
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI 

films the text directly from the original or copy submitted. Thus, some 

thesis and dissertation copies are in typewriter face, while others may be 

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete 

manuscript and there are missing pages, these will be noted. Also, if 

unauthorized copyright material had to be removed, a note will indicate 

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand comer and 

continuing from left to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in reduced 

form at the back o f the book.

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6” x 9” black and white 

photographic prints are available for any photographs or illustrations 

appearing in this copy for an additional charge. Contact UMI directly to 

order.

UMI
A Bell & Howell Information Company 

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 
313/761-4700 800/521-0600





UMI Number: 9618582

Copyright 1996 by 
Liang, Hancheng

All rights reserved.

UMI Microform 9618582 
Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized 
copying under Title 17, United States Code.

UMI
300 North Zeeb Road 
Ann Arbor, MI 48103



ABSTRACT

STUDY OF STRESS IN MICROELECTRONIC
MATERIALS BY PHOTOELASTICITY

by
Hancheng Liang

The study of stress is playing an important role in microelectronic technology. In 

comparison with other techniques, the photoelasticity technique has the advantages of 

having high spatial resolution and high sensitivity. It can be used in qualitative observation 

in real-time and quantitative determination of stress distribution in the microelectronic 

materials and devices.

This dissertation presents a systematic study of photoelastic stress analysis in 

microelectronic materials and devices, ranged from theoretical study to practical system 

setup, from measurement methods to their applications. At first, based on the detailed 

survey on the piezo-optic properties of the crystals used in microelectronics, we apply the 

stress-optic law of engineering mechanics to study the stress in crystals, such as silicon, 

gallium arsenide, and diamond. We, for the first time, derive the relationship between the 

stress ellipsoid and the refractive index ellipsoid, and, derive the matrix forms of piezo­

optic coefficient tensor for several commonly used coordinates. These theoretical results 

have laid a firm ground for the photoelastic stress analysis of microelectronic materials and 

devices. Second, based on exclusive experiments, we develop several effective methods of 

photoelastic analysis to determine the stress state in the samples. Some of them are 

successfully borrowed from the classic photoelastic mechanics, such as the Semarmont 

compensation which is used to determine the decimal fringe of the isochromatic line, and 

the shearing stress difference method which is used to separate two principal stresses and 

obtain the stress distribution of a sample. We also provide our origination to the 

photoelastic techniques, such as the three-direction observation method which is used to



abstract the principal stresses from the secondary principal stresses; the Fourier analysis 

method and the intensity analysis method, both of which are especially suitable for 

precisely and automatically determining the principal stress distribution in a large area. 

Combining computer and digital image processing techniques with photoelastic 

techniques, we set up a photoelastic measurement system, which has the capability of 

qualitative observation of the photoelastic patterns and quantitative measurement of the 

stress distribution.

We apply the photoelasticity principles and methods to investigate the stress state in 

microelectronic materials, including developing a series of feasible methods to measure the 

stress distribution of the microelectronic materials and devices, investigating the 

mechanisms of stress induction and stress change. For example, we investigate the stress 

distribution of a synthetic diamond substrate, study the stress induced during the typical 

impurity diffusion processes for manufacturing power diodes, and analyze the stress 

induced in the thin film/substrate structures. We also develop some models to explain the 

measurement results and provide theoretical discussions of the results.
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CHAPTER 1

INTRODUCTION

In this chapter we introduce some background information, including the significance of 

stress study in microelectronics and the methods of measuring stress in microelectronic 

materials and device structures. We will briefly review the previous research on 

photoelastic stress analysis. Finally, we will introduce the research work we have done 

about the subject.

1.1 Background Information

1.1.1 Importance of Stress Study in Microelectronics

The study of stress plays an important role in microelectronic technology. The presence of 

stress will affect the performance and reliability of the device. For example, the mechanical 

stress in deposited thin films has been found to be the main cause of the problems of film 

cracking, delamination or void formation. Even some of the more subtle problems, such as 

junction leakage and parametric shifts, may be partially caused by stress [1], The stress 

generated during the stripe fabrication of a InGaAsP ridge-waveguide laser changes the 

waveguide properties o f the laser [2], With stress, the current-voltage characteristic in a 

Schottky diode deteriorates due to the change of both the shunt resistance and the 

effective Richardson constant of the Schottky diode [3], Semiconductor structures 

containing strain layers have formed the basis of a new class of semiconducting materials 

and devices, but the presence of strain may also lead to a greater likelihood of dislocation 

nucleation and, therefore, to an accelerated degradation of the devices [4],

Almost every step of microelectronic processing, such as grinding, polishing, 

epitaxy, oxidation, metallization, diffusion, ion-implantation, and packaging, may

1
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introduce a drastic change of the stress state in a device or integrated circuit. Stress in a 

semiconductor crystal may come from the damage of surface during crystal surface 

processing, or may originate from the internal stress due to dislocations, excess vacancies, 

and impurities with different atomic radii from the semiconductor crystal. Stress also arises 

from the thermal gradient during crystal growth. Vapor disposed thin film on a 

semiconductor wafer will induce strong internal stress during deposition [5], In brief, there 

are various sources of stress. Stress is closely related with the defects in the crystal. The 

stress and the defects in crystal always interact with each other. We regard the stress field 

in microelectronic materials as somewhat continuous and changeable generalized defect. It 

is an important subject in microelectronic technology to investigate the mechanisms of 

origin, evolution and elimination o f stress and to understand the effect of stress on the 

performance of material and device as well as to control the stress in device structures.

1.1.2 A Survey of Stress Measurement Methods

Stress and strain may be determined by surveying the change of crystal lattice, by 

measuring the curvature of a wafer sample, or by studying the birefringence. A commonly 

used method of determining change of the crystal lattice constant is X-ray diffraction [6], 

The presence of strain in a semiconductor crystal will result in the change of the lattice 

constant of the crystal. Bragg law describes the relation between the Bragg angle and the 

distance of two neighbor crystal planes [7],

n X  = 2dsinQ (1.1)

where 0 is the Bragg angle, X the wavelength of X-ray, n the diffraction order, and d  the 

distance of the neighbor crystal planes. With stress, the change of d  in crystal will result in 

the change of 0. Once d  is determined, the strain e in this region of the crystal can be 

determined by

_  dstress- free ~ ^stressed 
e — , v* ■*•)

a stress- free
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Then based on Hooke's law we can calculate the stress.

The stress state in a wafer can also be estimated by measuring the wafer curvature 

[8], For example, in the case of a thin film/substrate structure, the internal biaxial stress in 

the thin films causes the wafers to bow. The stress-induced radius of curvature R  is related 

with the strain e resulted from the lattice-mismatch by the relation:

( 1 3 >(1 - V f )  Es

and independently measured by reflection of a laser beam from the wafer surface. In (1.3) 

the subscripts 5 and/  refer to the substrate and the thin film, respectively. E  is the Young's 

modulus, v the Poisson's ratio, and t the thickness. Thus, from the measured radius of 

curvature, we can calculate the lattice strain by using (1.3).

The radius o f curvature of a thin film/substrate structure can also be determined by

the X-ray diffraction method [9], If 0„ is the Bragg angle at point //, 0„+i is the Bragg

angle at point w+1, and As is the distance between points n and n+1, the radius of

curvature between points n and w+1 is given as 
As

R = e  T  ° ' 4)

The method based on measuring the change of crystal lattice, although complicated 

and involving expensive X-ray diffraction equipment, only provides the lattice constants of 

a local region of the materials, and cannot offer the information of stress distribution in 

microelectronic materials under measurement. On the other hand, the method based on 

measuring the wafer curvature by using an X-ray or a laser beam, although being widely 

used, is limited to the measurement of average stress o f a wafer.

Photoelasticity is an optical method of stress analysis, which based upon the 

phenomenon of double refraction, or birefringence [10], When a polarized light passes 

through an unstressed sample, it will suffer a reduction in velocity according to the 

refractive index, but otherwise remain unchanged. If a stressed sample is placed in the 

polarized light field, within the sample, the light is resolved into two components which
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oscillate in planes at right angles to one another (see Figure 1.1). Further, the two 

components of light travel at slightly different speed in the two planes, depending on the 

stress conditions. Therefore, when they emerge from the sample, there is a difference in 

phase between the two waves that is proportional to the thickness of the sample traversed 

by the light. The lag of one component behind the other is the birefringence phase 

difference 5 (or measured in terms of length, the optical path difference). For normal 

incidence on a sample subjected to plane stress within the elastic limit, the transmission of 

light obeys the following stress-optic law which forms the basis of photoelastic stress 

analysis: the difference o f  the two principal stresses is proportional to the birefringence 

phase difference induced by the presence o f the stress. By deducing the birefringence 

phase difference it is possible to evaluate the stress within the sample. The advantages of 

the photoelasticity method owe to the fact that it is non-destructive, convenient, and 

accurate. It can offer real-time qualitative observation as well as quantitative 

determination of stress distribution in a sample.

(a)Before entering the sample

Ei

(b)Through a stressed sample

Figure 1.1 Propagation of linearly polarized light.
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1.2 A Review on the Study of Stress 
by Using Photoeiasticity

1.2.1 Previous Work

The phenomenon of artificial-bireffingence was discovered in 1816 by Sir David Brewster. 

During the nineteenth century, the underlying theory was well developed by investigators 

such as Neumann, Maxwell, Wertheim, and other noted physicists who formulated the 

concept that the optical retardation producing the photoelastic effect is proportional to the 

difference of the principal stresses existing in an isotropic material. By the middle of the 

twentieth century, since the laser, electronic, and computer techniques greatly promoted 

the development of photoeiasticity technology, photoelastic experiments entered their 

mature stage. Photoeiasticity technology permeated various fields of application, including 

microelectronics. Stress study of silicon crystals using photoeiasticity was started in 1956 

by W. L. Bond and J. Andrus [11], They first observed the photoelastic pattern of a stress 

field around single edge dislocation in silicon single crystal by using infrared polarized 

light. In 1959, J. Homstra and P. Penning studied the birefringence phenomenon during 

rapidly cooling of a silicon crystal [12], They determined the relative stress-optic 

coefficient by balancing the internal stress with an externally applied force on the sample. 

In 1971, R. O. DeNicola and R. N. Tauber applied the infrared photoeiasticity method to 

study the effect of growth conditions of Czochralski-grown silicon crystal on the stress 

and dislocation density [13], They also applied the Tardy compensation method to 

describe the distribution of stress in the sample. In 1977, Shin Takasu et alii first applied 

the photoeiasticity method to observe the stress state in device processing [14], and hence 

made a significant progress in application of photoeiasticity technique in microelectronics. 

In 1980, H. Rotate and Shin Takasu first semi-quantitatively measured and calculated the 

stress in silicon devices [15], They calculated the piezo-optic coefficients in some 

coordinate systems for observation. By counting the isochromatic lines, they estimated the
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stress distribution in a mounted silicon pellet. The first order o f the isochromatic lines they 

observed corresponds to a discernible stress of 8.5x107 dyn/cm2. In 1989, T. Iwaki and T. 

Koizumi first proposed the general stress-optic law in a single crystal plate under plane 

stress state, and discussed the possibility of its application to photoelastically anisotropic 

crystals [16].

In the past decade, besides silicon, photoeiasticity technology also was utilized to 

study the stress of various materials, especially, III-V semiconductor materials. For 

example, Albert Feldman and Roy M. Waxier studied the piezobirefringence of GaAs due 

to strain-dependent lattice effects [17], They measured the piezobirefringence of GaAs 

over the wavelength range 3.5-10.6p.m. Aloke K. Dutta, el al., simulated the dark-field 

image of a diametrically compressed GaAs disk, and compared it with that obtained from 

their experiment [18]. Sadao Adachi and Kunishige Oe studied the internal strain and 

photoelastic effect in Gaj.xAlxAs/GaAs and Inj.xGaxAsyPi.y/InP materials [19], They 

presented the wavelength dispersion of the photoelastic coefficients in these materials.

After years of our study of the stress using photoeiasticity, we have solved a series 

of fundamental problems encountered in photoelastic stress analysis of microelectronic 

materials [20][21 ]. In the similitude of isotropic mediums, we utilized a relative stress- 

optic coefficient to relate the birefringence phase difference with the principal stress 

difference in a crystal material. For some specific geometrical configurations, we obtained 

the values of the relative stress-optic coefficient for silicon wafer samples. We, for the first 

time, applied the Senarmont compensation method to determine the fractional fringe order 

of isochromatic lines of silicon wafer samples, and applied the nail-compression method to 

determine the tensile or compressive stress state at the boundary of a sample. A 

measurement system was established by employing a silicon vidicon as detector, which 

was of a spatial resolution o f 100\xm. The technique was applied to study the stress in 

semiconductor materials and devices, such as Czochralski-grown silicon single crystal 

ingots, oxidized silicon wafers, and ion-implanted silicon wafers [22][23],
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1.2.2 New Problems Solved in This Dissertation

However, some problems remain to be solved in the photoelastic stress analysis of 

microelectronic materials. The first problem is that in previous work the photoelastic 

anisotropy of crystals has not been fully taken into account. We ignored that for crystal 

materials, the axes of the principal stress ellipsoid do not coincide with the principal axes 

of the refractive index ellipsoid. Generally, the stress-optic law for isotropic material 

cannot be directly applied to study the stress. Suitable forms of the stress-optic law must 

be developed to extend to the range of the anisotropic properties of crystals. On the other 

hand, in previous work, when we employed the Senarmont compensation method to 

measure the fractional order fringe of photoelastic patterns [21 ][23], we had to achieve 

the complete extinction of transmitted light by rotating the analyzer and measuring the 

azimuth of the transmitting axis of the analyzer. Evidently, while it is feasible to measure a 

single point of a sample, it is impractical to measure the stress distribution of a sample 

with large area, since it is inconvenient to repeat rotating the polarizer to achieve 

extinction at every point of the sample. Therefore, the second problem is to seek some 

effective methods o f measuring the fractional order fringe over the entire wafer sample. 

Besides, when a light beam transmits through the stressed sample, only the stresses 

perpendicular to the incident beam cause an optical effect, while the stresses in the 

incident direction do not. In measuring the stress in a wafer sample, we usually employed 

the flank-observation scheme. The stresses directly measured are in fact not the principal 

stresses, but the secondary principal stresses normal to the incident direction. 

Consequently, the third problem is to develop a method to abstract the principal stresses 

from the secondary principal stresses. Furthermore, our previous experiments represented 

the best result of 100|am of spatial resolution in stress distribution, and about 10%dyn/cm2 

of minimum detectable stress for a silicon wafer sample. To improve both the spatial 

resolution and the detection sensitivity, it is necessary to develop a measurement system 

with the help of the image sensing and computer techniques.
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1.3 Scope of Our Research Work

The purpose of our research work is to find solutions to the problems mentioned in 

Section 1.2.2. The research project includes: (1) investigating the anisotropic property of 

the photoelastic effect for some semiconductor crystals, and in different coordinates 

deriving the suitable forms of stress-optic law for these anisotropic materials; (2) exploring 

some effective methods to measure the photoelastic parameters, and determining the 

direction of principal stresses from secondary stresses, calculate the distribution of the 

principal stresses in a sample; (3) establishing a photoelastic system, which includes the 

capability of qualitative observation of the photoelastic patterns and quantitative 

measurement of the stress distribution; (4) applying above research results to study the 

stress state in microelectronic materials.

1.3.1 Stress-Optic Law of Photoelastically Anisotropic Materials

We know that for the crystals of diamond structure or zincblende structure, the physical 

properties of the crystals described by a fourth-rank tensor are not isotropic, such as 

piezo-optic coefficient tensor, which relates a second-rank stress tensor with a second- 

rank dielectric impermeability tensor. A crystal will lose its original lattice symmetry when 

stressed, and hence exhibits mechanical anisotropic property. For crystals, the principal 

axes of the stress ellipsoid do not coincide with the principal axes of the refractive index 

ellipsoid. Therefore, the crystals with diamond or zincblende structures, when suffered 

from internal or external stress, will become photoelastically anisotropic. The stress-optic 

law for isotropic materials is no longer valid for such crystal materials.

In this dissertation, the photoelastic anisotropy of cubic crystals is investigated. The 

matrix forms of the piezo-optic coefficient tensor for various coordinate configurations are 

derived. The relationship of the principal axes of the stress ellipsoid and the principal axes 

of the refractive index ellipsoid for arbitrary crystallographic directions and observation
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direction is studied. Suitable forms of stress-optic law for anisotropic materials are derived 

in several commonly used coordinate configurations.

1.3.2 Methods of Photoelastic Stress Analysis

The purpose of stress analysis is to obtain the stress distribution in a sample from given 

boundary conditions. In order to apply stress-optic law to calculate principal stress 

difference, one needs to know the photoelastic parameters (i.e., the birefringence phase 

difference 5 and the birefringence angle <J>, which will be defined in Chapter 2).

In traditional photoelastic experiments, a common method of determining these two 

parameters is to analyze the isochromatic lines and the isoclinic lines of the photoelastic 

patterns. However, for most situations in the application of microelectronic materials, 

since the order of the isochromatic line is less than one, which corresponds to the stress 

less than 10^dyn/cm2, it is necessary to determine these two parameters by analyzing the 

fractional order of isochromatic lines. Senarmont compensation is a useful method of 

determining the birefringence phase difference with fractional order of isochromatic line. 

However, since Senarmont compensation method is a point-by-point method, it can 

measure only one point of the sample at a time. In this dissertation, we discuss the Fourier 

analysis method and the intensity analysis method we developed, which are suitable for 

measuring the whole area of the sample at one time. We present the principles and 

applications of these two methods. We also discuss the three-direction observation 

method that is used to calculate the principal stresses from the secondary principal 

stresses, and the shearing stress difference method which is utilized to separate two 

principal stresses and to determine the distribution of two principal stresses.

1.3.3 Stress-Measurement System

Our previous experiments exhibited the best result of 100\xm of spatial resolution in stress 

distribution, and about 10%dyn/cm2 of minimum detectable stress for a silicon wafer
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sample. The fact the continuous reduction of the dimension of microelectronic devices 

requires better spatial resolution of measurement, and better sensitivity of measuring stress 

state o f device structures.

A photoelastic stress measurement system typically consists of light source, 

polarizer, analyzer, quarter waveplates, and detector. In our experiment, the detector is 

either a photomultiplier or a CCD camera. With the help of the image sensing and 

computer techniques, we develop an automatic measurement system, in which a CCD 

camera is employed as detecting device. Owing to its characteristic of high dynamic range 

and low noise, both very weak and strong signals can be detected in a single frame, which 

is important in improving the detecting sensitivity of the system. And fast digitization rate 

makes it possible to observe the stress patterns in real time, which is of significance in the 

application of microelectronic production.

1.3.4 Study of Stress in Microelectronic Materials

As the examples of application, we illustrate stress measurement in some microelectronic 

materials with photoelasticity principles and methods. Experiments include studying the 

stress distribution in a diamond substrate, studying stress in thin film/substrate structures, 

and studying diffusion-related stress in silicon wafers.

The residual stress in a synthetic diamond substrate is analyzed by using the 

automatic data acquisition and analysis system. The digital image processing techniques 

are applied to improve the quality of the sensed images, to reduce noise and to determine 

the boundary of the measured samples. The intensity analysis method and the Fourier 

analysis method is used to determine the photoelastic parameters; and the shearing stress 

difference method is applied to calculate the two-dimensional stress distribution in the 

sample. The thin film on a semiconductor substrate and its discontinuity will give rise to a 

stress field in the substrate. The stress introduced in substrate/thin film structures, 

including the stress induced by oxide film, the stress induced by discontinuity of thin film,
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and the stress induced by metal films, is investigated with the Senarmont compensation 

method and the Fourier analysis method. Finally, we discuss the study of stress 

distributions in silicon wafers after various diffusion processes. We discuss our 

experimental results and present our mathematics models for explaining the results.



CHAPTER 2

PHOTOELASTIC EFFECT IN CUBIC CRYSTALS

In order to apply the photoelasticity method to study the stress in microelectronic 

materials, it is required to perceive the form of stress-optic law of these photoelastically 

anisotropic materials. In this chapter, the phenomenon o f birefringence produced by stress 

(photoelastic effect) is studied. The anisotropic property of photoelastic effect for crystals 

with cubic symmetry is investigated. The relationship between the principal axes of the 

stress ellipsoid and those of the refractive index ellipsoid is analyzed. For some commonly 

used coordinate configurations, matrix forms of the piezo-optic coefficient are derived, 

and analytical expressions of the stress-optic law in various coordinate configurations are 

obtained.

2.1 Birefringence

2.1.1 Monochromatic Plane Waves in Crystals

In a transparent and non-magnetic medium, if there is no free charge, the fundamental 

equations of the electromagnetic field, i.e., the differential form of Maxwell's equations 

can be written as [24]

V x i / = ^
dt

V x £ = -—
dt

V H =0

V D=0 (2.1)

where E  is the electric field intensity, D the electric flux density, and H  the magnetic field 

intensity, B  the magnetic flux density. From the first two equations of (2.1), yields

12



where the constitutive relation B=\xH is utilized. From the vector identity 

V x  V x E = V ( V - E ) - V 2 E  

Eq.(2.2) may be rewritten as

(2 .3)

dt
(2.4)

which is recognized as the wave equation.

We wish to examine the properties of plane waves traveling through a crystal. We 

therefore try as a solution to the wave equation (2.4) and the Maxwell equations (2.1):

E = Eq exp[/(©/ -  k ■ r)]

D = Dq exp[/'(co/ - k - r ) ]

H  -  H qexp[/(cof - k  r)]

where E q, D q, Hq, and B q are constant vectors, k  is a wave vector normal to the 

equiphase planes, and [/(©/ - k - r ) ]  is the phase of the monochromatic plane wave. By 

substituting the plane wave solutions (2.5) into Maxwell's equations (2.1), we have

By inspecting Eqs.(2.6), we can reach the following conclusions: (a) In an isotropic 

medium, with D=z0zE, the three vectors (k , E, and H) are orthogonal with each other, as 

shown in Figure 2.1. The electric and magnetic vectors (E, and H) of the plane wave, 

propagating along the wave normal line direction k, are perpendicular to the vector k. (b) 

In an anisotropic crystal, in general, since the relative dielectric constant is a second-rank 

tensor, or Dj=e0eij£j, the directions of E  and D are not identical. From the first equation 

and the last two equations of (2.6), it can be seen that the three vectors D, H, and k  are

B = Bq exp[;(co/ - k - r ) ] (2.5)

U)D = -k x H

toB  - kxE

k-D = 0

k-H=  0 (2 .6 )
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perpendicular to each other, as shown in Figure 2.2. The electric oscillation vector of the 

plane wave with the wave vector k  is D  instead of E.

D, E

k,S

H

Figure 2.1 Vector relation for a monochromatic 
plane wave in an isotropic medium.

Figure 2.2 Relationship between vectors for a monochromatic 
plane wave in an anisotropic crystal.

The Poynting vector S  is defined as 

S  = E x H  (2.7)

This indicates the vectors E, H,  and S  constitute another orthogonal group, as shown in 

Figure 2.2. All of the vectors D, E, k, and S  locate within the same plane perpendicular to 

the vector H. Since the directions of E  and D are in general not identical, the directions of 

S  and k  do not coincide with each other.
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2.1.2 A General Description of Birefringence Effect

The plane wave solution (2.5) leads to

V ( V £ ) =  - k ( k - E )  (2.8)

V2 £ =  V- ( V E )  = - i k - ( - i k E )  = - k -  ( kE)  = - k 2 E  (2.9)

— = -cd2Z) (2.10)
dt1

By substituting Eqs(2.8)~(2.10) into the wave equation (2.4), we have

p©2Z) = k2 E  - k ( k - E )  (2.11)

By introducing a unit wave vector K

K = (2 1 2 ) 
k

and using the relation

(2.13)
A, C

where X is the wavelength of the monochromatic plane wave, n the refractive index, 

Eq.(2.11) can be rewritten as

\xcD = n2 [E-K(E-K)] (2.14)

We now assume that D and E  are connected by the permittivity tensor. When 

referred to the principal axes of the permittivity tensor, so that

D{ = Eoej^i = £()«?£} (/'= 1, 2, 3) (2.15)

where 8q is the permittivity of a vacuum, and e;- (/=1,2,3) the principal values of the 

relative permittivity tensor of the medium, Eq.(2.14) becomes

n\E-x =n2[Ei - K i (E K)] (/= 1, 2, 3) (2.16)

which describes generally the birefringence in a crystal. For a homogeneous linear 

equation to have non-zero solution, its coefficient determinant must be equal to zero,

n \ -  (1 -  K \ )n2 n2KxK2 ti2KxK3
n2K2Kx n2 - ( \ - K 2 )n2 t?K 2K3 
n2K3Kx n2K3K2 n ] - { \ - K ] ) n 2

which can be expanded as

= 0 (2.17)
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w4 (n2K 2 +r$Kl +n]K$)- n2[nln]{Kl + £ 3 )+ n ] n \ ( K ]+ K\ )

+ n2n2 (K 2 + K$ )] + w? n2>n2 = 0 (2.18)
9 9 9where the relation K f + K f  + K$ = 1 is used. Eq.(2.18) expresses the relationship between 

the direction of wave vector k  and the square of refractive index (n2). If the wave vector k
9 9is given, from (2.18) we can solve for two real roots ri and ri' . By putting them back to

t I I II M
(2.16), we can determine two sets of electric field intensities (E ^.E^-E^) and (E i :E2:

m i 1 1 M m 11
£ 3), from which two linearly polarized directions (Dy\D}.Eh,) and ( D j:D2: ) are

obtained by using (2.15). Any linearly polarized plane wave normally incident on the 

surface of a crystal must be decomposed into these two directions, in which the two 

components can propagate with different velocities c/n' and c/if.

2.1.3 The Indicatrix (Refractive Index Ellipsoid) [25]

The conclusion reached in Section 2.1.2 can be visualized by introducing the indicatrix 

(refractive index ellipsoid). The refractive indices, ri and of the two waves, as 

functions of the direction of their common wave normal, can be obtained by drawing an 

ellipsoid known as indicatrix, as shown in Figure 2.3.

Figure 2.3 Representation of the indicatrix [25]

If Xj, x2, x3 are the principal axes of the permittivity (or dielectric impermeability) 

tensor, the indicatrix (or refractive index ellipsoid) is defined by the equation
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(2.19)

or

P l * l 2 +  P 2*22 +  P 3*32 =  1 (2 .20)

where P^ (£=1,2,3) are the principal values of the relative dielectric impermeability tensorP 

y, which is the inverse of the relative permittivity tensor ey- (£=1,2,3) are known as the 

principal refractive indices.

Let K  be in OP direction, and the central section of the indicatrix perpendicular to 

OP will be an ellipse. Then the two wave fronts normal to OP that may be propagated 

through the crystal have refractive indices equal to the semi-axes, OA and OB, of this 

ellipse. The electric flux density D in the linearly polarized wave with refractive index 

equal to OA oscillates parallel to OA. Similarly, the displacement vector in the wave with 

refractive index equal to OB oscillates parallel to OB. From this it follows, as a special 

case, that the two possible waves with wave normal in direction atj have refractive indices 

n2 and «3; and D in the two waves is parallel to x2 and x3 respectively. Similar conclusions 

can be reached for the waves in the x2 and x3 directions. For this reason n j, n2, « 3 are 

called the principal refractive indices.

2.1.4 Birefringence in Various Classes of Crystals

2.1.4.1 Isotropic Materials and Cubic Classes For an isotropic medium, in any three
0  0 0mutually perpendicular directions, n\ = n2 = «3 = hq. From (2.18) we have (n - hq) = 0.

0 0 0Thus, we can obtain two identical roots: n = n" = n§. This result indicates that for any 

propagating direction of the plane wave, the refractive indices are identical. By putting 

n'2 = h"2 = into (2.16), we have K-E=0. Thus (2.15) becomes D=&qiiqE, which 

denotes no birefringence in an isotropic medium. For a crystal with cubic symmetry, the 

same conclusion can be reached, since n\ = n2 -  w3 = hq in the directions of the cubic 

symmetry. Therefore, like isotropic mediums, cubic crystals are called optically isotropic
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crystals. The indicatrix for an optically isotropic medium is a sphere, which is shown in 

Figure 2.4.

no

Figure 2.4 Indicatrix of an optically isotropic crystal.

2.1.4.2 Hexagonal, Tetragonal and Trigonal Crystals For hexagonal, tetragonal and 

trigonal crystals the indicatrix is necessarily an ellipsoid of revolution about the principal 

symmetry axis (see Figure 2.5). Assume x3 as this axis the equation is written as
Ji- 2 2

+ ̂ T
*3 + —£-2 . 2 2

"o "o "e

n e

no no

no.Mo

Figure 2.5 Indicatrix of a uniaxial crystal.
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The central section perpendicular to the principal axis x3, and only this central 

section, is a circle (radius Hq). Hence, only when the wave travels along the principal axis, 

there is no double refraction. The principal axis is called the optic axis, and the crystals are 

said to be uniaxial. « 0 and nc are called the ordinary refractive index and the extraordinary 

refractive index, respectively. The crystal is said to be positive when (nc-nq) is positive, 

and negative when (ne-«o) *s negative.

Since for the principal axis x3, the dielectric constant tensor has rotational symmetry, 

the other two principal axes X\ and x2 may be arbitrarily chosen. Assume that the normal 

direction of the plane wave is (see Figure 2.6)

that is, K  lies within the x2x3 plane and intersects the axis x3 with an angle of 0. From 

(2 .22) and let wj = n2 = «o> a°d «3 = ne, (2.18) becomes

K ( K h K 2, K 3)  =  K ( 0 , sin0, cos0) (2 .22)

(« 2 -  )[« 2 («q sin2 0 + a?2 cos2 0 ) -  Mq/j2 ] = 0 (2.23)

Solving (2.23) leads to

n'2 =tio, and n"2 =
«^sin2 0 +«2 cos2 0

(2.24)

■*3 (C>
D e A

x.

Figure 2.6 Relationship between various vectors in a uniaxial crystal.



20

which indicates that for given wave normal line direction K, there exist two waves with 

different refractive index. For one wave, the refractive index does not change with the 

direction of K, for the another wave, the refractive index is related with the direction of K. 

When 0=0, «"=«0; when 0=90°, n"=nc; when 0 takes other values, n" will change between 

ne and n0. The plane wave with refractive index w0 is a linearly polarized wave, its E  

vector is parallel with the D vector. Another plane wave with refractive index «e is also a 

linearly polarized wave, but its E  vector is not parallel with the D  vector.

2.1.4.3 Orthorhombic, Monoclinic and Triclinic Crystals For the other three remaining 

crystal systems, the orthorhombic, monoclinic and triclinic, the indicatrix is a triaxial 

ellipsoid. There are two circular sections, and hence two privileged waves normal 

directions for which there is no double refraction. These two directions are called the 

primary optic axes, or the optic axes, and the crystals are said to be biaxial.

2.2 Photoelastic Effect

2.2.1 Number of Independent Photoelastic Coefficients [25]

The permittivity, and hence the refractive index, are, in general, functions of the stress on

the crystal. The change of refractive index caused by stress is called the photoelastic

effect. As discussed in Section 2.1.3, the refractive index of a crystal is specified by the

indicatrix, which is an ellipsoid whose coefficients are the components of the relative

dielectric impermeability tensor Py at optical frequency, namely,

PjjXjXj=l. (2 .25 )

(By definition, Py=eo3/ij I dDf). Thus, in general, the small change of refractive index

produced by stress is a small change in the shape, size and orientation of the indicatrix. 

This change is most conveniently specified by giving the small changes in the coefficients
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Pij. If we neglect higher-order terms in the stresses, the changes APy in the coefficients,

under an applied stress a y ,  are given by

APjj—TCyki Ok] (2.26)

where Ttyy, a fourth-rank tensor, called the piezo-optic coefficient tensor. Since Py is a 

symmetric tensor, in (2.26), APy = Apjj for all a y , we have

^ijkl = ^jikl (2.27)

Furthermore, since a*/ = a/^ if we ignore body-torque, we may put

TCijkl = ^ijlk (2.28)

The relations of (2.27) and (2.28) reduce the number of independent coefficients from 

3^=81 to 36.

The suffixes in APy and a y  may be abbreviated by

AP2 

Ap3 

Ap4 

Ap5

\AP6y

° 2  

°3 
a 4

VCT6 y

We then have

APm — t^rnn^n tl — \, 2,, €i) (2.29)

where 71,^ is a 6 x6 matrix related to 7tyy by the rules:

7tmn=7t ijkl> when « = 1, 2, or 3;

7rmn=  27tyy, when n = 4, 5, or 6 . (2.30)

The factor o f 2 appears because of the pairing of the shear stress terms in (2.26).

A P y AP12 AP13" Ap! Ap6 AP5 "

AP21 AP22 AP23 >4> a p 6 Ap2 Ap4 O

vA p3i AP32 AP33, I a p 5 Ap4 a p 3 J

'<*11 ct12 a 13^ ° 6 ^ 5"

a 21 a 22 CT23 ®2 a 4

<°31 °3 2 a 33, , c 5 a 4 ° 3 ,



22

Notice that in general Ttmn^^mn- Thus, the number of independent 7rmn for the 

triclinic classes remains 36. The number of independent for other classes reduces as 

a result of symmetry. For examples, for isotropic medium, such as epoxy resin, the most 

commonly used material for model made in conventional photoelasticity study, 7imn has 

two independent components [25]:

7Cn 7112 *12 0 0 0

*12 *11 *12 0 0 0

*12 *12 *11 0 0 0

0 0 0 * 1 1 -* 1 2 0 0

0 0 0 0 CN(T1tT 0

0 0 0 0 0 *H -* 1 2

(2.31)

For the classes of 432, 432, and m3m of cubic symmetry, where the cube axes are 

tetrads, such as silicon, GaAs, and diamond, the number of independent 7tmn is 3 [25]:

'*11 *12 *12 0 0 0 >

*12 *11 *12 0 0 0

*12 *12 *11 0 0 0

0 0 0 *44 0 0

0 0 0 0 *44 0

, 0 0 0 0 0 *44 y

(2.32)

The other two classes, 23 and m3, where the cube axes are diads, such as potassium alum 

and barium nitrate, need 4 coefficients [25]:

*11 *12 *13 0 0 0 >

*13 *11 *12 0 0 0

*12 *13 *11 0 0 0

0 0 0 *44 0 0

0 0 0 0 *44 0

0 0 0 0 0 *44 J

(2.33)

Some measured values of 7tjj for several microelectronic materials are given in Table 2.1 

The values are usually dependent on the wavelength of the light.



Table 2.1 Values of components of piezo-optic coefficients 
of some materials (x l0_14c/w2 / dyn)

Crystal Point group Wavelength 7In -7C12 *44

silicon [26] m3m 1.15pm -12.22 -6.50
germanium [27] m3m 3.39pm -2.8 -10.5
GaAs [28] 432 1.15pm -5.4 - 10.0

diamond [29] m3m 0.589pm -8.0 -2.7

2.2.2 Photoelasticity of Isotropic Media

For an isotropic material, if the directions of the principal stresses are chosen as the 

reference axes (jcj, x2, x3), the matrix equation (2.29), when written out in full, is

AP0 '*11 *12 *12 0 0 0 '

AP2 *12 *11 *12 0 0 0 0 2

AP3 *12 *12 *11 0 0 0 0 3

Ap4 0 0 0 *11 “ *12 0 0 0

APs 0 0 0 0 * 1 1 -* 1 2 0 0

Ap6> < 0 0 0 0 0 (N1tT

* lla l + *12CT2 +*12ct3>
*12a l + * lla 2 + *12C3 
^12^1 + *12CT2 + * lla 3 

0 

0 

0

(2.34)

Since P4 = P5 = P6 = 0, the axes of the indicatrix are simply jq, x2 and x3, that means the

indicatrix takes the same orientation as the stress ellipsoid. To obtain the changes in the

three principal refractive indices we write Pi = 1 /h2 . Hence, Apj = -(2 //jf)A /q. To a

sufficient approximation we may replace wj by n0 and obtain 
1 3 1

A /ii= — -(n o )  Apj =--(/% )(7C11a 1 + 7u12a2+JC1203) (2.35)
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Similarly,
1 3

A>?2 = - ~ ( « 6) (*12°1 + 7tllCT2 +^12ct3) (2.36)

1 3
A"3 = - “ ('*)) ( ^ 1 2 ^ 1 + ^ 1 2 ^ 2 + ^ 3 )  (237)

Therefore, an isotropic medium when under stress, in general, will behave like an optically

biaxial material. From Eqs.(2.35), (2.36) and (2.37), the birefringence for light traveling

along xj is evidently
1 3

A/i2 -A /?3 = - - ( / to )  (T in -7r12)(a 2 - a 3) (2.38)

and, for light traveling along x2,

1 TA/;3 -A//j = --(« & ) (7ri1-7r12)(a 3 - a 1) (2.39)

and, for light traveling along x3,
1 3

Aril -  Ati2 = --(/% r(7C n -  7ti2)(a i - a 2) (2.40)

Eqs.(2.38), (2.39) and (2.40) can be rewritten as

n2 - ”3 = c  (<*2 - a 3)

« 3 -« ! = C (a3 - a j)

/? l- » 2 = C (a i - a 2) (2.41)

where n±, n2, and //3 are the principal refractive indices; a l5 a 2, and a 3 are the principal 

stresses; C is known as the relative stress-optic coefficient. Eq.(2.41) is the well-known 

stress-optic law that is used to the case of an isotropic medium. From analysis above, it is 

obvious that for an isotropic medium, the principal axes of the refractive index ellipsoid at

any point, representing the local optical properties of the material, coincide with the

principal axes of the stress ellipsoid at that point.

2.2.3 Photoelasticity of Cubic Crystals

It is of interest to examine analytically a few special cases of cubic crystals under stress. 

Consider a cubic crystal of class 23 or m3 under a uniaxial tensile stress o  applied parallel
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to a cube axis. Let be the direction of the stress, and let x2, x3 be the other two axes. 

Before the stress is put on, the indicatrix is a sphere,

P o(* l + x 2 + x 3 ) ~  1 (2.42)

and the refractive index is given by P0 = 1 / («fo) . Under the stress the indicatrix becomes

P l* l2 +  02*22+ p3*32 +  2 P4*2*3 +  2 P5*1*3 +  2 P<>*1*2 =  1 (2 -43)

The matrix equation of (2.29), when written out in full for this case, is

' W l ) r 7Cn ™12 ^ 1 3 0 0 0  ' 7Ci lO

A p 2 K\3 7Tn ^12 0 0 0 0 7t 13cr

A p 3 ^12 ^ 1 3 7Cn 0 0 0 0 7c12a

A p 4 0 0 0 7t44 0 0 0 0

A p 5 0 0 0 0 k 44 0 0 0

< A p 6 , ,  0 0 0 0 0 7144, , 0 , ,  0  ,

(2 -44)

Since P4 = P5 = P6 = 0 the axes of the indicatrix are simply Xj, x2 and x3. To obtain the
y

changes in the three principal refractive indices we write P| — 1 In f .  Hence, APj=

-(2  / «j )A//i. To a sufficient approximation we may replace ti\ by Hq and obtain
1 o  1 *1

A"i = --(« & ) Ap! = - - ( /% )  JtnO

Similarly,

= — ~ ( /Jb)37Cl3CF 

Aa/3 = -^ (« t))37ti2CT

(2 -45)

(2-46)

(2 -47)

The crystal therefore becomes biaxial. In a crystal belonging to one of the other 

three cubic c\asses(43m,432,m3m) it has been seen that 7t I2 = 7i]3. Hence, in this case, 

An2 -  A//3 and the crystal is uniaxial. From Eqs.(2.45) and (2.47) the birefringence for 

light traveling along x2 is evidently

(2-48)
1 o

A/jj — A/?3 = ——(h q ) (7cn - 7 t 12) a

and, for light traveling along x3,
1 *3

A/Jl-A/l2 = - - ( / ^ )  (W n-7t13)o (2-49)
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Formulae (2.48) and (2.49) refer to a cubic crystal under uniaxial tension parallel to a cube 

axis. They give the birefringence along the other two cube axes. In these cases, the 

directions of the principal stresses and the directions of the principal refractive indices are 

identical.

2.3 Piezo-Optic Coefficient Tensor n

2.3.1 Transformation Law for Fourth-Rank Tensor

The relation between the new coordinate axes (x'j, x 2, x 3) and the old coordinate axes 

(xj, x2, x3) is given by

x 'j= /f Xj (i=l,2,3) (2.50)

where A is the transformation matrix of the coordinate axes, which is expressed with the 

direction cosines ( / ,  m, n) by

A= k  m 2 n 2

h  ^3 »3

(2.51)

Since the matrix form of photoelastic law is frequently used for convenience, it is 

necessaiy to derive the transformation law for the fourth-rank tensor in matrix form. 

Assume the matrix form of transformation law of second-rank tensor take the following 

forms:

a ' = Bao  (2.52)

AP' = 5 ctAP (2.53)

where cr, (3 and o ', 3 ' are the second-rank stress tensors and second-rank dielectric

impermeability tensors in old and new coordinate systems, respectively, which are 

expressed as 1x6 matrices. Ba is the coordinate transformation matrix for cr and A3,

which is a 6 x6 matrix. If the transformation matrix for the coordinate axes is given by 

(2.51), it is readily to obtain the 6 x6 matrix of Ba [30]:
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(  j 9 y \l\ m{ n f 2m\n\ 2n\l\ 2l\ni\

l \  m l n l 2 /M2«2 ln 2l2 l l2m2
l\  m] n l 2m3n3 2/i3/3 2 /3W3

/2/3 m2m3 «2«3 m2n?l+m3n2 n2l3 +n3l2 l2m3+l3ni2

hh m3ml »3»1 W3»i+/Wi»3 »3/1+ « 1/3 /3W1+ /1W3

,¥ 2  "1«2 w l»2 + "f2»l n \ k + n 2l\ l\m2 + l2m\ ,

(2.54)

From Eqs.(2.52) and (2.53), we have

Ap' = 5cAp 

-  n ’a ' (2.55)

Thus, the transformation law for piezo-optic coefficient matrix is given as

■n'=BaKBa l (2.56)

where both 7t'and 71 are 6x6 matrices, Ba is the inverse matrix of Ba . Eq.(2.56) is

known as the transformation law fo r  fourth-rank tensor in matrix form. If the

(2.54), and the transformation of 71' and 71 can be performed by using (2.56). In the 

following sections, we shall use (2.56) to derive the matrix forms of n for the cubic classes 

of 43m, 432, m3m in two commonly used coordinate systems.

2.3.2 Matrix Forms of % in the [110][110][001]Coordinate System

[100], [010], and [001] are chosen as the original coordinate axes, and the coordinate axes 

of new coordinate system are in the [110], [110], and [001] directions, respectively. The 

transformation matrix A of the coordinate system is given by

0 0 1
v /

By substituting the components of the matrix A of (2.57) into (2.54), the matrix of BG and

transformation matrix of coordinate axes is known, B0 and 5CT1 can be calculated from

(2.57)

its inverse Ba are written as
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and

Ba =

B ^  =

( 1  
2

1
2 0 0 0 r

1
2

1
2 0 0 0 -1

0 0 1 0 0 0

0 0 0 1
l l

1
" 72

0

0 0 0 1
72

1
7 2

0

1
k 2

1
2 0 0 0 0

( 1
2

1
2 0 0 0 _ !

1
2

1
2 0 0 0 1

0 0 1 0 0 0

0 0 0 I
72

1
7 2

0

0 0 0 1
72

1
7 2

0

1
V2

1
2 0 0 0 0

(2.58)

(2.59)

By substituting Eqs.(2.58), (2.59) and (2.32) into (2.56), we obtain the piezo-optic 

coefficient matrix in the [110][110][001] coordinate system:

^-(7111+ 7112+ 71:44) -̂(TCi 1 +7IJ2 - 7144) rt12
^ (r c il  +  TCiz- 7̂ 44) 2'(rcil +  7,:1 2 + 7C44) K n

^12 ^12 ^11
0 0 0
0 0 0

k 0 0 0 U U 7ln — 7Ci2

0

0

0

7144

0

0

0

0

0

0

TC44

0

0

0

0

0

0

(2.60)

2.3.3 Matrix Forms of 7C in the [112][110][111] Coordinate System

If the original coordinate axes are in the [100], [010], and [001] directions and the new

coordinate axes are chosen in the [112], [ 110], and [ 111] directions, the transformation

matrix of the coordinate axes is expressed by 

" 1  1 2 ^
-73 S  0

- j l  - V 2  V 2 ,

A = -\= V6
(2 .61)
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From (2.61) and (2.54), we can calculate the matrix of Ba and its inverse Ba- 1.

1 1 4 4 4 2
3 3 0 0 0 - 6

2 2 2 -4  -4  4
a/6 -V 6  0 S  - a /6  0

- a/2  - a/2  2 a/2  - a/2  - a/2  - 2 a/2

^ - a/3 a/3 0 2 a/3 - 2 a/3 0

(2.62)

and

z? -1 -  1

3 2 2 a/6  - 2  a/2  - 2 a/3 A

1 3 2 - 2 a/6  - 2 a/2  2 a/3

4 0 2 0 4 a/2  0

2 0 - 2  a/6  - a/2  2 a/3

2 0 - 2  - a/6  - a/2  - 2 a/3

1 - 3  2 0 - 2 a/2  0

(2.63)

By substituting Eqs.(2.62), (2.63) and (2.32) into (2.56), we obtain the piezo-optic 

coefficient matrix in the [112][110] [111] coordinate system, that is

r 18(TCn  + 7I12+7t44) 
6(7Cn +57tj2 - 7144) 

12 ( 7t U  +27112 ~  ^ 4 4 )  

0

6 a /2 ( 7I u  -  71:12 - 7 1 4 4 )  

0

6(7111 +  5 7 1 1 2 - 7 :4 4 )  

18(7111 +7C J2 + 7 1 4 4 )  

12(7Ih +27Ii2-7C44)
0

—6yp2(jli 1 — 57:i2 — 7:44) 
0

12(7:u + 27:12 ~ t:44) 
12 ( 7: h  + 2 7 :1 2  - 7 : 4 4 )  

12 ( 7: h + 2  7X̂12 + 27:44) 
0 

0 

0

0  12a /2 ( 7Ci 1 — 7C12 — 7C44) 0

0 -12a/2(7Ti 1- 7:12- 7:44) 0

0 0 0
1 2 ( 27: j  1 — 27Tj2 +  7C44) 0  —4 a ^ ( 7 : i  1 — 7C12 — 7 :4 4 )

0  12 ( 27: 11 — 27TJ2 +  7 :4 4 )  0

- 4 a /8 ( t : h - 7 : 1 2 - 7 : 4 4 )  0  1 2 ( 7 r n - 7 1 1 2 + 2 7 : 4 4 )

(2 .64)
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2.3.4 Piezo-Optic Coefficients for Arbitrarily Orientation

In some applications, it is required to know the piezo-optic coefficients in certain 

reference axes that are intersected above coordinates with an angle cp. In this section, we 

only concern with the cases of the classes of 432, 432, and m3m of the cubic symmetry. 

With the piezo-optic coefficients o f (2.60) and (2.64), we select a new coordinate system, 

which is formed by rotating the old coordinate system around the [001] axis for ( 100) 

wafers (or the [111] axis for (111) wafers) with an angle <p. The transformation matrix of 

the rotation is expressed as

From Eqs.(2.65) and (2.54), we can calculate the corresponding matrix Ba and its unverse

In a (001) wafer, [110], [110], and [001] are adopted as the original coordinate axes, 

and [001] is chosen as the rotating axis. The general form of the 6 x6 matrix 7t(cp) in the 

new coordinate system is obtained as

(2.65)

matrix Ba . From Eqs.(2.32) and (2.56), we can obtain 7i(cp) in the new coordinate

system.

/
y  ( f t l  1 +  7112 +  TC44)  +  1 -  71J2 ~  K 4 4 ) S'H2  2 ( P

\ ( « 1 1 + *12 -  *44) -  i («l 1 -  *12 -  *44) sin2 2<p

7t(cp) = *12
0

0

V j ( * l l - * l 2 ~ * 4 4 ) sin4(P

2 ^1ZU + n n  - ^ 4 4 ) - y ( TCl 1“ *12 - 71:44) s i ° 2  2 ( P 

2 (*11 +  *12 +  * 44)  +  y  (*11 -  *12 -  ^ 4 4 ) s i n 2  2 <P

- ^ ( ^ 1 1  - 7t i2 ~ 7C44)sin4cp
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*12 0 0

*12 0 0

7Iii 0 0

0 7r44 0

0 0 7144

0 0 0

|(7rii-rci2-7C44)sin4<p 
-  ̂  (7Ti 1- 7112- 7144) sin 4(P

°  (2.66)
0

0

TC44 sin2 2cp + (jti 1 -  7112) cos2 2 (p 

where (p is the angle between the [110] direction and new axis.

In a (111) wafer, the original coordinate axes are [112], [110], and [111], and 

[111] is chosen as the rotating axis. The general form of the 6 x6  matrix 7t(cp) the new 

coordinate system is:

2 ( %ll + Kl2 + 7l44) 
^ (7 t i i+ 5 7 t12-7 l4 4 )

£(7Cll+57Ci2 -7144)
■j(7tu +7Cj2 + 71:44)

■3(^11  +27112 ~ n44) ^(^ll+27C12- ^ 44)
Jl Jlg (^11 +7I12 +7t44)cos3(p (ttll + 7112 + 7t44)C0s3(p
Jl ■ Jl
6 ( TC11 +  tc12 +7l44)sin3(p  - ^ ( T C i i  +  7ti2 +  7l44)sin3(p

1 Jl
j ( n l 1 + 2 ?t12 -  ^44 ) - J - fa l  1 -  K12 -  *44 )cos3(p
1 J l-(7Cn  +27t12 -7 r44)  3- ( 7Cll -7112 — 7I44 ) COS3(p

‘3 ( ^ 11 + 2 7C12 + 27144)

0 

0

0

■3 (7̂ 11 -27IJ2 + 7144 ) 
0

J y
0 - " ^ ( T tn  — tcj2 -  7144) sin3cp

Jl3-C^ll — ̂ 12 — W44)sm3<p
Jl-  3 (” 11 -  *12 -  7144 ) sin 3cp 

0 

0

J2
•3 (27Ci 1 -27C]2 + 7144)

^-(TCn -  7C12 -  7C44)cos3cp

0

0

0
Jl-  3 (Till — 7C12 -7 t44 )sin 3 (p

Jl3 (Ttj 1 — 7Ci2 — 7C44)COS3CP 

j(7 l1i-2 7 t12 +7t44)

(2 .67)

where <p is the angle between the [112] direction and new axis.
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2.4 Stress-Optic Law in Crystals

2.4.1 General Form of the Stress-Optic Law

While free from stress, the indicatrix of a crystal is expressed by (2.20). Notice that for an 

isotropic medium or a cubic crystal, the indicatrix is a sphere. When stressed, the 

refractive index ellipsoid of the crystal will be distorted. If the principal stress directions 

are chosen as the axial directions of the coordinate system (xj1, x2', x3'), the equation of 

the refractive index ellipsoid takes the form:

P l* l'2 +  32*2,2+ p3*3'2 +  2p4*2'*3' +  2 P5*l'*3' +  2 P6*l'*2' =  1 (2 -6 8 )

where Pj (i=l, 2, ..., 6) are the components of the dielectric impermeability tensor. Note 

here pj, P2, and P3 are not necessarily the principal dielectric impermeabilities. We will 

illustrate the relation between the principal stress directions and the principal refractive 

index directions, by considering two-dimensional case. If an observation is made along the 

x3' axis, i.e., the wave vector k  is in the direction of x3', and the directions of two principal 

stresses CTj and a 2 are along xj' and x2' respectively, the central section of the refractive 

index ellipsoid normal to the x3' direction has the form:

P l* l'2 +  P2*2'2 +  2 P 6*l'*2'=  1 (2 -6 9 )

We shall discuss the photoelastic effect in two cases of Pg as follows.

(a) Pg=0 , denoting that in the (xj1, x2', x3') coordinate system, the principal semi-axes 

of the refractive index ellipse coincide with the coordinate axes xj' and x2' (see Figure 

2.7). The polarization directions o f the two polarized components propagating along the 

x3' direction coincide with the directions of two principal stresses. The corresponding 

refractive indices are given by

n \ =

w2 = 1 / y[&2 (2.70)

This is similar to the case of the isotropic material. The difference (Pr  p2) directly reflects 

the birefringence index.
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(b) P6^ 0 , in which case, the principal axes of the central section ellipse of the 

refractive index ellipsoid do not coincide with the coordinate axes x f  and x2'. That is, the 

vibration directions, y \ and y>2 , of the two polarized lights propagating along the x3' 

direction does not coincide with the directions of two principal stresses (see Figure 2.8). 

Eq.(2.70) for principal refractive indices is no longer valid. Pj-P2 does not represent the 

birefringence index.

Figure 2.7 Central section ellipse of refractive index ellipsoid when P6=0.

The angle a  between the polarization directions of the two polarized lights and the 

directions of the two principal stresses can be expressed by

tan2a = ~~5 (2.71)
P 1- P 2

For the unstressed cubic crystals, in a rectangular coordinate system, P® = P2 = P3 = 1 / hq 

and P4 = P5 = Pg = 0, hq is the refractive index while unstressed. Let Ap; = p,- -  pf (/ = 1, 

2, ..., 6). Thus, (2.71) can be rewritten as

tan2a = -2Apf- (2.72)
APi -  Ap2

In order to study the birefringence index, i.e., the length difference of long semi-axis 

and short semi-axis of a refractive index ellipse, choose the directions of the long axis and 

the short axis of the refractive index ellipse, i.e., the oscillation directions of the two
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polarized lights, as the axial directions of the new coordinate system, as shown in Figure 

2.8. In the new coordinate system, the refractive index ellipse is expressed as

P l ^ l 2 + P2> 22 = 1 (2.73)

where y \  and y 2 are the directions of the principal refractive indices. The principal

refractive indices, i.e., the two semi-axes of the refractive index ellipse, are expressed by 
1

"1

"2  =

T P
(2.74)

Figure 2.8 Central section ellipse of refractive index ellipsoid when p6^ 0 .

The relation between (Pj', P2') and (Pj, P2, Pg) are 

Pi' = Picos2a  + P2sin2a  + P6 sin2a

P2' = Pjsin2a  + P2cos2a  - P^ sin2a (2.75)

From Eqs.(2.71) and (2.75), the birefringence index Pi' - P3' can be expressed in the form.

P i’ - P2‘ = V (Pl - P 2 )2 +4P62 (2.76)

In the linear range of stress, the relation between the birefringence phase difference 8 

and the birefringence index is given by [31 ]

5 = - w>
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= - ^ V ( P i - P 2 ) 2 +4P62 (2.77)

where d  is the thickness of sample, A, the wavelength of light. Solving Eqs.(2.72) and 

(2.77), yields [31]

This is the general form o f  the stress-optic law [31], which includes the effect of the 

anisotropic property of photoelasticity in a crystal. Due to the anisotropic property of the 

crystal, the angle a  is generally not equal to zero. Consequently, the directions of principal 

stresses do not coincide with the directions of principal refractive indices. The relation 

between the directions of principal stress ctj and principal refractive index //j is shown in 

Figure 2.9, where <|) is the angle between principal refractive index /»j and reference axis x, 

0  is the angle between principal stress CTj and reference axis x, a  is the angle between 

principal refractive index and principal stress ctj. That is

APj - Ap2 = ± -----^ cos 2a
izdtiQ

2APg = ± —3 sin 2a
ncbiQ

(2.78)

0  = a  + <j> (2.79)

x.2
a

n

o x

Figure 2.9 Relation of a , 0 and <|).

If we have the knowledge of the relation between the change of the relative 

dielectric impermeability tensor and the stress tensor as well as the birefringence phase 

difference 5, we can determine the principal stress difference and the directions of
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principal refractive indices by using stress-optic law of (2.78). Then, we can decide the 

directions of the principal stresses from (2.79). In the following sections, we shall study 

the relation between the change of the relative dielectric impermeability tensor and the 

stress tensor for cubic crystals of classes 4 32, 432, and m3m, and derive the analytical 

expressions of stress-optic law for some commonly used coordinate systems.

2.4.2 Application in the [112][110][lll] Coordinate System

2.4.2.1 Observation Made along the [111] Direction The original coordinate axes (xl5 

x2, and x3) are chosen in the [112], [110], and [111] directions, as shown in Figure 2.10. 

We define a new coordinate system (xi1,*^,^), where xj' and x2' are in the directions of

the principal stresses, and within the Xj-x2 plane. Xj' and Xj (also x2' and x2) constitute an 

angle of (p, as shown in Figure 2.10.

[112]

Figure 2.10 Relation between coordinates of (xi,x2,x3) and 
(xi',x2',x3) in the [112][ 110 ][ 111] coordinate system.

The central section of the refractive index ellipsoid, normal to x3 direction, is given 

by (2.69). The angle a  between the oscillation direction of the polarized light, y \ or y 2, 

and the direction of the principal stress, Xj' or x2', as shown in Figure 2.11, is given by 

(2.72). Here we have
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AP l =  r C ^ ll  +  k 12 + ^44)°\  +  T ^ l l  +  5jr12 - ^44)ct2Z o
A P 2  =  7  ( 7t u  +  5 7 C1 2  -  K 4 4 )  C T j  +  -  ( 7l U  +  7T 1 2  +  7C4 4 )  CT2

O 1

AP6 =  ^  ‘ n l2 +  27C44) ct6

Substituting (2.80) into (2.78) and (2.72) yields 

1— (71:11 - %\2 + 27144) (a j - a 2) = ± -----=- cos 2a
3  ndriQ

2
—(tci 1 - 7tj2 + 27C44) Og = ± ----- =- sin 2a
3 n d tiQ

and

tan2a = 2° 6
a l _ c t2

(2.80)

(2.81)

1110]

*, 11121

Figure 2.11 Relation between directions of principal stress and 
principal index when observation made along the [ 111] direction.

From the assumption that the two principal stresses are in xj' and x2' directions, the 

stress component a 6 is equal to zero, and the angle a  is equal to zero, indicating that the 

principal axes of the stress ellipse coincide with those of the refractive ellipse. Thus, the

principal stresses can be expressed in a simple form:

\ . w  . _____ A,5
~  f a n  - Ki 2 + 2n44) (Gr a 2) ~  ± ~ r j
j  na/iQ

(2 .82)
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Based on this equation, we can calculate the principal stress difference a j - a 2, with the 

given values of A,, 5, d, and «0.

2.4.2.2 Observation Made along any Direction within the [112]-[IlO] Plane The

original coordinate axes (xj, x2, and x3) are chosen in the [112], [110], and [111] 

directions, as the same as that shown in Figure 2.10. When an observation is made along 

the xj' direction, which is within the X \ - x 2 plane, and x^ and xj constitutes an angle of cp, 

as shown in Figure 2.10. Assume the principal stresses to be in the x2'-x3 plane. In the new 

coordinate system (xj1, x2', x3), the central section of the refractive index ellipsoid, normal 

to the xj' directions, is expressed by

Figure 2.12 Relation between directions of principal stress and principal index 
when observation made along any direction within the [112]-[110] plane.

The angle a  between the oscillation direction of the polarized light, y 2 or_y3, and the 

direction of the principal stress, x2' or x3, as shown in Figure 2.12, now becomes

P2x2’2 + p3x32 + 2P4x2’x3= 1 (2.83)

tan2a (2 .84)

where,
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1 1 -yjl
A02 =  - ( ^ l l + ^12+7t44)CT2 +  “  ( ^ l l + 2Jti2-7t44)03  - —  (7 ^ !-7t!2-7C44)cos3(P CT4 

AP3 = |  («11 +  27t12 - ^44) <*2 (*11 +  2tCi2 +  27t44) ° 3

V2 1
A P 4  =  -  - 7 -  (*11 "  *12 -  * 4 4 )  c o s 3 ( P  °2  +  “  (2*1 1"2*12 +  * 4 4 ) ° 4  ( 2 - 8 5 )

6  3

If the two principal stresses are in the directions of x2' and x3, we have a 4=0. Thus,

from (2.84) and (2.85), we have

—(7IU ‘ *12 ^7144) a 2 -7144 a 3 = ±  =-cos 2a
6 7idftQ

' f t ,   ̂ 1 4. ^— —  (7Ti i - 7 i : i2 - 7 t4 4 ) c o s3 c p  CT2 = ± — —
3 TUIHq

(7111 -71,2-7t44)cc,s3 (p 02  = ± — 3 sin2a (2.86)

And the angle a  is given by
tan2a = - 2 ^ l l - ^12 ~ ^44) cos3cp a 2

(7ln - 7Cj2 + 57144) CT2 " 07144 03

From (2.87), the angle a  depends on the observation direction cp and the magnitude of the 

principal stresses. If the observation is made in some special directions such that cos3cp=0, 

the angle a  equals zero. In such situations, the principal axes of the stress ellipse coincide 

with the principal axes of the refractive index ellipse. When (7t u - 7t i2+57i44)a2=±67i44a 3, 

the angle a  reaches its maximum values 45°.

Generally, three unknown parameters (o2, o3, and a ) can not be solely determined

from the two independent equations (2.86) and (2.87). However, under certain practical

situations, Eqs.(2.86) and (2.87) can be simplified. For example, for a thin (111) wafer, if

observed along its flank side normal to the X\ direction, the only non-zero stress

component is a 2. Thus, we have 
1

—(71 j 1 - 7t 12 + 57t44)a2 = ± r-cos2a (2.88)
6 ndfiQ

tan2a = -2V2(7in - 7E12 - 7i44) cos3(p /(nn  - 7t12 + 57i44) (2.89)

In such case, the angle a  is determined by the observation direction. Figure 2.13 

shows the relation between the angle a  and the observation direction (p for silicon wafer 

with (111) when observation is made along its flank side, where the values of 7tj], 7t]2,
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and 7C44 from Table 2.1 are used. If k  is any integer, it is obvious from Figure 2.13, that 

when (p=A7r/3+7t/6 , i.e., observation is made along the <112> directions, a=0. The 

principal axes of projection ellipse of refractive index ellipsoid are identical with the 

directions of principal stresses. When (p=kn/3, i.e., observation is made along the <110> 

direction, the orientation deviation between the projection ellipse of refractive index 

ellipsoid and the stress ellipse becomes a maximum, i.e., a  = 9.94°.

(degree)

a

-10
0  6 0  1 2 0  1 8 0  2 4 0  3 0 0  3 6 0

<p (degree)

Figure 2.13 The angle a  as a function of the observation direction cp 
for a ( 111) silicon wafer when observation is made along the flank side.

2.4.3 Application in the [110][110][001] Coordinate System

2.4.3.1 Observation Made along the [001] Direction The axes of [110], [110], and 

[0 01 ] are chosen as the coordinate axes (xj, x2, x3) of the original coordinate system, as 

shown in Figure 2.14. Defined a new coordinate system (xj1, x2', x3), where, Xj' and x2' are 

in the X j - x 2 plane, and X j '  and Xj  constitute an angle of (p, as shown in Figure 2.13. The 

central section equation is given as (2.69). The relation between the directions of principal 

stress and principal refractive index is shown in Figure 2.15. The angle a  between the 

oscillation directions of the two polarized lights and the directions of the two principal 

stresses is given as (2.72). Here we have
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APi - Ap2 = [7C44+ (TCn-7t 12-7144) sin22cp] (ctj - ct2) + (7ci r 7r12-7r44) sin4cp ct6 

Ap6 =^-(7:1 i-7Ci2-7t44) sin4(p (a , - o 2)+[7i44 sin22 (p+(7r: 1 j-7t 12) cos22(p]a6 (2.90)

If the directions of the two principal stresses are in the directions of jcj' and x2\  we have 

that cjg=0, Eqs. (2.90) are rewritten as
A,8

APj - AP2 = [7144+ (tch-7Ci2-^44) sin22(p] (a j - c 2) = ± ^-cos 2 a
izdtiQ

1 JlS2AP6 = - ( 7t n -7i:i r 7C44) sin4(p](aj-a2) = ±------Tsin 2a (2.91)
2 ndtiQ

x ,  [001]

[110]

[110]

Figure 2.14 Relation between coordinates of (X],x2,x3) and 
(x1,,x2,,X3) in the [110][110][001 ] coordinate system.

2 [110]

Figure 2.15 Relation between directions of principal stress and principal 
index when observation made along the [001] direction.
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And the angle a  is given by

tan2a  = (7 ti i  -  7Ij2 -  7t44)sin4<p
(2 .92)

27144+ 2 (7111- 7̂ 12- 71:44) sin 2 cp 

The angle a  can be readily calculated by (2.92) when the principal stress direction cp is 

known. Figure 2.16 shows the angle a  as a function of the principal stress direction <p for 

a (001) silicon wafer, where the data of 7Cu, 7112, and 7144 from Table 2.1 are used. It is 

obvious that when <p=0, a=0; and when <p=22.5°, the angle a  reaches its maximum 8.3°.

(degree)

a

-10
0  3 0  6 0  9 0  1 2 0  1 5 0  1 8 0

<p (degree)

Figure 2.16 The angle a  as a function of the principal stress direction cp 
for a (001) silicon wafer when viewed from the [001] direction.

2.4.3.2 Observation Made along any Direction within the [110]-[110] Plane The

coordinate systems are chosen as shown in Figure 2.14. Observation is made in the atj' 

direction within the xpX2 plane, and xj' and xi constitute an angle of cp, as shown in 

Figure 2.17. The directions of the two principal stresses are assumed in the x2’ and x3 

directions. In the coordinate system (xj1, x2\  x3), the central section equation of the 

refractive index ellipsoid is given in (2.83). Similarly, we have

A 0 2  =  [ ^ • ( 7Cl l + 7 t 1 2 + 5 I 4 4 )  +  J  ( ^ l l -  7 t l 2 - r c 4 4 ) s i n 2 2 < p ] ° 2  +  ^12a 3

A 0 3  ~ n 12a 2 + 7 t l l  a 3 

AP4 — 714404 (2 .93)



43

Figure 2.17 Relation between directions of principal stress and principal index 
when observation made along any direction within the [110]-[ 110] plane.

Since the principal stresses are in the x2 direction and the x2 direction, then a 4=0, thus 

a=0 (2.94)

and
1 X8

~ [ fa l1 - * 1 2 +7C44)+ (IC1 l-* I2 )0 3= ± — T T  <2 -9 5 )4 natiQ

Notice that we are still unable to solve two unknown stresses a 2 and a 2 by using (2.95). 

However, for the thin wafer of (100) plane, when observed from flank side, the only

unknown stress is o2, which can be calculated by using (2.95), that is

1 A-8
- [O h i-^ I 2+^44) + f a i r  7ti2-^44)sin22(p]a2 = ±—— T (2.96)
2 natiQ

2.5. Summary

In this chapter, we study the birefringence in various crystals. The anisotropy of the 

photoelastic effect in the crystals with cubic symmetry is investigated in detail. The matrix 

forms of the piezo-optic coefficient tensor are derived for various coordinate 

configurations. For crystal materials of diamond structure or zincblende structure, in 

general, the orientation of the stress ellipsoid does not coincide with that o f the refractive
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index ellipsoid. For a two-dimensional situation, the relationship between the principal 

axes of the stress ellipsoid and those of the refractive index ellipsoid is analyzed.

In a crystal situation, the stress-optic law of isotropic medium is no longer valid. 

Instead, we have derived the analytical expressions of the stress-optic law for some 

commonly used coordinate configurations. In order to derive a stress-optic law in different 

coordinate configurations, we should know the matrix forms of piezo-optic coefficients in 

the coordinate configurations. Taking into account the anisotropy of photoelasticity in a 

cubic crystal, according to the transformation law for fourth-rank tensor in matrix form, 

we obtain piezo-optic coefficient matrices in the [110][110][001] coordinate system and in 

the [112][110][111] coordinate system. The discussion presented in this chapter forms the 

major theoretical part for our research projects of stress study in microelectronic materials 

with photoelasticity.



CHAPTER 3

METHODOLOGY OF PHOTOELASTIC 
STRESS ANALYSIS

In photoelastic stress analysis, in order to apply the stress-optic law derived in Chapter 2 

to calculate the distributions of the principal stresses, it is necessary to determine the two 

photoelastic parameters: the birefringence phase difference 6 and the birefringence angle 

<j), with which we can solve for the magnitudes and the directions of the principal stresses. 

In this chapter, we will discuss some methods of measuring these two parameters. These 

methods are the Senarmont compensation method, the Fourier analysis method, and the 

intensity analysis method. We will discuss the measurement arrangements, the principles of 

operation and the errors for these methods. Finally, in Section 3.4, we will introduce the 

three-direction observation method of determining the principal stresses from three 

secondary principal stresses.

3.1 Senarmont Compensation Method

3.1.1 Concept of Operation

In conventional photoelastic experiments, the two parameters 8 and <j> are determined by 

analyzing the isochromatic lines and the isoclinic lines of photoelastic patterns. However, 

when applying photoelasticity to microelectronic materials, we are dealing with samples 

with thickness in the order of 0.5mm, the birefringence phase difference accumulated 

through the optical path is typically less than n, which corresponds to the stress less than 

]0sdyn/cm2. Therefore, it is necessary to find effective methods to determine the 

fractional order o f isochromatic line. Senarmont compensation [32] is a useful method of 

determining the birefringence phase difference with a fractional order of isochromatic line.

45
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It has been successfully applied to determine the stress in silicon wafers after various 

device processes [33][34],

Light Source Detector

Polarizer Sample 1/4 wave-plate Analyzer

Figure 3.1 Schematic diagram of measurement 
configuration for Senarmont compensation.

A

(a)

o

(b)

Figure 3.2 Schematic representation 
the directions of polarization and stresses.

The schematic diagram of measurement configuration of Senarmont compensation is 

shown in Figure 3.1, which consists of a light source, a polarizer and an analyzer, a 

sample, a quarter wave-plate and a detector. First, by rotating the aligned polarizer and 

analyzer together, we can find the principal directions o f the refractive index ellipse. When 

a linearly polarized light beam goes through the sample, the detector output reaches 

maximum if the polarization direction coincides with one of the principal direction of the
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refractive index ellipse. Then the polarization axes of the polarizer P and the analyzer A 

are made at 45° with respect to the principal refractive index direction of the sample, as 

shown in Figure 3.2(a). A quarter wave-plate is placed between the sample and the 

analyzer, with its fast and slow axes parallel to the polarization axes, as shown in Figure 

3.2(b). The analyzer is rotated until the nearest w-th order fringe moves to the measured 

point, as shown in Figure 3.2(b), where <p is the rotated angle, with which we can 

determine the birefringence phase difference 5.

3.1.2 Principle of Compensation [32]

After transmitted through the polarizer, the monochromatic light becomes linearly 

polarized:

£p = drjsina)t (3.1)

When the polarized light arrives at sample, it decomposes into two components along the 

directions of e j and 82:

E\ = -£pcos45° = a2sincot

E2 = Ep sin45° = dr2sina>t (3.2)

where a2=0J07a\. After transmitted through the sample, a phase difference 6 between E\ 

and E2 will develop, due to presence of stress in the sample:

E { = a2sin(rot-5)

£ 2' = dr2sincot (3.3)

As Ei and E2 reach the quarter wave-plate, they will decompose along the fast axis F  and 

the slow axis S. Since the fast axis F  of the quarter wave-plate is parallel to the 

polarization axis of the polarizer P, thus,

Ef = £ ’i'cos45° + £ 2'sin45°= <ar3sin(cot-5) + d^sinoot

Es = £i'sin45° - £ ’2'cos45° = a 3sin(cot-8) - d^sinoot (3.4)

After transmitted the quarter wave-plate, a phase difference 7t/2  will be introduced 

between Ef and Es:
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E[ = a3sin((Bt-5+7c/2) + £/3sin(at+7t/2) = a3cos(at-8) + a3 coscot

= a 3sin(at-8) - a 3sinat (3.5)

When Ef and Es' reach the analyzer A, only their projections along the polarization axis of 

analyzer A can pass. The composite light beam EA coming out of the analyzer A is

Ea  = E f sin0 + Es'coscp = acos(at-8/2) sin(cp-5/2) (3.6)

Thus, the intensity of the transmitted light is

1 = k  sin2(cp - 8/2) (3.7)

When

sin(cp - 8/2) = 0, (3.8)

the transmitted light intensity 7=0. By rotating the analyzer, the angle cp may be chosen to 

satisfy this condition, which is called the compensation angle. From (3.8), the 

birefringence phase difference 8 is related to the compensation angle cp by

8 = 2/771+ 2cp (3.9)

where n is an integer, which represents the integer part of the order of isochromatic line.

3.1.3 Analysis of Accuracy

When employing the Senarmont compensation method, the major errors of measuring 

birefringence phase difference may arise from: the error of the polarization angle of 

polarizer £, and the error of the retarding phase of the quarter waveplate C,. In Figure 3 .3, 

the angle between the polarization axis of polarizer and the principal stress is 45°-£, and 

the phase retardation of the quarter waveplate is 90°+t,. The monochromatic light from 

the polarizer is given by (3.1). After the polarized light travels into sample, it decomposes 

into two components along the directions of ej and e2:

E\ = TipCos45° = a\ sin cot cos(45°- £)

E2 = Ep sin45° = aj sin a t cos(45°+ £) (3.10)

After transmitted through the sample, a phase difference 8 between E\ and E2 will be

developed, due to the presence of stress in the sample. Then,
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O S  , Es , Es

Figure 3.3 Errors of Senarmont compensation.

Ei = a\ sin (cot + 8) cos(45°- £) 

E2' = ai sin cot cos(45°+ £) (3.11)

As E\ and E2 reach the quarter wave-plate, they will decompose along the fast axis F  and 

the slow axis S:

E{= ajsin(cot + 8)cos2(45° - £) + isincot cos2(45° + £)

£ s= ajsincot cos(45° + £)cos(45°- £) - cjq sin(cot+ 8)cos(45° + £) cos(45°- £)(3.12) 

After E f  and Es having passed the quarter wave-plate, a phase difference n/2+C, is added 

between E{ and Es:

Ef=aicos((nt + 8 + Qcos2(45° - £) + aicos(cot + Q  cos2(45° + £)

£ s'=alSincot cos(45°+£)cos(450-£)-ajsin(cot+ 8)cos(45°+£)cos(45°-i;) (3.13)

When E[ and Es' reach the analyzer A, they compose along the polarization axis of the 

analyzer. The composite light beam EA coming from analyzer A is

Ea  ~ (Ajsincp + A2cos(p )coscot + (Bjsincp + B2cos(p)sincot (3.14)

where,

2 2 

B2 =alCos£, sin2—8

The intensity of the transmitted light is

Aj = aj[cos(8 + Q  cos2(45° - £) + cosC, cos2(45° + £)] 

Bi = -aj[sin(8 + Q  cos2(45° - E,) + sin£ cos2(45° - E,)] 

A2 = -ajcos^ sin—8 cos—8

(3. 15)
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I  = k2 [(A2cos(p + Ajsimp)2 + (B2cos(p + Bjsintp)2] (3.16)

By letting dl/dcp=0, it is found that when

cost sin 8 + sin 2£ sin t  cos5 -  sin 2£ sin ttamp = -------------------------------------------------- , (3.17)
cos5 cos2£ + sin 2£ tan 2£

the transmitted light intensity reaches its minimum. When there is no error, £=0, Q=0,

(3.17) becomes

tancp = tan8 (3.18)

whose solution is the same as (3.9):

8 =2w i + 2<p (3.19)

If there are errors, £,^0 and/or QtO. By assuming that £,=5°, Q= 5°, and (p=10°, we can 

estimate from Eq.(3.17) that the relative error |Aa/a| is 2.22%. It is readily shown, from 

Eq.(3.17), that if £,<5°, t< 5°, for any value of <p we always have that |A8/S| is less than 

3%; that indicates a high accuracy by employing the Senarmont compensation method to 

measure birefringence phase difference.

3.2 Fourier Analysis Method

In photoelastic stress analysis of microelectronic materials, we often need to determine 

fractional order fringe of photoelastic patterns for the whole area of a wafer sample. It is 

virtually impossible to use the Senarmont compensation method, since the photoelastic 

parameters 8(xj>) and <j)(*jO must be measured through every position (xy) of the sample. 

Fourier analysis is a new method developed during this dissertation research. The 

approach is to use a continuously rotating analyzer to obtain a series of photoelastic 

patterns of the sample which is followed by Fourier analysis of the measured images to 

determine photoelastic parameters 8(x^y) and In this section, we discuss the

principle of the Fourier analysis method, present an example of its application, and analyze 

the accuracy.
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3.2.1 Linear Retarder

Since a stressed transparent material exhibits a birefringence effect, it is equivalent to a 

linear retarder. When a polarized light beam with Jones vector {A\,B{) is incident upon 

the linear retarder, the two polarized components A j and B\ will decompose along the £ 

and r\ axes, as shown in Figure 3.4. The Jones vector becomes [35]

' Al \
J J  (3 20)

where A^ and B^ are the components of the polarized lights along £, and T] axes, 

respectively. After transmitting through sample, B^ has a retarded phase 5 relative to A^,

( A C _ r COS(J) sinc^V
-sin<j) COS<}> Y

' A £

K

' A C
Bn

O J A ,
(3.21)

v i/

(slow axis)
(fast axis)

Figure 3.4 Schematic representation of the linear retarder.

The transmitted components of A ̂  and B ’̂  can be expressed in terms of components A2 

and B2 along the reference axes x  and that is,

' * )B l)

where the Jones matrix of the linear retarder is given by

e'5 cos2 (J> + sin2 <j) (e'5 -  l)sin<{>cos<|)^

'cos<|) -sincj)'1

J h > ksin4> coscj) > B ’r, )\  n j  \
(3.22)

R =
’ « i l a \2

/

_a 2 \ a 2 2 . V(elS -  l)sin<j)cos<|) e'8 sin2 <|) + cos2 <j) J
(3.23)
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Eq.(3.23) is a useful expression for a linear retarder, which describes the stress state at a 

point of the stressed sample. The parameter 5 is related to the magnitude of the difference 

of the principal stresses by the stress-optic law of (2.78), while the parameter <j> is related 

to the direction of the principal refractive index tt\ by (2.79).

3.2.2 Principle of Measurement

After the linearly polarized light P  passes through the sample or the retarder R, it transmits 

through the analyzer set at angle (p as shown in Figure 3.5. The emerging light, or the 

signal S  to be detected, is [36]

P

Light Source

A

^ X Sample 
(as retarder)

Figure 3.5 Schematic diagram of the optic arrangement for Fourier analysis.

S = A(<p)RP (3.24)

where the Jones vector P of the transmitted light from polarizer and the Jones matrix A(q)

for the analyzer are 
"0"

P =

c o s2 cp ^-sin2cp
yf(<p)=

Apparently, the Jones vector S  can be rewritten as

^•sin2(p  sin2 cp

(3.25)

(3.26)
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s=
ai2  sin 2(p + a22 s*n 9

( 3.27)

A detector is provided to measure the intensity /  of the transmitted light S,

1 = 5^8 = a (cos4(p + —sin22(p) +—e sin2(p+*/(sin4 cp + — sin2 2(p) (3.28)

where,

a  = an an

e  ~  a 22a \2 + a 22a 12 
, *

d -  a 22a 22 (3.29)

By multiplying both sides of (3.28) with cosq), and integrating them from 0 to 2k,

yields
271
J/cos2<pof(p = — /  (3.30)
0 2

where f=a-d. Similarly, by multiplying both sides of (3.28) with sin2cp and integrating 

them from 0 to 2k , we have
271
J /  sin 2qx/cp = — c (3.31)
0 2

Based on the theory of Fourier transform [37], coefficients e and /  can be respectively 

related to the imaginary part and the real part of the second term of the Fourier transform 

of I, that is

On the other hand, by using Eqs.(3.23), (3.29), the coefficients e and/  are expressed as

Once the values of/ and e are obtained from (3.32), the photoelastic parameters <|> and 5 

can be solved based on (3.33):

f= A R e {F 2(I)} 

e= -4 Im{F2(I)} (3.32)

sin4cJ>(cos8-l)

/ = ---------cos4<|)— cos5(l-cos4<J))
2 2 2

(3.33)
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§ =  0.5 arctan(-
e

_ .sin4(J) + 2e.8 = arccos(  ------) (3.34)
s i n 4 q >

3.2.3 Example of Application

A (111) oriented silicon wafer sample is used to illustrate the application of the method. 

The sample, with size o f SmmxlOmm and thickness of AQ0\xm, is covered with thermally 

grown Si02 thin films o f thickness 1 \xm on the both surfaces. For simplicity, we measure a 

point in central region of the sample. Polarized light is incident in the normal direction of 

the wafer's surface. The intensity of the transmitted light from the analyzer is measured for 

every 2° of the analyzer azimuth angle (p. A curve of intensity of transmitted light as a 

function o f rotated angle of the analyzer is obtained, as shown in Figure 3.6. The Fourier 

transform is performed for the measured data. The values of (j) and 8 are obtained as (|> 

=16.39° and 8=6.36°.

I  (relative value)

5

4

3

2

1

0
0 40 80 120 160 200 240 280 320 360

(p (degree)

Figure 3.6 Transmitted light intensity as a 
function of the analyzer azimuth angle.

For the (111) wafer, since light travels in the <111> directions, the refractive index 

ellipsoid coincides with the stress ellipsoid, and the principal stress directions coincide
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with the principal refractive index directions, described by the parameter <J>, which 

expresses the angle between the reference axis x  and the principal stress Oj. By using the 

values of piezo-optic coefficient for silicon in Table 2.1, and putting \=  1.15pm, w0=3.52, 

and aM400pm into the stress-optic law given by (2.82), the magnitude of the principal 

stress difference (CT] - 0 2 ) is calculated as 3.2x\(Pdyn/cm2.

3.2.4 Analysis of Accuracy

The principal source of error when employing the Fourier analysis method is due to stray 

light produced by internal reflection [38], Some of the light reflected in the reverse 

direction from one surface is again reflected on meeting a second surface such as that of 

the polarizer, the sample, or other optic elements. The net effect of the two reflections at 

the two surfaces of an optical element is to return some of the light along its original path. 

Let the actual intensity T be the summation of the intensity of stray light / stray and the 

intensity of polarized light due to the signal / sjgnai;

I* ~ ^signal+ ŝtray = ŝignal "^signal (3.35)

where r is the stray light factor (0<r<l). Thus,/and e of (3.34) will become

/ = / ! - / • )

e' = e(l -r)

The measured photoelastic parameters are given by

(3.36)

<j>' = 0.5arctan[--1 t S l _/ ) / ]
(!-/•)<?

sin 40'
(3.37)

The errors of <j> and 5 are given by

AcJ) = (J)'- ()> = 0 . 5 a r c t a n [ - 0 - 5 a r c t a n ( - - - +—)
(1 - r ) ~ le e

] - arccos( (3 .38)
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For various values of <j> and 8, the error A8 is calculated as shown in Figure 3.7, by 

assuming r=0.01. For a given <|>, A8 increases rapidly when 8 becomes small. The dash line 

in the figure indicates where A8=8, that gives the limitation of accuracy of measuring 

photoelastic parameter 8. From Figure 3.7, it is found for various <}) that A8=8 occurs at 8 

-4.5°. For a silicon sample with thickness o f 500pm, this represents stress error o f about 

1.8x10Idynlcm2 which would be acceptable for most applications. Figure 3.8 shows the 

dependence of minimum detectable birefringence phase difference upon the stray light 

factor r, assuming (j> =20°. When r=0.05, A8=8 occurs at 8«10°.

AS
0 = 1°10

r = 0 .0 1

0 =  10 °

0  = 40 °

O 2 4 6 8 lO
8

Figure 3.7 Error of 8 for different 8 and <{> ( the units are degree).

A 5

20

10 r=o.o;
r=p.05

r=0.0

0 5 10 15 2 0  25 3 0

5

Figure 3.8 Error of 8 for different 8 and r ( the units are degree).
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The finite dynamic range of the detector imposes another limitation on the 

measurement accuracy when employing the Fourier analysis method. To measure the 

photoelastic parameters effectively, the minimum detectable intensity of the detector 

should not be higher than the minimum intensity of the light emitting from the analyzer. By 

using trigonometric identities, (3.28) can be rewritten as

/ = ^ § +f ^ ? " f ^ cos2cp+ i sin2cp

By letting dl/dcp=0, we can solve for the angle cp for which we obtain the minimum 

emitting light intensity:

tancp = —-— (3.40)
a - d

Thus, the minimum intensity 7min is given by

7 m i n  = + ^y je 2 + ( a - d ) 2 ( 3 . 4 1 )

Based on (3.41), we can calculate the relationship between 7mjn and the photoelastic 

parameters (5 and <|>) as shown in Figure 3.9, where 7mjn is normalized to one; transverse 

axis stands for 5 = <j) (in degree). For 5=<|)=50, we have 7mjn=5.73x 10'5. For 5=<j>=10°, we 

have 7min=8.83xl0‘4.

/  m i n  (n o rm a lized )

0 .1 5

0.12
0.09
0.06
0.03
0.00

0 9 18 27 36 45
8  a n d  (J) (d eg ree )

Figure 3.9 Relationship between 7mjn and 
the photoelastic parameters (5 and <j>).
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To ensure the minimum detectable intensity of the detector lower than the minimum 

intensity 7mjn, we should choose the detector with a high enough dynamic range. Assume 

that x  is the bits of the digital signals, x  should satisfy the following relation:

2 x < / mjn (3.42)

Figure 3.10 shows the relationship between the minimum detectable photoelastic 

parameters (8 and <j>) and the required bits of the detector. It is obvious that if we wish to 

detect a minimum photoelastic parameters 8=<|>=50 (for a silicon sample of thickness 500|j. 

m, it corresponds to the stress of about 2.0x\Qpdynlcm2), the dynamic range of the 

detector should be higher than 14 bits. For a detector with dynamic range of 8 bits, the 

minimum detectable photoelastic parameters are about 5=<J)=15° (for a silicon sample of 

thickness 500pw, it corresponds to the stress of about 6.0x101dynlcm1).

Required bits 
16 .00  
12 .80  

9 .6 0  
6 .4 0  
3 .2 0  
0.00

0 9 18 27 36  45
8 an d  (j) (degree)

Figure 3.10 Relation between the minimum detectable photoelastic 
parameters (6 and <j>) and the required bits of the detector.

The results obtained experimentally illustrate the system's ability to measure 

accurately the state o f polarization of a beam of light. As long as we have a detector with 

a dynamic range of 16 bits, it is possible to reach the limit of stray light due to internal 

reflection, (if r=0.01, the minimum detectable stress is about l.ZxNfldyn/cm2). Besides, 

because of the averaging effect of the Fourier transform the method can greatly reduce the
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random error when measuring the intensity of the transmitted light. Also since it does not 

depend on a certain azimuth angle of the analyzer, the method is not related with the error 

of the azimuth angle of the analyzer. With advanced image sensor and computer 

techniques, it is possible for this method to become a powerful means to perform 

automatic analysis of stress distribution for various microelectronic materials and device 

structures.

3.3.1 Principle of Compensation

Under a dark, linearly polarized field, as shown in Figure 3.11(a), where <j) is the angle 

between the direction of the principal refractive index //j and the reference axis x, the 

intensity of light emitted from analyzer is expressed as [39]

3.3 Intensity Analysis Method

11 = Iq sin22(J) sin2y (3.43)

P

A O A , P

(a) (b)

Figure 3.11 Schematic representation of the intensity analysis method.

where 8 is the birefringence phase difference. By rotating the polarizer P such that the 

polarization axes of the polarizer and the analyzer coincide with each other, we obtain a
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bright, linearly polarized field, as shown in Figure 3.11(b). The emitting light from the 

analyzer is given by [39]

h  = A) 0-sin22<J) sin2y )  (3.44)

The constant Iq in (3.43) and (3.44) is expressed by

J0 = h + I2 (3.45)

Then simultaneously rotating polarizer and analyzer by 45°, the directions of polarization 

axes of the polarizer and the analyzer are shown in Figure 3.12(a). In a dark, linearly

polarized field, as shown in Figure 3.12(a), the transmitted light intensity is

I'l = / ' o c o s 2 2<|> sin2|- ( 3 . 4 6 )

Similarly, in a bright, linearly polarized field, as shown in Figure 3.12(b), the 

transmitted light intensity is

y  y

(a) (b)

Figure 3.12 Schematic representation of improved photometry 
compensation after polarized field is rotated by 45°.

12  = Ad (1 -cos22<j> sin2|- ) (3.47)

And from (3.46) and (3.47), we have

A) = A' + I2 (3-48)

From (3.43) and (3.46), we can obtain the birefringence phase difference 8,

cos 8 = 1 -2(— + (3 49)
A) A)
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and determine the angle <j) between principal refractive index rt\ and reference axis x:

tan22<j> = ( ^ ) / ( ^ )  (3.50)

3.3.2 Analysis of Accuracy

There are two principal sources of error when employing the intensity analysis method. 

The first of these: error of polarization angle of polarizer or analyzer and non-zero of 

extinction ratio of polarizers. In dark, linearly polarized light field, as shown in Figure 

3.13, due to the two factors above, the angle between polarization axes of polarizer and 

analyzer is 90°+£; the extinction ratio of polarizer and analyzer is

Figure 3.13 Error of the intensity analysis method.

The two components of monochromatic light emitting from the polarizer are 

E y - a  sincot

£ x = tfCsincot (3.51)

where a  is a constant. After they travel into sample, these two components of light will 

decompose along the directions of the principal refractive indices:

E\ = AySintj) + £ xcos<j> = a sin cot (sin<j> + £cos(|>)

E i = £yCos<}> - £ xsin<|) = a  sin cot (cos<J> - ŝincj)) (3.52)

After they are transmitted through the sample, a phase difference 5 between E\  and E 2 will 

develop, due to the presence of stress in the sample. Hence,
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Ei = a sin (cot + 8)(sin<j> + Ccos<j>)

E2' -  a sin cot (cos<]) - ŝincj)) (3.53)

As E\ and reach analyzer .4, they compose along the polarization axis of the analyzer

A . The composite light beam EA coming from analyzer A is 

EA = cos(<t> + £) - E{  sin(<)) + £)

= a  sin cot [cos8 (sin<J> + £cos<[>)cos(<t>+ £,) - (cost}) - Csin<|))sin(4) + £,)]

+ a  cosot sinS (sincj) + ĉos<|))cos(<|) + £,) (3.54)

The intensity of light emitting from the analyzer is given by

I \=  k2 ( [cosS (sincj) + £cos<J>)cos(<|> + 4) - (cosij) - £sin<j))sin(<|) + £,)]2

+ [coscot sinS (sine)) + £cos<|>)cos((|> + £)]2 } (3.55)

When 4=1° and C= 10'4, <J>=0 and 8=0, we obtain

/ j  = k2 ( 10‘4cosl° - sinl°)2 = 3.01 lx lO '4 k2 (3.56)

By assuming r \=  I\ and / 2 = /2, from (3.49) we can estimate the error

cosAS = 1 - 4 11 = 0.9987965 (3.57)

Thus, A8=2.8°. For a silicon sample o f thickness 500pw, this corresponds to a value of

stress of about l . l xl  Qpdyn/cm2.

The second major source of error is due to stray light produced by internal 

reflection, described in previous section. With incident linearly polarized light, extinction 

conditions exist when 8=/m, n being zero or any integer. Let the actual minimum intensity

transmitted be rl. The corresponding maximum intensity is (1 -r)7, hence, the error can be

estimated from (3.49):

cosA8 = l-2(------- ------ + ------ —------ ) = 1 - 4r (3.58)
rI + ( \ - r ) I  r r + ( \ - r ) r ’ v '

When r=0.01, A8sl6.3°. For a silicon sample of thickness 500p/w, this corresponds to the

minimum detectable stress of about 6.5x102dyn/cm2. The minimum detectable intensity

imposes a requirement on the dynamic range of the detector. Since the major limitation on

the detection sensitivity is the stray light describe above, the dynamic range of the detector
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may be chosen to reach that limit. For r=0.01, the dynamic range is (1 -r)/r=99, hence, a 

detector with 8-bit dynamic range could meet this requirement. It is seen that the intensity 

analysis method has a lower accuracy than the Fourier analysis method. However, since 

the intensity analysis method is simpler in operation, it will be useful in many applications 

which do not demand a very high accuracy.

3.4 Three-Direction Observation Method

3.4.1 Principle of Operation

In order to enhance light path difference caused by stress, light incidence and observation 

from the flank of the wafer sample are adopted. Stresses in a wafer can be considered only 

within x-y plane, as shown in Figure 3.14(a). However, when a linearly polarized light 

passes through a three-dimensional sample, the birefringence phase difference 5 is 

proportional to the difference of secondary principal stresses, which are the projections of 

the principal stresses on the sample surface which is perpendicular to the incident light. 

Therefore, by applying the stress-optic law, we can only obtain the difference of secondary 

principal stresses. In this dissertation, we propose the three-direction observation method 

to determine the direction and magnitude of principal stresses from three secondary 

principal stresses measured for a wafer sample. Figure 3.14(b) shows schematic 

representation of the three observation directions (x , x' and y) for a wafer sample.

For two-dimensional stress state in x-y plane, second-rank stress tensor can be 

expressed with three components: a xx, and Oyy. When light travels along the jc axis, 

stresses a xx and do not cause an optical effect. Stress Oyy can be calculated by [10]

(3.59)

where /wj is the fringe order of isochromatic line, C\ the relative stress-optic coefficient in 

this direction, d\ the optical path in the x  direction, and X the light wavelength.
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Similarly, when observation is made along they direction, we have 
X

°xx = m2 77- r  (3.60)
C 2“ 2

where m2 is the fringe order of isochromatic line in this case, C2 the relative stress-optic 

coefficient in this direction, and d2 the optical path iny direction.

(a) (b)

* x

Figure 3.14 Schematic representation of three observation directions.

To obtain shear stress CTxy, it is necessary to make the third observation in the x' 

direction, which intersects the x axis with an angle 9 . Assuming that the original 

coordinate system is rotated around the z axis in the x-y plane, it is readily shown that

c xv = —̂  tan cp H— SLcotcp------ —  (3.61)
^  2 T 2 sin2 <p v '

where the stresses o xx and Oyy are determined by Eqs.(3.60) and (3.59), and a'yy can be

obtained from an observation along the x' direction:
X_

C'd'°'yy = m'^T7s (3-62)

where m' is the fringe order of the isochromatic line observed from the x' direction, C  the 

relative stress-optic coefficient when observation is made along the x' direction, and d  the 

optical path in the x' direction. Finally, the magnitudes and directions of the principal 

stresses Oj and a 2 can be determined by[10]:
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(3.63)

where 0 is the angle between the principal stress a j  and the positive direction of the x  axis.

3.4.2 Application

As the application of the three-direction observation method, we determine the directions 

of the principal stresses in (001) and (111) silicon wafers with thickness 200~480|o/n. For 

a (001) oriented wafer the three observations are [110], [110], and [0 10 ], as shown in 

Figure 3.15(a). A (001) wafer is first prepared by cutting it along < 110> directions to 

form a \2mmx\2mm  square. Then the third pair of parallel observation windows are made 

in the [010] and [010] orientation, at 45° with respect to the [110] direction. For (111) 

wafers, in addition to the [110] and [112] directions, the third observation direction is at 

45° with respect to the [110] axis as shown in Figure 3.15(b). Observations are made 

along the three directions to obtain three values of fringe order wij, m2, and m'. Then the 

directions and the magnitudes of the principal stresses can be calculated by using Eqs.

(3.59)~(3.63).

[lioi
y [010]

[1121
y „»

(a) (001) wafer (b) ( 111) wafer

Figure 3.15 Observation directions for (001) and (111) wafers.
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Measurement and analysis indicate that in (001) wafers after oxidation or grinding 

secondary principal stresses observed along [110] (x-axis positive direction) and along

[110] (y-axis direction) are nearly equal, and the principal stress a ,  orients itself at about 

38°~44° with respect to the [110] direction (x-axis positive direction). In other words, the 

directions of principal stresses are about in the [010 ] and [100] directions, as shown in 

Figure 3.16(a). It follows that the orientation of the principal stress is related to the 

symmetry of silicon wafer's crystal structure. For (111) wafers after grinding or diffusion, 

the direction of the principal stress a j  is at 28°~33° with respect to the x-axis, which is in 

the [110] direction. As shown in Figure 3.16(b), the directions of the two principal stresses 

CTj and 02 are almost in the [121] and [101] directions. From results of measurements on 

the ( 111) wafers it is found that the secondary principal stresses in the three observation 

directions are almost equal. The stress ellipse in (111) plane almost becomes a circle. In 

such case, it is difficult to discriminate the directions of principal stresses. However, the 

secondary principal stress observed from an arbitrary direction can be considered as an 

approximation of principal stress.

[112]

ri in i
[100]

[011]
V (T~ [101]

[110]

[01b, [100]
li011 [112] 10111

[121]

[110]

[211]

[110]

(a) (001) wafer (b) ( 111) wafer

Figure 3.16 Orientation of principal stresses determined 
with three-direction observation.
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3.5 Summary

The Senarmont compensation method is effective in precisely determining birefringence 

phase difference at a measured point of a sample. But it is basically a point-by-point 

measurement method. It is required to make compensation for each measured point. 

Therefore, while the Senarmont compensation method is useful to measure birefringence 

phase difference at certain points of a sample, it is not suitable for automated 

measurements over the entire area of a wafer sample.

In order to improve efficiency, we explored two methods, the Fourier analysis 

method and the intensity analysis method. The common advantage of these two methods 

over the Senarmont compensation method is that they do not require making 

compensation for each measured point by rotating the analyzer. Hence, we may apply 

imaging techniques to acquire a photoelastic pattern over the whole sample area at one 

time. By analyzing the photoelastic patterns, we can determine the stress distribution over 

the whole sample. By comparison, the Fourier analysis method has a higher accuracy of 

measuring the birefringence phase difference and better immunity to noise than the 

intensity analysis method. With a high dynamical range CCD camera, the Fourier analysis 

method is expected to apply in the situation where a high sensitivity and accuracy is 

required. The intensity analysis method, on the other hand, does not impose a high 

demand on the performance of a CCD camera, and provides us a moderate accuracy.

In a wafer, the stresses normal to its surface are zero. The stresses in a wafer are 

planar parallel to its surface. When observing from the flank of a wafer, the stresses we 

measured are not the principal stresses but the secondary principal stresses. We developed 

the three-direction observation method to determine the directions and the magnitudes of 

the principal stresses from three secondary principal stresses. This method requires three 

pairs of parallel observation windows. Three relative stress-optic coefficients along three 

observation directions must be calculated for the approciate geometrical configurations.



CHAPTER 4

PHOTOELASTIC STRESS MEASUREMENT SYSTEM

On the basis of the theory and methodology of photoelasticity discussed in previous 

chapters, we will discuss in this chapter the photoelastic systems we have built according 

to practical requirements. We will discuss the basic considerations of constructing a 

measurement system and the selection o f optical elements, and describe the sensitivity of 

the measurement system.

4.1 Basic Consideration

4.1.1 System Arrangement

We have set up two types of arrangements of photoelastic stress measurement systems: a 

point-by-point measurement system, which is used to measure one point of the sample at 

one time; and a CCD detection system, which is employed to measure the entire sample. 

The schematic diagram of the basic point-by-point measurement configuration is shown in 

Figure 4.1. The system basically consists of an infrared source (typically a 1.15\im HeNe 

laser), a polarizer (when using a polarized laser source, this polarizer is omitted), an 

analyzer, and an infrared detector. The system also has a mechanism enabling the sample, 

the polarizer, and the analyzer to rotate through 360°, individually. A light beam emitting 

from its source passes through a polarizer and becomes linearly polarized. After 

transmitted through the sample, it is decomposed into the two components in the principal 

directions of the refractive index ellipse. Since two components of linearly polarized light 

pass through the sample with different velocities, a phase difference 8 will be accumulated 

while the two polarized plane waves go through the sample. After these two beams pass 

through an analyzer, birefringence interference will be detected by a photodetector.

68
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□ “
Light Source Detector

Polarizer Sample Analyzer

Figure 4.1 Schematic diagram of measurement configuration.

The second part of the system is data acquisition and processing. It detects, samples 

and digitizes the emerging light intensity at discrete angular positions of the analyzer and 

passes this information onto a computer. The detector may be a photomultiplier, with a 

high sensitivity and a wide responsibility from 0.3p/w to 12\\m. A lock-in amplifier is used 

to amplify the input signal and to generate an output voltage in range of 0 to 5V. A digital 

voltmeter with 5.5 decimal digits is employed to convert analog signal into digital signal 

for digital processing. A computer is used to store and to process the acquired data.

yzer Semi-reflectorAna

Detector

Sample
Polarizer

[] Light source

Figure 4.2 Schematical diagram of the reflection photoelastic system.
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When measuring the stress in a wafer covered with an opaque, thin metal film on one 

side, we may employ the reflection photoelastic system, as shown in Figure 4.2. An 

incident ray transmits through the sample and reflects on the surface of the thin metal film. 

In this way we can measure the average stress of the light path in the transparent wafer. 

An additional advantage of the reflection arrangement is that it doubles the measurement 

sensitivity since the beam travels through the wafer twice and hence the light path is 

doubled.

Light Source CCD camera

Polarizer Sample Analyzer

*
Data: 
it, nn,cl,...

>> Computer
linage Processing and 

Stress Analysis Software

\
2D Stress Distribution

Figure 4.3 Schematic diagram of a CCD detection system.

Development of the image sensing and computer techniques makes it possible to 

automatically survey the stress state over the whole area of a sample in real-time. Instead 

of using a photomultiplier as detector, in the system shown in Figure 4.3 a sensitive CCD 

camera is employed as detector. Therefore, the system can detect very weak signals, and 

improve the sensitivity of the system. Images of the photoelastic patterns taken by the 

CCD sensor are transferred to a computer, in which the digital images are processed and 

the stress states are analyzed with the image processing and stress analysis software we
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developed. Finally, the two-dimensional distributions of the stresses over the whole sample 

are obtained. We call this system the CCD detection system.

4.1.2 Operation Wavelength

When measuring the stress in microelectronic materials, the measured samples are directly 

placed in a polarized light field instead of using the model materials. The first factor we 

should consider when constructing the photoelastic system is that the polarized light 

should be able to transmit through the measured samples. Due to the intrinsic absorption, 

when the energy of photons of incident light is higher than the bandgap energy of 

measured materials, the materials will become opaque. On the other hand, every detector 

has a cutoff wavelength due to the intrinsic absorption. The detector could not respond to 

a radiation with the wavelength longer than its cutoff wavelength. The bandgap energies 

of several semiconductor materials and the appropriate light sources and detectors are 

listed in Table 4.1.

With account taken of the transparency of the sample being measured and the 

responsivity of the detector, there are three cases regarding to the relation between the 

transparency of the sample and the responsivity of the detector, as shown in Figure 4.4. In 

case (a) where the two curves overlap each other over a wide range of wavelength, we 

may be liberal in our choice of an operation wavelength in the range. Case (b) is excluded 

from application since the two curves do not overlap. As for case (c), since the two curves 

only overlap in their fall off regions, the system can work in this wavelength range only if 

the detector has a high sensitivity. For example, transmission through silicon occurs only 

at wavelengths longer than about 1.11pm. Therefore, to measure a silicon crystal, the 

wavelength of the light source should be longer than 1.11 pm. By taking account of the 

transparency of the measured samples and the response of the detector, we choose two 

light sources: Quartz tungsten halogen lamps and a HeNe laser(1.15pm), and two types of 

detectors: photomultiplier and silicon CCD sensor, both of which have a cutoff
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wavelength of about \.\6\xm. It has been discovered from our experiments that such 

choices of the light sources and the detectors perform satisfactorily.

Table 4.1 Bandgap energies, threshold wavelengths, appropriate light 
sources and detectors for some materials

Crystal Eg Xc Light Sourcef Detector^

Germanium 0.66eV 1.88|J7m ©® O©
Silicon 1.12eV 1.11 \xm © ® ® o e e o ©
GaAs 1.43eV 0.87|ow © ® ® © @ o©
GaP 2.26eV 0.55pw ©®G)© O 0

SiC 2.99eV 0.41 [im ©®(3)@ o ©
Diamond 5.47eV 0.23 \xm © ® 0 © o ©

t©Quartz tungsten halogen lamps ®Arc lamps ®HeNe laser(1.15pw) ©HeNe laser(0.6328pw). 
tOPbS detector©PbSe detector ©InGaAs detector ©Silicon detector©Photomultiplier.

transparency transperancy
or responsivity

wavelength

(a)

or responsivity

wavelength
(b)

transperancy
or responsivity

(c)
wavelength

Figure 4.4 Schematic diagrams of the relation 
between the transparency of the sample 
and the responsivity of the detector.

(a)overlapping over a wide range, (b)separate, 
and (c)overlapping at their fall off regions 
Dashed line stands for the transparency of sample; 
Solid line stands for the responsivity of detector.
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4.1.3 Spatial Resolution

In our previous experiments the best spatial resolution in stress distribution was 100\xm 

[20], The continuous reduction in dimension of integrated circuits and microelectronic 

devices requires a higher spatial resolution for measuring the stress in a sample. In this 

section, we discuss the spatial resolutions of our point-by-point system and our CCD 

detection system.

For the point-by-point measurement, in order to reach a high spatial resolution, we 

adopt the scheme of focusing the optical beam onto the measured sample and moving the 

sample to scan the stress distribution along a certain section of the sample. The restriction 

on spatial resolution is the spot size confined by the diffraction limit of a Gaussian beam. 

The most widely encountered laser beam is one where energy distribution is axially 

symmetric, that is, field quantities are maximum at the center and decrease rapidly towards 

periphery. Assuming the z axis is the symmetric axis of the laser beam, the irradiance 

distribution of the Gaussian TEMqq beam is [40],

I(r) = I0e~2(x2+y2)/w2 (4.1)
2 2 1/2where (x +y  ) is the distance from the beam central axis (z axis), w stands for the 

beam width which is generally a function of z. Even if a Gaussian TEMqq laser beam 

wavefront was made perfectly flat at some plane, with all elements moving in precisely 

parallel directions, it would quickly acquire curvature and begin spreading in accordance 

with [40]

w(z) = w [  l + ( - ^ y ) 2 ]1/2 (4.2)
TU IW q

where z is the distance propagated from the plane where the wavefront was flat, X the 

wavelength of light, n the refractive index of medium, w0 the radius of the Me2 irradiance 

contour at the plane where wavefront was flat, w(z) the radius of the Me2 contour after the 

wave has propagated a distance z. Since there is a finite thickness d  of the sample, the 

beam width w at the surface of the sample will be larger than the waist mean width vv0,
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which occurs at the middle of the sample. The relationship among d, w, and w0 is 

schematically illustrated in Figure 4.5. From (4.2), we can determine w0 to obtain 

minimum beam width at z=d!2. By letting dw{z,WQ)ldwQ-0, we can solve for vv0:

Considering the wafer sample with d=200\xm, w=3.52 (for silicon), and A.=1.15tuw, we 

have wQ=3.2\xm. By substituting z=\00\xm and w^=2>.2\im into (4.2), we have the

minimum beam radius w(z=\00\xm, wQ=3.2[xm)^5\xm. Thus, the diameter of the spot at

z=100|_i/m is 10 \xm. If d=4Q0\im, the diameter of the spot at z=200pw is \2\xm. Therefore, 

due to the divergence of Gaussian beam, the spatial resolution is limited by the finite 

thickness of sample and may not be better than lOp/w.

Figure 4.5 Schematical illustration of the relationship among d, w, and w0.

For a CCD detection system, instead of a focused laser beam, we employ a parallel, 

uniform monochromatic light beam to illuminate the whole sample. The spatial resolution 

is dependent on many factors, such as the camera pixel size, the camera lens, and package 

overall size. Since optical microscopes have high FI# values, we can utilize high density 

arrays with small pixels. Usually, spatial resolution can be expressed by modulation 

transfer function (MTF) [41], This function is measured using a pattern of black and white 

stripes of equal width. The pattern is considered resolved when the lines are sufficiently

(4.3)

d
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distinct to permit counting them. The limit of spatial resolution of a CCD detection system 

is the diffraction limit of the microscope lenses, which is the upper bound of the MTF  

curves. For a given wavelength of light X and entrance aperture of microscope objective d, 

the minimum distinguishable angle is given by [42]:

4>=1.22^ (4.4)

and the minimum distinguishable distance is given by

l = s x i J> (4.5)

where s is the working distance. For example, if the entrance aperture is 6.1 mm, working 

distance is 4.3mm (microscope objective Model 13580, Oriel®), and wavelength of light is 

1.15pm, the minimum distinguishable angle is 2.3x1 O' 4 and the minimum distinguishable 

distance is Ifxm. Therefore, for such an optic system with negligible residual aberrations of 

the optic elements, the spatial resolution may reach lpm. Although a spatial resolution of 

l~ 10pm is still not very good for device features which are typically less than lpm, it is 

much better than that can be done by using other methods and may be acceptable for many 

applications.

4.2 Optical Elements

4.2.1 Light Sources

In photoelastic experiments, we need a collimated and uniform beam with the desired 

spectral distribution and desired intensity. When selecting a source, the first factor we 

should consider is its wavelength range, which has been discussed in Section 4.1.2. After 

wavelength range, the other factor in choosing a source is usually its output power. For a 

single wavelength, to find the total output power per nm at any wavelength for any lamp, 

we should read the value of spectral irradiance from the spectral irradiance curve for the 

lamp, and find the conversion factor for the lamp housing and condenser type, and
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multiply this by the value of the spectral irradiance. The conversion factor comes from the 

fact that a real lamp is not a point source nor truly isotropic. Finally, multiply the result by 

a modification factor when a rear reflector is used. The rear reflector captures "backwards 

emitted radiation", and when properly adjusted, reflects it back through the source to 

contribute to the total output.

In our measurement system, two kinds of light sources are used: quartz tungsten 

halogen lamp and helium neon laser. Quartz tungsten halogen lamps are popular visible 

and near infrared source because of their smooth spectral curve and stable output [43], It 

uses a doped tungsten filament inside a quartz envelope, which is filled with a rare gas and 

a small amount of halogen. Current flowing through the filament heats the tungsten to 

higher than 3000K. The white light produced radiates through the clear quartz envelope. 

The specifications of the Quartz tungsten halogen lamp are listed below:

Lamp wattage 50 watts

DC voltage 12 volts

Spot size ~ 1 1 mm

Total output power 1.86 watts (> 780 nm 45%, > 1000/7/?; 28%)

A helium neon laser [44] with wavelength \ .\S 2 \m  is also employed in our 

experiments. Bellows are the specifications of Model 125A helium neon laser 

(SPECTRA-PHYSICS®):

Output wavelength: 1.152 \m

Output power: 45 milliwatts

Beam diameter: -3.0 mm

Beam polarization: linear cross component less than 0.03%

4.2.2 Polarization Elements

Radiations from natural and incoherent artificial sources are usually unpolarized. There are 

several ways to produce polarized light from unpolarized [45], Polarization may be
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produced by reflection, scattering, wire grids, dichroism, and birefringence. When an 

unpolarized light beam passes through a polarizer, the emerging beam is largely polarized 

with the E  vector parallel to the transmission axis of the polarizer. When a linearly 

polarized beam is incident on a polarizer and the polarizer rotated for maximum 

transmission, then the major principal transmittance is the ratio of transmitted to 

incident intensities, k2, the minor principal transmittance, is the ratio when the polarizer is 

rotated for minimum transmittance. The extinction ratio is equal to k2lk\ [46], In our 

photoelastic system, we use VIS-NIR dichroic sheet polarizers with extinction the ratio of 

10'4, which are fabricated from sheets of plastic made up of long chain organic molecules. 

In the manufacturing process, the thin film is "stretched" to orient the molecules, then 

dyed with an iodine compound to give electron mobility. Electrons can thus move easily 

only along the chain direction. This is equivalent to a fine grid polarizer. Light with the E  

vector in a plane perpendicular to the chain is transmitted; light with the E  vector parallel 

to the chain is absorbed. Selected film is cemented between two ground and polished glass 

plates using an index of refraction matching cement. The low cost, wide acceptance angle, 

and large apertures make these polarizers of choice for many applications. However, they 

do not withstand ultraviolet or high power beams, which does not constitute a problem in 

our experiments, since we use a visible or near infrared light beam with low power.

Sometimes, a quarter waveplate, the most familiar retarder, is used to produce a 

circular polarized field [39], A quarter wave plate is usually made from crystalline quartz 

or mica. Designed for single wavelength operation, they change linear polarized light to 

circularly polarized light or rotate the plane of linear polarization. The plates are generally 

in the form of discs cut so the optic axis of the crystal lies parallel to the entrance and exit 

faces. In addition to crystalline quartz or mica retarder, there is also sheet retarder which 

has the advantage o f low cost and large aperture. Stretching plastic sheets induces 

birefringence. These birefringence sheets operate like crystal quartz retarders, but have 

lower optical quality and power handling capability.
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4.2.3 Detectors

In a typical optical research system the detector measures radiant intensity, the light 

signals are converted into electrical signals, then typically amplified, processed by signal to 

noise improving electronics, and displayed. Detection systems are made possible by a few 

basic types of light-to-electrical conversions, such as photoemissive effect, 

photoconductive effect, and photodiode. Most detectors are described by certain figures 

o f merit, which are usually functions of wavelength and temperature and may also be 

affected by detector size, modulating frequency, bias voltage and the gain of any internal 

amplifier. Some of the most important figures of merit are spectral responsivity, linearity 

range, noise equivalent power, and detectivity.

In a point-by-point measurement system, we usually employ a photomultiplier as 

detector. The photomultiplier tube is a photoemissive detector [47], in which light 

interacts directly with the electrons in the detector material. An absorbed photon frees an 

electron and the surplus energy gets converted into kinetic energy of the electron. The 

electrons emitted in this way produce the cathode photocurrent in photomultiplier tube, 

which amplifies the photocurrent by secondary emission. This is a low noise process that 

produces currents that are 6 to 8 orders of magnitude larger than the initial photocurrent. 

The D* of the photomultiplier is typically 1015 cmHzi/2W~\ the highest among all 

photodetectors.

CCD, the acronym of charge-coupled-device, is a metal-oxide-semiconductor 

(MOS) capacitor array [48], which can collect and store minority carrier charge packets in 

localized potential wells at the Si-SiC>2 interface. The CCD can transfer charge packets in 

discrete-time increments via the controlled movement of potential wells. The charge 

packets can then be detected at the output via capacitive coupling. Thus a CCD acts as an 

analog shift register composed of three sections. 1) The input section which contains a 

diffusion, which is the source of minority carriers, and whose potential can be controlled, 

and an input gate that can be turned on and off to control the flow of charge from the
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source diffusion into the first potential well. 2) The transfer section, containing a series of 

electrodes that control the potential at the Si-SiC>2 interface. When the voltages on the 

electrodes are properly manipulated, the potential wells are moved toward the output and 

the charge packets follow. 3) The output section is a reverse-bias p-n junction capacitance 

whose voltage is changed when a charge packet is transferred into it. The diode is then 

reset via reset switch to prepare for the next packet to be transferred into it. This node is 

typically connected to an MOS amplifier. The use of CCD as detector makes possible an 

almost instantaneous acquisition o f one frame of data sets over certain area. The feature of 

CCD is its extremely low readout noise, a few electrons per pixel, and good separation 

between signal channels, i.e., no blooming.

As discussed in Chapter 3, the minimum detectable stress is dependent on the 

dynamic range of the detector. For example, for a silicon sample with thickness 500p/w, if 

we wish to apply the intensity analysis method to measure the stress of 6.5x101dyn/cm1 (8 

= 16.3°), an 8-bit detector (256 gray levels) is desired. If we hope to measure the stress of 

2.0x10^dynlcm1 (8=5°, for a silicon sample of thickness 500p/w), by using Fourier analysis 

method, from Figure 3.10 we know that the dynamic range o f the detection system should 

not be less than 14 bits.

4.3 Error Analysis

4.3.1 Sources of Error

The general form of the stress-optic law (2.78) may be rewritten as

A3 j - A p 2 = +  cos 2a (4.6)
T cdrtQ

where X is the wavelength of light, 5 is the birefringence phase difference, d  is the sample 

thickness, n0 is the refractive index of medium without stress. By taking a logarithm of 

both sides of (4.6), and ignoring the sign of its right hand side, we have
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In (APi - Ap2) = In A. + In 6 + In cos2a - In d -  In (n nq) (4.7)

Differentiate both sides and take absolute values, yields

A(AP!-Ap2) < A8 + AX + Ad + Acos2a + A"o
APi -  AP2 8 X d cos2a

"0

From (4.8), it is found that the error of birefringence index consists of five terms. In our 

discussion, the piezo-optic coefficient is assumed as a constant, we shall not consider its 

error here. Therefore, (4.8) represents the relative error o f principal stress difference.

The first error term in (4.8) is the error introduced when measuring birefringence 

phase difference, which has been discussed in Chapter 3 and will be addressed later. The 

second term is the error of wavelength of light. If a helium neon laser is used as light 

source, since it is monochromatic, the error due to this term can be ignored. While a 

tungsten halogen lamp is employed, a polished silicon wafer is usually used as a filter. 

Only infrared light with wavelength longer than 1.12|xm can be transmitted. Let us assume 

the cutoff wavelength of the detector (such as CCD camera) is \.\6[xm. If a central 

wavelength 1.14pw is used in calculation, the error induced will be about 1.8%. The third 

term of the right hand side of (4.8) comes from the measurement o f sample thickness. 

Conventional thickness measuring techniques ensure that the error is less than 1%. The 

fourth error term arises from the error of the orientation deviation angle of the stress 

ellipsoid and the refractive index ellipsoid, which will be analyzed in next section. The fifth 

term is resulted from the error of the refractive index. If A//o=0.002, the error of this term 

will be less than 1%.

4.3.2 Error of Orientation Deviation Angle

The fourth error term in (4.8) arises from the error in evaluating the orientation deviation 

angle a  of the stress ellipsoid and the refractive index ellipsoid. From the discussion in 

Chapter 2, we know that the deviation angle a  is related to the coordinate system we 

choose and the directions of principal stresses and the direction of observation.
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In the [112][110][ 111] coordinate configuration, if the observation is made along the 

[ 111] direction, the deviation angle a  between the principal stresses and the principal 

refractive indices is equal to zero, and hence no error induced. For a thin (111) wafer, 

when observation is made along arbitrary direction within the [112]-[110] plane, the 

orientation deviation angle a  is given by (2.89):

tan2a = - 2^2  f a n  - k 12 ■ K44) cos3tp a 2 / fa n  - ftn  + 5™4 4 )

The maximum value of a , 9.944°, is obtained at (p=30°. Since

- M

(2.89)

A cos2a 2 sin 2a
cos 2a cos2a

(4.9)

By assuming that Aa is less than 1°, we can estimate the error as: 

Acos2a
cos2a

= 2 |tan 2ot| |Aa| < 2 x tan(2x9.944°) x l°x7t/180° = 1.3% (4.10)

In the [110][110][001] coordinate configuration, while viewing in an arbitrary 

direction within the [110]-[110] plane, the directions of principal stresses coincide with 

the directions of the principal refractive indices. Thus, the orientation deviation angle a  is 

equal to zero, and no error induced by this term. When the observation direction is [001], 

the orientation deviation angle a  is given by (2.92)

tan2a = f a i r ^ n " 7̂ )  sin4(p x [27144+ 2 f a i r ^ H '7̂ )  sin22cp]_1 (2.92)

from which we can obtain the maximum value of a , i.e., 8.8957°, at cp=l8 .1 °. By 

assuming that Aa is less than 1°, from (4.9), we have

= 2 |tan 2a| |Aa| < 1.1% (4.11)
Acos2a
cos 2a

4.3.3 Measurement Error of Birefringence Phase Difference

The first error term in (4.8) is the error induced when measuring birefringence phase 

difference. In Chapter 3, we have analyzed the error of this term for several measurement 

methods adopted. For the Senarmont compensation method, the errors of measuring 

birefringence phase difference arise from the error of the polarization angle of polarizer £,
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and the error of the retarding phase of the quarter waveplate £  By assuming that £<5°, C,< 

5°, for any value of (p, it has been shown that |A5/8| will be less than 3%.

For the intensity analysis method, there are two major sources of error in measuring 

birefringence phase difference: a) The error of the polarization angle of polarizer or 

analyzer £, and the non-zero of extinction ratio of polarizers (the extinction ratio of 

polarizer and analyzer is Q. When £=1° and C^O-4, we have A8=2.8° b) The error due to 

stray light produced by internal reflection, which will introduce a relative larger error of A 

8=16.3°. Thus, the overall error of birefringence phase difference is 19.1°. For a silicon 

sample of thickness of 500p//?, this corresponds to an error of stress about 7.6x 

\tfdyn/cm 2. When employing the Fourier analysis method, the principal source of error of 

measuring birefringence phase difference is due to stray light which is produced by internal 

reflection. If the stray light factor r is 0.01, we have A8«4.5°. For a silicon sample with 

thickness 500p/w, such a error in measuring birefringence difference corresponds to a error 

in measuring stress 1.8 x 107dyn/cm2.

Therefore, of the several factors contributing to the error of measuring principal 

stress difference, the error of measuring birefringence phase difference is dominant. Each 

of the others has a relative error of about 1%. When employing the Senarmont 

compensation, the total relative error is about 8%. For the intensity analysis method and 

the Fourier analysis method, when the birefringence phase difference measured becomes 

small, the error will become large. The minimum detectable birefringence phase difference 

depends on the method adopted. The Fourier analysis method has a better sensitivity 

(about 5°) than the intensity analysis method (about 20°).

4.4 Summary

This chapter has presented two kinds of arrangements of photoelastic stress measurement 

systems in terms of point-by-point measurement system and CCD detection system. There
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is also a special type of system arrangement: the reflection type. We also discussed the 

selection of optical elements, including light source, polarization element, and detector. 

For example, when selecting a light source, we should take account of its irradiation 

spectrum, its effective output power, its beam size and beam polarization. When selecting 

a detector, we should be concerned about its spectral response, its detectivity and its linear 

range.

It is shown that our systems have a relatively high spatial resolution. The spatial 

resolution of the point-by-point measurement system, which is limited by the finite 

thickness of the sample and the intrinsic property of Gaussian beam, may reach lOp/w. In a 

CCD detection system, with the necessary amplifying lenses, the spatial resolution may 

attain the diffraction limit of that wavelength, i.e., about 1 \\m. The sensitivity of the 

system is dependent upon the measurement method adopted. For a silicon sample with 

thickness 500p/w, the minimum measurable stress of the intensity analysis method is about 

S x \0 7 dyn/cm2. For a Fourier analysis method, the minimum measurable stress is about 2 x 

107 dyti/cm2.



CHAPTER 5

APPLICATION IN MICROELECTRONICS

In this chapter we will discuss the application of photoelastic principles and methods in 

some microelectronic materials. The stress distribution in a synthetic diamond substrate is 

analyzed, the stress state of the substrate/thin film structures is investigated, and the stress 

induced in silicon wafers during diffusion processes is studied. In some cases, the 

formulated models are used to describe the experimental results, which are compared with 

the modeling results.

5.1 Stress Distribution in a Diamond Substrate

In this section, we analyze stress distribution in a synthetic diamond substrate, with an 

automatic data acquisition and analysis system. The digital image processing techniques 

are applied to improve the quality of sensed images, to reduce noise, and to determine the 

boundary of the sample. The section also illustrates the determination of birefringence 

phase difference and principal stress directions. The shearing stress difference method is 

applied to determine the two-dimensional stress distribution over the whole synthetic 

diamond substrate sample.

5.1.1 Sample and Data Acquisition

The synthesis of diamond crystals is a rather elaborate process; and compared to 

microelectronic standards only minimum size crystals can be grown. Nevertheless, these 

synthetic substrates enable the fabrication of high performance devices using 

homoepitaxial films. These homoepitaxial electronic structures represent therefore the 

state-of-the-art in achievable electronic performance. High temperature Schottky diodes

84
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with high current rectification ratios and digital high temperature MISFET circuits have 

been demonstrated. However, only very limited information is available on the chemical, 

mechanical, optical and electronic properties of the diamond single crystal substrates. For 

example, defect networks and doping inhomogenities can be observed optically. Both may 

cause internal stress; for example, high doping concentrations cause lattice mismatch to 

undoped areas and doping inhomogeneities will therefore lead to internal stresses. Various 

methods have been developed to characterize the stress state in diamond materials, which 

include measuring the curvature of the substrate by using optical method [49], measuring 

the lattice mismatch of the materials by using X-ray diffraction [50], or analyzing Raman 

line shape by using Raman spectroscopy [51], The limitation of the curvature-measuring 

method is its lack of spatial resolution and non suitability for situations where no curvature 

occurs. Although the methods of Jf-ray diffraction and Raman spectroscopy have a higher 

spatial resolution, the complexity of equipment and the low efficiency o f measurement 

prevent them from being widely used. In this section, the internal stress distribution of a 

commercially available synthetic diamond substrate has been investigated using the 

photoelastic method and the imaging and data acquisition techniques.

observation direction

Figure 5.1 Orientation of the sample in measuring.

The sample investigated is a (100) oriented diamond substrate of3mmx3mm  surface 

dimension and I mm thickness, which is doped with nitrogen and highly insulated.



86

Observations normal to the sample surface are made, as shown in Figure 5.1. The 

measurement configuration is shown in Figure 4.3. The system employs a CCD image 

sensor as detector. An A/D converter is used to convert analog photoelastic patterns to 

digital images, which are transferred to a microcomputer. With the software we 

developed, the computer automatically performs system control, data acquisition, image 

processing, data analysis, and stress calculation.

With the sample placed in the experimental system, the starting positions of the 

polarizer and the analyzer are set in a dark, linearly polarized field. At that time the 

orthogonal polarization axes are set at 0°, so that the isochromatic and isoclinic lines with 

0° are obtained. Figure 5.2(a) shows the photoelastic pattern of this position. While two 

polarization axes are kept orthogonal, the polarizer and the analyzer are rotated by an 

angle of cp. The isoclinic line with 0° is replaced by that with <p, while the isochromatic line 

remained intact. Synchronous rotation of two orthogonal polarizers from 0° to 90° will in 

turn result in a series o f isoclinic lines varying gradually from 0° to 90°. Each time the 

photoelastic pattern is imaged by a CCD camera, and the digital image is stored for further 

processing. Figure 5.2(b) shows the photoelastic pattern with (p=45°.

■v,

(a) cp=0° (b) (p=45°

Figure 5.2 Photoelastic patterns in dark planar polarized field.
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5.1.2 Image Processing [52]

The digitized photoelastic pattern is transferred through a graphic interface to the memory

of a computer. Since there will be distortion and blur during the procedure of image

acquisition, conversion, and transfer, before calculating the stress distribution, the

photoelastic pattern images must be processed.

The random noise of an image is reduced by the averaging technique. Consider a

noisy image g(x,y) formed by the addition of noise ri(x,y) to an original image^x.y):

g(x,y) =J(x,y)+T\(x,y) (5.1)

where the assumption is that at every point (x j’) the noise is uncorrelated and has zero

average value. By averaging M  images for the same pattern, we have 
1 M

g ( x , y )  =  — Y < g i ( x , y )  (5.2)
i

It follows that

g ( x , y )= > f ( x , y )  (5.3)

when M  increases, and 
2 1 2

ag(x,y) (5-4)
2 2 _Here Gg(x,y) and are the variances of g  and r\.  Eq.(5.4) indicates that, as M

increases, the variability of the pixel values at each location (x,^) decreases.

The noisy image with some individual noise pixels can be improved by using 

smoothing filters. In the experiment, we use a median filter, whose principal function is to 

force points with distinct intensities to be more like their neighbors, actually eliminating 

intensity spikes that appear isolated in the area of the filter mask. This method is 

particularly effective when the noise pattern consists of strong, spikelike components. The 

median m of a set of values is such that half the values in the set are less than m and half 

are greater than m. In order to perform median filtering in a neighborhood of a pixel, we 

first sort the values of the pixel and its neighbors, determine the median, and assign this 

value to the pixel. The gray level of each pixel is replaced by the median of the gray levels
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in a neighborhood o f that pixel, instead o f by the average. Figure 5.3 shows the result of a 

3x3 median filter applying on the images shown in Figure 5.2. From Figure 5.3 we can 

visualize the effect o f removing the individual noise pixels in Figure 5 .2.

(a) (p=0° (b) <p=45c

Figure 5.3 Result image after 3x3 median filtering.

In order to determine the boundary of the sample area being measured, the simple 

global thresholding technique is employed. In our experiment, a two-value image is 

created to determine the boundary of the sample. With the sample intact, by removing the 

polarizer and the analyzer, and the probing light beam transmitting through the sample, we 

can obtain an image such that the sample location is uniformly bright, but the region 

outside the illuminated area is dark. Segmentation is then accomplished by scanning the 

image pixel by pixel and label each pixel as object or background, depending on whether 

the gray level of that pixel is greater or less than a threshold T. Applying the threshold 

technique to such image, we can obtain a two-value image of which the pixels of the 

measured area are 1, the pixels of background are 0. Multiplying the two-value image with 

the photoelastic pattern image, the pixels of the photoelastic pattern are unchanged but the 

pixels of the background region are set to 0 .



5.1.3 Determination of Photoelastic Parameters

After image acquisition and processing, we can calculate the photoelastic parameters, the 

birefringence phase difference 8 and the direction of the principal refractive index c|>. In our 

experiments, to obtain these photoelastic parameters, two approaches are in use: the 

Fourier analysis method and the intensity analysis method. In the intensity analysis method, 

the relation between the birefringence phase difference and the intensity of transmitted 

light is given by (3.49), which is rewritten as:

5 = ±cos-1[ l - 2 ( — L  + _ 2 - ) ] ± 2 * t c  (A=0,l,2„.) (5.5)
J l + J 2 J l + J 2

<{> and 8

0.60

0.52

0.44

0.36

0.28

0.20 80 100 120

Position (Relative) along PP'

Figure 5.4 Distribution of photoelastic parameters 
along section the PP  of the sample.

where I\ is the intensity of the transmitted light in the planar cross-polarized light field and 

I 2  the intensity of the transmitted light in the planar parallel-polarized light field, and /j 

and l j  the corresponding intensities of the two polarized transmitted lights after the whole 

polarized light field is rotated by 45° clockwise. The directions of the principal refractive 

indices at the measured point are determined by (3.50), which is rewritten as:
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where <j) is the angle between the principal refractive index «] and the reference axis x. The 

distribution of these two parameters, 8  and <j>, along the central horizontal line PF  is 

shown in Figure 5.4.

5.1.4 Calculation of Stress Distribution

From the theory of elasticity, the two-dimensional stress state is determined by the two 

differential equations [10]:

+  -
f o Xv • da -

dx 
do

x y

dy
=  0

xy , da yy  _  Q

dx dy

(5.7)

Figure 5.5 Schematic diagram for shearing stress difference method.

Integrating the first equation of (5.7) from point o to point P  along ox axis, as shown in 

Figure 5.5, we have
P d o ^

( CTx x ) p  =  ( ° x x ) o  — l ~ ~ X  d x  ( 5 - 8 )

o

If the integral is approximately replaced by a finite difference, (5.8) is rewritten as

(CTxx)p = (°xx)o -  Z —t^ -A x (5.9)
0 Ay
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where the normal stresses (axx)p and (axx)o are known beforehand as boundary

Eq.(5.12) represents the average value of shearing stresses of two neighbor points. For P 

points, we can write P  expressions based on (5.11), whose sum is equal to (5.9). When 

stress a xx is known, the other normal stress Oyy can be calculated by [10]

Thus, the two principal stresses Oj and <j 2 can be calculated from following formulas [10],

To eliminate the accumulated error caused from the shearing stress difference method, the 

correction of error is carried out by considering boundary conditions while calculating 

normal stress ctxx .

In order to calculate the stress distribution along a cross section PP', we choose two 

auxiliary sections AB  and CD, as shown in Figure 5.5, where Ax/Ay=l. The boundary 

condition at /=0 can be determined by Eqs.(5.5) and (5.6), as shown in Figure 5.4, i.e., 8 

(/=0)=0.4315 and 4>(/=0)=0.4665. The components of piezo-optic coefficient of a diamond 

crystal are given in Table 2.1. For a (100) oriented wafer, if the viewing direction is along

conditions, A oXy is the shearing stress difference along increment Ay between the two 

auxiliary cross sections AB  and CD. The shearing stress is given as

where 0 is the angle between the principal refractive index nj and the reference axis ox. If 

two neighbor points are expressed by M  and /', (5.9) can be replaced by

(5.11)

where,

(5.12)

CTyy=oxx ± ( a t -  a 2) cos20 (5.13)

yy ! CTi ~ c t 2  

2

a 2 = ^ x x ^ ^ y y  0 4 — <5 2 (5.14)
2 2
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[001] and two principal stresses are in the plane of [ 110][110], the stress-optic law takes 

the form of (2.91), that is

[7i44+ (^ 11-7112-^44) sin22cp] (cti - cj2) = ± ------=- cos 2a (2.91)
ndtiQ

where the angle a  is related to the direction of principal refractive index <|) by using (2.92) 

and (2.79):

tan2a = (7111-7112-7144) sin4(p x [27144+ 2 (7111-7112-7144) sin22cp]_1 (2.92)

(p = a  + <J> (2.79)

(108dyn/cm2 )
- 0.0

- 0.8

- 1.6

-2.4  N..

-3.2

-4.0
0 26 52 78 104 130

Position (Relative) along PP'

Figure 5.6 Distribution of the principal stresses 
along the section PP  of the sample.

where cp is the direction of the principal stress a j. From the known value of (|>, we can 

calculate a  and (p. By substituting 4>, a  and (p into (2.91) we can determine the principal 

stress difference (o i-a2). Based on Eqs.(5.9)~(5.13), we can calculate the distributions of 

the principal stresses Ci and a 2 along section PP. Finally, from (5.14), we can determine 

two principal stresses along section PP. By repeating the above procedure we can 

calculate the principal stresses over the whole sample. The distributions of the two 

principal stresses along section PP  of the sample in Figure 5.2 are shown in Figure 5.6.
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The transverse axis is the relative position coordinate for calculating across the measured 

section. It is obvious that at the edge of the sample, the principal stress a j  = 0, while the 

other principal stress ct2 is negative. In the central region of the sample both principal 

stresses are compressive, which have the mean values of -7.8X107dyn / c /m 2 for aj and 

-3 .0x1 cPdyn / c/m 2  for a r2 .

5.2 Thin Film-induced Substrate Stress 
in Substrate/Thin Film Structure

Almost all microelectronic devices have the basic structure of a semiconductor substrate 

with thin films of different materials on it. Each thin film layer is comprised of multiply 

connected or disconnected regions. The thin film layer and its discontinuity will give rise 

to stress field in the substrate. In this section, we present the application of photoelastic 

method in studying the film-induced stress in substrate/thin film structures. The stress state 

induced by an oxide thin film, the localized stress near a groove of thin film on the wafer, 

and the stress induced by metal film are investigated with the Senarmont compensation 

method and the Fourier analysis method.

5.2.1 Stress Induced by Oxide Thin Film

( 111) and ( 100) oriented silicon wafers with resistivities greater than IClcm and thickness 

250~500|_i/w are prepared by cleaving them to form a rectangle of 8 /m /m x  12/m/m. Scribing 

orientation and observation direction of the samples are shown in Figure 5.7. In order to 

obtain a uniformly transparent sample, a pair of ( 110) parallel windows are polished 

carefully with colloid Si02 polishing fluid until the damaged layer is removed and the two 

windows become parallel, smooth and bright. Infrared light can pass through the polished 

silicon wafer uniformly, and interference fringes will appear clearly if an external pressure 

is exerted on the wafer.
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<cf2 ) [111] (tf2 ) 10011
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Incident direction of light Incident direction of light

(a) ( 111) wafer (b) ( 100) wafer

Figure 5.7 Schematic representation 
of wafer in the coordinate systems.

After a thin film of oxide is grown at a high temperature of 1180°C for 120 minutes 

on the surface of a silicon substrate, thermal stress may be induced by the mismatch of 

thermal expansion coefficient between the substrate and the film when they are cooled 

from the growth temperature [53], To determine the directions of principal stresses, the 

sample is observed while rotating the polarizer and the analyzer synchronously under a 

dark, linearly polarized dark field. When the sample surface is parallel to one of the 

polarization axes, isoclinic lines appear except at the edges of the oxide thin film, 

indicating that the directions of principal stresses are parallel or perpendicular to the 

sample surface. It is agree with the two-dimension stress theory of elasticity [54] that the 

principal stress perpendicular to sample surface is equal to zero.

For a (111) oriented wafer, if an observation is made along the [110] direction and 

secondary principal stress a j  is in the [112] direction, by substituting (p=90° into (2.89), 

the birefringence deviation angle a  is equal to zero. Eq.(2.88) is rewritten as:

( 5. 15)
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where the values of 7i u  - 7Cj2 and 7144 are given in Table 2.1. By substituting »0=3.53, X 

=1.15p/w, and d=Smm into (5.15), we can obtain the relation between a j and 8 :

O' | = 1.82x1075 dynlcm2- (5.16)

For a (100) wafer, if an observation is made in the [110] direction and stress CTj is in the 

[110] direction, then from (2.94), the birefringence deviation angle a  is zero. The stress Oj

can be determined by using (2.95) with <p=90°:
1 Xd
-(7Ill-7Ci2+7t44)ai = ± — 3  (5.17)
2 naHQ

By substituting hq=3.52, A,=1.15|o/w, d=t>mm into (5.17), we have the relation of a j  and 5. 

o i = 1.121 x l075 dynlcm1 (5.18)

4 (10 dyne/cm )
d ________

tmax

cmax

z

oxide film

silicon wafer

Figure 5.8 Stress distribution across the thickness 
of an oxidized ( 100) silicon wafer.

The measurement result for an oxidized (100) silicon wafer is schematically shown in 

Figure 5.8, where h is the thickness of the substrate, d  is the thickness of the oxide layer. 

From Figure 5.8, a tensile stress is found in the substrate region near Si02 layer. It is 

attributed to the difference of the thermal expansion coefficients of oxide layer (0.55x10-6/ 

°C) and silicon substrate (3.9x1 O ^ C ). At growth or deposition temperature, there is no 

stress in the structure as long as thermal equilibrium is reached. Upon cooling to room 

temperature, the contraction of silicon substrate region near the Si02 layer is constrained
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by the Si02 layer, which has a smaller thermal expansion coefficient. As a result, tensile 

stress occurs in this region of the silicon substrate, and a compressive stress appears in the 

Si02 layer. The wafer will curve towards the back surface of substrate without oxide 

layer. Such a curvature will induce a compressive stress in the substrate region near the 

back surface. Furthermore, by applying static force balance condition, the stress in the 

oxidized thin film is estimated to be in the order of 109 cfyn/cm2.

The experimental result may be compared with a theoretical calculation. By the 

method of minimizing the total Helmholtz-free energy, the stress distribution of the thin 

film/substrate structure can be calculated. The total Helmholtz free energy of a 

multilayered plate at temperature T is expressed as follows [55]:

F (T )=  ^  L m d 3xFm(T) <5-19)
m = l

*
where Fm(T) is the Helmholtz free energy of each layer, with m= 1 denoting the substrate, 

and m -2  the oxide thin film. The integral is over the volume of each layer. By utilizing the 

variation method, the warping deformation of the thin film/substrate structure due to the 

difference of thermal expansion coefficients can be calculated [55], The calculation result 

is shown in Table 5.1

Table 5.1 Calculated stress distribution across the thickness of silicon substrate 
and in Si02 thin film by minimizing the total Helmholtz-free energy.

Distance from interface Stress(dyn/cm2)

Si02 Thin film -3.26xl09
0 pm 3.70xl07
83 pm 2 .6 8 x107
166 pm 1.6 6 x l07
250 pm 6.54xl06
330 pm -3.60xl06
416 pm -1.37xl07
500 pm -2.39xl07
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where we assume that the thicknesses of substrate and thin film are

d - \ \ x m ,  h = 500 \xm, (5.20)

respectively, and the temperature difference between growth and measurement is A T=- 

1155°C. From Table 5.1 a good agreement with the photoelastic experimental result in 

Figure 5.8 is found.

5.2.2 Stress Induced by Discontinuity of Thin Film

In the neighborhoods of discontinuities of the surface films, there exists a very large 

localized stress field in substrate due to the film "edge forces" [56], In the case of a 

concentrated line force Fx tangential to the boundary of a half space, as shown in Figure

kzx

2 Fx x 3
It (*2 + z 2 )2

2 Fx xz2
it (x2 +z2)2

2Fn x 2z
it (x2 + z2 )2

(5.21)

(5.22)

(5.23)

 '.-i

\Iz (a) (b)

Figure 5.9 Schematic diagram showing
(a) a thin film deposited on a substrate half-space 

(b)a concentrated line force on the boundary o f half space.

Figure 5.9(b) shows a 6-function-like of force distribution, which has a finite value at 

x=0, and equals zero everywhere else. However, due to the elasticity of the substrate, the 

stress in the thin film is distributed, approaching the uniform build-in stress asymptotically.
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This distributed stress in turn gives rise to a distributed force. For a distributed force, a 

force-density function dFx/dx is given by [58]

dFx _ .da
dx (5'24)

where d  is the thickness of the thin film, Of x is the stress in the thin film, which

approaches a uniform built-in stress of Oq far away from the thin film edge. By

convolution of Eqs.(5.21), (5.22) and (5.23), we can obtain these stress components:

du (5.25)

kzx

2flf°r (x -m ) 3 ,x(tt)

K { [ ( x - u ) 2 +z2]2 du

00 -) 
2d r (x-m )z ^ f ,x ( « )
71 l [ ( x - u ) 2 +z2]2 s» ‘

00 o
2d r ( x - u )  z do f,x(M)

71 | [ ( * - « ) 2 + ^ 2 ]2 du

(5.26)

du (5.27)

The stress distribution in thin film Of X(x) can be determined by the continuity of thin film 

lattice to substrate-surface lattice.

Oxide Film

Silicon Substrate

Figure 5.10 Structure of a groove of thin film 
on substrate and photoelastic pattern.
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Figure 5.11 Stress distribution in substrate near the groove of the thin film, 
where h is the thickness of the SiO 2 thin film, and CTq is the uniform 

built-in stress in the SiO 2 thin film far away from the groove.

For many microelectronic device structures, edges and grooves are etched out of the 

thin film on a substrate wafer. The presence of stress in the substrate is due to such an 

open groove of the thin film. Figure 5.10 shows the schematics of the structure with an 

etched groove in Si0 2  thin films, and its corresponding photoelastic pattern. According to



100

Eqs.(5.25), (5.26) and (5.27) and on the basis of the stress superposition principle, the 

stress distribution in the substrate of such structure is calculated, as shown in Figure 5.11. 

Near the thin film/substrate boundary, the localized stress field for the oxide thickness 1 p 

m and groove wide S\xm can be as large as the stress in the oxide thin film, which is in the 

order of 109dyn/cm2. At 0.05|i/w from the interface, the stress is about 20% of the built-in 

stress of the thin film. Far from the interface, the stress due to the edge will decrease 

rapidly. For example, at 0.25p/w from the boundary, the local stresses reduce to 2~5% of 

the built-in stress in the oxide thin film.

5.2.3 Stress Induced by Metal Films

5.2.3.1 Nickel-Plating on a Diffusion Wafer In this experiment, an n-type (111) oriented 

silicon wafer with thickness 400 pw is used. At first, boron impurities are diffused to form 

a p-n  junction at about lOOpm from the surface of the substrate. Then phosphorus 

impurities are doped to form the J 3 junction of the thyratron. The surface concentration of 

phosphorus is about 1021c/m' 3 and the junction depth is about 35p/w. After boron and 

phosphorus diffusion, a 3~4p/w layer of nickel thin film is chemically plated onto the wafer 

at 90°C, to improve the solderability. A measurement is performed on the rectangular 

sample with the dimension of 8/w/»xl0/»/Hx400p/M. The observation is made in the flank 

sides of the sample. The probing direction is along [110], and the observation windows are 

on (110) planes, as shown in Figure 5.7(a).

From (2.89), when an observation is made along the [110] direction and the 

secondary principal stress Oj is in [112] direction, with <p=90°, the birefringence deviation 

angle a  is zero. The Senarmont compensation method or the Fourier analysis method is 

adopted to measure the birefringence phase difference 6 at every point along the thickness 

of the sample. From (2.88) with (p=90°, «0=3.53, A.=1.15p/?7, d=Smm, K n - n ^ - -  

\2.22cm2/dyn, and 7t44=-6.5 cm2ldyn, we may relate the secondary principal stress CTj 

with the birefringence phase difference 6 by using (5.16):
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Oj = 1.82x1078 dyn/cm2 (5.16)

Figure 5.12 shows the stress distribution across the thickness of the sample. It is 

found, from Figure 5.12, that compressive stress is introduced into the substrate region 

near the interface of the boron diffused layer, and tensile stress is present in the other side 

of the wafer. The maximum compressive stress induced by the structure of three layers 

(boron diffused layer, phosphorus diffused layer, and nickel-plating layer) is relative large, 

about 9.6xl07dyn/cm2. Since there is a relative large thermal coefficient difference 

between nickel and silicon (asj=4.2xl0’6/°C, ajvji=14xl0"6/oC), a compressive stress is 

expected to be induced into silicon substrate. In addition, since the atomic radii of both 

phosphorus ( 1.10A) and boron (0 .88A) are less than that of silicon (1.17A), the doped 

phosphorus and boron tends to cause crystal lattice contract and also results in 

compressive stress in the silicon substrate region near the diffused layer.

100

^ 0 0

ct (107dyn/cnr2 ) 
 >

V
y (nm)

nickel layer
I phosphorus diffused layer 
i boron diffused layer 
1 silicon substrate

Figure 5.12 Stress variation across the thickness for a sample 
with boron and phosphorus diffused layer 

and nickel-plating film on its surface.

5.2.S.2 GaAs W afer with Thin Gold Film A (100) GaAs wafer with a layer of thin gold 

film is studied by using photoelastic method. The GaAs substrate is two-side polished and 

with a thickness of 500p///, and a gold film of 3pw is deposited on the GaAs substrate. 

The deposition temperature is 650°C. The wafer is cut into the sample of 4mmx4mm
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rectangles. The sample orientation and the observation direction are the same as those in 

Figure 5.7(b). A pair of parallel windows are made on (110) surfaces for probing from the 

flank sides o f the sample.

Since the observation is made along the [110] direction and the secondary principal 

stress is in the [110] direction, from (2.94) with <p=90°, the birefringence deviation 

angle a  is zero. The photoelasticity method is applied to determine the birefringence phase 

difference 5 at every point along the thickness of the sample. From (2.95) with cp=90°, we 

may relate the secondary principal stress a j  with the birefringence phase difference 6 by

using (5.17):
1 A.8
-(7tn-7Ii2+7r44)ai = ± — 3  (5.17)
2  7idfiQ

By substituting //q=3.34, A,=l. 15|xw, cf=4mm into (5.17), we have the relation of 01 and S. 

01 = 3.19x1078 dyn/cm2

a  ( 1 0 '  d y n / c m  )-6 -4 6•2 0 2 4

- 250

500

gold film 

GaAs substrate

y (Mm)

Figure 5.13 Stress distribution across the thickness of the GaAs substrate.

The measured result is shown in Figure 5.13, where we can find a linear distribution 

of the stress 01 across the thickness of the GaAs substrate. It is evident that a compressive 

stress is present in the upper region of the GaAs substrate near the gold film (the 

maximum value at the interface is about -5x l07dyn/cm2), and a tensile stress is in reverse
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side of the sample (the maximum at the surface is about 3.4x101 dyn/cm2). This result is 

expected since the thermal expansion coefficient of gold (11.9xlO"6/°C) is about twice 

larger than that of GaAs (6 .8 6 x 1 O ^ C ).

In conclusion, the stress in the substrate of a thin film/substrate structure may arise 

from: the difference of the thermal expansion coefficients of substrate and thin film, which 

induces a stress in the order of 10^dynlcnfi and linearly distributed along the thickness of 

the substrate; another component of stress is due to the discontinuity of the thin films, 

which is found to be centralized at the region near the edge of thin films, where the stress 

is about the same order of the stress in the thin film, i.e., in the order of \Qftdynlcnfi-. In 

the case of a wafer diffused with impurity atoms, the difference of atomic radii of substrate 

and doped atoms contributes to the stress in such structure, which will be discussed in 

more detail in next section.

5.3 Diffusion-Related Stress in Silicon Wafer

Impurity diffusion is one of the essential process steps for silicon devices. Stress will be 

introduced into silicon wafer during diffusion process. When the induced stress exceeds 

the critical yield stress of silicon at diffusion temperature, dislocations and other crystal 

defects will be introduced into the silicon wafer. In this section, photoelasticity are applied 

to determine the stress distribution in the wafers after a typical diffusion process of 

fabricating high power diodes. The stress-relief model is applied to account for the stress 

relief during diffusion. The stress superposition principle is used to explain the stress state 

after the double-side diffusion.

5.3.1 Single-Side Diffusion and Stress-Relief Model

Impurity phosphorus is doped into one side of p-type (111) oriented silicon wafer of 

thickness 400\xm and resistivity about 5Dew. The diffusion is accomplished by a two-step
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process consisting of a prediffusion and a drive-in cycle. The prediffusion is carried out at 

1180°C for 14 hours, redistribution is made at 1270°C for 100 hours. The stress 

distribution in the undoped substrate is examined by the Senarmont compensation method 

or the Fourier analysis method. The orientation of the sample being measured and the 

result of stress distribution are shown in Figure 5.14. It is found from the experimental 

result that, in the case of single-side diffusion, the normal stress c t^  equals zero, and the 

normal stress Oyy linearly distributes across the thickness o f wafer, as shown in Figure 

5.14(b). In the undoped region of the wafer, there is a compression stress region in its 

upper part near the interface, and there is a tensile stress region in its lower part. The 

compressive stress reaches its maximum a cmax {-5y.\Qpdyn/cm2) at the boundary of 

diffused layer and undoped region, and the tensile stress reaches its maximum a /max (2 x 

\Qp dyn/cm2) at the backside of the wafer.

The stress state in the silicon wafer mainly depends on the diameter of the impurity 

atoms, as well as their distribution. During prediffusion, the maximum phosphorus atom 

concentration can reach 1.3xl021c/w3 at 1180°C. After redistribution, the phosphorus 

atom concentration at wafer surface is about 2.3xl020c/w3> and a p-n junction forms at 

about 90|a/w from the wafer surface. Since the radius of phosphorus atom (1.10A) is less 

than that of silicon atom (1.17 A), the doped phosphorus tends to cause the crystal lattice 

contract and results in compressive stress in the silicon substrate region near the diffused 

layer. The compressive stress causes the silicon wafer to curve towards the diffused layer. 

As a result, there exists tensile stress in the opposite region of the silicon substrate. Hence, 

the stress in the undoped region can be expressed by a linear approximation:

CTy y (z ) = CT/max +  (°c m a x  ~ a /m ax)(z — h ) l  h  (5 .2 8 )

To satisfy the condition of static force balance, the integral of the stress normal a vy(z) 

along z axis from one surface of the wafer to the another should be zero, that is
rd+h

J o  =  °  (5.29)
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where, i/is the thickness of diffusion doped layer. Eq.(5.29) can be rewritten as

JqCT yy(*)fifc=J^yy(z)<fc (5.30)

X [112]

y (no]

observation direction

(a)

z [1111

m m u

p-silicon

tmax

0 2 4 ( l °7dyn/cn?)
- >  a

yy

(b)

Figure 5.14 Stress variation across the thickness 
for a single-side diffusion wafer.

which indicates that the integral of the stress for the diffused layer is equal to that for the 

undoped layer. Therefore, although the stress distribution in the diffused layer may not be 

directly measured by using the photoelasticity method, the stress integral for the diffused 

layer can be estimated by using (5.30). By substituting Eq.(5.28) into Eq.(5.30) and using 

d=9§\\m and h=3\0\xm, the stress integral for both the diffused layer and the undoped 

substrate is calculated as 4 .6xl05 dyn/cm.

On the other hand, based on the relationship of the stress a  and the impurity 

concentration N-t in the elastic region [59], we have
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(5.31)

where E  is Young's modulus and v is Poisson's ratio of the doped layer, p is the lattice 

strain coefficient expressed as

where R\ and are atomic radii of the impurity and silicon, respectively, N  is the

factor, (for silicon, y=0.34). Eq.(5.31) indicates that the stress distribution has the same 

profile as the phosphorus impurity distribution. After redistribution diffusion, the 

phosphorus impurity distribution N fz )  is described by a Gaussian distribution [60]:

where Ns is the surface concentration (2.3xl020c/w'3), D the diffusion coefficient (3xl0 ‘12 

cm2/s), and t the time after initiation of diffusion (£=100 hours). From (5.30)~(5.33), the

By comparing the stress integral with photoelasticity experiment, 4.6x1 QPdyn/cm, 

with that obtained from the elastic model, 2.4x1 tf>dyn/cm, it is found that the latter is 

about five times greater than the former. The discrepancy is believed to arise from the 

stress relief during diffusion process. The stress developed by the lattice concentration due 

to the introduction of impurity atoms is sufficient to cause plastic deformation and thus 

generate dislocations. The mechanism of stress relief due to the generation of dislocations 

has been proved by the dislocation arrays observed in the diffused layer with the etch-pit 

evaluation technique [61], Therefore, in the case of single-side diffusion, there is a plastic 

region of diffused layer and a elastic region of undoped substrate. Similar to the analysis 

made by S. Prussin [62], by taking the stress relief in the diffused region into account, the 

stress distribution along the thickness o f the wafer is expressed as (also see Figure 5.15) 

°yy0 0  — 0<z<a

P = ( l /3 ) [ l - ( /? I //?s i)3]AT-1y (5.32)

atomic concentration of the silicon crystal (5x1022c/m-3), and y is the lattice packing

N\(z) =N%exp-[z2l(/\Dt)\ (5.33)

integral of stress along the thickness of the diffused layer is calculated as 2.4x106 dyn/cm.

O ^Z )  = ~ m ( z )  
1-v

a<z<b ( 5.34)
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where ctm is the threshold stress necessary to generate dislocations at the diffusion 

temperature, 9x\(fdyti/cm2. Based on (5.34), we recalculate the integral o f stress Gyy(z) 

in the diffused layer along the z direction from point o to point b, as 4.6x1 &  dyn/cm. By 

intersecting the stress profiles of the two equations (5.34), we have a«50p/w, which is 

about half of the diffusion junction depth, 90jxm. Furthermore, we may predict that during 

the whole diffusion process, about 80 percent of the stress caused by lattice contraction 

due to phosphorus diffusion has been released. If no stress is released during the diffusion 

process, the difference of the results from photoelasticity experiment and from the elastic 

model should be insignificantly small. Therefore, by comparing the measurement result by 

using the photoelasticity method with the calculated result based on the elastic model, we 

can reveal the degree of stress relief during the diffusion process.

diffused
layer undiffused layer

Figure 5.15 Distribution of stress across the wafer.

5.3.2 Double-Side Diffusion and Stress Superposition

Double-side diffusion is accomplished under conditions similar to that used in single-side 

diffusion. The stress state in the undoped region of silicon wafer after double-side 

diffusion is measured by the Senarmont compensation method or the Fourier analysis 

method. It is found that there is a uniform compression stress of about 3xl07dyn/cm2 in
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the undoped region. No wafer curvature is observed in such case. The uniform stress 

phenomenon attributes to the approximately linear and symmetrical distribution of stress 

along the thickness of the sample. If both surfaces of the wafer sample are doped with 

phosphorus atoms simultaneously under the same conditions, the stress superposition 

principle will be satisfied. The total stress introduced in the undiffused region of the wafer 

after a double-side diffusion is the sum of the stress due to the upper doped layer and the 

stress due to the lower doped layer:

total =  max +  ( CTcm ax — m axX -V -  h ) l h

"^cm ax "^(^/max - 0Icm a x )(^ - ^ ) ^

= CT/max +<7cmax (5 .35 )

where a /max and a cmax are the maximum tensile stress and the maximum compressive

stress measured in the single-side diffusion case. Eq.(5.35) denotes that the stress in the 

undoped region of the silicon wafer after double-side diffusion is equal everywhere, whose 

value is equal to the algebraic sum of the stresses a t max and a cmax, (note that a cmax <0 

and cr/max>0). In this experiment, |ocmax|> |a /max| indicates that the total stress

introduced in double-side diffusion is compressive. Since there is no wafer curvature in a 

double-side diffusion wafer, it is impossible to determine the stress by measuring curvature 

radius of the wafer with X-ray diffraction or other optical methods. However, 

photoelasticity method does not measure the curvature radius, and hence exhibits its 

uniqueness in measuring uncurved wafers.

5.4 Summary

In this chapter, we apply photoelasticity principles and methods to investigate the stress in 

some microelectronic materials and device structures. Depending on different cases, we 

employ different measurement schemes and arrangements. For the synthetic diamond 

substrate, there was sufficient thickness to enable to make an observation normal to the
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sample surface. In the cases of thin film/substrate structures and diffused wafers, the 

limited thickness of the sample prevents us from probing along the normal direction of 

sample surface. Alternatively, we make observations from flank sides. Since, as shown in 

the above examples, we are often involved with measuring a fractional order of 

isochromatic line, suitable compensation methods are needed to determine the photoelastic 

parameters. We illustrate the application of the intensity analysis method, the Senarmont 

compensation method and the Fourier analysis method. The shearing stress difference 

method is used to separate the two principal stresses in synthetic diamond substrate, and 

obtain the principal stress distribution along any cross section of the sample.

From the illustration above, the stress state in various microelectronic materials and 

device structures can be quantitatively analyzed by using photoelasticity. This technique 

provides a high sensitivity of detecting stress. For an 8-bit CCD camera presently
o

employed, the minimum detectable stress may be 10' dyn/cm . It also provides a high 

spatial resolution. If the optical parts and the detection system are properly chosen, the 

spatial resolution may approach the diffraction limit, which is in the order of the 

wavelength of the light source used.



CHAPTER 6

CONCLUDING REMARKS

In this chapter we summarize the research results that have been presented in this 

dissertation and discuss some open issues that may serve as the basis for our future 

research.

6.1 Summary of Research Results

Stress is an important issue in microelectronics. The photoelastic technique is an effective 

method of characterizing the stress. However, there are some difficulties in applying this 

technique to microelectronic materials. The solutions to these problems will undoubtedly 

benefit the effective application of this technique in characterizing the stress, and 

moreover, will produce a better understanding of and control on stress in microelectronic 

materials and devices. This dissertation is focused on finding solutions to these problems. 

In brief, our research projects include following issues:

1) In order to apply the photoelastic principle to measure the stress in crystals, it is 

essential for us to develop the stress-optic law for crystals, which are always 

photoelastically anisotropic. Based on the principle of crystal optics, the anisotropic 

property of photoelasticity for cubic crystals is studied in detail. The matrix forms of the 

piezo-optic coefficient tensors for arbitrary crystallographic directions and probing 

directions are derived in light of the fourth-rank tensor transformation law. The 

relationship between the principal axes of the stress ellipsoid and the principal axes of the 

refractive index ellipsoid for general circumstances, for arbitrary crystallographic 

directions and radiation direction is investigated. Finally, suitable forms of the stress-optic 

law for anisotropic materials are derived in some commonly used coordinate

110
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configurations. The investigation lays a theoretical basis for photoelastic stress analysis of 

crystal materials.

2) In order to apply the stress-optic law to solve for principal stresses, it is needed to 

determine the photoelastic parameters, that is, the birefringence phase difference and the 

birefringence angle. The second important issue in this dissertation is to develop effective 

methods to determine the photoelastic parameters, which corresponds to the fractional 

order fringes of photoelastic patterns. The Senarmont compensation is a useful method of 

determining the birefringence phase difference with fractional order of isochromatic line. 

However, with this point-by-point method, we only measure one point of the sample at a 

time. To improve measurement efficiency, we successfully apply the intensity analysis 

method we developed to measure the whole area o f the sample at one time. The Fourier 

analysis is another method we developed to measure birefringence phase difference. The 

approach is to use a continuously rotating analyzer followed by Fourier analysis of the 

measured emerging light intensity to determine photoelastic parameters. The results 

obtained experimentally illustrate that the Fourier analysis method has a better immunity to 

random noise and a better sensitivity (the minimum detectable stress is about 1.8x 

\Qpdyti/cm2, for a silicon sample with thickness of 500|lum) than the intensity analysis 

method (7.6xl07rfy;j/cw2). With advanced solid-state image sensing and image processing 

techniques, there is hope for this method to become a powerful means to perform 

automatic analysis of stress for various microelectronic materials and device structures. In 

this dissertation, we also presented the three-direction observation method to determine 

the directions of principal stresses from the information of secondary principal stresses. 

The application of this method, for the first time, reveals the relationship between the 

orientation of the principal stress and the symmetry of crystal structure.

3) A photoelastic measurement system is established, which basically consists of a 

light source, a polarizer, an analyzer, a quarter waveplate, and a detector. The system can 

perform qualitative observations of photoelastic patterns and quantitative measurement of
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stress distributions. With the software we developed, the system can automatically execute 

data acquisition, image processing, data analysis and stress calculation. Experimental 

results illustrate the system's capability of measuring the stress state in a microelectronic 

material with a high accuracy. The establishment of the system provides us an effective 

means of studying stress in microelectronic materials with photoelasticity.

4) Photoelastic techniques are applied in studying the stress state in microelectronic 

materials. Projects include studying the stress distribution in a diamond substrate, studying 

stress in thin film/substrate structures, and studying diffusion-related stress in silicon 

wafers. In the first project, the residual stress in a synthetic diamond substrate is analyzed 

by using the automatic data acquisition and analysis system. The digital image processing 

techniques are applied to improve the quality of the sensed images, to reduce noise and to 

determine the boundary of the measured samples. Photoelasticity is used to determine the 

photoelastic parameters, and shearing stress difference method is applied to calculate the 

two-dimensional stress distribution in the sample. In the second project, we present the 

application of photoelastic techniques in measuring film-induced stress of substrate/thin 

film structures. The Fourier analysis method and the Senarmont compensation method are 

applied to investigate the stress induced by different mechanisms, including stress induced 

by a single layer of oxide film, stress induced by edge-force in a groove structure, and 

stress of multi-layer structures. For each case, a stress model is built and theoretical results 

are compared to those of photoelastic measurement. In the third project, the Senarmont 

compensation method is applied to decide the fractional fringe order of isochromatic lines 

and to determine the stress distribution in silicon wafers after various diffusion processes. 

The stress in diffused layer is estimated based on the stress data measured for the undoped 

region. A modified stress model is developed to account for the stress relief during 

diffusion process in the diffused layer.

In summary, this dissertation presents a systematic study of photoelastic stress 

analysis in microelectronic materials, ranging from theoretic research, method exploration,
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system establishment, and practical application. We extend the stress-optic law from 

isotropic medium to photoelastically anisotropic materials, and derive the matrix forms of 

piezo-optic coefficient tensor in two commonly used coordinate systems. Based on 

photoelastic principal, we build up a photoelastic measurement system which can be used 

to qualitatively observe the photoelastic pattern and quantitatively measure the stress 

distribution. To apply the photoelastic method to solve the stress problems in 

microelectronic materials, we develop a series of effective methods of determining the 

fractional order of isochromatic lines o f photoelastic patterns, determining the principal 

directions, and calculating the stress distribution of a sample. The experiment and 

measurement in microelectronic materials show that photoelastic technique has the 

advantages of having high spatial resolution and high sensitivity, and being automatic and 

in real-time. There is hope for its application as an on-site monitoring tool in 

microelectronic industry.

6.2 Directions for Future Research

In this dissertation we have illustrated some applications of photoelasticity method in 

measuring the stress of microelectronic materials and device structures. It would be very 

interesting to try to extend this technique to characterize the crystal defects of 

microelectronic materials. Furthermore, it would also be extremely interesting and useful 

to apply photoelastic effect in device physics. Through controlling the stress in certain 

region of a device, we may trim the characteristic of the device.

A very important task in effectively applying the Fourier analysis method we 

developed is the improvement of the detection system. The approach is to employ a high 

performance CCD sensor (16-bit dynamic range) as detector. A thermoelectrically cooled 

system is used to provided a low operation temperature of 77°C, to reduce the readout 

noise and the dark charge noise. As discussed in Chapter 3, such a high dynamic range
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allows us to measure a minimum birefringence phase difference of about 5°, which 

corresponds to a stress of 2.0xl07 dyn/cm2 for sample thickness 500pm, or 5.0xl06 

dyn/cm2 for a silicon sample of thickness 2mm.

When it is required to measure the stress state of the whole wafer at a time, a 

simultaneous coverage of the entire sample is needed, at the expense of reducing spatial 

resolution. If the format of CCD array is of 1024x1024, the spatial resolution of the 

measurement is 150pm for a 6-inch wafer, and 2pm or diffraction limit for a sample of 

2mm dimensions. Another problem in realizing real-time characterization is the speed 

limitation while transforming and analyzing the photoelastic pattern images. For example, 

if we need to obtain the measurement result in 10 minutes, it is required to transfer 180 

images in about 8 minutes, with 2 minutes to process these images and calculate the stress 

distribution. Therefore, high speed CCD image sensor, high speed readout circuits, high 

speed A/D  converter, high speed I/O circuit, and high speed computer are essential to 

realize the purpose. In addition, we must consider the storage capacity of the computer. If 

we employ a CCD sensor of 8 bits and 164x192 pixels, only 32K  byte storage space is 

required to store one frame of such image. For 180 frames of such image, the required 

storage space is about 5.8M  bytes. It needs 0.5M bytes to store an image of 16 bits and 

512x512 pixels. Therefore, a total 90Mbyte storage space is required to store 180 frames 

of such image.

Photoelasticity has been proved to be an effective, non-destructive method to 

measure the stress in microelectronic materials and device structures. One possible 

extension of the application is to inspect the crystal defects of a wafer, since the defects in 

microelectronic materials introduce stress field around the defects. The most commonly 

used technique for defect characterization in semiconductor materials is Af-ray topography. 

However, the relatively long time necessary to characterize a sample by this technique 

precludes testing of individual samples in a given batch. The photoelastic method is non­

destructive, fast and, hence, can permit testing of each wafer in a given batch. As an
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example, we discuss the feasibility of measuring an individual dislocation in crystal by 

using photoelastic method. For edge dislocation, the stress field near the dislocation line is 

given by [63]:

\xb sin0

Ixb cosG
27 i(l-v ) r

(6 . 1)

where p. is the shear modulus (~4 x 101 ^dyn/cm2), b is the magnitude of Burgers vector 

(~2.5xl0"8 cm), v is the Poisson's ratio (0.31 for GaAs). Thus, we can calculate the 

stresses at \\xm from the dislocation line: 

g , 7. = 2.7xlO7sin0 dyn/cm2

At 1 Op/w from the dislocation line, the stress reduces to about 2 x \0 6dyn/cm2. Therefore, 

from the discussion of Chapter 3, it is evident that when the dynamic range of the 

detection system is 16 bits, it is possible to detect the photoelastic patterns induced by the 

stress field of the edge dislocations. The approach is first to investigate the photoelastic 

patterns o f stress field for two types of wafer plane orientations [(111) or ( 100)], for 

various dislocations (edge dislocation, screw dislocation, and mixed dislocation), for 

different dislocation directions and Burgers vector orientations. Then, the experimentally 

observed images on the samples are analyzed with the image recognition technique, and 

the properties of various dislocations can be abstracted.

Another possible extension of the application of photoelasticity is to improve the 

device performance by controlling the stress of the device structure. Usually, the stress 

field in a device affects the performance of the device in an indirect manner. Under certain 

circumstances, the stress in a device will directly change its performance. For example, in 

the case of index-guide laser, the stress induced during the fabrication produces a 

significant waveguide effect. The stress field in the active layer induces a refractive index

a^0 = 2.7x 1O7cos0 dyn/cm2 (6 .2)
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change in the plane of the active layer through the photoelastic effect. The dielectric 

permittivity deformations in the active layer of the laser could be responsible for 

anomalous emission patterns because modified waveguiding conditions could be present in 

the laser cavity. The investigation of such a relationship between the stress state and the 

performance of a device is a very interesting and challenging issue. The significance of 

such a project is that we may trim the characteristic of a device by controlling the stress in 

the device. Therefore, we may open a new field of study, stress engineering, in 

microelectronics. It is one of the major objectives of our research activity in the future.
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