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ABSTRACT 

GABOR EXPANSION OF AN EQUIVALENT DIPOLE ANTENNA 

by 
Oksana Manzhura 

The Gabor representation in the context of an aperture problem is an expansion 

of a radiated field in terms of a discrete set of linearly shifted and spatially rotated 

elementary Gaussian beams. The parameters that can be varied in this summation 

are the number of beams and corresponding beam widths. As the difficulty associated 

with the unique determination of the expansion coefficients was alleviated, the method 

has been successfully applied to one and two dimensional apertures. Although, the 

asymptotic evaluation of expansion functions has reduced the computational burden 

drasticallym it was at the expense of some loss in accuracy. The numerical experiments 

have established that the narrow beam algorithm with almost a priori predictability 

can be used in a variety of problems. Here, the Gabor representation has been applied 

to a narrow rectangular aperture illuminated with a sinusoidal field. The narrow 

aperture (height >> width) excited by sinusoidal field distribution approximates an 

equivalent dipole with a similar current distribution with only exception that aperture 

radiates into a half-space whereas 'the dipole covers the entire space. Utilizing the 

narrow beam algorithm, once the expansion coefficients were determined, the radiated 

electric field potential in near, mid and far zones were evaluated. The criteria in 

determining the number of expansion coefficients was based on re-generation of the 

aperture field distribution with sufficient accuracy. It was observed that even though 

wide beam algorithm was applied, less number of terms resulted in erroneous side 



lobes and higher number of terms caused Gibbs phenomena in the region close to 

the aperture plane. The numerical evaluations are carried out for the half-wavelength 

high narrow aperture. Far zone numerical results of radiated potential utilizing Gabor 

expansion are compared to analytical expressions determined via Fourier transform. 

The unique application developed in this work in expressing the radiated field of an 

equivalent dipole antenna revealed that Gabor expansion can be a valuable tool in 

studying practical radiation and propagation problems. 
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CHAPTER 1 

INTRODUCTION 

The Gabor representation consists of an expansion of a signal into a discrete set 

functions which are finite duration both in time and frequency [1]. The method was 

proposed by Gabor in 1946, however, applications were very limited because of diffi-

culties associated with evaluations of the expansion coefficients. Major contributions 

in early 1980's by Bastiaans [2]-[3] and Janssen [4] helped to alleviate this difficulty 

and led to a methodical approach in determination of the expansion coefficients. The 

Gabor representation in the context of an aperture problem [5] is an expansion of 

a radiated field in terms of a discrete set of linearly shifted and spatially rotated 

elementary Gaussian beams. The parameters that can be varied in this summation 

are the number of beams and corresponding beam widths. As the difficulty associ-

ated with the unique determination of the expansion coefficients was alleviated, the 

method has been successfully applied to one and two dimensional apertures. Though 

the initial formulation for two dimensional apertures was developed by Einziger, et.al. 

[5], detailed analysis and extensive numerical evaluations were carried out by Maciel 

[6]. He further extended Gaussian beam method for propagation of high frequency 

fields from distributed apertures through complicated environments such as radomes. 

Although, utilizing the complex source point method, the asymptotic evaluation of 

expansion functions has reduced the computational burden drastically, it was at the 

expense of some loss in accuracy. The numerical experiments have established that 

1 



the narrow beam algorithm with almost a priori predictability can be used in a variety 

of problems. 

Here, the Gabor representation has been applied to a narrow rectangular aper-

ture illuminated with a sinusoidal field. The narrow aperture (height >> width) 

excited by sinusoidal field distribution approximates an equivalent dipole with a sim-

ilar current distribution with only exception that aperture radiates into a half-space 

whereas the dipole covers the entire space. In the past, this approach had been 

successfully applied using spherical wave functions by Niver and Birand [7]. One ad-

vantage of representing the radiated field in terms of an expansion is that once the 

expansion coefficients are determined, field can be evaluated using summation of the 

finite number of terms without further need of repeated evaluation of the spectral 

integral for every observation point. In the case of spherical wave expansions, the 

multipole coefficients of a linear dipole were already determined analytically by Jack-

son [8]. The validity of the spherical expansion method was double checked, initially 

the known coefficients of a dipole were compared to those of the narrow aperture, 

then the radiated fields were compared for both antennas. 

In the current approach, the expansion coefficient of the Gabor representation 

can not be validated independently, since there is no known benchmark solution. 

However, radiated field from the narrow rectangular aperture has been determined 

utilizing the narrow beam algorithm, once the expansion coefficients are determined, 

the radiated electric field potential in near, mid and far zones is evaluated. The criteria 

in determining the number of expansion coefficients is based on re-generation of the 

aperture field distribution with sufficient accuracy. It was observed that even though 



3 

narrow beam algorithm was applied, less number of terms resulted in erroneous side 

lobes and higher number of terms caused Gibbs phenomena in the region close to 

the aperture plane. The numerical evaluations are carried out for the half-wavelength 

high narrow aperture. Far zone numerical results of radiated potential utilizing Gabor 

expansion are compared to analytical expressions determined via Fourier transform. 

The unique application developed in this work in expressing the radiated field of an 

equivalent dipole antenna revealed that Gabor expansion can be a valuable tool in 

studying practical radiation and propagation problems. 

In Chapter II the three dimensional Gabor representation has been presented, 

techniques on evaluation of expansion coefficients and asymptotically treated beam 

functions have been outlined. Chapter III summarizes the two dimensional formula-

tion and numerical examples confirming of the validity of the narrow beam algorithm 

are presented. The equivalent dipole antenna concept based on narrow aperture is 

developed and its validity in the context of Gabor representation is illustrated with 

various numerical results in Chapter IV. The conclusions and suggestions for future 

work are presented in Chapter V. 



CHAPTER 2 

GABOR REPRESENTATION IN THREE DIMENSIONS 

The Gabor representation consists of an expansion of a signal into a discrete set of 

Gaussian expansion functions [1]. However, applications of Gabor representation was 

limited because of difficulties associated with computing the expansion coefficients. 

Contributions by Bastiaans [2],[3] and Janssen[4] helped to remove these difficulties 

and led to concrete approach to determine these expansion coefficients. Then, the 

Gabor expansion was successfully applied to an aperture problem [5], though formula-

tion in three dimensions was formulated, extensive numerical results were presented 

only in two dimensions. The Gabor expansion in three dimensions was studied in 

detail by Maciel [6], where Gaussian beam summations in two and three dimensions 

were applied in complicated environments. In this chapter, the three dimensional 

Gabor expansion will be reviewed within the context of an aperture problem. 

2.1 Formulation 

In the three dimensional space, it is assumed that an arbitrary polarized aperture 

field distribution with suppressed e-iwt variation exists on the z = 0 plane as shown 

in Figure 1. The transverse aperture field distribution can be described as 

E(x, y, 0) = E(x,y,z) z=0=  ft 

where ft(x, y) is a vector function of spacial variables x and y as shown in formula (2) 



Figure 1. 	Geometry for a two dimensional rectangular aperture in a three 
dimensional space. 
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Two dimensional Fourier transform (plane wave spectrum representation) of the func-

tional dependence of the aperture field is 

The field distribution at any point P(x, y, z), z > 0 can be represented as a superpo-

sition of plane waves (plane wave spectrum) 

where 

with wave number vector k 

and position vector r 



Substituting (4) into (3), it is possible to express this potential as 

or in terms of ft(x, y) 

where the distance parameter R is 

The aperture field may be represented by a fourfold Gabor spectral expansion as 

where 

and index m is related to spatial shift in x direction, p is related to spatial shift 

in y direction, n and q denote spectral tilts. The Fourier transform of the aper-

ture distribution (substituting (8) into (2) and changing the order of integration and 

summation) leads to 



where W(N,ε) is a two dimensional Fourier transform of Gaussian finite-energy win-

dow function 

and its transform is 

Substituting (15) in (16) yields 

The elementary beam representation in general form can be expressed as 

where 

Or 

The Gabor coefficients Arn
,
n

,
p

,
g can be determined by means of the function -y(x,y) 



obeying biorthogonality conditions 

or 

and the completeness relation 

If 7(x, y) is known, which is the case for the chosen window function (15) leads to 

(Appendix A) 

where K0  = 1.85407468 represents the complete elliptic integral of the first kind of 

argument 1/2. 

The Gabor coefficients can then be determined from 



2.2 Evaluation of Gabor Expansion 

Gabor expansion coefficients Am,n,p,q  in the expansion (18) are vector quantities in 

the transverse plane 

as defined in (24) and (25). The expansion functions Bm,n, p,q  of the expansion (18) 

are the elementary beam functions defined in (19) and (20). Substituting Gabor 

coefficients(26) into the vector potential ψ (r) via Gabor representation (18) leads to 

Then the electric field E(r) can be determined from (18) as 

The explicit form of derivatives of elementary beam functions for spectral represen-

tation are 



and their spatial representations are 

The orientation of the vector of the three dimensional transverse aperture field of 

equation (1) can be chosen along the ± direction as a special case 



Such a choice leads to a simplified solution for the vector potential and expansion 

coefficients 

the vector potential 

and the magnitude of the ψ (r) is 

The reduced electric field expression becomes 

2.3 Expansion Coefficients Am,,n,p,q 

The Gabor expansion coefficients 	, p,q are defined in (24) and (25) in terms of 

space and wave number variables, respectively. The choice of Gaussian finite energy 

function w(x, y) in (15) leads to a biorthogonal function 7(x, y) in (23). Hence, this 

choice of the Gaussian window function yields a real gamma function γ (x, y), which 

implies that the conjugate operation in (24) and (25) does not alter the solution. 

It is possible to recognize that formulas (24) and (25) are Fourier transforms of 

ft(x,y) γ *(x — mLx, y — pLv) and of Ft(η, ε)Γ*(η- nΩx, ε — qΩy) with the conjugate 

variables nΩx , qΩy  and mLx,pLy, respectively. 



Any two dimensional aperture function distribution would have form of 

Thus the numerical evaluation of Gabor coefficients results in a limited integration 

over the non-zero aperture distribution 

with biorthogonal Gamma function 7 defined as in (23). These coefficients were 

evaluated by numerical integration in this work. 

Once the expansion coefficients are determined, their optimal number for the 

chosen set of parameters can be estimated by evaluating the aperture distribution 

using (12). The number of coefficients can be increased until satisfactory agreement 

of aperture field distribution is achieved. 

2.4 Asymptotic Evaluation of Expansion Functions Bm,n,p,q (x, y, z) 

The expansion functions 	in Gabor's representation are defined in (19) and (20) 

in terms of integral representations. Rather than the extensive numerical evaluation 

of spectral integrals in (12) and (20), it is worthwhile to evaluate them asymptotically 

[6]. The asymptotic evaluation of these functions dictates that the observation point 

should satisfy the far field conditions. 

In a double integral, once the saddle point is determined, the integration contour 



can be confined to the steepest descent path (SDP) 

where Ω is the large parameter. Integral in (42) can be asymptotically evaluated in 

the first order as 

The Jacobian J is defined as 

and the saddle point (ς is , ς 2s) satisfies the following equation 

Applying the following change of variables to equation (19) using the following trans

formation 



and substituting the definition of Fourier transform of the Gaussian window function 

(17). yields 

Asymptotic approximation of the form (43) will yield 

where the phase function 

The saddle point (ηs,  6) should satisfy the following system of equations 

Transforming (50) into original variables leads to 



fined as 

where b is an unknown beam waist parameter and the following variables are de- 

As can be seen, 

the asymptotic evaluation of expansion function Bm,n,p,g, requires a solution of a sys-

tem of coupled complex equations (51), but it is possible to simplify this task by 

introducing a complex source point technique. Considering the far field and paraxial 

approximations, apply a perturbation expansion of a saddle point coordinates up to 

quadratic terms 

This leads to an approximate solution for the saddle point for the symmetrical Lx = 

Ly  = L, non-tilted beams represented by n, = 0 and q = 0 

Non-tilted, propagating beams carry the most of the contribution into the field, this 



is why limitation of the solution only to these beams is justified. After substitut- 

ing solutions (53) into (48)-(49) approximate expansion of the function results in a 

paraxial approximation 

A similar complex source point approximation can be extended to the derivatives of 

expansion functions Bm,n,p,q. Applying the transformation in (46) to (29-31) yields 

which can be approximated utilizing (43) into above relations 

where the Jacobian and the phase function evaluated at the saddle point f (η s,ε s,) are 



identical to (44) and (49), respectively. Hence, derivatives obtained in (29-31) are sub- 

ject to approximations in symmetry Lx  = Ly L and non-tilted (n = 0 and q = 0) 

beams simplify into 

Hence, an approximate solution for the far-field electric field in (28) can be evaluated 

using expansion coefficients in (41) and expansion function derivatives in (62)-(64). 

For the specific choice of an aperture distribution in (35) the far field electric field in 

(39) can be determined via (36) and (62)-(64). 



CHAPTER 3 

GABOR REPRESENTATION OF AN APERTURE 
IN A TWO DIMENSIONAL SPACE 

It is possible to reduce the three dimensional theoretical formulation presented in 

Chapter 2 to an aperture in a two dimensional space. Theoretical analysis and nu-

merical evaluation for this case are very similar to a three dimensional problem [5]. 

However, physical interpretation is simpler for a two dimensional case without addi-

tional complexity of a third dimension. 

A very detailed study of analysis and synthesis of aperture, near field and far 

zone fields by Gabor representation has been carried by Maciel [6]. The behavior of 

wide, narrow and "matched" beam superposition was investigated, the contribution 

of each individual beam and certain group of beams to the total field was identified. 

Here, only a brief overview will be presented. 

3.1 Formulation in a Two Dimensional Space 

A one dimensional aperture located in a two dimensional space is shown in Figure 2. 

The aperture field distribution (the transverse electric field) can be chosen without 

loss of generality to be along they direction as 

It is possible to describe the field in the half space z > 0 at an observation point 

19 
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Figure 2. 	An aperture in two dimensional space. 



P(x, z) using plane-wave spectral representation as 

where F(7)) is the Fourier transform of the functional dependence of the aperture field 

f (x) 

Or it is possible to describe the same field by the point-source response superposition 

where distance R in (11) is now reduced to 

and .H11) (kR) is a Hankel function of the first kind of order 1. 

It is possible to express a Gabor representation of the scalar aperture field 

function as 

where index m indicates spatial shift and index n a spectral tilt with spatial dis-

placement parameter L, which is a Gaussian beam with waist width and a spectral 

displacement parameter 



Finite-energy window function w(x) will be chosen as a normalized Gaussian 

Using equation (71) in a Fourier transform of an aperture function(67) results in 

where W(η) is a Fourier transform of the window function in (71) 

Substituting equations (70) and (72) in equations (66) and (68) and changing the 

order of integration and summation results in an expansion 

where elementary beam functions Bm,n(x,z) can either be represented spectrally as 

or spatially as 



3.2 Gabor Expansion Evaluation 

The formulation for one dimensional aperture developed in the previous section is 

evaluated numerically. The expansion coefficients in (24) are simplified as 

where aperture distribution f (x) = y f (x) and the biorthogonal Gamma function is 

Expansion functions B,,,(x, z) can be evaluated [5] by their saddle-point contribution 

and subsequently paraxial and far field approximations can be determined. 

Simplifying the mapping given in (46) results in 

Paraxially approximated saddle point contribution for B,n,n  is 



where 

and saddle point contribution for the far field approximation yields 

here Hm,n is the Fourier transform of the elementary window function (71) in a 

coordinate system defined by mapping in (79) 

3.3 Numerical Results for One Dimensional Aperture 

The formulation developed in previous sections for one dimensional aperture is eval-

uated numerically. A computer code has been developed and was used to obtain 

numerical results for pulsed and tapered aperture distributions. Gamma function 

7(x) was determined numerically as shown on Figure 3 in one dimensions. Compari-

son of obtained numerical results for y(x) with previously published work [3] showed 



good agreement. The aperture fields considered in numerical evaluation are pulsed 

and cosine distributions shown in Figure 4. The variable chosen in numerical evalu-

ation is the width of the beam waist (L) relative to the width of the aperture (Lo). 

The Gabor coefficients are determined from (77) with simple numerical integration. 

The magnitudes of these coefficients are plotted for various values of Lo/L in Fig 5. 

3.3.1 Uniform Aperture Distribution 

One possible way to check the validity for the choice of the relative beam width and 

corresponding number of the expansion coefficients is through the aperture field re-

generation using equation (70). As seen in Figure 6(a) the pulsed aperture distribution 

is given as 

Regeneration with inadequate number of coefficients —6 < n < 6 for the Lo/L = 0.2 

results in an inaccurate representation. As n increases to include —19 < n < 19 

as shown in Figure 6(b), this agreement improves. Further increase in n to include 

—49 < n < 49 shows better convergence. Similar observations were made for narrower 

beams in Figure 7, where Lo/L is chosen as 9. However, convergence with less number 

of terms is achieved sooner for narrower beams. The radiated field patterns from a 

pulsed aperture (84) using (74) are determined at various observation locations away 

from the aperture and are shown in Figure 8. At z = 2.4A at the near zone, the 

pattern shown in Figure 8(a) resembles the aperture distribution itself. As one moves 

further away from the aperture, the radiated pattern approaches its Fourier transform 
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Figure 3. 	Gamma function y(x-mL) versus its argument. 
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Figure 4. 	Pulsed and tapered (cosine) aperture field distributions. 
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Figure 5. 	Expansion coefficients| Am_n| for a pulsed aperture for various values of 
L0/L. 
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Figure 6. 	A Gabor representation (— solid line) of a pulsed aperture 
(— dashed line) with Lo/L=0.2 and -9 5 m 5 9 and various values versus 

 n. 



Figure 7. 	A Gabor representation (— solid line) of a pulsed aperture 
(— — dashed line) with 4/L=9.0, -9 S m 5 9 and various values 
versus n. 

30 
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Figure 8. 	Far field distribution of a pulsed aperture for various values of 
observation point z. 
(— solid line) Gabor representation -9 5 m 5 9, -11 5 n 5 11, 
in (c) the theoretical far field expression (— — dashed line) was obtained 
from a Fourier Transform of an aperture field. 



in the form of All these numerical results are in good agreement with those 

published previously [5]-[6]. 

3.3.2 Tapered Aperture Distribution 

More typical aperture illumination in practice created by wave guide feeds is tapered 

in amplitude variation. Cosine field distribution along the aperture 

as shown in Figure 4(b) is considered next. The Gabor expansion coefficients are 

given in Table 1 for Lo/L = 9. Only significant coefficients are retained in the table. 

The aperture field re-generation is shown on Figure 9 and good agreement was 

observed with very small number of terms. One reason for rapid convergence is that 

Gaussian beam expansion functions are indeed a good choice for tapered aperture 

representation. This is evident in Figure 6(a) where a pulsed aperture was attempted 

to be represented by a few terms but a tapered approximate distribution was achieved. 

Similar trend is observed for far field evaluation from a tapered distribution as seen in 

Figure 10. Here, as observation location is removed further away from the aperture, 

the field pattern changed from almost aperture distribution itself into the theoretical 

value of the far field. All these evaluations verified that the numerical code developed 

produces reliable results which are accurate in comparison to the ones previously 

published[5-6]. In general, one can conclude that narrow beams adequately can be 

utilized to analyze and synthesize the radiated field from the aperture. 



Figure 9. 	A Gabor representation ( solid line) of a tapered cosine aperture 

distribution for Lo/L=9.0, -915.rnS.9 and various values versus n. 
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Figure 10. 	Far field distribution of a cosine aperture for various values of 
observation point z. 
(— solid line) Gabor representation -9 5 m 5 9,-11 5 n S 11. 
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Table 1. 	Gabor expansion coefficients for a cosine aperture distribution. The 

parameters chosen are -9 S  m 5 9, -6 n 6 and L,;L=3 0. 

Only significant coefficients are retained here. 



CHAPTER 4 

NUMERICAL RESULTS FOR TWO DIMENSIONAL APERTURES 

The Gabor expansion in terms of a Gaussian beam representation for the two di-

mensional aperture field distributions were formulated by Einzinger, et.al. [5] and 

applied in complicated environments by Maciel [6]. The detailed theory is presented 

in Chapter 2 of this thesis. In this chapter, numerical results for pulsed and tapered 

aperture distributions are presented and validity of the current approach is discussed. 

The numerical evaluation of two dimensional apertures follow very similar steps of 

one dimensional aperture presented in Chapter 3. Results are presented only for the 

electric field vector potential ψ (r), without any significant loss, but can be extended 

to fields via differentiation as shown in (62)-(64). Two dimensional Gamma function 

7(x — mLx , y — pLy) in (23) is a product of two one dimensional Gamma functions. 

Plot of this function is shown in Figure 11. The choice of number of terms to be 

kept in the expansion was based on aperture re-generation, as was done in Chapter 

3. However, further numerical evaluations were based on the fact that narrow beam 

summation is best suited to synthesize far fields as has been obtained in Chapter 3. 

4.1 Uniform Aperture Field Distribution 

The uniform aperture distribution in two dimensions can be expressed as 
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Figure 11 	Two dimensional gamma function y(x-mlx, y-p1) versus its arguments. 
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In practice, it is rather difficult to synthesize true pulsed aperture distribution 

but it is useful for numerical simulations to investigate the merits and limitations of 

the applied methods. 

The Gabor expansion coefficients Am,n,p,q are determined from direct two di- 

mensional numerical integration of (24). Beam widths Lx, Ly, in x and y directions, 

respectively, are the parameters that can be varied in a Gabor scheme. These coeffi- 

cients for the pulsed aperture distribution in (86) are shown in Figure 12 for various 

choices of Los /Ls  and Loy /Ly  where Loxand Loy  are the aperture dimensions in 

wavelengths. The choice of n = q = 0 excludes so called tilted beams with additional 

phase factor. Further it will be shown that the wide beams chosen in Figure 12(a) and 

12(b) are not suited for consideration due to their lack of convergence. The aperture 

field re-generation using (12) as shown in Figure 13 and 14 clarifies this aspect. The 

chosen wide beam widths of LOX /LX  = Loy/Ly  = 0.2 show rather poor convergence 

to synthesize a rectangular pulsed aperture distribution. Decreasing beam widths to 

Lox/Lx = Loy/Ly = 9.0 yields much more accurate re-generation of an aperture field 

distribution as seen in Figure 14. However, Gibbs effects are clearly visible in Figure 

14, which can be attributed to [5] the contribution of elementary beams associated 

with larger n and q. Although these beams are evanescent in the long-wavelength 

limit, they may propagate in the short-wavelength limit (n, q ti 17  large ). 

The Gabor summation in (18) for the potential function will be compared with 

the conventional Fourier Transform representation (10) in the far zone. Using ap- 

proximation 



formula (10) can be rewritten as 

Introducing the Fourier transform of the aperture field 

and considering that 

the vector potential can then be expressed as 

Then vector potential will become 

Considering uniform aperture distribution, far zone potential amplitude will reduce 

into 



Figure 12. 	Gabor coefficients JA, ,„J of the pulsed aperture for n=q=0 versus m 
and p. 
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Figure 13. 	A Gabor representation of a pulsed two dimensional aperture 
distribution L0/L= 0.2 for |m|, |n|, |p|, |q|  S 9 
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Figure 14. 	A Gabor representation of a pulsed two dimensional aperture 
distribution Lo/L = 9.0 for |m|, |n| |p|, |q| 5 9 



Figure 15. 	Potential Distribution due toa pulsed aperture in the near zone z=10% for 
L0x/Lx=L0y/Ly= 9.0 and |m|, |p|  S 9 |n|, |q|  =0. 
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Gabor summation in(18) for the pulsed aperture distribution using narrow beams 

of Lox/Ls = Loy/Ly= 9.0 and keeping n = q = 0, |m|,|p| < 9 at near field 

z = 10A is shown in the Figure 15. This potential distribution clearly shows the 

transition from the aperture field in Figure 14. Further Gabor evaluation at the far 

zone z = 100λ for the same parameters, depicts the typical features of the far field 

as seen in Figure 16(a). For the comparison, a Fourier Transform for the same pulse 

aperture distribution is illustrated in Figure 16(b). Comparing both methods based 

on Figure 16, the Gabor summation could not produce very sharp nulls adjacent 

to the main lobe. One reason for this inaccuracy could be that Bm,n,p,qexpansion 

functions were evaluated asymptotically rather than more rigorously using numerical 

integration. Figure 17 is a replica of Figure 16 using the conventional notation in 

decibels which helps to reduce the affects of high contrast between the main beam 

and the side lobes. 

4.2 Tapered Aperture Field Distribution. 

In general physical apertures, i.e. horn antennas, open ended waveguides, etc., are 

bounded by metallic enclosures. Tangential electric field components vanish along 

the exterior boundaries leading to tapered aperture distributions. A cosine field dis-

tribution along the two-dimensional rectangular aperture of comparable dimensions 

can be expressed as 



The above aperture field distribution using Gabor representation (14) is regenerated 

for the rectangular aperture of dimensions Lax  = 5A and Loy  = 3X. The Gabor 

coefficients are listed in Table 1 and the re-generated aperture afield is shown in Figure 

18 (a) where Gabor expansion parameters are Lox,/Lx  = 10.0, Loy/Ly = 6.0 and 

|m||n|,|p|,|q| < 9. Comparison of Figure 18(a) with Figure 18 (b) where aperture 

field distribution (94) is plotted suggests that the above choice of narrow beams and 

their corresponding number provides good agreement. 

Electric field potential (18) that can be used to determine radiated fields was 

evaluated in the near (z = 2.0A), mid (z = 25A) and far (z = 100λ) zones as shown in 

Figure 19. The radiation patterns were determined for 0 = 0 and 0 = 7r/2 planes for 

different values of an angle 0. The far zone patterns in Figures 19 (e) and 19 (f) are 

compared with the analytical expressions determined using Fourier transform. The 

far field analytical expression for the two dimensional cosine aperture field distribution 

can be determined from (89) as 

The comparisons for near and mid zones could be obtained by evaluating Fourier 

transform numerically. Again the choice of narrow beams in the Gabor expansion 

confirmed that accurate and reliable representation is possible. 



Figure 16. 	Potential distribution of the pulsed aperture in the far zone z=100?. 
(a) Gabor summation for L0x/Lx= L0y/Ly= 9.0 and |m|, |p|  5 9 
(b) Fourier Transform 
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Figure 17. 	Logarithmic plot of potential distribution of the pulsed aperture in the far 
zone z=100X 
(a) Gabor summation for L0x/Lx= L0y/Ly = 9.0 and |m|, |p| 5 9 
(b) Fourier Transform 



Figure 18. 	A Gabor representation of two dimensional cosine aperture distribution 
L0x/Lx  = 10.0 L0y/Ly= 6.0 for |m|, |p|, |n|, |q| 5 9 
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Figure 19. 	Far field distribution of a cosine aperture for various values of 
observation point z on g)=0 and cp=n/2 planes. 
Gabor representation parameters are L0x/Lx= 10.0 and L0y/Ly= 6.0 
|m|, |p|  5 9 |n|  |q| =0. 
Solid lines (—) are obtained by Gabor expantsion and 
(— — dashed line) by Fourier Transform (equation(95)). 
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CHAPTER 5 

GABOR REPRESENTATION OF AN EQUIVALENT DIPOLE 

The equivalent dipole antenna can be described as a narrow aperture with field distri-

bution similar to the current distribution of an electrical dipole antenna. One major 

difference between the equivalent dipole and an electrical dipole is that the former 

radiates only into region z > 0 since it is located on xy—plane where as a latter one 

radiates into entire space due to its symmetrical nature. This chapter contains com-

parisons between rectangular apertures, narrow apertures (one side is much less than 

the other) and electric dipoles with similar aperture (current) distributions. Similar 

approach had been reported by Niver [7] where spherical wave expansions have been 

used compared to the Gabor expansion of the current study. 

Though rigorous analysis of determining the radiated fields from a linear, center-

fed antenna using Gabor representation has not been done, it is still possible to 

determine its equivalent solution. This equivalent solution is based on decreasing 

sufficiently one side of the rectangular aperture while maintaining the aperture dis-

tribution similar of a dipole. Thus radiated fields from a narrow aperture will be 

equivalent to the ones of a dipole in a half space z > 0. 

5.1 Radiation from a Linear, Center Fed Dipole Antenna 

The linear, center-fed dipole antenna as shown in Figure 20 lies along the x-axis and 

its length is equal to L. 
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Figure 20. 	Geometry for a linear, center-fed dipole antenna. 



For the sinusoidal current distribution 

The radiation pattern for the linear antenna with current distribution in (96) can be 

determined as 

5.2 Radiation from Narrow Apertures 

Radiation from two dimensional apertures of comparable dimensions was treated in 

Chapter 4. Narrow apertures are described as the rectangular aperture where width 

(Loy) is much smaller than the height (Lox), i.e., Loy  < L. Hence, narrow apertures 

can be viewed as a rectangular aperture Loy/Lox  < 1, in this work this ratio will be 

taken Loy/L„ = 0.01. In order to clarify the transition from the regular aperture 

(Loy 	Lox) into the narrow aperture (Lox  >> Loy), results for both type apertures 

will be presented. 

Various parameters are considered in the numerical experiment to further un-

derstand how a transition from a regular aperture into a narrow aperture is applied in 

terms of Gabor representation. Keeping the aperture field distribution as sinusoidal 

as shown in figure 21 (a) and 22 (a) Gabor representation involving few terms results 

in a reasonable re-generated aperture fields as can be seen in Figure 21 (b) and 22 (b) 

for regular and narrow aperturesm respectively. Table 3 and 4 list the Gabor expan- 
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sion coefficients for square and narrow apertures of Figure 21 and 22, respectively. 

In above results the height of the considered apertures was kept at Lox = A/2. The 

radiated electric potentials at near, mid and far zones are shown in Figure 23 and 

24, where only Gabor expansion coefficients for n = q = 0 and 1mi 	< 5 were 

kept. Due to symmetry in excitation = 0 and ¢ = 7r/2 plane patterns in Figure 

23 turned out to be identical. But this symmetry disappears for the narrow aperture 

as seen in Figure 24. However, presence of side lobes suggests that number of the 

expansion coefficients and choice of beams (Ls  = Ly  = 0.05A) kept in the Gabor rep-

resentation do not yield accurate results. Changing the beam width to Ls  = Ly  = 0.1 

and further to Ls  = Ly  = 0.2 improves convergence a little bit at far field as seen in 

Figure 25 and 26, respectively. Further increase in the number of terms kept in the 

Gabor expansion helps to reduce sidelobe levels and give better convergence in spite 

of presence of Gibbs phenomena near 0 = 7r/2. In above Figure 23 through Figure 27 

the dashed lines are the theoretical results for the electric dipole. 

As can be seen from the above results and comparisons, Gabor representation 

using wider beams and sufficient number of terms in the expansion is capable of 

synthesizing the radiation from an electric dipole antenna. However, until present 

day there has not been any attempt to formulate this problem in a direct approach. 



Figure 21 	Sinusoidal field distribution of a half-wavelength rectangular aperture 
(Lox/Lx=X/2=Loy/Ly=X/2) 
(a) plot of the aperture field 
(b) Gabor representation of the aperture field for n=q=0, |m|,|p|5 
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Figure 22. 	Sinusoidal field distribution of a narrow half-wavelength rectangular 
aperture (Lox= k/2 Lo0y= ?J200) 
(a) Plot of the aperture field 
(b) Gabor representation of the aperture field for n=q=0, |m|,|p|  S 5. 
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Figure 23 	Amplitude of the electric potential of a square aperture (Lxo/Lx=?J2, 

Loy/Ly=k/2 ) excited by a sinusoidal field illumination. Gabor parameters 
are n=q=0, 

Solid lines (—) are obtained by Gabor expansion and dashed lines (- -) 
represent theoretical results for an electric dipole. 



Figure 24 	Amplitude of the electric potential of a narrow aperture (Lox/Lx=2\12 
Loy/Ly=2,/200) excited by a sinusoidal field illumination. 
Gabor parameters are 
Solid lines ( 	) are obtained by Gabor expansion and dashed lines (- -) 
represent theoretical results for an electric dipole. 
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Figure 25 	Amplitude of the electric potential of a narrow aperture(Lox/Lx=X12 
Loy=2J200) excited by a sinusoidal field illumination. 

Gabor parameters are n=q=0, |m|, |p|  5 
Ly=Lx=0. 1 
Solid lines (—) are obtained by Gabor expansion and dashed lines (- 
represent theoretical results for an electric dipole. 



Figure 26 	Amplitude of the electric potential of a narrow aperture(Lox/Lx=?J2 
Loy=k/200) excited by a sinusoidal field illumination. 
Gabor parameters are n=q=0, 	S 5 
Ly=Lx=0.2 
Solid lines (--) are obtained by Gabor expansion and dashed lines (- -) 
represent theoretical results for an electric dipole. 
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Figure 27. 	Amplitudes of the electric field potential for the far zone (z=100X) of an 
equivalent half-wavelength dipole at 	plane. 
Gabor parameters are Ly = Lx =0.1 p=q=0 
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Table 2 	Gabor expansion coefficients for a rectangular half-wavelength aperture 
illuminated by sinusoidal field distribution ( Lox/Lx  = X/2 = Loy/Ly) and 

n=q=0, 	5. 



Table 3. 	Gabor expansion coefficients for a narrow half-wavelength high aperture 
illuminated by sinusoidal field distribution (L0x/Lx=. X/2 =L0y/Ly= X/200) 

and n=q=0, 	I 5 5 



CHAPTER 6 

CONCLUSIONS 

The Gabor representation in the context of a two dimensional aperture problem has 

been summarized in this work. It is an expansion for a radiated field in terms of a 

discrete set of linearly shifted and spatially rotated elementary Gaussian beams. The 

parameters that can be varied in this summation are the number of beams and cor-

responding beam widths. The validity of the narrow beam algorithm with almost a 

priori predictability has been reconfirmed for one and two dimensional apertures. The 

equivalent dipole antenna concept based on narrow aperture has been described and 

its validity through application of Gabor representation has been confirmed. Here, 

the Gabor representation has been applied to a narrow rectangular aperture illumi-

nated with a sinusoidal field. The narrow aperture (height >> width) excited by 

sinusoidal field distribution approximates an equivalent dipole with a similar current 

distribution with only exception that aperture radiates into a half-space whereas the 

dipole covers the entire space. Utilizing the narrow beam algorithm, once the expan-

sion coefficients were determined, the radiated electric field potential in near, mid 

and far zones were evaluated. The criteria in determining the number of expansion 

coefficients based on re-generation of the aperture field distribution with sufficient 

accuracy has been demonstrated. It was observed that even though wide beam algo-

rithm was applied, less number of terms resulted in erroneous side lobes and higher 

number of terms caused Gibbs phenomena in the region close to the aperture plane. 
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The numerical evaluations are carried out for the half-wavelength high narrow aper-

ture. Far zone numerical results of radiated potential utilizing Gabor expansion are 

compared to analytical expressions determined via Fourier transform. The unique 

application developed in this work in expressing the radiated field of an equivalent 

dipole antenna revealed that Gabor expansion can be a valuable tool in studying radi-

ation from practical sources such as open ended waveguides, horns and other aperture 

type radiators. 
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