

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

OMNI 2.1: AN ENHANCED GRAPHICAL SCHEMA REPRESENTATION
FOR

OBJECT-ORIENTED DATABASES

by
Rajashekar Rao

The graphical representation of an object-oriented database (OODB) schema is

useful for the designers and users of a database system. The purpose of my thesis was to

enhance the existing version of OOdini, an interactive graphical tool for editing an

OODB schema. The new features include interactive modification and description of

objects in the schema. Data structures for representing classes and attributes have been

altered to incorporate object/data types as well as a descriptive string. The software has

been implemented using the ObjectMaker toolkit to design our own methodology using

the ObjectMaker Extension Language.

OODENI 2.1: AN ENHANCED GRAPHICAL SCHEMA
REPRESENTATION FOR

OBJECT-ORIENTED DATABASE

by
Rajashekar Rao

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer and Information Science

October 1996

APPROVAL PAGE

OODINI 2.1: AN ENHANCED GRAPHICAL SCHEMA REPRESENTATION
FOR

OBJECT-ORIENTED DATABASES

Rajashekar Rao

Dr. Y. Perl, Thesis Advisor
	

Date
Professor of Computer and Information Science, NJIT

Dr. J. Geller , Committee Member 	 Date
Associate professor of Comp er and Information Science, NJIT

Dr. M. Halper, Committee Member /
Assistant Professor of Math and Computer Science, Kean College

Date

BIOGRAPHICAL SKETCH

Author: 	 Rajashekar Rao

Degree: 	 Master of Science

Date: 	 October 1996

Undergraduate and Graduate Education

• Master of Science in Computer Science
New Jersey Institute of Technology, Newark, NJ, 1996

• Bachelor of Engineering in Computer Science
University of Poona, Pune, India, 1994

Major 	 Computer Science

ACKNOWLEDGEMENT

I would like to express my deepest appreciation to Dr. Y. Perl, who not only

served as my research supervisor, providing valuable and countless resources, insight,

and intuition, but also constantly gave me support , and encouragement. I would also like

to thank Dr. J. Geller and Dr. M Halper for their valuable help and thorough insight into

this project.

TABLE OF CONTENTS

Chapter 	 Page

I INTRODUCTION 	

1.1 Introduction to OOdini 	1

1.2 Previous Work 	 1

2 OODB GRAPHICAL SCHEMA REPRESENTATION 	

2.1 	Introduction.... 	

2.1.1 Motivation 	4

9.1.2 General Approach 	

2.2 Classes 	

2.3 Generic Relationships 	 8

2.4 Relationships 	11

2.5 Methods 	14

2.6 The OODB Part Relationship 	16

2.6.1 Terminology 	 17

2.6.2 Definition of the Part Relationship 	17

2.6.3 Exclusive and Shared Part. Relationships 	18

2.6.4 Dependent Part Relationship 	 20

2.6.5 Value Propagating Part Relationship 	 21

2.6.6 Single / multi-valued Part Relationships 	22

2.7 Ownership Relationship 	 23

7.7.1 Definition of Ownership.

2.7.2 Ownership as an OODB Semantic Relationship 	26

2.7.2.1 Transactions and Inheritance 	26

2.7.3 Formal Definition of the Ownership Relationship 	27

2.7.3.1 Exclusive Dimension 	 27

VI

TABLE OF CONTENTS

(Continued)

Chapter
	

Page

2.7.3.2 Value Propagation Dimension
	

28

2.7.3.3 Additional Dimensions
	

78

3 THE ARCHITECTURE OF ObjectMaker 	30

3.1 Components 	30

3.1.1 Diagramming Tool 	 30

3.1.2 Repository Management 	 30

3.1.3 View Management 	30

3.2 	Levels of Functionality 	31

3.2.1 Kernel 	31

3.2.2 Support Layer 	31

3.2.3 Schema Layer 	 31

3.2.4 Method Layer 	32

3.3 	Directories and Files 	 32

3.4 The ObjectMaker Extension Language.... 	

3.4.1 What is the Extension Language 	32

3.4.2 Why Do We Need the Extension Language 	 32

3.4.3 What Can You Do with the Extension Language 	33

3.5 Nature of the Language 	34

3.5.1 Rules 	35

3.5.1.1 Rule Head 	 35

3.5.1.2 Rule Body 	36

3.6 Implementing Support for a Methodology with ObjectMaker 	37

3.6.1 Menu Definition 	37

3.6.2 Diagram Syntax Checking 	40

VII

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

4 OODINI 2.0 SPECIFICATIONS 	43

PHASE 1 OF OODINI 2.0: A REVIEW 	46

6 PHASE 2 DIFFICULTIES DUE TO TDK PREVIOUS RELEASE 	48

7 IMPROVEMENTS IN TDK 4.0 AND NEW OPTIONS OF OODINI 2.0 	50

7.1 	General Draw Icons 	50

7.1.1 Bitmap Icons 	51

7.1.2 General Icons 	51

7.2 Extension Language Support 	52

OPEN DEVELOPMENT PROBLEMS AND DIFFUCLTIES 	54

8.1 Adornment shortcomings 	54

8.2 Code Generation 	.55

8.2.1 Code Generation from Schema Diagrams 	55

8.2.2 Reverse Engineering Code to Generate the Schema Diagram 	56

APPENDIX A METHOD.CFG 	57

APPENDIX B THE RULE FILE 	58

.APPENDIX C THE MENU FILE 	61

REFERENCES 	73

viii

LIST OF FIGURES

Figures Page

2.1 The class customer and its attributes 	 6

2.2 The class customers 	

2.3 Diagrammatic representation of set class 	 7

2.4 A tuple class 	 8

2.D A specialization hierarchy 	 10

2.6 The section-student example 	 11

2.7 An Essential relationship 	 13

2.8 Relationships 	 14

2.9 The section-student example with methods 	

2.10 Part-Whole Relationship 	 18

2.11 Ownership Relationships 	 27

"7.12
Expansion of the Ownership Relationships 	 29

8.1 Class Exclusive Essential Relationship 	 54

IX

CHAPTER 1

INTRODUCTION

1.1 Introduction to OOdini

The graphical representation of database schemata has been a useful tool for the

designers and users of database systems. Such a tool is no longer viewed simply as a

convenience, but as a necessity. O0dini is a comprehensive graphical notation for the

representation of OODB schemata. The OOdini notation is based on a set of mnemonic

icons that can be composed in an incremental and intuitive way. A graphical schema

editor called O0dini was developed to allow users to interactively create and manipulate

OODB schemata. The OOdini notation incorporates a wide variety of symbols including

those for classes, attributes, methods, user-defined and constraint relationships, part-

whole relationships, ownership relationships - enough to support a diverse group of

object-oriented data models. The graphical schema editor offers constraint-based editing

of the O0dini schema representation, thus making O0dini an effective OODBs graphical

interface.

1.2 Previous Work

One of the goals of the latest generation of database management systems (DliMSs),

including OODBs, is overcoming the problems of representing, storing, and manipulating

highly complex data entities [37,44]. Among these are speech signals, CAD/CAM

drawings, and images. invariably, these kinds of data require some form of graphical

display. Hence, many OODBs such as OdeView [31 and 02[141 support the graphical

2

display. Hence, many OODBs such as OdeView [3] and 02[14] support the graphical

display of data. However, this type of graphical representation is not considered in this

thesis. Our concern is a graphical representation of database schema which can be

employed as a data definition language [13].

The usefulness of the graphical representation of knowledge-base schemata has

long been acknowledged. Early on, the knowledge representation community recognized

the importance of graphical aides. Semantic Nets [6, 43] are invariably presented in a

graphical form. Conceptual Graphs [42] and Conceptual Dependencies [36] both employ

graphical formalisms. Even frames have been given pictorial forms [36].

In the database community, there are a number of data models which present

schemata in diagrammatic fashion. Perhaps none of these is more prevalent than the

Entity-Relationship model (ER) model [11, 15, 45]. In fact, this graphical language is

often used as a diagramming device for other data models such as the relational (e.g.

Schemadesign[9]). Another semantic data model with a graphical schema representation

is Galileo [4], for which a schema editor Sidereus [5] has been built.

Other models which are readily depicted graphically include IFO [1], which is

related to the functional model [41]. SNAP [7], developed by the originators of IFO, is a

system which provides this graphical support. GOOD [21], an object data model also

related to the Functional model, uses a graphical formalism as a basis for its definition.

Within the OODB community, some system designers have considered the

graphical representation of the class hierarchy. Among these systems are OdeView, Iris

[15], O2 and Ontos [34]. Unfortunately, the class hierarchy relates only a limited part of

3

the interrelations between classes. Kim [27] presents a notation he calls schema graph

which captures the normal class hierarchy as well as the class-composition hierarchy.

The Object-Oriented Entity-Relationship Model [20], an object-oriented extension of the

ER model, uses a diagram derived from the ER model. Of late, there has appeared a

graphical representation language and editor for GemStone[8]. However, our

representation accommodates a larger number of schema constructs in that we graphically

represent methods, different generic relationships, and constraint relationships.

In the area of object-oriented modeling and design, there exists a graphical notation

which complements the Object Modeling Technique (OMT) [38]. While not specifically

aimed at object-oriented databases (but rather object-oriented systems in general), it can

be employed to describe database schemata.

As with OODBs, object-oriented programming languages (OOPLs) can greatly

benefit from graphical representations. The designers of Eiffel have introduced some

graphical conventions in [29]. These conventions constituted a portion of a larger

graphical formalism which was under development. As was alluded to by the author, the

formalism will focus mainly on aspects unique to OOPLs, such as class preconditions,

post-conditions, and variants.

In [26], Kappel and Schrefl combine the approaches of both fields by presenting

object behavior diagrams for OODBs. Since they are presenting the object diagram in the

context of behavior diagrams, they have chosen to represent class interconnections with

symbols inside the class construct rather than with connecting arrows.

CHAPTER 2

OODB GRAPHICAL SCHEMA REPRESENTATION

2.1 Introduction

2.1.1 Motivation

An object-oriented database (OODB) system, typically, is made up of a large number of

object classes. Usually in the order of hundreds and sometimes in the order of thousands.

The designer must insure that each class contains the attributes necessary to describe its

objects and that the classes are connected with appropriate relationships. Relationships

describe the connectivity between classes. They convey semantic information and allow

the retrieval of remote data relevant to a given class.

Since it is the designer who decides the structure of the database, the above issues

makes it mandatory that the designer has a solid grasp of the overall structure of the

database. Besides, since the user of the database plays no role in deciding the way in

which the system is built, the need for the database to have an organized and transparent

structure becomes even more important.

This warrants a need to have a graphical language which can prove useful to both

the system designer and the end user of the OODB. This graphical language should

incorporate a wide variety of constructs to satisfy the most diverse object-oriented

models. Also the graphical icons used to represent the various entities in this schemata

should have a high mnemonic value.

4

2.1.2 General Approach

Objects and classes form the most prominent notions that characterize the OODB

systems. A class can be regarded as a container for objects which are similar in their

structure and semantics in the application. The four properties enlisted below can be used

to describe, best, the structure and semantics of objects

1. 	Attributes - contain values of a given data type.

2. Relationships - contain references to other classes.

3. Methods - specify operations which can be applied to instances of a given class.

4. Generic relationships - these are similar to relationships in that they are references to

other classes; however, these are system-defined, while relationships are user-defined.

A major point of distinction between. OODINI and other OODB graphical systems

is that in the latter the relationships are viewed simply as pointer-type attributes while in

OODINI the edges which represent relationships are labeled - which permits

representation of various generic relations, relationships, and path methods. The basis

for OODINI is a labeled, directed graph where the vertices represent classes and the

ability to label classes allows us to represent different kinds of classes. The edges

represent relationships.

2.2 Classes

An object class is represented as a rectangle. With this rectangle the attributes and the

operations associated with the class are also represented. The representation of the

object class customer with its corresponding attributes is shown in Figure 2.1. To

6

represent an essential attribute (i.e. its value can not be null) we add a small. circle to the

right of its name.

Figure 2.1: The class customer and its attributes

Besides the simple class, our system can represent composite classes obtained from

other classes by two types of constructors :

1. the set constructor.

2. the tuple constructor.

The set constructor is used to obtain a class whose instances are sets of instances of

another class. For example, the class customers of Figure 2.2 is obtained by applying the

set constructor to the class customer. Such a class might have an instance representing

the set of all customers who purchased a given product.

Figure 2.2: The class customers

7

The graphical representation of a set class is a rectangle with a double-framed

border. The double-frame is used to convey the inherent multiplicity of sets, their non-

tornic nature. Since each set class derives all its meaning when associated with a simple

lass, it is represented by socketing the set class to the corresponding simple class. This

s shown in Figure 2.3.

Figure 2.3: Diagrammatic representation of set class.

The topic constructor is used for association purposes, i.e., to gather a group of

lasses together. As a typical example, consider a ternary relation. Sometimes the

information expressed in a ternary relation cannot be captured by three binary relations

between the pairs of classes. In an OODB, the topic constructor is used to form a class

:omprising the three classes of interest. A concrete example of this situation is the class

shipment, which is defined to be a triple composed of supplier, product and department.

The graphical construct of a tuple class is a rectangle with a triangle at the bottom.

8

Figure 2.4: A tuple class

2.3 Generic Relationships

Generic relationships are system-defined connections between classes which bear a prime

property of generality. The most important among these relationships is that of subclass

(is_a) which enables us to express specialization and create a hierarchy of classes. In

certain situations, it might seem convienient to load the subclass relationship with further

semantics regarding context, to refer to the categoryof relationship . The hierarchy

In the present discussion both the relationships will not be distinguished.

strongly reflects the structural layout of the application and. thus it is very essential in

order to get an overall intuitive understanding. Since all normal relationships are shown

with a thin line, the subclass relationship is shown with a thick line directed from a more

specialized (subclass) to a more general (superclass). This is done in order to make

apparent the hierarchy even on cursory inspection. To further emphasize the hierarchy, it

is encouraged to place the subclass below its superclass.

In the case where the subclass specialization is in a different context from that of

the superclass, the relationship is called roleof The graphical representation for roleof

retains the directed, heavy line feature of the subclass; however, the line is not solid, but a

dash-dot pattern. The mnemonic device employed here is borrowed from a feature typical

in maps. In maps, the boundary between ally two territorial units, such as states and

countries, is defined using a dot-dash pattern. Figure 2.5 presents a specialization

hierarchy, including subclass and roleof

Partof is another relationship which is used to connect a part of a complex or assembled

(real-world) object to its inteual object. Extensive use of this relationship is made in

computer graphics. The graphical representation of the pariof relationship is a thick,

broken line directed from the part to the whole. The partof relationship is represented as

a thick broken directed line to maintain consistency with the other hierarchical. relations,

subclass and roleof, which are represented as thick lines too1. As in the case of the

subclass hierarchy, the schema designer is encouraged to maintain the "parent" part and

its descendents in a top-down spatial relationship in the picture.

10

Figure 2.5: A specialization hierarchy

The relationships discussed in this section are the setof and its converse memberof

relation. A class A is in a setof relationship with class B if the instances of A are sets of

instances of B. Conversely, B is in a memberof relationship with A. In contrast to the

other generic relationships, the setof and memberof imply no hierarchy. The graphical

representation. involves drawing the two participating classes so that they touch at one of

their corners. The set class is drawn with a double-framed box. The reason for the

representation is that besides saving space in the picture, the four sides of each rectangle

remain accessible from a graphical standpoint In Figure 2.6 the classes section and

sections are in memberof 1 setof configuration.

Figure 2.6: The section-student example.

2.4 Relationships

Relationships are user-defined connections between classes. A relationship can be

viewed as a pointer to another class. It is thus drawn as an arrow from one class to

another. This arrow is a regular one as compared with the heavy arrow of the hierarchical

relations. Accompanying the arrow is the name of the relationship.

12

If the situation warrants a relationship from class A to class B and its converse, it is

handled by drawing a pair of labeled arrows in opposite directions between class A -and

class B1. This approach is in contrast to the approach used in. ER diagrams wherein a

relationship is bi-directional and given an "existence" of its own, complete with its own

attributes1.

The ER models supports one-to-many relations which in OODINI is called multi-

valued relationship. The graphical representation of a multi-valued relationship is a dual-

lined arrow. This representation is used to emphasize the multiplicity of the relationship

just as in the case of set class. An example of this is the relationship between section and

student, where a given section can have many students (see Figure 2.6).

Constraint relationships are those which impose additional semantic constraints on

the participating classes. Two aspects that are involved in the complete definition of a

constraint relationships are :

O the static definition or state definition which imposes constraints on the database at

any fixed instant of time.

® the dynamic and transient definition which expresses the behavior that it implies in

the context of change (i.e. creation, deletion and update semantics).

The dynamic aspect of any constraint relationship is required to maintain the

constraints imposed by the static aspect.

The two constraint relationships that are represented are as follows:

• Essential relationships which must always refer to an existent object. The creation

semantics are such that the referent class of the relationship always must have

13

instances before the source class can be created. The update semantics insists that the

relationship cannot be a nil value. The deletion of an instance of the referent class is

forbidden if there exist instances of the source class which refer to it.

Essential relationships are represented by placing a small circle on the arrow body.

This representation is chosen to maintain consistency since essential attributes are also

represented by the addition of a circle.

Figure 2.7 illustrates the above points. It reads as "Working in a department is

essential to an employee ". In other words if there is no department, then no employee

can be hired (created) for it. If a department is abolished then all employees belonging to

that department must be transferred to an other department or been tired.

Figure 2.7: An Essential relationship.

A dependent relationship is identical to an essential relationship except for the case

of deletions. The deletion semantics is as follows Assume that the class A has a

dependent relationship to a class B; if an instance a of A refers to an instance b of B,

and if b is deleted then a get deleted automatically. Thus, the existence of A is

dependent on B. It is represented by an double headed arrow to suggest "stronger"

connectivity of the relationship. Figure 2.8 shows the graphical icons used to

describe the various aspects of relationships.

Figure 2.9 shows a dependent relationship is _offering_of from section to course: In

other words if a course is deleted then all its sections get deleted automatically.

2.5 Methods

There arc two types of methods defined in OODBs. They are :

path methods

local methods

Local methods operate locally on the object. Local methods can be divided into selectors

mutators (also referred to as reader I writers) and. derived attributes. A selector (mutator)

method simply reads (writes) a given attribute. Selectors and mutators do not require a

separate graphical representation. The symbol representing the attribute they operate on

is sufficient.

Derived attributes are very similar to the selectors of attributes. These methods

derive values from one or more attributes through some computation.

A path method is an operation (defined on a class) comprising a chain of classes

connected by generic relationships: this chain might end with an attribute or derived

attribute. The symbol employed is a dashed thin line arrow pointing from the class

15

defining the method to the remote data item (e.g. a class or an attribute) it accesses (i.e.

ends in). The reason for this representation is that the function of a path method is

similar to the function of a relationship: Each is used to retrieve information which is

relevant to its own class and is stored in another. The thin arrow is chosen so as to make

the symbol for a path reminiscent of the representation of the relationship. However,

there is a difference between relationships and methods. A relationship is a direct

connection, while a method is an indirect connection established via a chain of

connections.

As an example, consider the method "get_courses" of the class instructor in Figure

2.9. This method returns the names of all the courses taught by a particular instructor. To

accomplish this, it accesses the attribute name of course through the generic relationship

path teaches, setof, and is_offering_of

Figure 2.9: The section-student example with the "get_courses" method

16

2.6 The. OODB Part Relationship

If OODB systems are to fulfill their expectations in different areas, it is imperative that

they support aggregation by including a part-whole relationship as a built in modeling

primitive. By such a relationship we mean a connection between two object classes that

provides more than just a common name like part-or. Rather, it must capture accepted

real world, part-whole semantics by imposing limitations on the interactions between the

instances of the participating classes and by providing them with additional functionality

befitting parts and wholes.

The part model has as its foundation in a part-whole semantic relationship that

encompasses the following :

0 Constraints that impose appropriate "part-whole" restrictions on the state of the

database and the various part transactions (like "add-part and "remove-part").

0 Dependency between parts and wholes.

Inheritance of properties, both from part to whole and vice versa.

Because there exists a wide range of part-whole semantics, we organize the above

into four characteristic dimensions : (a) exclusiveness, (b) multiplicity, (c) dependency,

and (d) inheritance. Each of these dimensions can take on a number of different values,

giving flexibility to an application developer, who simply declares the desired semantics

by choosing the appropriate values. The OODB system then automatically ensures that

the chosen semantics is obeyed during the entire lifetime of the database.

17

2.6.1 Terminology and Notation

In the following sections, we will refer to a "part" as a meronym (the prefix mero-, from

the Greek meros, meaning part). A whole object will be called a holonym (holo- meaning

whole). A part's class is a meronymic class, whereas that of a whole is a holonymic class.

For example, if classes chapter and hook are in a part-whole configuration and chapter c

is part of book b, then c is a meronym and b is a holonym. Chapter and hook are the

meronymic and holonymic classes, respectively.

2.6.2 Definition of the Part Relationship

In this section, we present a formal definition of a part relationship between a pair of

OODB classes. This relationship is described formally as a quintuple comprising

relation between the extensions of the participating classes, and four "characteristic"

dimensions: (I) exclusiveness, (2) cardinctlity, (3) dependency, and (4) value propagation.

The first of these addresses the issue of how parts may be distributed among wholes. The

next is concerned with the way parts of the same kind are collected together to form

wholes. The third dimension deals with the dependency semantics, 	how the deletion

of a holonym or meronym affects its counterpart in the partwhole configuration. The final

dimension addresses the issue of propagating relevant data across the part relationship

from the whole to the part, or vice versa, leading to the definition of derived attributes.

18

Figure 2.10: Part-Whole Relationship

2.6.3 Exclusive and Shared Part Relationships

Pail relationships in general can be divided along the lines of exclusive and shared. An

exclusive pun relationship enforces the restriction that a given meronym can be a

component of only a single holonym. In other words, the holonym is the sole owner of

the meronym. Of all the part relationships we will introduce, the exclusive relationship is

perhaps the most intuitive because part modeling is most often associated with physical

assemblies such as cars, bridges, and buildings. For such items, the exclusiveness

restriction is quite natural: Two cars cannot share the same engine.

19

While no two cars can share an engine, it is also the case that a car and, say., an

airplane cannot share one either. Therefore, the exclusive part relationship between the

classes engine and car must have ramifications for the entire database topology,

restricting not only "part" references from cars to engines but from objects of other

classes to engines as well. There are times, however, when we would like to confine the

exclusive reference restriction to a single holonymic class. Consider a computer science

publication database which contains scholarly journals and books (and, in particular,

books which are compilations of articles). If we were to diagram this database, we would

use the generic part relationship symbol to indicate that class article is in a part

relationship with both journal and compilation (the latter being a subclass of book).

Ordinarily, different journals do not contain the same article. Therefore, it is sensible to

impose this constraint on the database. However, the same article can appear as part of

some compilation (a common practice in the area), and so we do not want the

exclusiveness constraint between article and journal to have any implications on the

relationship between article and compilation.

For this reason, we distinguish between two types of exclusiveness, global

exclusiveness and class exclusiveness. An exclusive part relationship, such as the one

between engine and car, which affects the entire database topology will be referred to as a

global exclusive part relationship. This kind can be found in a number of existing

systems, where it is simply called the exclusive part relationship. We too will usually

drop "global" and just call it exclusive. The class exclusive part relationship is one which

only enforces the exclusiveness constraint on the relationship between the participating

?0

classes, as between article and journal. Both the exclusive and class exclusive

relationships have a formal definitions and their own graphical representations below.

Part relationships which are not exclusive are called shared. A shared part

relationship puts no restrictions on the number of holonyms that a given meronym can be

part of, allowing the meronym to be freely shared. The part relationship between article

and compilation in the example discussed above is shared. The same article can be

included in any number of compilations.

2.6.4 Dependent Part Relationship

A part relationship can be endowed with different forms of dependency as specified by

the domain of the third characteristic dimension:

{part-to-whole, whole-to-part, nil},

The third value indicates that the part relationship lacks any dependency semantics.

Dependency semantics is often desired when modeling with parts, especially when

the holonyms comprise numerous meronyms.

There are some part-whole configurations where the part acts as a defining element,

without whose existence the whole becomes insubstantial. Consider, for example, that

without its frame, a bicycle may be seen as nothing more than a collection of "spare"

parts. Therefore, it makes sense to propagate the deletion of a frame into the deletion of

its bicycle. We refer to this as whole-to-part dependency.

21

To express the dependency in our graphical schema representation, an arrowhead

facing in the direction of the dependency (i.e., against the direction of the deletion

propagation) is placed immediately behind the diamond head. See Figure 2.10.

2.6.5 Value Propagating Part Relationships

We now define two part relationships which support upward and downward value

propagation. Value propagation refers to the flow of a data value across the part

relationship. As a modeling tool, it is useful for expressing certain functional

dependencies between integral objects and their parts. As an example, a car may be

modeled such that its age is equal to the age of its frame. In other words, the attribute age

of class car would be defined to be identical to the attribute age of class frame, which is a

meronymic class in relation to car. In such a case, instead of storing the value of age at

both classes, the value should be stored at frame and propagated upward through the part

relationship to car as needed. In this way, age need not be stored multiple times, and its

value is guaranteed to be the same at both car and frame.

The upward propagating part relationship is represented graphically by placing the

name of the property being propagated in parentheses alongside the generic symbol. An

upward-pointing arrowhead is written in front of the parentheses to indicate the direction

of the propagation (Figure 2.10).

The value propagation mechanism could be defined such that all the properties of

the meronymic class are made available to the holonymic class. We have chosen to

concentrate on a single property because the propagation of all properties is ordinarily not

22

meaningful in the context of a part relationship. A holonym does not normally require

many of its part's properties. We can, of course, extend the definition to a set of

properties.

The downward propagating part relationship is used in the case where a data value

of the whole determines something about its parts. For example, in the real world, if a

filing cabinet is composed of steel, then its drawers are probably composed of steel, too.

In general, we could opt to model drawers such that they are always composed of the

same material as their cabinets. We stress that within our part model, such an

arrangement would not represent a default, but rather a definitive modeling decision

requiring all drawers to obtain their material make-up from their filing cabinets.

The definition of the downward propagating relationship is analogous to that of its

upward propagating counterpart. The graphical symbol used is identical to that for the

upward propagation except that the prepended arrowhead points downward (Figure 2.10).

2.6.6 Single / multi-valued Part Relationships

The holonyms in a part relationship may have a single part from the meronymic class or

they may have many. To accommodate these situations, we introduce a number of single-

/multi-valued part relationships. The generic part symbol aptly expresses the single-

valuedness of this part relationship as it is a single-lined connection. The mnemonic here

is "single line equals single part." This is in contrast to the multi-valued part symbol

where a dual line is employed to convey multiplicity. The multi-valued relationship is

defined presently.

We note that according to our definitions the characteristics of exclusive/sharing

and single-/multi-valuedness are completely independent of each other and can be freely

mixed and matched to form such part relationships as the single-valued, shared; single-

valued, class exclusive; multi-valued, exclusive; etc. Because of this orthogonality, we

demonstrated the graphical symbols for the exclusive/shared variations without any

regard to single-/multi-valuedness. Likewise, in this section, we will illustrate the

graphical symbols without exclusiveness/sharing.

Pictorially, the range-restriction is shown as a numerical range alongside the dual

lined symbol of the multi-valued part relationship. Note that even though we are using

parentheses, the range is interpreted to include both endpoints. The upper or lower

bounds of a part relationship may be omitted for an "m or greater" or "0 to n"

interpretation. Graphically, a dash replaces the omitted bound.

2.7 Ownership Relationship

Ownership is a very important relationship in the business world. It is endowed with rich

semantics with respect to the owner and the property that i.s owned.. As used in the

corporate world, ownership can exhibit a hierarchical structure. For example, one

company can own other companies.

Because of its complexity, modeling ownership in the context of a database system

can be an extremely difficult task. In our model, we introduce an "ownership"

relationship model that can be integrated into an Object Oriented Database (OODB)

24

system. The use of this relationship greatly facilitates the problem of modeling real world

ownership and of enforcing its associated constraints.

2.7.1 Definition of Ownership

When we describe a state of "ownership", we must, in general, include the following

three features :

1. The owner,

2. the property that is owned, and

3. the characteristics of the relationships between the two.

According to Webster's Dictionary, ownership is defined as follows :

1. The state or fact of being an owner.

2. Proprietorship; Legal right of property; Legal or just claim or title (to something); in

law, the right to use for one's own advantage some property.

The owner referred to above can, by law, be a natural person, a corporation, or an

organization. The latter two are, in general, referred to as legal entities. Under the law,

legal entities are vested with certain powers, some of which are also held by natural

persons. Others, like the power to exist in perpetuity, are unique to legal entities. For

example, Jim as a natural person own his business. The Chrysler Corporation as a legal

entity owns Dodge.

Ownership of an item is often distributed among persons and legal entities. E.g.,

Jim and David together own a business, and a business bank account. Also, the Eagle

Corporation is a joint venture of Chrysler and Mitsubishi. We describe such a situation as

25

joint ownership. It is legitimate for a person and a company to jointly own a property.

The ownership need not be divided into equal portions. Stock holdings partition the

ownership of a public company into various percentages.

In law, property means rights which one has in anything subject to ownership,

whether it be mobile or immobile, tangible or intangible, visible or invisible. Ownership

is used synonymously with rights in property. Thus, a person is said to be the owner of a

property if he has certain rights in it. The term ownership is often used to indicate that

one has the "highest rights" in a property, but it may be used even when one does not

have all the rights ; thus, we say that a person is an owner of the house even though he

has rented it to a tenant who has exclusive rights to the use of the house during the term

of the lease.

A property can be classified as real, intellectual, or personal. A real property refers

to the rights that one has in land or things closely related to it. An intellectual property is

the rights held on an idea (e.g., the design of an invention) or a creative work (such as a

musical composition or a novel). For such property, the rights apply to a potentiality no

claim is made on any tangible item. Copyrights and patents are the ordinary forms of

intellectual property. Personal property encompasses everything that is not a real or

intellectual property. As an example, Jim's business resides in a building which is his real

property. One characteristic of the ownership relationship itself centers around the

existence of a legal document that verifies the owner's rights to a property. A copyright

owner, e.g., is granted a legal certificate giving him exclusive rights to possess, make,

publish, and sell copies of his intellectual productions, and to authorize others to do so. In

26

contrast, the owner of a household item does not have a legal document to support his

ownership, but he has the right to use it as he pleases. We call ownership of the former

kind documented and ownership of the latter kind undocumented. So, Jim's patent is

documented, while his ownership of a toaster oven is undocumented.

As a final distinction, some kinds of ownerships are acquired by operation of law, and we

call it a de jure ownership. While some others are not, and are called de facto ownership.

2.7.2 Ownership as an 00DB Semantic Relationship

2.7.2.1 Transactions and Inheritance: The most crucial aspects of ownership are the

constraints that it imposes on its related transactions such as sale and lease. Certain

transactions can be applied to specific kinds of ownership, while others cannot. For

example in the case of exclusive ownership, the owner can sell his belonging without

restriction (and thus the transaction "sale" can be applied freely), while for joint

ownership an owner can not sell the property without the consent of the other owners (so

the use of "sale" must be controlled). When a person has accepted an offer to sell his

house, he cannot accept another offer, even though he is still the owner, until that time

when the first offer becomes invalid. We call the ownership of this kind action-limited.

Similarly, when one has bought a stock option, the ownership of it may expire after a

certain period of time if it is not exercised. In this case, we say that the ownership is time

limited. Likewise, when one has an ownership of some property like a car or a house, it

cannot be sold without its proper documentation. Aside from the transactions, the

ownership relationship plays a vital role in more accurately modeling various application

27

domains via its inheritance mechanism, which allows values of certain attributes to be

propagated across it. Consider that to calculate Chrysler's profit for 1995, the profits of

Dodge. Plymouth. and Jeep must be added together. In such an example. a value

propagation between properties and owners is required.

From the above we see that to properly support transactions and inheritance with

respect to ownership. we need to explicitly model the different characteristics (which we

call the dimensions) of the ownership relationship. The investigation has revealed six

important dimensions.

2.7.3 Formal Definition of the Ownership Relationship

2.7.3.1 Exclusive Dimension: Ownership can be classified as exclusive or joint. In other

words. a property may be owned by one owner or jointly owned by several owners. The

formal definition for the exclusive ownership relationship follows :

Definition :

To represent this graphically, we add an X to the dotted arrow to denote eXelusive (See

Figure 2.11).

Figure 2.11: Ownership Relationships

Those ownership relationships which are not exclusive are referred to as joint, in

which case a property may be either jointly owned freely, i.e., there is no explicit

partition of the rights of the joint owners in the property (e.g., a joint bank account is

freely shared by a couple—we call this free joint), or jointly owned such that each owner

takes a certain percentage of the ownership (e.g., husband and wife each own 50 of their

house 	we call this percentage joint). We call the case where all owners have the same

percentage equal joint.

In our graphical notation, a plain dotted arrow indicates free joint. Percentage joint and

equal joint are denoted by labels of P and =, respectively (See Figure 2.11).

2.7.3.2 Value Propagation Dimension: There are times when a certain feature of a

property is naturally assimilated as a feature of its owner, or vice versa. E.g., the address

of a person may be modeled as the address of his house rather than as an intrinsic

attribute of the person. The value of address, rather than being duplicated, should be

stored solely with the house and propagated upward on demand. Address, in this sense, is

a derived attribute of person.

2.7.3.3 Additional Dimensions: The dependency dimension regulates the semantics of

deletion of ownership class A or property class B. It defines when deletion of one should

cause the deletion of the other. Ownership can be either documented, or undocumented.

Documented ownership always has a supporting legal document, while undocumented

ownership does not.

29

Some kinds of ownership are acquired "by operation of law," i.e.. through a formal legal

procedure. We call such ownership de jure. Others arc not, and are called de facto. These

are the values for the legality dimension. Ownership is often used to indicate the "highest

rights". but it may be used when one does not have all the rights. In other words,

ownership may be limited in some aspects. For example. if the owner of a house has

accepted an offer to sell that house to someone, then he cannot sell it to some other

person. even though he is still the owner, unless the offer becomes invalid. Combinations

of various ownership relationships appear in Figure 2.12.

Figure 2.12: Expansion of the Ownership Relationships

CHAPTER 3

THE ARCHITECTURE OF ObjectMaker

3.1 Components

ObjectMaker provides the following functional components.

3.1.1 Diagramming Tool

Diagramming tool provides support for building many types of notation, performs basic

syntax checking, derived diagram creation (e.g., subdiagram), and mapping semantics of

diagrams to the repository.

3.1.2 Repository Management

The ObjectMaker Repository is relational in its schema definition and storage

capabilities, but provides navigational access facilities in addition to the usual

mechanisms of sets and cursors. The schema consists of a variety of record types, with

two types of fields per record : text and link. The link fields provide the basic facility for

representing complex concepts and navigating among them.

3.1.3 View Management

The View mechanism provides access to repository information through display windows

that can be set to be in one of three modes : search, which allows specifying criteria for

30

31

selecting records to display (in a QBE-like way) ; table, which shows all selected records,

one per row; and form, which shows the fields of one record and allows records to be

added, deleted, or modified.

3.2 Levels of Functionality

3.2.1 Kernel

This layer is provided by Mark V as a set of executables, and should be considered

immutable. It provides the Extension Language interpreter, primitive predicates, the

drawing engine and the repository and view management facilities. It interacts with

Extension Language programs through primitives and callbacks.

3.2.2 Support Layer

This layer is provided as a set of Extension Language files (encrypted for the end user,

plain text for the TDK user). It provides higher-level support for defining and managing

operations for various methods and notations; in many cases, it provides a declarative

way to specify relations and transformations. The support layer is neutral with respect to

repository schemata, diagramming notations, and methods.

3.2.3 Schema Layer

The Extension Language files in this layer provide a specific schema for object storage,

schema-specific view definitions, and other schema-related information. It is possible for

users to interact with the tool entirely at the schema layer, independent of particular

methods. This layer is delivered with the Mark V standard schema, but may be tailored

by the TDK developer.

3.2.4 Method Layer

This layer contains Extension Language files that provide support for methods and their

associated notations, for creating and editing diagrams, generating repository information

from them, and supporting method-specific views of the resulting records.

3.3 Directories and Files

The Extension Language's files that are part of ObjectMaker are stored in the context

directory. Its useful for a developer to study them, both to see what facilities are available

in the various layers and as a source of Extension Language predicates to learn from.

3.4 The ObjectMaker Extension Language

3.4.1 What is the Extension Language

The Extension Language is a definition and programming language that specifies the

external behavior of ObjectMaker. It is used to define all layers of functionality above the

Kernel. It can also be used by the TDK developer to personalize ObjectMaker into a

special purpose tool, either using or replacing the layers supplied by Mark V. The

language is interpretive; the Kernel includes an interpreter for the language plus primitive

constructs to interface with the internal functionality of ObjectMaker.

33

3.4.2 Why Do We Need the Extension Language

Mark V has developed the Extension Language in order to allow ObjectMaker's behavior

to be defined and customized by Mark V and its customers. The Extension Language

allows users to customize ObjectMaker, and therefore adapt it to their work situations.

Additionally, the Extension Language predicates provide the capability for inter-tool

integration, allowing ObjectMaker to be operated by, and control the operation of, other

programs using the windows DDE and OLE protocols (capabilities for message passing

and coordinating applications' work on shared documents), UNIX's RPC mechanism, or

other platform-supported communication protocols. The Extension Language allows

users to specify the "binding" of keyboard and pointer inputs to language-driven actions.

3.4.3 What Can You Do with the Extension Language

With Extension Language predicates, you can customize ObjectMaker's interface, as well

as its behavior. For example, you can customize ObjectMaker's menu entries, and the

actions that are performed when these entries are selected. If you want a certain menu

item or a certain behavior when that menu item is selected you can modify the particular

rule that controls that aspect of ObjectMaker. You can also customize how ObjectMaker

retrieves information and displays it in diagrams, text, and code. If you want a certain

processing, routine performed when ObjectMaker accesses data from the underlying

semantic repository, or if you want to implement a certain pre- and post-conditions to

accessing data in forms and tables, or pre- and post- conditions to graphic editing, you

can modify the particular rules that control that aspect of ObjectMaker.

34

You can specify how an object on your diagram relates to entities in the semantic

repository. In Object Maker, each elementary diagram object is matched (by its shape, its

pen and other style flags) to rules that determine its semantic use. So, if you want to

modify the semantic behavior of an object on your diagram, you can modify the

particular rule that controls that aspect of ObjectMaker.

Additionally, for a complex object consisting of multiple shapes, a predicate could check

the objects in a given neighborhood.

You can specify what ObjectMaker should do when a view of part of the repository is

requested. View Generation for tabular information is accomplished by the forms and

table view facility, which is itself controlled by predicates. As a textual screen display is

being prepared, these predicates prepare a search specification (which specifies a set of

objects in the semantic repository to be viewed), a view specification (a definition of the

format and rules for the view's appearance and behavior), and default values to assign

newly created records. All of these actions may be customized.

3.5 Nature of the Language

The Extension Language is a rewrite language. This means that programs in the language

are texts containing references to stored definitions. In operation, a text is scanned (left to

right) for these references; when one is encountered, it is replaced by its definition. The

result of this operation is the completely scanned text. In the ObjectMaker Extension

Language, the stored definitions are called rules, and consists of two parts: a head which

is matched against references in the scanned text (called invocations), and a body or tail,

35

which is the text to be substituted for the invocation. The power of the language derives

from several features of this process

The invocations are not simple words to be substituted, but may contain parameters

thus allowing one rule to match many different invocations. The parameters may be

used in the body of the rule, thus allowing what gets substituted to vary, depending on

the parameters in the invocation.

Invocations may be nested, and will be replaced "inside out", thus, the result of an

invocation may become a parameter to another invocation.

The body of a rule may also contain invocations. When a body replaces an invocation,

scanning normally resumes from the beginning of the replacement, so that these

invocations will be seen and replaced in their turn.

Some invocations may refer to primitives, which are defined in the kernel rather than

as rules. They may turn replacement text and also produce side effects, such as

popping up a dialog box.

The kernel may initiate Extension Language processing under certain circumstances.

Depending, on the resulting test, certain actions may be taken.

36

3.5.1 Rules

3.5.1.1 Rule Head: A rule head consists of a pattern. For readability, and to avoid'

ambiguity in matching invocations, we use the convention that it should look similar to a

typical function or subroutine call in procedural languages : a name(italics) (which should

consist of alphanumeric characters plus dash, underscore or number sign (), character),

optionally followed by parameters in parantheses. Another reason for adhering to this

syntax is that, in the future, we may restrict the allowable syntax to permit efficient

compilation of the Extension Language. Again by convention, we refer to a set 'of rules

with the same name as predicates (italics).

Parameters may contain the following two patterns matched characters : "*" to

match any string, 	o match any one character. Parameters may be named; the syntax

for this is name = value. It is not necessary to explicitly represent parameter names in a

header.

3.5.1.2 Rule Body: The body of a rule contains a mixture of plain text, embedded

expressions, and parameter references. Expressions are strings delimited by angle

brackets and may be arbitrarily nested. An expression may have the form of a language-

defined expression, or may be an invocation (a reference to a rule). In the latter case, it

should have the same form as a rule head, except that its parameters will be taken

literally.

Parameter references request substitution of text from invocation parameters, and

take the form ref, where ref is either an integer n, requesting substitution of the nth

37

parameter, or a name, requesting substitution of the named parameter. If the invocation

does not contain at least n parameters, or a parameter with a given name, a null string is

substituted.

3.6 Implementing Support for a Methodology with ObjectMaker

In this section, we discuss the components that need to be created to provide support for

the methodology that we have discussed in this report: the diagramming notations,

repository definitions and view specifications that allow users to create and maintain

method-related data.

3.6.1 Menu Definition

The methods and notations supported by ObjectMaker are stored in directories under

context/methods. Each directory corresponds to a method; it contains a file with the

extension .mnu for each notation. By convention, this file contains only menu

specifications; syntax and semantic rules are stored in files with the same base name and

the extension .rul. The last file is needed when adding a new method is the file

method.cfg. It should be created in the method directory to describe the method and its

notations. This file consists of a single association list with method information and a

sublist giving information for each menu. It must have no comments or other extraneous

matter. Also, names and descriptive text must not contain any characters that might

confuse the Extension Language scanner, for example commas, angle brackets, or

unpaired parenthesis. Optional attributes may be omitted or may contain any information,

38

subject to the above restrictions Other named attributes may be added to the list for

descriptive purposes, and will be ignored. For the method .cfg file of OOdini 2.1 , see

Appendix A.

The next file that needs to be created is the .mnu f le. ObjectMaker menus consists

of the following components: a menu bar structure common to all diagram types, menu

items specific to individual diagram types, accelerator (shortcut) keys, and a palette

menu.

Most diagram notations supported by ObjectMaker will have the same items on the

top level menu bar: "File", "Edit", "View", "Insert", "Database", "Tools", "Window", and

"Help". However, most notations differ from each other in the definition of the supported

icons, the products that can be generated (such as code generation options), and possibly

others (such as type-specific toggles or palette menus). Accordingly, MarkV Systems has

provided an easy way to use the common menu definitions for the shared common menu

functions, and optionally the ability to add submenus for the type-specific items. Each of

the menus include a corresponding submenu of menu invocation that can be used to add

items for a particular notation.

The icons that represent a particular notation are mostly "localized" in the "Insert"

pull-down menu.

In addition, menu files may define a palette menu or shortcut accelerator keys for

some menu items, actions, etc. These key assignments appear in the declaration of the

menu items and as supplementary accelerator definitions. The palette definitions appear

as a separate definition in the menu file.

39

To show how menus and their items are defined, we'll begin with a simple example.

Every menu file will contain a pair of rules that define the "Insert" menu; the following is

part of the actual .mnu file for OOdini 2.1 that defines a sub-menu entry for a class under

the menu entry classes:

method menus ::= item (Insert, menu of icons,),. menu of icons = menu(

item(Classes„ menu(item (Class„ RECTANGLE(flags= solid,,, Class, Insert a class,

Insert),);

The first rule defines an item on the menu bar (it's invoked by the support layer rule

that defines the menu bar). If warranted, additional method-specific menus should be

added here.

"Menu" is a key-word enclosing a list of entries. The top level menu is the menu

bar; the second-level menus (sub-lists) are drop-down menu panels; lower-level menus

(sub-lists) are walking menus. Menus can be nested to a reasonable depth (certainly

deeper than good user interface principles would permit). In this example, "classes" will

appear on the menu with a right-pointing arrowhead. Selecting this item would reveal the

one-item nested menu item of Class.

The following is the format of defining a menu item:

item (prompt- left prompt-right, action, accelerator, status bar message 1, status

bar message 2, status bar message 3)

40

defines a menu item, in which prompt-left and prompt-right are the text Strings that

appear on the menu (left- and right-justified, respectively), the action defines what is to

be done when the item is selected, and the accelerator defines a keystroke combination to

be used to achieve the same effect as choosing the item from the menu. When an

accelerator is defined, a representation for it will appear on the right side of the menu

entry next to the prompt-right, if the later is present. The status bar messages will appear

on the status bar at the bottom of the screen to inform the user what type of item is

selected, what type of action is being performed on that item and what type of action is

being performed on the schema.

3.6.2 Diagram Syntax Checking

As described earlier in this report, there are several occasions when the support layer calls

appropriate predicates to check the user's drawing activities. The ".rul" file corresponding

to the notation's ".mnu" file contains the rules for checking he legality of diagramming

operations for the notation. We discuss here the predicates commonly provided for such

checks.

The basic predicate, icon type, is used in several contexts. It returns, for a given icon, a

"syntactic type" which is used in legality cheeks as well as in mapping icons to the

repository In its simplest form, it's a context free mapping from an icon's shape and style

to an expression that is defined. A more complex form takes a handle to the icon, which

may be used to navigate around its neighborhood in the diagram when the type can't be

41

determined from the shape and style alone 	a box may be of a different type

depending on whether it's nested in another or is at the top level).

For example, here are a couple of definitions corresponding to the 00dini methodology

from the 00dini 2.1 .rul file:

icon_type(rectangle, solid) :: =regular_class; icon_type(rectangle, thick_skt *_0),

icon_type(arc, solid, arrow_none, arrow_one, arrow):: =regular_ relationship;

icon type (arc, solid, arrow_ none, arrow none, arrow_ double)

• • --dependent _relationship:

icon_t ype(arc, solid double, arrow_none, arrow_none, arrow

multi_value_relationship;

icon_ type(arc,solid_ double, arrow_ none, arrow none, arrow o

my essential relationship;

icon_type(arc, solid-double, arrow-none, arrow-none, arrow-double)

::=my_dependentezelationship:

The "style" for an arc is actually four parameters: pen style (solid in the example)

followed by the "decorations"at the tail, middle, and head of the arc.

The predicate arc_check is called twice during the drawing of an arc from one node

to another: once when starting the arc, to see if it is legal to begin an arc at the "from"

node, and once at the finish of the operation, to see if an arc can terminate at the "to"

node. An example :

42

arc check(regular_class, regular *)...-= regular_ class,-

arc check(regular_class,essential_relationship) =regular_class/set class;

The parameters and tail of an arc_check are icon_types (or patterns matching

them); the first example rule may be read "an arc of regular type (i.e. one whose

icon_type begins with regular) may begin and end at a regular class". The tail of the

second rule is an example of an "or" pattern; the meaning, here that an essential

relationship may end either at a regular class or a set class.

The node_parent predicate is called when a node is created or moved inside another

the set class in the OOdini methodology). It has the form:

node_parent (child-type, parent-type) .n.onestin

where nesting may be a socket, nested_orsocket, or a nested. These values tell whether

the child icon can be nested (float freely within the parent socketed (be restricted to the

border of the parent) or either.

CHAPTER 4

OODINI 2 SPECIFICATIONS

OODINI 2.1 was designed to be an interactive tool to manipulate graphical schemata

discussed in Chapter 2.

The following features were to be supported by the tool.

OODINI 2.1 should be a constraint based graphical editor specifically designed for

the representation discussed in Chapter 2. By constraint based we mean that the

integrity of the schema representations should always be maintained. E.g. Consider a

relationship emanating from a class and left dangling, that is, left unattached at its

other end. Clearly such a construction is meaningless. So, during input OODINI 2.1

will mark such a diagram as an anchor on the dangling end. This representation will

alert the user that the diagram is not drawn properly. Moreover if at a later time one

of the classes moves, the relationship is automatically moved relative to it.

OODINI 2.1 will manage a large drawing canvas, allowing the designer to create very

large schemata. This is a very important characteristic of the system since OODBs

typically comprise many hundreds of classes. Scrollbars should be provided to allow

the user to reposition the current working window (in the ordinary graphics sense) of

the canvas.

The tool should be able to generate relevant C++ code for any schema represented by it.

The code generated need not be complete in all respects in a way that it can be

43

44

compiled but it should have all relevant classes, each with its attributes and methods

supported by it. The code should also incorporate all relationships between these

classes which are represented in the schema. The user may need to integrate the code

before compiling. The classes should be in the orthodox canonical class form. This

means that the concrete data types follow a specific form using class members to

augment the C++ compiler's type system so the compiler can generate efficient and

safe code for arbitrarily complex abstractions.

Presented the source code the tool should reverse engineer the input to regenerate the

schema which would result in generation of the code.

	 Since it is mandatory for the tool to support all icons used by the OODINI

representation to represent the various classes, relationships and methods. It would be

very convenient for the user if he/she is provided with a toolbar which displays the

various icons supported by the OODINI methodology. Without such a facility the

user would have to go through several sub-menus before he/she can get to the desired

item.

A path method is a sequence of relationships which enable us to retrieve or update

distant information. The OODINI icon for path method is a broken line thin arrow

from the source class to the target class. The structure of the path method consists of

a sequence of relationships starting at the source class and ending at the target class.

The tool should have an option of clicking on a path method icon to highlight the

corresponding path of relationships.

45

A path method can be sequence of relationships ending with an attribute. In such

cases we want the path method icon to point to the drawer containing this attribute (in

which case the icon for a class will have a chest of drawers to represent the attributes).

In the drawer representation of a class a circle drawn alongside the attribute qualifies

it as essential.

CHAPTER 5

PHASE 1 OF OODINI 2.0 : A REVIEW

In phase1 OODINI2.0 was essentially built to support as many icons as there could be

using the TDK extension language of ObjectMaker. Since the older versions of TDK did

not support the concept of user-defined icons nor the concept of "writing from rules",

was impossible for this version of OODINI to support most of the icons including those

of set class and the tuple class.

This phase essentially concentrated on putting schema validating rules in place. A

very important requirement was that of the set class which was supposed to be "socketed"

to its corresponding class. This was implemented using the skt __outside option. The

code which supported this feature is as follows :

oml => item (Class „ RECTANGLE (flags => solid, code=> prop concept ec<\73)„

Class, Insert a class, Insert),

om2 => item (Set Class „ BITMAP ICON (image => set, flags=>(skt_outside), code

=> prop concept ecd<\73>)„ Set Class , Insert a set class , Insert

Another important concept which was put in place was the relationship validation. Each

relationship made sense only when associating two valid items. E.g. A multivalued

46

47

relationship makes sense only between two regular classes and is nonsense when relating

a regular class with a set class and vice versa. Such validation rules are present in the

".rul" file. The synatx for this is as follows

ec = regular class

icon_type (rectangle, solid) 	ec;

ecra = multivalued relationship

icon_type(arc, solid, arrow_none, arrow_none, arrow_o) = ecra2;

ecra2 is a valid arc between ec and ec

arc check (ec, ecra2) : = ec;

CHAPTER 6

PHASE 2 DIFFICULTIES DUE TO TDK PREVIOUS RELEASE

The main limitation in the TDK used during the development of OODINI 2 was the non-

availability of desired icons and ardornments as specified by the OODINI graphical

schema representation. This led to alternative representations and in a few cases the icon

was just not supported.

Main among these limitations was the non-availability of the double framed icon.

Because of this a set class could not be represented. A set class is represented by a

double framed rectangle as shown in figure 2.3

The TDK provided very little support when it came to adornments. Although the

TDK allowed every relationship to have at most 3 adornments : one each at the head,

middle and tail, the adornments could only be one from the set of adornments already

supported by the TDK adornment library. One cannot design his own adornment. This

makes it impossible to represent relationships such as the percentage joint relationship

which needs to have a percentage sign as an adornment. In certain cases such as that of

the documented relationship one needed a rectangle as an adornment on the relationship.

Although both the rectangle and a regular relationship are supported by the ObjectMaker

TDK, it still can't be used. This is because ObjectMaker does not provide any way in

which we can group both these concepts(the rectangle and a regular relationship)

together.

48

49

All icons that need to represent part whole relationships have a diamond shaped

head. The TDK only supports regular arrow heads (those with " at the head). This

made it impossible to represent any of the part whole relationships.

Besides, in cases such as the tuple class (see figure 2.4) we require an entirely

unsupported icon. The tuple class is represented by a rectangle with a small triangle

attached to its bottom width. Since such icons are not supported the tuple class was not

supported by OODINI 2.0.

Many of OODINI 2.0s' enhancements seem difficult because of the inability of the

TDK to provide a way by which a developer can design icons in any desired manner. An

example of such a requirement could be the regular class which needs to be designed as a

set of drawers to hold individual attributes. This is required to model path methods

which end in an attribute. This feature was impossible to implement in OODINI 2.0

because of a lack of TDK support. Besides, even if such a regular class was

diagrammatically possible, ObjectMaker did not have rules strong enough in their

specification to allow such a feature. By not having such rules to govern the feature, the

tool cannot validate user design. i.e. it might allow other relationships to be associated

with an attribute instead of the class.

CHAPTER 7

IMPROVEMENTS IN TDK 4.0 AND NEW OPTIONS OF OODINI 2.0

The most important of the improvements made to the TDK was the support to rules. This

has been reflected in the latest release of TDK version 4.0. With the ability to program

using rules allows the user to implement icons according to their requirement. When

written using rules, each of these icons are treated as if they were like any other supported

icon. This makes writing rules to validate the semantics of the schema very trivial.

7.1 General Draw Icons

Icons can now be of type "ICON", which requires a parameter "image" (e.g., ICON(

image=>a-variable-name)), where the variable-name is either of type BITMAP or

DRAWING. Types can be changed at run time by the diagram technique (substituting

bitmaps or drawings, animating them, etc).

Bitmaps are loaded by declaring them in a rules file such as !bitmap

name-of-variable ::= Jule-name;

Drawings are loaded by !drawing name-of-variable ::= drawing-spec; or at run-time by

variable ::= <!drawing(drawing-spec)>. There are three types of drawings, a

DRAWN_ICON, DRAWN_ROTATBLE_ICON, and a DRAWN_DATAFLOW. The

50

51

dataflow is presented by an arc, as with other dataflows, whereas the drawn icon is owned

by the diagram canvas or another node.

The drawing begins with the pen in the default node color, the style default

(whatever thickness is specifies on creation or by dialog), all lines hit (for socket and line

interception).

7.1.1 Bitmap Icons

Bitmap icons are monochrome or color bitmaps, which can are scalable icons. They are

specified in extension language files, such as ".mnu" files for a methodology.

To specify a bitmap in a loaded extension language file :

!bitmap name ::= file-path-of-.bmp-file;

7.1.2 General Icons

General icons are drawings consisting of line and arc segments, plus optionally

participating bitmaps. They are specified in extension languages files, such as ".mnu"

files for a methodology, or at run time.

To specify in a loaded extension languages file:

!drawing name ::= (drawing elements);

or to specify at run time

<name::=<!drawing(drawing elements)>>

52

The drawing assumes there are pen-drawn lines, and that when the pen is down a

line can be "hit". To be hit means that an arrow will terminate when reaching the closest

outermost hittable line. A line which can be hit also can hold a socket (including line

anchors)

Drawings are by default rotatable and scalable when drawn. The drawing begins

with the pen in the default node color, the style default (whatever thickness is specified

on creation or by dialog), all lines can be hit (for socket and line interception).

7.2 Extension Language Support

TDK 4.0 has another feature that allows the user to have unsupported adornments at the

head or tail of the icon. The script that supports this feature is

omb ::= item (, ARC (....„ 	, head image => head, tail_image => tail

where both head and tail are defined using the rules as

!bitmap head

and

!bitmap tail

The advantage of using this method is that besides getting a user-defined icon one

can write rules to validate the use of such an icon. Rules to govern these icons are

exactly the same as those for normal arcs.

CHAPTER 8

OPEN DEVELOPMENT PROBLEMS AND DIFFICULTIES

8.1 Adornment Shortcomings

Although ObjectMaker allows the user to customize new icons according to our needs, it

still leaves certain issues and aspects untouched. One of these is the fact that a certain

icon might need an adornment in the middle of the icon body .e.g. Consider a part-whole

relationship :- class exclusive essential . It has a graphical representation which is as

shown in Figure 8.1

Figure 8.1: Class Exclusive Essential Relationship

This icon can only be obtained by writing from rules (since none of the adornments

needed for the icon are supported directly by ObjectMaker). But even writing from rules

doesn't support adornments at the middle of the icon. It only supports adornments at the

head and tail of the icon.

This problem surfaces for every icon which has two or more adornments.

54

55

8.2 Code Generation

This section deals with the feature of code generation which is considered very important

for any tool used to model object-oriented systems. Without this feature the tool remains

as a mere 'schema viewing' tool.

The issue of code generation is a broad subject. It can be better dealt by

subdividing the topic of discussion into two sections

I. code generation from schema diagrams

2. reverse engineering code to generate the schema diagram.

8.2.1 Code Generation from Schema Diagrams

Object-oriented systems use one or more methodologies to represent their schema. Each

methodology has its own interpretation for different icons and relationships. More than

often a user designs a system also needs to code the design. C++, SmallTalk are a few of

the popular languages used to code such object-oriented models. A tool which only

supports schema drawing just validates user design but does not assist the users in any

way when it comes to implementation of the design.

The code generation feature is getting increasingly popular with designing tools.

The user has a clear advantage with such packages that the software generates code for

the design. It should be noted that the code which is generated can not in any respect be

classified as complete. It would in most cases be individual objects which the user may

have to integrate and patch up before this code can be compiled and be used.

ObjectMaker supports code generation only for the Booch Methodology.

56

8.2.2 Reverse Engineering Code to Generate the Schema Diagram

Reverse engineering is the process of examining a program's source code to recover

information about its schema design. To reverse engineer a program:

I . You analyze source files containing C++ code.

2. You direct the software package to export design information extracted from the

source code.

3. You use the tool to view and manipulate the reverse-engineered model file directly.

This feature, that of reverse engineering the code to generate the diagram, is very

powerful when it comes to redesigning object-oriented systems that have only code

available.

This feature is not supported by ObjectMaker.

APPENDIX A

METHOD.CFG

name=>OOdini2Icon ,

desc=>,
date=>,
author=>,
name=>OOdini2 ,

menus=>(

(name=>NJIT,
desc=>,
date=>,
author=>,
file=>ood2.mnu

57

APPENDIX B

THE RULE FILE

ood2 _ rule version ::= 1.0.alpha; _

--OBJECTS
- ec= regular class,
-- ecd= set class
- ect= tuple class

icon_type(rectangle,solid)::=ec;
icon type(rectangle,thick_skt_*_0%)::=ecd;
node_parent(ecd,ec)::=socket;

RELATIONSHIPS
ecra0=regular
ecral—Multi-value
ecra2=Essential
ecra3=MV Essential
ecra4=Dependent
ecra5=MV Dependent
ecra6=Essential Dependent
ecra7=MV Essential Dependent

icon_type(arc,solid,arrow_drawn,arrow_drawn,arrow_drawn)::=ecra0;
icon_type(arc,solid,arrow_none,arrow_none,arrow_o)::=ecra2;
icon_type(arc,solid,arrow_none,arrow_none,arrow_double)::=ecra4;
icon_type(arc,soliddouble,arrow_none,arrow_none,arrow)::=ecra
icon_type(arc,solid_double,arrow_none,arrow_none,arrow_o)::=ecra3;
icon type(arc,solid_double,arrow_none,arrow_none,arrow_double)::=ecra5;
icon_type(arc,solicl,arrow_none,arrow_none,arrow_double)::=ecra6;
icon_type(arc,solid_double,arrownone,arrow_none,arrow_double)::=ecra7;

- scra0=Subclass
-- scra 1 	Role-of

icon_type(arc,thicicarrow_none,arrow_none,arrow)::=scra0;
icon_type(arc,(dash_dot,thick),arrow_none,arrow_none,arrow)::=scra I;

58

--Part-Of
--pcra0--Generic

pcra 1 =Essential
- pera2=Class Exclusive,

pera3=Global Exclusive
- pcra4=Multi-Value
- pera5—Essential MV
- pcra6=Class Exclusive MV
- pcra7=Global Exclusive MV

icon_type(arc,dash,arrow_none,arrow_none,an-ow_diamond)::=pcra0;
icon_type(arc,dash,o_empty,arrow_none,arrow_diamond)::=pcra 1;
icon_type(arc,dash,arrow_full_x,arrow_none,arrow_diamond)::-Vcra3;

icon type(arc,dash,arrow_square_fill,arrow_none,arrow_diamond)::----pera2;
icon_type(arc,dash,arrow_none,cross_double,arrow_diamond)::=pcra4;
icon_type(arc,dash,o_empty,cross double,arrow_diamond)::=pcra5;
icon type(arc,dash,arrow square fill ,cross double,arrow diamond): :pcra6;
icon_type(arc,dash,arrow_full_x,cross double,arrow_diamond)::=pera7;
icon_type(arc,dash,o_empty,cross,arrow_diamond)::=pcra8;

--Ownership
- op0=Regular
- opl =Equal Joint
- op2=Documented

op3=Exclusive
- op4=Percentage Joint

op5=Equal Joint Documented
- op6=Exclusive Documented
- op7=Dependent

op8=Equal Joint Dependent
- op9=Exclusive Dependent

icon_type(arc,dotarrow_none,arrow_none,arrow)::=op0;
icon_type(arc,dot,arrow_none,cross_doub1e,arrow)::=op 1;
icon_type(arc,dotarrow_none,arrow_square,arrow)::=op2;
icon_type(arc,dotarrow_full_x,arrow_none,arrow)::---op3;
icon type(arc,dotarrow_none,arrow_square,arrow)11—op4;
icon_type(arc,dot,arrow_none,an-ow_square,arrow)::—op5;
icon_type(arc,dotarrow_none,arrow_square,arrow)::=op6;
icon_type(arc,dot,arrow_none,arrow square,arrow)::--op7;
icon_type(arc,dotarrow_none,arrow_square,arro w): :=op 8;
icon_type(arc,dot,arrow_none,arrow_square,arrow)::=op9;

59

--Path Methods
pm0=path method

-- pm 1 =Attribute Path Method

tcon_type(arc,dash,arrow_none,arrow_none,arrow)::=pm0;
icon_type(arc,dash,arrowsquare,arrow_none,arrow)::=pm1;

-- Various Arc checks

arc check(ec,ecra*)::=eciecd;
arc_check(ecd,ecra*).•=eclecci;
arc check(ect,ecra*) -= ectiec;

arc check(ec,pera*)::=eclecd;
arc check(ecd,pera*)—eciecd;

arc_check(ec,scra*)::=ec ecd;
arc check(ecd,scra*)::=ec ecd;

arc check(ec,pm*)::=eclecd;
arc_check(ecd,pm*)::=ecjecd;

arc check(ec,op*)::=ec ecd;
arc_check(ecd,op*)::=eclecd;

60

dataflow_parent(ecrpp,ecra*) ::= ok;

APPENDLX C

THE MENU FILE

ood2_menu_version ::= 1.1.alpha;
!preexecute <bmpdir:=<CommonDir><dirsep>bitmaps<filesep>>;

--****THESE .BMP FILES CAN BE EDITED USING PAINTBRUSH****

!bitmap mbomshp 	<MenuDir><dirsep>ood2shp.bmp;
!bitmap mbomagg ::= <MenuDir><dirsep>ood2shp2.bmp;
!bitmap mbom gen 	<IvIenuDir><dirsep>ood2shp3.bmp;
!bitmap mbombina ::= <MenuDir><dirsep>ood2shp4.bmp;
!bitmap mbown ::= <MenuDir><dirsep>own.bmp;
!bitmap mbprwh I ::= <MenuDir><dirsep>parwh I .bmp;
!bitmap mbprwh2 ::= <MenuDir><dirsep>parwh2.bmp;
Ibitmap mbgeneric ::= <BmpDir>generics.bmp;

-- Arcs for Ownerships...begin

!drawing percs ::= (
PenStyle(solid),
MoveTo(-8,8),
LineTo(16,16),
MoveTo(-8,-8),
MoveTo(-5,6),
LineTo(1,-1),

MoveTo(-1,I),
MoveTo(5,-6),
MoveTo(5,-6),
LineTo(-1,I),

!drawing rarrs ::= (
PenStyle(solid),
MoveTo(0,4),
LineTo(8,8),
MoveTo(-8,-8),
LineTo(-8,8),

);

--End Ownership Are icons

-- Set class Icon

!drawing set ::= (
PenStyle(stop_rotate),

PenStyle(solid_double),
MoveTo(20,20),
LineTo(0,-40),
LineTo(-80,0),
LineTo(0,40),

LineTo(80,0),

);

Tuple Class Icon

!drawing tup ::= (
PenStyle(stop_rotate),

PenStyle(solid_double),
MoveTo(20,20),
LineTo(0,-40),
LineTo(-80,0),
LineTo(0,40),

LineTo(80,0),
MoveTo(-50, -4
LineTo(10,10),
LineTo(10,-10),

);

-- use compound label edit

menu of label ::= menu(
item(&New„ 	extl(comp_label_edit), immed act L),
item(&Edit„ 	extl(comp_label_edit), immed act L),
item(Re¢er„ 	LABEL CENTER,),
itern(8zGrab„ 	LABEL POSITION,),
item(&Flush Left_ LABEL JUSTIFICATION,),
accl(„ 	CLOSE EDIT, ESCAPE),
<submenu(label)>

62

--****THIS IS WHERE THE LABELS ARE DEFINED FOR EACH NODE OR
ARC****

dispatch_edit(ec) ::=
<putup label("Class Definition",(Name,Attributes,Operations))>;

dispatch_edit(ecd) ::=
<putup_label("Set Class Definition",(Name,Attributes,Operations))>;

dispatch_edit(ect) ::=
<putup_label("Tuple Class Definition",(Name,Attr butes,Operations))>;

dispatch_edit(ecra0) ::=
<putup_label("Regular",(Name))>;

dispatch_edit(ecral) ::=
<putup_label("Multi-value",(Name))>;
dispatch_edit(ecra2) :
<putup_laberEssential",(Name))>;

dispatch_edit(ecra3) ::=
<putup_label("MV Essential",(Name))>;

dispatch_edit(ecra4) ::=
<putup_label("Dependent",(Narne))>;

dispatch_edit(ecra5) ::=
<putup_label("MV Dependent",(Name))>;

dispatch_edit(ecra6) ::=
<putup_label("Essential Dependent", (Name))>;

dispatch_edit(ecra7) ::=
<putup_label("MV Essential Dependent", (Name))>;

dispatch_edit(scra0) ::=
<putup_label("Subclass",(Name))>;

dispatch_edit(scra 1) ::=
<putup_label("Role-of",(Name))>;

dispatch_edit(ecrpp) ::=
<putup_label("Propagate",(Name))>;

dispatch_edit(pcra0) ::=
<putup_label("Generic",(Name))>;
dispatch edit(pcral) ::=
<putup_laberEssential",(Name))>;

dispatch_edit(pcra2) ::=
<putup_label("Class Exclusive",(Name))>;

dispatch_edit(pera3) ::=
<putup_label("Global Exclusive",(Name))>;

dispatch_edit(pera4) ::=
<putup_label("Multi-value",(Name))›;

63

dispatch_edit(pcra5) ::=-
<putup_laber Essential MV",(Name))>;

dispatch_edit(pcra6) ::=
<putup_label('Class Exclusive MV",(Name))>;

dispatch_edit(pcra7) ::—
<putup_label("Global Exclusive MV",(Name))>,

dispatch_edit(pera8) ::=
<putup_label("Exclusive Essential",(Name))>;

dispatch_edit(op0) ::=
<putup_label("Regular",(Name))>;

di spatch_edit(op I) ::—
<putup_label("Equal Joint",(Name))>;

dispatch_edit(op2) ::=
<putup_label("Documented",(Name))>;

dispatch_edit(op3) ::=
<putup_label("Exclusive",(Name))>;

dispatch_edit(op4) ::=
<putup_label("Percentage Joint",(Name))>;

dispatch_edit(op5) ::=
<putup_label("Equal Joint Documented",(Name))>;

dispatch_edit(op6)
<putup_label("Excl usive Documented",(Name))>;

dispatch_edit(op7) ::—
<putup_label('Dependent",(Name))>;

dispatch_edit(op8)
<putup_label("Equal Joint Dependent ,(Name))>;

dispatch_edit(op9) ::=
<putup_label("Exclusive Dependent'',(Na e))>;

dispatch_edit(pm0) ::=
<putup_label("Path Method'',(Name))>

dispatch_edit(pm I) ::=
<putup_laberAttribute Path Method,(Name))>;

-- for snip code generation

menu_of_codegen ::=menu(<subomaux>);

method_menus ::= item(&Insert„<menu_of icons>
method_has_toolbar ::= yes;
method toolbar extension

separator,
separator,
drag_anywhere,

64

65

bmpitern(stdimage'25,classes/generics,SHOW_CONTROL(palette=>classes/generics)„C
asses/Generics,"Classes/Generics palette","menu: tools"),

drag_anywhere,

bmpitem(stdimage'26,relationships/methods,SHOW_CONTROL(palette=>relationships/
methods)„Relationships/Methods,"Relationships palette"),

drag anywhere,

bmpitem(stdimage'26,ownership,SHOW_CONTROL(palette=>ownership)„Ownership
Relationships,"Ownership Relationships palette"),

drag_anywhere,
ette=>part_ot)„Part_of ,Part_

Relatioships,"Part_of Relationships palette"),

method palettes :=
disable,
classes/enerics=>palette(

title=>"cl asses/generics",
columns=>3,
width=>30,height=>20,
bmpitern(mbomshp'1„use(om1)),
bmpitem(mbomshp'2„use(om2)),
bmpitem(mbown'10„use(ot 1)),
bmpitem(mbgeneric1 1„use(gen I)),
bmpitem(mbgeneric'2„use(gen2)),

),
disable,
relationships/methods=>palette(

title=>"relationships/methods",
col umns=>3,
width=>30,height=>20,

bmpitem(mbombina'1„use(omb 1)),
bmpitem(mbombinar2„use(omb2)),
bmpitem(mbombina'3„use(omb3)),

bmpitem(mbombina'4„use(omb4)),
bmpitem(mbombina'5„use(omb5)),
bmpitem(mbombina'6„use(omb6)),
bmpitem(mbombina'7„use(omb7)),
bmpitem(mbombina'8„use(omb8)),
bmpitem(mbombina`15„use(om4)),
bmpitem(mbombina'16„use(om3)),
bmpitem(mbown' I 5„use(omb17)),

66

bmpitem(mbown1 16„use(omb19)),
),

disable,
ownership=> palette(

title=>"ownership",
eolumns=>3,
width=>30,height=>20,

bmpitem(mbomgen'l„use(orn5)),
bmpitem(mbomgen'2„use(om6)),
bmpitem(mbomgen'3„use(om7)),
bmpitem(mbown'1„use(om8)),

bmpitem(mbown'2„use(om9)),
bmpitem(mbown'3„use(om 10)),

bmpitem(mbown'4„use(om12)),
bmpitern(mbown'5„use(oml 1)),

bmpitem(mbown7„use(om14)),
bmpitem(mbown'9„use(om13)),

),
disable,

part_of=>palette(
title=>"part_of",

columns=>3,
width=>30,hei2ht=>20,

bmpitem(mbomagg'1„use(omb9)),
bmpitem(mbomagg'2„use(omb10)),
bmpitem(mbornagg'3„use(omb11)),
bmpitem(mboma2g4„use(omb12)),
bmpitem(mbomagg'5„use(omb13)),
bmpitem(mbomagg'6„use(omb14)),
bmpitem(mbornagg'7„use(ornb15)),
brnpitem(mbomagg'8„use(omb 16)),
bmpitem(mbprwh2'1„use(omb20)),
bmpitem(mbombina'18„use(omb18)),

);

<xa(NEW NODE(icon=>rectangle,flags=>(thick,skt_straddle),parent=><pParent1D>,co
de=>"prop concept ecoval,", width=>4,xpos=>20, ypos=>32,flags=>sktstraddle))>

<xa(NEW NODE(icon=>anchor,flags=>(thick,skt straddle),parent=><pParentID>,code
--->"prop concept ecoval;'', width=>4,xpos=>10, ypos=>20,flags=>sktstraddle))>

<xa(NEW NODE(icon=>rectangle,flags=>(thick,sict_straddle),parent=><pParentiD>,co
de=>"prop concept ecoval;", width=>4,xpos=>50, ypos=>20,flags=>sktstraddle))>

men u_of_icons ::= menu

item(Classes„ menu(
om 1 =>item(Class„ 	RECTANGLE(flags=>solid,code=>prop concept

ec<\73>)„Class,Insert a class,Insert),

om2=>item(Set Class„ BITMAP_ICON(image—>set, flags=>(skt_outside),
code=>prop concept ecd<V73>)„ Set Class, Insert a Set Class, Insert),

ot1=>item(Tuple Class„ 	BITMAP_ICON(image=>tup,
location=>NODELBLINSfDE,code_>prop concept ect<\73>)„Tuple Class, Insert a Set

Class,Insert)
))

separator,
item(Relationship„menu

ornb =>item(Regular„ARC(head=>ARROW,tail—>ARROW_NONE,code=>prop
concept ecra0<\73>)„Regular, Insert a Regular Relationship,Drawing arrows),

omb2=>itern(Multi-valued,
,ARC(flags=>SOLID_DOUBLE,head=>ARROW,tail=>ARROW_NONE,code=>prop
concept ecral<\73>)„Ivlulti-Value, Insert a Multi-Value Relationship,Drawing arrows)

omb3=> item(Essential,
,ARC(bead=>ARROW_O,tail—>ARROWNONE,code_>prop concept
ecra2<\73>)„Essential, Insert a Essential Relationship,Drawing arrows),

omb4=> item(MV Essential,
,ARC(flags—>SOLID DOUBLE,head—>ARROW_O,tail—>ARROW_NONE,code=>prop
concept ecra3<\73>)„MV Essential, Insert a MV Essential Relationship,Drawing
arrows),

omb5=> item(Dependent,
,ARC(head=>ARROW_DOUBLE,tail=>ARROW_NONE,code=>prop concept
ecra4<\73>)„Dependent, Insert a Dependent Relationship,Drawing arrows),

omb6=> item(MV Dependent,
,ARC(fla2s—>SOLID_DOUBLE,head—>ARROW_DOUBLE,tail—>ARROW_NONE,cod
e=>prop concept ecra5<\73>)„MV Dependent, Insert a MV Dependent
Relationship,Drawing arrows),

67

omb17=> item(Essential Dependent, Arc(flags—>SOLID,
head=>ARROW _ DOUBLE_O, tail=>ARROW NONE, code—>prop concept
ecra6<\73>)„ Essential Dependent, Insert an Essential Depenedent Relationship,
Drawing arrows),

omb19=> item(MV Essential Dependent, Arc(flags=>SOLID_DOUB
head=>ARROW DOUBLE_O, tail=>ARROW NONE, code=>prop concept

ecra7<\73>)„ MV Essential Dependent, Insert an MV Essential Depenedent
Relationship, Drawing arrows),

separator,
item(Pathlvlethods„menu(

om3=>item(Path Method„
ARC(flags=>DASH,head=>ARROW,tail=>ARROW NONE,code=prop concept

pm0<\73>)„Path Method, Insert a Path Method, Drawing arrows),

om4=>item(Attribute Path Method„
ARC(flags=>DASH,head=>ARROW SQUARE,tail=>ARROW_NONE,code=prop

concept pm1<\73>)„Attribute Path Method, Insert a Path Method, Drawing arrows)

separator,
item(Ownership„menu(

om5—>item(Reaular„
ARC(flays-->dot,head—>ARROW,tail=>ARROW_NONE,code—prop concept
op0<\73>)„Regular Ownership, Insert an Ownership, Drawing arrows),

om6=>item(Equal Joint„
ARC(flags_>dot,head_>ARROW,middle=>CROSS_DOUBLE,tail=>ARR.OW_NONE,c
ode—prop concept op I <\73>)„Equal Joint Ownership, Insert an Equal Joint Ownership,
Drawing arrows),

om7—>item(Documented„
ARC(flaas_>dot,head—>ARROW,tail=>ARROW_SQUARE,codo=prop concept
op2<\73>)„Documented Ownership, Insert a Documented Ownership, Drawing arrows),

orn8=>item(Excl us i ve„
ARC(flags=>dot,head=>ARROW,tail_>ARROW_FULL_X,code=prop concept
op3<\73>)„Exclusive Ownership, Insert an Ownership, Drawing arrows),

68

69

om9=>item(Percentege Joint„ ARC(flags=>dot, head=>arrow_drawn,
head_image=>rarrs, tail=>arrow_drawn, tail_image=>percs, code=>prop concept
op4<\73>), immed mth H, Percentage Joint Relationship, Insert an percentage joint
relationship, drawing arrows),

om I 0=>itern(Equal Joint Documented„ ARC(flags=>dot,head=>ARROW,
middle=>cross_double, tail-->ARROW_SQUARE,code=prop concept op5<\73>)„Equal

Joint Documented Ownership, Insert a Equal Joint Documented Ownership, Drawing
arrows),

omll=>itern(Exclusive Documented, ARC(flags=>dot,head=>ARROW,
middle=>cross, tail_>ARROW_SQUARE,code=prop concept op6<\73>)„Exclusive
Documented Ownership, Insert a Exclusive Documented Ownership, Drawing arrows),

om12=>item(Dependent„ ARC(flags=>dot, head=>arrow_drawn,
head_image-->rarrs, tail_>arrow_drawn, tail_image—>rarrs code=>prop concept
op7<\73>), immed mth H, Dependent Relationship, Insert a Dependent relationship,
drawing arrows),

om13=>item(Equal Joint Dependent„ ARC(flags=>dot, head=>arrow_drawn,
head image—>rarrs, middle=>cross_double, tail=>arrow_drawn, tail_image=>rarrs
code=>prop concept op8<\73>), immed mth H, Equal Joint Dependent Relationship,
Insert a Equal Joint Dependent relationship, drawing arrows),

oml4=>item(Exclusive Dependent„ ARC(flags=>dot, head=>arrow_drawn,
head_image=>rarrs, middle=>cross, tail-->arrow_drawn, tail_image=>rarrs code=>prop
concept op9<\73>), immed mth H, Exclusive Dependent Relationship, Insert a Exclusive
Dependent relationship, drawing arrows)

)5),
separator,

item(Specialization„menu(

omb7=>item(Subclass,
,ARC(flags=>THICK,head=>ARROW,tail=>ARROW_NONE,code—>prop concept
scra0<\73>)„Subclass, Insert a Subclass Reltionship,Drawing arrows),

omb8=>item(Role-of,
,ARC(flags=>(DASH_DOT),head--->ARROW,tail=>ARROW_NONE,code=>prop
concept scral.<\73>)„ Role-of, Insert a Role-of Relationship,Drawing arrows)

),),
separator,

70

item(Part-of,menu(

omb9=>item(Generic„ARC(flags=>DASH,head=>ARROW_DIANiOND,tail=>A
RROW NONE,code=>prop concept peraO<\73>)„Generic,Insert a Generic
Relation,Drawing arrows),

omb I 0=>itern(Essential„ARC(flags=>DASH,head=>ARROW_DIAMOND,tail
=>0 EMPTY,code=>prop concept peral<\73>)„ Essential, Insert an Essential Relation,

Drawing arrows),

omb 1 1=>item(Class
Exclusive„ARC(flags=>DASH,head=>ARROW_DIAMOND,tail=>ARROW_SQUARE
PILL, code—>prop concept pera2<\73>)„ Class Exclusive, Insert a Class Exclusive _

Relation, Drawing arrows),

ombl2=>item(Global
Exclusive„ARC(flags—>DASH,head=>ARROW_DIAMOND,tail=>ARROW_FULL_X,c
ode—>prop concept pera3<173>)„ Global Exclusive, insert a Global Exclusive Relation,
Drawing arrows),

ombl3=>item(Multi-
valued„ARC(flags=>DASH,head=>ARROW DIAMOND,Middle=>CROSS. DOUBLE,t
ail=>ARROW NONE,code—>prop concept pera4<73>)„ Multi-Valued, insert a MV
Relation, Drawing arrows),

ombl4=>itern(Essential
MV„ARC(flags=>DASH,head=>ARROW_DIAMOND,middle=>CROSS_DOUBLE,tail
=>0 EMPTY,code—>prop concept pera5<\73>)„ Essential MV, Insert an Essential MV
Relation, Drawing arrows),

omb 1 5=>item(Class Exclusive
MV„ARC(flags=>DASH,head—>ARROW_DEAMOND,middle=>CROSS_DOUBLE,tail
—>ARROW SQUARE FILL,code=>prop concept pera6<\73>)„ Class Exclusive MV,
Insert an Class Exclusive MV Relation, Drawing arrows),

ombl6=>item(Global Exclusive
MV„ARC(flags=>dash,head=>ARROW_DIAMOND,middle=>CROSS_DOUBLE,tail=
>ARROW FULL X,code=>prop concept pera7<\73>)„ Global Exclusive MV, Insert an
Global Exclusive MV Relation, Drawing arrows),

omb20—>item(Exclusive Essential„ Arc(flags—>DASH,
head—>ARROW_DIAMOND, middle 	—>cross, tai l=>0 EMPTY, code—>prop concept
pera8<173>)„ Exclusive Essential, Insert an Exclusive .-essential Relation, Drawing
Arrows),

71

),),
separator,

item(Propagate„menu(

omb18=>item(Propagate„MSG_SIMPLE(flags=>(df in,solid),code=>prop concept
ecrpp<\73>)„Propagate operation,Must be parented by an association instance,Insert)

),),
separator,

item(Generics„ menu(

genl=>item(Anchor„ ANCHOR(flags=>solid)„anchor,Place an anchor for all
types of arcs,anchoring arrows),

gen2=>item(Bend„ BEND„Bend,Insert a bend to any type of arc,inserting bends
into arrows)

),),

submenu_of toggles ::=
item(Rotate„ 	ROTATE,),

item(In/Out Mode„ SOCKET_GENDER, immed act F),

submenu_of help ::=
separator,

item(Help for &Rumbaugh„

HELP<filesep>><inidir><dirsep>help<filesep>rumbaugh.hlp,key=contents)

submenu_of export ::=
item(Export &Table Format„ immed EXTL(mth_export),),
item(Export &Page Format„ immed EXTL(rrith2 export),),

-- snip code generation stuff

subomaux
separator,

ties into rom2snip,cmd

72

item(Generate Object Pseudocode„ immed

command_file(file=><CntxDir><DirSep>corn.mon<DirSep>om2sni p<FileSep>rom2sniP

.cmd

),),
item(Generate Managed Object C++„ immed
command file(file=><CntxDir><DirSep>common<DirSep>om2snip<FileSep>snip2cxx.
cmd),

- uncomment next line for no right button popup menu
- do_popoup_menu ::= ;
do_popup_menu ::

<--<.diagram'popupmenu := diag_popup_menu>>
<—<xa(SHOW CONTROL(menu=>noname))>>

-- This file imports the following:

!include ::= <CommonDir><DirSep>menus<FileSep>menubarsu
!include ::= <MenuDi r><Fil eSep>ood2 	;

- menubar.rul forces the menu bar to be precompiled "last" after all
-- rules are available

REFERENCES

S. Abiteboul and R. Hull IFO: A formal semantic database model. ACM Trans.

Database Syst., 12(4):525-565, 1987.

R. Agrawal and N. H. Gehani. ODE (Object Database and Environments):The

language and data model. In Proc. 1989 ACM SIGMOD Int Conference on

Management of Data, pp 36-45, Portant, OR, May 1989, ACM.

3. R. Agrawal, N. H. Gehani, and J. Srinivasan. OdeView: The graphical interface to
Ode. In H. Garcia-Molina and H. V. Jagadesh, editors. Proc. 1990 ACM SIGMOD
Intl Conference on Management of Data, pp 34-43, Atlantic City. NJ, May 1990.

ACM.

4. A. Albano, L. Cardelli, and R. Orsini. Galileo: A strongly typed, interactive
conceptual language. ACM Trans. Database Syst., 10(2):230-260, 1985.

5. A. Albano et al. An overview of Sidereus: A graphical database editor for galileo. In
Proc. EDIT '88, pp 567-571, Venice, Italy, Mar. 1988.

6. R. J. Branchman and H. J. Levesque, editors. Readings in Knowledge Representation.
Morgan Kauffmann Publishers. Inc., Mountain View, CA, 1985.

7. D. Bryce and R. Hull. SNAP: A graphics-based schema manager. In Proc. Intl
Conference on Data Engineering, 1986.

P. Butterworth, A. Otis, and J. Stein. The GemStone object database manai_wment
systems. Commun. ACM, 34(l0):64-77, Oct. 1991.

R. G. G. Cattell and T. R. Rogers. Entity-Relationship database user interfaces. In
M. Stonebraker, editor, Readings in Database Systems, pp 359-368. Morgan
Kaufmann Publishers, Inc/, San Mateo, CA, 1988.

10. H. Chao and V. P. Teli. Development of a university database using the Dual Model
of object-oriented knowledge bases. Master's thesis, NJIT, Newark, NJ, 1990.

11. P. P. S. Chen The Entity-Relationship Model: Towards a unified view of data. ACM
Trans. Database Syst., 1(1):9-36, 1976.

12. P. Coad and E. Yourdon. Object-Oriented Analysis. Yourdan Press Computing
Series. Prentice Hall, Eaglewood Cliffs, NJ, second edition, 1991.

73

74

13. C. J. Date. An Introduction to Database Systems, volume 1. Addision-Welsey

Publishing Co., Inc., Reading, MA, fourth edition, 1986.

14. 0. Deux et al. The story of 0,. IEEE Trans. Knowledge and Data Eng., 2(0:91-108,

1990.

15. R. Elmasari and S. B. Navathe. Fundamentals of Database Systems. The
Benjamin/Cummins Publishing Co., Inc., New York, NY, 1989.

16. D. H. Fishman et al. Overview of the IRIS DBMS. In W. Kim and F. H. Lochovsky,

editors, Object-Oriented Concepts, Databases and Applications, pp 219-250. ACM

Press, New York, NY, 1989.

17. J. Geller. A Knowledge Representation Theory for Natural Language Graphics. PhD
thesis, SUNY Buffalo CS Department, 1988. Tech. Report 88-15.

18. J. Geller, Y. Peri, P. Cannata, A. Sheth, and E. Neuhold. A case study of structural
integration. In Y. Yesha, editor, Proc. 1st Int '1 Conference on Information and
Knowledge Management, pp 102-111, Baltimore, MD, Nov. 1992.

19. J. Geller, Y. Peri and E. Neuhold. Structural schema integration in hetrogenous
multi-database systems using the Dual Model. In Proc. First Int Workshop on
Interoperability in Multidatabase Systems, pp 200-203, Los Alamitos, CA, 1991.
IEEE Computer Society Press.

20. K. Gorman and J. Choobineh. The Object-Oriented Entity-Relationship Model
(OOERM). Journal of Managemant Information Systems, 7(3):41-65, 1991.

21. M. Gyssens, J. Paredaens, D. van Gucht. A graph-oriented object model for database
end-user interfaces. In H. Garcia-Molina and H. V. Jagadish, editors, Proc 1990
ACM SIGMOD Intl Conference on Management of Data, pp 24-33, Atalnatic City,
NJ. May 1990. ACM.

22. M. Halper, J. Geller, and Y. Perl. An OODB "part" relationship model. In Y. Yesha,
editor, Proc. ISMM 1st Int Confernce of Information and Knowledge Management,
pp 602-611, Baltimore, MD, Nov. 1992.

23. M. Halper, J. Geller, and Y. Perl. Value propogation in OODB part hierarchies. In B.
Bhargava, T. Finin, and Y. Yesha, editors, Proc. ISMM/ACM 2nd lot '1 Conference on
Information and Knowledge Management. pp 606-614, Washington, DC, Nov. 1993.

24. M. Halper, J. Geller, Y. Pert and E. J. Neuhold. A graphical schema representation
for object-oriented databases. In R. Cooper, editor, Interfaces to Database Systems,
pp 282-307. Springer-Verlag, London, 1993.

75

25. M. Halper, Y. Perl, 0. Yang, and J. Geller. Modeling business applications with the
OODB ownership relationship. In R. S. Freedman, editor, Proc. 3rd Intl Conference

on Al applications on Wall Si., pp 2-10, New York, NY, June 1995.

26. G. Kappel and M. Schrefl. Object/Behaviour diagrams. In Proc. 7th Int'l Conference

on Data Eng., pp 530-539, Kobe, Japan, Apr. 1991.

27. W. Kim. A model of queries for object-oriented databases. In Proc. 15th VLDB, pp

423-432, 1989.

28. W. Kim, E. Bertino, and J. F. Garza. Composite objects revisited. In Proc. 1989
ACM SIGMOI) Int '1 Conference on Management of Data, pp 337-347, Portland, OR,
June 1989.

29. B. Meyers. Tools for the new culture. Lessons from the design of the Eiffel libraries
Comm. ACM 33(9):68-88, Sept 1990.

30. B. A. Myers et al. Garnet, comprehensive support for graphical, highly interactive
user interfaces. Computer, 23(11):71-85, Nov 1990.

31. E. Neuhold, Y. Perl, J. Geller, and V. Turau. Seperating structural and semantic
elements in object-oriented knowledge bases. In Proc. of the Advanced Database
System Symposium, page 67-74, Kyoto, Japan, 1989.

32. E. J. Neuhold and M. Schrefl. Dynamic derivation of personalized views. In Proc.
14th Int 'I Conference on Very large Databases., Long Beach, CA, 1988.

33. G. T. Nguyen and D. Rieu. Representing design objects. In J. Gero, editor, Al in
Design '91. Butterworth-Heinemann Ltd., London, England, 1991.

34. Ontologic, Inc., Burlington, MA. ONTOS 2.01 documentation, 1991.

35. Open Software Foundation. OSP/Motif Style Guide. Prentice Hall, Englewood
Cliffs, NJ, 1990.

36. E. Rich and K. Knight. Artificial Intelligence. McGraw-Hill, Inc., New York, NY,
second edition, 1991.

37. L. A. Rowe and M. Stonebraker. The design of POSTGRES. In Proc. 1986 ACM
SIGMOD Conference of Management of Data, Washington, D.C., May 1986.

38. J. Raumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented
Modeling and Design. Prentence Hall, Englewood Cliffs, NJ, 1991.

76

39. M. Schrefl and E. J. Neuhold. A knowledge-based approach to overcome structural
differences in object-oriented databases integration. In Proc. IFIP Working
Conference on the Role of AI in Database and Information Systems, Guangzhou,
China, 1988. North Holland.

40. M. Schrefl and E. J. Neuhold. Object class definition by generalization using upward
inheritance. In Proc, 4th Intl Conference on Data Engineering, page 4-13, Los
Angeles, CA Feb. 1988.

41. D. W. Shipman. The Fuctional Data Model and the data language DAPLEX. ACM
Trans. Database Syst., 6910:140-173, 1981.

42. J. F. Sowa.. Conceptual Structures, Information Processing in Mind and Machine.
Addision-Wesley Publishing Co., Inc., Reading, MA, 1984.

43. J. F. Sowa. Principles of Semantic Networks, Explorations in the Representation of
Knowledge. Morgan Kaufmann Publishers. Inc., San. Mateo, CA, 1991.

44. M. Stonebraker et al. Third-generation database system manifesto. SIGMOD
Record, 19(3):31-44, Sept. 1990.

45.3. D. Ullman.. Principles of Database :Systems. Computer Science Press, Rockville,
MD, second edition, 1982.

46. P. Wegner. An object-oriented classification paradigm. In Schiver and Wegner,
editors, Research Directions in Object-Oriented Programming. MIT Press, 1987.

47. M. E. Winston, R. Chaffin, and D. J. Herrmann. A taxonomy of part-whole relations.
Cognitive Sciences, 11(4):417-444, 1987.

48. D. Woelk, W. Kim, and W. Luther. An object-oriented approach to multimedia
databases. In Proc. ACM SIGMOD Int'l Conference on Management of Data, pp
311-325, Washington, D.C., May 1986.

49. O.Yang, M. Halper, J.Geller, and Y. Per!. The OODB ownership relationship. In
Proc. Int'l Conference on Object-Oriented Information Systems (OOIS '94), pp 389-
403, London, UK, Dec. 1994.

50. S. B. Zdonik and D. Maier. Fundamentals of object-oriented databases. In S. B.
Zdonik and D. Maier, editors, Readings in Object-Oriented Database Systems, pp 1-
32. Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1990.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: OODB Graphical Schema Representation
	Chapter 3: The Architecture of ObjectMaker
	Chapter 4: OODINI 2 Specifications
	Chapter 5: Phase 1 of OODINI 2.0: A Review
	Chapter 6: Phase 2 Difficulties Due to TDK Previous Release
	Chapter 7: Improvements in TDK 4.0 and New Options of OODINI 2.0
	Chapter 8: Open Development Problems and Difficulties
	Appendix A: METHOD.CFG
	Appendix B: The Rule File
	Appendix C: The Menu File
	References

	List of Figures

