable £ can 

be written as similar to Eq.(5.10). The summation, however, runs from (k — N)  

to (A: =  N  +  L — 1) in this case as explained above,

N + L - 1

£ =  Y1 !/(k H k ) (5.39)
k = N

The decision variable can be rewritten in the open-form as

N + L - 1 A/ 2 N - 2

t =  £  [ £  £  m r ( k - l ) ] c ( k )  (5.40)
k = N  i= 1 1=0

where ?•(/»:) is the input signal as r(k) = (kc(k) +  j ( k )  +  n(k)  and /,(/) was defined in 

Eq.5.34. Combining this into Eq.5.40, the decision variable (with the assumption of 

(■/;, =  +1) turns out to be 

N  + L - 1 M  2 N - 2

t  =  £  £  £  { t i ( l ) [ c ( k - l ) + j ( k - l )  + n ( k - l ) } } c ( k )  (5.41)
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N + L - 1 M  2 N - 2  N + L - 1 M  2 N - 2

= £  E  £ < . - ( / M * - /)* (* )+  E  £ £ * . • ( / ) ; ( * - ' M * )
A.-=/V i = l  7=0  k = N  7=1 7=0
7 V + / , - l  A/ 27 V -2  

+ £  £  £  A,(/)?7.(A:-/)c(A:)
A-=7V 7=1 / = 0

7 V + / . - 1  A-/ N + L - l  M  2 N - 2

= E E'.dVm + E E Ew'M‘-'W‘)
fc=A7 i = l  A.-=7V 7=1 7=1

N + L - 1 A-/ 27V—2 7 V + / . - 1  A-/ 2 / V - 2

+ E E E « W -W ‘)+ E E EM'Wt-'WO.
f c= N  7=1 7=0  7k=7V 7=1 7=0

Therefore, we can express the decision variable as

£ =  £ i + 6  +  6 -  (5.42)

The mean value of the decision variable £ (for the case of transform domain-

based exciser) is derived as (see Appendix B)

M  | N  + L — 1 M  27V—2

m  = tE'i(o) - 7 E E E M7). (5.«)
7=1 k = N  7=1 ( = |

Similarly, the variance of the decision variable is expressed as

uar[£] =  A ’[ ( £ i  +  £2 +  £ s ) 2 ] -  E ’2 [£ ] .

Since £1 , £2 , £3 are uncorrelated, we can rewrite the variance expression as

• o a r [ £ ]  =  w m - [ £ i ]  +  u « 7 - [ £ 2 ] +  7 » n 7 ' [ £ 3 ] ,

where

M  M  2 N - 2  M  1 N + L - 1 A/ 2 N - 2

i2E E  Ew)Mi)-[t&(»)-7 E EE'iioi2,
i = l r = l  7=0  7=1 k = N  i = l  ( =  1

(5.44)
M  M  2 N - 2  27V—2

wtr[£2] =  7-EE E E i m + o n . i L - 1 )
7=1 r = l  7 = 0  s = 0

1 7 V + L - 1  7 V + L - 1  M  M  27V —2 2 N  — 2

- 7  E E EE E E W M i w - / - ? + » ) ,
L  k = N  , , - N 7=1 r = l  7=0  s = 0

V * k

(5.45)
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M  A f  2 N - 2

< ;a r [6 ]  =  J 2  t >(l ) i r ( l )
i  =  I  r=  I 1=0
N + / v - 1 N  +  L - I  M  M  2 N - 2  2 N - 2

- t  E E EE £  £  m U ‘r t M - i - r + * > -
^  k = N  p = N  i = l  r = l  ; = 0  . 9 = 0

p?k
(5.46)

The non-trivial derivation steps of these variance terms are given in Appendix B.

The ( S N I R ) 0 for the transform domain exciser case is similarly defined as 

Eq.(5.I2). Furthermore, the BER performance of the transform domain exciser 

based DSSS receiver is calculated via Eq.(5.16) as defined earlier in Sec. 5.3.1. 

The analytical BER calculations of the transform domain exciser based receiver will 

be presented and compared with the experimental performance results in Sec. 5.7.

5.5 C osine-M odulated Binom ial-G aussian Filter-Based Excision

The narrowband interference excision can be performed efficiently by using a practical 

frequency window. Recently, it was shown that the performance of fixed transforms 

are not robust against non-stationary interferers. 'This can be explained by their 

fixed spectral resolution and frequency localizations. A sliding frequency window 

function with an adaptive bandwidth is more proper for excision. For this purpose, a 

Binomial-Gaussian function is an appropriate choice because of its simplicity, smooth 

frequency response, and excellent frequency localization [19]. By calculating the 

DFT of the received signal, a smart, interference localizer examines the frequency 

localization of the interference and its approximate bandwidth. Using this data, the 

Binomial-Gaussian window' generator calculates the corresponding filter coefficients 

(Figure 5.7). Then, the prototype filter is modulated to the interference frequency. 

The interference is excised by filtering the signal with this linear phase FIR filter and 

subtracting it from its delayed version. A comparator checks whether the excision 

goal is achieved.
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frequency
Localizer

N - l

F ig u re  5.7 Cosine modulated adaptive Binoinial-Gaussian frequency exciser.

The Gaussian approximation of the Binomial coefficients can be used to 

estimate the Gaussian pulse [19]. It can be written for N  1,

/ '
(5.47)

This Binomial sequence reassembles the Gaussian pulse successfully for large N . The 

factor of ( r; )/v■“ 1 normalizes the Binomial function’s frequency response to one at 

u> = 0 . Therefore, for a practical implementation of the Binomial-Gaussian function,

J W  =  (5 ) " - 1 (  1  )  (5.48)

can be used to replace the Gaussian pulse [19]:

(~A
= (5.49)

\F{e>“)\2 =  |w| < 7t, (5.50)
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where t.lie constant A is chosen so as to normalize the energy of the function to unity 

over [—7r, 7r]. The bandwidth of the filter (a) is determined by the variance of the 

Gaussian pulse. But the bandwidth in frequency is also related to the duration in 

time. Therefore, a closed-form relation is necessary between the duration (N)  and 

bandwidth of the filter, which ca.11 be approximated by N  =  as shown in [19]. 

For practical purposes, it is advisable to restrict the length of the filter to N  =  512 

taps. The modulation of the lowpass Gaussian window is performed using cosine 

modulation. The smart interference localizer estimates the center frequency u>f of 

the interference. The window generator modulates the filter f ( k )  to the desired 

position according to,

f ' ( k)  =  f ( k )  cos (u>c(k — (5.51)

The performance analysis of a. Binomial-Gaussian window-based exciser is 

exactly same as the linear prediction filter-based exciser which is explained in 

section 5.3.1.

5.6 Adaptive Tim e-Frequency Domain Exciser
5.6.1 M otivation and Description of ATF Algorithm

Figure 5.8 displays the flow diagram of the proposed adaptive time-frequency (ATF) 

exciser algorithm [48]. Unlike fixed transform techniques, the ATF exciser is capable 

of tracking and suppressing the time-varying non-stationary interferences. The 

novelty of the ATF exciser is two-fold. First, it evaluates the time features of the 

received signal in order to decide on the domain of the excision. A time window slides 

through the received signal and captures the samples winch exceed an amplitude 

threshold. Then, the total number of the captured samples (Nc) is compared to 

a predetermined threshold {Nt). In fact, this threshold is a measure of energy 

distribution of the signal in the time domain. If Nc is less than or equal to N t, then
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F ig u re  5.8 The flow diagram of the proposed adaptive time-frequency exciser 
algorithm.

those interfered samples are nulled in the time domain. In particular, if the 

interference is time localized, such a simple time domain excision technique can 

outperform any transform domain technique. It, is clear from the uncertainty 

principle that, for a time localized interference, no transform domain excision 

technique can be justified.

The second novelty of the ATF excision algorithm is its adaptive subband basis 

selection mechanism. As explained in Chapter 4, the TSA examines the spectrum 

of the received signal and defines the most proper subband tree structure. The 

contaminated or jammed subbands are discarded at the synthesis stage. The subband
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tree structure changes whenever the input spectrum varies. The spectral decompo

sition tracks to the variations of the input spectrum. If the interference does not 

exist or localize in any domain, the received signal is passed directly to the PN 

demodulator as it is shown in Figure 5.8.

The superior performance of the ATF over the existing excision techniques 

was reported in Ref. [49][47]. We will also include the ATF in our performance 

comparisons in the following section.

5.6.2 Perform ance of ATF under Tim e-Localized W ide-band Gaussian  
Interference

Figure 5.9 displays the performance of ATF and fixed transform-based excisers for 

pulsed (time-localized) wideband Gaussian interference. This jammer is an on/off 

type which is randomly switched with 10% duty cycle. The signal to interference 

power ratio is —20dB.  In this scenario, as expected, none of the fixed transform- 

based excisers is effective for interference suppression. However, the ATF exciser 

identifies the domain of the processing and successfully suppresses interference in 

the time domain. The dual treatment of signal properties in time and in frequency 

domains obviously bring significant performance improvements.

5.7 Perform ance Evaluation of Interference Excision Techniques

Performance evaluations presented in this section have two purposes. First, the 

validity of the analytical performance analyses presented earlier is checked with 

the performance simulations of a few DSSS communications scenarios. Second, the 

performance of several competitive interference excision techniques are compared 

and ranked under the same test conditions.

In order to evaluate the performance of a DSSS communications receiver 

employing the ATF exciser, a simulations package was created. The bit error events
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are counted for different simulation runs and then the results are averaged. The 

performance of the proposed ATF exciser along with DFT, DCT and fixed 64-band 

PR-QMF bank based excisers is evaluated. A 63-chip maximum length PN code 

is used to spread the input bit stream. This provides a white spectrum for the 

transmitted signal. The baseband signal bandwidth is normalized to unity and a 

BPSK modulation is assumed. The resulting DSSS signal is transmitted over an 

AWC1N channel. Three types of interferences are considered; a, single tone jammer, 

and a narrowband Gaussian jammer.

(i) S ing le  T one  J a m m e r  Case: A continuous sinusoidal interference with 

a frequency of 1.92 rad and uniformly distributed random phase {0 £ [0,27r]) is 

considered. The signal to interference power ratio is —20dB.  The ATF exciser 

employs 7-band irregular filter bank structure given in Figure 5.10. It has a fine 

spectral resolution around the interference frequency and minimum spectral leakage 

to uncontaminated bands. Figures 5.11 and 5.12 display the experimental and 

analytical bit error rate (BER) performance of the ATF exciser-based DSSS system 

along with a  few other fixed block transform exciser-based systems. The ideal curve 

represents the BPSK performance without any interference. The ATF exciser yields 

nearly optimal performance for sinusoidal interference. On the other hand, the fixed 

transforms (64-band filter bank, 128-point DFT and DCT) can not guarantee a 

good performance. Their performance depends on the frequency location of the 

interference signal. They perform relatively well if the frequency of the interfering 

tone exactly matches one of the transform bins. In Figures 5.11 and 5.12, the exper

imental and analytical BER performance of 63-point, KLT and 5(/‘ order LPEF are 

also presented.

(ii) C o m p a r is o n  o f  A n a ly t ic a l  a n d  E x p e r im e n ta l  R e su l ts :  Figures 5.13- 

5.17 display the bit error rate (BER) performance of ATF, 128-point DFT, 63-point, 

KLT, 64-band filter bank and 5(/l order linear predictor exciser based DSSS receivers,
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respectively. Each of these figures jointly presents the analytical and simulation 

performance results. A sinusoidal interference of u> =  \ .765ra,(l with S I R  =  —20dB 

is assumed in these examples, ft is observed from these results that the analytical 

performance studies presented are in match with the simulation performance of the 

DSSS communications scenarios tested.

(iii) N a r ro w b a n d  G au ss ian  J a m m e r  C ase: A continuous 10% bandwidth 

narrowband Gaussian interference with a center frequency of |  rad is considered. 

The signal to interference power ratio is —20dB.  The 5-band irregular filter bank 

structure generated by ATF exciser is displayed in Figure 5.18. As seen in the figure, 

the narrowband interference is confined in the third subband and it is excised within 

this subband. The BER performances are shown in Figure 5.19. The proposed ATF 

exciser yields the best performance compared to the other fixed transform-based 

excisers, the increase in the number of excised transform bins does not necessarily 

improve the BER performance since the desired components of the received spectrum 

arc also removed during the excision.

(iv) R o b u s tn e s s  of P e r fo rm a n c e :  One of the most important attributes of 

an interference suppression technique must be its robustness to time-varying signals. 

The BER performance results of the ATF exciser-based DSSS receiver for single 

tone jammer with varying frequency are displayed in Fig. 5.20. The similar results 

are displayed in Figures 5.21, 5.22, 5.23, 5.24, 5.25, and 5.26 for Binomial-Gaussian 

Window, 63-point KLT 64-banc! filter bank, 128-point DFT, 128-point DCT, and 5(/l 

order LPEF exciser-based DSSS receivers. It is seen from these plots that the ATF 

or Binomial-Gaussian window exciser-based systems achieve an robust performance 

but the other conventional techniques do not.
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F ig u re  5 .9 Bit error rate curves for time localized wideband Gaussian jam m er case 
(10% duty cycle, SIR =  —20clB).
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F ig u re  5.11 Experimental bit error rate curve's for sinusoidal jammer, SIR =  —20dB, 
tone frequency =  1.92 rad.
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F ig u re  5.12 Analytical bit error rate curves for sinusoidal jammer, SIR =  —20dB, 
tone frequency =  1.92 rad.
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F ig u re  5.13 Analytical and simulation BER pcrformanc :c of the ATF-based exciser 
for sinusoidal interference (SIR=-20dB, u> =  1.7(i5rad).
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F ig u re  5.14 Analytical and simulation BER performance of the 128-point FFT- 
based exciser for sinusoidal interference (SIR=-20dB, u> =  1.765ro</).
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F ig u re  5.15 Analytical and simulation BER performance of the 63-point KLT-based 
exciser for sinusoidal interference (SIR=-20dB, lo =  1.765rad).
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F ig u re  5.16 Analytical and simulation BER performance of the 64-band filter bank- 
based exciser for sinusoidal interference (SIR=-20dB, =  1.765rad).
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F ig u re  5 .17 Analytical and simulation BER performance of the 5th order LPEF- 
based exciser for sinusoidal interference (SlR=-20dB, cj =  1.7f>5rar/).
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F ig u re  5.18 Adaptive filter bank structure for narrowband Gaussian jammer case 
(center frequency =  | rad , SIR. =  —20(IB, SNR =  QdB).
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F ig u re  5.19 Bit, error rate curves for frequency localized narrowband Gaussian 
jam m er case (center frequency =  | rad , Sill - —20(IB).
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F ig u re  5.20 Bit, error rate curves of adaptive subband transform-based exciser for 
different frequency tone jammers (SIR =  —20dB,  uq =  0.5236r«d, u>2 =  1.765raci, 
u?;t =  1 Sir ad)
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F ig u re  5.21 B it error rate curves of cosine modulated Binomial-Gaussian window- 
based exciser for different frequency tone jammers (SIR =  —20dB,  uq =  0.5236r«d, 
u>2 =  1.705rad, u>3 =  1 2Y2ra.d)
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F ig u r e  5.22 Bit error rate curves of 03-, 7::' KLT exciser lor different frequency 
tone jammers (SIR =  —20dB,  uq = 0.52307Y«/, ui2 — 1.705rad, u>3 =  [,9'2rad)
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F ig u re  5.23 Bit error rate curves of 64-band regular filter bank exciser for different 
frequency tone jammers (SIR. =  —20dB,  uq =  0.52367w/, u>2 — 1.765?y/</, u ;! = 
l M v a d )
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F ig u re  5.24 Bit error rate curves of 128-point DFT exciser for different frequency 
tone jammers (SIR =  —20dB,  uq =  0.5236rad, u 2 =  1.765rad, lo-j — 1.92rad)
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F ig u re  5.25 Bit error rate curves of 128-point DCT exciser for different frequency 
tone jammers (SIR - —20dB,  uq =  0.5236raef, u>2 — l.7G5rad, w3 =  1.\Y2rad)
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F ig u re  5 .26 Bit error rate curves of linear prediction filter-based exciser for different 
frequency tone jammers (SIR =  —20dB,  uq = 0.5236ra</, u 2 = 1.7G5rad, tn3 =  
J .92/yu/)
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T IM E -FR E Q U E N C Y  ANALYSIS OF BIOLOGICAL SIGNALS

Tiine-lrequency signal representations characterize signals over a time-frequency 

, ' They combine time and frequency information to yield a potentially more 

revealing picture of the temporal localization of a signal spectrum. Time-frequency 

(TF) representations have been applied to analyze non-stationary or time-varying 

signals. Hence, T F  representations provide excellent platforms for biological signals 

because of their high non-stationarity.

The T F  representations of signals can be classified as linear and quadratic. The 

linear T F  representations might be the short-time Fourier transform (STFT) and the 

wavelet transform. All linear TF  representations satisfy the superposition or linearity 

principal. Linearity is a desirable property in any application involving multicom

ponent signals. On the other hand, the quadra,tic TF representations provide a 

time-frequency energy distribution or instantaneous power spectrum [23]. They are 

called quadratic since the energy is a quadratic signal representation. An energy 

distribution-based T F  representation tries to combine the instantaneous power and 

the spectral energy density. The temporal and spectral correlations can also be 

combined as an alternative quadratic representation [23], In reality signals may 

have unknown spectral components . In that case, TF representations may suffer 

significantly from cross-terms of these spectral components. This problem may be 

partially overcome by designing specific kernels for the signal at hand. This solution, 

however, requires stationarity in the signal. Unfortunately, this is not always the 

case, especially, for biological signals.

In the following sections, we explore the possibility of better representation of 

a particular biological signal, namely heart rate variability (HRV). It is known that 

there is a close relationship between the autonomic nervous system and HRV. A non-
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invasive analysis of sympathetic and parasympathetic components of the autonomic 

nervous system can be obtained by power spectral analysis of HRV [13][6]. The 

power spectral analysis, however, does not provide any temporal or time-localized 

information. Recently, time-frequency analysis of HRV signals has been suggested 

to provide temporal changes. Hence, the crossterms resulting from some of the TF 

analysis methods raise significant difficulties. We present a new method to overcome 

this problem [51]. First, the heart rate signal is analyzed with the existence of 

a reference signal. Then, HRV is spectrally tailored yielding to parasympathetic 

activity only. Finally, an STFT is utilized on the processed data  in order to obtain 

a TF representation.

6.1 Heart R ate Variability 

Characterizing and quantifying heart rate variability for diagnosis has been shown 

to be potentially useful in a number of clinically important conditions [6][38]. The 

HRV signal is basically computed from the electrocardiographic (FCG) signal. The 

computation of HRV actually involves detection of the R wave in the QRS complex 

of the ECCl signal (Figure 6.1 (a)) [42]. The FCG signal is recorded and sampled at a 

sufficiently high rate (/* =  200Hz)  to precisely locate the QRS-complex. The FCG 

signal is first passed through an R-wave detector which produces a rectangular pulse 

each time an R wave is detected (Figure 6.1(b)). Then, the interbeat interval (1BI) 

signal is calculated as a function of intervals between R-waves, as displayed in Figure 

6.1(c). The discrete values of 1B1 are, however, not equidistant along the time axis. 

In order to produce equidistant 1B1 signals, interpolation is needed. Thus, there is 

no new information from one beat to the other one, so all of the interpolated values 

between a beat at time 7’„,_| and the next beat at time1 Tm are set to equal to the 

time difference between Tm and 7’„t— i , which is actually the 1B1.
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T  - Tm in ■«

F ig u re  6.1 The computational steps of the 111iV signal: (a) electrocardiographic 
signal, (b) R-wave detection, (c) interbeat interval, (d) HRV signal (interpolated 
I III).
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6.2 Linkages of HRV with A utonom ic Nervous System  and R espiration

The heart rate constantly changes in response to physiological perturbations. Heart 

rate responses in intact people are mainly due to the integrated responses of both 

major branches of the autonomic nervous system [7]. Sympathetic input generally 

increases heart rate while parasympathetic input decreases it. Furthermore, changes 

in heart, rate often reflect the reciprocal action of the sympathetic and parasym

pathetic systems. It is usually not possible to distinguish sympathetic influences 

from parasympathetic influences. Typically, this problem has been approached by 

studying the heart rate changes after one branch of the autonomic nervous system 

has been blocked surgically or pharmacologically.

Sayers and others have characterized the power spectrum of normal HRV with 

three major peaks [41][l3]. The first peak is in a very low frequency band (VLF, 

0.1)2-0.06Hz). The second one is a in a low frequency band (LF, 0.06-0.15Hz). The 

last peak is at a high frequency band (VLF, 0.15-0.4Hz). Akselrod et al. studied 

the origin of these peaks pharmacologically [6]The 111' band has been equated to 

peak frequency of the respiration signal [16]. This respiration peak corresponds to 

the sinus arrhythm ia and it is purely parasympathetic in origin. While the 11F 

band is mediated by parasympathetic pathways, the LF band is mediated by both 

parasympathetic and sympathetic pathways. Assessment of parasympathetic activity 

from spectrum analysis can be obtained via a measurement of the area under the 

IIF peak.

6.3 D ata Collection

In this study, ten normal subjects (aged 19-53) participated in a cycling protocol. 

The procedure consisted of riding a cycle ergo-meter at 80vev /m in .  The initial 

workload consisted of pedaling at 80vev /m in  in an unloaded condition. Then after, 

the workload was varied such that the subject was maintained at a heart rate of 70%
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F ig u re  6.2 (a.) The HRV and (b) respiration signals for subject N0719.

of the age-predicted maximum. The subjects first sat on a bicycle for two minutes 

at rest, and were then instructed to pedal comfortably for two minutes until their 

heart rate achieved 70% of the age-predicted maximum. This pace was maintained 

for another four minutes, covering a total of six minutes of exercise. The subjects 

were then instructed to halt and rest without physical exertion for four minutes.

A ECG monitor was used to acquire leads I,II, and III of the ECG. The resulting 

signal was then acquired by a computer using an analog-to-digital converter. The 

time intervals between consecutive peaks of the QRS complexes were stored as the 

11JI. The IBI was collected during the cycling protocol in a twelve minute continuous 

file, along with a respiration signal to avoid the loss of any information during
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PSD of Heart Rate Variability (Subject: N0719) 
 1 1 1 1 1-----
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F ig u re  6.3 The power spectral density function of HRV (Subject: N0719).

transitions. Figure 6.2 displays an example of the HRV signal, along with respi

ration during the exercise protocol.

6.4 P o w e r  S p e c t ra l  A n a ly s is  a n d  S T F T  o f  H R V

The power spectral analysis of IIR.V can not show its temporal changes. There are, 

however, many situations of physiological interest where heart rate changes rapidly 

over time and the monitoring of these temporal changes may be of considerable 

interest. Figure 6.3 displays the power spectral density function of the HRV signal 

shown in Figure 6.2. It is clear from this figure that the parasympathetic activity in 

desired frequency band [0.15,0.5] is averaged.

The T F  representations are perfect candidates to monitor temporal-spectral 

changes. For example, the size-N DFT of a sequence extracted from ;r(«) [from x(it)
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l,o x(n  +  N  — 1)] can be written as [37]

- i2# 1
r ( M )  = Ylx(l + n)e •

/= 0

We can use a sliding window w(m)  of length N , which is non-zero only for the. interval 

(/? < ??? <  n -f N  — 1). Thus, we can rewrite Hq.(G.l) as

0 0  .  2 j t A -  / 1 n  v

F(A:,n) =  £  ^  . (6.2)
/ = —oo

If u’(l) is a. rectangular function, then Eqs.(6.1) and (6.2) are equivalent. Figure 6.4 

displays a T F  representation of a signal (employing a rectangular window for the

ST FT).

6.5 A daptive Time-F'requency Analysis of HRV using Respiration
Reference

Our motivation is to uncover the region of true parasympathetic activity. It is very 

well known that parasympathetic activity is highly correlated with the respiration 

frequency. An adaptive analysis method that traces the respiration frequency and 

extracts the corresponding parasympathetic activity from the IIRV signal is proposed 

in this section.

In particular, the parasympathetic activity can be precisely extracted from 

the IIRV signal by using a sliding frequency window with an adaptive bandwidth. A 

cosine-modulated binomial-Caussian function will be excellent match for this purpose 

because of its simplicity, smooth frequency response and excellent frequency local

ization. The generic block diagram of the adaptive time-frequency analysis method 

is shown in Figure 6.5. The method proceeds as follows:

(I) First, the respiration and HRV signal are broken into overlapping time windows 

to reflect the temporal changes of vagal activity over time and frequency. For 

a typical subject, the window length is chosen as 150 samples (7.5 secs), where
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T IM E  (M in ) F R E Q U E N C Y  (H z )

Figure 6.4 TF representation of the HRV, employing the STFT with a rectangular 
window (length=150 and overlapping amount=32) (Subject: N0719).
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F ig u re  6.5 The generic block diagram of adaptive time-frequency analysis.

each successive window is shifted by 32 samples (1.6 secs) from the previous 

one. These particular values are chosen such that the temporal changes can be 

closely monitored during the analysis.

(II) Second, a smart frequency localizer examines the peak frequency of the respi

ration (w/f). Also, the frequency localizer detects the half-power bandwidth of 

the respiration peak in the HRV {I3nnv) hi that particular time window.

(III) The binomial-Gaussian generator produces an M-tap, low-pass prototype (./’.}), 

with the given approximate bandwidth (/3/yyyv).

(IV) The low-pass prototype is modulated to the respiration peak frequency by 

means of cosine modulation, as

[(h) = f p(k)co.s[ujr{k -  A— 1)]. (6.3)

(V) The HRV data segment is filtered or shaped with the bandpass filter given in 

Rq.6.3.
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(VI) The S l 'F T  is applied on the filtered IIRV signal, and TF plots are finally 

obtained.

(VII) The window is shifted through the HRV and respiration signals. The procedures 

(through VII) are repeated until the end of the data  files.

Figure 6.6 displays a normalized power spectrum of a, typical subject’s HRV on 

the time-frequency plane without any processing. As seen from the figure, the desired 

information is smeared with the undesired information. After adaptive tailoring 

of the HRV by binornial-Gaussian filtering, however, the desired parasympathetic 

activity becomes clearly visible, as shown in Figure G.7. In some cases HRV signal 

may not be clear (Figure 6.8) then the advantage of this method becomes more clear 

(Figure 6.9).

Although the proposed method is a non-pa.rametric analysis, the time-frequency 

properties of the analyzed signals are closely monitored and utilized in TF analysis. 

The Binornial-Gaussian window used here is by no means optimal, but it does 

provide precise results. Also the STFT may not be the only alternative for the TF- 

representation. Other TF-representations such as Wigner-Wille or Choi-Williams are 

also expected to yield good results after adaptive treatment of the HRV signal. Note 

that the signal is almost tailored to a single component so that the effect of cross- 

terms would naturally be minimal. For example, the TF-representation of a chirp 

signal is perfect since it is a single component signal with time-varying frequency. In 

conclusion a T F  representation would benefit greatly if the biological signal can be 

tailored before any T F  operation.
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F i g u r e  6 . 6  T F  r e p r e s e n t a t i o n  o f  t h e  H R V  w i t h o u t  a d a p t i v e  a n a l y s i s  ( l e n g t h = 1 5 0
a n d  o v e r l a p p i n g  a m o u n t = 3 2 )  ( S u b j e c t :  G 0 7 1 9 ) .
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F R E Q U E N C Y  (H z )

F i g u r e  6 . 7  T F  r e p r e s e n t a t i o n  o f  t h e  H R V  w i t h  a d a p t i v e  a n a l y s i s  ( l e n g t h = 1 5 0  a n d
o v e r l a p p i n g  a m o u n t = 3 2 )  ( S u b j e c t :  G 0 7 1 9 ) .
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F R E Q U E N C Y  (H z )

F i g u r e  6 . 8  T F  r e p r e s e n t a t i o n  o f  t h e  H R V  w i t h o u t  a d a p t i v e  a n a l y s i s  ( l e n g t h = 1 5 0
a n d  o v e r l a p p i n g  a m o u n t = 3 2 )  ( S u b j e c t :  R 0 7 1 9 ) .
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F i g u r e  6 . 9  T F  r e p r e s e n t a t i o n  o f  t h e  H R V  w i t h  a d a p t i v e  a n a l y s i s  ( l e n g t h = 1 5 0  a n d
o v e r l a p p i n g  a m o u n t = 3 2 )  ( S u b j e c t :  R 0 7 1 9 ) .
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CONCLUSIONS

The purpose of this dissertation was to gain insight into multirate signal decompo

sition through the optimal design problem and potential applications. In examining 

the design techniques, we found that the optimality of the hierarchical filter banks 

reported in the literature needs to be seriously questioned. The M-band filter bank 

hierarchical or direct structure was revisited and a new method, namely progressive 

optimality, was proposed for the optimal design problem. The progressive optimality 

concept suggested the step-by-step design of an M-band equal or unequal bandwidth 

filter bank in a hierarchical tree. As a matter of fact, the M-band hierarchical filter 

bank was optimized such that the final product filters were assured to be optimal. 

A number of examples were presented. We also tested several subband image 

coding scenarios for practical verification. The results highlighted some performance 

improvements in subband image coding, as expected. The problem of the best basis 

function selection was also questioned and the adaptive subband transforms based 

on tree structuring were studied within this context. The adaptability of the tree 

structures, complexity, and arbitrary time-frequency tiling were briefly examined.

Next, we investigated the applications of linear transforms for an inter

ference excision problem in direct sequence spread spectrum communications. 

We studied different interference excision techniques along with the proposed 

adaptive time-frequency excision algorithm. The adaptive time-frequency excision 

algorithm basically monitors the time and frequency properties of the received signal. 

Furthermore, a simple windowing method, cosine modulated Binornial-Gaussian, 

was also proposed as an efficient transform-domain exciser. The robustness of the 

different, methods against different types of jammers were researched. The analytical
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results were derived and extensive computer simulations were performed for signal- 

to-noise-and-interference ratio improvement and bit error rate performance measures 

of all tested schemes.

The final research topic concentrated on spectral processing of a particular 

biological signal; namely heart rate variability. It is very well known that IIRV 

and the autonomic nervous system are interconnected. The motivation here was to 

adaptively extract a certain subspectrum of IIRV that corresponds to the parasympa

thetic, activity of the autonomic nervous system. An adaptive pre-processing method 

based on a cosine-modulated Binornial-Gaussian window was utilized. For this case, 

the respiration signal’s peak frequency is used as a reference. A linear time-frequency 

representation operator was applied on the resulting signal. Finally, we showed that 

the pre-processing of an HRV signal clearly improves the time-frequency represen

tation.



A P P E N D IX  A 

SU B B A N D  IM AGE CO DING  TEST RESULTS

FILTER COMBINATION : FIRST STAGE / SECOND STAGE / THIRD STAGE 

16-TAP UNCORR. / 8-TAP MULTIPLIERLESS / 6-TAP MULTTPLIERLESS

10-BAND IMAGE CODEC 64-BAND IMAGE CODEC

bit rate = 0.2bits/pixel 
SNR = 26.42dB

bit rate = 0.2bits/pixel 
SNR = 26.17dB

Figure A .l  Perceptual performance comparison of 10-band dyadic and 64- 
band regular 2-D subband image codecs for given filter combination (bit rate = 
0.2bits/pixel).
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FILTER COMBINATION : FIRST STAGE / SECOND STAGE / THIRD STAGE 

16-TAP UNCORR. / 8-TAP MULTIPLIERLESS / 6-TAP MULTIPLIERLESS

10-BAND IMAGE CODEC 64-BAND IMAGE CODEC

bit rate = 1 bit/pixel 
SNR = 34.88dB

bit rate = 1 bit/pixel 
SNR = 34.89dB

F ig u re  A .3 Perceptual performance comparison of 10-band dyadic and 64-band 
regular 2-D subband image codecs for given filter combination (bit rate =  lbit/pixel).



1 4 3

FILTER COMBINATION : FIRST STAGE / SECOND STAGE / THIRD STAGE 

16-TAP UNCORR. / 16-TAP UNCORR. / 16-TAP UNCORR.

10-BAND IMAGE CODEC 64-BAND IMAGE CODEC

bit rate = 0.2bits/pixel 
SNR = 26.13dB

¥

bit rate = 0.2bits/pixel 
SNR = 26.25dB

F ig u re  A .4 Perceptual performance comparison of 10-band dyadic and (v 
band regular 2-D subband image codecs for given filter combination (bit rate : 
0.2bits/pixel).
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FILTER COMBINATION : FIRST STAGE / SECOND STAGE / THIRD STAGE 

16-TAP UNCORR. / 16-TAP UNCORR. /  16-TAP UNCORR.

10-BAND IMAGE CODEC 64-BAND IMAGE CODEC

bit rate = 0.5bits/pixel 
SNR = 29.80dB

*

bit rate = 0.5bits/pixel 
SNR = 30.08dB

F ig u re  A .5 Perceptual performance comparison of 10-band dyadic and 64- 
band regular 2-D subband image codecs for given filter combination (bit rate =
0.5bits/pixel).
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64-BAND IMAGE CODEC
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A PP E N D IX  B 

DERIVATIO NS FO R TH E M EAN A N D  TH E VARIANCE VALUES  
OF THE DECISION VARIABLE  

B .l  Linear Prediction-Based Exciser Case

(i) The mean value of the decision variable <!; for linear prediction-based  

exciser case:

We will derive the three terms in Eq. 5.13 as the following. Using Eqs. (5.9) and 

(5.10)

Iv L M - 1

£ [ 6 ]  =  # E c 0(fc)c(A:)] =  E [ J 2  E  h{ni)c{k)c(k  -  m)]
k =  1 k = l  m = 0

/. I, A/— I

=  E £ > ( 0 ) c 2(fc) +  E E  h\ ,n)<ik)c{k -  m)]
k = l  k = \  711= 1

/, L  A /-1

-  /i(0)$>2(*) + /?[£ E  -  m)]
k — 1 ^’= 1  m = l

L  A/-1

=  /»(0)L +  Y1 £ / / ( m ) /^ r ( A : ) r ( £ - m ) ] .  (B.l)
A,”  1 i n ~  I

Since the PN sequence is a deterministic sec|iience with the well-known correlation 

properties,

E[c{k)c{k -  in)] = I , if m — 0 
^  , otherwise

Then Eq. (B.l) can be expressed as

A / - 1

E[f,] =  h ( 0 ) L -  £ > ( m )  (B.3)
711 =  1

Similarly, the second and third terms can be easily derived as

L L M-1
E[h]  =  f i [D u (A :)C(fc)] =  E E  ) c ( k ) ; j {k -„i ) }

k"= 1 k =  1 m = U

L M ~ 1
= J 2 c(k) E  k( tn)E[ j (k -  in)] =  0

k =  1 m = ( )

L L  A / - I

£[&] = li(52Mk)c[k)] = ’̂tE E  Hiii)c{h)n{k -  m)]
A*=l A:= 1 /M=0

1 4 6
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/ ,  A ' /  — 1

=  X 6'^ ’) X  li{rn)E[v.(k -  i n )] =  0.
fc=l m = 0

Therefore, the mean value of the decision variable is found as

A /  — 1

m  = = m t -  e m ™ )  (b.4)
?;i =  I

(ii) The variance of the decision variable £ for linear prediction-based  

exciser case:

Since {c(A:)} , {j{k)}  and {n(k)}  are assumed to be uncorrelated processes, the 

variance of the decision variable is expressed as the following The three components 

of the variance expression in Eq. (5.14) are calculated as

L L  A / - 1  A / - 1

var[£i] =  E E  E  E  E[c{ k ) c( k  — tii. )c(l)c(l — ]>)]h{ rn) h (p) (B. 5)
k =  1 I — 1 7/ i~ I p = \

which can be divided into two parts as 

L M - 1

=  E  E  E l c \ k ) c ‘ (k _,„)]/,*(„>) +
k=  1 r / i  =  1

( l = k ) ( p = m )

L L M  — 1 A / - 1

E  E  E  E  ^[c(A:)r(A* — ?7i)<T(/)c(/ — p)]A(»/*)/i(/^).
J t = l  ( = 1  m = l  ; i =  1

( p f r n )

Since c2(k) and c2(k — m) are equal to 1, we can rewrite as 

L  A / - 1  / ,  L M - 1 i W - l

=  E  E  +  E  E  E  E  fi’[c(A:)c(A-T/7)c(/)c(/-7j)]/t(m)//.(7>)
A =  1 » l = l  A : = l  I s s l  771 =  1  / > =  1

( l = k )  ( p = m )  t £ k  ( r # m )

(B.6)

For long PN sequences it can be shown that E[c(k)c(k — m)c(l)c(l — p)\ has a

non-zero value oidy for k =  I and m = p conditions [24][28]. Obviously these

conditions can not be satisfied in the second term of Eq. (B.G). Therefore, Eq. (B.G) 

becomes



L M - 1 A7 — 1

u«j,[6] =  X  E ^ V )  =  ^  X /,2(m )
Ar= I 771 =  1 7/1 =  1

Si mi lari 3',

/.  L  A / - 1  A / - 1

u«?,[6] =  E X E  X ^ [ c(A)c(O i( fc -» « ) j / ( f - /0 ]M ” OMp)
Ar=l / = 1 7 / i= 0  7 /= 0  

Since {o(/>■)} , and { j ( k)} are assumed to be uncorrelated

E[c(k)c(l)j (k -  m ) j ( l  -  p)] =  E[c(k)c(l)}E\j{k -  rn)j{l -  p)]

E[c(k)c(l)] was given in Eq. (13.2), and

E\j{k -  m ) j (I -  p)] = li j (/,■ -  rn -  I +  p),

(where /?j(0) =  a 2). Therefore,

L  A /  - 1  A7 - 1

<w ’[6 ]  =  X  X  X  ll( , n )ll( p ) l l l (P ~  m ) +
k =  i 7/1 = 0  p = 0

('=*■•)
L L  A / - 1  M - 1

E X E  X ^ c(^)^(/)]Mm)M,;)/?J( A - m - /  +  />)
A := l ( = i  7 /1 = 0  p = 0

(i/fe)
M —\ A7 — 1

= L J 2  X  /*(m)/i(p)/ij(p — 7?i)
7/1 =  0  p = 0

J L L  A /  - 1  A / - 1

- t E  X  X  X /i(m ) % ) ^ j ( ^  - m - /  +  p)
^ • = 1  (= 1  7 / /= 0  ; ; = 0

Finally, the variance of the last term is derived as

L  L  A/ — I A - / - I

*>«»’[&] =  X X  X  E  F[c(A’)c(/)/i(A: -  m )n( l  -  /;)]//.(?//)//(/>)
A '= 1 1 =  I 771=0 7 ? = 0

Since {c (k )} , and {n(k)}  are assumed to be uncorrelated

E’[c(A:)c(/)/i(A: — rn}n(l — p)] =  E\c(k)c(l)]E[n(k — ni)n(l — p)]
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(B-8)

(13.9)

(13 - 1 0 )
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E[n(k — m )n( l  — />)] =  R n(k — m — I + p) =  afl6(k — m  — I +  p).

(where R n(0) =  a*). Therefore,

l, M  — 1 a /  — i

= X] E [c2{k)} Y  Y  / i{rn)h(p)Rn{p -  m)
/. = ] ?/i=0 ;/=0

( i = k )

L  L M  — 1 A / - 1

k =  1 /= 1 7/1 = 0 p = 0
(/ /A:)

M  - 1  2 L L A/ — 1 A/ — 1

= / . ^ E ' ' > ' ) - f £  E  E  E
m = 0  v A:=! /=  l 7 / i = 0  p = 0

( ¥ * )

(B. l  1)

Hence the total variance can be written as

M - l  M - l  M - l

i>ar[£] =  L Y l>2(rn) + LY Y h (m)h(p){ ltj{P ~  " 0  +  anHP ~  " ')}
7 //  =  l  7 / 1 = 0  p = 0

, L  L  A / - 1 M - 1

- j Y  Y Y Y ^ y ^ r i i R A k - m - l +  p ) + ( r l 8 { k - n i - l +  p ) } .
^  k = ]  1= 1 771 =  0  p = 0  

( / * * )

( 13. 1 2 )

B.2 Transform Dom ain-Based Exciser Case

(i) The mean value of the decision variable £ for transform dom ain-based  

exciser case:

Since {c(A:)} , {t (/<’)} and (n (k)} in Eq. (5.4 1) are uncorrelated processes, then

The first term

M  N  +  / . - 1  M  2 At—2

mf.l = e[iEfi(°) + E  E  E  WHk -  ()'-■(*)]
i = l  k = N  i =l  1=1
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M  N + L - l  M  2 N - 2

= ^D.-(°)+ E  E E 'i( ')W -'W i)]
;=i i=/v i=i i=i

By considering Eq. (B.2),

M  i A ' + l . - l  M  2 N —2 M  2 N - 2

£[£.] = -  7 E  E  E  *<(0 = *E>(o) - E mo- (b.j3)
i  =  l  * = 1 V  1 =  1 ( = 1  t ' = l  1=1

Similarly, the second term is calculated as

N + L - l  M  2 N - 2

mil = ci E  E  E'i(owi)i(i--o] (b.14)
k = N  i '= l  / = 0

N + L - l  M  2 N - 2

= E  £  £  M0*ww*w*-fll -  ®
k = N  i=l 1=0 

The last term is expressed as

N + L - l  M  2 N - 2

«[&l = e{ E  E  E'.(')W*>(i'-')] (u.i5)
k = N  i = l  1=0

N  + L - l  At  2 N - 2

= E  E  E '^ n m im k - D i  = o
k = N  1 = 1  1 = 0

The mean value of the decision variable £ is therefore found as

M  1 N + L - l  A! 2 N - 2

m  = £[fil = © '( » ) - T E  E E '■(')• (B.io)
i = l  f c = A l  1 = 1  1 = 1

(ii) The variance of the decision variable £ for transform dom ain-based  

exciser case:

The variance of £ in Eq. (5.42) for the transform domain-based exciser case is 

calculated as

var[t] =  A’[£2] -  E’2[£]

Assuming that all three processes {£, , £2 , £3} are uncorrelated and using Eq. (5.43), 

then,

” «»•[£] =  ^ [ ( 6 + 6  +  6 ) 2] - ^ 2^]

=  m + m \ + «  -  £ 2k.]-



Resulting with,

-(;«?•[£] =  uar[£i] +  i w [£2] +

The first term can be written as 

N + L - l  M  2 N - 2

uor[£i] =  i>a?-[ E  E  E  i i(l)c(k)c(k — /)]
k = N  i = l  1=0 

N + L - l  N + L - l  M  M  2 N - 2  2 N - 2

=  E[ E  E  E E  E  E  ti(l)tr[s)c(k)c{k — l)c{p)c(p — J»)]
k = N  p = N  i = l  r = l  1=0  * = 0

N + L - l  M  2 N - 2

-&{ £  E  Emw-m*-')]
k = N  1=1 1=0

N + L - 1 / V + t - 1  M  M

E  E  E  E  i.-(0)/r (0)/?[c(A)c(t -  0)c(p)c(p -  0)]
k —N  p = N  i = l  r —\

N + L - 1 / V + L - l  A'/ A'/ 2 / V - 2  2 / V - 2

+ E  E  E E  E  E  - / WhWp -«)]
=  W  P = 1 V  1 = 1  7 - 1  ( = 1  . 1 = 1

A'/ , N + L - l  M  2N - 2

-liE'i(o) - t E  E  Eel'll2
1=1 ^  A-=1V 1=1 1=1

However, it is obvious that E[c(k)c(k — 0 )c(p)c(p — 0)] =  E[c2(k)c2(/i)] =  1 and 

then

M  M  M  , N + L - l  M  2N - 2

tw[£i] = t2E  E  u(o)m -  i/-E(i(°) -  t  E  E  E  «')la
1=1 r  =  1 1 = 1  ^  /c=yv 1=1 1 = 1

A l + t - 1  1 V + / . - I  A-/ M  2 N - 2  2 N  — 2

+ E  E  E E E  E  i/(0i.(.’)CH<:)c(t- /)c(p)c(P-.-)]
k = N  p = N  i = l  r = l  1=1 s = lv----------------------------------------------v---------------------------------------------- ■>

A
(B.l 7)

Eq. (B . l7) can be further simplified for the following cases:

(i) For the short-length sequences, considering that PN-code is deterministic to 

the desired user, the expectation operation in Eq. (B . l7) can be dropped [25].

(ii) For the long-length sequences, the PN code has the white noise property
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E[c(k)c(p)c(k -  l)c(p -  s)} =
1 , if I =  .s =  0

, I > 0,  s > 0,  k = p . (B.18)
0 , otherwise

Therefore, the expected value in A of Eq. (B.17) can be rewritten by using the 

conditions of Eq. (B.18) as

E[c{k)c{k -  l)c{p)c(p -  .s)] =  S{k -  p)E[c(k -  l)c(p -  s)] =  S{k -  p)8{s -  I).

Finally, the variance of is expressed as

M  M  M  | N + L - 1 M  2 N - 2

uo.r[6] = i2E  E  '.(o)c(o) -  [/©,(«) - 7 E  E  E  M')l2
i = l  r = l  i = l  k —N  i — 1 1=1

M  M  2 N - 2

+i2E E  E  momo1=1 7 = 1 1=1
M  M  2 N - 2  M  I N  + L - 1  A1 2 N - 2

= A2E  E  E  (')'.(/) - HEMO) - 7 E  E  E  M')]2.
t = l  r = l  1 = 0  1=1 ^  fc=/V 1=1 1=1

(B-19)

This term corresponds to distortion of the code due to the transform domain excision 

operation. Note that, if there is no excision, Eq. B.19 becomes zero.

The variance of the second term is given by 

N + L - 1 M  2 N - 2

f;ar[£2] =  var[ E  E E  ‘. m m *  -  ill
k=N  1=1 /=o

N + L - 1 N  + L - l  M  M  2 N - 2  2 N - 2

=  c i  E  E  E  E  E  E  u m m >  -  O M *w rt>o>  -  *>i
h ~ N  p—N  i — 1 t — 1 1=0 .s=0

N + L - l  N + L - l  M  M  2 N - 2  2 N - 2

= E  E  E E  E  E  ! , - ( / ) ( , - m >-* )] •
k = N  p = N  1=1 r =  1 1=0 a = 0

(B.20)

Since {c-(A1)} and {j{k)}  are uncorrelated,

E[c{k)c{p)j{k -  l)j{p -  ,)] =  E[c(k)c{p)\E[j(k -  l )j (p  -  . s ) ] ,

and
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E [ j ( k - l ) j ( p - s ) }  = Rj (k — I — p + s).

Eq. (B.20) becomes,

N + L - 1 M  M  2 N —2 2N - 2

w« r ( 6 ]  =  c 2 ( k ) m 2  W ) i r { s ) R j ( s  -  I )
k = N  i = l  r =  1 1 = 0  .9=0

. N + L - l  N + L - l  M  M  2 N - 2  2 N - 2

- t  E  E  E E E  S  liW'Wtyk-i-p+a),
L  k = N  V=N i = l  1 - 1  ( = 0  .5=0

jivOc
M  M  2 N - 2  2 N - 2

= ‘E E E  E  momk) « > - o
i =  1 r = l  1=0  .9=0

■ J V + L - 1  N  +  L - l  M  M  2 N - 2  2 / V - 2

- r  E  E  E E  E  E  miA»)Ki(k-‘ -r+»)-
k = N  , , - N t '= l  r =  1 1=0  .9=0

p?k
(13.21)

Similarly, the third term is derived as 

/ V + / . - 1  M  2 N —2

i;ar[£.-j] =  var  I E  E  E  h(l)c{k)n(k -  l)}
k - N  1=1 1=0

N + L - l  N  + L - l  M  M  2 N - 2  2 N - 2

= «[ E  E E E E E  ~ i)iA°)c(iMr - >) j
k = N  p = N  i = l  r = l  1=0 .9=0

N + L - l  N + L - l  M  M  2 N - 2  2 N - 2

= E  E  E E E  E ‘tN M m m i ’Mk-in,,
k = N  p = N  [= 1  r = l  / = 0  s = 0

(13.22)

Since {c(A')} and {/?.(k)}  are uncorrelated,

E[c{k)c{p)n(k -  /)??,(/? -  s)] =  E{c{k)c{p)]E\n{k -  l)n(p -  s)]

E[n(k -  l)n(p -  s )] =  R n{k -  I -  p +  s) =  <r^(Jk_,_|i+j).

then



1 5 4

N + L - 1 M  M  2 N - 2  2 N - 2

” «*■[&] =  £  c2( * ) £ £  £  £  W) t r ( * ) Rn ( s  - 1)
k = N  i = l  r = l  1=0 .9=0

■ N + L - l  N + L - l  M  M  2 N - 2  2 N - 2

-7 E E E E  E E u w , ( i < ) K „ ( k - i - p  +  a),
^  k = N  , , - N i = l  r =  1 1=0 .9 = 0

p?k

M  M  2 N - 2  2 N - 2

C E E  E
i —l r = l  1=0 s=0

i N + L - l  N + L - l  M  M  2 N - 2  2 N - 2

- f  E E E E  E E t i (l)LT(s)crfl6 ( k  — / — p -f s)
k = N  V=N t = l  r = l  / = 0  s = 0

Ji/A-

A-; A/ 21V- 2

= L̂ £  £  £
1 =  1 r  =  l / —0

I N + L - l  N + L - l  A/ A/ 2 N - 2  2 N - 2

- T  £  £  £ £  £  £  /,(/+(.s)<T^(^:
J k = N  p~ w i =  l 7" =  1 / = 0  s = 0

p?k

Therefore, the total variance is expressed as the sum of the three terms as
M  M  2 N - 2  M  . N + L - l  M  2 N - 2

««»■[£] =  ^ 2£  £  £  W r i t )  -  [££/,■(o) -  t  £  £  £  «,-(/)]
1=1 7 =  1 1=0 i= I / j  t = yv 1 =  1 1=1

M  M  2 N - 2  2 N - 2

+ L E E  £  £  t i m ^ n A s - i )
7=1 r = 1 / = 0  5 = 0

|  N + L - l  N + L - l  A'/ M  2 N - 2  2 N - 2

- 7  £  £  £ £  £  £  ii(/)/r(J)fiJ( i - / - p  + S)
^  fc=JV ,,=  w i = l  r = l  1=0 .9=0

P̂ k
M  M  2 N - 2

+i",!EE E  (0
i = l  r =  1 1=0

■ N + L - 1 N + L - l  M  M  2 N - 2  2 N - 2

7 E E E E  E E '-?+*)•
*J  I  A 7  . ' I  I  1 n  — t \k = N  jj=Af t =  1 r = l  / = 0  .s=U

Pfik
( 13.2 4 )
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