
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT 

CONSTRUCTION OF ACCURATE MOLECULAR MODELS USING LASER 
STEREOLITHOGRAPHY AND DETERMINATION OF NMR SPECTRA FOR 

AMILORIDE HYDROCHLORIDE AND ITS FREE BASE 

by 
Ana Deborah Ofsievich 

Accurate molecular models were constructed by a rapid prototyping process, called 

stereolithography. This process uses a computer-controlled laser to cure and solidify a 

photosensitive liquid polymer. Using a computer-aided design (CAD) program, spheres of 

appropriate van der Waals or CPK radii were drawn and placed in the three dimensional 

CAD space, in accordance with the atomic coordinates obtained from quantum mechanical 

calculations and from neutron diffraction data. These design data were used to drive the 

stereolithography system where the models were built in the same shape as the CAD 

image. The models built for the purpose of this work consisted of three amino acids and 

two structural analogs used in the study of the L-alanine taste receptor of the channel 

catfish, as well as the enzyme mimic β-cyclodextrin along with the transition state for the 

cleavage of phenyl acetate by the 2' and 3' hydroxyl oxygens of β-cyclodextrin. Models of 

the drug amiloride, as well as two analogs of this compound were also constructed. These 

compounds were used in the study of the epithelial Na+  channel. 

Nuclear Magnetic Resonance spectroscopy was applied to the compounds 

amiloride hydrochloride and amiloride free base. Data generated with this methodology is 

useful in determining the conformations of these compounds in solution and for 

comparison with the results of theoretical calculations done in this laboratory. Models of 

the structures determined in this way can give a better approximation of the electrostatic 

and steric requirements necessary for the drug to bind with the receptor. 
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CHAPTER 1 

INTRODUCTION 

1.1 	Objectives 

The objectives of this study are twofold. The first objective is to construct accurate 

physical molecular models using laser stereolithography of molecules that have been 

studied in this laboratory: amino acids and analogs of amino acids, cyclodextrins and 

amiloride and its analogs. Another objective is to perform and analyze Nuclear Magnetic 

Resonance (NMR) spectra of the drugs amiloride hydrochloride (amiloride HC1), and its 

free base at low temperatures. In order to accomplish this objective, it is necessary to find 

a mixture of solvents that can be brought down to very low temperatures, and still remain 

liquid, in which the drug amiloride hydrochloride and its free base can be soluble. In the 

NMR spectra, the goal is to try to identify predominant low energy conformers of the 

drugs in solution. Once the conformers have been identified, it is necessary to calculate 

the rotational barrier between the conformers. In this way, these results can be compared 

with theoretical calculations performed in this laboratory, which will lead to the 

construction of the models of these molecules. 

1.2 	Introduction to Stereolithography 

Visualization is the process of making visible that which is difficult or impossible to see in 

the physical world. As Rene Descartes said, in 1637, "imagination or visualization, and in 

particular the use of diagrams, has a a crucial part to play in scientific investigation"1 . 

With the development of computer graphics, scientists have found that visualization is a 

very powerful tool in the understanding of large quantities of complex data. In the field of 

chemistry, scientists have been searching for different ways to depict geometries of 

molecules. There are many molecular graphics programs that allow one to construct the 



geometry of a molecule on the screen of a computer. However, with these programs it is 

sometimes difficult to get the impression of a 3-dimensional model on the two-dimensional 

screen. In addition, a visually impaired person cannot see the screen of the computer and 

therefore will never know how a molecule looks. In this respect, a real physical model 

could be the solution2. There are many commercial kits to model molecules, such as the 

CPK and the Dreiding models. These models have been used for many years in basic 

organic courses to teach structures of different molecules. These models have some 

limitations. For example, with these models the bond lengths and atomic radii cannot be 

varied, because they are built with standard components. Furthermore, these models are 

unable to represent accurate torsional relationships, transition states or molecular 

properties such as the molecular electrostatic potential. The models presented here do not 

have these limitations. 

A very common method of quickly producing prototypes (real physical models) is 

by use of rapid prototyping systems3. Rapid prototyping systems, which were first 

introduced in the late 1980's, are completing the revolution initiated by computer-aided 

design (CAD) by bringing the drawing of parts into real life. Since the commercial 

introduction of the first rapid prototyping process, laser stereolithography, several 

different technologies have been applied. 	These technologies fall into five major 

categories: laser stereolithography, selective laser sintering, fused deposition modeling, 

laminated object manufacturing, and ballistic particle manufacturing. 

Stereolithography4  11 is the process which creates three-dimensional plastic models directly from CAD data, 

through the process of photopolymerization. This process transforms a photosensitive 

liquid resin into a solid polymer by exposing the resin to ultraviolet light. Essential parts 

of the stereolithography apparatus include a vat of liquid photopolymer, a laser generator 

which creates a small, intense spot of UV radiation, a galvanometer mirror X-Y scanner, 

an elevating platform, and a computer with its driving software for control. Usually the 

input data to the stereolithography system comes from a computer-aided design system. 



One of the CAD programs useful for this purpose is IDEAS (SDRC Inc., Milford, OH) 

Additional software must serve as an interface to convert these input data to the proper 

format for the stereolithography system. This software reconfigures the entire model into 

a series of layers, which are the actual layers that are going to be built by the 

stereolithography apparatus. This software is referred to as the Slice program (3D 

Systems Inc., Valencia, CA). 

The models constructed for this work are of molecules of special research interest 

in this laboratory and represent examples of various areas such as: chemoreception, 

biomimetic chemistry and host-guest interactions (molecular shape and molecular 

electrostatics). Following is a description of some studies made that describe each one of 

these areas. 

1.2.1 Chemoreception : Amino Acids 

Taste receptors are necessary to perceive taste. Taste identification involves many signal 

transduction mechanisms. In order to trigger transduction of the stimulus, binding of 

stimulus molecules into a receptor must occur. However, to understand how this 

mechanism is triggered it is necessary to understand the specificity of individual classes of 

taste receptors. Structure-activity studies contribute to this end by defining receptor 

specificity in terms of molecular geometrical parameters and molecular properties12. 

Venanzi et al. 13  have been studying the binding of different molecules at the L-

alanine receptor in the channel catfish. From experimental data it has been discovered that 

L-alanine binds to and activates specific taste receptors in the channel catfish12. 

Furthermore, it was observed that some analogs of L-alanine have a high affinity for the 

L-alanine receptor, but produce a lower neural response than L-alanine12. Some of these 

analogs are: glycine, L-serine, P-chloro-L-alanine, and 1-amino- 1-cyclopropane carboxylic 

acid. All of these molecules have a carboxylate and an ammonium group, but they differ 

in the side chain, giving a specific volume to each one of the molecules. The IC50  value 



indicates theability of an analog to reduce specific binding of the ligand (L-alanine in this 

case) by 50%. A small >number indicates that the molecule has a high affinity for the 

L- alanine receptor.. Neural response is the measurement of the response of specific nerve 

fibers to a stimulus. Measurements of neural response are done by exposing the nerve to a 

stimulus and recording response amplitudes. These IC50  and neural response 

measurements allow one to define a relationship between the molecular structure and 

properties of a stimulus and receptor binding and subsequent activation. IC50  and neural 

response data for these molecules, as well as their chemical structure, are presented in 

Table 1. 

Table 1. IC50  and neural response data for amino acids and amino acids analogs12  

Name 	 H. 	 1L50 (M) 	 Neural Response(%) 

L-alanine 	 -cH3 	 3.5 	 100 

J3-chloro-L-alanine 	-chi? 	 2.5 	 88.6 ± 13.7 

L-serine 	 -CH2OH 	 2 	 58.6 ± 15.6 

Glycine 	 -H 	 3 	 62.3 ± 9.4 

Venanzi et al.13  have developed a model of the steric and electrostatic features required in 

order to permit molecules to bind in the L-alanine receptor of the catfish. Using a 
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dielectric constant which approximates the receptor environment they determined the 

global minimum energy conformations of all these molecules. Using such data, models of 

some of these molecules were constructed using stereolithography. 

1.2.2 Biomimetic Chemistry: Cyclodextrins 

Some phaimaceutical companies are interested in developing certain types of artificial 

enzymes. Artificial enzymes are relatively small compounds. Reactions carried out by 

artificial enzymes mimic those of real enzymes. In order to mimic the enzyme reaction, 

substrate specificity is required and enzymatic reaction rates must be reproduced. 

The Breslow14  and Bender groups15- I 9, have studied compounds that contain 

functional groups able to imitate the action of the Serine-195, Histidine-57, and the 

Aspartate-102 residues of a-chymotrypsin. One of these molecules is f3-cyclodextrin and 

its structure is shown in Figure 1. The Breslow14  and Bender groups15-19  have 

independently studied the reaction between cyclodextrins and esters simulating models of 

the enzyme-substrate complex formed during the acyltransfer step, initiated by the Ser-195 

of chymotrypsin. This model has been shown to catalyze the hydrolysis of esters twice as 

fast as chymotrypsin15. From experimental data it can be shown that cyclodextrins react 

with phenolic esters via an alkoxide ion, formed from the secondary hydroxyl groups, 

resulting in the formation of a covalent intermediate and in the subsequent release of 

corresponding phenols. However, it is not clear whether the reaction occurs at the 2' 20  

or 3'-hydroxyl group2I. 



Figure 1. Molecular structure of β-cyclodextrin. 

Venanzi et al.22  have studied the reaction path of ester hydrolysis by the hydroxide 

ion of cyclodextrins, using the semiempirical AM1 method and the Langevine dipole 

solvent model, in order to determine if there is a difference in the reactivity of the 

secondary 2' and 3' hydroxyl oxygens of β-cyclodextrin. One of the results of the study is 

that acylation at the 3'-hydroxyl position was favored over the 2'-position by about 15 

Kcal/mol, presenting less structural reorganization of the macrocycle during hydrolysis at 

the 3' site. Having a solid model of the calculated transition state would be useful in 

interpreting the data. 

1.2.3 Host Guest Interactions: Amiloride 

The 	compound amiloride, 1, 3, 5-diamino-6-chloro-N-(diaminomethylene)pyrazine 

carboxamide, is a potassium-sparing acylguanidine diuretic. 



Usually, this drug is used as a companion to the potassium ion-losing diuretics such as the 

thiazide diuretics. The thiazide diuretics cause hypokalemia, secretion of potassium ion, 

which leads to deficiency related physiological effects. Among these effects are cardiac 

disturbances, anorexia, muscle weakness and lethargy23. 

Ion channels permit movements of ions across cellular membranes, both intra- and 

extracellularly. Amiloride is known to be a potent inhibitor of Na+ transport in a variety of 

cellular and epithelial transport systems. These systems include: conductive Na+ channel, 

the electroneutral Na+/H+ exchange system, and the electrogenic Na+/Ca+2  antiporter24. 

1.2.3.1 Conductive Na+ Channel. Amiloride blocks the passive Na+ reabsorption, by 

interacting with and blocking the epithelial Na+ channel. This phenomenon causes less 

Na+ ion to be exchanged with K+ ion, and eventually, the interruption of the electrogenic 

Na+  transport. Such reaction leads to secretion of K+ ions and this effect permits the use 

of this drug as a diuretic and antihypertensive agent. 

There are three major regions of interest in the molecule: the guanidino group, the 

5-amino group and the 6-position substituent. These groups can be substituted by 

different groups resulting in different responses. For example, the substitution of one of 

the terminal guanidinio groups by hydrophobic groups makes the drug more active. Other 

important features for inhibition of the Na+ channel include having an unsubstituted 5-

amino group and a chlorine atom in the 6-position24. 
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1.2.3.2 	NaH+ Exchange. The Na+/H+ exchange contributes to maintaining 

intracellular pH• homeostasis, solute uptake and cell volume regulation. Amiloride blocks 

this exchange, leading to changes in cellular function. As a diuretic this reaction leads to 

an alkanization of the urine, attributable to inhibition of hydrogen ion secretion in the 

distal nephron. Substitution of the 6-chloro by -Br or -I results an enhancement of 

potency. In addition, substitutions of the 5-amino by ethyl, butyl hexyl or phenyl groups 

also result in an increment in the drug potency. 

1.2.3.3 Na+/Ca+2  Exchange. Ca+2  is a very important ion for the intracellular signal. 

This Na±/Ca+2  exchange also helps to maintain a low cytosolic Ca+2  level, Amiloride is a 

weak inhibitor of this pump. The substitution of the guanidinio group by phenyl or benzyl 

groups gives the drug more potency. 

1.2.3.4 Some Studies on Amiloride and its Analogs. More than 1000 amiloride 

analogs have been synthesized. One of the reasons for studying amiloride has been to try 

to understand the characteristics of the binding site on ion channel proteins. For this 

purpose, different structure-activity studies on amiloride analogs have been carried out. 

Li et al.25,26  made electrophysical studies on the apical channels of the abdominal 

skin of Rana ridibunda. From these studies information about the rate constant for the 

binding of different analogs was obtained. Some of this information is shown in Table 2. 

Kon  is the microscopic association constant and Koff  is the dissociation constant. Analogs 

18 and 19 differ from amiloride in their side chain which is elongated. Both analogs retain 

the ability to bind and block the Nat channel, with analog 19 being a slightly better blocker 

than amiloride as indicated by the Koff  values25,26. From these studies, Li et al. proposed 

a model for the analog-channel interaction. He suggested a two-step model. In the first 

step, the guanidinium sidechain enters into the channel and interacts with an anionic site to 

form an encounter complex. In the second step either there is no blocking and the 



molecule is released, or the substituent at the 6-position binds to an electropositive site on 

the channel, resulting in a stable complex. 

Table 2. Structure-activity relationships for selected amiloride analogs25,26  

Using 1 H and 13C NMR techniques and CNDO/2 theoretical calculations, Smith et 

al.27  found amiloride HCl to exist as conformer Fl and amiloride free base as conformers 

Al and/or A4. From theoretical calculations these authors also found that conformer Al 

is more stable in vacuum than conformer A4 by 0.9 Kcal/mol. They were unable to 

identify from NMR data which of these conformers was preferred in solution. From NMR 

data27, tautomer A was more stable in solution than tautomer E. On the other hand, 



theoretical calculations in vacuum predict that tautomer E is more stable. Molecular 

structures of conformers Fl, Al, A4, and E are shown in Figure 2. 

Figure 2. Molecular structures of conformers: Fl, Al, A4 and E 

In order to interpret the structure-activity data of Li et al.25,26, Venanzi and coworkers 

have carried out conformational analysis28-30, molecular electrostatic potential 

analysis31,32, and molecular dynamics and static solvation studies of amiloride and its 

analogs 29,33. Calculations of the minimum energy conformers for amiloride and analogs 

18 and 19 showed that amiloride has a planar conformation while 18 and 19 have 

nonplanar conformations. In 18 the ring is approximately 30° out of the plane of the side 

chain, whereas that of 19 is closer to 90°. These data could explain results obtained by Li 

et al.25,26  that these compounds form a stable blocking complex with the ion channel. 

Venanzi et al. 28,29  carried out molecular orbital calculations with geometry optimization 
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using the 3-21G* basis set, and molecular dynamics and static solvation studies for 

different conformers for amiloride HCI and its free base29. The results of these 

calculations identified the A tautomer as more stable than the E tautomer28. Furthermore, 

conformer Al was found to be more stable than A4 conformer28,29. 

1.2.3.5 Description of Nuclear Magnetic Resonance Spectroscopy. Nuclear magnetic 

resonance34-36  is based on the fact that nuclei of certain elements have a spin, a spin 

angular momentum and an associated magnetic moment. When no magnetic field is 

applied, these nuclei can spin at random in their atomic or molecular environment. When 

placed in a strong magnetic field, these nuclei can adopt one of a number of quantized 

orientations, each orientation corresponding to a particular energy level. These nuclei will 

adopt one of several possible 21+1 orientations with respect to the external magnetic field, 

where I is the nuclear spin, and is. given by the magnetic quantum number m1. The 

orientation with the lowest energy is the one in which the nuclear magnetic moment is 

most closely aligned with the external magnetic field, while the orientation with the highest 

energy is the one in which the nuclear magnetic moment is least closely aligned with the 

magnetic field. Nuclear magnetic resonance involves transitions between these energy 

levels with respect to the external magnetic field by absorption of electromagnetic 

radiation of the correct frequency. 	The relationship between the electromagnetic 

frequency v and the magnetic field strength Bo  is governed by the Larmor equation 

(equation (1)). 

Where y is the magnetogyric ratio. When a nucleus of magnetogyric ratio y is placed in a 

magnetic field Bo, the resonant condition is satisfied when the frequency of the applied 

radiation v is given by equation (1). 
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One of the variables that affects chemical shifts is temperature. Depending on the 

temperature at which the experiment is carried out, not only could the chemical shifts of a 

specific compound: be different, but also the environment of each atom in the molecule 

could differ. Rotations about single bonds occur in a molecule and these rotations are 

very fast. For example, the three hydrogens of a methyl group would appear to be 

equivalent in a proton NMR. When the temperature is lowered, these rotations about 

single bonds could be reduced. As a result the NMR spectrometer may see those 

hydrogens as not being equivalent, because other parts of the molecule may now influence 

these chemical shifts. In the present work, 1H  and 13C NMR spectra of amiloride HC1 and 

its free base were performed and analyzed at different low temperatures, in order to 

determine the solution structures of these compounds and for comparison with quantum 

mechanical calculations carried out in this laboratory. 



CHAPTER 2 

MATERIALS AND EXPERIMENTAL METHODS 

2.1 	Description of the Construction of the Models 

The first step in the construction of a model is to obtain the coordinates for each atom in 

the molecule. These coordinates can be obtained from neutron diffraction data or from 

quantum mechanics calculations. The coordinates referenced in this work for all the 

models were provided by Dr William Skawinski, Dr Carol Venanzi, and collaborators. 

The global minimum energy coordinates of the amino acids and amino acid analogs13  

were determined by the self-consistent reaction field (SCRF) method37-41  using the 6-

31G* basis set. The coordinates of the neutron diffraction structure of β-cyclodextrin 

undecahydrate42  were obtained from the Cambridge Structural Database43. All the water 

molecules were removed from the structure. The transition state of the reaction of 13-

cyclodextrin with phenyl acetate22,33  was determined using the AM1 method in the 

MOPAC-93 program44. 	Two different positions of the phenyl acetate with 13- 

cyclodextrin were calculated22. The minimum energy conformers of water, methane and 

phenyl acetate22  were also calculated using the AM1 method in the MOPAC-93 program. 

The coordinates for amiloride28  and its analogs30  were those of the global minimum 

energy conformations determined using the 6-31G* basis set. 	The values for methyl 

chloride and cyclohexyl chloride were calculated using the AM1 method in the Quanta 

program45. From these calculations, the Cartesian coordinates of the center of each atom 

was computed in Angstroms. These coordinates were used in the construction of the 

models. 

The next step was to design the molecular model in a CAD program. There are 

several CAD programs that translate images into a format that can be read by the 

stereolithography apparatus. The program used in this study for the models of amino 

13 
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acids and analogs of amino acids described above was IDEAS version 6, installed on a 

Sun SparcStation 10, model 41 (one processor), 96 MB RAM. The rest of the models 

were designed with the I-DEAS master series, version 1.3c, installed on a Personal Iris 

Silicon Graphics workstation. The first step in the CAD design was to draw a sphere with 

a specific radius. The radii chosen for the construction of some of the models are the 

standard van der Waals radii: H (1.2 A), N (1.5 A), 0 ( 1.4 A), Cl (1.8 A), and aliphatic C 

(2.0 A), aromatic and carbonyl C (1.85A). Other models were constructed with CPK 

radii: H (1.0 A), N (1.7 A), 0 (1.35 A), Cl (1.8 A), and aliphatic C (1.5 A), aromatic and 

carbonyl C (1.7 A). In order to position a sphere in space, the previously calculated 

coordinate was specifically assigned for that atom. Then, another sphere was drawn, with 

the specific radius for that atom type, and positioned in space at the calculated 

coordinates. At this point two spheres can be seen overlapping with each other, but the 

CAD program recognizes the two spheres as individual objects. In order to merge these 

two spheres the JOIN command is invoked so that the program can recognize the 

overlapping spheres as a single object. This procedure was repeated until the entire model 

was finished. This procedure could lead to a series of errors such as misplaced signs and 

numbers when the data is input. In order to avoid these kinds of mistakes, an input 

program was written within I-DEAS to allow automatic input of the structural data from 

a text file. The input data consisted of five parameters for each atom: the atomic symbol, 

the van der Waals radius, and the x, y, z coordinates in Angstroms. An example of the 

input data is shown in Table 3. 

Many CAD and solid modeling software packages, and especially I-DEAS, 

represent surfaces of parts as facets. These are planar faces in the form of polyhedrons. 

The number of facets can be changed. The larger the number of facets, the smoother the 

sphere will be, but this could lead to a longer building process and a larger file size. 

Changing the number of facets may he an advantage in certain cases. Once the model is 

constructed, it is possible to detect the different number of facets, by touching or seeing 
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each atom type. This is very beneficial when the users are visually impaired. Actually, 

these persons can identify each atom type in accordance with a classification made in 

advance. 

Table 3. Example of input data for 1-DEAS. These coordinates represent amiloride 
coordinates 

Atomic Symbol Radius(A) X Coordinate Y Coordinate Z Coordinate 

N 1.7 -0.587328 -0.691711 0.000000 
C 1.7 0.000000 0.511604 0.000000 
C 1.7 -0.809879 1.658474 0.000000 
N 1.7 -2.142612 1.529082 0.000000 
C 1.7 -2.701087 0.333044 0.000000 
C 1.7 -1.866531 -0.819538 0.000000 
C 1.7 1.463724 0.599433 0.000000 
0 1.35 2.020381 1.722582 0.000000 

1.48 -0.333854 2.904784 0.000000 
H 1.0 0.657720 3.036832 0.000000 
H 1.0 -0.985609 3.657401 0.000000 
N Cl N 

 

1.48 -4.038984 0.257809 0.000000 
H 1.0 -4.521056 -0.612114 0.000000 
H 1.0 -4.553748 1.110992 0.000000 

1.8 -2.579962 -2.409841 0.000000 
N 1.48 2.118578 -0.580042 0.000000 
C 1.5 3.426054 -0.656657 0.000000 
N 1.48 3.955953 -1.893663 0.000000 
H 1.0 3.312465 -2.654996 0.000000 
H 1.0 4.934293 -2.071495 0.000000 

1.48 4.268435 0.386732 0.000000 
1.0 3.839945 1.294778 0.000000 

H 1.0 5.257307 0.276162 0.000000 

The older version of I-DEAS (version 6) used for some of our models has a command 

which specifically asked for the number of facets. This feature, however, was not 

available in the new version (master series 1.3), and the number of facets was input by 
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default. For the models that were constructed with IDEAS version 6, the numbers of 

facets used were: H (8x8), C (8x8), 0 (12x12), N (16x16), Cl (20x20). 

The next step in this procedure was to scale the model to an appropriate size to fit 

in the cubic vat of 10x10x10 inches of the stereolithography apparatus. The dimensions 

were set by taking the CPK or van der Waals radii and setting the model radius to that 

value in inches in the CAD program and then multiplying the result by different scale 

factors. Scale factors used for some of the models are shown in Table 4. 

Table 4. Scales factors used to construct some of the models 

Model Scale Factors 

Amino acids 0.3 

Cyclodextrins 0.35 

Amiloride 1.25 

Once the desired size of the model has been obtained, it needs to be translated into 

a positive space, because the stereolithography system begins making the models starting 

from x, y, z equal to 0, 0 ,0. At this point the model was ready to be written as an STL 

format, which is the output format needed for the stereolithography system. 

Some models of β-cyclodextrin and 3-cyclodextrin with phenyl acetate as well as 

models of L-alanine, glycine, L-serine and β-chloro-Lalanine were made of solid spheres. 

However, the rest of the models were made hollow. In order to create the hollow cavities, 

the input program was modified to yield spheres in the same way as described before, but 

with a smaller radius. Then the two models were superimposed, with one model inside the 

other, and the CUT command was invoked. The result of this operation was to cut away 

the common volume of the two parts yielding a hollow model. In the case of these 



17 

models, additional small holes had to be cut to let the resin drain during the construction 

of the part in the stereolithography system. 

The next step was the construction of temporary support structures. For that 

purpose, the software package Bridgeworks (Solid Concepts, Inc., Valencia, CA), 

installed on a 486 DX66 PC, with 16 MB RAM memory at Center for Manufacturing 

Systems, at New Jersey Institute of Technology was used. The Bridgeworks software 

package is the automatic support generator for rapid prototyping. As an automated 

program, this software applies a set of support design rules which produce enough 

supports to ensure proper building of the part. Depending on the different processes or 

resins being used, it is possible to vary different parameters. Bridgeworks reads a STL 

file, which defines the part geometry, analyzes the support requirements and generates the 

necessary supports to a separate STL file. 	Supports are required because the 

stereolithography system builds models layer by layer on the surface of a liquid resin. 

Each layer must be moved below the liquid level after being drawn. This requires that 

each layer be attached to the layer below and that the very first layer be attached to the 

moving platform of the stereolithography apparatus. Sometimes, the current layer is 

larger than the previous layer and without the supports it would collapse. Supports are 

also required to reduce curling during the building process and to some extent during post 

curing. These structures were removed after the model was built. 

After all the STL files were created the Slice program was used to process these 

files. The Slice program, installed on a 486 DX66 PC, with 16MB RAM memory at 

Center for Manufacturing Systems was needed to modify the data by cutting the object 

into a series of horizontal layers. For this specific work different parameters must be 

given with the appropriate values. Layer Thickness is a Slice parameter that permits one 

to specify the distance between vertical layers. This determines the accuracy of the part, 

the vertical resolution, and the height of each step. A decrease in the thickness of the 

layer results in a smoother surface, since the height of each step is reduced. Another 
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important parameter is the Hatch Fill Spacing. This parameter determines how much resin 

is going to be cured by the laser light. Large values of this parameter indicate that less 

resin is going to be cured. For the support structures, this parameter is set at high values, 

resulting in very flexible parts. This is done so that the supports can be removed very 

easily after the building process. The values of the parameters used are shown in Table 5. 

The files resulting from the Slice program are called SLI files. The model and the 

supports files were merged using the Slice program. The MERGE command was invoked 

which generated four files: L, R, V and PRM. These four files contained all the 

information for the building process. These files were used as input to the computer of 

the stereolithography apparatus. 

Table 5. Values of parameters used in Slice program 

Parameter Model Support 

Slice Output Scale 1.000 1.000 

Resolution 5000 5000 

Layer Thickness° 0.01 0.01 

X Hatcha  0.01 0.15 

Y Hatcha  0.01 0.15 

X Skin Fill Spacinga  0.004 0 

Y Skin Fill Spacinga  0 0 
a Values in inches 

2.2 	Description of Stereolithography Methodology 

The resin used to construct the models is composed of two materials. One is a 

photoinitiator which absorbs the laser energy and forms reactive radical species, which in 

turn initiate the polymerization process. The other is an acrylic functionalized monomer 
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which has the ability to polymerize when exposed to a free radical source. The overall 

dimensions of the solid polymer formed when a UV laser is focused on the surface of a 

photopolymer are controlled by the intensity of the laser beam and the period of exposure. 

A longer exposure time or increased laser energy or both will increase the depth and width 

of the solid region46. The resin is a toxic material and has to be handled appropriately. 

Acrylate resins may cause skin burns with prolonged contact and they also release toxic 

vapors. This means that safety gloves must be worn, and the laboratory where the 

stereolithography system is installed must have very good ventilation. 	The 

stereolithography apparatus used was the model SLA-250 manufactured by 3D Systems 

Inc. At the start of the building process47, the elevating platform is positioned just below 

the surface of the liquid resin. The UV laser spot moves back and forth, causing the liquid 

to solidify whenever it is impinged upon, thereby forming a thin, solid cross section on the 

platform. When the first cross section is completed, the platform goes down a step and 

the solid layer is covered by another layer of liquid. Instructions for the formation of the 

next cross section are received, and the process is repeated. This procedure, which is 

automatic and can proceed without operators, is performed until the entire model is 

completed. After the part is finished, the elevator raises it out of the vat to allow excess 

liquid to drain. Although the part looks and feels solid, it still contains large amounts of 

uncured resin. Therefore, the model must undergo further treatment with intense UV 

radiation to complete the curing process. Before the final curing of the model, the support 

structure is trimmed away. Then, the part is cleaned with alcohol to remove the rest of the 

resin. Once the part is cleaned, it is ready for the final curing process. The duration of the 

curing and postcuring depends on the complexity of the part, its size and the type of 

polymer. 
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2.3 	NMR Procedure 

2.3.1 Preparation of Amiloride Free Base 

Amiloride hydrochloride was purchased from the Sigma Chemical Company (St. Louis, 

MO). The first step was to find a way to obtain the free base of amiloride HC1. 500 mg 

of amiloride HCl were weighed and diluted with 115 ml of water until all the compound 

was dissolved. Next, a few drops of 0.5 M bicarbonate solution was added until the pH 

was raised to 8.5, measuring the pH with a ionalyzer specific ion meter (Orion Research, 

Inc., Cambridge, MA) model 407A, with a gel-filled combination electrode. Then, a few 

drops of 1M NaOH were introduced until pH = 10. The solution was left for a few 

minutes in a cold bath with mechanical stirring until the free base precipitated. The 

solution was filtered through a funnel using vacuum, with a filter paper (Whatman 1 

qualitative) at the bottom. The residue was recovered and placed in a desiccator for two 

days. The walls of the desiccator were covered with paper to prevent exposure of the 

sample to light. In order to identify the compounds, the melting points of the amiloride 

free base and amiloride HC1 were measured. Other tests, such as differences in the 

solubility of various solvents, were performed to identify amiloride free base. The solvents 

utilized were: water, chloroform, ethyl ether, ethanol, acetone, dimethylformamide 

(DMF),,toluene, 2-propanol, and butyl ethyl ketone. 

Some other tests carried out were Infrared Spectrometry and Mass Spectrometry. 

The latter was carried out with a INCOS 50 Mass Spectrometer interfaced with a Hewlett 

Packard 5890 Gas Chromatograph (located at the Chemistry Department at Rutgers 

University, Newark, NJ) with a DB-5 column. A Bio Rad Fourier Transform Infrared 

Spectrometer (Cambridge, MA) model FTS 40, was used to perform the infrared spectra. 

To run the mass spectra, different solutions of amiloride HCI and amiloride free base were 

prepared. A few milligrams of amiloride HCl and amiloride free base were dissolved in a 

few millilitres of different solvents and these solutions were then input into the mass 

spectrometer. The solvents used were ethanol, dimethylsulfoxide (DMSO), DMF, and 



toluene. For the infrared spectra, a few milligrams of amiloride HCl or amiloride free base 

were added to three drops of mineral oil and mixed. Then, each mixture was put on a KCl 

plate and spectra run for both compounds. 

The next step was to identify an appropriate mixture of solvents that can be cooled 

to -50°C without freezing. For this purpose, different mixtures of solvents were 

introduced in a cooler at -50°C for half an hour. A flexi-cool U159 cooler manufactured 

by FTS Systems, Inc. (Stone Ridge, NY) with a thermo container filled with 2-propanol 

was used to cool the solutions to -50°C. The solvent mixtures examined are shown in 

Tables 6 and 7. 

Table 6. Cryosolvent systems examined (v/v) of dimethylsulfoxide (DMSO) and 
methylene chloride 

Mixture Number DMSO Methylene Chloride 

1 1 1 

2 4  3 

3 1 2 

4 1 1.5 

5 1 1.2 

Table. 7 Mixtures NM of DMF and methylene chloride examined 

Mixture Number  DMF Methylene Chloride 

6 1 2 

7 1 1 

Next, the solubility of the samples had to be tested in the appropriate mixtures of 

solvents. In this case, the solubility of amiloride HC1 and amiloride free base were 

evaluated for the mixtures of solvents that did not freeze at -50°C. Then, the solutions 
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were introduced into the cooler for half an hour to see if the compound was still soluble at 

this low temperature. 

2.3.2 NMR spectra 

Solutions for the NMR spectra were prepared with deuterated solvents, purchased from 

Aldrich Chemical Co., Inc., (Milwakee, WI). The mixture of solvents chosen for these 

spectra was 1/1.2 (v/v) DMSO-6d/duterated methylene chloride. Solutions for the NMR 

spectroscopy were prepared with this mixture of solvents, with 30 mg of amiloride HC1 

added to one, and 30 mg of amiloride free base added to another. Proton NMR spectra of 

amiloride HCI and amiloride free base Were obtained under a wide range of temperatures. 

In a first step, the amiloride free base proton NMR spectra were recorded from -60°C to 

20°C in increments of 5°C for the range of temperatures -60°C to. -40°C, and in 

increments of 10° for the rest of the temperatures. Next, the amiloride HCI spectra were 

taken for the range 20°C to -60°C. Decrements of 10°C and 5°C were performed until 

-30°C and -60°C were reached, respectively. Carbon-13 NMR spectra of both 

compounds were recorded at room temperature. Proton and carbon-13 NMR spectra 

were recorded on the Varian VXR 400, at the Chemistry Department of Rutgers, the State 

University, Newark, NJ, using the 5 mm switchable probe. 



CHAPTER 3 

RESULTS AND DISCUSSION 

3.1 	Models Constructed by Laser Stereolithography 

Among the models constructed with laser stereolithography were amino acids and analogs 

of amino acids (L-alanine, glycine, L-serine, β-chloro-L-alanine, and 1-amino-I 

cyclopropane carboxylic acid), β-cyclodextrin and the transition state of the reaction of 

β-cyclodextrin with phenyl acetate, and the drug amiloride, as well as other two analogs of 

this compound, analog 18 and analog 19. Models of water, methane, methyl chloride, 

cyclohexyl chloride, and phenyl acetate were also built. 

The models were constructed on different scales. Those of smaller scales have the 

same characteristics as the larger ones, and they still can be used for understanding 

geometries of molecules. Some models were constructed solid and other models hollow. 

The hollow ones, while still being quite resistant to breakage, reduce by 60% the amount 

of resin used, and thus lead to a reduction in cost. The resin used in this technique is very 

expensive, so this aspect becomes particularly important when dealing with large models, 

and when building models in large numbers. 

The time required to build the models in the stereolithography system depends on 

the complexity of the model. Table 8 shows the time required for the building of some of 

the models. In addition to the time of the building process, one or two more hours should 

be added for the last curing phase of the resin in an ultraviolet oven. 

It should be noted that the models can be constructed with any desired radii. In 

our case, CPK radii were used for amiloride, analog 18, analog 19, water, phenyl acetate, 

methyl chloride, cyclohexyl chloride, methane models, and van der Waals radii were 

chosen for the rest of the models. It was found that decreasing the radii of the building 

spheres leads to models with less spherical overlap, and consequently, more distinct 

23 
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atoms. As it was mentioned before, the number of facets is a characteristic that can be 

used to identify each atom type by touching or seeing. As the scale of the models become 

larger, it is better to have a larger number of facets, resulting in smoother spheres. 

Version 6 of I-DEAS has the capability of defining each sphere with a specific number of 

facets, however master series 1.3 of I-DEAS has not and the program assigns by default 

the number of facets for each atom type. For the purposes of this work, it is more 

convenient to have the capability of changing the number of facets, in order to identify 

each atom type. A possible solution for this could be to make the surface of the spheres 

with different textures adding distinguishable features, so that by touch each surface would 

feel different for each atom type. 

Table 8. Building time for the construction of some of the models in the stereolithography 
system 

Model 	 Building Time (hours) 

amino acids 
	

8 

cyclodextrins 
	

36 

Amiloride 
	

12 

3.1.1 Amino Acids 

Models of both amino acids and analogs of amino acids (shown in Figure 3 Appendix A) 

were constructed. These molecules include: L-alanine, glycine, L-serine, β-chloro-L-

alanine (bottom row, Figure 3 Appendix A), and 1-amino-l-cyclopropane carboxylic acid 

(top row, Figure 3). All models are solid except those in top row. From an analysis of the 

constructed models, it can be clearly seen that the shapes obtained for these models are 

similar to each other. All of these molecules have a high affinity at the L-alanine receptor. 

These models illustrate and confirm the idea first suggested by Bryant et al.12  about the 
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relationship between molecular volume and binding. Not only must volume requirements 

be met in order for a molecule to bind into the receptor, but also steric requirements must 

be met. The steric requirements are almost identical in these molecules. 

3.1.2 Cyclodextrins 

Two solid models of β-cyclodextrin were constructed. One of these β-cyclodextrin 

models was constructed using a smaller scale, reducing it by a factor of 0.07. Two models 

of the complex of the transition state of the reaction between β- clodextrin and phenyl 

acetate showing two different positions of acylation at 2' (Figure 4, Appendix A, solid 

model) and 3' (not shown, hollow model) were also built. The β-cyclodextrin models 

were constructed on a larger scale than the amino acid or amiloride models. The model of 

this molecule can be described as having a donut shape and presenting an internal cavity. 

From these models, it can be shown how the phenyl acetate contacts the macrocycle. In 

addition, it can be seen how the substrate in the complex of the transition state at the 2'-

hydroxyl stays above the cavity22. 

3.1.3 Amiloride 

Solid models of amiloride and analogs 18 and 19 were constructed. The amiloride model 

showed the planarity of the molecule, whereas models of analogs 18 and 19 showed the 

nonplanarity of these molecules. In addition, it was very clear in these models how the 

side chains of analogs 18 and 19 are twisted out of the plane. Figure 5 and 6, Appendix A 

show the models of analog 18 and 19, respectively, displayed in a plastic block. 

3.1.4 Other Models 

The rest of the models (water, methane, methyl chloride, cyclohexyl chloride, and phenyl 

acetate) were made specifically for educational purposes. They have been sent to the 
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Washington State School for the blind to be used in part of their science courses. The 

teacher there will evaluate them and then suggest how we might improve them. 

3.2 	NMR Studies 

Once the amiloride free base procedure was completed, some experiments were carried 

out in order to identify if indeed the free base was obtained. First, the melting points of 

the amiloride free base product and of the starting amiloride HC1 were measured. There 

were considerable differences between these two melting points. For amiloride free base a 

melting point of 235°C was obtained, and for amiloride HC1 a value of 288°C was 

obtained, in accordance with literature values of 240-242°C and 285-288°C, 

respectively48,49. Attempts were also made to identify the amiloride free base using mass 

spectrometry interfaced with gas chromatography. This technique failed to release the 

drug from the column, even when different solvents with different polarities were used. 

Probably the compound stuck to the column and another column with different polarity 

should be used. Since it was not possible to change the column, infrared spectrometry 

was performed in order to identify the compound. The spectrum for amiloride HC1 

compares qualitatively with similar frequencies as shown in the literature". The 

amiloride free base spectrum presents almost the same vibrations as the amiloride HCl 

spectrum, except for the presence of a vibration at 770 cm-1  that is found in the spectrum 

of amiloride HCl and not in the free base. This vibration could be assigned to the NH 

rocking motion that could be present in the hydrochloride drug. All these experiments, 

measurements of melting points and infrared spectra, showed that the free base of the 

drug was obtained. 

Rotations about single bonds occur so rapidly that NMR spectrometers see 

protons in their average environment. By lowering the temperature, the rates of rotation 

about single bonds can be slowed down, and a NMR spectrometer could then see different 

environments for protons in different conformations. This does not mean that the 
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molecule is frozen into a single conformation, but that the period between 

interconversions is long enough for the NMR spectrometer to see one conformation or the 

other or both. The mixture of solvents chosen to run the NMR spectra was DMS0-

6d/methylene chloride deuterated (1/1.2). The cryosolvents could be brought to -50°C, 

and the solvent would remain liquid. Another requirement was that, once the drug was 

dissolved into the cryosolvent system and brought to -50°C, there should not be any 

In Table 9 is shown some mixture of solvents used with the results precipitation. 

observed. 

Table 9. Mixture of solvents carried out in order to find the most appropriate mixture to 
analyze the NMR spectra 

DMSO Methylene chloride Observations 

1 1 Frozen 

4 Frozen 

1 2 Not frozen 

1.5 Not frozen 

1 1.2 Not frozen 

DMF  Methylene chloride Observations 

1 2 Not frozen 

1 1 Not frozen 
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3.2.1 Spectra 

Spectra are shown in Figures 7-15 in Appendix B. For the proton NMR spectrum of 

amiloride HC1 at 20°C (Figure 7) the presence of three resonances can be seen, with 

chemical shifts of 7.3, 8.67, and 10.65 ppm. As the temperature is lowered, the resonance 

at 7.3 ppm starts to split into 4 resonances, and as the temperature is decreased, further 

the resonances get sharper, as is shown in the spectrum at -10°C in Figure 8, with 

chemical shifts of: 7.25, 7.34, 7.45, 7.93, 8.62, and 10.65 ppm. At -20°C (Figure 9) the 

resonances at 7.34 and 7.45 ppm start to converge into one resonance at 7.45 ppm, as it is 

shown in the spectrum at -30°C (Figure 10). This resonance starts to split again into two 

resonances at -40°C (shown in Figure 11), with chemical shifts of 7.45 and 7.5 ppm, 

which will merge again into one resonance at -45°C. All this behavior is still unexplained. 

More experiments should be performed in order to determine if the presence of two or 

more conformers of the molecule can be detected. Some examples in the literature can be 

found of similar behavior50,51, where this is attributed to the rotations about C-N bonds 

and the presence of two conformations due to this rotation. Amiloride also has C-N 

bonds, and rotations about this bond can result in the presence of two or more 

conformers. In addition, another cause could be the presence of intramolecular hydrogen 

bonds. When the temperature is lowered the hydrogen bonds are more likely to occur, 

and the NMR spectrometer can see the hydrogen in different environments. 

The 13C NMR spectra carried out for amiloride HC1 and its free base present a 

profile similar to that found in the work of Smith et al.27. In the proton NMR spectrum 

for amiloride free base at 19.6°C (room temperature), Figure 12, three resonances are 

present, with chemical shifts of 6.4, 7.3, and 8.65 ppm. When the temperature is lowered, 

four resonances appear which get sharper as the temperature goes down, with chemical 

shifts of 6.27, 6.73, 8.15, and 8.82 ppm, as can been seen in the spectrum at -20°C (Figure 

13). At -30°C, spectrum shown in Figure 14, another resonance begins to be observed at 

6.97 ppm. At -50°C (Figure 15) the first resonances start to split, but going lower than 
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this temperature causes the solvent to solidify and a considerable degree of noise appears. 

None of these resonances have yet been identified. Some additional experiments must be 

performed. Two-dimensional NMR techniques can be used tirst to assign most or all the 

carbon signals. Then with other two-dimensional techniques, it is possible to identify 

connectivities of proton and carbons. 



CHAPTER 4 

CONCLUSIONS AND RECOMMENDATIONS 

The unique feature of the models created by laser stereolithography compared to other 

molecular models is their ability to represent the molecular structure information obtained 

from accurate quantum mechanical calculations, representing a revolutionary new 

molecular modeling tool. The models created with stereolithography can be custom 

designed to suit the requirements of the user. These molecular models can serve as 

educational tools. They can be used in chemistry courses to assist in the learning about 

structures of molecules. Not only sighted students and researchers will benefit from these 

models, but also blind students and researchers can use them to understand geometries of 

molecules. These models offer accurate representations of molecules. This technique can 

be used to construct models of the transition state of a reaction, which would be 

impossible using standard molecular models because knowledge of the orientation and 

bonding of the substrate is required. In addition, this technique helps to enhance the 

communication between visually impaired and sighted researchers involving three-

dimensional concepts. Another important advantage of this method is the possibility for 

blind or visually impaired scientists and students to acquire important information on 

three-dimensional images and apply this to their scientific research. 

Future work should attempt to represent physical properties such as the 

electrostatic potential. This can be done by transforming images from the CAD program 

into mathematical functions and then translating them into a real model. In addition, 

larger molecular models such as proteins could be constructed. 

Based on the NMR studies, a decision about the conformers of amiloride HC1 and 

its free base cannot be made. The behavior presented by these compounds at low 

temperatures must first be explained. In order to accomplish this, more experiments are 

30 
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necessary. Another solvent, perhaps dimethylformamide, could be utilized to run NMR 

spectra in the same range of temperatures. This would permit us to know if the solvent is 

responsible for this behavior. Amiloride HC1 and its free base are very soluble in this 

solvent and could be cooled down to -50°C without precipitation. Another direction 

would be to do two-dimensional NMR spectroscopy. This data could give one the 

assignments for each proton and carbon in the molecule. 



APPENDIX A 

PICTURES OF SOME OF THE MODELS CREATED BY LASER 
STEREOLITHOGRAPHY 

Figure 3. Plastic models of amino acids analogs 
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Figure 4. Model of the complex of the reaction of f3-cyclodextrin with phenyl acetate 
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Figure 5. View of model of analog 18 displayed on a plastic block 
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Figure 6. View of solid model of analog 19 displayed on a plastic block 



APPENDIX B 

NMR SPECTRA FOR AMILORIDE HYDROCHLORIDE AND ITS FREE BASE 
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Figure 7. 1H spectrum of amiloride HCl at 20°C 



Figure 8. 1H spectrum of amiloride HCI at -10°C 



Figure 9. 1 H spectrum of amiloride HCI at -20°C 



Figure 10. 1H spectrum of amiloride HC1 at -30°C 



Figure 11. 1H spectrum of amiloride HCl at -40°C 



Figure 12. 1H spectrum of amiloride free base at 19.6°C 



Figure 13. 1H spectrum of amiloride free base at -20°C 



Figure 14. 1H spectrum of amiloride free base at -30°C 



Figure 15. 1H spectrum of amiloride free base at -50°C 
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