

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

SMALL COMPUTER SYSTEM INTERFACE (SCSI)
UNIVERSAL SERVICES

FOR THE TURBONET PARALLEL COMPUTER

by
Artak Ohan Melkonian

TurboNet is a parallel computer with shared-memory and message-passing hybrid

architecture. It employs two boards, with four digital signal processors (DSPs) each, and a

host FORCE SPARC CPU-2CE board with a SCSI bus.

Software has been developed in this thesis to provide SCSI services to programs

running on the DSPs. DSP programs can therefore fully control assigned SCSI devices at

the SCSI command level. Transfer control modifiers ensure compatibility with most SCSI

devices.

The software provides service for three SCSI access levels. The "su" SCSI universal

device driver is built into the host computer's kernel and is a gateway to the SCSI bus

from user contexts. The "hscsid" SCSI request server daemon is an interrupt driven link

between the DSP programs and the "su" driver. The Hydra SCSI utilities can be included

in programs to make SCSI programming easier.

SMALL COMPUTER SYSTEM INTERFACE (SCSI)
UNIVERSAL SERVICES

FOR THE TURBONET PARALLEL COMPUTER

by
Artak Ohan Melkonian

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

January 19%

APPROVAL PAGE

Dr. Sotirios Ziavras, Thesis Advisor 	 Date
Associate Professor of Electrical and Computer Engineering,
and Computer Science, NJIT

Dr. Constantine Manikopoulos, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Edwin Hou, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: 	 Artak Ohan Melkonian

Degree: 	 Master of Science in Electrical Engineering

Date: 	 January 1996

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1996

• Bachelor of Science in Computer Engineering,
State Engineering University of Armenia, Yerevan, Armenia, 1992

Major: 	 Electrical Engineering

This thesis is dedicated to
my beloved wife Jenny

ACKNOWLEDGMENT

I wish to express my true gratefulness to my thesis advisor, Professor Sotirios G.

Ziavras, who helped me to go through this research providing me his inestimable and

contributive support and guidance. Special thanks to Professors Constantine

Manikopoulos and Edwin Hou for their essential participance as members of the

committee.

I am sincerely thankful to the President of the Republic of Armenia Levon Ter-

Petrosian for providing continuous funding for this research.

I would like also to appreciate the support given by Professor Deran Hanesian from

my very first day at the NJIT.

Special thanks also to Christopher Jackson from Sun Special Projects for kindly

answering my questions about system level programming.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 	 1

1.1 Short Description of Small Computer System Interface (SCSI) 	 1

1.2 The TurboNet Parallel Computer 	 2

1.2 Motivation and Objectives 	 3

1.4 Outline 	 5

2 THE TURBONET: A MESSAGE-PASSING AND SHARED-MEMORY
HYBRID ARCHITECTURE 	 6

2.1 System and Interconnections Overview 	 6

2.2 The Texas Instruments TMS320C40 Digital Signal Processor 	 8

2.3 The Hydra Multi-DSP Boards 	 9

2.3.1 	Hardware Description 	 9

2.3.2 	The HydraMon Monitor 	 11

2.3.3 	Hydra Device Driver and Utility Library for Solaris 1 	 14

2.4 The Force SPARC CPU-2CE Host System: Hardware Overview 	 15

2.5 The Kernel and SCSI Device Driver Interface 	 17

2.5.1 	Solaris 1 Kernel and Device Drivers 	 17

2.5.2 	I/O Processing Path Up to the Device Driver Entry Points 	 18

2.5.3 	Summary of Standard Device Driver and Kernel Support Routines
Used 	 22

vii

TABLE OF CONTENTS
(Continued)

Chapter Page

2.6 The Sun Common SCSI Architecture (SCSA) 	 25

2.6.1 	Concept of a "Universal" SCSI Target Driver 	 26

3 THE TURBONET "SU" - SCSI UNIVERSAL DEVICE DRIVER FOR
SOLARIS 1 	 27

3.1 Overview 	 27

3.2 Configuring and Building a New Kernel with "su" SCSI Device Driver 	 30

3.3 Autoconfiguration and Device Driver Initialization During Boot 	 36

3.4 "SU" Universal SCSI Device Driver User's Guide 	 37

3.4.1 	Opening and Closing SCS Devices Through the "su" Device Driver 37

3.4.2 	"su" Device Driver Control Interface 	 39

3.4.3 	Description of the "su" Device Driver Control Requests 	 42

4 THE "HSCSID" - HOST LEVEL SCSI REQUEST SERVER DAEMON 	 59

4.1 The "hscsid" UNIX Daemon Process 	 59

4.1.1 	Overview 	 59

4.1.2 	The Operation Sequence 	 60

4.1.3 	Command Line Arguments 	 62

4.2 Hydra SCSI Requests 	 63

4.2.1 	Request Block Structure 	 63

4.2.2 	Request Codes 	 64

viii

TABLE OF CONTENTS
(Continued)

Page

4.3 	Accessing and Activating the "hscsid" Daemon 	 65

5 HYDRA SCSI UTILITIES AND DATA STRUCTURES 	 67

5.1 	Source Files 	 67

5.2 	Utility Routines and Definitions 	 69

5.2.1 Working with TMS320C40 Built-In Timer 	 68

5.2.2 DSP Control Functions 	 69

5.2.3 Terminal Output Functions
	

71

5.3 Useful SCSI Data Structures 	 73

6 PERFORMANCE RESULTS AND CONCLUSIONS 	 74

6.1 Performance Results 	 74

6.2 	Conclusions and Further Research Objectives 	 77

APPENDIX A C SOURCE OF THE "SU" SCSI UNIVERSAL DEVICE
DRIVER FOR SOLARIS 1 	 79

APPENDIX B C SOURCE OF THE "HSCSID" HOST LEVEL SCSI
REQUEST SERVER DAEMON 	 131

APPENDIX C SOURCES OF THE HYDRA SCSI UTILITIES 	 153

APPENDIX D EXAMPLE HOST-HYDRA PROGRAM PAIR USING
HYDRA SCSI SERVICES 	 170

REFERENCES 	 191

ix

Chapter

LIST OF TABLES

Table 	 Page

2.1 A sample listing of the /dev directory 	 19

2.2 Solaris 1 kernel cdevsw structure in /usr/kvm/sys/sys/conf h 	 20

2.3 An element in the cdevsw structure array in /usr/kvm/sys/sun/conf 	21

3.1 The most common SCSI extended sense keys 	 44

3.2 The Host Adapter capabilities 	 45

3.3 The SCSI transfer failure reasons 	 47

3.4 The SCSI transfer stages 	 49

3.5 Some SCSI transfer statistics 	 49

3.6 The SCSA packet flags 	 52

4.1 Hydra SCSI request data structure 	 63

6.1 Some performance results of the Hydra SCSI services in terms of elapsed time 	 76

LIST OF FIGURES

Figure 	 Page

2.1 The interconnection diagram of TurboNet 	 7

3.1 Operational flags in the uscsi flags field defined for the "su" driver 	 55

CHAPTER 1

INTRODUCTION

1.1 Short Description of Small Computer System Interface (SCSI)

SCSI is a local input/output bus primarily intended for connecting host computers to a

wide range of peripheral intelligent devices, including direct access devices (e.g. fixed and

flexible magnetic disks), sequential access devices (e.g. magnetic tape), processors,

printers, write-once-read-multiple (WORM) optical devices, CD-ROM optical disks,

scanners, optical memory devices, medium changer devices, and communication devices.

ANSI has defined the SCSI standard in its X3.13 I-19XX documents, where X3.131-1986

[1] is defined as SCSI-1, and X3.131-1990 [2] as SCSI-2.

A SCSI bus can connect up to 8 devices; however, one of them usually is a host

computer. Each device can have its own command set. Every SCSI device may consist of

8 logical units (LUN) addressed separately. SCSI devices are intelligent units capable of

understanding and performing standard sets of commands, returning detailed status

information and providing full control by controlling operation systems.

SCSI-1 has been defined as an 8-bit local bus with up to 5Mbyte/sec throughput and

supports only a subset of the device types mentioned above. SCSI-2 supports all of them

and provides a more sophisticated set of bus and device control facilities. There exist some

enhancements of the 8-bit SCSI-2. The Fast-SCSI provides a throughput of up to

10Mbyte/sec. The Wide-SCSI uses a 16-bit bus. The Fast-and-Wide SCSI can achieve up

to 20Mbyte/sec throughput.

1

SCSI has been used widely in midrange to small multi-user workstations (Sun, DEC,

IBM, Silicon Graphics, etc.) and some personal computers (primarily the Apple

Macintosh). In the PC market, SCSI comes as an advanced alternative to IDE (ATA bus)

interface, for users who want to take advantage of multiple devices on a single bus.

In general, a SCSI transfer is controlled by specific bus signals and their timing

combinations, that determine the following bus phases: BUS FREE, ARBITRATION,

SELECTION, RESELECTION, COMMAND, DATA IN/DATA OUT, STATUS and

MESSAGE. Messaging activities, taking place in the MESSAGE phase, define low-level

control and status exchange between a transfer initiator and a target. The initiator transfers

SCSI commands in the COMMAND phase as an opaque array of bytes, which are to be

interpreted by the target's processor. Data is transferred in DATA phases. The other bus

phases provide control of bus states, arbitration, and handshaking.

1.2 The TurboNet Parallel Computer

The TurboNet system is a parallel computer employing a hybrid architecture, i.e. it

possesses message-passing and shared-memory capabilities. Currently the system consists

of two Hydra boards, each of them containing four Texas Instruments TMS320C40

digital-signal processors (DSP), two VME bus analyzers, and a host SPARC system

running Solaris 1. All of these components are attached to a VME backplane.

The eight DSPs are connected as a hypercube, for the implementation of message

passing. However, all eight DSPs can access the shared memory as well.

The host system has a complete SPARCstation 2 architecture with an embedded VME

bus. Along with other standard SPARCstation I/O ports, the host system supports SCSI

buses.

1.3 Motivation and Objectives

Although TurboNet is a very powerful computational engine and can also run CPU/data--

intensive application programs, input/output of large amounts of data from the SCSI port

of the host system to the Hydra boards, and vice versa, is of very limited functionality. The

Hydra boards originally could not control dedicated SCSI devices, i.e. issue SCSI

commands, get status information and transfer data from the shared memory to the SCSI

bus and vice versa.

Before writing the software described in this thesis, the control and data flow in

general was as follows. The host program initialized all input data residing on the Solaris

controlled fixed disks, then downloaded the DSP program(s) and the data into the Hydra

boards via the VME bus and finally, ran the DSP program(s) and uploaded the results

from the boards onto the system disks.

As it could be easily seen, the scenario described above has several disadvantages. The

DSPs on the Hydra boards had been used as slave coprocessors of the master host

computer. The data had been kept on fixed disks using the UNIX filesystem, therefore the

DSP programs could not arbitrarily manage the data on their own dedicated disks.

Moreover, this approach would not allow the Hydra boards to fully control arbitrary SCSI

devices (scanners, printers, WORM or optical storage devices) on the command level.

4

The objective of this work was to develop software running on different levels of the

TurboNet system, enabling SCSI command-level custom control by the Hydra boards and

providing system-level SCSI services to programs running on the host or on the DSPs.

The first level of the SCSI custom support is a universal SCSI device driver embedded

in the SunOS kernel of the SPARC host system. It supports a flexible interface (specific

data structures and services) for user SCSI requests. The SCSI Universal "su" device

driver can support almost all kinds of SCSI devices, and the standard or vendor specific

commands associated with them.

The second level of the SCSI custom support is a host-side SCSI request server,

implemented as a UNIX daemon, which provides data structures and SCSI request forms

for application programs running on Hydra boards. It implements the host side of the host-

Hydra interprocess communication protocol, which is fully interrupt driven. It actually

serves as a link between the "su" SCSI universal device driver and the host-Hydra

program pairs. Due to this, the Hydra DSPs become the master initiators of SCSI

transfers.

The third level of the SCSI custom support contains a simple set of Hydra SCSI utility

functions and data structures. Only the basic calls are included; however, the open

architecture allows application programmers to add a variety of their own specific

functions. The access to the Hydra SCSI services is designed to be very easy and

straightforward for use and customization.

5

1.4 Outline

The thesis is organized as follows. Following this introduction, Chapter 2 briefly describes

the TurboNet system, including an overview of the TMS320C40 DSP and the Hydra

architecture, characteristics and the Hydra device driver and the library for Solaris 1. The

SPARC host system, the Solaris 1 kernel and the SCSI device driver interface overview

are also included. Chapters 3, 4 and 5 present three levels of SCSI support software: the

SCSI Universal device driver, the SCSI request server deamon, and the DSP SCSI

utilities, respectively. Chapter 6 gives some performance results, draws conclusions and

presents further research directions.

CHAPTER 2

THE TURBONET: A MESSAGE-PASSING AND
SHARED-MEMORY HYBRID ARCHITECTURE

This chapter presents the TurboNet parallel computer. The hardware overview of the

TMS320C40 DSPs, the Hydra boards, the host computer board and the VME backplane

is given. The Hydra device driver and the utility library for the Solaris 1 are introduced.

Short description of the Solaris 1 kernel and SCSI device drivers is also included.

2.1 System and Interconnections Overview

The base for the TurboNet system is a 21-slot 6U VME backplane with a power supply

and 2 bays for full-size I/O devices (e.g. fixed or flexible disks). The SPARC host board is

attached to the first slot of the VME backplane, and is configured as a VME system

controller. Two Solaris-controlled system disks and one Hydra controlled fixed disk are

attached to the SCSI port of the host board. The Sun monitor and keyboard are the

console of the host board. The system is connected to the campus network via an Ethernet

adapter.

The VME backplane contains also two VME-bus logic analyzers, which are controlled

by a DEC dumb terminal via a RS-232 port.

The main processing engine of the system consists of two (currently) Hydra boards,

which contain four TMS320C40 digital signal processors each. Both Hydra boards can be

6

7

accessed from the controlling VT220 terminal through their RS-232 ports. This is mostly

used for setting un hardware parameters and examining the memory.

8

2.2 The Texas Instruments TMS320C40 Digital Signal Processor

Texas Instruments TMS320C40 [3] DSPs are the main processing elements of TurboNet

and have the following primary features:

• Six 8-bit bi-directional half-duplex communication ports for high speed (up to

20-Mbyte) interprocessor communication.

• Six-channel DMA coprocessor for concurrent I/O and CPU operation, thereby

maximizing sustained CPU performance by alleviating the CPU of burdensome

I/O.

• High-performance DSP CPU capable of 275 MOPS and 320 Mbytes/sec of

data-transfer rate.

• Two identical external data and address buses supporting shared-memory

systems and high data rate, single-cycle transfers. There exist two 32 bit data

buses called the Global Bus and the Local Bus; each of them is capable of

addressing 2 Gwords (x32 bits) of address space for a total of 4 Gwords

addressable by each C40.

• On-chip analysis module supporting efficient, state of the art parallel processing

debugging with on-chip hardware breakpoints.

• Bootloader ROM, 512-byte on-chip program cache and dual-access/single-cycle

RAM (2 Kwords) for increased memory access performance.

• Separate internal program, data, and DMA coprocessor buses for support of

massive concurrent I/O of program and data throughput, thereby maximizing

sustained CPU performance.

9

2.3 The Hydra Multi-DSP Boards

2.3.1 Hardware Description

The Ariel Hydra [4] is a single-slot 6U VME card containing 4 TMS320C40 DSPs, with

two of them on the base board and two on the daughter-board. Each DSP owns two static

RAM banks on its local and global buses, and can access them without interfering with the

operation of the other DSPs. The static memory banks can be as large as 16K or 64K or

256K (the latter is only for DSPs on the base board) 32-bit words. For the current

configuration of TurboNet, the DSPs of the first Hydra have 64K static RAM each, while

the DSPs on the other board have 16K.

Each board can have a shared memory resource either as large as 1M, 4M or 16M 32-

bit words for DRAM configuration, or 128K to 1M 32-bit words for SRAM

configuration. The DSPs can gain access to the shared memory through the Internal

Shared Bus (ISB). All the DSPs requesting the ISB will get an access with rotating

priority. If the ISB is in use, a requesting device will be held in a wait-state until the

resources are available. However, the chips controlling the VME bus interface always can

take priority over the other requesters. The ISB arbitration logic changes the ownership

only when the current master is done using the bus, when the current master crosses a

DRAM page boundary, or when a DRAM refresh cycle occurs. The latter happens every

15µs, and the current ISB master loses the bus when DRAM control circuitry requests it

for a refresh operation. All the ISB requesters will be held in wait states until the end of

the refresh cycle, after which a device with the higher priority will become an ISB master.

10

Since the DRAM 'refresh cycle is not "transparent", because of the hardware design of

the Hydra board, there cannot be a continuous ISB access operation any longer than the

DRAM refresh period. Although this fact may only affect the ISB performance when on-

board masters access the bus, or the host accesses it through the Hydra device driver, the

use of the DMA on the host board can cause a serious problem.

The Hydra VME bus interface includes a VME Interface Controller chip (VIC) and a

VME Address Controller chip (VAC). These devices operate as a set, and provide a fully

functional interface between the VME bus and the ISB. The VIC chip translates the ISB

control signals to the equivalent VME control signals during the VME bus master cycles.

It also converts the VME control signals into the ISB signals when the Hydra is a VME

bus slave. The VIC can act as a VME interrupter and interrupt handler, and can operate as

a Slot 1 VME bus controller.

The second major device in the VME bus interface, the VAC, is a programmable

memory map address controller which works in conjunction with the VIC. It contains

programmable registers to allow the user to easily define memory maps for both the VME

address bus and the ISB address bus.

Every TMS320C40 DSP on a Hydra board is connected to the other three through a

20Mbyte/sec, 8-bit bi-directional ports, which are connected to each other without any

extra 'glue' logic. Since every DSP has six ports, the remaining three ports for each DSP

are brought to the front panel of the Hydra board for external connections. This allows

users to create custom configurations of message passing parallel machines. In our system,

11

these ports as used to create a hypercube parallel configuration with eight DSPs on two

Hydra boards, as shown in Figure 2.1.

The DSP bootstrap and initialization are performed by the DSP#1, which is the only

processor that can access the Boot EPROM and the EEPROM. When the Hydra board

powers up, the boot loader program resident in the DSP#1 starts the boot program in the

Boot EPROM, which runs hardware diagnostics, configures the Hydra internal registers,

the VME interface chips and boots other three DSPs through their communication ports.

Hydra boards keep their setup and operating parameters in the EEPROMs. Each

EEPROM contains such parameters as the register values for the Hydra internal registers

and the VIC/VAC, the DRAM size, the sizes of the local and global memories, the serial

port setup, etc.

2.3.2 The HydraMon Monitor

The DSP bootstrap procedure is a part of the HydraMon monitor program, which controls

the interaction of the Hydra boards with the outside world. It has three main sections:

startup, terminal and host. The startup section is the bootstrap procedure. The interactive

command-line type interface between users and the Hydra board through a dumb terminal

and RS-232 port are controlled by the terminal section. The user can configure the board,

and examine or modify the memory. The host section is the most important one, because it

handles all the communication between the Hydra board and the host computer through

the VME bus. The HydraMon on a 4-DSP Hydra board reserves 16640 bytes from the top

12

of the shared memory for the host section of the monitor. This space, beside containing

some control information, is used by some data transfer library routines.

HydraMon can service the following requests from the host system:

• BootADSP

Boots a DSP from a communication port with the monitor.

• CopyStuff

Copies data from the specified source to the specified destination. The data is

copied as 1-Kbytes parts.

• Run

Starts an execution at the specified address.

• Halt

Halts the program that is currently running and enters a dead loop inside the

monitor. Brings a DSP to a known state.

• HostIntNumber

Sets the VME interrupt number that is used with the trap 7 VME interrupt

service. This number originally resides in the Hydra device driver configuration.

• HostlntVector

Sets the VME interrupt vector that is used with the trap 7 VME interrupt

service. This number also originally resides in the Hydra device driver

configuration.

13

• DisableKeyInt

Disconnects the UART input data ready interrupt from the DSP 1 NMI. Actually

disables the terminal keyboard.

• EnableKeyInt

Connects the UART input-data-ready interrupt to the DSP 1 NMI.

• UserInt

Executes an interrupt handler service, that was previously registered by the DSP

user program. The user program enters the interrupt handler's entry point

address into the DSP trap table at the appropriate vector. The host can then

request UserInt with the trap number, which will execute the registered interrupt

handler routine. The user program can register up to four interrupt handlers at

the trap numbers 0x9 through OxC.

HydraMon also provides two services to the DSP programs:

• GetBoardlnfo

Activated by invoking trap 0x8. Returns a pointer to the hydra conf structure,

which is defined in hydra . h of the monitor source and contains the

configuration information for the Hydra board. Note that different revisions of

Hydra return pointers to different data structures, e.g. revision `E' and revision

which we currently have in our system.

• HostInt

During the initialization process, the host informs HydraMon which VME

interrupt vector and number to use. By invoking trap 0x7, the user can assert a

14

VME interrupt with the specified vector, which will be caught by the Hydra

device driver on the host system and will be delivered to a user process as a

UNIX signal.

The UserInt and Hostlnt HydraMon services are the key points of the interrupt driven

approach of the Hydra SCSI device driver.

2.3.3 Hydra Device Driver and Utility Library for Solaris 1

The VC4ODSP, the Hydra device driver, is a traditional UNIX device driver written for

SunOS and targeted for a Sun 3 or Sun 4 architecture. In general, the device driver can be

loadable for SunOS beyond 4.1.2, but it is not the case for our system, because the host

system runs a Solaris 1 (SunOS 4.1.3) with the '4c' kernel architecture, and has a non-

native VME bus extension. The VC4ODSP provides full control of the multiple Hydra

boards and has an interrupt service capability.

Several standard UNIX system calls, such as open () , close () , read (),

write () , mmap(), ioctl (), are used to interact with the Hydra device driver.

These system calls are fully described in the second section of the SunOS Reference

Manual [5]. Each DSP on the Hydra boards is presented as a separate character device

special file vc4 oxy in the /dev directory of the host system, where the x is a lowercase

letter (e.g. 'a', 'b') and represents the board number. The y represents the number of a

DSP in a board and can be from 1 to 4.

Most of the Hydra device-driver calls have their user friendly forms 	as the Hydra

library functions. These calls control DSP states, transfer data to/from the Hydra memory

15

and the special registers, map the shared memory, etc. The following library functions are

used in the host-level SCSI-request server daemon (see Chapter 5), and are fully described

in [6]:

c40 enint()

Enables Hydra-to-host interrupt generation and links a UNIX signal to a Hydra

interrupt.

c40_getinfo()

Returns information about a DSP.

c40 load()

Loads a TMS320C40 executable COFF format code to a DSP and extracts the

symbol table information from COFF.

c40 map shmem()

Returns a pointer to the Hydra's shared memory.

c40 reset()

Resets a DSP to its power-on state.

c40 run()

Causes a DSP to begin executing a program from a specified address.

c40 trap()

Causes a DSP to execute a specified software trap.

2.4 Force SPARC CPU-2CE Host System: Hardware Description

The Force SPARC CPU-2CE [7] is a complete SPARCstation 2 architecture

implementation with Sbus expansion on a single 6U VME bus slot. The system offers

DMA supported SCSI and Ethernet ports along with audio, keyboard/mouse, and two

16

serial channels with full modem support. The Sbus sockets allow the installation of any of

the over 300 available Sbus cards, such as graphics frame buffers.

The central processing unit is a 40-MHz SPARC (Scaleable Processor ARChitecture)

32-bit RISC chip set. At the 40-MHz, it has 28.5 MIPS integer performance and 4.2

MFLOPS floating-point performance. The board in our system has 64 MB RAM, and a

16K x 16 cache memory.

The DMA chip provides a DMA and data assembly-disassembly function for both the

Ethernet and SCSI interfaces. The DMA ASIC contains a 32-byte FIFO buffer for each

interface and performs a DMA in 16-byte bursts when the alignment and transfer length

permit.

The SCSI controller is a NCR 53C90A controller chip providing SCSI-1 functionality

and can transfer up to 5MB/sec in synchronous mode (2.5 MBytes/sec typically) and up to

3MB/sec in asynchronous mode (1.75 MBytes/sec typically). The SCSI data goes through

the D-channel of the DMA ASIC. The SCSI port features automatic termination

adjustment depending on external devices connected to it. The SCSI signals are brought to

the front panel and to the VME P2 connector for additional flexibility. Single-ended mode

is only supported. The host SPARC CPU-2CE board acts as a SCSI initiator, which can

control up to seven SCSI devices.

The VME bus interface of the SPARC CPU-2CE board is built using the Sun VME

chip, the S4-VME, which provides a complete 32-bit solution. The master and slave mode

operations, the VME bus interrupt service and the system controller functions are fully

17

implemented. The VME bus interface is controlled by a proprietary driver for Solaris 1.

This driver is necessary for the Hydra device driver operation.

2.5 The Kernel and SCSI Device Driver Interface

2.5.1 Solaris 1 Kernel and Device Drivers

All the I/O and special-purpose hardware devices in Solaris 1 are controlled by their

respective device drivers [11-13]. Device drivers can be built-into the kernel or be

loadable. While the Solaris 1 kernel is intended to provide an I/O, virtual memory

management and scheduling interface to user processes, i.e. isolate them from the

hardware, the device drivers usually provide certain interfaces to the kernel itself such as

standardizing the hardware access mechanisms, freeing it from device specific processing,

and providing ways to make arbitrary and portable hardware configurations using the

same kernel core.

In general, there are two types of Solaris 1 device drivers: structured or block, and

unstructured or character drivers. The block device drivers usually control devices that

can contain mountable filesystems. The kernel accesses these drivers using the buffer-

caching mechanism, which expects these devices to be random-accessible. As the name for

this type of drivers states, the transfers are done using blocks of data, because the actual

hardware devices, which are capable of containing filesystems, are usually disk devices

(fixed disks, CD-ROMs, even RAM-disks). Such devices act as and/or are block I/O

devices and allow a random access. Almost always, the block device drivers can perform a

18

byte-oriented or so called raw I/O, but that is only an imitation and is supported using the

same actual implementation for the block 1/0.

The character device drivers, oppositely, are intended to transfer byte-oriented data.

Examples of them are serial, printer, frame buffer, audio, network devices, etc. These

devices cannot contain filesystems because of the fact that they do not contain a random

accessible media. Character device drivers sometimes may contain routines and data

structures specific to the block drivers; however, this does not change their byte oriented

nature and it is done only because it is convenient to do so.

Developing Solaris I device drivers is a complex process which includes many

sophisticated issues such as conforming kernel requirements for a specific type of a driver,

working with the kernel resources, the virtual memory and the other device drivers, run-

time debugging, etc. Since the device drivers are parts of the kernel, which runs in the

supervisor mode, it is very easy to cause a damage to the system when running a buggy

code. Non-loadable drivers are especially hard to debug, because even after a little

modification of the driver code the kernel should be compiled, installed, and the machine

rebooted to see the changes, which takes a significant amount of time.

2.5.2 1/0 Processing Path Up to the Device Driver Entry Points

In the Solaris I environment, user processes usually gain I/O access using the standard

system calls, which can be applied to any file with appropriate access permissions. An 1/0

system call can be viewed as a special kernel routine, which runs in the supervisor mode,

may activate a certain device driver, perform any necessary I/O if possible, and return

19

data and a related status information. The caller process is suspended while' the system call

is being processed. The user requests to operate on regular files are carried out by the

kernel using its buffer cache mechanism, which is transparent to the user programs and

actually uses the block devices.

Solaris 1 maintains a system of "special" files, which represent the actual devices. Any

operation request on these "special" files will be converted into calls to the entry points in

respective device drivers, which, if the operation is permitted and feasible, will perform the

requested I/O. The "special" files are contained in the /dev directory and, like the regular

files, have their permission and owner settings. However, the i-nodes for these files

contain device specific information 	such as the major and minor numbers and the device

type (block, character, FIFO, or socket). The table below represents a sample listing of

"special" device files in the /dev directory:

Table 2.1 A sample listing of the /dev directory

crw-rw-rw- 1 root 111, 0 Jun 9 14:57 rsu0

crw-rw-rw- 1 root 111, 1 Jun 9 14:57 rsul

crw-rw-rw- 1 root 111, 2 Jun 9 14:57 rsu2

crw-rw-rw- 1 root 111, 3 Jun 9 14:57 rsu3

The first character in the permissions string is the device type (cc' stands for character

in the sample list above). All the other permission settings determine the device

20

accessibility. The third column represents the owner of the device. The fourth and fifth

columns contain the device major and minor numbers, and will be explained below. The

ninth column shows the device file names. Since these files contain special information,

they can only be created by the mknod command [5,10].

When a user process requests an access to a "special" file using the file name, the

kernel checks for the access permissions, and if the operation is permissible, retrieves the

device type information and the major and minor numbers from the file's i-node. The

major number is used then to allocate the device driver's entry points in the cdevsw or

bdevsw Solaris 1 kernel structure arrays [11], depending on the type of the device

(cdevsw is for character devices, bdevsw is for block devices).

Table 2.2 SunOS 4.1.3 kernel cdevsw structure in /usr/k-vm/sys/sys/conf.h

struct cdevsw

int 	(*d_open)();

int 	(*d close)();

int 	(*d read)();

int 	(*d write)();

int 	(*d _ioctl)();

int 	(*d reset)();

int 	(*d select)();

int 	(*d _mmap)();

struct streamtab *d str;

int 	(*d _segmap)();

};

21

The following piece is the cdevsw structure array element for "su" SCSI universal

device driver and is contained in the /usr/kvm/sys/sun/conf .c. As it can be seen

in this example, the "su" driver has only three operational entry points: su_open,

su_close and su_ioct1

Table 2.3 An element in the cdevsw structure array in /usr/kvm/sys/sun/conf.c

su_open, 	su_close, 	nulldev, 	nulldev, 	/*111*/

su_ioctl, 	nulldev, 	seltrue, 	0, 	0, 	0,

Then, the kernel calls the respective entry point function in the driver according to the

system call from the user process. This causes the driver to try to perform the necessary

operation. Note that the Sun SCSI Common Architecture (SCSA) implementation for a

`sun4c' Solaris 1 kernel also defines structures to keep the SCSI subsystem's own copy of

the entry points, the device initialization and attach routines, and some other SCSA

specific important configuration information.

There are also two standard routines, nulldev and nodev, that can be configured

instead of real driver entry points. The first one does nothing, thus it silently ignores the

call. The latter ignores the call also, but returns an error code. This is for calls that are to

be considered as errors for a particular device driver.

When calling an entry point function of a device driver, beside the other parameters,

the kernel passes also the minor number, which can be interpreted internally. The "su"

22

SCSI device driver uses this number to distinguish among the driver instances, i.e. since it

can control up to four SCSI devices, this number shows which SCSI device, and thus,

which driver instance the access is to. This can be clear when looking at Table 2.1. Each

of the rsu* "special" files can be configured to represent a separate SCSI device, and, for

example, an access to the `rsul' will generate a call to the "su" driver with minor number

1 (shown on the fifth column of the second row of Table 2.1), and will activate the driver

instance 1 with the assigned SCSI device.

2.5.3 Summary of Standard Device Driver and Kernel Support Routines Used

The following Solaris 1 standard device driver routines are used in the "su" SCSI universal

device driver, and are fully described in [11-13]. Note that these are not library routines,

and are to be written by the device driver programmer. By a convention, the device driver

routines are named as xx_routine () , where the xx is a short descriptor name chosen

for a driver, e.g. an attachment routine for the "su" driver would be su_attach () . This

also assures uniqueness of the symbols when linking the kernel.

su_attach()

Does a boot-time, device-specific initialization. Sets up and initializes the local

data for the driver instance. It is a driver entry point.

su_close()

Closes the access to the device, resetting the local data. It is a driver entry point.

su_identify()

Requests an identification information from the SCSI device and initializes the

SCSA structures accordingly. It is a driver entry point.

23

su_ioctl()

Performs requested control operations according to request codes and parameters.

This is the main SCSI command and data transfer facility for the "su" device

driver. It is a driver entry point.

su_minphys()

Determines the "chunk" size for transfers done by parts, when transfers should not

tie up too much system resources. The routine returns a size less then or equal to

the maxphys kernel label.

su_open()

Opens the access to the device, initializing the local data for the access time.

Assures that the SCSI device is used by one user process at a time. It is a driver

entry point.

su_strategy()

While used in block device drivers as a main transfer entry point, it is not an entry

point in the "su" device driver and is used with conjunction with the physio ()

kernel support routine.

The following Solaris I standard kernel support routines are also used in the "su"

SCSI device driver and are fully described in [11].

copyin()

Moves data from the user to the kernel space.

iodone()

Indicates the I/O complete condition by setting the B DONE flag in a buffer header

and wakes up a waiting process.

24

iowait()

Waits for the 1/0 to complete and does a sleep on a calling process.

kmem_zalloc()

Allocates a memory space from the kernel heap and fills with zeros.

kmem_free()

Returns an allocated space to the kernel heap.

panic()

Dumps a kernel core image, prints a message and trace information, and reboots

the machine in case of a fatal error.

physic()

While usually it is used as block I/O service routine for raw (byte oriented)

transfers, in the "su" driver it is used as a convenient mechanism to lock down user

memory pages when performing a transfer and breaking down the data into

`chunks' 	with a size determined by the su_ minphys () . 	Calls

su_strategy().

printf()

Kernel printing function, which outputs directly on the console. Mainly used for

error messages.

sp16()

Sets the processor priority level to the highest (15). Used to start a critical section.

splx()

Resets the processor priority level. Used to end a critical section.

Note that the "su" device driver uses also some special kernel data structures (e.g.

buf and uio), which are described in detail in [10,12,131

25

2.6 The Sun Common SCSI Architecture (SCSA)

The Solaris 1 SCSI device driver interface for `sun4c' and `sun4m' kernel architectures is

called Sun Common SCSI Architecture (SCSA) [9, 10, 12, 13]. The SCSA for Solaris 1 is

essentially the same for Solaris 2.0 and 2.1. However, Solaris 2.2 and higher versions have

some important extensions.

In the SCSA definition, the Solaris SCSI subsystem has two levels. The lower level is

the Host Adapter driver (HA), which has such important functions as controlling the SCSI

chip, following the SCSI low-level protocol, reserving the DMA resources, if needed, and

transferring data and SCSI commands to/from SCSI devices. However, the actual SCSI

data and commands are only an opaque array of bytes for the HA. It cannot perform any

device-specific processing nor handle any user requests directly. The HA, depending on

the OS version, can provide some advanced services like an Automatic Request Sense and

a Tagged Command Queuing. The role of the HA is to provide services to the higher-level

Target drivers and to handle their transfer requests concurrently.

The higher-level Target driver actually controls a SCSI device in a specific way

corresponding to the type of the device. For example, the "sd" device driver Solaris 1 is

the primary Sun SCSI fixed disk device driver, which handles all the block transfer

requests from the kernel using some optimal disk access strategy. Target drivers never

concern about actual hardware transfer details, however, they are responsible for creating

meaningful command and data packets for the controlled SCSI device, and they make

control decisions based on the returned status information both from the HA (about lower

level transfer details) and from the SCSI device itself (e.g. media specific errors). The `sd'

26

Sun disk driver, since it deals with the data sensitive system disks, can perform a global

action on the SCSI bus also i.e. request to reset the whole bus in some controlled fashion.

2.6.1 Concept of a "Universal" SCSI Target Driver

Although most of the SCSI device drivers for Solaris I perform device-specific processing

themselves, it is possible to write a driver which does not perform any specific processing

itself, but has a certain way to accept arbitrary SCSI commands from a user process, pack

them properly in a recognizable format and pass them to the HA for a further transfer.

This "universal" Target driver can accept also a special control information such as

adjusting the transfer parameters, the timeout values, setting the HA capabilities, etc. The

"su" SCSI "universal" device driver, which is described in the next chapter, is such a

driver. The complete lack of a decision making capability of the "universal" driver may

cause some difficulties, but it is still possible to give the driver some control authority

without taking away the full freedom of the custom control of the SCSI devices.

CHAPTER 3

THE TURBONET "SU" - SCSI UNIVERSAL
DEVICE DRIVER FOR SOLARIS 1

The "su" - the SCSI universal device driver for the TurboNet hybrid-architecture parallel-

processing system is described in this chapter. The second section describes the

configuration and compilation process to create a new kernel with a built-in "su" device

driver. A comprehensive reference for the driver-specific system calls and the control

commands is given. The complete source code of the device driver can be found in

Appendix A.

3.1 Overview

The "su" is a SCSA compliant dev_info style SCSI device driver, and uses data and

control flow structures for the autoconfiguration process specific to the Sun Openproms

interface. The driver is designed to support up to four SCSI devices, although there are

not any strict limitations, and, after a very minor change, it can be compiled to handle

more SCSI devices. The driver is built into the kernel and initializes during the booting

process.

As it was described in the previous chapter, the "su" is a universal SCSI device driver,

thus, its main function is being a link between the user process and the actual SCSI device.

Almost all types of SCSI devices can be accessed and controlled by the driver, assuming

27

28

that the user process knows what specific SCSI command and status information set

should be used to insure the proper operation of the device.

In general, the driver accepts SCSI commands, checks for the integrity and validity,

and packs and passes them to the Host Adapter (HA), which then sends them to the actual

SCSI device. As it was mentioned, HA itself does not interpret the information contained

in SCSI commands, which are treated as opaque arrays of bytes. After the completion of

the transfer, the "su" driver returns to the user process the state and status information

from HA about the actual physical transfer, as well as directly from the SCSI device the

SCSI status and sense information.

Due to the specific nature of SCSI devices, only one user process can have access to a

particular SCSI device using the "su" driver. All other accesses are denied until the

process holding the ownership of the driver instance and, thus, the actual device, closes

and releases it.

Solaris 1 defines a special user process interface - uscsi, for accessing some specific

features of certain SCSI drivers. For example, the Solaris "sr" driver, which controls SCSI

CD-ROM devices, has an uscsi interface to access musical compact disks, and

implements a command set to control them.

For the "su" universal SCSI device driver, the uscsi interface, which is implemented

as a ioct1 () system call [5, 10-13], is the main transfer mechanism (see Section 3.4.3),

and has some driver-specific extensions. Since the operation of SCSI devices is controlled

by specific command and data sets, it would not make sense to implement 'read' and

`write' calls for a universal SCSI device driver, because for every transfer there is much

29

more information to be passed to the device than only the data pointers and sizes. Instead,

the ioct1 () interface is used, which is conveniently programmable on the driver and the

user sides, and, beside that, allows an easy extension of the functionality of the device

driver. In addition to uscsi, the ioct1 	interface is also used to implement all the

driver specific control and set/get functions.

The "su" universal SCSI device driver has the following primary features:

• Controls up to four SCSI devices independently.

• Can support a wide range of SCSI devices including, but not limited, direct-

access, sequential-access, printer, processor, scanner, WORM, CD-ROM SCSI

devices, etc.

• Supports Group 0, 1 and 5 standard and vendor unique SCSI commands [1,2].

• Performs user-selectable continuous or multi-part transfers of block or byte

oriented data, utilizing the DMA facility of the SPARC host board, and using a

special block addressing mechanism for the multi-part transfer type when sending

SCSI commands with relative block addressing.

• Retries the unsuccessful SCSI commands, if enabled, up to 256 times.

• Can utilize the SCSA Tagged Command Queuing mechanism.

• Dedicated REQUEST SENSE SCSI command mechanism for fast and easy use.

• Provides an interface to fully control the transfer parameters, including the

selection of block or byte oriented, as well as the continuous or multi-part

accesses, the programming of the data part size, the transfer timeout rate, the

30

HA packet flags, the number of retries and the logical block size. Can test and

modify the HA capabilities.

s If requested, returns a detailed status information about the last SCSI transfer.

3.2 Configuring and Building a New Kernel with the "su" SCSI Device Driver

In order to use the "su" device driver in the Solaris I environment, a new kernel should be

built and installed. This process is quite straightforward and involves the following steps

(assuming that the users have some kernel configuration experience, the Solaris 1 object

code license and a default system directory/file structure):

I. All the SCSI devices that are to work with the "su" driver should be connected

to the system SCSI bus(es), should have unique SCSI IDs (0 to 6) and the

devices at both ends of the SCSI chain should be properly terminated (see the

installation and user manuals for the respective SCSI devices and the SPARC

system). The target ID numbers of the devices should be noted for further use

in Step 3.

Example: The user is connecting a SCSI fixed disk (ID = 4, logical unit =

0) to the first SCSI bus of the system, and a SCSI scanner (ID = 1, logical

unit = 0) to the second SCSI bus following the requirements above.

2. Only the "superuser" can perform the system reconfiguration and, therefore,

"root" access privileges are required.

31

3. In the /usr/sys/sun4c/conf/ directory, a new kernel configuration file

should be created making a new copy of the last one, but with some new name

NEWCONFIG. The new file should contain records about newly added SCSI

devices also. The section for a particular SCSI bus in the system starts with

keywords scsibusn at esp, where n is the number of the SCSI bus

starting from O. Several lines may follow the latter line, which define SCSI

device assignments to the system SCSI drivers and their instances. For

example, the line disk su0 at scsibus0 target 4 lun 0 defines

that the SCSI device with ID = 4 and logical unit = 0 (target 4 lun 0) on

the first SCSI bus (scsibuso) is to be controlled by the first instance of the

"su" driver (suo). All the newly added SCSI devices should be defined

following that format.

Example: Assume the last kernel configuration file is HYDRA, therefore

the new one may be SU-HYDRA, which is an exact copy of HYDRA, but

has lines commented and added:

In the section starting with scsibuso at esp, comment a line and

add another one:

tape st0 at scsibus0 target 4 lun 0

disk su0 at scsibus0 target 4 lun 0

And in the section starting with scsibusi at esp, comment a line

and add another one too:

32

disk sd5 at scsibusl target 1 lun 0

disk sul at scsibusl target 1 lun 0

4. In the /usr/sys/sun4c/conf/ directory, the file files should be backed

up, and the original should be modified adding a line to define the source code

path of the "su" driver, i.e. just after the line:

scsi/targets/st.c 	optional su scsibus

add a line:

scsi/targets/su.c 	optional su scsibus

Example: Copy the file files in the /usr/sys/sun4c/conf/

directory to files .nosu and modify the original as described above.

The actual C source code of the "su" device driver consists of three text files -

su.c, sudrv.h and sudef.h, which should be copied to the

/usr/sys/scsi/targets directory for further compilation. It is preferable

also to have a read-only copy of the sudef .h include file in the

/usr/include/scsi/targets/ directory.

6. The file conf .c in the /usr/sys/sun directory, which contains the bdevsw

and cdevsw structure arrays, described in the last chapter, should be backed

up and the original should be modified to contain a cdevsw structure specific

to the "su" driver. First of all, in the file conf . c just before the line:

struct cdevsw 	cdevsw[)

33

the following lines should be added:

#include "su.h"

#if NSU > 0

extern int su_open(), su_close(), su_ioctl();

#else

#define su_open 	 nodev

#define su_close 	nodev

#define su_ioctl 	nodev

#endif

Afterwards, the following lines should be added just after the last element

of the cdevsw structure array but before the concluding curly close brace:

su_open, 	su_close, 	nulldev, 	nulldev,

su_ioctl, 	nulldev, 	seltrue, 	0, 0, 0,

Note the number of the new array element in the cdevsw structure array,

which will be used in the next step. The numbers for the standard array

elements are usually given in the file included in the C language comment

brackets, e.g. /*107*/. The number of the newly added element can be

easily determined by adding one to the given number of the preceding element.

The resulting number is the major number of the "su" driver (see Chapter 2).

Example: Copy the file conf . c in the /usr/sys/ sun/ directory to

conf . c . nosu and modify the original as described above, noting the

major number, which is assumed to be 111 in this particular example.

34

7. The shell script MAKEDEV. su taking the major number as a parameter should

be executed in the /dev/ directory, and will create four device "special" files

named rsu0 - rsu3, which will be used to access the driver and the actual

SCSI devices. The files rsu0 - rsu3 are assigned 0 to 3 minor numbers,

respectively.

Example: Copy and execute MAKEDEV. su ill in the /dev/ directory,

where 111 was the major number from the previous step. The /bin/ls -

1 /dev/rsu* command will show the newly created "special" files with

their respective major and minor numbers.

8. The /usr/kvm/config NEWCONFIG command should be executed in the

/usr/sys/sun4c/conf directory, where NEWCONFIG is the name of the

newly created kernel configuration file from Step 3. It will result in creation of

the /usr/sys/sun4c/NEWCONFIG directory, which will have everything

necessary inside (object and some C source files) to build a new kernel with the

embedded "su" device driver.

Example: Execute /usr/kvrn/config SU-HYDRA in the

/usr/sys/sun4c/conf directory. Upon success, it will create the

/usr/sys/sun4c/su-HYDRA directory, the contents of which can be

viewed by executing the commands:

cd /usr/sysisun4c/SU-HYDRA

/bin/ls -1.

35

9. A new kernel is created by executing the /bin/make command in the

/usr/sys/sun4c/NEWCONFIG directory. The new vmunix kernel file will

have the same configuration as the previous working one; however, it will have

the embedded "su" SCSI device driver also.

Example.: Change directory to /usr/sys/sun4c/HYDRA, and execute

the /bin/make command. After some processing, it will create a new

vmunix kernel file.

10. The remaining task is copying the new kernel file into the root directory,

previously renaming the old one for an emergency and booting the machine.

The following sequence of commands will be the safest (NEWCONFIG is the

name of the newly created configuration and the object files directory):

/bin/cp /usr/sys/sun4c/NEWCONFIG/vmunix /vmunix+

/bin/cp /vmunix /vmunix-

/bin/mv /vmunix+ /vmunix

/usr/etc/shutdown -r now

The last command will reboot the machine with the new kernel. If

hardware and software setup is done without any mistakes, the machine will

boot, and the kernel will start the "su" driver too, which will print the type and

vendor information about the SCSI devices assigned to it.

36

3.3 Autoconfiguration and Device Driver Initialization During Boot

Each time the kernel with the embedded "su" device driver boots, and there are one or

more SCSI devices configured to be controlled by the driver, it calls the

su_identify() entry point function of the "su" driver for each configured device to

check the existence of it, and possibly to get inquiry information (see Appendix A for the

source code). The kernel learns about the device driver entry points from the array of the

SCSA scsi conf structures, which contain a basic configuration information about each

SCSI device, such as HA and the target device driver entry points, the SCSI ID, the

logical unit number and the SCSI bus number the device resides on. The driver entry

points are represented by a pointer to the kernel dev_ops structure [10,12,13].

When calling the su_identify() function, the kernel passes a pointer of a

scsi device SCSA structure [10,12,13] as a parameter. This structure initially contains

only the necessary information about the SCSI ID and logical unit number of the device to

be controlled, and a pointer to the next similar structure for another SCSI device in the

system. Actually, SCSA links all the scsi_device structures for all the configured

SCSI devices through these pointers, where the first structure in this chain is pointed by

the sd_root global kernel variable.

The su_identify() function, using the supplied information, tries to connect the

actual SCSI device and check its status. The SCSA library scsi_slave() routine is

intended for this task. It tries to remove the SCSI UNIT ATTENTION condition of the

device, most probably occurred just because of the recent SCSI bus reset during the boot

process, and tries to send a SCSI INQUIRY command to get some type and vendor

37

information about the device. Depending on the return code of the scsi_slave ()

routine, the rest of the su_identify() function either initializes the driver instance data

for the particular device and marks the device present by notifying the kernel, or, when the

SCSI device does not respond (it may be off or disconnected), marks it absent, which

makes the kernel to deny access requests from user processes on the corresponding

"special" file, which represents the actual SCSI device.

In the case of success, the suidentify() function also prepares a SCSA

scsipkt structure, intended for a special procedure that quickly sends a SCSI

REQUEST_SENSE command [1,2], which is assumed to be used much during a typical

device operation. The SCSI REQUEST_SENSE command usually reads a useful

extended state information, when the device returns a SCSI CHECK CONDITION

status.

3.4 "SU" Universal SCSI Device Driver User's Guide

The information in this section is the complete reference of the "su" device driver function

calls as well as the related parameters and options. All these calls can be used from the

user context, assuming that device "special" files have proper access permissions for a

particular user ID.

3.4.1 Opening and Closing SCSI Devices Through the "su" Device Driver

In order to open an access to a particular SCSI device controlled by the "su" device

driver, a user program should make an open () system call [5], which, if the access is

38

possible, will return a positive device descriptor. The path parameter should specify the

device "special" file corresponding to the desired SCSI device. The flags parameter can

be one of the following two values:

0 RDWR

The SCSI device can be opened for the read and write operations.

0 RDONLY

Any data transfer from a user memory buffer to the actual SCSI device is not

allowed; however all the other types of operations are allowed.

Note that the latter flag will only block the operations involving actual data transfer to

a device on the SCSI bus, and will not affect such operations as setting parameters of the

driver instance, or sending SCSI commands to a device.

As it was mentioned before, a "su" driver has an exclusive access lock facility, which

does not allow the reopening of an already opened device. This is done because of the

specific nature of SCSI devices, which use complex control mechanisms. The device can

be released by the c lose () system call, which takes the device descriptor as a parameter

and closes the access.

In case of errors, the open () system call returns -1 and sets the errno global

variable to indicate the error. The following error conditions may occur:

ENXIO

The SCSI device cannot be found.

EBUSY

The SCSI device has been already opened.

39

3.4.2 "su" Device Driver Control Interface

The "su" device driver defines a special custom control facility for SCSI devices. It not

only provides an interface for sending SCSI commands to a device and initiating transfers,

but also for fine tuning the transfer parameters, and for performing utility functions. All

the mentioned operations are implemented as requests for the ioctl() system call, which

is well suited for these purposes.

In order to use the functions described below, a user program must include the

/usr/include/scsi/targets/sudef.h file into the source code. This file includes

and defines all the data structures and definitions necessary for taking a full advantage of

the "su" device driver capabilities (see Appendix A). Since the contents of this file are the

only "su" specific user interface to the device driver, every statement will be explained

thoroughly.

The sudef .h file includes the following constant values, which mostly define some

limits on the parameters that the control requests use:

SU_SENSE_LENGTH

Lngth of the SCSI extended sense (equals 16).

SU_MAXUNIT_NUM

Maximum number of the driver instances, i.e. the SCSI devices controlled by

the "su" driver (equals 4).

SU_STATUS_LEN

Length of the returned SCSI status (equals 1).

SU_DRIVER_VER

Current version number of the "su" device driver.

40

SU NUM RETRIES

Default number of retries of an unsuccessful SCSI command (equals 16). The

actual number of retries can be changed using the su_SET_RETR_ NUM ioctl

request.

SU_MAX_NUM_ RETRIES

Maximum number of retries of an unsuccessful SCSI (equals 256).

SU MAX CHUNK SIZE

Maximum size of a data part when performing a multi-part data transfer

(equals 262144). The actual part size can be changed using the

SU_SET_CHUNK_SIZE ioctl request.

SU_MIN_CHUNK_SIZE

Minimum size of a data part when performing a multi-part data transfer (equals

system logical block size DEV_BSIZE, which is 512).

SU MAX TIME RATE

Maximum timeout rate (equals 10). The timeout rate and the ioctl request

associated with it will be described below.

SU_MAX_CBD_LEN

Maximum size of a SCSI command accepted, limited by the Group 5

commands (equals 12).

The "su" device driver implements 13 ioctl requests, which provide a full control of

the assigned SCSI device as well as the transfer and the access parameters. The generic

form of the C language statement to issue an ioctl request to the "su" driver is:

err = ioctl(dev, SUXXXXX, data ptr);

41

where dev is the device descriptor, returned by a previously called open () system call,

and indicates that this ioctl () system call is to refer to a particular SCSI device. The

su_XXXXX parameter is the defined keyword of the request, and the data_ptr is the

pointer to the data structure corresponding to the request. In most cases, the device driver

uses certain fields of the structure pointed at by the data_ptr to perform the request

and/or fills them with the resulting values when returning. The return value of err for a

successful ioctl() call is 0, while the value of -1 indicates error and the errno global

variable is set to indicate the type of it. The following error conditions are possible:

ENXIO

The SCSI device cannot be found.

ENODEV

The SCSI device is not open.

EFAULT

Bad address (usually a null data pointer).

EINVAL

Invalid argument or argument is not in its range.

ENOTTY

Invalid request code.

In addition of these, the USCSICMD and su_REQUEST_SENSE request keywords,

since they actually transfer data through the SCSI bus, may return additional error

conditions, which will be noted when describing each keyword.

42

3.4.3 Description of the "su" Device Driver Control Requests

The comprehensive description of the control requests follows, which includes the defined

keyword of the request, the related data structure, if applicable, and the description of the

operation. For a correct operation of a control request, a pointer to a properly allocated

data structure, given in the "Specific Data Structure" section of a request description,

should be passed as the third parameter (data_ptr) of the ioct i () system call,

Request Keyword:

SU RESET DEV

Specific Data Structure:

none

Description:

Resets the SCSI device to its initial state.

Request Keyword:

SU_GET_INQ_DATA

Specific Data Structure:

struct scsi_inquiry

Description:

Returns the inquiry data about the device type, the product name, the revision number,

the vendor information and the other device specific parameters acquired during the

device driver initialization (see the section 3.3). The format of the inquiry data is

described in [1,2], and the definition of the scsi_inquiry SCSA structure can be

43

found in the /usr/sys/scsi/generic/inquiry.h file in 	a Solaris 1

environment.

Request Keyword:

SU REQUEST SENSE

Specific Data Structure:

struct scsi extended sense

Description:

Sends the SCSI REQUEST SENSE command to the device and returns the SCSI

extended sense information for the SU SENSE LENGTH bytes. The format of the

extended sense data is described in [1,2], and the definition of the scsi sense

SCSA structure can be found in the /usr/sys/scsi/generic/sense.h file in a

Solaris 1 environment.

This request is usually sent, when, as a result of the previous SCSI operation, the

device responded with the SCSI CHECK_ CONDITION status. Since this situation

happens quite frequently, it is convenient to have a fast built-in mechanism for

requesting the sense information without the need of forming a new SCSI command

for this purpose and sending it from a user process.

Usually, when returning the sense, the SCSI device sets the sense key field of the

extended sense data format to an appropriate condition code. The following is the list

of the most common sense keys, although every vendor can define its own ones

depending on the type of the device or the operating modes.

Table 3.1 The most common SCSI extended sense keys

Condition 	 Hex Code

Recoverable Error 	0x01

Not Ready 	 0x02

Medium Error 	 0x03

Hardware Error 	0x04

Illegal Request 	 0x05

Unit Attention 	 0x06

Write Protect 	 0x07

Blank Check 	 0x08

Vendor Unique 	0x09

Copy Aborted 	 0x0A

Aborted Command 	0x0B

Equal 	 0x0C

Volume Overflow 	0x0D

Miscompare 	 0x0E

Reserved 	 0x0F

44

45

Request Keyword:

SU GET CAP

Specific Data Structure:

struct su_dev_cap {

int 	cap;

int 	value;

};

Description:

Gets a value of the requested capability parameter of HA for the SCSI device. The HA has

several operating parameters called capabilities. In order to get the value of the particular

capability, the user program should set the cap field of the su_dev_cap structure to

the number of the capability and perform the request. If the call is successful, the driver

will return the capability value set in the value field.

Table 3.2 The Host Adapter capabilities

SCSI_CAP_DMA_MAX 0

SCSI_CAP MSG OUT 1

SCSI CAP DISCONNECT 2

SCSI CAP SYNCHRONOUS 3

SCSI CAP WIDE XFER 4

SCSI CAP PARITY 5

SCSI CAP INITIATOR ID 6

SCSI_CAP_UNTAGGED_QING 7

SCSI CAP TAGGED QING 8

46

Request Keyword:

SU SET CAP

Specific Data Structure:

struct su_dev_cap {

int 	cap;

int 	value;

};

Description:

Sets a value of the requested capability parameter of HA for the SCSI device.

For information about the HA capabilities, refer to the description of the

SU_GET_CAP control request. In order to set the value of the particular capability, the

user program should set the cap field of the sudevcap structure to the number

of the capability, as well as the value field to the desired value for it, and perform

the request. If the system call is not successful for any reason, it will return -1 with

errno set to EINVAL.

Note that not every HA capability can be altered. Since the capabilities may affect

the operation of the low-level SCSI protocol, a great care should be taken when

modifying the system set capabilities.

47

Request Keyword:

SU GET RESULTS

Specific Data Structure:

struct su_results {

long 	resid;

u char reason;

u char state;

u char statistics; }

 ;

Description:

Gets detailed state and status information about the last SCSI transfer. The fields of

the su_results structure represent actual values returned by HA. Thus, having this

information, the user program can keep track of the actual transfer process and make

appropriate decisions.

The resid field of the su_results structure returns the number of data bytes

not transferred. After a successful transfer, this field should be equal to 0. Another

important status indicator of the SCSI transfer is the reason field, which shows the

reason of a SCSI transfer failure, if any. The value of 0 means a successful transfer.

The reason field can show the following failure reasons defined in the

/usr/sys/scsi/scsi_pkt.h file in a Solaris 1 environment:

Table 3.3 The SCSI transfer failure reasons

Reason 	 Code Description

CMDCMPLT 	 0 	No transport errors- normal completion

48

CMD_INCOMPLETE 	I 	Transport stopped with not normal state

CMD_DMA_DERR 	2 DMA direction error occurred

CMD_TRAN_ERR 	3 	Unspecified transport error

CMD_RESET 	 4 	SCSI bus reset destroyed command

CMD_ABORTED 	5 	Command transport aborted on request

CMD TIMEOUT 	6 Command timed out

CMD_DATA_OVR 	7 Data Overrun

CMD_CMD_OVR 	8 Command Overrun

CMD_STS_OVR 	 9 Status Overrun

CMD_BADMSG 	 10 Message not Command Complete

CMD_NOMSGOUT 	11 Target refused to go to Message Out Phase

CMD_X1D_FAIL 	 12 Extended Identify message rejected

CMD_IDEFAIL 	 13 Initiator Detected Error message rejected

CMD_ABORT_FAIL 	14 Abort message rejected

CMD_REJECT_FAIL 	15 Reject message rejected

CMD_NOP_FAIL 	16 No Operation message rejected

CMD_PER_FAIL 	17 Message Parity Error message rejected

CMD_BDR_FAIL 	18 Bus Device Reset message rejected

CMD_ID_F AIL 	 19 Identify message rejected

CMD _ UNX _ BUS _FREE 	20 Unexpected Bus Free Phase occurred

49

The state field reflects the actual stage of the low-level SCSI transfer that HA

was in when the failure occurred, if any. As far as HA pi-oceeds with a SCSI transfer,

it fills the corresponding bits of an internal variable, which then is represented by the

state field after the transfer. The value of 0x1f means a successful transfer. The

Solaris I environment defines the following stages of the low level SCSI transfer:

Table 3.4 The SCSI transfer stages

Stage 	 Hex Code Description

STATE GOT BUS 	 0x01 	SCSI bus arbitration succeeded

STATE GOT TARGET 	0x02 	Target successfully selected

STATE SENT CMD 	 0x04 	Command successfully sent

STATE XFERRED DATA 	0x08 	Data transfer took place

STATE GOT STATUS 	0x10 	SCSI status received

The statistics field adds some information to the main status given by the

previous fields. Only the following values are defined in the Solaris 1 environment:

Table 3.5 Some SCSI transfer statistics

Event
	

Hex Code Description

STAT_DISCON
	

0x1 	Command experienced a disconnect

STAT_SYNC
	

0x2 	Command did a synchronous data transfer

STAT PERR
	

0x4 	Command experienced a SCSI parity error

50

Request Keyword:

SU SET CHUNK SIZE

Specific Data Structure:

long chunk size

Description:

Sets the size of the part for the internal part-by-part transfer option. This size should

be in multiplies of the device logical block size, if using the block transfer option. The

lower and upper limits for the size are set by the SU_MIN_CHUNK_SIZE and

su _ MAX _CHUNK SIZE constant values, respectively. The part size initially is set to

the system default size, and can be reset anytime by issuing the

su _ SET _CHUNK SIZE request with a 0 argument.

Request Keyword:

SU SET RETRY NUM

Specific Data Structure:

int retry_num

Description:

Sets the number of retry operations for a failed SCSI command. If set to 0, no retries

will be performed. The upper limit for this number is the SU_SET_RETRY_NUM

constant value.

Request Keyword:

SU GET SCSI ID

51

Specific Data Structure:

struct su_scsi_id {

u char bus_id: 4,

u char dev_id: 4; }

Description:

Returns SCSI ID information about the controlled device. The bus id field of the

su_scsi_id structure contains the bus ID, which is a number showing which SCSI

bus the device is connected to in the given system. The dev_id field contains the

SCSI target ID for the device.

Request Keyword:

SU SET TIME RATE

Specific Data Structure:

int time rate

Description:

Sets the SCSI command timeout rate. The argument for this request should be a

positive number. The actual time in seconds for a SCSI command to be completed

without causing a timeout is calculated then by the formula:

allocated time =10 + number of bytes to transfer * timeout rate

512

where the timeout rate is the value set by this control request, and is initially set to 1.

52

As it can be seen from the formula, the SCSI device, beside the specified allocated

time for each 512 bytes, has 10 seconds additionally allocated for preparation

operations, e.g. getting on-line, seeking access, etc.

Request Keyword:

SU_SET_PKT _FLAGS

Specific Data Structure:

long pkt_flags

Description:

The internal process of sending a SCSI command to the device involves a step of

preparing a special packet of information about all the transfer attributes and passing it

to HA, which processes it accordingly. A certain field in this SCSA defined packet

structure is intended for special flags, which tell HA how to perform the transfer

request included in the packet.

The su _ SET _ PKT _FLAGS control request allows the user program to control this

aspect of the transfer process too. They are set to 0 upon initializing the device driver.

Once set, the flags are attached to every outgoing packet unless modified or reset. The

flags are also used to control the HA tagged-command-queuing capability. In the

Solaris 1 environment, the following flags are accepted by the device driver:

Table 3.6 The SCSA packet flags

Packet flag 	Hex Code Description

FLAG NOINTR 	0x0001 	Run command without interrupts

53

FLAG NODISCON 0x0002 	Run command without disconnects

FLAG SUBLUN 	0x0004 	Use the sublun field in pkt_address

FLAGNOPARITY 0x0008 	Run command without parity checking

FLAG HTAG 	Ox1000 Run as HEAD OF QUEUE tagged command

FLAG OTAG 	0x2000 Run as ORDERED QUEUE tagged command

FLAG STAG 	0x4000 Run as SIMPLE QUEUE tagged command

Request Keyword:

SU_SET BLOCK SIZE

Specific Data Structure:

long block size

Description:

Sets the size of the logical block used when performing a block transfer. This size

preferably should be equivalent to the logical block size of the SCSI device, although

can be different for some special applications. The initial logical block size is set to

512.

54

Request Keyword:

USCSICMD

Specific Data Structure:

struct uscsi_cmd {

caddr_t 	uscsi_cdb;

int 	 uscsi_cdblen;

caddy t 	 uscsi_bufaddr;

int 	 uscsi_buflen;

unsigned char 	uscsi_status;

int 	 uscsi_flags;

} ;

Description:

Sends a SCSI command to the device, and, if applicable, performs the actual data

transfer. This request is the main mechanism to control the SCSI device, and as an

argument uses a pointer to a us csicmd structure originally defined in the

/usr/sys/scsi/impl/uscsi h file in the Solaris 1 environment.

In order to form a correct SCSI command and specify proper parameters and flags

for a desired SCSI operation, a user program should satisfy the requirements for

values of all the fields of the uscsi_cmd structure.

The first field of the uscsi_cmd structure is uscsi_cdb, which is to point to a

properly allocated array of bytes representing the actual SCSI command [1,2]. As it

was mentioned above, the `su' device driver accepts only Group 0,1 and 5 SCSI

commands, therefore the next us csicdblen field of the structure, which is to

contain the SCSI command length, can accept only the values 6, 10 and 12,

55

respectively. Note that the first byte of a SCSI command specifies the command

group, and any inconsistency between the latter and the uscsi_cdblen field value

will result to an EINVAL error condition.

If the specified SCSI command is to perform a data transfer, the valid data buffer

pointer and the buffer length should be given in the uscsi_buffaddr and

uscsi_buflen fields, respectively. Otherwise, the uscsi buflen fields should

contain 0 to insure correct operation.

The uscsi_flags field is intended to contain operational flags, which determine

the transfer modes and options. Currently, the "su" device driver accepts two SCSA

defined and three "su" driver specific flags. The description below contains their

defined keyword, the hexadecimal code representing the actual bit position, as well as

their effect onto the USCSI request processing.

USCSI SILENT 	 0x01

SCSA defined flag. Causes the device driver not to print error messages on the

console, and thus, to the system log.

56

USCSI READ 	 0x08

SCSA defined flag. If set, specifies a "read" operation from the SCSI device.

Note that for "write" operation, as well as for the no-data SCSI commands this

bit should be 0.

USCSI BLOCK 	 0x10

A "su" specific flag. Must be set when sending a block transfer SCSI

command. Enforces the device driver to interpret the address and data count

fields [1,2] in a SCSI command as a logical block address and a logical block

count, respectively. The number in the uscsi_buflen_field, as well as the

data part size (if transferring data by parts) set by the su SET CHUNK SIZE

request, must be in multiplies of the device's actual logical block size, which

should be the same as the block size set by the SU SET BLOCK SIZE

request.

The device driver will transfer data by parts, unless the USCSI_CONT flag

is set. When transferring data by parts, a request with a SCSI command with

relative block addressing [1,2] will create several actual SCSI commands (for

each data part); the address and block counts will be set automatically by the

driver.

USCSI CONT 	 0x20

A "su" specific flag. If set, this flag makes the device driver not to transfer data

by parts, which may boost the transfer speed, but may also affect the overall

system performance because it would tie up such system resources during the

transfer, as the SCSI bus and DMA. Beside that, transfers of large amounts of

57

data cannot be performed without dividing them into parts, because of the

limited DMA resources, and will generate error conditions.

The SCSI commands, not following the generic format for the Group 0, 1,

and 5 commands [1,2], as well as the vendor specific commands, which have

different meanings for the address and data count fields, must be sent with the

Uscsi CONT flag to ensure the desired operation. Failure to do so may cause

unexpected results. This is due to the generic nature of the "su" device driver.

USCSI_NO_RETRY 	0x40

A "su" specific flag. Disables the unsuccessful SCSI command retry capability

of the "su" device driver. If not set, the driver will retry the failed SCSI

command until encountering a success, but not more than the maximum

number of times, which is 16 by default, and can be changed by the

SU _ SET _RETRY NUM request.

It should be noted that SCSI commands with the relative block addressing

are preferable to send with this flag set, because retrying such commands may

sometimes cause unexpected results.

The uscsi status field of the uscsi_cmd structure is intended to contain a

SCSI status byte [1,2], which is sent by the device after processing a SCSI command.

It usually represents the result of the last SCSI operation. In some applications, the

most frequently encountered case is the SCSI CHECK_ CONDITION status, which

shows that the device detected an error during processing the command and has more

detailed status information, which can be retrieved by the SCSI REQUEST_SENSE

command.

58

For certain SCSI commands, even if the USCSICMD control request returns 0,

indicating that the transfer was successful t is strongly advisable for a user program

to check the SCSI status and to perform an appropriate action, before sending

another SCSI command to the device.

On failure, since the ioctl () system call with the USCSICMD request deals with

physical I/O, it returns -1 and, beside the standard error codes mentioned above, may

set some specific error codes in the errno global variable:

EACCES

"Write" operation is not permitted.

ENOMEM

Kernel memory allocation failed.

EBUSY

SCSI device is busy.

EIO

Input/output error.

CHAPTER 4

THE "HSCSID" - HOST LEVEL SCSI REQUEST SERVER DAEMON

The "su" SCSI universal device driver, described in the previous chapter, provides a full

SCSI device control interface only to the processes running on the host side of TurboNet.

In order to access the provided SCSI control services from the Hydra side as a SCSI

request initiator, a special host-Hydra interprocess communication protocol has been

developed, which converts the complete "su" device driver interface into a convenient

mechanism that can be used by programs running on the Hydra boards. This chapter

describes the host-Hydra interprocess communication protocol.

4.1 The "hscsid" UNIX Daemon Process

4.1.1 Overview

The host-Hydra interprocess communication protocol is implemented with a Solaris 1

"hscsid" daemon, which is fully interrupt driven. As some other UNIX daemons, the

"hscsid" forks and, disassociating itself from the controlling terminal, sleeps waiting for

signals to process. Multiple "hscsid" daemons may be configured to start at the machine

boot time, although they may be started and killed at any desired time. The maximum

number of simultaneously running "hscsid" daemons depends on the system resources. A

variety of daemon-host program-Hydra program combinations can be used for specific

applications.

59

60

Each "hscsid" daemon can gain access to any of the SCSI devices controlled by the

"su" device driver upon requests from the assigned Hydra board. All the communication

between the daemons and the Hydra boards is carried out using the shared memory of the

boards.

The "hscsid" SCSI server request daemon has the following primary features:

• Can access up to four SCSI devices controlled by the "su" device driver.

• Uses a 256-byte dedicated SCSI request block in the Hydra shared memory as a

host-Hydra shared data structure.

• Handles 14 SCSI requests of the host-Hydra interprocess communication

protocol.

• Performs buffered SCSI transfers for parallel Hydra DSP and SCSI operation

using the "su" SCSI universal device driver.

• Uses a memory mapped fast access to the whole Hydra shared memory.

The complete source of the "hscsid" SCSI request server daemon can be found in the

Appendix B.

4.1.2 The Operation Sequence

The actual host-Hydra interprocess communication protocol consists of ten steps, as

follows. Note that the protocol uses some steps involving the Hydra device driver and the

HydraMon monitor on Hydra boards, which are standard for the Hydra product, and are

marked with the "*" .

61

1. 	The Hydra DSP program fills the shared request structure appropriately.

2*. It invokes the HydraMon VME interrupter service by calling trap 7 and

continues the program execution.

3*. HydraMon generates a VME interrupt with assigned number and vector.

4*. The Hydra device driver catches the Hydra interrupt and sends an assigned

UNIX signal to a host side user program registered to receive the signal.

5. The host-side user program, which has the UNIX process ID of the running

"hscsid" daemon, sends a UNIX SIGUSR1 signal to it, if it is appropriate (beside

the SCSI services, the interrupts can be used for other purposes too).

6. The daemon, which might have been sleeping, activates its interrupt handler

function upon receiving the signal, and analyses the SCSI request block in the

Hydra shared memory, which was previously mapped in the daemon's virtual

memory space. Any other SIGUSR1 signals are blocked until the interrupt

handler function returns.

7. The daemon tries to perform the requested service by calling `su' SCSI universal

device driver. If a SCSI transfer is requested, the transfer handler function

transfers data from the SCSI device to the Hydra shared memory or vice versa.

Upon completion, the daemon sets status and error information, and sends a

Hydra interrupt request to the Hydra device driver.

8*. The Hydra device driver requests the HydraMon to invoke the UserInt service,

which is intended to call user registered functions on Hydra with specified trap

numbers.

62

9* 	HydraMon calls the given trap number to invoke the previously registered SCSI

interrupt handling function in the Hydra DSP program.

10. 	The SCSI interrupt handler function analyses the status information in the shared

request structure and performs an appropriate action.

4.1.3 Command Line Arguments

The "hscsid" daemon should be started with two arguments:

hscsid dsp trapnum

where the dsp argument should be a "special" file name representing a DSP on a Hydra

board. All accesses to a Hydra board are done using this "special" file.

The second argument, trapnum, specifies the DSP trap number that will be used

when requesting a DSP interrupt upon returning status and error information to the DSP

specified with the first argument. For proper operation of the daemon, the specified DSP

should run a program, which registers an interrupt handler function with the specified trap

number. The argument can be specified as a decimal, octal (as \XXX), or hexadecimal (as

OxX) number.

Example: hscsid /dev/vc40a1 0x9

Note that for Hydra boards of up to revision E only four trap numbers are available -

0x9 through OxC.

63

4.2 Hydra SCSI Requests

4.2.1 Request Block Structure

The SCSI request block is 256 bytes long and resides in the Hydra shared memory, just

before the space reserved by HydraMon, which takes 16640 bytes at the top of the

memory [4].

The actual request data structure is defined in the shared . h include file as follows:

Table 4.1 Hydra SCSI request data structure

struct hydra request f

unsigned long 	dev_num;

unsigned long 	req_code;

unsigned long 	params[PARAMNUM];

unsigned long 	result;

};

The dev_num field specifies the SCSI device, and, thus, the "su" device driver

instance to be used. For the current implementation of the "su" driver, this field can

contain a value from 0 to 3.

The second field, req_code, contains the code for an operation requested, which will

be described in details below.

The request parameters are specified in the params] array, which has 61 elements in

the current implementation. The array is intended to pass the operating arguments for the

64

requests, as well as to get the status and other types of information. For each request, only

a certain subset of the array elements is used, while the others are simply ignored.

After completion of a request, the "hscsid" daemon sets the result field of the

structure with a number representing the status of the completion. For successful calls, it

contains 0. Requests with illegal request codes return -1. All other values should be

treated as error codes corresponding to the errno global variable set by the "su" device

driver (See Sections 3.4.2 and 3.4.3).

As it can be easily seen, this request structure is universal enough to be used with any

kind of host-Hydra interprocess communication protocol, which can be either interrupt

driven or status polling. New request codes can be added to the existing ones, expanding

the operational capabilities (not only for SCSI).

4.2.2 Request Codes

Since the Hydra SCSI requests reflect the actual "su" device driver control requests, there

is no need to describe each one again, and detailed information about the parameter

assignments can be found in the printout of the include file shared .h (see Appendix B).

The following is a brief description of the Hydra SCSI requests, for which there is

additional information:

Request Keyword

CLOSE DEV

Description

Closes the SCSI device specified in the dev_num field of the request block. Useful,

because the "hscsid" daemon will never close the device itself, if not requested so,

65

holding the device ownership and preventing other users from using the device. Note

that this is not a "su" device driver control request, and it only closes the device using

the close () system call.

Request Keyword

GET INQ DATA

Description

Invokes the SU _ GET _ INQ _DATA "su" device driver control request and returns some

useful fields from the SCSI inquiry structure. For the complete inquiry data returned

from a device, a DSP can request SCSI CMD with the SCSI INQUIRY command.

Request Keyword

REQUEST SENSE

Description

Invokes the SU REQUEST SENSE "su" device driver control request. Note that the

pointer to the params [0] can be tasted as a pointer to a scsi_extended_sense

structure (from scsi_incl . h file), which would be very convenient to work with.

4.3 Accessing and Activating the "hscsid" Daemon

After the "hscsid" daemon has been started, it can be either in the idle (sleeping,

swapped) or in the active states. In order to activate the daemon, the host side program of

the host-Hydra program pair should send a SIGUSR1 signal to the daemon using its UNIX

process ID. Upon receiving the signal, the daemon will assume that there was a SCSI

66

request from the DSP specified with the first argument on its command line, and will start

analyzing the request block and try to perform the specified request, after completion of

which (successful or not) it will request to interrupt the DSP for returning the status and

error information.

If it is necessary to terminate the daemon, the user side program can send any of the

SIGTERM, SIGINT, SIGHUP and SIGQUIT signals to terminate it. The UNIX kill pid

command can be used from a UNIX shell prompt or from within shell scripts, where the

pid is the process ID of the daemon.

Since the daemon may be configured to start when booting, any system-related error

messages, e.g. failures to open devices or map memory blocks, are logged into the system

log, which is usually the /var/adm/messages file in the Solaris I environment.

CHAPTER 5

HYDRA SCSI UTILITIES AND DATA STRUCTURES

This chapter presents several useful simple utilities and data structures, which make the

SCSI access programming much easier for Hydra boards. Solaris 1 has very convenient

definitions for SCSI data structures, which can also be included in Hydra SCSI programs.

Some terminal output utilities are also described.

5.1 Source Files

In order to make use of the defined Hydra SCSI utilities and data structures, a Hydra DSP

program source should include the hy_scsi_util .h file, which contains the definitions

and include files for all the utilities and data structures. Beside that, the

hy_scsi_util.c file and hydra_int asm file should be compiled, assembled and

linked with the actual user program. The complete source code for these and some other

included files can be found in Appendix C. Reference [14] is a comprehensive user's guide

for the C compiler and linker for Hydra DSPs. The scsi_incl h file includes many

useful data structures and definitions reflecting the Sun SCSI implementation, which can

be used in Hydra DSP programs.

Due to the open architecture, the Hydra DSP programmers can create their own

application specific routines and data structures, as well as host-Hydra interprocess

communication protocol requests.

67

68

5.2 Utility Routines and Definitions

5.2.1 Working with TMS320C40 Built-In Timer

These definitions can be used as routines in C code, and are intended to access the DSP

built-in timer:

Function

RESET TIMER ()

Description

Resets the Timer 0 of a DSP.

Function

SET PERIOD (p)

Description

Sets period of the Timer 0 of a DSP. For a detailed timer description and operation

modes, see [3].

Function

GET TIMER ()

Description

Returns the current value in the Timer 0 of a DSP.

Function

ELAPSED TIME (st, end)

69

Description

Used for measuring time intervals. When the st argument is the timer value at the

beginning of an event, and the end argument is the value at the completion of the

event, the defined function returns the elapsed time in microseconds.

5.2.2 DSP Control Functions

In order to utilize the Hydra SCSI protocol, a DSP user program should access and

modify some system and processor attributes or generate interrupts. These simple

functions are actually implemented in the TMS320C40 assembly language, but can be

called from a C program if correctly assembled and linked (see Section 5.1). They

implement such operations as installing DSP trap handlers, enabling/disabling DSP

interrupts, getting Hydra board configuration, etc.

Function

void GIE On()

Description

Enables DSP interrupts.

Function

void GIE Off()

Description

Disables DSP interrupts.

Function

void EnCache()

70

Description

Enables DSP cache.

Function

void SetIntVect(trapnum, handler function)

Description

Installs a trap handler function into the DSP trap table. The user is restricted to use

only traps 0x9 through OxC for the trapnum argument, which is the trap number. The

handler function argument is the function to be called when the corresponding

trap is called. The Texas Instruments TMS320 C compiler [14] restricts the function

name definition for the trap handler functions. They must be declared as c_int nn () ,

where nn is a two digit number. There are some other restrictions also, but if the

function complies with the conventions of the TMS320 C compiler, there should not

be any problems.

Function

void HostInt()

Description

Generates a VME interrupt, which can be delivered to a specified user program on the

host side as a UNIX signal.

Function

hydra conf *GetConfig()

71

Description

Returns a pointer to a data structure, which is defined in the Hydra include files, and

represents the Hydra board configuration. It contains information about the board

revision level, the memory sizes, the CPU clock frequency, the settings for serial ports,

etc.

Function

void Idle()

Description

Stops DSP program execution, which can be resumed, if the DSP is reset or any

interrupts arrive. Useful for sleep-and-wait-for-interrupt situations.

5.2.3 Terminal Output Functions

These functions make it possible for a DSP user program to output some information and

error messages to a "dumb" terminal using the Hydra's RS-232 port. Two generic and

three SCSI specific messaging functions are available. Input facilities are not included yet.

Function

void c40putchar(char c)

Description

From the original Ariel Hydra library. An implementation of the C putchar ()

function.

72

Function

void c40_printf (char *fmt, ...)

Description

From the original Ariel Hydra library. It is a limited implementation of the C

printf () function, and outputs to the Hydra RS-232 port. Note that in the fmt

argument, the function only recognizes the %d, %f, %x, %c, %s formats and the

\n escape character.

Function

void c40perror (char *msg)

Description

Prints an error message containing the message specified with the msg argument,

followed by an error number and a brief error description. The error description strings

and the corresponding error numbers can be found in the hy_scsi_util.c file (see

the Appendix C).

Function

void perrorscsi()

Description

Prints an error message about a SCSI request additionally containing the request code.

73

Function

void printsense(s)

Description

Useful when printing a message about returned SCSI sense key [1,2]. Prints a

descriptive message about the SCSI sense key specified with the s argument.

5.3 Useful SCSI Data Structures

An incredible amount of SCSI data structures can be found in the scsi inc.h file (see

Appendix C), almost all contents of which are originally copyright of Sun Microsystems,

Inc. The data structures are usable with the TMS320C40, which always accesses data as

long words. Some other compatibility problems are corrected too.

CHAPTER 6

PERFORMANCE RESULTS AND CONCLUSIONS

Some performance results of the Hydra SCSI services are presented here for multi-user

environments of the TurboNet computer. The chapter also draws conclusions and presents

further research objectives.

6.1 Performance Results

In order to measure the performance of the Hydra SCSI services, a test Hydra DSP

program is written (see Appendix D) which uses the SCSI services to access an

experimental 100 Mbyte SCSI fixed disk connected to the SCSI bus of the host computer.

The time measurements are done using the DSP's built-in timer. The results have 0.0001

sec accuracy in the worst case.

The test program performs three different types of accesses: non-SCSI, SCSI

control/info, and SCSI transfer. The total time elapsed for every access includes the

processing times for all three levels of the Hydra SCSI services, from the instant the DSP

requests a SCSI service through the instant it gets interrupted as a notification of service

completion. All three types of accesses are processed through the host level "hscsid" SCSI

request server daemon and the "su" SCSI universal device driver (see section 4.1.2 for the

detailed operation sequence).

74

75

As an example of a non-SCSI request, the GET_INQ_DATA SCSI service is used,

which does not cause an access to the test SCSI fixed disk. However, it does access the

"su" driver to get previously acquired SCSI inquiry data.

The second type of SCSI access, namely SCSI control/info, is represented in the test

program by the SCSI READ CAPACITY command [1,2], which returns 4 bytes

containing the disk capacity parameters.

In order to test the typical Hydra SCSI throughput in different multi-user

environments for typical SCSI configurations (i.e. not only disks), a 18 ms access time

(i.e. relatively slow) SCSI fixed drive is used, daisy-chained with the system disks on the

first SCSI bus of the host computer. The program transfers 3 Mbytes of the Hydra shared

memory to the fixed disk and vice versa. The transfer is done in parts (see Chapter 3), the

size of each part being set to the system default size for the first two transfers, and to 128

Kbytes for the last two transfers.

When testing the performance, three different typical multi-user system load

environments are simulated. The fully-configured Solaris 1 system is connected to the

Ethernet network and has mounted NFS partitions. The first series of tests (named low-

load) are performed when only one user is logged in using the console shell. The second

environment (named mid-load) is simulated with three users logged in and running two

processes remotely, and a fourth one using the Sun Open Windows interface on the

console running 15 processes, including the shells. Although the third environment (named

high-load) has the same number of users running the same number of processes as the

76

second one, in addition three processes concatenate in the background 20 files of 1.5-

Mbytes each using the UNIX cat command.

The test program is also a good example to give users an idea of how to write DSP

programs using the implemented Hydra SCSI services. Appendix D contains the complete

sources of the host side and the Hydra side programs.

The following is the comparison table of the performance results for the Hydra SCSI

services in the abovementioned different environments using one SCSI device with a

typical speed. The results are averaged in each category.

Table 6.1 Some performance results of the Hydra SCSI services in terms of elapsed time

Request Type / System Load Low-Load Mid-Load High-Load

Non-SCSI, µs 604.53 604.55 4066.5

SCSI control/info, us 3200.7 4620.5 5545.5

3-Mbytes SCSI write (default part size), s 5.5743 5.8554 6.7052

3-Mbytes SCSI read (default part size), s 5.1919 5.4327 5.8465

3-Mbytes SCSI write (128-Kbytes part size), s 5.6868 6.2179 6.6644

3-Mbytes SCSI read (128-Kbytes part size), s 5.1865 5.4416 5.8913

77

As we can see from the table, and as other experiments show, reducing the part size

for transfers results in increased transfer times. This happens because of the overhead

caused by the pauses among consecutive part transfers. Note that an extensive increase of

this part size for achieving better performance is not possible in a Solaris 1 environment,

because of system setup and operation limitations. Doing so would cause continuous

DMA or other system failures, not mentioning compromising the access performance of

other devices on the SCSI bus.

The best approach to achieve maximum performance is finding the optimal number of

bytes that a particular system can transfer at a time, which depends on many factors

including DMA capability and the amount of memory the kernel can allocate for this

purpose. The optimal transfer size would be in multiples of the SCSI device logical block

size, if it is a block device. Although the "su" device driver provides a continuous data

transfer option using the uscs I_CONT flag (see Chapter 3), usage of it should be avoided

for large amounts of data, again because of the reasons indicated above.

6.2 Conclusions and Further Research Objectives

The Hydra SCSI universal services for TurboNet are powerful tools intended to expand

the I/O capabilities for Hydra DSP programs. The actual goal of this work was to design

universal tools, which can be easily used, modified and expanded. The device driver

services and the host-Hydra intercommunication protocol can be customized to suit the

user's specific needs. Due to the universal approach of the services, a large number of

SCSI devices can be accessed and controlled. Since the SCSI command protocol is

78

sometimes complex and differs from device to device, different access modifiers are

provided to ensure maximum coverage of the controllable SCSI devices for the Hydra

SCSI services.

TurboNet is a parallel processing system that often requires parallel I/O solutions for

high performance. The current version of the "su" device driver supports up to four SCSI

devices, which can be accessed simultaneously from the Hydra boards assuming that the

needed number of the "hscsid" SCSI request server daemons run. Since the DSPs in the

system will use some shared resources, such as the SCSI request blocks or the actual data

buffers in the shared memories, there may be certain exclusive lock mechanisms to ensure

data integrity and correct operation.

Although the software set described in this work provides a low-level access to the

SCSI devices, it provides full control over all the SCSI device aspects, which is as

important as the use of assembly language to work with a system hardware.

Future research objectives include topics such as: parallel I/O using several DSPs to

control respective SCSI devices; including a SCSI port attached directly to the VME bus

and development of accompanying software (drivers, etc.); and creating and fine-tuning a

special configurable parallel filesystem for different DSP interconnection schemes.

APPENDIX A

C SOURCE OF THE "SU" SCSI UNIVERSAL
DEVICE DRIVER FOR SOLARIS 1

* SU - SCSA compatible universal SCSI driver

* Definitions and user data structures

* sudef.h 12/11/95

* Artak 0. Melkonian, All Rights Reserved, 1994, 1995

* Department of Electrical and Computer Engineering

* New Jersey Institute of Technology

*/

#ifndef
	

_scsi_targets_sudef_h

#define 	_scsi_targets_sudef_h

#include <scsi/scsi.h>

#include <scsi/impl/uscsi.h>

#define SU SENSE LENGTH 	SENSE LENGTH 	/* length of extended

sense */

#define SU_MAXUNIT_NUM 	4 	/* max number of devices

#define SU STATUS LEN1 	/* length of status code */

#define 	SU DRIVER VER 	"1.0"/* current version */

#define SU NUM RETRIES 	16 	/* defualt num of retries

79

80

define SU MAX NUM RETRIES 256 	/ maximum num of retries */

#define SU MAX CHUNK SIZE 1024*256 	/* maximum chunk size */

#define SU MIN CHUNK SIZE DEV BSIZE 	/* minimum chunk size */

#define SU MAX TIME RATE 10 	/* maximum time rate */

#define SU MAX CDB LEN CDB GROUP5 /* 	up to Group 	5 	commands

*/

/*

* structure to be used SU SET CAP/SU GET CAP

* ioctl requests

*/

struct 	su dev cap {

int cap; /* capability defined in scsi/impl/services.h

int value; 	/* value of capability */

};

* structure containing resulting data from last SCSI command

* to be used with SU_GET_RESULTS ioctl request

* possible values for fields are defined in scsi/scsi pkt.h

*/

struct 	su_results {

long resid; 	/* data bytes not transferred */

u char reason; /* command completion reason */

u char state; /* state of command reached */

u char statistics; /* some statistics */

81

/* SCSI bus id and target device id data *

struct 	su_scsi_id

u char 	bus id 	: 4,

dev_id
	

4;

};

/*

* implementation specific additional flag for uscsi_flags

* in uscsi_cmd structure defined in scsi/impl/uscsi.h

*

* MUST be set when issuing block transfer SCSI commands

* if set, this flag enforces su driver to interpret address and

count

* of data as logical block address and number of blocks,

respectively,

* and to use appropriate algorithm

*

uscsi_buflen length MUST be in multiplies of device's logical

* block size, which is set by SU_SET_BLOCK_SIZE ioctl request

*

* transfer chunks size, set by SU_SET_CHUNK_SIZE ioctl request,

* MUST be in multiplies of device's logical block size,

* which is set by SU_SET_BLOCK_SIZE ioctl request

*/

#define USCSI BLOCK 0x10 /* block transfer SCSI command

* implementation specific additional flag for uscsi flags

* in uscsi cmd structure defined in scsi/impl/uscsi.h

*

if set, this flag enforces su driver to transfer data without

* dividing it to smaller chunks and may affect overall system

performance

* when used for large data, however may boost the su transfer

performance

* MUST be set when issuing some control and vendor specific

commands, i.e.

commands not following exactly the generic command format (Gr

0, 1 and 5),

* to SCSI device, because these commands usually don't contain

large data and/or data should not be divided to chunks and/or

* address and count fields do not correspond to the generic

command format

* failure to do so may cause unexpected results

*/

#define USCSI_CONT
	

0x20 	don't divide data into chunks

/*

implementation specific additional flag for uscsi_flags

* in uscsicad structure defined in scsi/impl/uscsi.h

82

83

if set, this flag enforces su driver not to retry unsuccessful

commands, and may be used with commands with relative

addressing, etc.,

* since device can perform unexpected operations

#define USCSI NO RETRY
	

0x40 /* don't retry unsuccessful cmd

*/

/*

* Definitions for ioctl requests, except USCSICMD

*/

/* reset SCSI device */

#define 	SU RESET DEV 	IO(u, 0)

/*

* defined in scsi/impl/uscsi.h

* supports only Group 0, Group 1 and Group 5 SCSI commands

if USCSI BLOCK flag is set, uscsi_buflen length MUST be in

multiplies of device's logical block size, which is set by

* SU SET BLOCK SIZE ioctl request

*/

/* USCSICMD */

/* get inquiry data, defined in scsi/generic/inquiry.h */

84

#define 	SU_GET INQ DATA IORN(u, 2, SUN INQSIZE)

/* send REQUEST SENSE and get sense, defined in

scsi/generic/sense.h */

#define 	SU REQUEST SENSE IORN(u, 3, SU SENSE LENGTH)

/* get HA capabilities for device */

#define 	SU GET CAP IOWR(u, 4, struct su_dev_cap)

/* set HA capabilities for device */

#define 	SU SET CAP IOW(u, 5, struct su_dev cap)

/* get results from last SCSI transfer, defined in

scsi/scsi_pkt.h */

#define SU GET RESULTS 	IOR(u, 6, struct su_results)

* set size of internal transfer chunk

if 0, driver will use system default size

*/

#define SU SET CHUNK SIZE 	IOW(u, 	long)

/* set number of retries for a failed SCSI cmd */

#define SU SET RETRY NUM 	IOW(u, 8, int)

/* get SCSI bus id and target device id */

#define 	SU GET SCSI ID 	IOR(u, 9, struct su_scsi id)

85

*

set completion time rate for SCSI command transport in

sec/512bytes,

if 0, driver will use 1 sec/512bytes default rate

*/

#define SU SET TIME RATE 	IOW(U, 10, int)

/*

set optional flags for performing SCSI commands

flags are defined in scsi/scsi pkt.h

* driver will use no flags as default

*/

#define SU_SET_KT_FLAGS 	IOW(U, 11, long)

/*

* set device logical block size for SCSI commands using block

* transfer, default value is DEVBSIZE = 512 for most of

systems

*/

#define SU_SET_BLOCK_SIZE 	IOW(u, 12, long)

#endif
	

scsi targets sudef h

/*

* SU - SCSA compatible universal SCSI driver

* su.c include file

sudrv.h 12/11/95

* Artak 0. Melkonian, All Rights Reserved, 1994, 1995

* Department of Electrical and Computer Engineering

* New Jersey Institute of Technology

*/

/*

* Debugging macro. Messages go on console

*/

#define DEBUG

#ifdef DEBUG

int su_deb = 0;

#define DPRINT(v, fmt, p0, p1, p2) \

if (su deb > (v)) printf(fmt, p0, p1, p2); \

else {}

#else

#define DPRINT(v, fmt, p0, pl, p2)

#endif

/***/

#define SU TIMEOUT 	10 	/* min time for pkt */

#define SU COMMAND RETRY 1 	/* send SCSI command again /

#define SU COMMAND ERROR 2 	/* unrecoverable cmd error */

#define SU COMMAND DONE 	3 	/ command was successful */

86

* Definitions for unit_flags field in struct su_device

#define 	UNIT OPEN 0x0l /* unit is open */

#define 	TAGGED QING
	

0x02 /* tagged queueing enabled

#define 	WRITE EN 0x04 /* write enabled */

#define SILENT 0x08 /* no error messages on console

#define BLOCK CMD
	

0xl0 /* block transfer SCSI command */

#define CONT IRAN
	

0x20 /* don't divide data into chunks */

#define NO RETRY0x40 /* don't retry SCSI command again */

/*

* private data for each unit

* pointer to data of this type will be stored in sdprivate

* field of scsi_device structure for each individual device

*/

struct su_device {

/* various operational flags

u char 	unit flags;

/* ready pkt for REQUEST SENSE command

struct scsi_pkt *unit regsense_pkt;

/* pkt flags to be set during transfer */

long unit pkt flags; /* 0 as default */

/* uscsi status */

unsigned char 	unit uscsi status;

87

* buf pointer for current transfer, note:

* b forty points to unit's scsi device structure

b back points to unit's su device structure

*/

struct buf *unit bp;

/* current scdb and its length*/

union scsi_cdb *unit scdb;

int unit scdb len;

/* results of last pkt transportation

struct su results 	*unit results;

/* size for su_minphys, if 0, use kernel minphys function

long unit chunk size;

/* number of retries and retry counter */

int unit num retries;

int unit retry count;

/* comletion time rate in sec/512bytes */

int unit time rate;

/* device block size, default is DEV_BSIZE */

long unit_block_size;

/* offset, to be added to starting address of SCSI cmd

long unit_addr_offset;

};

* Driver messages printed on console

88

89

char *sudrvmessage[] = (/*#*/

"Error: maximum supported unit number is", /*0*/

"Cannot allocate memory.\n", 	/*1*/

"Kernel memory error ...\n", 	/*2*/

"Device exists, cannot identify.\n", /*3*/

"Universal SCSI driver. (C)1995 Artak Melkonian.

Release:", /*4*/

"Removable", 	/*5*/

"SCSI-", 	/*6*/

"Device", /*7*/

"Vendor", /*8*/

"Product", /*9*/

"DMA Error: data exceeded maximum DMA size.\n", /*A*/

"SCSI error occured: retrying command ...\n", 	/*B*/

"Transport error occured when retrying command, giving

up.\n", 	/*C*/

"SCSI command completion error, giving up.\n", /*D*/

/*

* SU - SCSA compatible universal SCSI driver

* Driver module: dev_info style,

* for SunOS 4.1.3 sun4c architecture

* su.c 	12/11/95

Artak 0. Melkonian, All Rights Reserved, 1994, 1995

* Department of Electrical and Computer Engineering

* New Jersey Institute of Technology

*1

#include "sudef.h"

#include "sudrv.h"

/* pointers for scsi_device structures of supported devices */

static struct scsi_device *su_units[SU_MAXUNIT_NUM];

int su_identify(), su_attach(), su_open(), su_close();

	

_ 	 _ 	 _

su_strategy(), su_ioctl();

void su comp();

extern int nulldev();

extern int nodev();

* dev_ops structure for su driver: driver entry points

*/

90

#ifdef OPENPROMS

struct dev_ops su_ops = {

1,

su_identify,

su_attach,

su_open,

su_close,

nulldev, 	/* no read() entry point */

nulldev, 	/* no write() entry point */

nodev, 	/* no strategy() entry point */

nodev, 	/* no dump() entry point */

nulldev, 	/* no size() entry point */

su_ioctl /* controls SCSI commands, data transfer and

internals */

};

#else

NO OPENPROMS; 	no SCSA support */

#endif

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> su identify function:

* called by kernel during boot

* checks if corresponding device exists and responds, and if

so,

* initializes certain fields of scsi_device,

91

creates pkt for REQUEST SENSE command to be used later

*1

int

su_identify(devp)

/* scsi_device structure partially filled by HA */

struct scsi_device 	*deep;

int unit num = devp->sd dev->devi unit;
	

1* get minor

number */

register struct sudevice *unitsudevice;

struct scsipkt *rspkt;

/* test if minor number is in its range */

if (unit num >= SU MAXUNIT NUM) {

printf("su%d: %s %d\n",

unit num, su _drv_message[0], SU MAXUNIT NUM - 1);

return(0);

}

/* test the device and fill sd_inq structure accordingly

*

switch(scsi slave(devp,0)) {

/* memory or system failure *

case SCSIPROBE_NOMEM:

92

case SCSIPROBE FAILURE:

printf("su%d: 	unit num, su drv message[1]);

return(0);

/* no respont from specified target or no device

case SCSIPROBE NORESP:

return(0);

/* no identification data

case SCSIPROBE NONCCS:

printf("su%d: %s",unit num, su dry message[3]);

return(0);

default:

return(0);

/* device exists and responds

case SCSIPROBE EXISTS:

{} 	/* go ahead */

}

/* allocate memory for su device structure */

unit su device =

(struct su device *)kmem zalloc(sizeof(struct su device));

if (!unit su device) {
	

/* if could not, panic ! */

printf("su%d: (01) %s", unit_num, su_drv_message[1]);

panic(su dry message[2]); /* REBOOT ! */

93

/* initializing unit flags field in su device */

unit su device->unit flags = 0;

/* allocate memory for unit by in unit su device and set

some fields */

unit su device->unit bp = (struct buf

*)kmem zalloc(sizeof(struct but));

if (!(unit su device->unit bp)) {
	

if could not,

panic ! */

printf("su%d: (02) %s", unit num, su dry message[1]);

panic(su dry message[2]); /* REBOOT
	

*7

}

/* allocate memory for unit results in unit su device _

unit su device->unit results =

(struct su results *)kmem zalloc(sizeof(struct

su results));

if (!(unit su device->unit results))
	

if could not,

panic ! */

printf("su%d: (03) %s", unit num, su drv message[1]);

panic(su drv message[2]); /* REBOOT ! */

}

/* keep important pointers in unit by */

unit su device->unit bp->b forw = (struct but *)devp;

94

unit _su_ device->unit bp->b back = (struct buf

*)(unit su device);

/* make su_device private structure pointed by sd_private

*/

(struct su_device *)(devp- sd_private) = unit su device;

/* keep this devp in corresponding su units element */

su units[unit num] = devp;

/*

*Allocate pkt for unit_su_device->unit_recisense_pkt,

*we will need it later for REQUEST SENSE command,

*will return extended sense to sd sense of the unit,

*which is allocated of length SUSENSELENGTH

rs_pkt = get_pktiopb(&(devp->sdaddress),

(caddr_ t *)&(devp->sd_ sense), CDB_ GROUP, _ 	 _ 	 _

SU_ STATUS LEN, SU SENSE LENGTH, BREAD, NULL FUNC); _ _ _ _ 	 _

if (!rs_pkt) { /* if could not, panic ! */

printf("su%d: (04) %s", unit num, su drv message[1]);

panic(su drv message[2]); /* REBOOT
	

*/

}

/* keep its pointer to its proper place */

unit su device->unit reqsense_pkt = rs_pkt;

rs_pkt->pkt_pmon = -1; 	/* no performance monitoring */

95

96

rs_pkt->pkt_comp = su_comp; 	install completion

routine*/

rspkt->pkttime = 0;

rs_pkt->pkt_private = (opague_t)(unit_su_device->unit_bp);

/*

* put REQUEST SENSE command description block

and flags into rspkt

*/

makecom_g0(rspkt, devil, FLAG NODISCON,

SCMD REQUEST SENSE,

0, SU_SENSE_LENGTH);

devp->sd_dev->devi_driver = &su_ops; /* install driver

entry points */

devp->sd_present = 1; /* mark present */

return(l); 	return OK */

}

* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> su_strspcpy function:

copies a string of length n from source_str to dest_str

* until the first space character

called from su_attach

static

su strspcpy(dest str, source str, n)

register char
	

*lest str;

register char
	

*source str;

int n;

{

register int 	i;

for (i = 0; i < n; i++) {

*(dest str + i) = *(source str + i);

	

if (*(dest str + i) == 	{

* (dest_str + i) = '\0';

return;

}

}

*(dest_str + n) 	'\0';

}

/*

* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> suattach function:

prints inquiry information,

* tests and tries to enable tagged queueing capability

*/

int

su_attach(devp)

struct scsi device 	*devp;

97

struct scsi_inquiry *inq data;

int unit
	

devp->sddev->deyiunit;

char str[17]; 	/* string for inquiry info */

printf("\t%s %s\n", su drv message[4], SU DRIVER VER);

* printing device identification info from inquiry

*/

ing_data = deyp->sd_inq;

ASSERT(inq data 	NULL);

printf("\tsu%d: ", unit num);

if (ing_data->ing_rmb)
	

/* Removable ? *

printf("%s ", su drv message[5]);

printf("%s %s%d %s, ", scsi dname(ing data->ing dtype),

su drv message[6], ing_data->ing_ansi, su drv message[7]);

su strspcpy(str, ing_data->ing_vid, 8);

printf{"%s: \'%s\', ", su_drv_message[8], str);

su_strspcpy(str, inq_data->ing_pid, 16);

printf("%s: \T%s\'.\n", sudrvmessage[9], str);

* try to enable tagged queueing for the unit,

set flag accordingly in unit flags

*/

if (scsiifsetcap(&(devp->sdaddress),

98

scsi capstrings[SCSI CAP TAGGED QING], 1, 1) == 1)

((struct su device *)devp->sd private)->

unit flags I= TAGGED QING;

else

((struct su_device *)deep->sd_ private)->

unit flags &= -TAGGED QING;

* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> sudone function:

finish up current transfer

* destroy pkt, if any and wake up sleeping user process

*1

su_done(bp)

struct buf *bp;

ASSERT(bp != NULL);

DPRINT(0, "su%d debug: su done called\n", minor(bp- _

>b_dev), 0, 0);

/* destroy pkt, if there is any and it isn't reqsense_pkt

if (bp->avforw)

scsi_pktfree((struct scsi_pkt *)(bp->av_forw));

99

/* reset unit retry count */

((struct su device *)(bp->b back))->unit retry count = 0;

/* wake up user process and set B_DONE

iodone(bp);

* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> sustrategy function:

called from su uscsi() and prepares and transports

* SCSI pkt and and does data transfer, if there is need

* notice: this is not a driver entry point

*/

su strategy(bp)

register struct buf *bp;

{

struct scsi device

>b forw);

*devp = (struct scsi_device *)(bp-

register struct su_device *unit_su_device

(struct su_ device *)(bp->b back);

struct scsipkt *pkt;

int unit num = minor(bp->b dev);

int transport state;/* state of transport */

union scsi cdb *cdb = unit su device->unit scdb;

union scsi cdb *cdb in pkt; _ _

100

number of logical blocks to be transfered when using

block algorithm

* used as count parameter in outgoing SCSI command

*/

long blk_count; /* number of blocks */

/* just to be short */

long *offset =

&(unit su_device->unit_addr_offset);

DPRINT(0, "su%d debug: su_strategy called\n", unit_num, 0,

by->b_flags &= -(B DONE 	B ERROR); 	initialize flags

bp->b_resid = 0;/* this will be ok hopefully

/* allocate pkt with or witout DMA support depending on

b_bcount */

if (bp->b_bcount)

/* allocate pkt with associated DMA token

pkt = scsi_resalloc(&(devp->sd address),

unit_su_device->unit_scdb_len, SU STATUS LEN,

(opague_t)bp, NULL_FUNC);

else

/* allocate pkt without any DMA support */

pkt = scsi__ pktalloc(&(devp->sd address),

101

0);

*/

102

unit su device->unit scdb len, SU STATUS LEN, NULL FUNC);

/ save pkt pointer in bp field */

(struct scsipkt *)(bp->av_forw) = pkt;

/* check if pkt has been allocated */

if (!pkt) {

if 	(!(unit _su _device->unit flags & SILENT))

printf("su%d: %s", unit num, su drv message[1]);

by->b flags 1= B ERROR;

bp-->b error = ENOMEM;

bp->b_resid = bp->b_bcount;

su_ done(bp); 	/* finish, if could not allocate pkt */

return;

/* save pointer of cdb in pkt */

cdb_ in pkt = (union scsi_ cdb *)(pkt->pkt cdbp);

/* make common part of SCSI command for pkt and fill some

pkt fields */

MAKECOM COMMON{pkt, devp, unit su _device->unit_pkt flags,

cdb->scc cmd);

bcopy(cdb, cdb_in_pkt, unit_su_device->unit_scdb_len);

103

if there is data transfer AND it may be done chunk by

chunk,

* fill standart address and count fields cleverly

*/

if ((bp->b_bcount != 0) && !(unit su device->unit flags &

CONT TRAN)) {

/*

* make specific address and count parameters according

* to BLOCK_CMD flag and unit_addr_offset, using

algorithm

* to support access by chunks, if necessary

*/

if (unit_su_device->unit_flags & BLOCK_CMD) {

/* use block algorithm */

blk count = bp->b_bcount /

unit su device->unit_block_size;

switch GETGROUP(cdb) {

case CDB GROUPID 0: 	/* Group 0 cmd */

/* if this is sequential device */

if ((devp->sdinq->inqdtype &

DTYPE MASK) 	DTYPE SEQUENTIAL) {

if (!(cdb->t code & 0x01)) {

by->b flags 1= B_ERROR;

by->b error = EINVAL;

bp->b_resid = bp->b_bcount;

su done(bp);

return; 	/* no fixed bit in cmd */

}

FORMG0COUNT S(cdb_in_pkt, blk count);

} else { 	/* other device */

FORMG0ADDR(cdb in pkt,

GETG0ADDR(cdb) + *offset);

FORMG0COUNT(cdbinpkt, blkcount);

}

break;

case CDB GROUPID 1:

check if relative addressing */

if (!(cdb->glreladdr & 0x01)) {/* no */

FORMG1ADDR(cdbinpkt,

GETG1ADDR(cdb) + *offset);

} else 	/* yes */

if (*offset)

FORMG1ADDR(cdbinpkt, 0);

FORMG1COUNT(cdb_in_pkt, blk_count);

break;

case CDB GROUPID 5:

/* check if relative addressing */

if (!(cdb->scc5 reladdr & 0x01)) {

FORMG5ADDR(cdb in pkt,

GETG5ADDR(cdb) + *offset);

else 	/* yes */

if (*offset)

no */

104

FORMG5ADDR(cdb_in_pkt, 0);

FORMG5COUNT(cdb_in_pkt, blk_ count);

break;

}

DPRINT(0, "bbcount %d, blk_ count %d, offset %d\n",

bp->b_bcount, blk_ count, *offset);

*offset += blk_ count;

} else { 	/* use byte algorithm */

/* Group 0 cmd and not a seq. device with set fixed bit*/

if ((GETGROUP(cdb) == CDB GROUPID 0) &&

!(((devp->sdinq->inqdtype &

DTYPE MASK) == DTYPE SEQUENTIAL) &&

(cdb->t code & 0x01))) {

FORMG0COUNT S(cdb in pkt, bp->b bcount);

} else { 	/* all other situations */

by->b flags 1= B ERROR;

by->b error = EINVAL;

bp->b_resid = bp->bbcount;

su done(bp);

return;

/* fill out other pkt fields */

pkt->pkt_private = (opaque_t)bp;

pkt->pkt_comp = su_comp; 	/* install completion routine

105

pkt->pkt_time = SU TIMEOUT

(bp->b bcount * unit su device->unit time rate) / 512;

pkt->pkt_pmon = -1; /* no performance monitoring */

/* transport pkt */

transport_state = pkt_transport(pkt);

check state and perform appropriate action

if (transport_state != TRANACCEPT)

if (transport_state == TRAN BUSY)

by->b error = EBUSY;

else {

bp->b_error = EIO;

if (!(unit su device->unit flags & SILENT))

printf("su%d: %s", unit num, su _drv message[10]);

}

bp->b_flags 1= B_ERROR;

bp->b_resid = bp->b_bcount;

su done(bp);

return;

* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> sucomp function:

(interrupt)

106

* called after performing a SCSI command as a completion

routine,

* analyses resulting situation, performs appropriate actions,

retries command, if possible

*/

void

su comp (pkt)

register struct scsi_pkt 	*pkt;

struct buf *bp = (struct buf *)(pkt->pktprivate);

struct scsi device 	*devp = (struct scsi_device *)(bp- _

>b forty) ;

register struct su device *unitsudevice =

(struct su device *)(bp->b back);

int unit num = minor(bp->b dev);

int op; 	/* what to do */

DPRINT(0, "su%d debug: su comp called\n", unit num, 0, 0);

/* analyze command completion */

if ((pkt->pkt reason != CMDCMPLT) II

((pkt->pkt state & STATE GOT STATUS) == 0)) {

/* too bad, cmd wasn't completed or no status received

if ((unit su device->unit retry count++ <

unit su device->unit num retries) &&

!(unit su device->unit flags & NO RETRY)) {

107

if (pkt == unit_su_device->unit_reqsense_pkt)

bzero((caddr_t)(devp->sdsense),

SU SENSE LENGTH);

op = SU COMMAND RETRY;

} else {

op = SU COMMAND ERROR;

by->b error = EIO;

}

else if (*(u char *)(pkt->pktscbp) & STATUS MASK) {

/* status ok ? */

op = SU COMMAND ERROR;

/* set uscsi status field */

unit su device->unit uscsi status =

*(u char *)(pkt->pktscbp);

/* no error message */

unit su device->unit flags 1= SILENT;

DPRINT(0, "su%d debug: status %x\n", unit num,

*(u char *)(pkt->pktscbp) & STATUS MASK, 0);

} else {

if (pkt->pktresid) {/* if transfer isn't done */

op = SU COMMAND ERROR;

bp->bresid += pkt->pktresid;

by->b error = EIO;

} else 	/* SCSI command was successful */

op = SUCOMMANDDONE;

108

109

/* perform operation according to op */

switch (op) {

case SU COMMAND RETRY:

if (pkt_transport(pkt) == TRANACCEPT) {

if 	(!(unit su _device->unit flags & SILENT))

printf("su%d: %s", unit num,

su drv message[11]);

break;

} else {

bp->b error = EIO;

if (!(unit su device->unit flags & SILENT))

printf("su%d: %s", unit _num,

su drv message[12]);

}

/* FALLTHROUGH */

case SU COMMAND ERROR:

bp->b_resid = bp->b_bcount;

bp->b_flags 1= B_ERROR;

if (!(unit su device->unit flags & SILENT))

printf("su%d: %s", unit_num, su_drv_message[13]);

/* FALLTHROUGH */

case SU COMMAND DONE:

/* copy result fields from pkt into unit_results */

bcopy((caddr_t)&(pkt->pkt_resid),

unit su device->unit results,

sizeof(struct su results));

/* finish it */

su done(bp);

}

}

* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> suopen function:

checks minor number and

* sets UNIT_OP flag if everithing is ok

* sets WRITE_EN flag according to user open() mode

suopen(dev, flags)

dev t dev;

int flags;

int unit num = minor(dev);

struct 	scsi device
	*devil;

register struct su_device *unit_su_device;

int pri;

DPRINT(0, "su%d debug: suopen called\n", unit num, 0, 0);

/* test if minor number is in its range

if (unit num >= SU MAXUNIT NUM)

110

111

return(ENXIO); /* return error if not */

/* test if there is present device with this minor

number*/

if ((devp = su units[unit num]) == (struct scsi device

*) 0)

return(ENXIO); 	return error if not */

ASSERT(devp->sd private != NULL);

unit su device = (struct su device *)(devp->sd private);

pri = sp16(); 	/* begin critical section

if 	(unit — su
—device->unit flags & UNIT OPEN) 	/* if

already open */

return(EBUSY); /* return busy */

unit su device->unit flags 1= UNIT OPEN; 	set UNIT OPEN

flag

*/

*/

splx(pri); 	exit critical section

/* test if write is enabled and set the flag accordingly

if (flags & FWRITE)

unit su device->unit flags 1= WRITE EN;

DPRINT(0, "su%d debug: write enabled\n", unit num, 0, 0);

} else

unit su device->unit flags &= -WRITE EN;

/* initialize some fields */

unit su device->unit uscsi status = 0;

unit su device->unit scdb = NULL;

unit su device->unit scdb len = 0;

ASSERT(unit su device->unit results != NULL);

bzero((caddr_t)(unit_su_device->unit_results),

initialize */

sizeof(struct su results));

unit su device->unit chunk size = 0; /* default */

unit su device->unit num retries = SU NUM RETRIES;

default */

unit su device->unit retry count = 0;

unit su device->unit time rate = 1; 	/* default */

unit su device->unitpkt flags = 0; 	/* default */

unit su device->unit block size = DEV BSIZE; 	/* default

*

unit su device->unit addr offset = 0;
	

initialize */

ASSERT(devp->sd sense 	NULL);

bzero((caddr_t)(devp->sd_sense), SU SENSE LENGTH);

initialize */

return(0);

}

*

* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>» suclose function:

112

* clear UNIT_OPEN flag

su close(dev, flags)

dev t dev;

int flags;

int unit num = minor(dev);

struct
	

scsi device 	*devp;

DPRINT(0, "su%d debug: su_close called\n", unit num, 0,

if ((devp = su units[unit num]) == (struct scsi device

return(ENXIO);

/* clear UNIT OPEN flag */

ASSERT(devp->sd_private != NULL);

((struct su device *)devp->sd private)->

unit flags &= -UNIT OPEN;

return(0);

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> su minphys function:

113

0);

*)0)

}

* determines size of transfer chunks and is called by physio.

* if unit_chunk_size is 0 (default), return minphys value

supplied

* by kernel, otherwise use value in unit chunk size, set by

* calling ioctl with SU_SET_CHUNK_SIZE request.

su minphys(bp)

struct 	buf

{

struct
	

su device *unit su device =

(struct su_device *)(bp->b back);

long su_chunk_size;

DPRINT(0, "su%d debug: su minphys called\n", minor(bp-_

>b_dev), 0, 0);

ASSERT(unit su device != NULL);

su chunk size = unit su device->unit chunk size;

if (!(su chunk size)) { 	/* if zero */

minphys(bp); 	/* default function */

return;

}

if (bp->b_bcount > su chunk size)
	

/* otherwise

bp->b_bcount = su_chunk_size; 	/* limit size */

114

/*

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>» su uscsi function:

* performs uscsi request, called from suioctl

* single threading is enforced by physio in DMA case

* or iowait() using B_DONE mechanizm

* which does not return until transfer is done

* dev 	- device major + minor numbers

* su uscsi cmd - pointer to valid uscsi cmd structure

* wr- write enable flag

*/

static int

su uscsi(dev, su uscsi cmd, wr, errorp)

dev t dev;

register struct uscsi cmd *su uscsi cmd;

	

u char 	wr;

struct scsi device
	

*devp = suunits[minor(dev)];

register struct su device *unit su device =

(struct su device *)(devp->sd private);

caddy t 	cdb;

int dir; /* B READ or B WRITE */

long orig_chunk_size =

unit su device->unit chunk size;

int c len;
	/* length of cmd

int error;

115

/* check length of cdb and validity of cdb pointer */

if 	((!su _ uscsi cmd->uscsi cdblen) 	(!su uscsi cmd-

>uscsi cdb) II

(su uscsi cmd->uscsi cdblen > SU MAX CDB LEN))

return(EINVAL);

/* check for valid flags and parameters for block SCSI

transfer */

if (su uscsi cmd->uscsi flags & USCSI BLOCK)

if (((su uscsi cmd->uscsi buflen /

unit su device->unit block size) *

unit su device->unit block size) !=

su uscsi cmd->uscsi buflen)

return(EINVAL);

if (((unit su device->unit chunk size /

unit su device->unit block size) *

unit

unit

su

su

device->unit

device->unit

block

chunk

size)

size)

1=

return(EINVAL);

}

/* determine transfer direction */

dir = (su uscsi cmd->uscsi flags & USCSI READ) ? B READ :

B WRITE;

116

check for write permission */

if ((dir == B WRITE) && (!wr))

return(EACCES); /* no write permission

/* allocate memory for cdb */

cdb = kmem_zalloc((size t)su uscsi cmd->uscsi cdblen);

if (!cdb)

return(ENOMEM);

/* keep in su device */

unit su device->unit scdb = (union scsi cdb *)cdb;

/* copy cdb in */

if (copyin(suuscsicmd->uscsicdb, cdb, su uscsi cmd- _

>uscsi cdblen)) {

kmem free(cdb, (size t)su uscsi cmd->uscsi cdblen);

return(EFAULT); /* if copyin fails */

/* check for validity of cmd group and its length */

switch (GETGROUP(unit su device->unit scdb)) {

case CDB GROUPID 0:

c len = CDB GROUP0;

break;

case CDB GROUPID 1:

c len = CDB GROUP1;

break;

case CDB GROUPID 5:

117

c len = CDB GROUPS;

break;

default: 	not Group 0, 1, or 5 SCSI command */

ASSERT(cdb != NULL);

kmem free(cdb, (size t)su uscsi cmd->uscsi cdblen);

return(EINVAL);

}

if (su uscsi cmd->uscsi cdblen != c len)

return(EINVAL);

/* copy length of cdb */

unit su device->unit scdb len = su uscsi cmd- _

>uscsi cdblen;

set SILENT flag according to USCSI SILENT */

if (su uscsi cmd->uscsi flags & USCSI SILENT)

unit su device->unit flags 1= SILENT;

/* set BLOCK CMD flag according to USCSI BLOCK */

if (su uscsi cmd->uscsi flags & USCSI BLOCK)

unit su device->unit flags = BLOCK CMD;

* if USCSI CONT flag is set,

* set unit chunk size to uscsi buflen

* and set CONTTRAN flag

*/

118

if (su uscsi cmd->uscsi flags & USCSI CONT) { _ _ _

unit su device->unit chunk size = su uscsi cmd- _ _

>uscsi buflen;

unit _su device->unit flags != CONT IRAN;

/* set NO RETRY flag according to USCSI NO RETRY */ _

if (su uscsi cmd->uscsi flags & USCSI NO RETRY) _ _ _

unit su device->unit flags I NO RETRY; _ _ 	 _ 	 _

/* determine if DMA transfer needed */

if (su uscsi cmd->uscsi buflen)

/* DMA transfer needed */

struct iovec
	

i iov;
	

/* internally allocated

struct uio i uio; /* uio structure*/

struct uio *su uio = &i uio;

/* prepare su uio structure */

bzero((caddr t)&i iov, sizeof(struct iovec));

bzero((caddr t)&i uio, sizeof(struct uio));

su uio->uio iov = &i iov; _

su uio->uio iov->iov base = su uscsi cmd->uscsi bufaddr;

su uio->uio iov->iov len = su uscsi cmd->uscsi buflen;

su uio->uio iovcnt = 1;

su uio->uio offset = 0;

su _ uio->uio _ segflg = UI0 _USERSPACE;

su uio->uio fmode = 0;

119

su uio->uio resid = su uscsi cmd->uscsi buflen;

/* perform physical I/O */

error = physio(su strategy, unit su device->unit bp, dev,

su minphys, su uio);

} else { 	/* no data, no DMA */

/* prepare unit by */

unit su device->unit bp->b flags 	dir;

unit su device->unit bp->b dev = dev; _ _ 	 _ 	_

unit su device->unit bp->b bcount = 0;

unit su device->unit bp->b blkno = 0;

/* call strategy routine for dataless SCSI cmd */

su strategy(unit su device->unit bp);

/* wait (sleep on user process) until B DONE */

error = iowait(unit su device->unit bp);

}

/* destroy current cdb */

ASSERT(cdb != NULL);

kmem free(cdb, (size t)su uscsi cmd->uscsi cdblen);

/* reset some flags */

unit su device->unit flags &=

(SILENT 1 BLOCK CMD (CONT TRAN 1 NO RETRY);

120

dir,

/* reset SCSI address offs@t */

unit su _device->unit addr ffset = 0;

/* restore unit chunk size */

unit su device->unit chunk size = orig chunk size;

return(error);

}

*

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> su request sense function:

* sends REQUEST SENSE command using already allocated

unitreqsensepkt

and copies received sense into buffer pointed by data

*/

static int

su request sense(dev, data)

dev t dev;

caddy t 	data;

struct scsi device
	

*devp = suunits[minor(dev)];

register struct su device *unitsudevice =

(struct su device *)(devp->sd private);

struct buf *bp = unit_su_device->unit_bp;

int transport state;

121

int error;

DPRINT(0, 	u%d debug: su request sense called\n",

minor(dev), 0, 0);

bp->b_flags &= -(B_DONE I B ERROR); 	/* initialize flags

*/

bp->av_forw = NULL; /* su done won't destroy

unit reqsense_pkt */

/* transport unit reqsense_pkt */

transport_ state = pkt_transport(unitsujevice-

>unit reqsense_pkt);

/* check state and perform appropriate action *

if (transport state != TRAN ACCEPT)

if (transport state == TRAN BUSY)

bp->b_error = EBUSY;

else

bp->b_error = EIO;

hp->b flags 1= B_ERROR;

bp->b_resid = bp->bbcount;

su done(bp);

/* wait for completion

error = iowait(bp);

122

/* copy sense data and reset sd_sense */

if (!error)

bcopy((caddr_t)(devp->sd_sense), data, SUSENSELENGTH);

bzero((caddr_t)(devp->sd_sense), SU SENSE LENGTH);

/* reset status, which may be changed in su comp */

unit su device->unit uscsi status = 0; _ _

return(error);

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> su ioctl function:

* performs ioctl requests, including user SCSI commands,

* control operations etc.

* valid ioctl requests are defined in /sys/scsi/targets/sudef.h

*/

su ioctl(dev, cmd, data, flag)

dev t dev; _

register int 	cmd;

caddy t 	data; _

{

int unit num = minor(dev);

struct scsi device 	*devp; _

struct su device*unit su device;

123

struct scsi_pkt *pkt;

u char 	wr en; 	write enabled flag

int error;

DPRINT(0, "su%d debug: su_ioctl with cmd = %d\n",

minor(dev), cmd, 0);

/* test if minor number is in its range

if (unit num >= SU MAXUNIT NUM)

return(ENXIO); /* return error if not */

/* test if unit structures are ok and unit is opened*/

if ((devp = su units[unit num]) == (struct scsi device

*) 0)

return(ENXIO); /* return error if not */

ASSERT(devp->sd private != NULL);

unit su device = (struct su device *)(devp->sd_private);

if (!(unit su device->unit flags & UNIT OPEN))

return(ENODEV);

/* set write enabled flag according to open mode */

wren = unit su device->unit flags & WRITE EN;

/* perform ioctl request */

switch (cmd) {

case SU RESET DEV: 	/* reset the device */

return((scsi reset(&(devp->sd address), RESET TARGET)) ?

124

0 : EIO);

case USCSICMD: /* issue user SCSI command */

if (data == NULL)

return(EFAULT);

/* send USCSI command */

error = su uscsi(dev, data, wr en);

/* copy SCSI status and reset it in su device*/

((struct uscsi cmd *)data)->uscsi status =

unit su device->unit uscsi status;

unit su device->unit uscsi status = 0;

* if status is not zero, return 0 error code

* to copy uscsi cmd structure back

*/

return((((struct uscsi cmd *)data)->uscsi status &

STATUS MASK) ? 0 : error);

case SU GET INQ DATA: 	return stored inquiry data */

if (data == NULL)

return(EFAULT);

bcopy((caddr_t)(devp->sd_inq), data,

(SU GET INQ DATA >> 16) & 0x00ff); 	size

return(0);

125

126

case SU REQUEST SENSE: 	send REQUEST SENSE and return

sense */

if (data == NULL)

return(EFAULT);

return(su_request_sense(dev, data));

case SU GET CAP:/* get HA capabilities for unit */

if (data == NULL)

return(EFAULT);

if ((((struct su dev cap *)data)->value =

scsi ifgetcap(&(devp->sd address),

scsi capstrings[((struct su dev cap *)data)->

cap], 1)) != -1)

return(0);

else

return(EINVAL);

case SU SET CAP:/* set HA capabilities for unit */

if (data == NULL)

return(EFAULT);

if (scsi ifsetcap(&(devp->sd address),

scsi capstrings[((struct su dev cap *)data)->

cap], ((struct su dev cap *)data)->value, 1)

1)

return(0);

else

127

return(EINVAL);

case SU GET RESULTS: /* get results from last SCSI

transfer*/

if (data == NULL)

return(EFAULT);

bcopy((caddr_t)(unit_su_device->unitresults), data,

sizeof(struct su results));

return(0);

case SU SET CHUNK SIZE: 	set chunk size for su minphys

*

if (data == NULL)

return(EFAULT);

if ((*(long *)data > SU MAX CHUNK SIZE) II

(*(long *)data < SUMINCHUNKSIZE))

return(EINVAL);

unit su device->unit chunk size = *(long *)data;

return(0);

case SU SET RETRY NUM: 	/* set max num of retries

if (data == NULL)

return(EFAULT);

if ((*(int *)data > SU MAX NUM RETRIES) ||

(*(int *)data < 0))

return(EINVAL);

unit su device->unit num retries 	*(int *)data;

128

return(0);

case SU GET SCSI ID: 	return bus and target ids */

if (data == NULL)

return(EFAULT);

((struct su scsi
	

*)data)->busid =

devp->sd_dev->devi_parent->deviunit;

((struct su scsi id *)data)->dev id =

devp->sd_address.a_target;

return(0);

case SU SET TIME RATE: 	set time rate in sec/512bytes

if (data == NULL)

return(EFAULT);

if ((*(int *)data > SU MAX TIME RATE)

(*(int *)data < 0))

return(EINVAL);

unit su device->unit time rate = *(int *)data;

return(0);

case SU SET PKT FLAGS: 	/* set pkt flags */

if (data == NULL)

return(EFAULT);

unit su device->unitpkt flags = *(long *)data;

return(0);

case SU SET BLOCK SIZE:

if (data == NULL)

return(EFAULT);

if (*(long *)data <= 0)

return(EINVAL);

unit su device->unit block size = *(long *)data;

return(0);

default:

return(ENOTTY);

}

129

}

#! /bin/sh

MAKEDEV.su v. 1.00 12/11/95

MAKEDEV for su - SCSI universal driver

synopsis:

MAKEDEV.su char

where char is the respective char major

number of the driver in a particular system.

char=$1;

umask 0;

max unit num=4;

unit num=0;

mode=666;

while [$unit num -ne $max unit num

do

/etc/mknod rsu$unit num c $char $unit num

chmod $mode rsu$unit num

unit num='expr $unit num + 1

done

130

umask 77

APPENDIX B

C SOURCE OF THE "HSCSID" HOST LEVEL
SCSI REQUEST SERVER DAEMON

/*

* Host side deamon running on Sun SPARC station performing

* as a link

* between Hydra DSP programs and su universal SCSI driver

* hscsid.c 	12/11/95

* usage: hscsid dsp trapnum

* Artak 0. Melkonian, All Rights Reserved, 1994, 1995

* Department of Electrical and Computer Engineering

* New Jersey Institute of Technology

*/

#include <scsi/targets/sudef.h>

#include <vc40dsp.h>

#include <stdio.h>

#include <sys/types.h>

#include <syslog.h>

#include "shared.h"

#define SUDEVFILE 	"/dev/rsu

#define HYDRA INT 	SIGUSR1

131

#define BAD DEV REQ NUM

#define OPEN ERRREQ NUM + 1

int

char

int

su d[SU MAXUNIT NUM]; _

su dev name[sizeof(SUDEVFILE)] = SUDEVFILE;

c40_d, i; /* c40 device descriptor */

struct scsi_inquiry inq; /* SCSI inquiry info */

long err;

caddr t 	shmem_ptr; /* hydra shared mem ptr */

struct hydra_request h req; 	/* parameter block ptr

char *data;

int trapnum;

/* signal handlers */

void hydra_int_handler();

void term handler();

/*

* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> main() function

*/

main(argc, argv)

int argc;

char *argv[];

{

int i;

132

133

struct vc40info hydra info;

/* check command line

if (argc != 3) {

printf("usage: hscsid dsp trapnum\n");

printf(" 	dsp - special file for dsp\n");

printf(" 	trapnum - dsp trap number to use\n");

exit(1);

}

if ((trapnum = (int)strtol(argv[2], NULL, 0)) <= 0)

printf("hscsid: trapnum out of range.\n");

exit(1);

}

/* fork and disassociate controlling terminal

err = fork();

if (err > 0)

exit(0);

if (err == -1) {

printf("hscsid: couldn't fork");

exit(1);

}

setsid();

/* initialize descriptors */

for (i = 0; i < SU MAXUNIT NUM; i++)

su d[i] = -1;

/* setup syslog */

openlog(argv[0], LOG PID, LOG DAEMON);

/* open Hydra board */

if ((c40_d = open(argv[1], 0 RDWR)) <= 0) {

syslog(LOG_ERR, "failed to open Hydra DSP %s. Exiting.",

argv[1]);

exit(1);

}

/* get DSP configuration information */

if (c40_getinfo(c40_d, &hydra_info) != 0) {

syslog(LOG_ERR, "failed to get DSP info. Exiting.");

exit(1);

}

/* allocate space for data buffer */

data = (char *)malloc(hydrainfo.dramsize -

MO BYTES PER DSP

hydra_info.numdsp - HY_REQ_SIZE);

if (!data) {

syslog(LOG ERR, "failed to allocate memory for data

buffer.");

syslog(LOG_ERR, "requested size = %d",

hydra_info.dram_size - MO_BYTES_PER_DSP *

hydra_info.numdsp - HY_REQ_SIZE);

134

syslog(OG_ERR, "Exiting.

exit(1);

}

/* install interrupt handlers */

signal(HYDRA_INT, hydra_inthandler);

signal(SIGTERM, term_handler);

signal(SIGINT, term_handler);

signal(SIGHUP, term handler);

signal(SIGQUIT, term handler);

/*

* map in Hydra shared memory excluding top memory

* portions used by Hydra monitor and parameter block

* note that on failure, c40 map shmem returns -1 !

*/

if ((shmem_ptr = (caddr_t)c40_map_shmem(c40_d, 0,

hydra_info.dram_size - MO_BYTES_PER_DSP *

hydra_info.numdsp -

HY REQ SIZE)) == (caddy t)-1) {

syslog(LOG_ERR, "failed to map Hydra shared memory.

Exiting.");

exit(1);

} else

syslog(LOG_INFO, "Shmem address: 0x%lx.", shmem_ptr);

/*

135

136

* map in Hydra shared memory portion for parameter block

* just before space used by Hydra monitor

* note that on failure, c40 map shmem returns -1 !

*/

if ((hy_req = (struct hydra request *)c40 map shmem(c40_d,

hydra info.dram size - MO BYTES PER DSP *

hydra_info.numdsp -

HY REQ SIZE, HY _REQ SIZE)) 	(struct hydra_request *)-1)

syslog(LOG_ERR, "failed to map Hydra shared memory.

Exiting.");

exit(1);

) else

syslog(LOG INFO, "Reqmem address: 0x%lx.", hy_req);

/* sleep, wait for signals */

while(1) {

pause();

}

* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> send scsi cmd () function

* sends SCSI command and transfers data, if any

*/

int

send scsi cmd(d num)

137

int d num;

{

int error;

struct uscsi cmdcmd;

struct su results 	res;

/* prepare uscsi cmd */

cmd.uscsi _cdb = (caddr_t)&(hy_req->params[0]);

cmd.uscsi _ cdblen = hy _req->params[3];

cmd.uscsi _ buflen = hy _req->params[5] * WORD_ SIZE;

cmd.uscsi bufaddr = cmd.uscsi buflen ? data : NULL;

cmd.uscsi _ flags = hy _req->params[7];

/* copy data from shmem, if write operation

if (!(cmd.uscsi flags & USCSI READ))

memcpy(data, ((caddr_t)((unsigned long)shmem_ptr +

hy_req->params[4] * WORD_SIZE)), cmd.uscsi_buflen);

/* send command */

error = ioctl(sud[dnum], USCSICMD, &cmd);

hyreq->params[6] = cmd.uscsi_status;

/* copy data to shmem, if read operation

if (cmd.uscsi flags & USCSI READ)

memcpy(((caddr_t)((unsigned long)shmem_ptr +

hy_req->params[4] * WORD_SIZE)), data, cmd.uscsi_buflen);

return(error);

}

*

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> write inq data() function

* writes appropriate inquiry data to Hydra

*/

int

write inq data(d num)

int d num;

int 	i;

get inquiry info */

if (err = ioctl(sud[dnum
	SU GET INQ DATA, &inq) == -1)

perror("host scsi: failed to get SCSI inquiry info");

return(err);

}

/* copy appropriate inquiry fields */

hy_req->params[0] 	inq.inq_dtype;

hyreq->params(1) 	inq.inq_rmb;

hyreq->params[2] = ing.inq_qual;

hy_req->params[3] 	inq.inq_ansi;

hy_req->params[4] 	ing.inq_aenc;

hy_req->params[5] = inq.inq_rdf;

138

139

hy_req->params[6] = inq.ing_reladdr;

hy_req->params[7] = inq.inqwbus32;

hy_req->params[8] = inq.inqwbus16;

hy_req->params[9] = inq.inq linked;

hy_req->params[10] = inq.inq_cmdque;

hy_req->params[11] - inq.inqsftre;

for(i = 0; i < 8; i++)

hy_req->params[12 + i] = inq.inqvid[i];

for(i = 0; i < 16; i++)

hy_req->params[20 + i] = inq.inqpid[i];

for(i = 0; i < 4; i++)

hy_req->params[36 + i] = inq.inqrevision[i];

return(GOOD);

}

* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> hydrainthandler() function

* when Hydra interrupts host system, this function is called

* no parameter range checking is done, su driver will do itself

void

hydrainthandler()

{

register int
	

d num; 	which SCSI device

unsigned int
	

i temp;

struct su _ results 	trans
—res; /* transport results */

struct su _ scsi _ id 	scsi _id; 	/* target ID info */

struct su _dev_cap 	cap; /* capability and value */

/*

*check if device with number by req->dev num has been

opened

*/

d num = by req->dev num;

if (!(d num >= 0) && (d num < SU MAXUNIT NUM)) _

hyreq->reqcode = BAD DEV;

/*

* check if su device is open

* and try to open, if it isn't

*/

su dev name[sizeof(SUDEVFILE) - 2] = 0x30 + d num;

if (su d[d num] == -1) {

if ((sud[dnum] = open(su dev name, 0 RDWR)) < 0)

hyreq->reqcode = OPEN ERR;

}

/*

* perform appropriate request

or handle errors (last two cases)

*/

switch(hyreq->reqcode) {

140

case CLOSE DEV:

su d[d] = -1;

err = close(su dev name);

case RESET DEV:

err = ioctl(su_d[d_num], SURESETDEV);

break;

case SCSI CMD:

err = send scsi cmd(d num);

break;

case GET INQ DATA:

err = write inq data(d num);

break;

case REQUEST SENSE:

err = ioctl(sud[dnum], SU REQUEST SENSE,

&(hyreq->params[0]));

break;

case GET CAP:

cap.cap = hyreq->params[0];

err = ioctl(su d[d num], SU GET CAP, &cap);

by req->params[1] = cap.value;

break;

141

case SET CAP:

cap.cap = hy_req->params[0];

cap.value = hy_req->params[1];

err 	= ioctl(su d[d num], SU _ SET _CAP, &cap);

break;

case GET RESULTS:

err = ioctl(su _ d[d num], SU _GET RESULTS, &trans res);

hyreq->params[0] = trans res.resid;

hyreq->params[1] = trans res.reason;

hyreq->params[2] = trans res.state;

hyreq->params[3] = trans res.statistics;

break;

case SET CHUNK SIZE:

err = ioctl(su d[d num], SU SET CHUNK SIZE,

&(hyreq->params[0]));

break;

case SET RETRY NUM:

temp = by req->params[0];

err = ioctl(su d[d num], SU _ SET _RETRY NUM, &i temp);

break;

case GET SCSI ID:

err = ioctl(su d[d num],

142

SU GET SCSI ID, &scsi id);

hy_req->params[0] = scsi id.bus id;

hy_req->params[1] = scsi id.dev id;

break;

case SET TIME RATE:

i temp = hy req->params[0];

err = ioctl(su d[d num], SU SET TIME RATE, &i temp);

break;

case SET PKT FLAGS:

err = ioctl(su d[d num], SU SET PKT FLAGS, _ _

&(hyreq->params[0]));

break;

case SET BLOCK SIZE:

err = ioctl(su d[d num], SU SET BLOCK SIZE,

&(hyreq->params[0]));

break;

case BAD DEV:

errno = EBADF;

err = -1;

break;

case OPEN ERR:

err = -1;

143

break;

default:

errno = ILL REQ;

err =

/* set result and interrupt Hydra */

hyreq->result = err ? errno : GOOD;

if (c40 trap(c40 d, trapnum) != 0) {

syslog(LOG_ERR, "failed to interrupt DSP. Exiting.");

exit(1);

}

/*

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> term handler () function

terminates program gracefully

*/

void

term handler()

int i;

/* close devices and exit*/

for (i = 0; i < SU MAXUNIT NUM; i++)

if (sud[i] != -1)

144

close(sud[i]);

close(c40d);

exit();

145

}

146

/*

* Definitions and data structures shared by host

* and hydra programs

* shared.h 	12/11/95

* Artak 0. Melkonian, All Rights Reserved, 1994, 1995

* Department of Electrical and Computer Engineering

* New Jersey Institute of Technology

*/

/* DSP word size *

#define WORD SIZE 	4

/* size of shared memory space per DSP reserved by Hydra monitor

*/

#define MO WORDS PER DSP 1040 /* DSP words */

#define MO BYTES PER DSP MO WORDS PER DSP * WORD SIZE 	/*

bytes */

/* DSP trap numbers

#define TRAP9 	0x9

* Hydra request codes:

* requests described in scsi/targets/sudef.h

* specific SCSI terms are described in SCSI standart

and in scsi directory of include files

147

* parameter directions:

* > - 	Hydra to host

* < 	host to Hydra (return)

#define RESET DEV 	1

/*

no params

#define SCSI CMD2

/* 	params[0]:> 	SCSI command block, byte 0..3

params[2]:> 	SCSI command block, byte 8..11

params[3]:> 	length of command block (6; 10; 12

usually)

params[4]:> 	buffer offset from Hydra shared memory

base (words)

params[5]:> 	length of buffer in Hydra shared memory

(words)

params[6]:< 	returned SCSI status

params[7}:> 	USCSI flags

#define GET INQ DATA 3

/* complete inquiry info can be obtained issuing INQUIRY command

*/

params[0]:<

params[1]:<

params[2]:<

params[3]:<

params{4]:<

params[5]:<

params[6]:<

params[7]:<

params[8]:<

params[9]:<

params[10]:<

params[11]:<

params[12]:<

device qualifier and device type

set, if removable

device type qualifier

ANSI version

async. event notification capability

inquiry response data format

supports relative addressing

supports 32 bit wide data transfers

supports 16 bit wide data transfers

supports linked commands

supports command queueing

supports Soft Reset option

vendor ID, byte 0

148

params[19]:< 	vendor ID, byte 7

params[20]:< 	product ID, byte 0

params[35]:< 	product ID, byte 15

params[36]:< 	revision level, byte 0

params[39]:< 	revision level, byte 3

*/

#define REQUEST SENSE 4

/* complete sense can be obtained also issuing REQUEST SENSE

command */

/*

params[0]:< 	SCSI sense, byte 0..3

params[3]:< 	SCSI sense, byte 16..19

149

Note that the pointer to params[0] can be casted as a

pointer

to a struct scsi extended sense (from hydra/scsi incl.h)

which would be very convenient to work with.

*

#define GET CAP 5

/*

	

params[0]:> 	capability

	

params[1]:< 	value

*

#define SET CAP 6

/*

	

params [0] :> 	capability

	

params[1]:> 	value

*/

#define GET RESULTS 7

/*

	

params[0]:< 	data bytes not transfered

	

params[1]:< 	command completion reason

150

	

params[2]:< 	state of command reached

	

params[3]:< 	some statistics

*/

#define SET CHUNK SIZE 	8

/*

	

params[0]:> 	transfer chunk size

#define SET RETRY NUM 9

/*

	

params[0]:> 	number of command retries

*/

#define GET SCSI ID 10

/*

	

params[0]:< 	bus ID

params[1]:< 	target ID

*/

#define SET TIME RATE11

/*

params[0]:> 	completion time rate in sec/512bytes

#define SET PKT FLAGS12

151

params[0]:> 	transport packet flags

#define SET BLOCK SIZE 	13

/*

params[0]:>
	

logical block size for block transfer

commands

*/

/*

* standart result codes

*/

#define GOOD 	0

#define ILL _REQ 0xffffffff /*illegal request */

parameter block used to exchange request and result

information

* between host and hydra. Hydra fills it in its shared memory,

host reads it, performs request and returns result

*/

/* NOTE that c40 compiler will calculate number of words, not

bytes! */

#define HY REQ SIZE sizeof(struct hydra request)

#define PARAM NUM 	61

struct hydra request

unsigned long 	dev num;

unsigned long 	req_code;

unsigned long 	params[PARAM NUM];

unsigned long 	result;

152

APPENDIX C

SOURCES OF THE HYDRA SCSI UTILITIES

1*

* Header file of some useful SCSI or other utilities for Hydra

* by scsi util.h 	12/11/95

* Portions are copyright (C) 1993 Ariel Corp.

*/

#include <stdlib.h>

#include <stddef.h>

#include "hyscsi.h"

/* useful definitions for DSP timer */

#define RESET TIMER() (*(unsigned long *)0x00100020 I= 960)

#define SET_PERIOD(p) (*(unsigned long *)0x00100028 = (unsigned

long)(p))

#define GET TIMER() 	(*(unsigned long *)0x00100024)

#define ELAPSED TIME(st, end) 	(((end) - (st)) * 0.1)

#define SH MEM(offset) 	(*(unsigned long *)(offset))

#define DEV BSIZE 	512

#define RESET CDB() 	by req->params[0] = 0, by req->params[1] =

0, \

by req->params[2] = 0

153

#define SET_USCSI FLAGS(flags) hy req->params[7] 1= (flags)

#define CLEAR USCSI FLAGS() 	hy_req->params[7] = 0x0

/* Hydra standart configuration structures

typedef struct{

unsigned long baud;

int parity, bits;

UART config;

typedef struct{

int local, global;

} SramSize;

typedef struct{

DART config uartA, uartB;

unsigned long dram_size, cpu_clock, checksum;

SramSize sraml size, sram2 size, sram3 size, sram4 siz(

unsigned long 1 dram base, 	1 dram space,

1 jtag space;

unsigned long daughter;

char revision;

} hydra_conf;

extern void writeVIC();

extern unsigned long readVIC();

extern void writeVAC();

1 jtag

extern unsigned long readVAC();

extern char c40putchar();

extern void c40printf();

extern void c40perror();

extern void perror scsi();

extern void print sense();

/* functions defined in hydra int.asm */

extern void GIE On();

extern void GIE Off();

extern void EnCache();

extern void SetIntVect();

extern void HostInt();

extern hydra_conf *GetConfig();

extern void Idle();

155

156

* Header file of some useful SCSI or other utilities for Hydra

* hyscsi.h 	12/11/95

* Portions are copyright (C) 1993 Ariel Corp.

*/

#include <errno.h>

#include "shared.h"

#include "scsi incl.h"

/* request block */

extern struct hydra request 	 req;

* Some useful SCSI or terminal output utilities for Hydra

hydrautil.c 06/25/95

* Portions are copyright (C) 1993 Ariel Corp.

#include <ctype.h>

#include <stdarg.h>

#include <math.h>

#include "hyscsi.h"

/* Hydra SCSI request block

struct hydra_request *hyreq;

/* extended sense key messages */

char *ext sense key[] =

"No sense",

"Recoverable error",

"Not ready",

"Medium error",

"Hardware error",

"Illegal request",

"Unit attention",

"Write protect",

"Blank check",

"Vendor unique",

"Copy aborted",

157

158

"Aborted command",

"Equal",

"Volume overflow",

"Miscompare",

"Unknown sense key"

};

/*

* error messages for c40perror

*/

char ue msg[] = "Unknown error";

/* new error messages can be added without changing anything

else */

char *errmsg [} = {

/*00*/ 	"No error"

/*01*/

/*02*/

/*03*/

/*04*/

/*05*/ 	"I/O error",

/*06*/
	

"No such device or address",

/*07*/ 	"

/*08*/

/*09*/ 	"Bad file number",

"Not enough memory",

"Permission denied",

"Bad address",

f,

"Device busy",

"If

"No such device"

"Invalid argument",

IT "

VT Ti

"Invalid request"

};

void writeVlC(unsigned long add, unsigned long data)

*((unsigned long *)(((0xFFFC0000
	add) >> 2)

0xB0000000)) = data;

}

unsigned long readVlC(unsigned long add)

return((*((unsigned long *)(((0xFFFC0000 I add) >> 2)

0xB0000000))) &0xFF);

}

159

160

void writeVAC(unsigned long add, unsigned long data)

*((unsigned long *)(((OxFFFD0000 	(add << 8)) >> 2)

0xB0000000)) = (data << 16);

}

unsigned long readVAC(unsigned long add)

return((*((unsigned long *)((((0xFFFD0000 I (add << 8))

>> 2) (0xB0000000))) >> 16) & 0xFFFF);

}

char c40 putchar(char ch)

int i;

writeVlC(0x27, 0xal); 	/* Disable this interrupt */

/* Wait until the transmitter is ready */

while(!(readVAC(0x25) & (unsigned long)0x100));

/* Wait until the transmitter is ready again due to VAC

bug */

while(NreadVAC(0x25) & (unsigned long)0x100));

/* Write character to transmitter */

writeVAC(0xlE, ch << 8);

for(i=0 ; i < 100 ;)

i++;

writeVlC(0x27, 0x01);

return(ch);

161

/* Re-enable this interrupt */

void putstr(char *buf)

int i;

for(i=0 	buf[i] != '\0' ; i++)

c40 putchar(buf[i]);

void xtoa(unsigned long hexval, char *buf)

unsigned long mask=0x0F0000000, i;

unsigned long temp;

for(i=0 ; i < 8 ; i++, mask >>= 4)

{

temp = hexval & mask;

temp >>= (7-i)*4;

buf[i] = (temp < 10) ? 48+temp : 55+temp;

}

buf[8] = '\0v;

}

void ftoa(float fval, char *buf)

int index=0, count, exponent;

double tempi, temp2;

if(fval < 0)

buf[index++] =

fval = -fval;

}

exponent = fval!=0.0?log10(fval):0;

fval /= pow((double)10.0, (double) exponent);

if((fval > -1.0) && (fval < 1.0) && (fval != 0.0))

fval *= 10;

exponent--;

buf[index++] = '0' + (int)fval;

fval -= (int)fval;

buf[index++] = '.';

162

}

else

{

buf[index++] = '0' + (int)fval;

fval -= (int)fval;

buf[index++] = '.';

for(count=0 ; count < 4 ; count++)

fval *= 10;

buf[index++] = '0' + (int)fval;

fval -= (int)fval;

}

if(exponent)

{

buf[index++] =

buf[index++] 	'1';

buf[index++] = '0';

buf[index++] 	'e';

ltoa(exponent, buf+index);

else

{

buf[index] = '\0';

}

163

void c40_printf(char *fmt,

va list ap;

char *p, *sval, cval;

long ival;

float fval;

char buf[16];

va start(ap, fmt);

for(p=fmt ; *p ; p++)

switch(*p)

case '\n'

c40putchar((int) 10);

c40putchar((int) 13);

break;

case '%' :

switch(++P)

{

case 'd'

ival = va arg(ap, int);

ltoa(ival, buf, 10);

putstr (buf);

break;

case 'f' :

164

fval = va _arg(ap, float);

ftoa(fval, buf);

putstr(buf);

break;

case 	'x' :

ival = va_arg(ap, int);

xtoa(ival, buf);

putstr(buf);

break;

case 'c'

cval = va _arg(ap, char);

c40putchar(cval);

break;

case 's'

sval = vaarg(ap, char *);

putstr(sval);

break;

default

c40putchar(*p);

break;

I

break;

default:

c40putchar(*p);

break;

}

}

165

166

va end(ap);

void c40 perror(char *msg)

c40 printf("%s: (E%d) %s.\n", msg, errno,

((err msg[errno] 	"") &&

(errno < (sizeof(errmsg)/sizeof(char *))) && (errno >=

0)) ?

err msg[errno] : ue msg);

}

void perror scsi()

errno = hyreq->result;

c40 printf("\nRequest: (%d), 	hy_req->req_code);

c40 perror("got error when accessing SCSI device");

stopprog();

}

void print_sense(s)

unsigned long 	s;

{

c40_printf("Sense key: %s.\n", ((s >= 0) && (s < Oxf)) ?
ext sense key[s] : ext sense key[0xf]);

1.67

FP 	.set AR3

Some TMS320C40 assembly language code

; to perform low-level operations

.globl 	SetlntVect

SetlntVect:

ldep ivtp,ar0

ldi sp,arl

ldi 	*-arl(1),ir0 	;Get interrupt to set

ldi *-arl(2),r0 	;Get pointer to interrupt handler

routine

sti 	r0,*+ar0(ir0)

rets

; enable global interrupts

.globl 	GIE On _ _

GIE On:

or 	02000h,st

rets

; disable global interrupts

168

.globl 	GIE Off

GIE Off:

ldi 02000h,r0

not r0

and r0,st

rets

; call trap 0x7 to generate host interrupt

.globl 	Hostlnt

HostInt:

trap 7h

rets

; call trap 0x8 to get pointer to copy of Hydra configuration in

R0

.globl 	GetConfig

GetConfig:

trap 8h

rets

; enable cache

.globl
	

EnCache

EnCache:

or 	02000h,st

rets

; stop CPU and wait for interrupts

.globl 	Idle

Idle:

idle

rets

.end

169

APPENDIX D

EXAMPLE HOST-HYDRA PROGRAM PAIR
USING HYDRA SCSI SERVICES

Host side program running on Sun SPARC

* station for Hydra board

* host scsi.c 12/11/95

* usage: host_scsi hscsid_pid

* Artak 0. Melkonian, All Rights Reserved, 1994, 1995

* Department of Electrical and Computer Engineering

* New Jersey Institute of Technology

/*/

#include <vc40dsp.h>

#include <stdio.h>

#include <signal.h>

#include <sys/types.h>

#define C40DEVFILE 	"/dev/vc40b1"

#define HYDRA EXE 	"../hydra_side/hydra_scsi.x40"

#define NUMSYMS (sizeof(symnames)/sizeof(char /*))

#define HYDRA INT 	SIGUSR1

int c40 d; 	c40 device descriptor /*/

long err;

171

pid thscsid_pid;

char *symnames[] = { /* symnames in DSP grog */

_" shmem base"

	

struct symtab 	symtable[NUMSYMS];

/* termination signals handler *

void hydra_int_handler();

void term handler();

/*

* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> main() function

*/

main(argc, argv)

int argc;

char *argv[];

{

int 	i;

struct vc40info hydra_info;

u long 	e addr;
	/* DSP entry address

/* check command line

if (argc != 2)

printf("usage: host scsi hscsid_pid\n");

printf("
	hscsid pid - pid of hscsid server deamon\n");

exit(1);

172

hscsid_pid = (pid_t)strtol(argv[1], NULL, 0);

if (hscsid_pid <= 2) {

printf("hscsid: trapnum out of range.\n");

exit(1);

}

/* open Hydra board */

if ((c40_d = open(C4ODEVFILE, O_RDWR)) <= O) {

perror("host scsi: failed to open Hydra DSP");

exit(1);

if (c40 reset(c40 d) != 0) {

perror("host scsi: failed to reset DSP");

exit(1);

}

/* get and print DSP configuration information /*/

if (c40_getinfo(c40_d, &hydra_info) != 0) {

perror("host scsi: failed to get DSP info");

exit(1);

}

printf("%s: %d-DSP Hydra board with %d Mbyte DRAM.\n",

C4ODEVFILE,
	 hydra_info.numdsp,

hydrainfo.dram_size/1024/1024);

173

fflush(stdout);

loading DSP program and getting entry address of

* DSP program in Hydra memory, and symtab info too

*/

if (c40 load(c40_ d, HYDRA EXE, &e addr,

NUMSYMS, symnames, symtable) 	0)

printf("host_ scsi: failed to load DSP program: %s\n",

cofferr);

exit(1);

}

printf("DSP program loaded. Entry address: Ox%lx\n",

e addr);

/* check if all symbols are defined by c40_load

err = 0;

for(i = 0; i < NUMSYMS; i++) {

if (symtable[i].type == T_UNDEF) {

printf("host scsi: undefined symbol \'%s\'\n",

symnames[i]);

err = 1;

}

}

if (err)

exit(1);

/* enable Hydra interrupts */

if (c40 enint(c40 d, HYDRA INT) != 0) {

perror("host scsi: failed to enable Hydra interrupts");

exit(1);

/* install interrupt handlers */

signal(HYDRAINT, hydrainthandler);

signal(SIGTERM, term handler);

signal(SIGINT, term handler);

signal(SIGHUP, term handler);

signal(SIGQUIT, term handler);

/* run DSP code

if (c40 run(c40 d, e addr) != 0) {

perror("host scsi: failed to run DSP program");

exit(1);

/* sleep, wait for signals

while(1) {

pause();

}

174

* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> hydra_int_handler() function

/* process Hydra interrupt

*/

void

hydra_int_handler()

{

HYDRA INT);

}

/*

* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> term handler() function

/* terminates program gracefully

*/

void

term handler()

int i;

close(c40 d);

printf("DSP halted.\n");

fflush(stdout);

exit();

175

176

* Hydra side program running on TMS320C40 DSP

* and using Hydra SCSI services

* hydra_scsi.c 12/11/95

* Artak 0. Melkonian, All Rights Reserved, 1994, 1995

* Department of Electrical and Computer Engineering

* New Jersey Institute of Technology

#include <stdlib.h>

#include <stddef.h>

#include <hyscsiutil.h>

//* some useful macros */

#define cdbp
	

((union scsi cdb /*)(&(hyreg->params[O))))

#define VERSION "1.O"

#define REQUEST HOST()
	

HostInt(), Idle()

unsigned long 	shmern base;

unsigned long 	shmem_size;

hydra_conf /*conf;

unsigned long 	num blocks;

unsigned long
	block size;
	in bytes

//* trap 0x9 handler */

void c int01()

177

{

just wakes up the CPU from idle state

void stop prog()

c40_printf("DSP program terminated.");

while(1);

}

unsigned long req_ sense()

hyreq->reqcode = REQUEST SENSE;

REQUEST HOST();

if (hyreq->result != GOOD) {

errno = hyreq->result;

c40 perror("Could not request sense");

stop grog();

}

return(((struct 	scsi.extended sense

>params[0]))->es_key);

}

void reset target()

hyreq->dev_num = 0;

hyreq->req_code = RESET_DEV;

*)&(hyreq-

178

REQUEST_ HOST();

if (hy_req->result != GOOD)

perror scsi();

/* clear UNIT ATTENTION state after reset by requesting

sense */

(void)req_sense();

}

/*
/* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> strspcpy function:

/* copies a string of length n from source_str to dest_str

until the first space character

*/

strspcpy(dest_str, source_str,

register char
	

*dest_str;

register char 	*source_str;

int n;

register int 	i;

for (i = 0;i < n; i++)

/*(dest_ str + i) = /*(source_str + i);

if (/*(dest_ str + i))

*(dest str + i) = '\0';

return;

*(dest str + n) = '\O';

}

void main()

unsigned long 	data length;

char text[80];

unsigned long 	st1, et1, st2, et2;

/*

/* set timer period

with 10Ons cycle (4OMHz clock),

* timer can count 7.16 min before overflow

/*/

SET PERIOD(Oxffffffff);

RESET TIMER();

//* install interrupt handler and enable cache and

interrupts /*/

EnCache();

SetIntVect(TRAP9, cint01);

GIE_ On();

//* print greeting message /*/

c4Oprintf("%sSCSI Disk Control Demo Program, ver. %s,

%s\n",

179

180

"□[H□[2J", VERSION, "Copyright (C) Artak Melkonian");

040 printf(" 	Low level SCSI control by Hydra DSP

board\n");

c40_printf(" using SCSI bus of host FORCE CPU-2CE

(SPARC)\n\n");

/* get board configuration

conf = GetConfig();

shmem base = conf->l dram base;

shmem size = conf->dram size /* 1024;

shmem size = 1024 /* 1024; /* needed for old Hydra /*/

c40_printf("Shared memory base: %xH\n", shmem base);

c40_printf("Shared memory size: %d Mbytes\n\n",

(shmem size / (1024 /* 1024)) /* WORD SIZE);

//* initializing hydra request parameter block /*/

hy_req = (struct hydra request /*)(shmem base + shmem size

MO WORDS PER DSP /* (conf->daughter ? 4 : 2) -

HY_REQ SIZE);

/* get scsi ID info for target */

hyreq->dev_num = O;

hyreq->req_code = GET SCSI ID;

REQUEST HOST();

if (hyreq->result == GOOD)

181

c40_printf("Controlling SCSI bus %d target %d\n",

hy_req->params[O], hy_req->params[1]);

else

perror scsi();

/* get inquiry info for target */

stl = GET TIMER();

hyreq->dev_num = 0;

hy_req->req_code = GET INQ DATA;

st2 = GET TIMER();

REQUEST HOST();

et2 = GET TIMER();

if (hyreq->result == GOOD) {

if (hy_req->params[0] & DTYPE MASK != DTYPE DIRECT) {

c40 printf("Target is not a direct access device !\n");

stop grog();

}

if (hyreq->params[1])

c40printf("Removable ");

c40printf("Direct Access SCSI-%d Device, 	hy_req-

>params[3]);

strspcpy(text, &(hy_req->params[12]), 8);

c40 printf("Vendor: \"%s\', ", text);

strspcpy(text, &(hy_req->params[20]), 16);

c40 printf("Product: \"%s\'.\n", text);

} else

perror scsi();

182

et1 = GET TIMER();

c40_printf("□[7m No SCSI request: %f us, waiting for host:

%f us ❑[m\

ELAPSED TIME(stl, etl), ELAPSED TIME(st2, et2));

/* reset target */

reset target();

/*

/* get disk capacity (READ CAPACITY)

st1 = GET TIMER();

hyreq->devnum = 0;

hyreq->reqcode = SCSI CMD;

data length = 2;/* words */

RESET CDB();

cdbp->scccmd = SCMD READ CAPACITY; only this needed

hyreq->params[3] = CDBGROUP1;

hyreq->params[4] = 0;

hy_req->params[5] = data_length;

CLEAR USCSI FLAGS();

SET USCSI FLAGS(USCSI READ 1 USCSI CONT);

st2 = GET TIMER();

REQUEST HOST();

et2 = GET TIMER();

if ((hyreq->result
	GOOD) && (hyreq->params[6]

USCSI STATUS GOOD)) {

num blocks = SH MEM(shmem base);

183

block size = SH_MEM(shmem base + 1);

c40_printf("Disk has %d logical blocks %d bytes each,

total space: %d Mbytes.\n",

num blocks, 	block size, 	num blocks 	block_size 	/

1048576);

} else

perror_scsi();

etl = GET TIMER();

c40_printf("□[7m SCSI cntl request: %f us, waiting for

host: %f us □[m\n",

ELAPSED TIME(stl, et1), ELAPSED TIME(st2, et2));

/* set appropriate block size

if (block size != DEV BSIZE) {

hy_req->req_code = SET BLOCK SIZE;

hyreq->params[0] = block_size;

REQUEST HOST();

if (hyreq->result != GOOD)

perror_scsi();

}

//* test if disk is ready (TEST UNIT READY)

hy_req->req_code = SCSI_CMD;

RESET CDB();

MAKECOM_COMMON(&(hy req->params[0]), SCMD TEST UNIT READY,

O);

hy_req->params[3] = CDB_GROUPO;

hy_req->params[5] = O; 	no data

CLEAR USCSI FLAGS();

REQUEST HOST();

if (hy_req->result == GOOD)

if ((hy_req->params[6] != USCSI STATUS GOOD) &&

(req_sense() 	KEY NOT READY))

c40 printf("Disk is not ready... Trying to start... ");

hy_req->reqcode = SCSI CMD;

RESET CDB();

MAKECOM COMMON(&(hy_req->params[O]),

SCMD START STOP, O);

cdbp->sccb4 = 0x01; /* start */

hyreq->params[3] = CDBGROUPO;

REQUEST HOST();

if (hyreq->result == GOOD)

if (hyreq->params[6] !=

USCSI STATUS GOOD)

c40printf("Failed.\n");

perror scsi();

} else

RESET CDB();

MAKECOM COMMON(&(hy_req->params[0]),

SCMD TEST UNIT READY, 0);

REQUEST HOST();

if ((hyreq->result == GOOD) &&

(hyreq->params[6] ==

USCSI STATUS GOOD)) {

184

185

c40_printf("Done.\n");

} else

perror scsi();

}

} else

perror scsi();

}

else

perror scsi();

/* write 1M of shared memory onto disk

driver will write data by chunks (system default size)

c40 printf("Writing 1M of shared memory onto disk using

data chunks in SCSI driver.\n");

stl = GET TIMER();

hyreq->reqcode = SCSI CMD;

data length = 262144; //* DSP words */

RESET CDB();

MAKECOM GO(cdbp, SCMD WRITE, 0, 0,

(data length /* WORD SIZE) / block size);

hyreg->params[3] = CDB GROUP0;

hyreg->params[4] = 0;

hyreq->params[5] = data length;

CLEAR USCSI FLAGS();

SET USCSI FLAGS(USCSI BLOCK);

186

st2 = GET TIMER();

REQUEST HOST();

et2 = GET TIMER();

if (hy_req->result == GOOD)

if (hy_req->params[6] == USCSI STATUS CHECK)

print sense(req sense());

et1 = GET TIMER();

c40 printf("□[7m SCSI data request: %f us, waiting for

host: %f us □[m\n",

ELAPSED TIME(stl, etl), ELAPSED TIME(st2, et2));

write 1M of shared memory onto disk

/* driver will write data by chunks

*/

hyreq->reqcode = SET_CHUNK_SIZE;

hyreq->params[0] = 1048576;

REQUEST HOST();

c40 printf("Writing 1M of shared memory onto disk using

large data chunks in SCSI driver.\n");

st1 = GET TIMER();

hy_req->req_code = SCSI_CMD;

data length = 262144; /* DSP words */

RESET CDB();

MAKECOM G0(cdbp, SCMD WRITE, 0, 0,

(data length /* WORD SIZE) / block size);

187

hy_req->params[3] = CDBGROUP0;

hy_req->params[4] = 0;

hy_req->params[5] = data_length;

CLEAR USCSI FLAGS();

SET USCSI FLAGS(USCSI BLOCK);

st2 = GET TIMER();

REQUEST HOST();

et2 = GET TIMER();

if (hy_req->result == GOOD)

if (hy_req->params[6] == USCSI STATUS CHECK)

print sense(req sense());

et1 = GET TIMER();

c40 printf("□[7m SCSI data request: %f us, waiting for

host: %f us □[m\n",

ELAPSED TIME(stl, et1), ELAPSED TIME(st2, et2));

read 1M of disk into shared memory

driver will read data by chunks

*/

c40 printf("Reading 1M of disk into shared memory using

data chunks in SCSI driver.\n");

st1 = GET TIMER();

hy_req->req_code = SCSI_CMD;

data length = 262144; //* DSP words

RESET CDB();

MAKECOM GO(cdbp, SCMD READ, 0, 0,

188

(data_length /* WORD SIZE) / block_size);

hy_req->params[3] = CDB GROUPO;

hy_req->params[4] = 0;

hy_req->params[5] = data length;

CLEAR USCSI FLAGS();

SET USCSI FLAGS(USCSI BLOCK 1 USCSI READ);

st2 = GET TIMER();

REQUESTHOST();

et2 = GET TIMER();

if (hyreq->result == GOOD)

if (hy_req->params[6] == USCSI_STATUS_CHECK)

print sense(req sense());

et1 = GET TIMER();

c4Oprintf("□[7m SCSI data request: %f us, waiting for

host: %f us ❑[m\n",

ELAPSED TIME(stl, et1), ELAPSED TIME(st2, et));

stop grog();

* Memory allocation map for TMS320C40 linker

* hydra_scsi.lnk 	12/11/95

* Artak 0. Melkonian, All Rights Reserved, 1994, 1995

* Department of Electrical and Computer Engineering

* New Jersey Institute of Technology

*/

/* SPECIFY THE MEMORY MAP OF HYDRA PROGRAM /*/

MEMORY

{

INT ROM: 	org = 0x000000 len = 0x1000 	/* INTERNAL ROM

INT RAMO: org = Ox2FF800 len = 0x400 	 INTERNAL RAM

BLOCK 0 /*/

INT RAM1: org = 0x2FFC00 len = 0x400 	 INTERNAL RAM

BLOCK 1 /*/

L SRAM: 	org = 0x40001200 len = 0xec00 //* 	LOCAL 	BUS

SRAM */

G SHMEM: 	org = 0x8d000000 len = Oxfefc0 //* GLOBAL BUS

SHMEM */

G SRAM: 	org = 0xc000000 len = 0x10000 	GLOBAL BUS

SRAM /*/

189

//* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY /*/

SECTIONS

.text: > G SRAM / EXECUTABLE CODE */

.cinit: > G SRAM /* INITIALIZATION TABLES */

.const: > G SRAM /* CONSTANTS */

.stack: > G SRAM /* SYSTEM STACK */

.sysmem: 	> G SRAM /* DYNAMIC MEMORY (HEAP) */

.bss: 	> G SRAM /* GLOBAL & STATIC VARIABLES */

190

REFERENCES

Systems Small Computer System Interface (SCSI). American National Standard for
Information, ANSI X3T9.2/82.-2 - Rev. 17B, 1986.

2. Systems Small Computer System Interface - 2 (SCSI-2). American National
Standard for Information, ANSI X3T9.2/86 - 109 - Rev. 10C - X3T9/89-042, 1990.

3. TMS320C4x User's Guide. Texas Instruments, 2564090-9721 revision A, 1991.

4. User's Manual for the V-C40 Hydra. Ariel, Version 0.60, 1994.

5. SunOS Reference Manual. Sun Microsystems, Sun Part Num.: 800-3827-10, 1990.

6. V-C40 Utility Library. Ariel, Computer file: vc4Olib.doc, v 1.2, 1993.

7. SPARC CPU-2CE Technical Reference Manual. Force Computers, Part Num.: 049-
12441-102 ver. Al, 1993.

9. Stirling P. A Solaris 2 SCSA Tutorial, Computer file, 1993.

10. Solaris 2.1 Online Reference Manual. Sun Microsystems, 1992.

11. Writing Device Drivers SunOS 4.1. Sun Microsystems, Sun Part Num: 800-3851-
10, 1990.

12. Writing Device Drivers SunOS 5.1. Sun Microsystems, 1992.

13. Writing Device Drivers SunOS 5.2. Sun Microsystems, 1993.

14. TMS320 Floating-Point DSP Optimizing C Compiler User's Guide. Texas
Instruments, 2576391-9721 rev. A, 1991.

15. Hipson P. Advanced C Programming SAMS Publishing, Indianapolis, Indiana, 1992.

16. Solaris 1.x (SunOS 4.x) Handbook for SMCC Peripherals. Sun Microsystems, Part
No.: 801-2424-10, rev. A, 1992.

17. VIC068A/VAC068A User's Guide. Cypress Semiconductor, 1992.

191

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: The Turbonet: A Message-Passing and Shared-Memory Hybrid Architecture
	Chapter 3: The Turbonet "su" - SCSI Universal Device Driver for Solaris 1
	Chapter 4: The “HSCSID” – Host Level SCSI Request Server Daemon
	Chapter 5: Hydra SCSI Utilities and Data Structures
	Chapter 6: Performance Results and Conclusions
	Appendix A C Source of the “SU” SCSI Universal Device Driver for Solsaris 1
	Appendix B C source of the “HSCSID” Host Level SCSI Request Server Daemon
	Appendix C: Sources of the Hydra SCSI Utilities
	Appendix D: Example Host-Hydra Program Pair Using Hydra SCSI Services
	References

	List of Tables
	Lost of Figures

