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ABSTRACT 

REMOTE MEASUREMENT CALIBRATION IN POWER SYSTEM 

by 
Xiaofeng Li 

Power system reliability and economy of operation require accurate measurements of 

current, voltage, real and reactive powers. These measurements are transmitted to a control 

center of a power system for monitoring, display, and use in power system real-time 

analysis. The number of measurements is in thousands. Routinely field technicians must 

calibrate transducers and/or determine other sources of metering errors. Due to the large 

number of measurements and the time required to check each individual measurement, field 

calibration procedures are impractical, expensive, and not timely. 

There has been a need for a more efficient approach to measurement calibration and 

identification of defective instruments. This paper describes an approach which meets the 

need. The collection of measurements over time are used to correct for systematic errors, 

(caused by instrument transformers, transducers, secondary leads between these devices, 

analog-digital converters, and the scaling procedure). The volts, watts, and vars scales are 

then adjusted to compensate for these errors, thus providing more accurate measurements. 
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CHAPTER 1 

INTRODUCTION 

1.1 Objective 

The objective of this thesis is to propose a method to make up for the measurement errors 

and provide scale adjustments, that is, remotely calibrate real and reactive power and 

voltage measurements. This approach requires information concerning the network 

configuration, the impedance of all transmission lines, and reliable data measurements at a 

few points of the system. The proposed algorithm consists of determining calibration 

coefficients for the various measured values by using alternately bus power balance and 

current equality or line power loss, starting from reliable points and propagating the 

process throughout the network. Finally the measurements are calibrated by means of 

those calibration coefficients for all hours at which they were taken. 

1.2 Background Information 

Today, Energy Management System (EMS) plays an important role in power system 

operation and analysis. It contains Supervisory Control and Data Acquisition (SCADA), 

Automatic Generation Control/Economic Dispatching Control (AGC/EDC), State 

Estimation (SE), Power-Flow, Contingency-Analysis, Transients Analysis, Generation 

Schedule/Unit Commitment etc. application programs. Typically, SCADA collects the 

measurement (P, Q, V) from Remote Telemetering Units (RTUs)s located in substations 

and power plants of a power system. State Estimation retrieves the measurement data 

1 
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from SCADA application and then suppresses the gross and spurious errors , furnishing 

dependable real-time database for other advanced analysis applications. An overview of an 

EMS is illustrated in Figure 1. 

Figure 1 EMS OVERVII-W 

Accuracy in this case means that data be free of systematic errors because the state 

estimator assumes that the data are unbiased and are only subject to random errors of 

known mean and standard deviation. Only spurious errors are detected by SE. 

Error analysis is described in many paper [ I], [2]. Errors in measurements are 

broadly categorized as systematic errors and random errors. Systematic errors are those 
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resulting from malfunctions and adjustments which may conceivably be easily corrected 

when detected, the only impediment to detection being cost. Each measurement received 

is the final product of a chain of instruments and processes. The chain consists of 

instrument transformers, transducers, and analog-to-digital converters linked together with 

"secondary" wiring at the substation; scaling and conversion procedures at the control 

center ( performed by SCADA of EMS); and telemetering gear and communication 

equipment in between . These devices, linkages, equipment and procedures all, to a 

different degree, introduce errors in the measurement streams. The instruments drift and 

deteriorate with time, temperature and environmental conditions requiring periodic 

inspection and calibration. Hence, all of the above factors generate errors that may be 

classified as systematic errors. The measuring processes and devices are shown in Fig.2 . 

Figure 2 The Processes of Data Acquisition 
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Random errors are those that are unknown and impossible to rectify by means of 

service adjustments. While systematic errors can be reduced by a well-administered 

maintenance plan of field calibration, economy of operation sets a limit on the extent of 

such a plan, thus precluding perfect calibration at all times, no matter how well intended 

and designed the plan is. The techniques presented in this paper have for goal to process 

the measurements in order to minimize the systematic errors, in essence performing 

remotely the soft calibration of the measurements. This would certainly improve the 

performance of the state estimator. 

The study of remote measurement calibration (RMC) is of interest. Many studies 

were published in the last ten years. The work of Adibi et al [5] presented the calibration 

as a correction based on measurements of bus voltage magnitude and phase angle, in 

addition to line real power and reactive power flows. This was an improvement over the 

earlier works by Adibi et al [3], [4], phase angle measurement was dispensed with. It uses 

bus summing for real and reactive power and KV equality at each bus. A nonlinear 

relationship was used between measured and calibrated values, including zero offset and 

gain adjustment. 

E. Cohen and A. Fallaha [6] proposed a method, which is a mix of physical and 

soft calibration. It requires the selection of a few reliable points for regular, frequent field 

calibration. The reliable points give a power reference to the system. Power balance, 

power loss and voltage drop constraints are used to minimize softly the systematic errors. 



CHAPTER 2 

METHOD OF CALIBRATION 

The algorithm presented in the sequel for remote measurement calibration (RMC) 

requires reliable data measurement at a few points of the power system. This means that at 

those points field calibration and data transmission have to be checked much more 

frequently than what is considered routine for the rest of the system. The selection of the 

point locations depends on the system configuration and their number on the minimum 

that is found to produce acceptable results. The planner should then experiment, using the 

algorithm, with different sets of reliable points in order to arrive at what he considers to be 

adequate set of reliable measurement points. The calibration at those points is then 

assumed to be perfect and in no need for correction. Measurements at those points are 

only subject to random errors. Using the measurements at the reliable points, the algorithm 

proceeds to calibrate the measurements at the other points of the system. The reliable 

points, therefore, serve as a reference for the power and voltage levels of the system 

without which no correction is possible. Indeed, reducing all measurements to nil satisfies 

perfectly all laws of conservation of energy. 

2.1 Mathematical Model 

The linear model describing the relationship between the corrected and measured values of 

P, Q, and V can be written as follows: 

5 
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where: 

subscript c stands for calibrated 

subscript m stands for measured 

subscript j refers to a particular bus number 

subscript h refers to a particular hour of the day 

Vcjh : the calibrated value of voltage at hour h for point j. 

P 	: 	the calibrated value of real power at hour h for point j. 

Qcjh : the calibrated value of reactive power at hour h for point j. 

Vmjh, Pmjh, Qmjh are the measured values at the point j and hour h. 

aid ,a2j, a3j  and b1j  , b2j, b3j  are the zero offsets and the gain coefficients for point j, 

respectively . 

Now, a relationship must be found among calibrated values, measured values and network 

elements, and establish equality constraints. When the measurement data violate these 

constraints and introduce systematic errors, Nonlinear Least-Square techniques are used 

to minimize these errors. 

where H is the number of hourly measurements. 

N is the number of equality constraint functions. 

Fih(x) is the i-th component of the constraining function at hour h. 
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Broadly speaking, the constraint function (or objective function) involves violations to 

conservation of energy that must be minimised. The result must satisfy the reliable values 

assumed at some points and not be trivially zero. The reliable points have therefore the 

effect of setting the level at which conversation of energy is to be satisfied. It is worth 

noting that from a practical point of view P and Q are commonly measured in contrast to 

phase measurements or even current measurements. 

The following simple case is used to illustrate the calibration procedure. In Figure 3, a 

system has seven measuring points 1, 2, 3, 4 at bus I and 5, 6, 7 at bus J. we assume point 

I and 2 are reliable measurement. 

Figure 3 One Line Diagram of a Simple System 

2.1.1 Power Balance Constraint 

The objective function adopted here is the squares of the power summation at one bus 

over time, plus the sum over time of the squares of the difference between the calibrated 

and measured value. This objective function ensures that the calibrated values stay close to 

the measured values refer to a certain power level by the reliable points at this bus. We 

explain this by Figure 3, a simple example. 
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Where P and Q are taken positively if entering the bus and negatively if leaving it. The 

vaniching summations are hardly possible. Hence, we can rewrite the above equations in 

coefficients foam as follows: 

R is the number of reliable points at bus I. 

M is the total number of measured points at bus I. ɛpI

ɛqI are the error resulting from the mismatches of the corrected powers at bus I. 

The second power constraint will be the difference between measured and corrected 

values for each measured point. Its purpose is not to allow the calibrated value to stray 

too far from the measured value. Equation (9) may be minimized , for instance, by having 

a2j=b2j=0 for some j ; this is unacceptable. In addition, then at bus I, we have : 
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The errors for real power at bus I in the Figure 3, using the power balance constraint, are 

then ɛpI  , ɛp3, Cp4 . The power balance objective function to be minimized involves the 

power balance constraints described above for all hours of the period of measurements. 

The total number of measurements is equal to MxH over that period. The objective 

fimction at bus I can be written as follows: 

Same reason, we can write the objective function of reactive power at bus I : 

Let us just take H hours of measurements , assume F be the error squared forming the 

objective function and Fp that corresponding to real power (P). For the sake of clarity, a 

and b are ow used as the offset and gain of real power , not a2 and b2 , because real 

power is used to explain the procedures. This obviates confusion with other subscripts. 

The complete expression follows : 

Differentiate with respect to a3 , a4 , b3 , b4 
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Rearranging the above equations 

In matrix form, we have a 4x4 linear equation 
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Using the Gauss Method, we can solve this 4x4 Ax=B linear equation, and got real power 

coefficients of point 3 and 4. Likewise, the reactive power coefficients can be obtained. 

Note that A is nonsingular for more than one hour of data, provided that the data changes. 

The equation for the general case is shown below. The solution produces the calibration 

coefficients at all points of a bus, except the reliable points. It is important to have at least 

one reliable point at a bus which is to be calibrated by power balance constraint because 

the power reference level provided by the reliable points is needed to avoid a trivial 

solution. 

Similarly, we can write the linear equations of reactive power coefficients. 
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2.1.2 Current Equality Constraint 

In the previous section, P and Q at a single bus were calibrated using the power balance 

constraint. In this section and the next section, a current equality constraint is used to 

establish the relationship between two buses, thus propagating the calibration work to 

another bus. In our simple system case, since the calibrated values of P and Q at one end 

of line I have been calculated and voltage at bus I is known, the current at both ends of 

the line can be calculated, and the difference between them should be zero. That means 

the current of point 3 should be equal to the current of point 5 in Figure 3. 

Hence, we can write the objective function of current equality constraint : 

2.1.3 Power Loss Constraint 

Like the current equality constraint, the power loss constraint can be used to build the 

relationship between two buses. 

and the equation (24) can be rewritten as follows: 
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2.1.4 Voltage Drop Constraint 

The voltage drop constraint can be used for establishing the voltage relationship between 

two buses. For our two bus system, the following equations are derived for this 

relationship. Let us consider line 2 between bus I and J. 

Using the real part since it is more consequential for the voltage magnitudes, 

Equation (27) can be rewritten as 

Substituting equations (28) into (27), we have: 
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Solving equations (29) for cos.θ4, 

Substituting (28) and (30) into (27) gets 

In general form, we can rewrite above equations as follows: 

The corresponding error is given by 
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For the line between point 3 and 5 in the simple system of Figure 3, substituting A5 ,B5, 

and 135  in the above general form. 

2.1.5 Combination of Constraints 

Four constraints were expounded in the preceding sections and now the question arises on 

how to use them to effect the calibration. 

The power balance constraint can be used for calibrating the P and Q measurements at 

individual buses. This step is followed by current equality, power loss and voltage drop 

constraints to reach out to other buses where the first step was not possible. 

The current equality, power loss, voltage drop constraints can establish the relationship 

between any two buses of a system. At least two of them are used in order to enhance the 

reliability of the calibration process. It is felt that in any case the voltage drop constraint 

must be present. Three combinations are thus possible: 

(1) Current Equality + Voltage Drop for point j 

(2) Power Loss + Voltage Drop for point j 
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(3) Current Equality + Power Loss + Voltage Drop for point j 

2.2 Nonlinear Least Squares (UNSLF Routine of IMSL) 

The IMSL FORTRAN Numerical Library is a comprehensive resource of more than 900 

FORTRAN subroutines for applications in general applied mathematics. In Section 2.1, 

the mathematical model for our study was introduced. In our program, the UNSLF of 

IMSL is used to solve the error minimization problem. The results were quite satisfactory. 

UNSLF can solve a nonlinear least squares problem using a modified Levenberg-

Marquartdt algorithm and a finite-difference Jacobian. 

Usage: 

CALL UNSLF (FCN, M, N, XGUESS, XSCALE, FSCALE, [PRAM, 

RPRAM, X, FVEC, FJAC, LDFJAC) 

Algorithm: 

UNSLF is based on the MINPACK routine LMDIF by More et al. (1980). It uses a 

modified Levenberg-Marquardt method to solve nonlinear least squares problems. The 

problem is stated as follows: 

where m n,F: IR" --> 	, and f(x) is the i-th component function of F(x). From a 

current point, the algorithm uses the trust region approach: 
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to get a new point xn  , which is computed as 

are the function values and the Jacobian evaluated at the current point xc  , respectively. 

This procedure is repeated until the stopping criteria are satisfied. 

Since a finite-difference method is used to estimate the Jacobian, for some single precision 

calculations, an inaccurate estimate of Jacobian may cause the algorithm to terminate at a 

noncritical point. In such cases high precision arithmetic is recommended. Also, whenever 

the exact Jacobian can be easily provided, IMSL routine UNSLF should be used instead 

by DUNLSF routine. 

2.3 Solution Algorithm and Program Flow Chart 

2.3d Algorithm 

The measurement calibration algorithm is now described. It requires at the outset the 

specification of reliable points and numbering of all the measurement points. 

Step 1: Determine the position of all reliable points at each bus of the power system 

Step 2 : For every line terminated with a single reliable point, carry out a current- 

equality/voltage-drop or power-loss/voltage-drop or all of three constraint minimization. 



18 

The outcome of this step are the calibration coefficients of real power, the reactive power 

and the voltage at the other end of the line, Le., the uncalibrated point. These constants are 

used to calibrate the measured values at the bus of the uncalibrated point. This step is 

performed for all similar lines before proceeding to step 3. 

Step 3 Select the bus with the maximum number of reliable points, say bus I. Carry out a 

power balance constraint error minimization, involving all points at the bus I over all 

hourly measurements. The outcome of this procedure are the calibration constants which 

are used to calibrate all of the power and reactive power measurements but the reliable 

points associated with bus I. 

Step 4 : Identify all lines connected to bus I which have an uncalibrated point at their 

other end. Carry out a current-equality/voltage drop or power-loss/voltage-drop 

constraint 

minimisation by considering the previously calibrated end as reliable. The outcome of this 

step are the calibration coefficients of the real power, reactive power and voltage at the 

other end of the lines connected to bus I. 

Step 5 : If all measurement points have been calibrated, stop 
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2.3.2 Program Flow Chart 
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Table 1 Program Flow Chart 



CHAPTER 3 

CASE STUDY 

3.1 Simple System Case 

In Figure 3, a simple two bus system is given to test the algorithm. First the system 

measurement data are prepared in per unit. These measurement data are obtained from a 

correct load flow program which produces " actual data". The latter are systematically 

modified by means of chosen calibration coefficients. These calibration coefficients are 

kept the same over the hours of each measurement location, but differ from one location 

to the other. 

Procedure 1  

In our case, point 1 and 2 are reliable points, The total least-square error minimization 

produced a23 ,a24 , b23 b24 , a33 , a34, b33 b34 . These coefficients are used to calibrate the 

P and Q measurements at points 3 and 4. Once calibrated , points 3 and 4 become reliable 

points. Table 1 shows the measured, calibrated, and actual values of points 3 and 4. The 

plots clearly demonstrate that the measurement data have improved after calibration, 

getting close to the actual values. 

21 
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Table 2 Measured, Calibrated, Actual Values of P, Q, V at Points 3 and 4 

Hour 	P M(3) 	PC(3) 	actual 	 Hour 	P M(4) 	PC(4) 	actual 

	

1 -0.1738 -0.2001 -0.1931 	 1 -0.1599 -0.1863 -0.1931 

	

2 -0.2089 -0.2355 -0.2281 	 2 -0.1942 -0.2208 -0.2281 

	

3 -0.4043 -0.4323 -0.4227 	 3 -0.385 -0.413 -0.4227 

	

4 -0.4995 -0.5282 -0.5175 	 4 -0.478 -0.5066 -0.5175 

	

5 -0.2616 -0.2885 -0.2806 	 5 -0.2457 -0.2727 -0.2806 

	

6 -0.1915 -0.2179 -0.2108 	 6 -0.1772 -0.2037 -0.2108 

	

7 -0.1461 -0.1722 -0.1655 	 7 -0.1328 -0.159 -0.1655 

	

8 -0.2836 -0.3107 -0.3025 	 8 -0.2671 -0.2942 -0.3025 

	

9 -0.4502 -0.4785 -0.4684 	 9 -0.4298 -0.4581 -0.4684 

	

10 -0.4567 -0.4851 -0.4749 	 10 -0.4362 -0.4645 -0.4749 

	

11 -0.5204 -0.5493 -0.5383 	 11 -0.4984 -0.5272 -0.5383 

	

12 -0.3389 -0.3664 -0.3575 	 12 -0.3211 -0.3486 -0.3575 

	

13 -0.3389 -0.3664 -0.3575 	 13 -0.3211 -0.3486 -0.3575 

	

14 -0.1775 -0.2038 -0.1967 	 14 -0.1635 -0.1899 -0.1967 

	

15 -0.6188 -0.6484 -0.6363 	 15 -0.5944 -0.6238 -0.6363 

Hour 	Q M(3) 	QC(3) 	actual 	 Hour 	Q M(4) 	QC(4) 	actual 

	

1 -0.1598 -0.1714 -0.1705 	 1 -0.1574 -0.169 -0.1705 

	

2 -0.1533 -0.1648 -0.164 	 2 -0.151 -0.1625 -0.164 

	

3 -0.1286 -0.1399 -0.1394 	 3 -0.1268 -0.1381 -0.1394 

	

4 -0.0732 -0.084 -0.0841 	 4 -0.0726 -0.0834 -0.0841 

	

5 -0.1506 -0.1621 -0.1613 	 5 -0.1483 -0.1598 -0.1613 

	

6 -0.2144 -0.2264 -0.2249 	 6 -0.2107 -0.2227 -0.2249 

	

7 -0.1199 -0.1311 -0.1307 	 7 -0.1183 -0.1295 -0.1307 

	

8 -0.1556 -0.1671 -0.1663 	 8 -0.1532 -0.1647 -0.1663 

	

9 -0.1745 -0.1862 -0.1851 	 9 -0.1717 -0.1834 -0.1851 

	

10 -0.1715 -0.1832 -0.1822 	 10 -0.1688 -0.1805 -0.1822 

	

11 -0.1938 -0.2056 -0.2045 	 11 -0.1906 -0.2024 -0.2045 

	

12 -0.1395 -0.1509 -0.1502 	 12 -0.1375 -0.1489 -0.1502 

	

13 -0.1395 -0.1509 -0.1502 	 13 -0.1375 -0.1489 -0.1502 

	

14 -0.1613 -0.1729 -0.172 	 14 -0.1588 -0.1704 -0.172 

	

15 -0.205 -0.2169 -0.2156 	 15 -0.2015 -0.2134 -0.2156 

	

Hour VM(3) VC(3) actual 	 Hour VM(4) VC(4) actual 

	

1 	0.9625 	0.99 	0.99 	 1 	0.9539 	0.99 	0.97 

	

2 	0.9526 	0.98 	0.98 	 2 	0.9441 	0.98 	0.96 

	

3 	0.9427 	0.97 	0.97 	 3 	0.9343 	0.97 	0.95 

	

4 0.9625 0.99 0.99 	 4 0.9539 0.99 0.975 

	

5 	0.9724 	1 	1 	 5 	0.9637 	1 	0.98 

	

6 	0.9921 	1.02 	1.02 	 6 	0.9833 	1.02 	0.995 

	

7 	1.002 	1.03 	1.03 	 7 	0.9931 	1.03 	1.015 

	

8 	1.0118 	1.04 	1.04 	 8 	1.0029 	1.04 	1.02 

	

9 	0.9526 	0.98 	0.98 	 9 	0.9441 	0.98 	0.955 

	

10 	0.9427 	0.97 	0.97 	 10 	0.9343 	0.97 	0.945 

	

11 	0.9408 	0.968 	0.968 	 11 	0.9324 	0.968 	0.94 

	

12 	0.9625 	0.99 	0.99 	 12 	0.9539 	0.99 	0.97 

	

13 	0.9625 	0.99 	0.99 	 13 	0.9539 	0.99 	0.97 

	

14 	0.9724 	1 	1 	 14 	0.9637 	1 	0.98 

	

15 	0.9427 	0.97 	0.97 	 15 	0.9343 	0.97 	0.94 



23 

Figure 4 Comparison Chart of Measured, Calibrated and Actual P at Point 3 

Figure 5 Comparison Chart of Measured, Calibrated and Actual P at Point 4 
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Figure 6 Comparison Chart of Measured, Calibrated and Actual Q at Point 3 

Figure 7 Comparison Chart of Measured, Calibrated and Actual Q at Point 4 
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Procedure 2 

Once calibration is done at points 3 and 4, they become reliable points. At the other bus, 

points 5 and 6 are connected to points 3 and 4. Current equality and voltage drop 

constraints as objective functions are used to minimize by Least Square Method (UNSLF 

of IMSL Math Library) over 15 hours of measurement. The calibrated coefficients 

obtained for points 5 and 6, i.e., (a15, a25, a35, b15, b25, b35) and (a16, a26, a36, b16, b26, b36) are 

used to obtain the calibrated values of P, Q, V at points 5 and 6. Considering then P, Q, V 

of points 5 and 6 as reliable points, power balance constraint is used to do calibration at 

bus J. The calibrated coefficients of P and Q are then obtained for point 7. Thus all 

calibration at points 5, 6 and 7 are effected except the voltage measurement of point 7; but 

the latter may be taken as the average of the two calibrated voltages at points 5 and 6 as 

the bus voltage. i.e. , V5=V6=V7=Vaverage 

The measured, calibrated , and actual values of P, Q, V at points 5 and 6 are shown in 

Table 2 .The plots indicate that all measurement data have been greatly improved after 

calibration. 
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Table 3 Measured, Calibrated, and Actual Values of P, Q, V at Point 5 and 6 

	

Hour PM(5) PC(5) actual 	 Hour PM(6) PC(6) actual 

	

1 	0.1677 	0.1969 	0.1921 	 1 	0.1554 	0.1835 	0.192 

	

2 	0.2018 	0.2326 	0.2269 	 2 	0.1892 	0.2184 	0.227 

	

3 	0.3907 	0.4302 	0.4195 	 3 	0.3762 	0.4112 	0.419 

	

4 0.4827 0.5265 0.5133 	 4 0.4673 0.5051 0.513 

	

5 0.253 0.2862 0.279 	 5 0.2398 0.2705 0.279 

	

6 0.1847 0.2147 0.2094 	 6 0.1722 0.2009 0.209 

	

7 	0.141 	0.169 	0.1649 	 7 	0.129 	0.1563 	0.164 

	

8 	0.2743 	0.3085 	0.3008 	 8 	0.261 	0.2924 	0.3 

	

9 0.4348 0.4764 0.4645 	 9 0.4199 0.4562 0.464 

	

10 0.4409 0.4827 0.4708 	 10 0.426 0.4625 0.47 

	

11 0.502 0.5466 0.533 	 11 0.4864 0.5248 0.533 

	

12 0.3276 0.3642 0.3552 	 12 0.3138 0.3468 0.355 

	

13 	0.3276 	0.3642 	0.3552 	 13 	0.3138 	0.3468 	0.355 

	

14 	0.1713 	0.2007 	0.1957 	 14 	0.159 	0.1873 	0.195 

	

15 	0.5962 	0.6452 	0.6291 	 15 	0.5797 	0.6209 	0.629 

	

Hour QM(5) QC(5) actual 	 Hour QM(6) QC(6) actual 

	

1 	0.1441 	0.1687 	0.1637 	 1 	0.1318 	0.1687 	0.163 

	

2 	0.1367 	0.1608 	0.1558 	 2 	0.1239 	0.1608 	0.155 

	

3 	0.1003 	0.1234 	0.1183 	 3 	0.087 	0.1234 	0.118 

	

4 0.0398 0.0612 0.056 	 4 0.0257 0.0612 0.056 

	

5 	0.1318 	0.1558 	0.1508 	 5 	0.119 	0.1558 	0.15 

	

6 	0.1949 	0.2206 	0.2158 	 6 	0.183 	0.2206 	0.215 

	

7 	0.1083 	0.1316 	0.1265 	 7 	0.0951 	0.1316 	0.126 

	

8 	0.1362 	0.1603 	0.1552 	 8 	0.1234 	0.1603 	0.155 

	

9 	0.1395 	0.1637 	0.1587 	 9 	0.1268 	0.1637 	0.158 

	

10 	0.1356 	0.1597 	0.1547 	 10 	0.1229 	0.1597 	0.154 

	

11 	0.1496 	0.1741 	0.1691 	 11 	0.137 	0.1741 	0.169 

	

12 	0.1164 	0.1399 	0.1349 	 12 	0.1033 	0.1399 	0.134 

	

13 	0.1164 	0.1399 	0.1349 	 13 	0.1033 	0.1399 	0.134 

	

14 	0.1458 	0.1701 	0.1652 	 14 	0.1332 	0.1701 	0.165 

	

15 	0.1482 	0.1726 	0.1676 	 15 	0.1356 	0.1726 	0.167 

Hour VM(5) VC(5) actual 	 Hour VM(6) VC(6) actual 

	

1 	0.952 	0.9752 	0.97 	 1 	0.9406 	0.9748 	0.97 

	

2 0.942 0.9659 0.96 	 2 0.9307 0.9655 0.96 

	

3 	0.9319 	0.956 	0.95 	 3 	0.9208 	0.9561 	0.95 

	

4 0.957 0.9799 0.975 	 4 0.9455 0.9795 0.975 

	

5 0.962 0.9845 0.98 	 5 0.9505 0.9842 0.98 

	

6 0.9771 0.9986 0.995 	 6 0.9653 0.9982 0.995 

	

7 	0.9972 	1.0173 	1.01 	 7 	0.9851 	1.017 	1.01 

	

8 	1.0022 	1.0219 	1.02 	 8 	0.9901 	1.0217 	1.02 

	

9 0.9369 0.9612 0.955 	 9 0.9257 0.9607 0.955 

	

10 	0.9269 	0.9519 	0.945 	 10 	0.9158 	0.9513 	0.945 

	

11 	0.9219 	0.9472 	0.94 	 11 	0.9109 	0.9467 	0.94 

	

12 	0.952 	0.9752 	0.97 	 12 	0.9406 	0.9748 	0.97 

	

13 	0.952 	0.9752 	0.97 	 13 	0.9406 	0.9748 	0.97 

	

14 	0.962 	0.9845 	0.98 	 14 	0.9505 	0.9842 	0.98 

	

15 	0.9219 	0.9472 	0.94 	 15 	0.9109 	0.9467 	0.94 



27 

Figure 8 Comparison Chart of measured, Calibrated and Actual P at Point 5 

Figure 9 Comparison Chart of Measured, Calibrated and Actual P at Point 6 
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Figure 10 Comparison Chart of Measured, Calibrated and Actual Q at Point 5 

Figure 11 Comparison Chart of Measured, Calibrated and Actual Q at Point 6 
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Figure 12 Comparison Chart of Measured, Calibrated and Actual V at Point 5 

Figure 13 Comparison Chart of Measured, Calibrated and Actual V at Point 6 



30 

Table 4 Measured, Calibrated, and Actual Values of P and Q at Point 7 

	

Hour PM(7) PC(7) actual 	 Hour QM(7) QC(7) Actual 
1 -0.3417 -0.3812 -0.384 	 1 -0.3014 -0.3312 -0.327 
2 -0.4106 -0.4515 -0.453 	 2 -0.2858 -0.3155 -0.311 
3 -0.7921 -0.8409 -0.839 	 3 -0.2124 -0.2415 -0.236 
4 -0.9779 -1.0305 -1.02 	 4 -0.0903 -0.1185 -0.112 

	

5 -0.5139 -0.5569 -0.558 	 5 -0.2761 -0.3057 -0.301 

	

6 -0.376 -0.4162 -0.418 	 6 -0.4035 -0.4342 -0.431 

	

7 -0.2879 -0.3263 -0.329 	 7 -0.2284 -0.2577 -0.253 

	

8 -0.5571 -0.601 -0.601 	 8 -0.2848 -0.3145 -0.31 

	

9 -0.8811 -0.9317 -0.928 	 9 -0.2916 -0.3214 -0.317 

	

10 -0.8936 -0.9444 -0.941 	 10 -0.2837 -0.3134 -0.309 
11 	-1.0169 	-1.0703 	-1.06 	 11 	-0.3119 	-0.3418 	-0.338 

	

12 -0.6648 -0.7109 -0.71 	 12 -0.2449 -0.2743 -0.269 

	

13 -0.6648 -0.7109 -0.71 	 13 -0.2449 -0.2743 -0.269 

	

14 -0.3489 -0.3885 -0.391 	 14 -0.3042 -0.3341 -0.33 

	

15 -1.2072 -1.2645 -1.25 	 15 -0.309 -0.3389 -0.335 
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Figure 14 Comparison Chart of Measured, Calibrated and Actual P at Point 7 

Figure 15 Comparison Chart of Measured, Calibrated and Actual Q at Point 7 
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Procedure 3  

As we did in last two procedures, well improved measurement data of points 3, 4, 5, 6, 7 

have been obtained by using power balance and current-equality/voltage-drop constriants. 

Here, we change to use power-loss/voltage-drop constraint to expand to other end bus 

connected to reliable points. The results are shown in Table 5, 6 compared with current-

equality/voltage-drop constraint. The comparison charts are ploted as follows. 

Table 5 Calibrated Results (P , Q) of Current Equality and Power Loss at Point 7 

Hour PM(7) PCI(7) PCL(7) Actual QM(7) QCI(7) QCL(7) Actual 
1 -0.3417 -0.3812 -0.381 -0.384 -0.3014 -0.3312 -0.3276 -0.327 
2 -0.4106 -0.4515 -0.4505 -0.453 -0.2858 -0.3155 -0.3117 -0.311 
3 -0.7921 -0.8409 -0.8352 -0.839 -0.2124 -0.2415 -0.237 -0.236 
4 -0.9779 -1.0305 -1.0226 -1.02 -0.0903 -0.1185 -0.1126 -0.112 
5 -0.5139 -0.5569 -0.5546 -0.558 -0.2761 -0.3057 -0.3018 -0.301 
6 -0.376 -0.4162 -0.4156 -0.418 -0.4035 -0.4342 -0.4316 -0.431 
7 -0.2879 -0.3263 -0.3267 -0.329 -0.2284 -0.2577 -0.2533 -0.253 
8 -0.5571 -0.601 -0.5982 -0.601 -0.2848 -0.3145 -0.3107 -0.31 
9 -0.8811 -0.9317 -0.925 -0.928 -0.2916 -0.3214 -0.3176 -0.317 

10 -0.8936 -0.9444 -0.9376 -0.941 -0.2837 -0.3134 -0.3096 -0.309 
11 -1.0169 -1.0703 -1.0619 -1.06 -0.3119 -0.3418 -0.3383 -0.338 
12 -0.6648 -0.7109 -0.7068 -0.71 -0.2449 -0.2743 -0.2701 -0.269 
13 -0.6648 -0.7109 -0.7068 -0.71 -0.2449 -0.2743 -0.2701 -0.269 
14 -0.3489 -0.3885 -0.3882 -0.391 -0.3042 -0.3341 -0.3305 -0.33 
15 -1.2072 -1.2645 -1.2538 -1.25 -0.309 -0.3389 -0.3354 -0.335 
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Table 6 The Calibrated Results of Current Equality and Power Loss at point 5 , 6 

Hour PM(5) PC1(5) PCL(5) Actual PM(6) PCI(6) PCL(6) Actual 

	

1 	0.1677 	0.1969 	0.1947 	0.1921 	0.1554 	0.1835 	0.1859 	0.192 

	

2 	0.2018 	0.2326 	0.2298 	0.2269 	0.1892 	0.2184 	0.2204 	0.227 

	

3 	0.3907 	0.4302 	0.4245 	0.4195 	0.3762 	0.4112 	0.4111 	0.419 

	

4 	0.4827 	0.5265 	0.5193 	0.5133 	0.4673 	0.5051 	0.504 	0.513 
5 0.253 0.2862 0.2826 0.279 0.2398 0.2705 0.272 0.279 

	

6 	0.1847 	0.2147 	0.2122 	0.2094 	0.1722 	0.2009 	0.203 	0.209 

	

7 	0.141 	0.169 	0.1672 	0.1649 	0.129 	0.1563 	0.1589 	0.164 
8 0.2743 0.3085 0.3045 0.3008 0.261 0.2924 0.2936 0.3 
9 0.4348 0.4764 0.4699 0.4645 0.4199 0.4562 0.4557 0.464 

10 0.4409 0.4827 0.4762 0.4708 0.426 0.4625 0.4619 0.47 
11 0.502 0.5466 0.5392 0.533 0.4864 0.5248 0.5235 0.533 

	

12 	0.3276 	0.3642 	0.3595 	0.3552 	0.3138 	0.3468 	0.3474 	0.355 
13 0.3276 0.3642 0.3595 0.3552 0.3138 0.3468 0.3474 0.355 

	

14 	0.1713 	0.2007 	0.1984 	0.1957 	0.159 	0.1873 	0.1895 	0.195 

	

15 	0.5962 	0.6452 	0.6362 	0.6291 	0.5797 	0.6209 	0.6187 	0.629 

Hour QM(5) QCl(5) QCL(5) Actual QM(6) QCI(6) QCL(6) Actual 

	

1 	0.1444 	0.1687 	0.1687 	0.1637 	0.1318 	0.1659 	0.1619 	0.163 

	

2 	0.1367 	0.1608 	0.1607 	0.1558 	0.1239 	0.1581 	0.1539 	0.155 

	

3 	0.1003 	0.1234 	0.1228 	0.1183 	0.087 	0.1213 	0.1168 	0.118 
4 0.0398 0.0612 0.0599 0.056 0.0257 0.0603 0.0552 0.056 

	

5 	0.1318 	0.1558 	0.1556 	0.1508 	0.119 	0.1532 	0.149 	0.15 

	

6 	0.1949 	0.2206 	0.2213 	0.2158 	0.183 	0.2169 	0.2134 	0.215 

	

7 	0.1083 	0.1316 	0.1311 	0.1265 	0.0951 	0.1294 	0.125 	0.126 

	

8 	0.1362 	0.1603 	0.1602 	0.1552 	0.1234 	0.1576 	0.1534 	0.155 

	

9 	0.1395 	0.1637 	0.1636 	0.1587 	0.1268 	0.1609 	0.1569 	0.158 

	

10 	0.1356 	0.1597 	0.1596 	0.1547 	0.1229 	0.1571 	0.1529 	0.154 

	

11 	0.1496 	0.1741 	0.1741 	0.1691 	0.137 	0.1711 	0.1671 	0.169 

	

12 	0.1164 	0.1399 	0.1396 	0.1349 	0.1033 	0.1376 	0.1332 	0.134 

	

13 	0.1164 	0.1399 	0.1396 	0.1349 	0.1033 	0.1376 	0.1332 	0.134 

	

14 	0.1458 	0.1701 	0.1702 	0.1652 	0.1332 	0.1673 	0.1633 	0.165 

	

15 	0.1482 	0.1726 	0.1727 	0.1676 	0.1356 	0.1697 	0.1657 	0.167 

Hour VM(5) VCI(5) VCL(5) Actual VM(6) VCI(6) VCL(6) Actual 

	

1 	0.952 	0.9752 	0.9752 	0.97 	0.9406 	0.9748 	0.9748 	0.97 
2 0.942 0.9659 0.966 0.96 0.9307 0.9655 0.9655 0.96 

	

3 	0.9319 	0.956 	0.9566 	0.95 	0.9208 	0.9561 	0.9562 	0.95 
4 0.957 0.9799 0.9799 0.975 0.9455 0.9795 0.9795 0.975 
5 0.962 0.9845 0.9845 0.98 0.9505 0.9842 0.9842 0.98 

	

6 	0.9771 	0.9986 	0.9985 	0.995 	0.9653 	0.9982 	0.9981 	0.995 

	

7 	0.9972 	1.0173 	1.0171 	1.01 	0.9851 	1.017 	1.0168 	1.01 

	

8 	1.0022 	1.0219 	1.0217 	1.02 	0.9901 	1.0217 	1.0215 	1.02 

	

9 	0.9369 	0.9612 	0.9613 	0.955 	0.9257 	0.9607 	0.9608 	0.955 

	

10 	0.9269 	0.9519 	0.952 	0.945 	0.9158 	0.9513 	0.9515 	0.945 

	

11 	0.9219 	0.9472 	0.9474 	0.94 	0.9109 	0.9467 	0.9468 	0.94 

	

12 	0.952 	0.9752 	0.9752 	0.97 	0.9406 	0.9748 	0.9748 	0.97 

	

13 	0.952 	0.9752 	0.9752 	0.97 	0.9406 	0.9748 	0.9748 	0.97 

	

14 	0.962 	0.9845 	0.9845 	0.98 	0.9505 	0.9842 	0.9842 	0.98 

	

15 	0.9219 	0.9472 	0.9474 	0.94 	0.9109 	0.9467 	0.9468 	0.94 
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Figure 16 Comparison of Calibrated P by Current-Equality and Power-Loss 
at Point 5 

Figure 17 Comparison of Calibrated P by Current-Equality and Power Loss 
at Point 6 
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Figure 18 Comparison of Calibrated Q by Current-Equality and Power-Loss 
at Point 5 

Figure 19 Comparison of Calibrated Q by Current -Equality and Power-Loss 
at Point 6 



36 

Figure 20 Comparison of Calibrated V by Current-Equality and Power-Loss 
at Point 5 

Figure 21 Comparison of Calibrated V by Current-Equality and Power-Loss 
at Point 6 
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Figure 22 Comparison of Calibrated P by Current-Equality and Power-Loss 
at Point 7 

Figure 23 Comparison of Calibrated Q by Current-Equality and Power-Loss 
at Point 7 
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3.2 Complex System Case 

3.2.1 Description of the Complex System 

The proposed method was tested on 9-bus system (26 KV - 4 KV) which consists of a 

main generator at bus 1, 9 transformers, 9 lines and 3 reactors. The system also has four 

loads at buses 4, 5, 7 and 8, as well ag capacitors or reactive power generators. The 

system is shown in Figure 24 which also shows 52 measurement points. These 

measurements include line real and reactive power flows and bus voltage. The power 

measurements consist of injection powers at some points, such as loads, and power flows 

at both ends of each line of this system 

3.2.2 Measurement Data 

Load flow solutions were obtained according to a variety of load curve in order to 

generate hourly measurement data, like the simulation of the actual situations in power 

system. The results of load flow are referred to as actual values. Systematic errors of gain 

and zero offset were then introduced in all but a few points in order to generate the 

uncalibrated data. The few points which are left unchanged will be considered as reliable 

points. The modified data and the reliable point data become the measurement data of the 

system. In addition, random errors may be added to these measurements in order to 

simulate the hourly data of real-time measurements of EMS. 

Assume a and b are the zero offset and gain coefficients respectively, Pc  and Pm  are the 

correct and measurement value. 
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12.3 Selection of Reliable Points and Results of Calibration 

Before embarking on the calibration of the test system, the location of reliable points are 

determined. The Remote Measurement Calibration (RMC) program is run in order to get 

the results of calibration based on that set of reliable points. 

In this study, points 1, 2, 3, 4, 6, 15, 16, 18, 19, 27, 32, 33, 36, 38, 40 are the reliable 

points. The calibration results are close to the actual values. The algorithm is thus capable 

of minimizing the effects of systematic errors, 

Reliable Points: 1, 2, 3, 4, 6, 15, 16, 18, 19, 27, 32, 33, 36, 38, 40 

Calibrated Points: 5, 7, 8, 9, 10, 11, 12, 13, 14, 17, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 

31, 34, 35, 37, 39, 41, 42, 43, 44., 45, 46, 47, 48, 49, 50, 51, 52 

For the sake of brevity, we just report point 10, 11, 12, 13, 14, 17 at bus 2 . The results 

are shown in Table 7 and their plots are shown in Appendix C . 
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Figure 24 9-Bus Test System 
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Table 7 Calibrated Values of Some Points at Bus #2 of 9-Bus Test System 
Hour PM(10) PC(10) Actual 	 Hour QM(10) QC(10) Actual 

1 	0.03029 0.03393 0.0339 	 1 	-0.00775 -0.00793 -0.008 
2 	0.01461 0.01806 0.0179 	 2 	-0.00922 -0.00946 -0.0095 
3 	0.02176 0.0253 0.0252 	 3 	-0.00716 -0.00731 -0.0074 
4 	0.01873 0.02223 0.0221 	 4 	-0.00696 -0.0071 -0.0072 
5 	0.02367 0.02719 0.0271 	 5 	-0.00735 -0.00751 -0.0076 
6 	0.02824 0.03185 0.0318 	 6 	-0.00765 -0.00782 -0.0079 
7 	0.0352 0.03889 0.0389 	 7 	-0.00794 -0.00813 -0.0082 
8 	0.02716 0.03076 0.0307 	 8 	-0.00745 -0.00762 -0.0077 
9 	0.076 0.08016 0.0805 	 9 	0.02667 0.02808 -0.0273 
10 	0.0352 0.03889 0.0389 	 10 	-0.00794 -0.00813 -0.0082 

Hour PM(11) PC(11) Actual 	 Hour QM(11) 00(11) Actual 
1 	0.02735 0.03022 	0.03 	 1 	-0.00918 -0.00952 -0.0096 
2 	0.01314 0.01535 0.0155 	 2 	-0.00947 -0.00984 -0.0099 
3 	0.01971 0.02222 0.0222 	 3 	-0.00811 -0.00835 -0.0085 
4 	0.01696 0.01935 0.0194 	 4 	-0.00762 -0.00782 -0.008 
5 	0.02137 0.02397 0.0239 	 5 	-0.0084 -0.00867 -0.0088 
6 	0.02549 0.02827 0.0281 	 6 	-0.00898 -0.00931 -0.0094 
7 	0.03166 0.03474 0.0344 	 7 	-0.00976 -0.01016 -0.0102 
8 	0.02451 0.02725 0.0271 	 8 	-0.00879 -0.0091 -0.0092 
9 	0.07088 0.07576 0.0744 	 9 	0.0181 0.02043 0.0188 
10 	0.03166 0.03474 0.0344 	 10 	-0.00976 -0.01016 -0.0102 

Hour PM(12) PC(12) Actual 	 Hour QM(12) QC(12) Actual 
1 	0.02563 0.0298 0.0296 	 1 	-0.00906 -0.00943 -0.0096 
2 	0.01175 0.01526 0.0153 	 2 	-0.00936 -0.00974 -0.0099 
3 	0.01816 0.02197 0.0219 	 3 	-0.00798 -0.00831 -0.0085 
4 	0.01553 0.01922 0.0192 	 4 	-0.00759 -0.0079 -0.008 

5 	0.01981 0.0237 0.0236 	 5 	-0.00828 -0.00862 -0.0088 
6 	0.02379 0.02787 0.0277 	 6 	-0.00887 -0.00923 -0.0094 

7 	0.0299 0.03428 	0.034 	 7 	-0.00966 -0.01005 -0.0102 

8 	0.02816 0.02685 0.0267 	 8 	-0.00867 -0.00903 -0.0092 
9 	0.06825 0.07446 0.0735 	 9 	0.01793 0.01856 0.0188 

10 	0.0299 0.03428 	0.034 	 10 	-0.00966 -0.01005 -0.0102 

Hour PM(13) PC(13) Actual 	 Hour QM(13) QC(13) Actual 

1 	0.04796 0.05221 0.0529 	 1 	-0.03392 -0.03436 -0.035 

2 	0.02058 0.02391 0.0247 	 2 	-0.02667 -0.02749 -0.0276 

3 	0.03388 0.03766 0.0384 	 3 	-0.02765 -0.02841 -0.0286 

4 	0.02893 0.03254 0.0333 	 4 	-0.02529 -0.02618 -0.0262 
5 	0.03689 0.04077 0.0415 	 5 	-0.02912 -0.02981 -0.0301 
6 	0.04456 0.0487 0.0494 	 6 	-0.03245 -0.00332 -0.0335 
7 	0.05602 0.06054 0.0612 	 7 	-0.03745 -0.03851 -0.0386 

8 	0.04272 0.04679 0.0475 	 8 	-0.03157 -0.03213 -0.0326 

9 	0.1468 0.15435 0.1547 	 9 	-0.00343 -0.00385 -0.0039 

10 	0.05602 0.06054 0.0612 	 10 	-0.03745 -0.03851 -0.0386 
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Table 7 ( Continued ) 
Hour PM(14) PC(14) Actual 	 Hour QM(14) QC(14) Actual 

1 	-0.0304 -0.03232 -0.0317 	 1 	0.02513 0.02555 0.0257 
2 	-0.01713 -0.01827 -0.0183 	 2 	0.0194 0.01963 0.0198 
3 	-0.02158 -0.02298 -0.0228 	 3 	0.02231 0.02264 0.0228 
4 	-0.01792 -0.01911 -0.0191 	 4 	0.021242 0.02154 0.0218 
5 	-0.02594 -0.0276 -0.0272 	 5 	0.02348 0.02384 0.024 
6 	-0.0305 -0.03242 -0.0318 	 6 	0.02503 0.02545 0.0256 
7 	-0.03436 -0.03651 -0.0357 	 7 	0.02658 0.02705 0.0272 
8 	-0.02584 -0.02749 -0.0271 	 8 	0.02386 0.02424 0.0244 
9 	-0.08545 -0.09062 -0.0873 	 9 	-0.00231 -0.0028 -0.0027 
10 	-0.03436 -0.03651 -0.0357 	 10 	0.02658 0.02705 0.0272 

Hour PM(17) PC(17) Actual 	 Hour QM(17) QC(17) Actual 
1 	-0.03824 -0.04026 -0.0411 	 1 	0.003932 0.00395 	0.004 
2 	-0.01755 -0.01935 	-0.02 	 2 	0.004126 0.00418 0.0042 
3 	-0.02784 -0.02975 -0.0305 	 3 	0.001893 0.00187 0.0019 
4 	-0.02392 -0.02579 -0.0265 	 4 	0.009272 0.00949 0.0096 
5 	-0.02922 -0.03114 -0.0319 	 5 	0.002282 0.00237 0.0024 
6 	-0.03392 -0.0359 -0.0367 	 6 	0.003447 0.00367 0.0037 
7 	-0.04451 -0.0466 -0.0475 	 7 	0.005194 0.00548 0.0055 
8 	-0.0348 -0.03679 -0.0376 	 8 	0.003252 0.00346 0.0035 
9 	-0.10039 -0.1031 -0.01045 	 9 	-0.01985 -0.02058 -0.0206 
10 	-0.04451 -0.0466 -0.0475 	 10 0.005194 0.00548 0.0055 

Hour VM(10) VC(10) VM(11) VC(11) VM(12) VC(12) Actual 
1 	1.00196 1.03815 1.02211 1.03683 1.00891 1.03731 1.039 
2 	1.00294 1.03912 1.02312 1.03767 1.0099 1.03828 	1.04 
3 	1.00294 1.03912 1.02312 1.03767 1.0099 1.03828 	1.04 
4 	1.00294 1.03912 1.02312 1.03767 1.0099 1.03828 	1.04 
5 	1.00196 1.03815 1.02211 1.03683 1.00891 1.03731 1.039 
6 	1.00196 1.03815 1.02211 1.03683 1.00891 1.03731 1.039 
7 	1.00196 1.03815 1.02211 1.03683 1.00891 1.03731 1.039 
8 	1.00196 1.03815 1.02211 1.03683 1.00891 1.03731 1.039 
9 	0.99216 1.02842 1.01206 1.02842 0.99901 1.02764 1.029 
10 	1.00196 1.03815 1.02211 1.03683 1.00891 1.03731 1.039 

Hour VM(13) VC(13) VM(14) VC(14) VM(17) VC(17) Actual 
1 	1.00594 1.03808 0.99414 1.03806 1.02211 1.03806 1.039 
2 	1.00693 1.03904 0.99512 1.03902 1.02311 1.03902 	1.04 
3 	1.00693 1.03904 0.99512 1.03902 1.02311 1.03902 	1.04 
4 	1.00693 1.03904 0.99512 1.03902 1.02311 1.03902 	1.04 
5 	1.00594 1.03808 0.99414 1.03806 1.02211 1.03806 1.039 
6 	1.00594 1.03808 0.99414 1.03806 1.02211 1.03806 1.039 
7 	1.00594 1.03808 0.99414 1.03806 1.02211 1.03806 1.039 
8 	1.00594 1.03808 0.99414 1.03806 1.02211 1.03806 1.039 
9 	0.99604 1.02847 0.98439 1.02849 1.01206 1.02849 1.029 
10 	1.00594 1.03808 0.99414 1.03806 1.02211 1.03806 1.039 



CHAPTER 4 

DISCUSSION 

In the previous chapters, we have introduced the methodology of RMC and conducted 

case study of the simple and complex system. The calibration improved significantly the 

measured values. The method is noted for the following: 

a. Only a few reliable points in the power system need frequent field calibration. Those 

are the reliable points which essentially establish power and voltage reference. Soft 

calibration of the rest of the points results in values that are very close to the actual 

values. 

b. Power Balance constraint is used to do calibration at one bus with at least one reliable 

point. 

c. Current equality constraint plus voltage drop constraint is used to propagate the 

calibration to other buses which are connected to the reliable or calibrated points. 

d. Using the power loss constraint plus voltage drop constraint to do (c) seems to be 

slightly better than using current equality plus voltage drop. 

2. Future work should focus on the following: 

a. It was assumed that each measurement point has real power, reactive power, and 

voltage measurements. In a real life situation, some measurement points may only have 

real power, reactive power and no voltage measurement, or some other situations. 

b. The locations of reliable points play an important part in the soft calibration. A 

topological study would enhance the proposed technique by providing the system 

planner with some guidance in the selection of reliable points. 
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CHAPTER 5 

CONCLUSION 

The calibration method described has the following advantages: 

a. it remotely calibrates the voltage, real and reactive power measurements 

b. it permits the adjustments of measurement scales of SCADA at the control center on an 

economic scale. 

c. it does not require extensive field calibration, a procedure which invariably introduces 

its own errors and which sometimes interferes with normal operation of the power 

system. 

d. it significantly reduces the expenditures associated with the field calibrations of several 

thousand instruments. 

e. it directs the field technician, by exception, to inspect only those instruments which are 

found to be widely out-of-range. 
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APPENDIX A 

PROGRAM OF SIMULATING HIE MEASUREMENT DATA 

**************************************************** 

PROGRAM NAME generate_meas.for 
* 
**************************************************** 

* the program is used to generate measurement data for RMC 
math model: Pm--(Pc-a)/b and/or N1=-41 Pci - a )/b 

***************************************************** 

REAL PM(10,52),QM(10,52),VM(10,52) 
REAL PA(10,52),QA(10,52),VA(10,12) 

REAL X(3,104) 
C 	  

OPEN(UNIT=12, NAME='actual.dat', TYPE='OLD') 
OPEN(UNIT=6, NAME='system2.dat',TYPE='NEW') 
READ(12,*X(PA(I,J),J=1,52),I=1,10) 
READ(12,*X(QA(I,J),J=1,52),I=1,10) 
READ( 12,*)(( VA(I,J),J=1, 12),I=1, 10) 

C 

	

	  
READ( 12,*)((X(I,J),P=1,104),I=1,3) 

C 	  
DO 100 I-1,10 

DO 90 J-1,52 
IF(PA(I,J).GE.0) THEN 

PM(I,J)=(PA(I,J)-X(2,2*J-1)/10)/X(2,2*J) 
ELSE 

S(PA(I,J))- X(2,2*J- 1 )/10 )/X(2,2*J) 
END IF 
If (QA(I,J).GE.0) THEN 
QM(I,J)=(QA(I,J)-X(3,2*J-1)/100)/X(3,2*J) 
ELSE 

QM(I,J)=-(AB S(QA(I,J))-X(3,2*J- 1)/100)/X(3,2*J) 
END IF 

90 	CONTINUE 
100 CONTINUE 

C 	  
DO 200 I=1,10 
WRITE(6,*) (PM(I,J),J=1,52) 

200 CONTINUE 
DO 210 I=1,10 

WRITE(6,*) (QM(I,J),J=1,52) 
210 CONTINUE 

DO 300 I=1,10 
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DO 310 J=1,9 
VM(I,J)=(VA(I,1 )-X( 1,2*J- 1)/10)/X(1,2*J) 
310 CONTINUE 

DO 320 J=10,17 
VM(I,J)=(VA(I,2)-X(1,2*J-1)/10)/X(1,2*J) 

320 CONTINUE 

VM(I,18)=(VA(I,3)-X(1,35)/10)/X(1,36) 
VM(I,23)=(VA(I,3)-X(1,45)/10)/X(1,46) 

VM(I,19)=(VA(I,11)-X(1,37)/10)/X(1,38) 

VM(I,22)=(VA(I,11)-X(1,43)/10)/X(1,44) 
VM(I,20)=(VA(I,12)-X(1,39)/10)/X(1,40) 
VM(I,21)=(VA(L12)-X(1,41)/10)/X(1,42) 
VM(I,35)-(VA(I.10)-X(1,69)/10)/X(1,70) 
VM(I,36)=(VA(I,10)-X(1,71)/10)/X(1,72) 
VM(I,37)-(VA(I,6)-X(1,73)/10)/X(1,74) 
DO 330 J=24,28 
VM(I,J)=(VA(I,4)-X(1,2*J-1)/10)/X(1,2*J) 

330 CONTINUE 
DO 340 J=29,34 
VM(I,J)=(VA(I,5)-X(1,2*J- 1)/10)/X( 1,2*J) 

340 CONTINUE 
DO 350 J=38,41 
VM(I,J)=(VA(I,7)-X(1,2*J-1)/10)/X(1,2*J) 

350 CONTINUE 
DO 360 J=42,44 
VM(I,J)=(VA(I,8)-X( 1,2*J-1)/10)/X( 1,2*J) 

360 CONTINUE 
DO 370 J=45,46 
VM(I,J)=(VA(I,9)-X(1,2*J-1)/10)/X(1,2*J) 

370 CONTINUE 
VM(I,47)---(VA(I,1)-X( 1,93)/10)/X( 1,94) 
VM(I,49)=(VA(I,1)-X(1,97)/10)/X( 1,98) 
VM(I,51)-(VA(I,1)-X(1,101)/10)/X( 1,102) 
VM(I,48)=WA(I,2)-X(1,95)/10)/X(1,96) 
VM(I,50)=(VA(I,2)-X(1,99)/10)/X(1,100) 
VM(I,52)=(VA(I,2)-X( 1,101)/10)/X( 1,102) 

300 CONTINUE 
DO 220 I=1,10 
WRITE(6,*) (VM(I,J),J=1,52) 

220 CONTINUE 
CLOSE (UNIT=6) 
CLOSE (UNIT=12) 
END 
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APPENDIX B 

PROGRAM OF REMOTE MEASUREMENT CALIBRATION (RMC) 

********************************************************* 

* This Program is for Remote Measurement Calibration (RMC) 
* Program Name: abrmc.for Output Name: systeml. outoutput 
********************************************************* 

C 	PART 1 : THE SYSTEM DATA DECLARATION 	 
COMMON/DATA1/ P(M, NM),Q(M,NM),V(M,NM) 

COMMON/DATA2/ NLM,M,NTL,NB 
COMMON/DATA3/ A(3,NM),B(3,NM) 
COMMON/DATA4/ KF 
COMMON/DATA5/ ILNST(NTL),ILNED(NTL),MBST(NB),MBED(NB),NS(5) 
COMMON/DATA6/ PC(M,NM),QC(M,NM),VC(M,NM),VB(M,NB) 
COMMON/DATA7/ NMP, JJ 

C 

PARAMETER ( M=15, NM=7, NB=2, N 1'L=5) 
REAL X(15),XGUESS(15),XSCALE(15),XLB(15),XUB(15),F(120),FV(120), 
& FSCALE(120),FJ(120,15),RP(7) 
INTEGER RA,K1,IDSYS,ND,M,N,NF,NLINE,NT,NSYS,I(F, 

& IP(6),NNS(3),ND2,ND3 
EXTERNAL UNLSF,U4LSF,FUN,F'UP,FUNI 
OPEN (UNIT=6, NAME='systemI.out', TYPE='NEW') 
OPEN (UNIT=2, NAME='system1.dat', TYPE='OLD') 

CC 	Begin to Read System Measurement Data 	 
DATA ILNST /0,0,3,4,7/ 
DATA ILNED/1,2,5,6,0/ 
DATA MBST/1,5/,MBED/4,7/ 

WRITE(6,500) 
WRITE(6,511) ILNED(I),ILNST(5) 

DO 30 I=1,M 
READ(2,*) (P(I,J), J=1,NM) ! read real power measurements 

WRITE(6,512) (MAJ.= 1,NM) ! write real power measurements 
30 CONTINUE 

WRITE(6,500) 
WRITE(6,513) H  NED(1),ILNST(5) 

DO 31 I=1,M 
READ(2,*) (Q(I,J),J=1,NM) ! read reactive power measurements 

WRITE(6,512) (Q(I,J),J=1,NM) ! write reactive power measurements 
31 CONTINUE 

WRITE(6,500) 
WRITE(6,510) H  NED(1),ILNST(5) 

DO 32 I=1,M 
READ(2,*) (V(I,J),J=1,NM) ! read voltage measurements 
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WRITE(6,512) (V(I,J),J=1,NM) ! write voltage measurements 
32 CONTINUE 

DO 36 I=I,M 
DO 36 J=1,NM 
PC(1,1)=0.0 

QC(I,J)=0.0 
VC(I))=0.0 

36 CONTINUE 
DO 37 I=1,M 
DO 37 1=1,2 
PC(I,J)=P(ILJ) 	! reliable points 1,2, PC=PM 
QC(I,J)=Q(I,J) 	! reliable points 1,2, QC=QM 
VC(I,J)=V(I,J) 	! reliable points 1,2, VC=VM 

37 CONTINUE 
C 	Select actual points to calibrate 
C 	  

NMP=0 
NNZ-0 

DO 660 JJ=1,2 
NMIP=0 

NNZ=0 
SUMV=0.0 
DO 77 J=MBST(JJ),MBED(JJ) 
IF (VC(l,J).NE.0.0) GO TO 707 
NMP=NMP+ 1 

NS(NMP)=J 

GO TO 77 
707 NNZ=NNZ+1 

NNS(NNZ)=J 
77 CONTINUE 

DO 78 I=1,M 
DO 79 J=1,NNZ 

79 SUMV=SUMV+VC(I,NNS(J)) 
VB(I,JJ)=SUMV/NNZ 
SUMV=0.0 

78 CONTINUE 
********************************************************************** 

* PART2: The Measurement Model Is as follows: 
VC(I)=a1(I) b I (I)*VM(I) 
PC(I)=a2(I) + b2(I)*PM(I) 
QC(I)=a3(I) b3(I)*QM(I) 

* Using Power Balance Constraints , Voltage Drop Constraints And Current Equality 
* Constraints To Minimization The Function By Least Square Method(IMSL UNLSF), 
And Then We Got Coefficients and can Calibrate P, Q, V. 
********************************************************************** 
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WRITE(6,500) 
WRITE(6,502) MBST(JJ), MBED(JJ) 
WRITE(6,515) (J,J=MBST(JJ),MBED(JJ)) ! NBS(JJ)/MBST(JJ) Mar 10,96. 

DO 75 I=1,M 
DO 76 J=1,NMP 

76 VC(I,NS(J))=VB(I,JJ) 
WRITE(6,980) I,(VC(I,J),J=MBST(JJ),MBED(H)) 

980 FORMAT(1X,I3,3X,4(F7.4,3X)) 
75 CONTINUE 

WRITE(6,500) 
61 WRITE(6,501) JJ 

ND=2*NMP 
MSC=M*(NMP+1) 
IDSYS=1 ! use power balance constraints for one bus 
GO TO 206 

206 	DO 70 KF=1,2 
210 CALL SOLVE (MSC,IDSYS,KF,ND,X) ! to calibrate P,Q measurements 

C 
DO 208 I=1,NMP 

A(KF+1,NS(I))=X(2*I-1) 
B(KF+1,NS(I))=X(2*I) 

208 CONTINUE 
C ************************************************* 

IF (K.F.EQ.2) GO TO 303 
WRITE(6,503) MBST(JJ),MBED(JJ) 

WRITE(6,515) (J,J=MBST(JJ),MBED(JJ)) 
DO 300 I=1,M 
DO 310 J=1,NMP 
PC(I,NS(J))=A(2,NS(J))+B(2,NS(J))*P(I,NS(J)) 

310 CONTINUE 
WRITE(6,981) I,(PC(I,J),J=MBST(JJ),MBED(JJ)) 

981 FORMAT(1X,13,3X,4(F7.4,3X)) 
300 CONTINUE 

WRITE(6,500) 
GO TO 70 

303 WRITE(6,500) 
WRITE(6,504) MBST(JJ), MBED(JJ) 
WRITE(6,515) (J, J=MBST(JJ), MBED(JJ)) 
DO 301 I=1,M 
DO 302 J=1,NMP 

QC(I,NS(J))=A(3,NS(J))+B(3,NS(J))*Q(I,NS(J)) 
302 CONTINUE 
301 WRITE(6,982) I,(QC(I,J),J=MBST(JJ),MBED(JJ)) 
982 FORMAT(1X,13,3X,4(F7.4,3X)) 

WRITE(6,500) 
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70 CONTINUE 
WRITE(6,519) 
WRITE(6,997) (A( I ,J),B(1,J),J=MB S T(JJ), MB ED(JJ)) 
WRITE(6,500) 
WRITE(6,998) (A(2,J),B(2,J),J=MBST(JJ),MBED(JJ)) 
WRITE(6,500) 
WRITE(6,999) (A(3,J),B(3,J),J=MBST(JJ),MBED(JJ)) 

997 	FORMAT(3X,'Coefficients of V',3X,F7.4,5X,F7.4) 
998 	FORMAT(3X,'Coefficients of P',3X,F7.4,5X,F7.4) 
999 	FORMAT(3X,'Coefficients of Q',3X,F7.4,5X,F7.4) 

C 
IF (JJ.EQ.NB) GO TO 660 
WRI1E(6,500) 
IDSYS=2 ! use current equality and voltage drop between 2 buses 
DO 700 I=1,NTL 

IF((ILNST(I).EQ.0).OR(ILNED(I).EQ.0)) GO TO 700 
ND=6 
MSC=2*M 
N1=ILNST(I) 
N2=IL  NED(I) 
KF=I 
CALL SOLVE (MSC,IDSYS,KF,ND,X) ! to calibrate the P,Q,V 
DO 701 I1=1,3 

A(I1,ILNED(KF))=X(2*I 1-I) 
70I B(I1,IL  NED(KF))=X(2*I1) 

DO 702 J=1,M 
VC(J,ILNED(KF))=A( 1,ILNED(KF))+B ( 1, ILNED(KF))*V(J, ILNED(KF)) 

PC(J,ILNED(KF))=A(2,ILNED(KF))+B(2,ILNED(KF))*P(J,IL  NED(KF)) 
QC(J,IL  NED(KF))=A(3,1LNED(KF))+B(3,TINED(KF))*Q(J,ILNED(KF)) 

702 CONTINUE 
WRITE(6,500) 
WRITE(6,990) ILNED(KF) 

990 	FORMAT(1X,'The calibrated value of voltage at point',I3) 
DO 705 J=1,M 

705 WRITE(6,880) J,VC(J,ILNED(KF)) 
880 FORMAT(3X,I3,4X,F7.4) 

WRITE(6,500) 
WRITE(6,991) ILNED(KF) 

991 	FORMAT(1X,'The calibrated value of real power at point',I3) 
DO 703 J=1,M 

703 WRITE(6,881) J,PC(J,ILNED(KF)) 
881 FORMAT(3X,I3,4X,F7.4) 

WRITE(6,500) 
WRITE(6,992) ILNED(KF) 

992 	FORMAT(1X,'The calibrated value of reactive power at point',I3) 
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DO 704 J=1,M 
704 WRITE(6,882) J,QC(J,ILNED(KF)) 
882 FORMAT(3X,I3,4X,F7.4) 
700 CONTINUE 
660 CONTINUE 
500 FORMAT (2X1) 
512 FORMAT (7(2X,F7.4)) 
501 FORMAT (3X,20('='),I3,20('=')/) 
502 FORMAT (1X,' 	The calibrated voltage(V) of,2(I3),") 
503 FORMAT (1X,' 	The calibrated real power(P) of,2(I3),") 
504 FORMAT (1X,'---The calibrated reactive power(Q) 
510 FORMAT (IX,' 	The measured voltage(V) of,2(I3),") 
5I1 FORMAT (1X,' 	The measure real power(P) of,2(I3),") 
513 FORMAT (1X,'----The measured reactive power(Q) 
515 FORMAT (8X,4(I3,8X)/,2X,55('-')) 
519 	FORMAT (X,' 	The Coefficients of A and B 	') 

END 
C 
******************************************************************** 

* PART 3: 
* 

* The Subroutine(SOLVE) Input=IDSYS And Output(X) or a and b 
* 
******************************************************************** 

SUBROUTINE SOLVE (MSC,IDSYS,KF,ND,X) 

COMMON/DATA1/ P(24,7), Q(24,7), V(24,7) 
COMMON/DATA2/ NM,M,NTL,NB 
COMMON/DATA3/ A(3,7), B(3,7) 

C 	COMMON/DATA4/ KF 

COMMON/DATA5/ILNST(5),ILNED(5),MBST(2),MBED(2),NS(2) 
REAL X(15),XGUESS(15),XSCALE(15),FJ(120,15),FV(120),FSCALE(120) 
REAL XLB(15),XUB(15),RP(7) 
EXTERNAL UNLSF,U4LSF,FUN,FUP,FUNI 
INTEGER M,N,LDFJP(6), ND,ND1,KF,IDSYS,ND2,ND3,IPT 
LDF=MSC 

C ************************************************************* 

ND1=ND/2 
DO 120 I=1,ND I 
XGUESS(2*I-1)=0.0 
XGUESS(2*I)=1.0 

120 CONTINUE 
C 	WRITE(6,515) (XGUESS(I),I=1,ND) 

DO 100 I=1,ND 

51 



100 XSCALE(I)=1.0 
DO 110 I=1,MSC 

110 FSCALE(I)=1.0 
IP(1)=0 ! modified on April 1,96 
IF (IDSYS.EQ. 1) GO TO 150 
IF (IDSYS.EQ.2) GO TO 160 

C 
WRITE(6,500) 

CALL UNLSF(FUN,MSC,ND,XGUESS,XSCALE,FSCALE,IP,RP,X,FV,FJ,LDF) 
WRITE(6,514) 
WRITE(6,515) (X(I), I=1,ND) 

WRITE(6,500) 
SUMV=0.0 
DO 131 I=1,M 

131 SUMV=SUMV+FV(I)**2 
ERROR=SQRT(SUMV) 

C 	  
150 WRITE(6,500) 

CALL 
UNLSF(FUP,MSC,ND,XGUESS,XSCALE,FSCALE,IP,RP,X,FV,FJ,LDF) 

SUMV=0.0 

WRITE(6,500) 
GO TO 140 

C 
160 	I lTP=0 

NG=ND/2 
RPM-20 

C 	IP(1)=0 
10 CALL U4LSF (IP,RP) 

RP(1)=RPM*RP( 1) 
RP(4)=RPM*RP(4) 

CALL UNLSF(FUNI,MSC,ND,XGUESS,XSCALE,FSCALE,IP,RP,X,FV,FJ,LDF) 
SUMV=0.0 
ERROR=SQRT(SUMV) 
DELMAX=0.0 
DO 11 I=1,ND 

DELTAX=X(I)-XGUESS(I) 
it (DELTAX .LT. 0.0) DELTAX=-DELTAX 

11 IF (DELTAX. GT. DELMAX) DELMAX=DELTAX 
IF ((DELMAX. LT. 0.0000006).AND.(RP(1).LE.0.125)) GO TO 12 

DO 13 I=1,ND 
13 XGUESS(I)=X(I) IF

 (RP(1) .GT. 2.0) RPM=RPM/5.0 
IF (RP(1) .LE. 2.0) RPM=RPM/2.0 
GO TO 10 
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140 WRITE (6,500) 
500 FORMAT(3X,/) 
515 FORMAT (12(2X,F7.4)) 
514 FORMAT (4X,THE A(I,J) AND B(I,J) OF THE VOLTAGES'/) 
517 FORMAT (4X,THE A(2,3,J) AND B(2,3,J) OF P AND Q POWER'/) 

12 RETURN 
END 

*************************************************************** 

* PART 4: 
* 

* The Subroutines That Define Power Balance, Voltage Drop and Current 
* Equality Constraints and Objective Functions. 
*************************************************************** 

SUBROUTINE FUN (MSC,ND,X,F) 
C 	**************************** 

INTEGER M,ND 

COMMON/DATAUP(24,7),Q(24,7),V(24,7) 
COMMON/DATA2/ NLINE,M,NL,IBST,IBED 
COMMON/DATA4/ KF 
REAL X(15),F(120) 

C 

WRITE(6,*) NL,IBST,IBED 
M=15 
DO 80 J=1,M I1=IBST+2 

DO 81 I=1,2 
F(J+(I-1)*M)= X(2*I-1) + X(2*I)*V(J,I1 ) - V(J,IBST) 
11=11+1 

81 CONTINUE 
I1=IBST+2 
DO 85 I=1,2 
F(J+M*(NL-3+I))-=-X(29)*V(J,I1)+V(J,I1) 

85 I1=I+I1 
80 CONTINUE 

C 	WRITE(6,*) (X(I),I= I,ND),ND 
RETURN 

END 
CC ************************************************************** 

SUBROUTINE FUP (MSC,ND,X,F) 

INTEGER M,ND 
COMMON/DATA1/ P(24,7),Q(24,7),V(24,7) 
COMMON/DATA2/ NM,M,NTL,NB 
COMMON/DATA4/ KF 
COMMON/DATA6/PC(24,7),QC(24,7),VC(24,7),VB(2) 
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COMMON/DATA7/NMP,JJ 
COMMON/DATA5/ ILNST(5),ILNED(5),MB ST(2 ),MBED(2),NS( 5) 
REAL X(10),F(120) 

C 
SUM=0.0 

SUM 1=0.0 
IF (KF.EQ.2) GO TO 91 
DO 90 I=1,M 
DO 92 J=1,NMP 
F(I+(J-1)*M)=X (2*J- I )+X(2*J)*P(I,NS(J))-P(I,NS(J)) 
SUM 1=SUM1+X(2*J-1)+X(2*J)*P(I,NS(J)) 

92 CONTINUE 
DO 93 J=MBST(JJ),MBED(H) 

DO 94 J1=1,NMP 
(J.EQ.NS(JI)) GO TO 93 

94 CONTINUE 
SUM=SUM+PC(I,J) 

93 CONTINUE 
F(I+(NMP*M)) (S UM+S UM1)*(MB ED(JJ)-MB ST(JJ)+1) 

90 CONTINUE 
GO TO 98 

91 DO 95 I=1,M 
SUM1=0.0 

SUM=0.0 
DO 96 J=1,NMP 

F(I+(J-1)*M)=X(2*J-1)+X(2*J)*Q(I,NS(J))-Q(LNS(J)) 
SUM1=SUM 1+X(2*J-1)+X(2*J)*Q(I,NS(J)) 

96 CONTINUE 
DO 651 J=MBST(JJ),MBED(JJ) 
DO 97 J1=1,NMP 
IF (J .EQ. NS(J1)) GO TO 651 

97 CONTINUE 
SUM=SUM+QC(I,J) 

651 CONTINUE 
F(I+(NMP*M))=( SUM+SUM1)*(MBED(JJ)-MBST(JJ)+1) 

95 CONTINUE 
SUM 1=0.0 
SUM=0.0 

98 RETURN 
END 

CC***************************************************** 

SUBROUTINE FUNI (MSC,ND,X,F) 
C 	**************************** 

INTEGER M,ND 
COMMON/DATA1/ P(24,7),Q(24,7),V(24,7) 
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COMMON/DATA6/PC(24,7),QC(24,7),VC(24,7),VB(24,2) 
COMMON/DATA2/ NM,M,NTL,NB 

COMMON/DATA4/ KF 
COMMON/DATA7/ NMP,JJ 
COMMON/DATA5/ILNST(5),ILNED(5),MBST(2),MBED(2),NS(2) 

REAL X(15),F(120),FS,FE,FS1,FE I,XLB(15),XUB(15) 

DO 180 J=1,M 
FE1=X (3 ) + X (4)*P(J,ILNED(KF)) 
FE2=X(5) + X(6)*Q(J,ILNED(KF)) 

FEV=X(1)+X(2)*V(J,ILNED(K.F)) 
FS1=PC(J,ILNST(KF)) 
FS2=QC(J,T1  NST(KF)) 
F1=(FS1**2+FS2**2)/VB(J,JJ)**2 

F2=(FE1**2+FE2**2)/(X(1)+X(2)*V(J,ILNED(KF)))**2 

FI1=SQRT((FS1**2+FS2**2)/VB(J,JJ)**2) 
FI2=SQRT(FE1**2+FE2**2)/(X(1)+X(2)*V(J,ILNED(KF)))**2) 
DELTP=ABS(ABS(FS I )-AB S(FE1)) 

DELTQ=ABS(ABS(FS2)-ABS(FE2)) 

F(J)=(F1+F2)*0.115-2*(DELTP+DELTQ) 
F(J+M)=FI1-FI2 

F5=Q(J,ILNED(KF))/(SQRT(P(J,ILNED(KF))**2+Q(J,ILNED(KF))**2)) 
F61=ABS(FS1*P(J,ILNED(KF)))+ABS(FS2*Q(JJLNED(KF))) 

F62=SQRT(FS1**2+FS2**2)*SQRT(P(J, ILNED(KF))**2+Q(JJLNED(KF))**2) 
F6=F61/F62 
F(J+M+M)=FEV-VC(J,ILNST(KF))*F6+0.10111*FI1*F5 

180 CONTINUE 
RETURN 
END 



APPENDIX C 

PLOTS OF CALIBRATED AND MEASURED VALUES AT BUS 2 

Figure 25 Comparison of Measured, Calibrated and Actual P at Point 10 
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Figure 26 Comparison of Measured, Calibrated and Actual Q at Point 10 
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Table 27 Comparison of Measured, Calibrated and Actual P at Point 11 
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Figure 28 Comparison of Measured, Calibrated and Actual Q at Point 11 
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Figure 29 Comparison of Measured, Calibrated and Actual P at Point 12 
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Figure 30 Comparison of Measured, Calibrated and Actual Q at Point 12 
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Figure 31 Comparison of Measured, Calibrated and Actual P at Point 13 
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Figure 32 Comparison of Measured, Calibrated and Actual Q at Point 13 
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Figure 33 Comparison of Measured, Calibrated and Actual P at Point 14 
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Figure 34 Comparison of Measured, Calibrated and Actual Q at Point 14 
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Figure 35 Comparison of Measured, Calibrated and Actual P at Point 17 
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Figure 36 Comparison of Measured, Calibrated and Actual Q at Point 17 
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Figure 37 Comparison of Measured,Calibrated and Actual V of Point 10, 11, 12 
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Figure 38 Comparison of Measured, Calibrated and Actual V of Point 13, 14, 17 



REFERENCES 

1. D. M. Falcoa, S. M. Assis, "Linear Programming State Estimation Error Analysis and 
Gross Error Identification," IEEE Trans on Power Systems, vol. 3, pp. 89-815, 
August 1988. 

2. M. M. Adibi, J. P. Stovall, " On Estimation of Uncertainties in Analog Measurements." 
IEEE PES 89 SM 669-3 -PW R S , 1989. 

3. M. M. Adibi, D. K. Thorne, "Remote Measurement Calibration," IEEE Trans. on 
Power Systems, vol. PWRS-1, pp. 194-197, May 1986. 

4. M. M. Adibi, R. J. Kafka, "Minimization of Uncertainties in Analog Measurements 
for Use in State Estimation," IEEE Trans. on Power Systems, vol. 5, pp. 902-908, 
August 1990. 

5. M. M. Adibi,R. J. Kafka, "Integration of Remote Measurement Calibration with State 
Estimation-A Feasibility Study,"  IEEE Trans. on Power Systems, vol. 7, pp. 
1164-1170, August 1992. 

6. A. Fallaha, E. Cohen, A. Kayyali, "Calibration of Power Flow Measurements," 
Research Paper in Power Laboratory of New Jersey Institute of Technology, 
Newark, NJ, August 1995. 

7. J. R. Taylor, An Introduction to Error Analysis, University Science Books, Mill 
Vally,Calif.,1982. 

8. P. F. Hultquist, Numerical Methods for Engineers and Computer Scientists. The 
Bejamin/Cummings Publishing Company, Inc., Menlo Park, Calif.,1988. 

9. S. Nakamura, Applied Numerical Methods with Software, Prentice-Hall, Inc., 
Englewood Cliffs, NJ,1991 

70 


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Method of Calibration
	Chapter 3: Case Study
	Chapter 4: Discussion
	Chapter 5: Conclusion
	Appendix A: Program of Simulating the Measurement Data
	Appendix B: Program of Remote Measurement Calibration (RMC)
	Appendix C: Plots of Calibrated and Measured Values at Bus 2
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)




