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ABSTRACT 

VALIDATION OF A MATHEMATICAL MODEL OF THE 
HUMAN WALKING CYCLE USING 

PARAMETER IDENTIFICATION METHODS 

by 
Robert McCann 

A mathematical model of the swing phase, toe-off and heel strike is presented in this paper 

and is mathematically represented as a two dimensional, simple coupled pendulum system 

with three degrees of freedom. Lagange equations of motion are used to solve this highly 

idealized system. The model consists of three segments which represent the stance leg, 

thigh and shank. During the swing phase it is assumed that the only external forces acting 

on the system are gravity and viscous dissipative terms proportional to joint angular 

velocities. It is assumed that muscle forces act only to establish the initial limb segment 

configuration and velocities at the start of the swing and toe-off. 

The mechanical energy of this system is examined to determine optimum gait 

parameters that minimize mechanical energy losses. 

Theoretical results from this model are compared to collected experimental data 

obtained from clinical trials, for each experimental trial the mass and centers of mass of the 

limb segments is altered by attaching known fixed weights to the experimental subject. 

The altered gait patterns that result are recorded .and compared to theoretical predictions 

of the model. 

Numerical analysis is used to minimize the error that occurs in the model, thus 

verification of model and gait parameter identification is examined. Findings suggest that 

the model predictions agree with experimental data, however, the model is sensitive to 

parameter changes and finding values which minimize residual error in the model need 

further investigation. It is hopeful that eventually this model will be used as a clinical tool 

for optimizing gait mechanics and prosthetic design. 
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CHAPTER 1 

INTRODUCTION 

A simple mathematical model is proposed for determination of gait parameter values based 

on computation of the Lagrange equations of motion. These equations describe a three 

degree of freedom coupled pendulum system that models the swing phase of the walk 

cycle. The Lagrange equations of motion are second order and non-linear and will be 

discussed throughout this paper. They are presented along with the model in chapter 4. 

Computer algorithms are used to solve the motion equations that represent the model. 

Experimental data is collected for determination of eleven anthropometric (body segment) 

parameters. These model parameter values define a model individual's structure and 

include segment mass, center of mass and joint viscosity coefficients. Many of these 

parameters were originally obtained from Dempster's data on cadavers. This data is listed 

in appendix A. 

During the swing phase the body is represented as three segments or links, one being 

the stance leg, and two for the thigh and shank. The swing leg and upper body are 

assumed to move through the swing cycle under the effects of gravity but without any 

additional muscular effort beyond that required for establishing the initial configuration 

and velocity of these segments at the beginning of the swing phase. This principle was 

used in the early works of human motion by Weber(2), who claimed that during the swing 

phase of walking, muscular control was not necessary, and the motion of the swing leg 

behaved much like that of a simple pendulum system acting under gravity alone. In fact, 

our model from a mechanical point of view, is similarly represented as a lumped mass 

pendulum system during the swing phase. 

Our modeling efforts build upon the earlier work of Mochon and McMahon(I) and 

Hatze(19). As in Hatze, our model includes energy dissipation terms derivedfrom 

impulsive impact forces (for example, at heel contact and full knee extension). The model 



of Mochon and McMahon(1) conserves mechanical energy during the swing phase.They 

use Dempster's data on cadavers for identification of .anthropometric parameters 

As in the earlier work of Lacker(9) we have preserved the characteristics of the 

original Mochon and McMahon swing phase model by starting with a 2-D, straight-stance 

leg, 3-coupled pendulum system. (Hatze's model is somewhat unwieldy requiring 247 

input parameters!). Lacker has also added a double support phase to Mochon and 

McMahon's swing phase model and therefore obtains solutions for the complete walking 

cycles in a non-conservative system. Energy losses arise both due to collisions (heel 

strike, full knee extension) and velocity dependent dissipation (joint viscosity). Energy 

sources due to muscular effort are also included (implicitly) in the model at the begining 

of each walking phase (toe-off and heal-strike) where solutions are continuous but have 

discontinuous derivatives. 

For a given individual (set of anthropometric parameters), each walk (model 

solution) is assigned in the model a mechanical energy efficiency (mechanical energy 

loss/walking distance) and a stability index that reflects the degree of neuromuscular 

control required to achieve that walk. Figure 1 illustrates a typical time cycle of each 

walking phase. The model generates an ensemble of walking solutions consistent with any 

given set of anthropometric parameters (model individual). For such an individual (in the 

three-link model system 	given walk in the ensemble of solutions is fixed by a choice of 

4 independent parameters (walking speed; step length, fraction of cycle in swing phase and 

the toe-off angle at the time of swing initiation). These gait parameters are obtained 

directly from the experimental records. In this paper a method for identifying the 

anthropometric parameters (segment masses, centers of mass and joint viscosity 

coeficients) from walks of experimental subjects is examined and compared to parameters 

obtained from Dempster's data on cadavers. Theoretical predictions of an individual's 

structural parameters can be obtained by searching for those model parameter values that 



minimize the (least square) error between theoretical solution (joint angle) curves and 

experimental data curves. Theoretical predictions are compared to experimental data. 

The notion of optimal gait parameters that minimize mechanical energy loss per unit 

distance is also discussed. 

Over the past century much work has been devoted to the analysis of human walking. 

but few seldom discuss parameter identification, in order to minimize mechanical energy 

expenditure. At this time, however, these energy considerations will be considered to be 

secondary since the main goal of this study is structural parameter identification based on 

the curve fitting described above . 

Within the past 40 years that work in metabolic energy expenditure and gait 

parameter variability has been explored empirically by such researchers as Inman (3). 

Nubar and Contini(4), similarly by comparison relatively few theoretical approaches have 

been made to analyze mechanical energy and its loss at different phases of human gait. 

Tneoretical results are compared to experimental results with the goal of gradually 

developing a model that is sufficient for understanding, interpreting and modifying gait 

parameters in the physically disabled. 



CHAPTER 2 

LITERATURE SURVEY 

2.1 Previous Research 

2.1.1 Feedback 

The human skeletal system is connected together by an intricate system of ligaments, 

tendons and muscles; this gives the structural support that is necessary for the-human body 

to perform daily functions such as walking. With the help of muscular actions., the human 

body can perform a multitude of coordinated limb movements by the use of its many 

articulating joints. Walking, as simple as it may appear, is controlled by a complex nuero-

muscular feedback system which regulates joint motion and associated muscle contraction, 

which initiates response enabling human motion. The human brain is the control system 

initiating and receiving feedback that is monitoring joint and segment position, action 

potentials that cause muscle contraction, resulting in forces at articulating joints. This 

sequence of events with coordination and motor skill produce human walking. Human 

walking is a learned process. After many unsuccessful attempts to walk, the infant 

eventually develops greater stability and precision. This process develops rapidly up until 

the age of seven. Apparently during this period of time, the child is experimenting with 

their neuromusculoskeletal system, making adjustments by modifying the displacements 

that occur in various segments with the accompanying changes in bodily proportions and 

developing improved neural controls as outlined by Inman(3). This is also true of humans 

who are physically disabled, suffering from crippling injuries and disease, many of these 

individuals must try and develop neuromusculoskeletal control all over again, often with 

the additional burden of having damaged muscle and 

neuro-networks; not an easy task. Many physically challenged must compensate by 

learning to use other neuromusculoskeletal systems than normals to achieve desired 

function and stability. 

4 



2.1.2 Energy Expenditure 

Walking is one of the most common human activities, the energetics have been researched 

in various studies. Inman(3) for example, hypothesized that the human body will integrate 

the motion of various segments of the body and control the activity of the muscles in order 

to minimize metabolic energy expenditure. His study of human motion described the 

translation of the center of mass through space alonga path which required the least 

energy expenditure. His findings proved to be accurate when compared to experimental 

results. His hypothesis was correct, and established a basis for the further understanding of 

energy expenditure. Fenn(5,6), one of the early pioneers in human motion analysis, 

examined the changes that occur in potential and kinetic> energy when a subject is walking 

or running which was the basis for Inman's work. 

It is important to realize that the human body during walk cycle-is very dynamic, 

many movements occur generating a great deal of energy expenditure, depending on the 

level of activity. These movements are integrated and include vertical displacements, 

horizontal rotation of the pelvis, mediolateral pelvic tilt, plantar flexion of the ankle and 

foot, knee flexion, lateral displacements of the torso, and rotation of the shoulder. During 

these motions potential and kinetic energy is constantly changing. The motion is well 

coordinated so that potential and kinetic energy are transfered back and forth during 

walking. This natural occurrence in human- walking illustrates a human's ability to 

minimize mechanical energy expenditure and reduce muscle work. 

Seireg and Arvikar(7), did studies relating to muscular load sharing and articulating 

joint forces on the lower extremities. This model is extremely benificial for one who is 

interested in muscle force activity on articulating joints. These two researchers 

incorporated 31 muscles into their static model of the lower extremities. 

Energy dissipation in my model occurs through viscous damping forces that are 

assumed to be proportional to joint angular velocity. The coefficeints of proportionality 



are defined as joint viscous damping coefficients. While these terms are intended to 

directly represent viscous effects in joint articulation spaces, they more realistically than 

probably represent the sum of energy dissipation effects from ligaments and other 

connective tissues surrounding the joint They may also include the breaking actions of 

muscle which occur in the swing leg near-the time of heel strike, for example. Impact with 

the ground at heel strike leads to further kinetic energy losses in addition to the viscous 

dissipation terms described above. Energy losses from collisions with the ground and at 

full joint(knee) extension are also included in model calculations. 

The force equations for the non-conservative system are presented in chapter 4. In 

the absence of non-conservative forces, F=O, and these equations of motion in the swing 

phase reduce to the model' of Mochon and McMahon(1), because Mochon and 

McMahon's model is conservative it cannot be used to compare model solutions of gait in 

terms of mechanical energy efficiency. Beckett and Chang(8) in their model considered 

joint moment effects duringthe swing phase in order to simulate motion which is 

consistent with geometrical constraints giving minimum energy expenditure. Their work 

analyzes the motions of the swing leg and foot as well as the equivalent moments 

occurring in the hip and knee needed to produce motion and energy expenditure of the 

swing phase of the...leg. Since they model only the swing leg possibly important mechanical 

energy transfers: 	arise from the coupling between swing and stance leg during walking 

are not explicitly included. Beckett's model is non-conservative; his study postulates that 

forces and moments are imposed at  the joints of the leg which tends to improve the 

performance of Mochon and McMahon's model. Using the two postulates of Beckett and 

Mochom it is postulated in this thesis that by modifying these two principles and using a 

computer algorithm which computes energy expenditure at heel strike, it is possible to 

examine this energy loss which should be re-supplied during the double support phase. 



7 

2.2 Anthropometric Parameters 

To simulate a model of neuromusculoskeletal control of an individual, it is necessary to 

determine each individual's input parameters. These parameters usually consist of 

segmental, articular, myodynamic and myocybernetic parameters which relate to the 

executor (skeletal), myoactuator (muscular) and controller (neural) subsets of the total 

neuromusculoskeletal system. These three parameter subsets define the 

neuromusculoskeletal system which could be typically modelled as mass, center of mass 

and length of segments for the skeletal system, viscous or resistance type elements 'as Well 

as compliant elements for muscle activity and feedback as a control mechanism in a much 

more comprehensive model. These parameters consist of upper and lower segments as 

mentioned above. However, because this model is highly idealized it considers only 

parameters relating to the lower extremities, with the exception of a lumped parameter to 

represent upper body mass. Starting parameter values in this model are taken from 

Dempster's data on normals. 

Hatze(11) has done extensive work in prediction of anthropometric values. He found 

advantages of his model over others because it subdivided segments into small mass 

elements with differing geometric structures, thus allowing shape and density fluctuations 

of a segment to be modelled in great detail. His model differentiates between male and 

female subjects because of exomorphic differences, density function differences, and mass 

distributions. This is not unusual since females have anatomically different pelvic structure. 

Hatze's model makes adjustments to densities of certain segmental parts. This process is 

accomplished by using an indicator located in the region of subcutaneous fat; this also 

accounts for the specificities of obesity and pregnancy. The procedure is as follows: direct 

anthropometric measurements are used rather than indirect measurements taken from 

photo images. This reduces data errors drastically. The reduction of error improves the 

models overall accuracy better than 3 % with maximum error of 5 %. Hatze 

experimentally determined parameter values (volumes, center of mass, segmental body 



coordinates, moments of inertia) are compared them with model predictions for different 

subjects. 

Wide-spread attention has been given in regard to defining segmental models of the 

human body, and correctly identifying the morphology of anthropometric segments. 

Researchers such as: Fisher(12 ), Hanavan(13), Huston and Passerello(14), and Hatze(1 1, 

15, 16) proposed models each varying in degree of complexity from single, unsegmented 

rigid body, Hemami(17), to 15 segment models with simple geometric segment shapes as 

with Hanavan(13). In all cases the models are assumed to be rigid bodies having uniform 

density. Although very simple models exist, it is generally accepted that more realistic 

simulations of gross body movement occurs by fragmentation of the body into a minimum 

of 10 segments (trunk, head, arms, forearms plus hands, thighs, legs plus feet) is essential 

according to Hatze(11). Figure 2a illustrates segments in a typical walking cycle, most of 

them were used by Hatze, however, this paper will consider only the lower segments. 

It should be noted that over-simplification will introduce additional inconsistencies 

making the model very inaccurate. These errors are also difficult to detect because they 

develop mainly in computation of principle moments of inertia and they are not easy to 

verify. 

The overall procedure of Hatze's model is extremely complicated and will be briefly 

discussed. In general, segments are decomposed into finite-elements of known 

geometrical structure to obtain volume, mass, coordinates of center of mass and principle 

moments of inertia. Triple integration of geometrical element boundaries and summation 

of integrals is basically the method used by Hatze(11) to determine anthropometric 

parameters by use of a complex mathematical model where he assumes conical and other 

different geometric shapes to model body segments. His study describes complex 

algorithms since he considers muscular as well as structural parameters in his model. He 

examines these anthropometric parameters in great depth with reasonable results obtained. 
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The importance of parameter values effects this model and it is likely that because the 

model is oversimplified, significant en-or is inevitable. The point is, most models can 

predict output, and most complex geometries can be described through computer analysis, 

however, the more segments that are added the better the accuracy of the model. 

Hatze(1 1) described a model using 242 4nthropornetric measurements a ;Duch more 

complicated model than our study. Model verification with a parameter set as large as 

Hatze's model is extremely difficult if not impossible. However, his work considered upper 

extremities such as arms, shoulders and neck, as well as other segments such,as *pelvis. 

It is agreed that pelvic rotation does occur as cited by Inman(3), and that upper body 

limbs contribute to inertia. Hatze used 17 segments; since we are considering only lower 

extremities, the model in this study will consist of 3 segments and 11 parameters as listed 

in appendix A. This is a significant difference, but it is important to note that when 

considering human motion, the lower extremities is crucial in analysis of gait parameters. 

The upper body mass can be considered as ont lumped mass as well as lower segment 

masses when approximating inertial properties, as illustrated in figure 2b. These upper 

body and limbs contribute to the total inertia of the body in motion. With one lumped 

mass, reasonable results were obtained by Mochon and McMahon(1) and Lacker(6) using 

this gross simplification of the upper body. Our approach is to gradually increase model 

complexity starting with simple segment models. 



CHAPTER 3 

OBJECTIVE 

An inverted 3 segnient coupled pendulum is, for the most part, rather simplified. 

Saunders(18) determined from studies of amputees that there are 6 major determinants 

necessary for human gait, they are: (1) pelvic rotation, (2) pelvic tilt, (3) knee flexion, (4) 

hip flexion, (5) knee and ankle interaction, and (6) lateral pelvic displacement. They 

concluded that the loss of any one of these determinants is compensated by the other five, 

but the loss of two or more will so severely effect human gait that walking may no longer 

be accomplished. This leads to a premise, suppose determinants (3), (4) and (5) is all that 

is necessary to permit normal walking, then using this principle the swing leg of human 

walking can be described by a mathematical model using these three determinants. Most 

studies of human gait basically focus on the swing phase without considering energy 

expenditure at the time of heel strike. The swing phase is generally assumed to be the most 

important phase during the walking cycle because most of the distance achieved in the step 

length is due to the swing. 

The objective is to verify gait model predictions and parameter identification with the 

objective of ultimately finding optimal solutions by exploring all possible solutions 

that exist in a solution space. Parameter identification and model validation is very 

important when considering how well predictions fit with experimental data. If the 

parameters are changed slightly, output predictions such as angles, velocities and energies 

are perturbed greatly in some cases that no solution may even exist. This leads to a 

question: can an optimum walk be achieved in a mathematical model of both swing phase 

and double support by varying specificgait parameters such as, mass, length of segments, 

and step length in order to achieve optiniiiiiv:Walk by minimizing energy expenditure '? This 

is the hypothesis that iS'thsted in thisrpapen 

1I 



12 

Theoretical predictions will be compared to experimental results to determine if such 

a model exists and if these results are realizeable. In order to achieve this hypothesis 

certain guide-lines should be followed for the study of normal or abnormal human gait. 

They are: (1) the need to address a specific question, formulating a hypothesis and using a 

method to test that hypothesis. (2) Careful control of inter-dependent gait variables should 

be maintained, such as walking, speed. Inertia and spacial orientation of constantly moving 

segments change as the walking speed changes. Eksergian's equation given in section 

4.1.5, is for kinematic systems and has units of force (Inertia x Acceleration = Force) 

where inertia is represented by the coefficients also given in section 4.1.5. These 

coefficients are dependent on angular displacements, when speed changes inertial effects 

also change. This idea basically explains why speed is important during human walking. 

The speed of walking greatly influences quantitative measures of most gait variables as 

illustrated in figures 3a, 3b, and 3c for different segments as reported by Inman(3). These 

three figures illustrates the effect of changes in speed and hip, knee and ankle 

displacements for six different subjects during a walk cycle. 

Using the principles of Mochon and McMahon(I), that legs move through the swing 

phase like free swinging pendulums, our model will slightly modify their model since ours 

considers non-conservative forces, and we will build upon Mochon's model by changing 

parameters to suit our needs-to achieve a model that will hopefully yield reasonable 

results. The method seems like a guess or way of trying to change something that already 

works, but we learn from our mistakes and ultimately the goal of obtaining a model with 

relatively low margin of error can be again modified to yield even better results. Mochon's 

model is limited in predicting the swing time during normal gait. Their model predicts high 

speed normal walking with reasonable degree of accuracy, but it only considers the swing 

phase. If the mechanical energy expenditure during the human walk cycle is to be 

computed, then Mochon's model cannot be considered because it is conservative; energy 

must be re-supplied at the double support phase. In this paper the model will modify 
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Mochon's assuming the following criteria are met, (1) theoretical results are compared to 

experimental results by considering articulating joint viscosity which is analogous to 

resistance of limb motions. (2) By varying gait parameters as well as the swing time we 

can hopefully obtain a better match to experimental results than with Mochon's model. In 

the absence of viscosity the coupled pendulum does not really model human walking, 

rather it is simply a coupled pendulum that can somewhat predict results but has error as 

with any other model. The error occurs during the swing phase as hyper-extension of the 

knee occurs and large displacements of the heel are also noticeable. This results in a need 

to impose a constraint at t = T (time of heel-strike) the angle of the thigh and shank 

should be kept the same so that σ  = φ  as shown in fig. 4 at t = T. Ultimately, obtaining a 

model that will give insight to both the quantitative and qualitative aspects of the swing 

phase is of importance in regard to using a simple model of a coupled pendulum which 

models the lower extremities. This model will consider both the effects of gravity and 

articulating joint viscosity. 

Consistent with earlier findings that within a range of walking speeds, muscle forces 

do not play an active role in the kinetics during the swing phase as with Mochon's. We will 

investigate the effect of muscle forces during the swing phase incorporated in the viscous 

dissipation terms to obtain results and compare these results with experimental findings to 

see if our results are reasonable and if parameter changes are necessary to achieve 

optimum walk. 

The stiff stance leg model, although simplistic, is particularly ideal as a beginning or 

starting point in any study of human walking because it forms a basis to build upon in 

future modelling. We have slightly modified Mochon and McMahon's(1) model in order to 

calculate energy expenditure that occurs at heel strike with the option of varying human 

gait parameters in order to minimize energy expenditure, therefore, optimizing the walk by 

reducing energy expenditure. Mochon and McMahon(1) has done further analysis on the 

effects of additional parameter on human gait. In this paper joint viscosity was added to 



the basic model because knee flexion is too large at moderate walking speeds; it is known 

that knee viscous forces results in less knee flexion during the swing phase. The addition 

of these velocity dependent joint viscous terms were added to the Lagrange equations in 

order to improve the qualitative as well as quantitative results, even though the viscous 

parameters that optimize the best fit with experimental data has not yet been systematically 

studied in great depth. This model will assume that the energy loss from viscous effects at 

knee-lock are relatively insignificant, since most of the energy expenditure during the 

swing phase is the result of impact losses occurring at heel strike. During the walking 

cycle the mechanical energy that is expended during the swing phase must be restored by 

muscular effort. The assumption was that muscular effort was restricted to the double 

support phase, so predictions of mechanical energy can be made of how much muscular 

effort is necessary to restore energy without knowing such details such as time, length and 

velocity of active muscle groups. 



CHAPTER 4 

MATHEMATICAL MODEL 

4.1 Equations of Walking Mathematical Model: 

Toe - off 	Heel Strike 

Figure 4 Walking configuration showing toe-off and heel strike. Swing Phase 
exists between the double support phase. The angles lengths and positions of the 
center of mass of each limb are shown in the figure. For meaning of symbols see 
Appendix A. Counterclockwise direction is assumed possitive, clockwise negative. 

Equations of Motion: 

4.1.1 Position of Center of Mass: 

18 



4.1.3 Potential Energy: 

where the total mass of the system is: 

4.1.4 Kinetic Energy: 

19 
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4.1.5 Lagrange Equations:. 	 L = KE - PE 

where L  is the Lagrangian function for the system. For the generalized non-conservative 

system the Lagrange equation of motion is: 

Using generalized coordinates qi  is any generalized body coordinate, 	i = 1,2,3„...N 

for 3 degree of freedom system this model yields: q1  = θ  ,  q1  = σ, q3  = ϕ  

For a 3 Segment model: i = 1,2,3 

with Fi  = 0 the three Lagrange equations of motion are: 

Solving these 3 Lagrange equations of motion for the conservative system, we obtain: 
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Lagrange Coefficients needed for Computer Model: 

Let, matrix {K(qi)} represent acceleration coefficients, then this matrix has components: 

It is obvious from the above equations that: K71  = K12, K31  = K1 3, K32  = K23 

Notice that these coefficients are before accelerations and that their partial deriviatives 

are before velocity squared teams. These coefficients are represented by a matrix {C(qi)}. 

From above the equations, yielding: 

These equations are given in the general form as: 

and is a form of Eksergian's Kinematic equation(20). The column vector q, is any 

coordinate variable. The matrix { K(q i)} is symmetric and is the inertia of the system, the 

matrix {C(qi)} is a skew matrix and is the centripetal component. 



rewriting we have, 
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When considering the case of an infinite number of segments: qi  (Θ, σ  ,φ) 	∞) 

This model only considers 3 segments, therefore: i = 1,2,3 	q = 	, 6, 

from the above equation, C(q1) is the Jacobian matrix given by: 

4.1.6 Dissipative Velocity Dependent Viscous Coefficients: 

The model assumes that non-conservative forces are assumed to be due to muscle activity 

and articulating joint viscosity represented by velocity dependent viscous dissipative 

coefficients. If muscle forces were assumed not to occur during the swing phase and were 

restricted to act only during double support then Fi would be due to joint viscosity. Joint 

viscosity is assumed to be proportional to angular velocity of the joint and acts in 

directions orthogonal to each of the two limb segments forming the joint angle. The 

generalized Lagrange equation for the non-conservative system can also be written as: 

where D is Rayleigh's dissipation function, 

r = # of viscous dampers 

bi  = coefficient of ith viscous damper 

δi = velocity difference across ith viscous damper (δi can be expressed as a function of 

generalized velocities 4;) 



Considering the 3 degree of freedom system: 	i = 1,2,3 

Using the idealization that muscle forces do not occur during the swing phase but are 

restricted to double support, then the non-conservative forces for the 3 segment model is 

defined as: 

Rewriting the equations of motion as they appear in the computer algorithm: 

where: a 1  = - (MTL - M 1  Z) 

a2  = (M2Z1  + M3L1) 

a3  = (M3Z2) 



CHAPTER 5 

SOLUTION METHOD 

The three Lagrange equations of motion on the bottom of the previous page are solved for 

the swing phase time T by numerical analysis. A 4th order accurate Runga-Kutta 

algorithm is used with an initial pair (q0-q0), where q0  = (θ 0, σo, (Φ0 )and q0 = (θ 0, σo, (Φ0) 

which corresponds to the toe-off configuration at t = 0. The vector q0  is the initial 

boundary value, the ending configuration occurring at t = T corresponds to the heel strike 

configuration. In this model T = 0.49 sec approximately for the swing phase time, at this 

time qT  = 

(

θT

, 

σT

, (

ΦT

) 

 is determined which is the ending heel strike configuration or 

second boundary value. In order to solve for qT  the equations at the end of chapter 4 must 

be solved for accelerations at each time step. 

The angular displacements of the walking model throughout the swing phase is 

completely specified once q(t) = (0(t)- a(t)- Φ(0), 0 < t T is determined. The column 

vector q(t) is uniquely obtained by solving the three Lagrange equations of motion as a 

two point boundary value problem. In order for a unique solution to be obtained- that 

being q(t), the initial pair (q0, 40) must be used to solve the Runga-Kutta iteration 

scheme. This initial value problem is solved iteratively using the Newton-Raphson 

method to solve for new initial velocities Q0.  The Newton-Raphson method is shown in 

figure 5. This new velocity as well as the initial angular displacements qo is used again 

and again in the Runga-Kutta algorithm until the final boundary point qT  matches the 

desired ending heel strike configuration. The assumptions that the toe of the swing leg be 

on the ground at toe-off and that the heel of the swing leg be on the ground at heel strike 

impose constraints that ultimately determine q0  and qT. These constraints are vertical 

displacements at toe-off and heel-strike: 
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y(to) > 0 	Equality at double support, Inequality at swing 

y(hs) > 0 	Equality at double support, Inequality at swing 

These contraints help determine (q0, qT) in terms of only two gait parameters, the step 

length SL, and the toe-off angle a. The swing leg is assumed to be straight in the knee-

lock position at the time of heel strike. 

With the parameters given in appendix A, the computer output was determined and 

theoretical predictions are presented in chapter 7. These results were obtained for the 
 

swing phase with the initial toe-off configurations of q0  = (θ0, σ0, φ0) = (11.3, -5.44, -37) 

0  and initial angular velocities q0 = 

(θ0, 

σ0

, 

φ

0) 

 = (-71.15 Is, 521.3 Is, -909.85 Is). 

The purpose of using the Newton-Raphson iteration scheme was to minimize error 

that occurs at time t = T. Given the initial conditions above, the Runga-Kutta iteration 

computes qT  = 

(

θT

, 

σT

, 

φT

) 

 with a margin of error, this error is used next in the Newton-

Raphson method to solve for new initial velocities Qo to obtain the desired final boundary 

point qT = 

(

θT

, 

σT

, 

φT

)

) with the least amount of residual error. 
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CHAPTER 6 

CALCULATION OF ENERGY LOSSES 

6.1 Swing Phase 

The solution outlined in chapter 5 is used to determine a unique swing phase gait for 

walking at a given swing phase speed v = SL/T- with a known step length SL- and toe-off 

angle a . This solution uses the pair (q(t)- q(t)), found from Newton's method to calculate 

the total mechanical energy E(t). This energy is the sum of both potential and kinetic 

energy of the swing phase so that: E(t) = E (KE + PE)- refering to section 4.1.3 and 

section 4.1.4 the total energy can be written as: 

In our model- if we assume that muscular effort is restricted to the double support phase, 

this means that any energy expenditure that occurs during the swing phase will be the 

result of viscous forces and impact occurring at knee-lock and heel-strike. In most cases 

these impacts occur almost simultaneously at time T, the end of swing phase. It is 

understood that these impacts produce discontinuities in the generalized velocity vector 

q(T)- as noted by Lacker(10). 

6.2 Knee-Lock 

If we consider a simple coupled pendulum as acting as the swing leg- then it becomes 

necessary to impose a physical contraint in order to prevent hyperextension of the knee 

joint. This physical contraint is refered to as the knee-lock, and it occurs at time t = Tk  

exactly the time where Φ(Tk) = (Tk) and Φ(Tk) >σ (Tk). At this point we have only 
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considered Newton's method from chapter 5 in which a generalized pair (q(Tk-), q(Tk-)) 

and the energy E(Tk-) above, both occur just before knee-lock (t = Tk). Before this time 

the velocities of the thigh and shank of the swing leg are moving relative to one another at 

different velocities but after impact σ(Tk+) = φ(Tk+). These values are necessary in order 

to prevent hyperextension. Using the principle of momentum conservation which occurs 

just before knee lock and just after, then q(Tk-) = q(Tk+) and q(Tk+) can be found. The 

momentum of the system is described as Mi  x Vi  for any number of segments, in our 

model i = 1,2,3 so the momentum is given in component form as: 

refering to section 4.1.2, this gives: 

If the principle of energy conservation is to be obeyed then q(Tk-) = q(Tk+), let q(Tk-) = 

• • 	 • 
(θ  ,σ,  φ ) and q(Tk+) = ( θ*,σ*,φ*) then the x and y components of momentum before 

and after knee-lock must be the same, by equating these two equalities we obtain: 
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Before knee-lock 

(θ0, σ, φ0)

are known and also after knee-lock (6 =6 *,σ  =6 *, 

= 	σ*,o-  *=φ *σ - 	*). Let: 

This linear system is easily solved for the angular velocities of the stance leg, thigh and 

shank of the swing leg after knee-lock: 

This unique solution is obtained when the physical constraint  σ  (Tk+) 	(Tk+) 

or a =5 * is imposed. Once q(Tk+) is known, E(Tk+) can be calculated from the energy 

equation above. The energy loss is E(Tk-) - E(Tk+). 

6.3 Heel-Strike 

At the time of the double support phase the legs reverse their roles in the beginning of a 

new walking cycle, the previous swing leg is now the new stance leg and the previous 

stance leg is now the new swing leg as its heel begins to lift off the ground. If we assume 
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that the position of the heel of the swing leg as it strikes the ground as a new origin for 

the next step, then the coordinates at the time of heel-strike q(T) become a new set of 

coordinates ( θ*, σ * Φ *,a *) - where- θ *(T) =σ (T)- σ *(T) =θ   (T)- Φ  *(T) =θ   (T) and 

a *(T) = 0. Refering to figure 4- the new coordinate system is shown. During the double 

support phase just before toe-off- the toe of the new swing leg is on the ground and has 

position (xi, yt)- at this time position loop equations can be developed giving: 

During double support the velocity of the toe is zero, therefore, (xt  = yt  = 0) and 

differentiating we obtain: 

These equations can be written as: 

These equations express geometrically that the generalized angular velocity vector V(t) 

throughout the double support phase must lie in a 2-dimensional subspace S and that V(t) 

is orthogonal to vectors v1(t) and v2(t). 

In the time before the heel strikes the ground t = T-- the vertical velocity components 

of the heel does not equal zero- however- just after impact at t = T+ the vertical 

component must equal zero so as to prevent the foot from going through the floor. 

At the end of the swing phase at t = T-, the generalized velocity vector V(T-) lies 

outside the subspace S- therefore- at the time of heel-strike impact the generalized 



where: 

velocity vector V(T-) must be projected into this subspace S. This projection will produce 

a new velocity vector at heel-strike V(T+). 

are known unit vectors at t = T-. Once this change in angular velocities is known at 

impact- the change in kinetic energy at heel-strike can be calculated. The potential energy 

does not change at impact and the energy expenditure can be computed from the energy 

equation given in section 6.1 so that- E(T-) - E(T+) is the energy loss at heel-stike. It 

should be noted that rigid bodies were assumed in this model for both the limb segments 

and impact surface, so that no elastic energy is recoverable. 



CHAPTER 7 

RESULTS 

Theoretical predictions for the mathematical model with parameter ratios given by 

Dempster in Appendix A and initial conditions as discussed in chapter 5 are computed 

via Runga-Kutta integration and iterative Newton-Raphson error minimizing scheme. 

Figure 7a. illustrates angular displacements of this particular case, that being model 

predictions of angles 	) from toe-off to heel-strike. 

The two figures 7b. and 7c. represent the non-conservative forces that are attributed 

to the angular limb velocities and articulating joint viscosity of the hip, knee and ankle. 

These forces are dissipative with the same assumption as Mochon and McMahon (1), that 

being the absence of muscle interaction during the swing phase. Figure 7b. illustrates the 

condition where b2  = 0.001, this viscous dissipative coefficient is acting on the knee joint, 

similarly figure 7c. illustrates the condition where b2  = 0, note there is only a slight 

difference in force by adjusting these coefficients, but may be more noticeable at higher 

velocities due to dissipative effects of the damping coefficients in this particular model. 

Energy predictions for this model are also shown in figures 7d. through 7f., it is 

interesting to note that E(t) is decreasing throughout the swing phase. This energy is 

restored at heel-strike impact and during the double support phase where there is a 

translation of potential and kinetic energies. When a new walk cycle begins, E(t) must be 

restored to initiate the other swing leg that is beginning at the toe-off condition, this 

process is continuously repeated throughout a walking cycle. 

Experimental data is collected by placing reflective markers on anatomical positions, 

namely the sacrum, left and right anterior superior spine of ilium, articulating knee joint, 

ankle and toe. Laboratory coordinates are established to determine the true ordinate and 

abscissa with respect to these markers. Video and computer software (Vicon 370) track 

these markers in relation to the true ordinate and abscissa and compute relative (x,y,z) 
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Fig. 7a. Expected Angles: θ  = Linear Curve, σ  = Upper Curve, ϕ 
 = Lower Curve 

Fig, 7b. Forces with viscous damping at articulating knee. F1  = Upper Curve, 

F2  = Curve that begins negative, F3  = Curve that begins possitive 

Fig. 7c. Forces without viscous joint viscosity. F1  = Upper Curve, 

F2  = Curve that begins negative, F3  = Curve that begins possitive 

33 



Fig. 7d. Typical Potential Energy Curve 

Fig. 7e. Typical Kinetic Energy Curve 
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positions. This process yields a three dimensional path of trajectories with respect to the 

lab coordinates. These (x,y,z) coordinates are calculated during a time frame, each set of 

coordinates occurs in time at 120 frames / sec . 

The experimental data obtained from Vicon 370 motion analyzer is examined for 

five differing clinical trials as follows: 

1) Trial 2 - Normal subjects at prefered walking speed. 

2) Trial 5 - 1 lb. weight on right ankle. (Swing Leg) 

3) Trial 9 - 2 lb. weight on right ankle. (Swing Leg) 

4) Trial 12 - 1lb. weight slightly below right knee. (Swing Leg) 

5) Trial 17 - 1 lb. weight on right thigh just above knee. (Swing Leg) 

these trials are numbered 2,5,9,12,17 because there was a total of 18 clinical trials and 

these five were selected in this study. Initially this data was collected from 3-dimensional 

(x,y,z) rather than 2-dimensional (x,z) coordinates, therefore a projection needed to be 

applied to this 3-D data onto the sagital plane. The sagital plane is found for each time 

frame of the experimental record. The process involved bisecting vectors which are 

defined by (x,y,z) coordinates of the Sac, Lasi, and Rasi as shown in figure 7g.. A vector 

is defined by two points, using any two points a vector can be found. These points are 

where markers were positioned at the anatomical positions of the Sac, Lasi, Rasi. The 

point p(x,y,z) in fig. 7g. was calculated at each increment in time and a bisect vector was 

then computed. 



The theorem is explained as follows: 

al = the projected bisect vector on the x,y plane 

a2 = a unit vector (0,0-1) 

A = (al-a2) is a matrix with basis column vectors al and a2 

AT = Transpose of matrix A 

b = any other 3-D vector with coordinates (x-y-z) which is to be projected 

onto the sagital plane. 

bproj  • = the resulting 2-D vector projected onto the sagital plane. 

Matrix A has column vectors al and a2, these vectors are mutually orthogonal- that 

is the dot product of these two vectors equals zero. These two vectors are a basis for a 

plane, therefore matrix A defines the sagital plane. 
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The sagital plane is calculated at each time frame since a projection has to be 

calculated to convert 3-D data to 2-D data. Matrix A contains the two basis vectors al 

and a2 which defines the sagital plane and has dimensions (3x2). 

A bisect vector is found from the triangular configuration of the Sacrum- Lasi and 

Rasi as shown in figure 7g.- since any two of these three points define a vector- then by 

using trigonometry we can determine point P(x-y-z). Once this point is determined for 

each time frame, it is then projected onto the (x,y) plane producing vector al. 

Trigonometric calculations are then made with respect to the (x,y) coordinate system to 

compute angles necessary in determination of the position of the sagital plane. These 

calculations were made using a computer algorithm. A three dimensional vector b (x-y,z) 

which can be any marker position with respect to the lab coordinates is then projected 

onto the sagital plane to produce bproi (x,z), note the y coordinate is omitted because 

walking is in the x-z direction- y values reflect medial-lateral displacements and are not 

used in the 2-D model. The projection theorem is defined as follows: 

This projected data for each trial was collected and angles were computed for the two 

dimensional model. The output is shown on page 38. 

The addition of the weights in the trials are to see perturbations that develop from 

the alteration of the inertia effects and changes in the dynamics of the system. This is an 

important principle involved in testiing the validity of Dempster's parameter values. 

There exists little- if any, literature available on this subject and the addition of these 

weights may further enhance current gait studies making them more understandable in 

regard to what is known of Dempster's parameters. 
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Projected Data: 

Trial 2: 	 Trial 5: 	 Trial 9: 
Normals w/o weights 	1 lb. Weight on right ankle 	2 lb. Weight on right ankle 
e 	G 	0 	 8 	G 	0 	 e 	CY 	0 

Table 1: Projected 2-D data obtained from experimental results. 
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Fig. 8a. Normal Walking - w/o weights. 

Fig. 8b. 1 lb. Weight on right ankle. 

Fig. 8c. 2 lb. Weight on right ankle. 
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Projected Data: 

Trial 12: 	 Trial 17: 
1 lb. Weight slightly below 	1 lb. Weight on right thigh 

right knee 	 just above knee 
0 

Table 2: Projected 2-D data obtained from experimental results. 

I 9.580r -1961 -33.67 1 6.7082j 43.87j -28.16 
Q77321 -18-.77---8-4-.74-  1-578-2-07 1   -12.7-877:8-8--.-Ts 
7.93551 --17-.-5 , 	.03451 -1O-.8-87-To.o8 
7.09011 -16.46 -37.181 	j 4.2946j -976181 -40.22 
6.31481 -15.3 I 3. 	-97 1  .7-7-8--. .0-3-97---4-677-z 
5.616617-1--4-j.0--6-17----3n1 1 2. 6-8-5-3 1 -6.5181--7-4-1-T5 
4.90111 -12.81 -30.491 	I 1.66-51 -5.113j 	-41.0T 
4.14861 1.0 1  1.2-3-183711 1 	-40.46 
3.39821 -9. 8 j 	1 0 .5842-1------274-0-5 1 	-40.38 

-873981 -40.861 	1-071-321 1 -1 .1 7417=8-979--2-  
1.9 	1 1 1 	- 74-571---07f8-9 1 -39.28 
1.23041 -578-  1 	. 	9-1--T.-614-5r-88-70-  
0.39-551=-475081 -40.281 	-1.8121 278-4-8-31 -3792 
-0.2-9-2f737721,7"--59.831 -2.491 31.4T  
-0.6871-7f79-  1 	- 	.21-71 52a131 -56.25 
-1.4131 -0.8341 -38.7 	I 	-3.98T-6.11571 -35.21 
-2705.11-0-72-271 1 -37.911 	1 	-4.6931 771-837, --F-7J4--.07-  
-2.699f-1725611 -36.9 -5757 8. 	1 	41 	- 27-g 
-3.377T-  74-3-8 I 1 - 	.0691 9.0-7-6-17=3-1-752-  
-4.$371 375575 - -6764j 10.1881 	-30.31 
-4.705T7 69J1 j - -774691 10.8031 	-28.84 

-7-573-621  -  76431 11.6111 	-26.72 
-57986j 6772 -I 4 -3-077-1-1,---------1 7--8.51 1 11.8891-724772 
- 6 . 6-2-3-1-578-5 1 	- 1-7-9.34 9  1 1 	- 	. 	5 
-71-2-8-31 872-9-iT-7: - 	01-051 13.521 -2114 
-7.986 78-.2-9--4-3-  jj 	-25.01 -1-0767-1-1-58-7 I 	-1877- 
-8.0311 979891 -24.17 7-1--17-3721 14.3131 	-16.34 

7:0-.--255171-0.946 -22.25 -12.041 14.7131 -13.86 
-9.842 n-T2:7-8 -r --f-478991 -10.91 
-10.541 12709 - 	3. 70-211 	- 
-11.29 12. . 	 -14.121 1571721 	---. 

- =1-2701 1 	2.8051 --F1 .79 -14.831 15.1541 	-1.801- 
- 1 277-1-7-873-4-6- 9 1 	-1 ! Q49451 1.5543 
-1 373g171373 -g-5-1----5:6 1 1 -167211 14.7051 4.8072 
-14.041 137361 -2.1721 	-1 67g7114-.-1-071872567 

44775-1-1-372-  1. 	1 	i 	77711T3762 1 11.339 
-15.481 13.1431 514'7 	-1842143.1871 14.155 
-16.161 1277731 8.4811 	j 	-1 g -.-1-71-12M-3-17-678-0-5 
457521 127328 11.411 	I 	-197961 12.5 	7 

7:T71551 1272 14.257' 	1 - 2 077-617-273-42 1 f978-55 
-18.271 12. 67362 	-21.351 . 	1 	.2,3- 

7:T879-51-1-2-.-2-2-61 1 8 .688 1 	j -2-n-51-i-272761 20.49 
-197631 11.9-7 .3651 	I 	-22. 8-9-11-2-.-0 05-2-075 76-  
-20.421 12772 1 	.4(581 	-2-375-8-1-1T-ST7T-2-0-.5-55 
-21.171373951 T -4-71-7,  12.22-1 1 1973-54- 
-21.861 -F378521 177664 
- 2-2754-1T3756 1 Q84-9 

1 	-2478-81 12-.7421 1-870'3-5 
-257611 1279-1T7579-3-1- 

-2-521 	1374-211 15.5541  
-239-113:2-93-9231 	I 

40 



Fig. 8d. 1 lb. Weight slightly below right knee. 
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Fig. 8e. 1 lb. Weight on right thigh just above knee. 



42 

The goal is to repeat the same numerical procedure as outlined in the model 

previously except that now by varying gait parameters such as mass. The change in mass 

may reduce error in model prediction and varify Dempster's data. This is accomplished 

with an additional numerical procedure known as the downhill simplex method and is 

discussed in another study. 

Projected data with the addition of weights are shown in figures 8a. through 8e. for 

the five clinical trials outlined above. Note the swing phase time increases by the addition 

of ankle weights in fig. 8b and 8c. and angular displacements differ slightly in each trial. 

When considering parameter identification, such as mass ratios of segments, as 

defined by Dempster's data can be perturbed in the computer program so that new 

solutions exist for these different parameter changes, hopefully reducing residuals. 

Identifying a mass that is needed to satisfy the two point boundary value problem with the 

subsequent change in Dempster's mass of the model can be examined by the afore 

mentioned numerical procedures as outlined in Chapt 5 with the addition of the downhill 

simplex method to further reduce residual error. The change of mass of the segments 

effects the dynamics of the pendulum as would a change in another parameter such as 

length. These changes may cause sudden velocity changes resulting in a new region of 

solution space mainly due to the non-linearity of the equations. 

Identifying parameter values is not an easy task, there are many solutions to the 2 

point boundary value problem in some cases, other times there exist no solutions in which 

the model blows-up in extremely large numbers until the computer indicates overflow. 

The model is sensitive to slight perturbations with mass. The validation of the 

mathematical model is at this point undetermined since a solution exists that defines all 

walks in a sub-space with minimum error. The error being discussed is the difference in 

the desired or target boundary (heel-strike configuration) and the computed value 

obtained from the mathematical model occurring at time t=T, the end of the swing phase. 
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Table 3 illustrates the error associated in varying mass of segments in regard to the 

desired boundary and the computed heel-strike configuration. The additional 

minimization of error obtained by the downhill simplex method, is not obtainable in this 

study due to further examination of the solutions already presented. 

The validation of the mathematical model in regard to performance has been 

excellent, model predictions as shown have yielded reasonable results, this present model 

has also shown excellent results as with Lacker(10). If the validation of the model is to be 

questioned as far as reliability of theoretical results then the resulting residual error is the 

primary indicator of model validity, since the goal is to reduce error within reason, 

usually about 2 %, then the model is as good as what goes into it, if errors are 

incorporated at the initial computer run, then there is a likelihood that these errors will 

compile at the end of the run, thus accumulating, a greater magnitude of residuals. This 

present study has errors due to calibration of motion analysis equipment, error due to 

position of anatomical markers, error due to given model parameter values and error from 

projected data. There also exists the error associated in the relative simplicity of the 

model (2-D and three limb segments). These errors compile when combined with one 

another and result in solutions that often force the shooting method (Newton-Raphson 

method) to converge to neighboring solutions in a solution space, the downhill simplex 

method would be the next procedure to minimize these errors even further. 

Parameter identification is crucial in order to minimize the error that occurs from the 

factors mentioned, since the addition of mass is discussed, then identifying new 

parameter values must be examined by performing iterative Newton's method. This 

means that computations are performed in order to find new velocities and identification 

of new mass values and any other parameters in the model that need to be updated to 

insure minimal error, since the dynamics of the system have been altered. This involves 
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Fig. 8f. Model Validation - Parameters and initial toe-off configuration 
at the beginning of the swing phase taken from experimental trial 2.  

Table 3: Increasing mass to verify Dempster's data. 

Trial 5: 1 lb. weight on right ankle of swing leg. 

Target: 	θ f  = - 0.4406 rad 	σf  = 0.21 rad 		φ f = 0.336 rad 

Initial Velocity: 	θo  = -1.78 rad / sec 	σo  = 1.1 rad I sec 	φo  = -3.01 rad / sec 

M3 

θf 

 

σf 

 

φf 

 

0.06 MT  - 0.438 rad 0.29 rad 0.195 rad 

0.07 MT  - 0.435 rad 0.275 rad 0.202 rad 

0.08 MT  - 0.432 rad 0.264 rad 0.210 rad 

0.09 MT  - 0.428 rad 0.255 rad 0.216 rad 
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mapping all convergence criteria and finding the least error or best fit of predicted values 

to experimental values. 

Figure 8f. illustrates model validation for trial 2 where no weights were used, note 

convergence to the desired boundary value. This example used only one of several 

possible velocities to accomplish the same final configuration as the experimental curve 

shown in figure 8a. in the same time frame. When considering second order non-linear 

equations many solutions may exist, this is typical and is represented by the example in 

figure 8f,. this is only one of many possible valid solutions. 

The model can predict within reason and the overall capability of mathematical 

procedure is important not only in regard to understanding kinematic relationships, but 

also the numerical computer algorithms needed to solve n equations. The ultimate goal is 

then in residual error minimization, at this stage computer algorithms are being developed 

in an effort to accomplish this process. The Newton-Raphson procedure itself is an error 

minimization technique and is useful, however, it's basic idea relies on error of the 

magnitude of the residual or the magnitude of the adjustment, it also has strict 

convergence criteria that may often never be satisfied resulting in possible computer 

overflow. The validation of the illustrated examples show the model is capable of 

converging to approximate values, however, the selected parameter values other than 

length segments need to be modified in order to reduce residuals. The reason lengths do 

not need to be changed is because these anthropometric parameters are known from 

experimental static trials. 

The velocity obtained by the the mathematical model with the same initial toe-off 

configuration as that of the experimental trial 2 was computed. This velocity was used in 

the model validation in order to compare theoretical and experimental results of trial 2, as 

illustrated in fig 8f., results yield velocities of (θo  = —1.85 r/sec, σo  = 1.292 r/sec, ϕo= — 

2.7 r/sec ). These velocities with known initial toe-off configuration taken from clinical 
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data, shown at the top of table 1, generate angular displacement curves as shown in fig. 

8f. The model is validated by comparing both curves 8a. and 8f., both yield a final heel-

strike configuration which are both relatively the same. 

The values generated are a solution, however, it is not the only solution and this is 

important to understand, the error that is associated with this particular case is due to the 

errors afore mentioned. The results presented so far in this paper correspond to results 

obtained from Lacker(10), therefore the performance of this model in regard to it's overall 

validation seems to predict rather well for normal walking speed. These results are 

varified by Lacker(10) using a similar 2-D model. 



CHAPTER 8 

DISCUSSION AND CONCLUSIONS 

The model that has been shown is an example of the differences in gait with additional 

weights at each of the three segments of the lower extremities. The model is initially 

assumed to behave as a simple coupled pendulum system acting under the influence of 

gravity and joint viscosity. The addition of the non-conservative joint viscosity - velocity 

dependent coefficients to the Lagrangian equations significantly improves the quantitative 

and qualitative results even though the viscous parameters that optimize the best fit with 

existing experimental data has not yet been studied in great detail. 

When considering model validity, figure 8f. is absent of additional weights, this 

figure illustrates a normal walking swing phase cycle for model predictions for the 

boundary values of trial 2 as shown in chapt. 7. This figure alone shows the validation of 

the model in regard to solving the two point boundary value problem, since it is a solution 

and not the only solution the model can therefore be assumed to be valid because the 

example given in chapter 5 yielded reasonable results, as with Lacker(9). 

The addition of the weights changes the gait so that new velocities must develop in 

order to accomplish a specific swing phase in time, according to the associated two point 

boundary value problem. This finding is consistent with trial 5, where a 1 lb. weight is 

secured to the ankle of the swing leg. Each computer solution for trial 5 is listed in table 3 

where four different solutions were obtained by increasing the mass M3  on the ankle 

segment of the model. Initially the mass that was used was Dempster's data for that mass 

segment, in this case M3  = 0.06 MT. The increase in mass must mean that Dempster's 

data in the model must be altered in some degree, increasing the mass also means 

changing centers of mass. Since the model is non-linear, qualitative and quantitative 

features of the model may be unpredictable. The desired positional boundaries (toe-off 
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and heel-strike configurations) for trial 5 are shown on table 1, in order to achieve the 

same toe-off and heel-strike configuration in the same time frame, the model must also be 

adjusted to achieve this desired heel-strike configuration. The addition of the mass shows 

in each case that by increasing the ratio of M, to MT  the stiff stance leg, L, does not 

reach the desired position as accurately as in the first case where we used Dempster's data 

M3  = 0.06 MT. This increase in mass tends to decrease the position of the stiff stance leg, 

however, the swing leg thigh and shank seem to approach the desired position (θf, σf, ϕf) 

with slightly greater precision. These findings are shown on table 3 where Dempster's 

data for M3  was increased from 0.06 MT  to 0.07, 0.08 and 0.09 MT  respectively. The 

final heel-strike positions are changed somewhat by the addition of the weights, as can be 

expected. This alone states that the velocity must also change in order to reach the same 

position in time, this is due to a change in momentum of the coupled pendulum system. 

The momentum is proportional to the impulse, MV = FT. 

Dempster's data on cadavers has been used quite frequently in walking models as 

with Mochon and McMahon(1) and Lacker(9), however, there has yet been any 

verification of these gait parameters and very little qualitative information exists in regard 

to the reliabilty of these parameters in walking models. The output for trial 5 appears to 

support the possibility that Dempster's data may be in error as much as 15 %. This is not 

unusual since each individual is structurally different in size and weight that Dempster's 

data may reflect an average of all possible parameter values. 

Parameter values such as mass are not easy to obtain empirically by means of 

equations, they are measured experimentally by actually finding mass centers from 

weighing of cadavers. Dempster's data is probably correct for all practical purposes 

because it has been used previously and is still accepted as a standard. This hoewever, 
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does not exclude the possibility of these numbers as being incorrect because there is not 

sufficient data available in order to quantitatively and qualitatively verify these findings. 

Examination of the other experimental trials in comparison to theoretical predictions 

in this study is not necessary since parameter values suggest that Dempster's data is 

approximate to actual anthropometric parameter values. The experimental curves as 

shown in figures 8a through 8e identify slight perturbations in angular displacements 

which may confirm this hypothesis. This slight variation may suggest that Dempster's 

mass parameters are approximate to the actual mass of cadavers. The length parameters 

are relatively accurate in determining model predictions, however, the mass can vary 

significantly as shown by table 3. This does not mean that these values are correct, there 

exists residual error compiled from several factors as mentioned in chapter 7 and due to 

the lack of qualitative and quantitative features as mentioned above. 

The output presented in table 3 suggests that M3  may be as much as 0.1 MT  with the 

addition of the ankle weight. Confirmation of this hypothesis awaits further investigation, 

this study appears to warrant further examination into the validity of Dempster's data 

regarding parameter identification. Similar methods to those used in this study attempt to 

clarify any discrepancies that occur in parameter identification and are used as well as the 

addition of the downhill simplex method which will be discussed later in another study. 



APPENDIX A 

Nomenclature 

MT, M1 , M2, M3, Mu  Mass of body, leg, thigh, shank, and upper body 

L, L1 , 	 Length of leg, thigh, and shank 

Z, Z1, Z2 	 Distance of the center of mass of the leg, thigh, and sha 

g 	 Gravitational constant 
SL 	 Step length 

d 	 Length of foot 
t 	 Time ranging from 0 < t < T 
T  Swing Phase time 

qi 	 Generalized coordinate vector (θ, σ, ϕ, ..., ∞) 	i = 1,2 

θ, σ, ϕ 	 Angle of leg, thigh and shank w/r to vertical axis (see F:  

θ, σ, ϕ 	Angular velocities of leg, thigh, and shank 

θ, σ, ϕ 	Angular acceleration of leg, thigh  and shank 

x1, x2, x3 	 Displacements of x-components center of mass of leg, I 

and shank w/r to model origin 
y1, y2, y3 	Displacements of y-components center of mass of leg, t 

shank w/r to model origin 
. 	. 	. 
x1, x2, x3 	 Velocities of x-components center of mass of leg, thigh 

shank 
. 	• 

y1, y2, y3 	Velocities of y-components center of mass of leg, thigh 

shank 

a 	 Angle of foot at toe-off w/r to horizontal 

b

1

, b2, b3 	 Viscous torque coefficients (N-m-s) 

Dempster's data on normals as taken from Mochon and McMahon(1) 

M i /MT  = 0.097 	M2/MT  = 0.06 	 ML = M

1 

 ± M2  
L = Li + L2 	Zi /Li  = 0.433 	 * L1  = L2  

Z2/L2  = 0.437 	MLZ = M

1

Z

1 

 + M2M2  

* This value was changed slightly in this model to: L i  = 0.42L L2  = 0.58L 

Viscous torque values used in this model: 
b

1 

 = 0.99 

b2  = 0 

b3  = 0.02 
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